

 Navigation

 	
 index

 	
 next |

 	pyqcy 0.4.5 documentation

pyqcy

pyqcy [pyksi:] is a test framework that supports unique testing model, inspired by the brilliant
QuickCheck library for Haskell. Rather than writing fully-fledged test cases, you only need to
define logical properties that your code has to satisfy. Based on that, pyqcy will automatically
generate test cases for you - hundreds of them, in fact!

Example

from pyqcy import qc, int_, main

@qc
def addition_actually_works(
 x=int_(min=0), y=int_(min=0)
):
 the_sum = x + y
 assert the_sum >= x and the_sum >= y

if __name__ == '__main__':
 main()

$ python ./example.py
addition_actually_works: passed 100 tests.

Yes, that’s 100 distinct test cases. pyqcy has generated them all for you!

Installation

Either from PyPI:

$ pip install pyqcy

or directly from GitHub if you want the bleeding edge version:

$ git clone git://github.com/Xion/pyqcy.git
$ cd pyqcy
$./setup.py develop

Learn more

	Defining properties

	Using generators

	Running the tests

	Gathering statistics

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyqcy 0.4.5 documentation

Defining properties

In pyqcy, the test properties are defined as regular Python functions
but they are all adorned with the qc() decorator.

Here’s an example:

from pyqcy import *

@qc
def sorting_preserves_length(
 l=list_(of=int, min_length=1, max_length=128)
):
 before_sort = l
 after_sort = list(sorted(l))
 assert len(before_set) == len(after_sort)

Inside the function, we use its parameters as a sort of quantified variables.
As you can see, their defaults are somewhat unusual: they specify how to
obtain arbitrary (random) values for those variables. pyqcy will take
those specifications, use them to automatically generate test data
and then invoke your property’s code.

Note

For more information about different way of running tests for your properties,
check the documentation on that.

	
pyqcy.qc([tests])

	Decorator for Python functions that define properties
to be tested by pyqcy.

It is expected that default values for function arguments
define generators that will be used to generate data
for test cases. See the section about
using generators for more information.

Example of using @qc to define a test property:

@qc
def len_behaves_correctly(
 l=list_(int, min_length=1, max_length=64)
):
 assert len(l) == l.__len__()

	Parameters:	tests – Number of tests to execute for this property.
If omitted, the default number of 100 tests will be executed.

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyqcy 0.4.5 documentation

Using generators

To provide test data for your properties, pyqcy has a set of generators
for all common types and use cases, including Python’s
scalar types
and collections. It is also easy
to combine several generators into
one - up to creating complex data structures
on the fly.

Still, if those are not enough, you can always define your own generator.
This is especially handy for custom classes, as it enables you to write
properties that should be true for their instances.
To create a custom generator, simply define a function that returns
an appropriate random object and decorate it with the arbitrary()
decorator:

from pyqcy import *

@arbitrary(MyClass)
def my_class():
 obj = MyClass()
 obj.some_field = next(int_(min=0, max=1024))
 obj.other_field = next(str_(max_length=64))
 return obj

Now you can write properties which use the new generator:

@qc
def forbs_correctly(obj=MyClass):
 assert obj.forb() >= obj.some_field * len(obj.other_field)

Because we have passed a type argument to arbitrary(),
we can use our class name (MyClass) in place of generator name
(my_class) - although the latter is of course still possible.

	
pyqcy.arbitraries.arbitrary(type_=None)

	Decorator to be applied on functions in order to turn
them into generators of arbitrary (“random”) values
of given type.

	Parameters:	type – Type of values generated by the function

The type_ argument is optional. If provided,
objects returned by the function will be checked against
this type. It will be also possible to use the type
directly when defining properties.

Examples:

from pyqcy import *

@arbitrary(MyClass)
def my_class():
 return MyClass()

@qc
def my_class_works(obj=MyClass):
 assert obj.is_valid()

Built-in types

Most Python types are conveniently supported by pyqcy
and generators for them are readily available. They should
cover a vast majority of typical use cases.

Numeric types

Numeric types have parametrized generators that allow for setting
desired range of produces values. But if we are fine
with the defaults, we can simply use the types directly, as seen
in this example:

@qc
def vec2d_length_is_positive(x=float, y=float):
 return vec2d_len(x, y) >= 0.0

	
pyqcy.arbitraries.numbers.int_(min, max)

	Generator for arbitrary integers.

By default, it generates values from the whole integer range
supported by operating system; this can be adjusted using
parameters.

	Parameters:	
	min – A minimum value of integer to generate

	max – A maximum value of integer to generate

	
pyqcy.arbitraries.numbers.float_(min, max)

	Generator for arbitrary floats.

	Parameters:	
	min – A minimum value of float to generate

	max – A maximum value of float to generate

	
pyqcy.arbitraries.numbers.complex_(min_real, max_real, min_imag, max_imag)

	Generator for arbitrary complex numbers
of the built-in Python complex type.

Parameters for this generator allow for adjusting the rectangle
on the complex plane where the values will come from.

	Parameters:	
	min_real – A minimum value for real part of generated numbers

	max_real – A maximum value for real part of generated numbers

	min_imag – A minimum value for the imaginary part
of generated numbers

	max_imag – A maximum value for the imaginary part
of generated numbers

Strings

For creating arbitrary texts, pyqcy has two generators for
ANSI and Unicode strings. You can specify what characters the
generators should draw from, as well the minimum and maximum length
of strings to generate.

	
pyqcy.arbitraries.strings.str_(of, min_length, max_length)

	Generator for arbitrary strings.

Parameters for this generator allow for adjusting the length
of resulting strings and the set of characters they are composed of.

	Parameters:	
	of – Characters used to construct the strings.
This can be either an iterable of characters
(e.g. a string) or a generator that produces them.

	min_length – A minimum length of string to generate

	max_length – A maximum length of string to generate

	
pyqcy.arbitraries.strings.unicode_(of, min_length, max_length)

	Generator for arbitrary Unicode strings.

Parameters for this generator allow for adjusting the length
of resulting strings and the set of characters they are composed of.

	Parameters:	
	of – Characters used to construct the strings.
This can be either an iterable of characters
(e.g. a string) or a generator that produces them.

	min_length – A minimum length of string to generate

	max_length – A maximum length of string to generate

Quite often you would also want to deal only with strings of certain
form that matches the expected input of the code you are testing.
In those cases it’s useful to specify a regular expression that
autogenerated strings should match.

	
pyqcy.arbitraries.strings.regex(pattern)

	Generator for strings matching a regular expression.

	Parameters:	pattern – A regular expression - either a compiled one
(through re.compile()) or a string pattern

Note

Currently the regex reverser supports only a limited subset
of syntactic features offered by Python regular expressions.
For example, it doesn’t support negative matches on character sets
([^...]) or backreferences to capture groups (\\1, \\2, etc.).

Tuples

Tuples can be produced by combining several generators together
through tuple_() function. There are also handy shortcuts
for pairs, triplers and quadruples that consists of values
from the same source.

	
pyqcy.arbitraries.collections.tuple_(*generators, of, n)

	Generator for arbitrary tuples.

The tuples are always of the same length but their values
may come from different generators. There two ways to specify
those generators - either enumerate them all:

tuple_(int_(min=0, max=255), str_(max_length=64))

or use n argument with a single generator to get uniform tuples:

ip_addresses = tuple_(int_(min=0, max=255), n=4)
ip_addresses = tuple_(of=int_(min=0, max=255), n=4)

Those two styles are mutually exclusive - only one can be used at a time.

	Parameters:	
	of – Generator used to generate tuple values

	n – Tuple length

	
pyqcy.arbitraries.collections.two(of)

	partial(func, *args, **keywords) - new function with partial application
of the given arguments and keywords.

	
pyqcy.arbitraries.collections.three(of)

	partial(func, *args, **keywords) - new function with partial application
of the given arguments and keywords.

	
pyqcy.arbitraries.collections.four(of)

	partial(func, *args, **keywords) - new function with partial application
of the given arguments and keywords.

Collections

Lists and dictionaries can be generated by giving their minimum
and maximum size, as well as a generator for their elements.
For dictionaries, you can either specify a separate generators
for keys and values, or a single generator that outputs
2-element tuples.

	
pyqcy.arbitraries.collections.list_(of, min_length, max_length)

	Generator for arbitrary lists.

Parameters for this generator allow for adjusting the length
of resulting list and elements they contain.

	Parameters:	
	of – Generator for list elements

	min_length – A minimum length of list to generate

	max_length – A maximum length of list to generate

Example of test property that uses list_():

@qc
def calculating_average(
 l=list_(of=int_(min=0, max=1024),
 min_length=16, max_length=2048)
):
 average = sum(l) / len(l)
 assert min(l) <= average <= max(l)

	
pyqcy.arbitraries.collections.dict_(keys, values, items, min_length, max_length)

	Generator for arbitrary dictionaries.

Dictionaries are specified using generators - either for
keys and values separately:

dict_(keys=str_(max_length=64), values=str_(max_length=64))

or already combined into items (which should yield key-value pairs):

dict_(items=two(str_(max_length=64)))

Those two styles are mutually exclusive - only one can be used at a time.

	Parameters:	
	keys – Generator for dictionary keys

	values – Generator for dictionary values

	items – Generator for dictionary items (2-element tuples).

	min_length – A minimum number of items
the resulting dictionary will contain

	max_length – A maximum number of items
the resulting dictionary will contain

Combinators

If you want to have a generator that produces values of more than one type,
use the simple one_of() function or the more sophisticated
frequency() combinator.

For a simpler task of always choosing a value from a predefined
set of objects, the elements() function will come handy.

	
pyqcy.arbitraries.combinators.one_of(*generators)

	Generator that yields values coming from given set of generators.

Generators can be passed either directly as arguments:

one_of(int, float)

or as a list:

one_of([int, float])

Every generator has equal probability of being chosen.
If you need non-uniform probability distribution,
use the frequency() function.

	
pyqcy.arbitraries.combinators.frequency(*distribution)

	Generator that yields coming from given set of generators,
according to their probability distribution.

The distribution is just a set of tuples: (gen, freq)
which can be passed either directly as arguments:

frequency((int, 1), (float, 2))

or a a list:

frequency([(int, 1), (float, 2)])

The second element of tuple (freq) is the relative frequency
of values from particular generator, compared to those from other
generators. In both examples above the resulting generator will
yield floats twice as often as ints.

Typically, it’s convenient to use floating-point frequencies
that sum to 1.0 or integer frequencies that sum to 100.

	
pyqcy.arbitraries.combinators.elements(*list)

	Generator that returns random elements from given set.

Elements can be passed either directly as arguments:

elements(1, 2, 3)

or as a list:

elements([1, 2, 3])

Every element has equal probability of being chosen.

	Parameters:	count – Optional number of elements in every returned subset.
If omitted, a single element will be yield every time.
If provided, it should always be passed as keyword argument,
e.g. elements(range(10), count=3).

This can be also a generator - such as int_() -
if there’s a need to randomize the subset size, too.

Note

There is difference between elements(foo)
and elements(foo, count=1). The first form returns
random element from the set foo, while the second returns random
1-element subset of foo - x vs [x], essentially.

Data structures

For testing higher level code, it is often required to prepare more complex
input data and not just simple, uniform collections of elements. Even then,
it can be possible to avoid writing a custom generator if we use the
data() function.

	
pyqcy.arbitraries.combinators.data(schema)

	Generator that outputs data structures conforming to given schema.

	Parameters:	schema – A list or dictionary that contains either
immediate values or other generators.

Note

schema can be recursive and combine lists with dictionaries
into complex structures. You can have nested dictionaries,
lists containing lists, dictionaries with lists as values, and so on.

A typical example of using data():

import string

@qc
def creating_user_works(
 request=data({
 'login': str_(of=string.ascii_letters | string.digits,
 min_length=3, max_length=32),
 'password': str_(min_length=8, max_length=128),
 })
):
 response = create_user(request['login'], request['password'])
 assert response['status'] == "OK"

Applying functions

Yet another way of combining generators is to use them as building blocks
for whole object pipelines. This is possible thanks to apply()
combinator.

	
pyqcy.arbitraries.combinators.apply(func, *args, **kwargs)

	Generator that applies a specific function to objects returned
by given generator(s).

Any number of generators can be passed as arguments, and they can
be both positional (args) or keyword arguments (kwargs).
In either case, the same invocation style (i.e. positional or keyword)
will be used when calling the func with actual values
obtained from given generators.

As an example, the following call:

apply(json.dumps, dict_(items=two(str)))

will create a generator that yields results of json.dumps(d),
where d is an arbitrary dictionary that maps strings to strings.

Similarly, using apply() as shown below:

apply(itertools.product, list_(of=int), repeat=4)

gets us a generator that produces results of
itertools.product(l, repeat=4), where l is an arbitrary
list of ints.

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyqcy 0.4.5 documentation

Running the tests

Once you have written some tests using pyqcy, you would most likely want run them.

If you already have a test suite of different kinds of tests for your projects
(typically at least unit tests), you probably want to integrate
pyqcy properties into that.

Alternatively, properties can be also verified using a built-in, standalone test runner.

Test runner

pyqcy includes a readily available test runner which can be used to run verification
tests for all properties defined within given module. For it to work, you just need
to include a traditional if __name__ == '__main__': boilerplate which calls
pyqcy.main():

from pyqcy import *

... define test properties here ...

if __name __ == '__main__':
 main()

This default test runner will go over all properties defined within this module,
as well as all modules it imports, and execute tests for them. It is intentionally
similar in usage to standard unittest.main and shares many parameters with the
unittest runner (to the extent it makes sense for pyqcy tests, of course).

	
pyqcy.runner.main(module='__main__', exit=True, verbosity=2, failfast=False)

	Built-in test runner for properties.

When called, it will look for all properties (i.e. functions with
qc() decorator) and run checks on them.

Arguments are intended to mimic those from unittest.main().
Return value is the total number of properties checked,
provided exit is False and program doesn’t terminate.

Integration with testing frameworks

If you are already using a unit testing framework, you can easily integrate
pyqcy property tests into it.

For this, there is a TestCase class which is a descendant of the standard
unittest.TestCase. Any test cases built upon it will be gathered and ran
by pretty much any testing framework - be it unittest itself, nose, py.test, etc.

Therefore all we need to do is to put out properties inside a TestCase subclass:

from pyqcy import *

class Arithmetic(TestCase):
 @qc
 def addition_on_ints(x=int, y=int):
 assert isinstance(x + y, int)
 @qc
 def subtraction_on_ints(x=int, y=int):
 assert isinstance(x - y, int)

There is no need to rename the properties to start with test_ but we should retain
the qc() decorator. We also don’t need to include any other methods that would
explicitly run tests for our properties, as the base TestCase class
will take care of it automatically.

	
class pyqcy.integration.TestCase(methodName='runTest')

	unittest test case for pyqcy properties.

Properties defined here within subclasses of TestCase
will be verified automatically as a part of standard unittest run.
To define them, use the typical syntax with qc() decorator:

class Sorting(TestCase):
 '''Properties that must hold for a sorting.'''
 @qc
 def sort_preserves_length(
 l=list_(of=int, max_length=128)
):
 assert len(l) == len(list(sorted(l)))
 @qc
 def sort_finds_minimum(
 l=list_(of=int, min_length=1, max_length=128)
):
 assert min(l) == list(sorted(l))[0]

Since TestCase itself is a subclass of standard
unittest.TestCase, it will be discovered by unittest.main(),
nosetests or similar testing utilities.

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	pyqcy 0.4.5 documentation

Gathering statistics

As your tests are ran, you may want to gain some insight
into what test cases are actually generated in order to verify your properties.
Usually, however, there will be hundreds or thousands of them, so you
certainly don’t want to wade through them all.

To consolidate this data into more useful information, pyqcy provides you
with statistical functions: collect() and classify().

Warning

All statistical functions described below must be yield from within
test properties to be recorded.

	
pyqcy.statistics.collect(value)

	Collects test cases that share the same value
(passed as argument) for statistical purposes.

	Parameters:	value – Value to collect. This can be any hashable,
i.e. a value that could be a set element
or dictionary key.

Typical usage of collect() is as follows:

@qc
def sort_works(
 l=list_(int, min_length=1, max_length=100)
):
 yield collect(len(l))
 assert list(sorted(l))[0] == min(l)

Checking the above property will produce output similar to this:

sort_works: passed 100 tests.
1.00%: 1
1.00%: 2
...
1.00%: 100

	
pyqcy.statistics.classify(condition, label)

	Classifies test cases depending on whether they satisfy
given condition.

If a test case meets the condition, it will be “stamped”
with given label that will subsequently appear in statistical report
displayed after a property has been tested.

	Parameters:	
	condition – Condition that the test data should satisfy
in order for the test case to be stamped with label.

	label – A label to be associated with this test case
if condition turns out to be true

Typical usage is as follows:

@qc
def sort_preserves_length(
 l=list_(int, min_length=1, max_length=100)
):
 yield classify(len(l) == 0, "empty list")
 yield classify(len(l) < 10, "short list")
 assert len(list(sorted(l))) == len(l)

Checking the above property will produce
something like the following output:

sort_preserves_length: passed 100 tests.
1.00%: empty list, short list
9.00%: short list
90.00%: <rest>

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pyqcy 0.4.5 documentation

Index

 A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | O
 | Q
 | R
 | S
 | T
 | U

A

 	

 	apply() (in module pyqcy.arbitraries.combinators)

 	

 	arbitrary() (in module pyqcy.arbitraries)

C

 	

 	classify() (in module pyqcy.statistics)

 	collect() (in module pyqcy.statistics)

 	

 	complex_() (in module pyqcy.arbitraries.numbers)

D

 	

 	data() (in module pyqcy.arbitraries.combinators)

 	

 	dict_() (in module pyqcy.arbitraries.collections)

E

 	

 	elements() (in module pyqcy.arbitraries.combinators)

F

 	

 	float_() (in module pyqcy.arbitraries.numbers)

 	four() (in module pyqcy.arbitraries.collections)

 	

 	frequency() (in module pyqcy.arbitraries.combinators)

I

 	

 	int_() (in module pyqcy.arbitraries.numbers)

L

 	

 	list_() (in module pyqcy.arbitraries.collections)

M

 	

 	main() (in module pyqcy.runner)

O

 	

 	one_of() (in module pyqcy.arbitraries.combinators)

Q

 	

 	qc() (in module pyqcy)

R

 	

 	regex() (in module pyqcy.arbitraries.strings)

S

 	

 	str_() (in module pyqcy.arbitraries.strings)

T

 	

 	TestCase (class in pyqcy.integration)

 	three() (in module pyqcy.arbitraries.collections)

 	

 	tuple_() (in module pyqcy.arbitraries.collections)

 	two() (in module pyqcy.arbitraries.collections)

U

 	

 	unicode_() (in module pyqcy.arbitraries.strings)

 Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

search.html

 Navigation

 		
 index

 		pyqcy 0.4.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Karol Kuczmarski.
 Created using Sphinx 1.3.1.

_static/up.png

_static/down.png

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/ajax-loader.gif

_static/comment-close.png

