

Welcome to PyJWT

PyJWT is a Python library which allows you to encode and decode JSON Web
Tokens (JWT). JWT is an open, industry-standard (RFC 7519 [https://tools.ietf.org/html/rfc7519]) for representing
claims securely between two parties.

Sponsor

	[image: auth0-logo]

	If you want to quickly add secure token-based authentication to Python projects, feel free to check
Auth0’s Python SDK and free plan at auth0.com/overview [https://auth0.com/overview?utm_source=GHsponsor&utm_medium=GHsponsor&utm_campaign=pyjwt&utm_content=auth].

Installation

You can install pyjwt with pip:

$ pip install pyjwt

See Installation for more information.

Example Usage

>>> import jwt

>>> encoded_jwt = jwt.encode({'some': 'payload'}, 'secret', algorithm='HS256')
>>> encoded_jwt
'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZg'

>>> jwt.decode(encoded_jwt, 'secret', algorithms=['HS256'])
{'some': 'payload'}

See Usage Examples for more examples.

Command line

Usage:

pyjwt [options] INPUT

Decoding examples:

pyjwt --key=secret decode TOKEN
pyjwt decode --no-verify TOKEN

See more options executing pyjwt --help.

Index

	Installation
	Cryptographic Dependencies (Optional)

	Legacy Dependencies

	Usage Examples
	Encoding & Decoding Tokens with HS256

	Encoding & Decoding Tokens with RS256 (RSA)

	Specifying Additional Headers

	Reading the Claimset without Validation

	Reading Headers without Validation

	Registered Claim Names

	Frequently Asked Questions
	How can I extract a public / private key from a x509 certificate?

	I’m using Google App Engine and can’t install cryptography, what can I do?

	Digital Signature Algorithms
	Asymmetric (Public-key) Algorithms

	Specifying an Algorithm

	API Reference
	Exceptions

Installation

You can install PyJWT with pip:

$ pip install pyjwt

Cryptographic Dependencies (Optional)

If you are planning on encoding or decoding tokens using certain digital
signature algorithms (like RSA or ECDSA), you will need to install the
cryptography [https://cryptography.io] library. This can be installed explicitly, or as a required
extra in the pyjwt requirement:

$ pip install pyjwt[crypto]

The pyjwt[crypto] format is recommended in requirements files in
projects using PyJWT, as a separate cryptography requirement line
may later be mistaken for an unused requirement and removed.

Legacy Dependencies

Some environments, most notably Google App Engine, do not allow the installation
of Python packages that require compilation of C extensions and therefore
cannot install cryptography. If you can install cryptography, you
should disregard this section.

If you are deploying an application to one of these environments, you may
need to use the legacy implementations of the digital signature algorithms:

$ pip install pycrypto ecdsa

Once you have installed pycrypto and ecdcsa, you can tell PyJWT to use
the legacy implementations with jwt.register_algorithm(). The following
example code shows how to configure PyJWT to use the legacy implementations
for RSA with SHA256 and EC with SHA256 signatures.

import jwt
from jwt.contrib.algorithms.pycrypto import RSAAlgorithm
from jwt.contrib.algorithms.py_ecdsa import ECAlgorithm

jwt.unregister_algorithm('RS256')
jwt.unregister_algorithm('ES256')

jwt.register_algorithm('RS256', RSAAlgorithm(RSAAlgorithm.SHA256))
jwt.register_algorithm('ES256', ECAlgorithm(ECAlgorithm.SHA256))

Usage Examples

Encoding & Decoding Tokens with HS256

>>import jwt
>>key = 'secret'
>>encoded = jwt.encode({'some': 'payload'}, key, algorithm='HS256')
'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZg'
>>decoded = jwt.decode(encoded, key, algorithms='HS256')
{'some': 'payload'}

Encoding & Decoding Tokens with RS256 (RSA)

>>import jwt
>>private_key = b'-----BEGIN PRIVATE KEY-----\nMIGEAgEAMBAGByqGSM49AgEGBS...'
>>public_key = b'-----BEGIN PUBLIC KEY-----\nMHYwEAYHKoZIzj0CAQYFK4EEAC...'
>>encoded = jwt.encode({'some': 'payload'}, private_key, algorithm='RS256')
'eyJhbGciOiJIU...'
>>decoded = jwt.decode(encoded, public_key, algorithms='RS256')
{'some': 'payload'}

Specifying Additional Headers

>>jwt.encode({'some': 'payload'}, 'secret', algorithm='HS256', headers={'kid': '230498151c214b788dd97f22b85410a5'})
'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjIzMDQ5ODE1MWMyMTRiNzg4ZGQ5N2YyMmI4NTQxMGE1In0.eyJzb21lIjoicGF5bG9hZCJ9.DogbDGmMHgA_bU05TAB-R6geQ2nMU2BRM-LnYEtefwg'

Reading the Claimset without Validation

If you wish to read the claimset of a JWT without performing validation of the
signature or any of the registered claim names, you can set the verify
parameter to False.

Note: It is generally ill-advised to use this functionality unless you
clearly understand what you are doing. Without digital signature information,
the integrity or authenticity of the claimset cannot be trusted.

>>jwt.decode(encoded, verify=False)
{u'some': u'payload'}

Reading Headers without Validation

Some APIs require you to read a JWT header without validation. For example,
in situations where the token issuer uses multiple keys and you have no
way of knowing in advance which one of the issuer’s public keys or shared
secrets to use for validation, the issuer may include an identifier for the
key in the header.

>>jwt.get_unverified_header(encoded)
{u'alg': u'RS256', u'typ': u'JWT', u'kid': u'key-id-12345...'}

Registered Claim Names

The JWT specification defines some registered claim names and defines
how they should be used. PyJWT supports these registered claim names:

	“exp” (Expiration Time) Claim

	“nbf” (Not Before Time) Claim

	“iss” (Issuer) Claim

	“aud” (Audience) Claim

	“iat” (Issued At) Claim

Expiration Time Claim (exp)

The “exp” (expiration time) claim identifies the expiration time on
or after which the JWT MUST NOT be accepted for processing. The
processing of the “exp” claim requires that the current date/time
MUST be before the expiration date/time listed in the “exp” claim.
Implementers MAY provide for some small leeway, usually no more than
a few minutes, to account for clock skew. Its value MUST be a number
containing a NumericDate value. Use of this claim is OPTIONAL.

You can pass the expiration time as a UTC UNIX timestamp (an int) or as a
datetime, which will be converted into an int. For example:

jwt.encode({'exp': 1371720939}, 'secret')
jwt.encode({'exp': datetime.utcnow()}, 'secret')

Expiration time is automatically verified in jwt.decode() and raises
jwt.ExpiredSignatureError if the expiration time is in the past:

try:
 jwt.decode('JWT_STRING', 'secret', algorithms=['HS256'])
except jwt.ExpiredSignatureError:
 # Signature has expired

Expiration time will be compared to the current UTC time (as given by
timegm(datetime.utcnow().utctimetuple())), so be sure to use a UTC timestamp
or datetime in encoding.

You can turn off expiration time verification with the verify_exp parameter in the options argument.

PyJWT also supports the leeway part of the expiration time definition, which
means you can validate a expiration time which is in the past but not very far.
For example, if you have a JWT payload with a expiration time set to 30 seconds
after creation but you know that sometimes you will process it after 30 seconds,
you can set a leeway of 10 seconds in order to have some margin:

jwt_payload = jwt.encode({
 'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=30)
}, 'secret')

time.sleep(32)

JWT payload is now expired
But with some leeway, it will still validate
jwt.decode(jwt_payload, 'secret', leeway=10, algorithms=['HS256'])

Instead of specifying the leeway as a number of seconds, a datetime.timedelta
instance can be used. The last line in the example above is equivalent to:

jwt.decode(jwt_payload, 'secret', leeway=datetime.timedelta(seconds=10), algorithms=['HS256'])

Not Before Time Claim (nbf)

The “nbf” (not before) claim identifies the time before which the JWT
MUST NOT be accepted for processing. The processing of the “nbf”
claim requires that the current date/time MUST be after or equal to
the not-before date/time listed in the “nbf” claim. Implementers MAY
provide for some small leeway, usually no more than a few minutes, to
account for clock skew. Its value MUST be a number containing a
NumericDate value. Use of this claim is OPTIONAL.

The nbf claim works similarly to the exp claim above.

jwt.encode({'nbf': 1371720939}, 'secret')
jwt.encode({'nbf': datetime.utcnow()}, 'secret')

Issuer Claim (iss)

The “iss” (issuer) claim identifies the principal that issued the
JWT. The processing of this claim is generally application specific.
The “iss” value is a case-sensitive string containing a StringOrURI
value. Use of this claim is OPTIONAL.

payload = {
 'some': 'payload',
 'iss': 'urn:foo'
}

token = jwt.encode(payload, 'secret')
decoded = jwt.decode(token, 'secret', issuer='urn:foo', algorithms=['HS256'])

If the issuer claim is incorrect, jwt.InvalidIssuerError will be raised.

Audience Claim (aud)

The “aud” (audience) claim identifies the recipients that the JWT is
intended for. Each principal intended to process the JWT MUST
identify itself with a value in the audience claim. If the principal
processing the claim does not identify itself with a value in the
“aud” claim when this claim is present, then the JWT MUST be
rejected. In the general case, the “aud” value is an array of case-
sensitive strings, each containing a StringOrURI value. In the
special case when the JWT has one audience, the “aud” value MAY be a
single case-sensitive string containing a StringOrURI value. The
interpretation of audience values is generally application specific.
Use of this claim is OPTIONAL.

payload = {
 'some': 'payload',
 'aud': 'urn:foo'
}

token = jwt.encode(payload, 'secret')
decoded = jwt.decode(token, 'secret', audience='urn:foo', algorithms=['HS256'])

If the audience claim is incorrect, jwt.InvalidAudienceError will be raised.

Issued At Claim (iat)

The iat (issued at) claim identifies the time at which the JWT was issued.
This claim can be used to determine the age of the JWT. Its value MUST be a
number containing a NumericDate value. Use of this claim is OPTIONAL.

If the iat claim is not a number, an jwt.InvalidIssuedAtError exception will be raised.

jwt.encode({'iat': 1371720939}, 'secret')
jwt.encode({'iat': datetime.utcnow()}, 'secret')

Frequently Asked Questions

How can I extract a public / private key from a x509 certificate?

The load_pem_x509_certificate() function from cryptography can be used to
extract the public or private keys from a x509 certificate in PEM format.

Python 2
from cryptography.x509 import load_pem_x509_certificate
from cryptography.hazmat.backends import default_backend

cert_str = "-----BEGIN CERTIFICATE-----MIIDETCCAfm..."
cert_obj = load_pem_x509_certificate(cert_str, default_backend())
public_key = cert_obj.public_key()
private_key = cert_obj.private_key()

Python 3
from cryptography.x509 import load_pem_x509_certificate
from cryptography.hazmat.backends import default_backend

cert_str = "-----BEGIN CERTIFICATE-----MIIDETCCAfm...".encode()
cert_obj = load_pem_x509_certificate(cert_str, default_backend())
public_key = cert_obj.public_key()
private_key = cert_obj.private_key()

I’m using Google App Engine and can’t install cryptography, what can I do?

Some platforms like Google App Engine don’t allow you to install libraries
that require C extensions to be built (like cryptography). If you’re deploying
to one of those environments, you should check out Legacy Dependencies

Digital Signature Algorithms

The JWT specification supports several algorithms for cryptographic signing.
This library currently supports:

	HS256 - HMAC using SHA-256 hash algorithm (default)

	HS384 - HMAC using SHA-384 hash algorithm

	HS512 - HMAC using SHA-512 hash algorithm

	ES256 - ECDSA signature algorithm using SHA-256 hash algorithm

	ES384 - ECDSA signature algorithm using SHA-384 hash algorithm

	ES512 - ECDSA signature algorithm using SHA-512 hash algorithm

	RS256 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-256 hash algorithm

	RS384 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-384 hash algorithm

	RS512 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-512 hash algorithm

	PS256 - RSASSA-PSS signature using SHA-256 and MGF1 padding with SHA-256

	PS384 - RSASSA-PSS signature using SHA-384 and MGF1 padding with SHA-384

	PS512 - RSASSA-PSS signature using SHA-512 and MGF1 padding with SHA-512

Asymmetric (Public-key) Algorithms

Usage of RSA (RS*) and EC (EC*) algorithms require a basic understanding
of how public-key cryptography is used with regards to digital signatures.
If you are unfamiliar, you may want to read
this article [https://en.wikipedia.org/wiki/Public-key_cryptography].

When using the RSASSA-PKCS1-v1_5 algorithms, the key argument in both
jwt.encode() and jwt.decode() ("secret" in the examples) is expected to
be either an RSA public or private key in PEM or SSH format. The type of key
(private or public) depends on whether you are signing or verifying a token.

When using the ECDSA algorithms, the key argument is expected to
be an Elliptic Curve public or private key in PEM format. The type of key
(private or public) depends on whether you are signing or verifying.

Specifying an Algorithm

You can specify which algorithm you would like to use to sign the JWT
by using the algorithm parameter:

>>> encoded = jwt.encode({'some': 'payload'}, 'secret', algorithm='HS512')
'eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.WTzLzFO079PduJiFIyzrOah54YaM8qoxH9fLMQoQhKtw3_fMGjImIOokijDkXVbyfBqhMo2GCNu4w9v7UXvnpA'

When decoding, you can also specify which algorithms you would like to permit
when validating the JWT by using the algorithms parameter which takes a list
of allowed algorithms:

>>> jwt.decode(encoded, 'secret', algorithms=['HS512', 'HS256'])
{u'some': u'payload'}

In the above case, if the JWT has any value for its alg header other than
HS512 or HS256, the claim will be rejected with an InvalidAlgorithmError.

API Reference

TODO: Document PyJWS / PyJWT classes

Exceptions

	
class jwt.exceptions.InvalidTokenError

	Base exception when decode() fails on a token

	
class jwt.exceptions.DecodeError

	Raised when a token cannot be decoded because it failed validation

	
class jwt.exceptions.InvalidSignatureError

	Raised when a token’s signature doesn’t match the one provided as part of
the token.

	
class jwt.exceptions.ExpiredSignatureError

	Raised when a token’s exp claim indicates that it has expired

	
class jwt.exceptions.InvalidAudienceError

	Raised when a token’s aud claim does not match one of the expected
audience values

	
class jwt.exceptions.InvalidIssuerError

	Raised when a token’s iss claim does not match the expected issuer

	
class jwt.exceptions.InvalidIssuedAtError

	Raised when a token’s iat claim is in the future

	
class jwt.exceptions.ImmatureSignatureError

	Raised when a token’s nbf claim represents a time in the future

	
class jwt.exceptions.InvalidKeyError

	Raised when the specified key is not in the proper format

	
class jwt.exceptions.InvalidAlgorithmError

	Raised when the specified algorithm is not recognized by PyJWT

	
class jwt.exceptions.MissingRequiredClaimError

	Raised when a claim that is required to be present is not contained
in the claimset

 Python Module Index

 j

 		 	

 		
 j	

 	
 	
 jwt	

Index

 D
 | E
 | I
 | J
 | M

D

 	
 	DecodeError (class in jwt.exceptions)

E

 	
 	ExpiredSignatureError (class in jwt.exceptions)

I

 	
 	ImmatureSignatureError (class in jwt.exceptions)

 	InvalidAlgorithmError (class in jwt.exceptions)

 	InvalidAudienceError (class in jwt.exceptions)

 	InvalidIssuedAtError (class in jwt.exceptions)

 	
 	InvalidIssuerError (class in jwt.exceptions)

 	InvalidKeyError (class in jwt.exceptions)

 	InvalidSignatureError (class in jwt.exceptions)

 	InvalidTokenError (class in jwt.exceptions)

J

 	
 	jwt (module)

M

 	
 	MissingRequiredClaimError (class in jwt.exceptions)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/40abf5e04f15f9507e0be7c22a80357d7098fe35.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to PyJWT

 		
 Installation

 		
 Cryptographic Dependencies (Optional)

 		
 Legacy Dependencies

 		
 Usage Examples

 		
 Encoding & Decoding Tokens with HS256

 		
 Encoding & Decoding Tokens with RS256 (RSA)

 		
 Specifying Additional Headers

 		
 Reading the Claimset without Validation

 		
 Reading Headers without Validation

 		
 Registered Claim Names

 		
 Expiration Time Claim (exp)

 		
 Not Before Time Claim (nbf)

 		
 Issuer Claim (iss)

 		
 Audience Claim (aud)

 		
 Issued At Claim (iat)

 		
 Frequently Asked Questions

 		
 How can I extract a public / private key from a x509 certificate?

 		
 I’m using Google App Engine and can’t install cryptography, what can I do?

 		
 Digital Signature Algorithms

 		
 Asymmetric (Public-key) Algorithms

 		
 Specifying an Algorithm

 		
 API Reference

 		
 Exceptions

_static/up.png

_static/up-pressed.png

