

PubChemPy documentation

PubChemPy provides a way to interact with PubChem in Python. It allows chemical searches by name,
substructure and similarity, chemical standardization, conversion between chemical file formats, depiction and
retrieval of chemical properties.

Here’s a quick example showing how to search for a compound by name:

for compound in get_compounds('glucose', 'name'):
 print compound.cid
 print compound.isomeric_smiles

Here’s how you get calculated properties for a specific compound:

vioxx = Compound.from_cid(5090)
print vioxx.molecular_formula
print vioxx.molecular_weight
print vioxx.xlogp

All the heavy lifting is done by PubChem’s servers, using their database and chemical toolkits.

Features

	Search PubChem Substance and Compound databases by name, SMILES, InChI and SDF.

	Retrieve the standardised Compound record for a given input structure.

	Convert between SDF, SMILES, InChI, PubChem CID and more.

	Retrieve calculated properties, fingerprints and descriptors.

	Generate 2D and 3D coordinates.

	Get IUPAC systematic names, trade names and all known synonyms for a given Compound.

	Download compound records as XML, ASNT/B, JSON, SDF and depiction as a PNG image.

	Construct property tables using pandas DataFrames.

	A complete Python wrapper around the PubChem PUG REST web service [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html].

	Supports Python versions 2.7 – 3.4.

Useful links

	Source code is available on GitHub [https://github.com/mcs07/PubChemPy].

	Ask a question or report a bug on the Issue Tracker [https://github.com/mcs07/PubChemPy/issues].

	PUG REST API tutorial [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html] and documentation [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html].

User guide

A step-by-step guide to getting started with PubChemPy.

	Introduction
	How PubChemPy works

	The PUG REST web service

	PubChemPy license

	Installation
	Option 1: Use pip (recommended)

	Option 2: Use conda

	Option 3: Download the latest release

	Option 4: Clone the repository

	Getting started
	Retrieving a Compound

	Searching

	Searching
	2D and 3D coordinates

	Advanced search types

	Getting a full results list for common compound names

	Compound
	Dictionary representation

	3D Compounds

	Substance
	Retrieving substances

	Properties
	Synonyms

	Identifiers

	pandas integration
	Getting pandas

	Usage

	Download

	Advanced
	Avoiding TimeoutError

	Logging

	Using behind a proxy

	Custom requests

	Contribute
	Contributors

API documentation

Comprehensive API documentation with information on every function, class and method.

	API documentation
	Search functions

	Compound

	Atom

	Bond

	Substance

	Assay

	pandas functions

	Exceptions

	Changes

Introduction

How PubChemPy works

PubChemPy relies entirely on the PubChem database and chemical toolkits provided via their PUG REST web service [1].
This service provides an interface for programs to automatically carry out the tasks that you might otherwise perform
manually via the PubChem website [https://pubchem.ncbi.nlm.nih.gov].

This is important to remember when using PubChemPy: Every request you make is transmitted to the PubChem servers,
evaluated, and then a response is sent back. There are some downsides to this: It is less suitable for confidential
work, it requires a constant internet connection, and some tasks will be slower than if they were performed locally on
your own computer. On the other hand, this means we have the vast resources of the PubChem database and chemical
toolkits at our disposal. As a result, it is possible to do complex similarity and substructure searching against a
database containing tens of millions of compounds in seconds, without needing any of the storage space or computational
power on your own local computer.

The PUG REST web service

You don’t need to worry too much about how the PubChem web service works, because PubChemPy handles all of the details
for you. But if you want to go beyond the capabilities of PubChemPy, there is some helpful documentation on the
PubChem website.

	PUG REST Tutorial [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html]: Explains how the web service works with a variety of usage examples.

	PUG REST Specification [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html]: A more comprehensive but dense specification that details every possible way to use the
web service.

PubChemPy license

The MIT License

Copyright 2014 Matt Swain

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Footnotes

	[1]	That’s a lot of acronyms! PUG stands for “Power User Gateway”, a term used to describe a variety of methods
for programmatic access to PubChem data and services. REST stands for Representational State Transfer [https://en.wikipedia.org/wiki/Representational_state_transfer], which
describes the specific architectural style of the web service.

Installation

PubChemPy supports Python versions 2.7, 3.5, and 3.6. There are no other dependencies.

There are a variety of ways to download and install PubChemPy.

Option 1: Use pip (recommended)

The easiest and recommended way to install is using pip:

pip install pubchempy

This will download the latest version of PubChemPy, and place it in your site-packages folder so it is automatically
available to all your python scripts.

If you don’t already have pip installed, you can install it using get-pip.py [http://www.pip-installer.org/en/latest/installing.html]:

curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
python get-pip.py

Option 2: Use conda

If you use Anaconda Python [https://www.continuum.io/anaconda-overview], install with conda:

conda install -c mcs07 pubchempy

Option 3: Download the latest release

Alternatively, download the latest release [https://github.com/mcs07/PubChemPy/releases/] manually and install yourself:

tar -xzvf PubChemPy-1.0.4.tar.gz
cd PubChemPy-1.0.4
python setup.py install

The setup.py command will install PubChemPy in your site-packages folder so it is automatically available to all your
python scripts. Instead, you may prefer to just copy the pubchempy.py file into the desired project directory to only
make it available to that project.

Option 4: Clone the repository

The latest development version of PubChemPy is always available on GitHub [https://github.com/mcs07/PubChemPy]. This version is not guaranteed to be
stable, but may include new features that have not yet been released. Simply clone the repository and install as usual:

git clone https://github.com/mcs07/PubChemPy.git
cd PubChemPy
python setup.py install

Getting started

This page gives a introduction on how to get started with PubChemPy. This assumes you already have PubChemPy
installed.

Retrieving a Compound

Retrieving information about a specific Compound in the PubChem database is simple.

Begin by importing PubChemPy:

>>> import pubchempy as pcp

Let’s get the Compound with CID 5090 [https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5090]:

>>> c = pcp.Compound.from_cid(5090)

Now we have a Compound object called c. We can get all the information we need from this
object:

>>> print c.molecular_formula
C17H14O4S
>>> print c.molecular_weight
314.35566
>>> print c.isomeric_smiles
CS(=O)(=O)C1=CC=C(C=C1)C2=C(C(=O)OC2)C3=CC=CC=C3
>>> print c.xlogp
2.3
>>> print c.iupac_name
3-(4-methylsulfonylphenyl)-4-phenyl-2H-furan-5-one
>>> print c.synonyms
[u'rofecoxib', u'Vioxx', u'Ceoxx', u'162011-90-7', u'MK 966', ...]

Note

All the code examples in this documentation will assume you have imported PubChemPy as pcp. If you prefer, you can
alternatively import specific functions and classes by name and use them directly:

from pubchempy import Compound, get_compounds
c = Compound.from_cid(1423)
cs = get_compounds('Aspirin', 'name')

Searching

What if you don’t know the PubChem CID of the Compound you want? Just use the get_compounds()
function:

>>> results = pcp.get_compounds('Glucose', 'name')
>>> print results
[Compound(79025), Compound(5793), Compound(64689), Compound(206)]

The first argument is the identifier, and the second argument is the identifier type, which must be one of name,
smiles, sdf, inchi, inchikey or formula. It looks like there are 4 compounds in the PubChem
Database that have the name Glucose associated with them. Let’s take a look at them in more detail:

>>> for compound in results:
... print compound.isomeric_smiles
C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O
C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O
C([C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)O)O)O)O
C(C1C(C(C(C(O1)O)O)O)O)O

It looks like they all have different stereochemistry information.

Retrieving the record for a SMILES string is just as easy:

>>> pcp.get_compounds('C1=CC2=C(C3=C(C=CC=N3)C=C2)N=C1', 'smiles')
[Compound(1318)]

Note

Beware that line notation inputs like SMILES and InChI can return automatically generated records that aren’t
actually present in PubChem, and therefore have no CID and are missing many properties that are too complicated to
calculate on the fly.

That’s all the most basic things you can do with PubChemPy. Read on for more some more advanced usage examples.

Searching

2D and 3D coordinates

By default, compounds are returned with 2D coordinates. Use the record_type keyword argument to specify otherwise:

pcp.get_compounds('Aspirin', 'name', record_type='3d')

Advanced search types

By default, requests look for an exact match with the input. Alternatively, you can specify substructure,
superstructure, similarity and identity searches using the searchtype keyword argument:

pcp.get_compounds('CC', searchtype='superstructure', listkey_count=3)

The listkey_count and listkey_start arguments can be used for pagination. Each searchtype has its own
options that can be specified as keyword arguments. For example, similarity searches have a Threshold, and
super/substructure searches have MatchIsotopes. A full list of options is available in the
PUG REST Specification [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html].

Note: These types of search are slow.

Getting a full results list for common compound names

For some very common names, PubChem maintains a filtered whitelist of human-chosen CIDs with the intention of reducing
confusion about which is the ‘right’ result. In the past, a search for Glucose would return four different results,
each with different stereochemistry information. But now, a single result is returned, which has been chosen as
‘correct’ by the PubChem team.

Unfortunately it isn’t directly possible to return to the previous behaviour, but there is a straightforward workaround:
Search for Substances with that name (which are completely unfiltered) and then get the compounds that are derived from
those substances.

There area a few different ways you can do this using PubChemPy, but the easiest is probably using the get_cids
function:

>>> pcp.get_cids('2-nonenal', 'name', 'substance', list_return='flat')
[17166, 5283335, 5354833]

This searches the substance database for ‘2-nonenal’, and gets the CID for the compound associated with each substance.
By default, this returns a mapping between each SID and CID, but the list_return='flat' parameter flattens this into
just a single list of unique CIDs.

You can then use Compound.from_cid to get the full Compound record, equivalent to what is returned by get_compounds:

>>> cids = pcp.get_cids('2-nonenal', 'name', 'substance', list_return='flat')
>>> [pcp.Compound.from_cid(cid) for cid in cids]
[Compound(17166), Compound(5283335), Compound(5354833)]

Compound

The get_compounds() function returns a list of Compound objects. You can also
instantiate a Compound object directly if you know its CID:

c = pcp.Compound.from_cid(6819)

Dictionary representation

Each Compound has a record property, which is a dictionary that contains the all the information
about the compound, produced exactly from the JSON response from the PubChem API. All other properties are derived from
this record.

Additionally, each Compound provides a to_dict() method that returns PubChemPy’s own dictionary
representation of the Compound data. As well as being more concisely formatted than the raw record, this method also
takes an optional parameter to filter the list of the desired properties:

>>> c = pcp.Compound.from_cid(962)
>>> c.to_dict(properties=['atoms', 'bonds', 'inchi'])
{'atoms': [{'aid': 1, 'element': 'o', 'x': 2.5369, 'y': -0.155},
 {'aid': 2, 'element': 'h', 'x': 3.0739, 'y': 0.155},
 {'aid': 3, 'element': 'h', 'x': 2, 'y': 0.155}],
 'bonds': [{'aid1': 1, 'aid2': 2, 'order': 'single'},
 {'aid1': 1, 'aid2': 3, 'order': 'single'}],
 'inchi': u'InChI=1S/H2O/h1H2'}

3D Compounds

Many properties are missing from 3D records, and the following properties are only available on 3D records:

	volume_3d

	multipoles_3d

	conformer_rmsd_3d

	effective_rotor_count_3d

	pharmacophore_features_3d

	mmff94_partial_charges_3d

	mmff94_energy_3d

	conformer_id_3d

	shape_selfoverlap_3d

	feature_selfoverlap_3d

	shape_fingerprint_3d

Substance

The PubChem Substance database contains all chemical records deposited in PubChem in their most raw form, before any
significant processing is applied. As a result, it contains duplicates, mixtures, and some records that don’t make
chemical sense. This means that Substance records contain fewer calculated properties, however they do have additional
information about the original source that deposited the record.

The PubChem Compound database is constructed from the Substance database using a standardization and deduplication
process. Hence each Compound may be derived from a number of different Substances.

Retrieving substances

Retrieve Substances using the get_substances() function:

>>> results = pcp.get_substances('Coumarin 343', 'name')
>>> print results
[Substance(24864499), Substance(85084977), Substance(126686397), Substance(143491255), Substance(152243230), Substance(162092514), Substance(162189467), Substance(186021999), Substance(206257050)]

You can also instantiate a Substance directly from its SID:

>>> substance = pcp.Substance.from_sid(223766453)
>>> print substance.synonyms
['2-(Acetyloxy)-benzoic acid', '2-(acetyloxy)benzoic acid', '2-acetoxy benzoic acid', '2-acetoxy-benzoic acid', '2-acetoxybenzoic acid', '2-acetyloxybenzoic acid', 'BSYNRYMUTXBXSQ-UHFFFAOYSA-N', 'acetoxybenzoic acid', 'acetyl salicylic acid', 'acetyl-salicylic acid', 'acetylsalicylic acid', 'aspirin', 'o-acetoxybenzoic acid']
>>> print substance.source_id
BSYNRYMUTXBXSQ-UHFFFAOYSA-N
>>> print substance.standardized_cid
2244
>>> print substance.standardized_compound
Compound(2244)

Properties

The get_properties function allows the retrieval of specific properties without having to deal with entire compound
records. This is especially useful for retrieving the properties of a large number of compounds at once:

p = pcp.get_properties('IsomericSMILES', 'CC', 'smiles', searchtype='superstructure')

Multiple properties may be specified in a list, or in a comma-separated string. The available properties are:
MolecularFormula, MolecularWeight, CanonicalSMILES, IsomericSMILES, InChI, InChIKey, IUPACName, XLogP, ExactMass,
MonoisotopicMass, TPSA, Complexity, Charge, HBondDonorCount, HBondAcceptorCount, RotatableBondCount, HeavyAtomCount,
IsotopeAtomCount, AtomStereoCount, DefinedAtomStereoCount, UndefinedAtomStereoCount, BondStereoCount,
DefinedBondStereoCount, UndefinedBondStereoCount, CovalentUnitCount, Volume3D, XStericQuadrupole3D, YStericQuadrupole3D,
ZStericQuadrupole3D, FeatureCount3D, FeatureAcceptorCount3D, FeatureDonorCount3D, FeatureAnionCount3D,
FeatureCationCount3D, FeatureRingCount3D, FeatureHydrophobeCount3D, ConformerModelRMSD3D, EffectiveRotorCount3D,
ConformerCount3D.

Synonyms

Get a list of synonyms for a given input using the get_synonyms function:

pcp.get_synonyms('Aspirin', 'name')
pcp.get_synonyms('Aspirin', 'name', 'substance')

Inputs that match more than one SID/CID will have multiple, separate synonyms lists returned.

Identifiers

There are three functions for getting a list of identifiers for a given input:

	pcp.get_cids

	pcp.get_sids

	pcp.get_aids

For example, passing a CID to get_sids will return a list of SIDs corresponding to the Substance records that were
standardised and merged to produce the given Compound.

pandas integration

Getting pandas

pandas must be installed to use its functionality from within PubChemPy. The easiest way is to use pip:

pip install pandas

See the pandas documentation [http://pandas.pydata.org/pandas-docs/stable/] for more information.

Usage

It is possible for get_compounds, get_substances and get_properties to return a pandas DataFrame:

df1 = pcp.get_compounds('C20H41Br', 'formula', as_dataframe=True)
df2 = pcp.get_substances([1, 2, 3, 4], as_dataframe=True)
df3 = pcp.get_properties(['isomeric_smiles', 'xlogp', 'rotatable_bond_count'], 'C20H41Br', 'formula', as_dataframe=True)

An existing list of Compound objects can be converted into a dataframe, optionally specifying the desired columns:

cs = pcp.get_compounds('C20H41Br', 'formula')
df4 = pcp.compounds_to_frame(cs, properties=['isomeric_smiles', 'xlogp', 'rotatable_bond_count'])

Download

The download function is for saving a file to disk. The following formats are available: XML, ASNT/B, JSON, SDF, CSV,
PNG, TXT. Beware that not all formats are available for all types of information. SDF and PNG are only available for
full Compound and Substance records, and CSV is best suited to tables of properties and identifiers.

Examples:

pcp.download('PNG', 'asp.png', 'Aspirin', 'name')
pcp.download('CSV', 's.csv', [1,2,3], operation='property/CanonicalSMILES,IsomericSMILES')

For PNG images, the image_size argument can be used to specfiy large, small or <width>x<height>.

Advanced

Avoiding TimeoutError

If there are too many results for a request, you will receive a TimeoutError. There are different ways to avoid this,
depending on what type of request you are doing.

If retrieving full compound or substance records, instead request a list of cids or sids for your input, and then
request the full records for those identifiers individually or in small groups. For example:

sids = get_sids('Aspirin', 'name')
for sid in sids:
 s = Substance.from_sid(sid)

When using the formula namespace or a searchtype, you can also alternatively use the listkey_count and
listkey_start keyword arguments to specify pagination. The listkey_count value specifies the number of
results per page, and the listkey_start value specifies which page to return. For example:

get_compounds('CC', 'smiles', searchtype='substructure', listkey_count=5)
get('C10H21N', 'formula', listkey_count=3, listkey_start=6)

Logging

PubChemPy can generate logging statements if required. Just set the desired logging level:

import logging
logging.basicConfig(level=logging.DEBUG)

The logger is named ‘pubchempy’. There is more information on logging in the Python logging documentation [http://docs.python.org/2/howto/logging.html].

Using behind a proxy

When using PubChemPy behind a proxy, you may receive a URLError:

URLError: <urlopen error [Errno 65] No route to host>

A simple fix is to specify the proxy information via urllib. For Python 3:

import urllib
proxy_support = urllib.request.ProxyHandler({
 'http': 'http://<proxy.address>:<port>',
 'https': 'https://<proxy.address>:<port>'
})
opener = urllib.request.build_opener(proxy_support)
urllib.request.install_opener(opener)

For Python 2:

import urllib2
proxy_support = urllib2.ProxyHandler({
 'http': 'http://<proxy.address>:<port>',
 'https': 'https://<proxy.address>:<port>'
})
opener = urllib2.build_opener(proxy_support)
urllib2.install_opener(opener)

Custom requests

If you wish to perform more complicated requests, you can use the request function. This is an extremely simple
wrapper around the REST API that allows you to construct any sort of request from a few parameters. The
PUG REST Specification [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html] has all the information you will need to formulate your requests.

The request function simply returns the exact response from the PubChem server as a string. This can be parsed in
different ways depending on the output format you choose. See the Python json [http://docs.python.org/2/library/json.html], xml [http://docs.python.org/2/library/xml.etree.elementtree.html] and csv [http://docs.python.org/2/library/csv.html] packages for more
information. Additionally, cheminformatics toolkits such as Open Babel [http://openbabel.org/docs/current/UseTheLibrary/Python.html] and RDKit [http://www.rdkit.org] offer tools for handling SDF
files in Python.

The get function is very similar to the request function, except it handles listkey type responses
automatically for you. This makes things simpler, however it means you can’t take advantage of using the same
listkey repeatedly to obtain different types of information. See the PUG REST specification [https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST.html] for more information
on how listkey responses work.

Summary of possible inputs

<identifier> = list of cid, sid, aid, source, inchikey, listkey; string of name, smiles, xref, inchi, sdf;
<domain> = substance | compound | assay

compound domain
<namespace> = cid | name | smiles | inchi | sdf | inchikey | <structure search> | <xref> | listkey | formula
<operation> = record | property/[comma-separated list of property tags] | synonyms | sids | cids | aids | assaysummary | classification

substance domain
<namespace> = sid | sourceid/<source name> | sourceall/<source name> | name | <xref> | listkey
<operation> = record | synonyms | sids | cids | aids | assaysummary | classification

assay domain
<namespace> = aid | listkey | type/<assay type> | sourceall/<source name>
<assay type> = all | confirmatory | doseresponse | onhold | panel | rnai | screening | summary
<operation> = record | aids | sids | cids | description | targets/{ProteinGI, ProteinName, GeneID, GeneSymbol} | doseresponse/sid

<structure search> = {substructure | superstructure | similarity | identity}/{smiles | inchi | sdf | cid}
<xref> = xref/{RegistryID | RN | PubMedID | MMDBID | ProteinGI | NucleotideGI | TaxonomyID | MIMID | GeneID | ProbeID | PatentID}
<output> = XML | ASNT | ASNB | JSON | JSONP [?callback=<callback name>] | SDF | CSV | PNG | TXT

Contribute

The Issue Tracker [https://github.com/mcs07/PubChemPy/issues] is the best place to post any feature ideas, requests and bug reports.

If you are able to contribute changes yourself, just fork the source code [https://github.com/mcs07/PubChemPy] on GitHub, make changes and file a pull
request.

Contributors

	 mcs07 [https://github.com/mcs07] (Matt Swain)

	 ekaakurniawan [https://github.com/ekaakurniawan] (Eka A. Kurniawan)

	 zachcp [https://github.com/zachcp] (Zach Powers)

	 hsiaoyi0504 [https://github.com/hsiaoyi0504] (Hsiao Yi)

	 llazzaro [https://github.com/llazzaro] (Leonardo Lazzaro)

	 bjodah [https://github.com/bjodah] (Björn Dahlgren)

	 RickardSjogren [https://github.com/RickardSjogren] (Rickard Sjögren)

API documentation

This part of the documentation is automatically generated from the PubChemPy source code and comments.

Search functions

	
pubchempy.get_compounds(identifier, namespace=u'cid', searchtype=None, as_dataframe=False, **kwargs)

	Retrieve the specified compound records from PubChem.

	Parameters:	
	identifier – The compound identifier to use as a search query.

	namespace – (optional) The identifier type, one of cid, name, smiles, sdf, inchi, inchikey or formula.

	searchtype – (optional) The advanced search type, one of substructure, superstructure or similarity.

	as_dataframe – (optional) Automatically extract the Compound properties into a pandas
DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] and return that.

	
pubchempy.get_substances(identifier, namespace=u'sid', as_dataframe=False, **kwargs)

	Retrieve the specified substance records from PubChem.

	Parameters:	
	identifier – The substance identifier to use as a search query.

	namespace – (optional) The identifier type, one of sid, name or sourceid/<source name>.

	as_dataframe – (optional) Automatically extract the Substance properties into a pandas
DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] and return that.

	
pubchempy.get_assays(identifier, namespace=u'aid', **kwargs)

	Retrieve the specified assay records from PubChem.

	Parameters:	
	identifier – The assay identifier to use as a search query.

	namespace – (optional) The identifier type.

	
pubchempy.get_properties(properties, identifier, namespace=u'cid', searchtype=None, as_dataframe=False, **kwargs)

	Retrieve the specified properties from PubChem.

	Parameters:	
	identifier – The compound, substance or assay identifier to use as a search query.

	namespace – (optional) The identifier type.

	searchtype – (optional) The advanced search type, one of substructure, superstructure or similarity.

	as_dataframe – (optional) Automatically extract the properties into a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame].

Compound

	
class pubchempy.Compound(record)

	Corresponds to a single record from the PubChem Compound database.

The PubChem Compound database is constructed from the Substance database using a standardization and deduplication
process. Each Compound is uniquely identified by a CID.

Initialize with a record dict from the PubChem PUG REST service.

For most users, the from_cid() class method is probably a better way of creating Compounds.

	Parameters:	record (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A compound record returned by the PubChem PUG REST service.

	
record

	The raw compound record returned by the PubChem PUG REST service.

	
classmethod from_cid(cid, **kwargs)

	Retrieve the Compound record for the specified CID.

Usage:

c = Compound.from_cid(6819)

	Parameters:	cid (int [https://docs.python.org/2/library/functions.html#int]) – The PubChem Compound Identifier (CID).

	
to_dict(properties=None)

	Return a dictionary containing Compound data. Optionally specify a list of the desired properties.

synonyms, aids and sids are not included unless explicitly specified using the properties parameter. This is
because they each require an extra request.

	
to_series(properties=None)

	Return a pandas Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] containing Compound data. Optionally specify a list of the desired
properties.

synonyms, aids and sids are not included unless explicitly specified using the properties parameter. This is
because they each require an extra request.

	
cid

	The PubChem Compound Identifier (CID).

Note

When searching using a SMILES or InChI query that is not present in the PubChem Compound database, an
automatically generated record may be returned that contains properties that have been calculated on the
fly. These records will not have a CID property.

	
elements

	List of element symbols for atoms in this Compound.

	
atoms

	List of Atoms in this Compound.

	
bonds

	List of Bonds between Atoms in this Compound.

	
synonyms

	A ranked list of all the names associated with this Compound.

Requires an extra request. Result is cached.

	
sids

	Requires an extra request. Result is cached.

	
aids

	Requires an extra request. Result is cached.

	
charge

	Formal charge on this Compound.

	
molecular_formula

	Molecular formula.

	
molecular_weight

	Molecular Weight.

	
canonical_smiles

	Canonical SMILES, with no stereochemistry information.

	
isomeric_smiles

	Isomeric SMILES.

	
inchi

	InChI string.

	
inchikey

	InChIKey.

	
iupac_name

	Preferred IUPAC name.

	
xlogp

	XLogP.

	
exact_mass

	Exact mass.

	
monoisotopic_mass

	Monoisotopic mass.

	
tpsa

	Topological Polar Surface Area.

	
complexity

	Complexity.

	
h_bond_donor_count

	Hydrogen bond donor count.

	
h_bond_acceptor_count

	Hydrogen bond acceptor count.

	
rotatable_bond_count

	Rotatable bond count.

	
fingerprint

	Raw padded and hex-encoded fingerprint, as returned by the PUG REST API.

	
cactvs_fingerprint

	PubChem CACTVS fingerprint.

Each bit in the fingerprint represents the presence or absence of one of 881 chemical substructures.

More information at ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

	
heavy_atom_count

	Heavy atom count.

	
isotope_atom_count

	Isotope atom count.

	
atom_stereo_count

	Atom stereocenter count.

	
defined_atom_stereo_count

	Defined atom stereocenter count.

	
undefined_atom_stereo_count

	Undefined atom stereocenter count.

	
bond_stereo_count

	Bond stereocenter count.

	
defined_bond_stereo_count

	Defined bond stereocenter count.

	
undefined_bond_stereo_count

	Undefined bond stereocenter count.

	
covalent_unit_count

	Covalently-bonded unit count.

Atom

	
class pubchempy.Atom(aid, number, x=None, y=None, z=None, charge=0)

	Class to represent an atom in a Compound.

Initialize with an atom ID, atomic number, coordinates and optional change.

	Parameters:	
	aid (int [https://docs.python.org/2/library/functions.html#int]) – Atom ID

	number (int [https://docs.python.org/2/library/functions.html#int]) – Atomic number

	x (float [https://docs.python.org/2/library/functions.html#float]) – X coordinate.

	y (float [https://docs.python.org/2/library/functions.html#float]) – Y coordinate.

	z (float [https://docs.python.org/2/library/functions.html#float]) – (optional) Z coordinate.

	charge (int [https://docs.python.org/2/library/functions.html#int]) – (optional) Formal charge on atom.

	
aid = None

	The atom ID within the owning Compound.

	
number = None

	The atomic number for this atom.

	
x = None

	The x coordinate for this atom.

	
y = None

	The y coordinate for this atom.

	
z = None

	The z coordinate for this atom. Will be None in 2D Compound records.

	
charge = None

	The formal charge on this atom.

	
element

	The element symbol for this atom.

	
to_dict()

	Return a dictionary containing Atom data.

	
set_coordinates(x, y, z=None)

	Set all coordinate dimensions at once.

	
coordinate_type

	Whether this atom has 2D or 3D coordinates.

Bond

	
class pubchempy.Bond(aid1, aid2, order=1, style=None)

	Class to represent a bond between two atoms in a Compound.

Initialize with begin and end atom IDs, bond order and bond style.

	Parameters:	
	aid1 (int [https://docs.python.org/2/library/functions.html#int]) – Begin atom ID.

	aid2 (int [https://docs.python.org/2/library/functions.html#int]) – End atom ID.

	order (int [https://docs.python.org/2/library/functions.html#int]) – Bond order.

	
aid1 = None

	ID of the begin atom of this bond.

	
aid2 = None

	ID of the end atom of this bond.

	
order = None

	Bond order.

	
style = None

	Bond style annotation.

	
to_dict()

	Return a dictionary containing Bond data.

Substance

	
class pubchempy.Substance(record)

	Corresponds to a single record from the PubChem Substance database.

The PubChem Substance database contains all chemical records deposited in PubChem in their most raw form, before
any significant processing is applied. As a result, it contains duplicates, mixtures, and some records that don’t
make chemical sense. This means that Substance records contain fewer calculated properties, however they do have
additional information about the original source that deposited the record.

The PubChem Compound database is constructed from the Substance database using a standardization and deduplication
process. Hence each Compound may be derived from a number of different Substances.

	
classmethod from_sid(sid)

	Retrieve the Substance record for the specified SID.

	Parameters:	sid (int [https://docs.python.org/2/library/functions.html#int]) – The PubChem Substance Identifier (SID).

	
record = None

	A dictionary containing the full Substance record that all other properties are obtained from.

	
to_dict(properties=None)

	Return a dictionary containing Substance data.

If the properties parameter is not specified, everything except cids and aids is included. This is because the
aids and cids properties each require an extra request to retrieve.

	Parameters:	properties – (optional) A list of the desired properties.

	
to_series(properties=None)

	Return a pandas Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] containing Substance data.

If the properties parameter is not specified, everything except cids and aids is included. This is because the
aids and cids properties each require an extra request to retrieve.

	Parameters:	properties – (optional) A list of the desired properties.

	
sid

	The PubChem Substance Idenfitier (SID).

	
synonyms

	A ranked list of all the names associated with this Substance.

	
source_name

	The name of the PubChem depositor that was the source of this Substance.

	
source_id

	Unique ID for this Substance within those from the same PubChem depositor source.

	
standardized_cid

	The CID of the Compound that was produced when this Substance was standardized.

May not exist if this Substance was not standardizable.

	
standardized_compound

	Return the Compound that was produced when this Substance was standardized.

Requires an extra request. Result is cached.

	
deposited_compound

	Return a Compound produced from the unstandardized Substance record as deposited.

The resulting Compound will not have a cid and will be missing most properties.

	
cids

	A list of all CIDs for Compounds that were produced when this Substance was standardized.

Requires an extra request. Result is cached.

	
aids

	A list of all AIDs for Assays associated with this Substance.

Requires an extra request. Result is cached.

Assay

	
class pubchempy.Assay(record)

	
	
classmethod from_aid(aid)

	Retrieve the Assay record for the specified AID.

	Parameters:	aid (int [https://docs.python.org/2/library/functions.html#int]) – The PubChem Assay Identifier (AID).

	
record = None

	A dictionary containing the full Assay record that all other properties are obtained from.

	
to_dict(properties=None)

	Return a dictionary containing Assay data.

If the properties parameter is not specified, everything is included.

	Parameters:	properties – (optional) A list of the desired properties.

	
aid

	The PubChem Substance Idenfitier (SID).

	
name

	The short assay name, used for display purposes.

	
description

	Description

	
project_category

	A category to distinguish projects funded through MLSCN, MLPCN or from literature.

Possible values include mlscn, mlpcn, mlscn-ap, mlpcn-ap, literature-extracted, literature-author,
literature-publisher, rnaigi.

	
comments

	Comments and additional information.

	
results

	A list of dictionaries containing details of the results from this Assay.

	
target

	A list of dictionaries containing details of the Assay targets.

	
revision

	Revision identifier for textual description.

	
aid_version

	Incremented when the original depositor updates the record.

pandas functions

Each of the search functions, get_compounds(), get_substances() and
get_properties() has an as_dataframe parameter. When set to True, these functions automatically
extract properties from each result in the list into a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] and return that instead of
the results themselves.

If you already have a list of Compounds or Substances, the functions below allow a DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] to be
constructed easily.

	
pubchempy.compounds_to_frame(compounds, properties=None)

	Construct a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] from a list of Compound objects.

Optionally specify a list of the desired Compound properties.

	
pubchempy.substances_to_frame(substances, properties=None)

	Construct a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] from a list of Substance objects.

Optionally specify a list of the desired Substance properties.

Exceptions

	
exception pubchempy.PubChemPyError

	Base class for all PubChemPy exceptions.

	
exception pubchempy.ResponseParseError

	PubChem response is uninterpretable.

	
exception pubchempy.PubChemHTTPError

	Generic error class to handle all HTTP error codes.

	
exception pubchempy.BadRequestError

	Request is improperly formed (syntax error in the URL, POST body, etc.).

	
exception pubchempy.NotFoundError

	The input record was not found (e.g. invalid CID).

	
exception pubchempy.MethodNotAllowedError

	Request not allowed (such as invalid MIME type in the HTTP Accept header).

	
exception pubchempy.TimeoutError

	The request timed out, from server overload or too broad a request.

See Avoiding TimeoutError for more information.

	
exception pubchempy.UnimplementedError

	The requested operation has not (yet) been implemented by the server.

	
exception pubchempy.ServerError

	Some problem on the server side (such as a database server down, etc.).

Changes

	As of v1.0.3, the atoms and bonds properties on Compounds now return lists of
Atom and Bond objects, rather than dicts.

	As of v1.0.2, search functions now return an empty list instead of raising a NotFoundError
exception when no results are found. NotFoundError is still raised when attempting to create a
Compound using the from_cid class method with an invalid CID.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pubchempy	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | X
 | Y
 | Z

A

 	
 	aid (pubchempy.Assay attribute)

 	(pubchempy.Atom attribute)

 	aid1 (pubchempy.Bond attribute)

 	aid2 (pubchempy.Bond attribute)

 	aid_version (pubchempy.Assay attribute)

 	
 	aids (pubchempy.Compound attribute)

 	(pubchempy.Substance attribute)

 	Assay (class in pubchempy)

 	Atom (class in pubchempy)

 	atom_stereo_count (pubchempy.Compound attribute)

 	atoms (pubchempy.Compound attribute)

B

 	
 	BadRequestError

 	Bond (class in pubchempy)

 	
 	bond_stereo_count (pubchempy.Compound attribute)

 	bonds (pubchempy.Compound attribute)

C

 	
 	cactvs_fingerprint (pubchempy.Compound attribute)

 	canonical_smiles (pubchempy.Compound attribute)

 	charge (pubchempy.Atom attribute)

 	(pubchempy.Compound attribute)

 	cid (pubchempy.Compound attribute)

 	cids (pubchempy.Substance attribute)

 	
 	comments (pubchempy.Assay attribute)

 	complexity (pubchempy.Compound attribute)

 	Compound (class in pubchempy)

 	compounds_to_frame() (in module pubchempy)

 	coordinate_type (pubchempy.Atom attribute)

 	covalent_unit_count (pubchempy.Compound attribute)

D

 	
 	defined_atom_stereo_count (pubchempy.Compound attribute)

 	defined_bond_stereo_count (pubchempy.Compound attribute)

 	
 	deposited_compound (pubchempy.Substance attribute)

 	description (pubchempy.Assay attribute)

E

 	
 	element (pubchempy.Atom attribute)

 	
 	elements (pubchempy.Compound attribute)

 	exact_mass (pubchempy.Compound attribute)

F

 	
 	fingerprint (pubchempy.Compound attribute)

 	from_aid() (pubchempy.Assay class method)

 	
 	from_cid() (pubchempy.Compound class method)

 	from_sid() (pubchempy.Substance class method)

G

 	
 	get_assays() (in module pubchempy)

 	get_compounds() (in module pubchempy)

 	
 	get_properties() (in module pubchempy)

 	get_substances() (in module pubchempy)

H

 	
 	h_bond_acceptor_count (pubchempy.Compound attribute)

 	
 	h_bond_donor_count (pubchempy.Compound attribute)

 	heavy_atom_count (pubchempy.Compound attribute)

I

 	
 	inchi (pubchempy.Compound attribute)

 	inchikey (pubchempy.Compound attribute)

 	
 	isomeric_smiles (pubchempy.Compound attribute)

 	isotope_atom_count (pubchempy.Compound attribute)

 	iupac_name (pubchempy.Compound attribute)

M

 	
 	MethodNotAllowedError

 	molecular_formula (pubchempy.Compound attribute)

 	
 	molecular_weight (pubchempy.Compound attribute)

 	monoisotopic_mass (pubchempy.Compound attribute)

N

 	
 	name (pubchempy.Assay attribute)

 	
 	NotFoundError

 	number (pubchempy.Atom attribute)

O

 	
 	order (pubchempy.Bond attribute)

P

 	
 	project_category (pubchempy.Assay attribute)

 	PubChemHTTPError

 	
 	pubchempy (module)

 	PubChemPyError

R

 	
 	record (pubchempy.Assay attribute)

 	(pubchempy.Compound attribute)

 	(pubchempy.Substance attribute)

 	
 	ResponseParseError

 	results (pubchempy.Assay attribute)

 	revision (pubchempy.Assay attribute)

 	rotatable_bond_count (pubchempy.Compound attribute)

S

 	
 	ServerError

 	set_coordinates() (pubchempy.Atom method)

 	sid (pubchempy.Substance attribute)

 	sids (pubchempy.Compound attribute)

 	source_id (pubchempy.Substance attribute)

 	source_name (pubchempy.Substance attribute)

 	
 	standardized_cid (pubchempy.Substance attribute)

 	standardized_compound (pubchempy.Substance attribute)

 	style (pubchempy.Bond attribute)

 	Substance (class in pubchempy)

 	substances_to_frame() (in module pubchempy)

 	synonyms (pubchempy.Compound attribute)

 	(pubchempy.Substance attribute)

T

 	
 	target (pubchempy.Assay attribute)

 	TimeoutError

 	to_dict() (pubchempy.Assay method)

 	(pubchempy.Atom method)

 	(pubchempy.Bond method)

 	(pubchempy.Compound method)

 	(pubchempy.Substance method)

 	
 	to_series() (pubchempy.Compound method)

 	(pubchempy.Substance method)

 	tpsa (pubchempy.Compound attribute)

U

 	
 	undefined_atom_stereo_count (pubchempy.Compound attribute)

 	
 	undefined_bond_stereo_count (pubchempy.Compound attribute)

 	UnimplementedError

X

 	
 	x (pubchempy.Atom attribute)

 	
 	xlogp (pubchempy.Compound attribute)

Y

 	
 	y (pubchempy.Atom attribute)

Z

 	
 	z (pubchempy.Atom attribute)

 _static/comment-close.png

_static/up.png

_static/minus.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		PubChemPy documentation

 		Introduction

 		How PubChemPy works

 		The PUG REST web service

 		PubChemPy license

 		Installation

 		Option 1: Use pip (recommended)

 		Option 2: Use conda

 		Option 3: Download the latest release

 		Option 4: Clone the repository

 		Getting started

 		Retrieving a Compound

 		Searching

 		Searching

 		2D and 3D coordinates

 		Advanced search types

 		Getting a full results list for common compound names

 		Compound

 		Dictionary representation

 		3D Compounds

 		Substance

 		Retrieving substances

 		Properties

 		Synonyms

 		Identifiers

 		pandas integration

 		Getting pandas

 		Usage

 		Download

 		Advanced

 		Avoiding TimeoutError

 		Logging

 		Using behind a proxy

 		Custom requests

 		Summary of possible inputs

 		Contribute

 		Contributors

 		API documentation

 		Search functions

 		Compound

 		Atom

 		Bond

 		Substance

 		Assay

 		pandas functions

 		Exceptions

 		Changes

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

