

 [image: _images/platformus.png]

Platformus CMS

Platformus [http://platformus.net/] is free, open source and cross-platform CMS
based on ASP.NET Core and ExtCore framework [http://extcore.net/]. It is built using
the best and the most modern tools and languages (Visual Studio 2017, C# etc). Join our team!

Contents

	Introduction

	Getting Started
	Use as Compiled Executable

	Use as NuGet Packages

	Use as Sources

	Storage Scripts

	Tutorial: Basic Content Management

	Fundamentals
	Content
	Objects

	Menus

	Forms

	File Manager

	Audience
	Permissions

	Roles

	Users

	Administration
	Cultures

	Data Types

	Classes

	Configurations

	Development
	Endpoints

	Views

	Styles

	Scripts

	Bundles

	Advanced
	Custom Endpoints

	Custom Data Sources

	Custom Request Handling

	Object Mapping

	Custom Form Handlers

	Extensions Development

	Extensions
	Platformus.Barebone

	Platformus.ExtensionManager

	Platformus.Configurations

	Platformus.Security

	Platformus.Routing

	Platformus.Globalization

	Platformus.Domain

	Platformus.Menus

	Platformus.Forms

	Platformus.FileManager

	Platformus.ECommerce

	Platformus.Designers

Introduction

Platformus is complex and multipurpose content management system. You can describe and store your content,
and it is totally separated from its representation, so you can represent it using the views, API,
or any other way you want.

It can run on Linux, Mac, and Windows (also is can run on Azure cloud). It supports different storage types
(PostgreSQL, SQLite, SQL Server, Azure SQL Database). It is modular, multilingual and multicultural.
And it is open-source and absolutely free.

Data Model

The Platformus data model is described by the classes and members. The data itself is represented by the objects,
properties, and relations (very similar to the way it is done in the popular programming languages).
There are also other types of the content, like menus, forms, files etc.

Requests Handling

By default, all the requests that come to a Platformus-based web application are handled by the endpoints
(from the box, Platformus responds with 404 response code to any HTTP request, because there are no endpoints configured;
you can change the built-in way requests are handled in the Platformus too).

Endpoint specifies the URL pattern it matches (the same way it is done in MVC routes, so you can specify {*url} pattern
that will match all the URLs; it also supports the URL parameters) and the C# class (implementation of the
IEndpoint [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/Endpoints/IEndpoint.cs#L11] interface)
that will process the requests. This class will receive the URL parameters and must return an IActionResult object
(it might be a view, JSON, file, or any other type of response that is supported by the HTTP). The particular endpoint is selected
by the registered implementation (you can also change it) of the
IEndpointResolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/EndpointResolvers/IEndpointResolver.cs#L10]
interface at the time of the request.

Each endpoint can have parameters with the different user-defined client-side JavaScript editors. They are specified
by the corresponding C# class. For example, the
DefaultEndpoint [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Domain.Frontend/Endpoints/DefaultEndpoint.cs#L15]
class (which returns views) has two parameters: ViewName and UseCaching. Of course, you can easily write your own endpoints.

If the endpoint needs an additional data in order to process the requests, it can be provided using the data sources.
All data sources are the C# classes that implements the
IDataSource [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/DataSources/IDataSource.cs#L10]
interface (you can write your own ones). You can specify which data sources should be used with the given endpoint
to construct the single piece of data it can use (and pass to a view as the view model for example).
Platformus contains some built-in data sources that allows to load objects by classes, by relations, to use filtering, sorting, and paging.
As well as the endpoints, the data sources can have parameters.

Getting Started

	Use as Compiled Executable

	Use as NuGet Packages

	Use as Sources

	Storage Scripts

	Tutorial: Basic Content Management

Use as Compiled Executable

It is the simplest way to use Platformus. Just download and run. You can still add your own
classes and logic, but you need to compile the packages for that and copy them to the extensions folder.

	Download the latest Platformus archive from the website [http://platformus.net/en/getting-started].

2. Extract it to a web server (as any other ASP.NET Core web application, Platformus can run using
the embedded Kestrel web server, or using the standalone web servers like
Apache, Nginx, or IIS [https://docs.microsoft.com/en-us/aspnet/core/publishing/]).
3. Run Platformus using the following commands:

cd path to the extracted archive
dotnet WebApplication.dll

As the result, you should see the following output:

[image: ../_images/123.png]

	Open your browser and navigate to http://localhost:5000/.

	As the result, you should see the Platformus installer:

[image: ../_images/220.png]
Click the Install now button.

5. On the Usage Scenario page, select the scenario you want to be installed
(there will be more scenarios available in the future):

[image: ../_images/312.png]
Scenario may include packages, storage scripts, views, scripts, styles, and any other content.

Click the Next button.

	On the Storage Type page, select the storage type you want to use:

[image: ../_images/46.png]
Click the Next button.

7. On the Storage Connection page, type the connection string to connect your storage.
You can test the connection using the corresponding button:

[image: ../_images/54.png]
Click the Next button.

	On the Administrator Account page, type the username and password of the administrator account:

[image: ../_images/62.png]
Click the Next button.

	On the Language Packs page, select the languages you want to be available as the backend UI ones:

[image: ../_images/72.png]
Click the Next button.

	On the Finish page, you are ready to complete the installation:

[image: ../_images/82.png]
Click the Finish button.

	Installation completed successfully.

12. Now, please, restart your web application for the applied changes to take effect.
Don’t forget to remove the Platformus.Installer.dll file from the extensions folder.
Your web application for the selected usage scenario is ready to use:

[image: ../_images/91.png]

Use as NuGet Packages

This is the most convenient way to use the Platformus. Compilation is fast, you can easily add
your own classes (for example, to write custom implementations of the IEndpoint, IDataSource, or other interfaces).
Also, you can update Platformus just using the NuGet Package Manager.

	Create an ASP.NET Core web application (or use an existing one):

[image: ../_images/124.png]
[image: ../_images/221.png]

	Open NuGet Package Manager and add dependencies on the following Platformus packages:

[image: ../_images/313.png]

	Platformus.Configurations.Backend;

	Platformus.Configurations.Data.EntityFramework.Sqlite;

	Platformus.Designers.Backend;

	Platformus.Domain.Api;

	Platformus.Domain.Backend;

	Platformus.Domain.Data.EntityFramework.Sqlite;

	Platformus.Domain.Frontend;

	Platformus.FileManager.Backend;

	Platformus.FileManager.Data.EntityFramework.Sqlite;

	Platformus.Forms.Backend;

	Platformus.Forms.Data.EntityFramework.Sqlite;

	Platformus.Forms.Frontend;

	Platformus.Globalization.Backend;

	Platformus.Globalization.Data.EntityFramework.Sqlite;

	Platformus.Globalization.Frontend;

	Platformus.Menus.Backend;

	Platformus.Menus.Data.EntityFramework.Sqlite;

	Platformus.Menus.Frontend;

	Platformus.Routing.Backend;

	Platformus.Routing.Data.EntityFramework.Sqlite;

	Platformus.Routing.Frontend;

	Platformus.Security.Backend;

	Platformus.Security.Data.EntityFramework.Sqlite;

	Platformus.WebApplication.

Or you can add them manually by editing .csproj file of your web application project:

<ItemGroup>
 <PackageReference Include="Platformus.Configurations.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Configurations.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Designers.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Domain.Api" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Domain.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Domain.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Domain.Frontend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.FileManager.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.FileManager.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Forms.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Forms.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Forms.Frontend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Globalization.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Globalization.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Globalization.Frontend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Menus.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Menus.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Menus.Frontend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Routing.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Routing.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Routing.Frontend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Security.Backend" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.Security.Data.EntityFramework.Sqlite" Version="1.0.0-beta1" />
 <PackageReference Include="Platformus.WebApplication" Version="1.0.0-beta1" />
</ItemGroup>

	Open your Startup class.

Add the services.AddPlatformus() extension method call inside the ConfigureServices method:

 public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus();
}

Add the StorageContextOptions options class configuration inside the ConfigureServices method
in order to provide the connection string (of course, you should take it from the application settings):

 public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus(this.extensionsPath);
 services.Configure<StorageContextOptions>(options =>
 {
 options.ConnectionString = this.configurationRoot.GetConnectionString("Default");
 }
);
}

Add the applicationBuilder.UsePlatformus() extension method call inside the Configure method:

 public void Configure(IApplicationBuilder applicationBuilder, IHostingEnvironment hostingEnvironment)
{
 if (hostingEnvironment.IsDevelopment())
 {
 applicationBuilder.UseDeveloperExceptionPage();
 }

 applicationBuilder.UsePlatformus();
}

Don’t forget to include the Platformus.WebApplication.Extensions namespace in order these extension methods
to be resolved.

	Run your web application and navigate to /backend to configure Platformus.

Use as Sources

This option gives you full control over Platformus and your web application. Also it is the way to develop
Platformus itself. Please keep in mind that compilation takes longer in this case, so include only the sources
of the projects you really need to modify.

	Create an ASP.NET Core web application (or use an existing one):

[image: ../_images/125.png]
[image: ../_images/222.png]
2. Download Platformus sources [https://github.com/Platformus/Platformus/tree/master/src] from the GitHub.
Copy them into your solution.

	Add dependencies on the following projects to your web application project:

	Platformus.Configurations.Backend;

	Platformus.Configurations.Data.EntityFramework.Sqlite;

	Platformus.Designers.Backend;

	Platformus.Domain.Api;

	Platformus.Domain.Backend;

	Platformus.Domain.Data.EntityFramework.Sqlite;

	Platformus.Domain.Frontend;

	Platformus.FileManager.Backend;

	Platformus.FileManager.Data.EntityFramework.Sqlite;

	Platformus.Forms.Backend;

	Platformus.Forms.Data.EntityFramework.Sqlite;

	Platformus.Forms.Frontend;

	Platformus.Globalization.Backend;

	Platformus.Globalization.Data.EntityFramework.Sqlite;

	Platformus.Globalization.Frontend;

	Platformus.Menus.Backend;

	Platformus.Menus.Data.EntityFramework.Sqlite;

	Platformus.Menus.Frontend;

	Platformus.Routing.Backend;

	Platformus.Routing.Data.EntityFramework.Sqlite;

	Platformus.Routing.Frontend;

	Platformus.Security.Backend;

	Platformus.Security.Data.EntityFramework.Sqlite;

	Platformus.WebApplication.

	Open your Startup class.

Add the services.AddPlatformus() extension method call inside the ConfigureServices method:

 public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus();
}

Add the StorageContextOptions options class configuration inside the ConfigureServices method
in order to provide the connection string (of course, you should take it from the application settings):

 public void ConfigureServices(IServiceCollection services)
{
 services.AddPlatformus(this.extensionsPath);
 services.Configure<StorageContextOptions>(options =>
 {
 options.ConnectionString = this.configurationRoot.GetConnectionString("Default");
 }
);
}

Add the applicationBuilder.UsePlatformus() extension method call inside the Configure method:

 public void Configure(IApplicationBuilder applicationBuilder, IHostingEnvironment hostingEnvironment)
{
 if (hostingEnvironment.IsDevelopment())
 {
 applicationBuilder.UseDeveloperExceptionPage();
 }

 applicationBuilder.UsePlatformus();
}

Don’t forget to include the Platformus.WebApplication.Extensions namespace in order these extension methods
to be resolved.

	Run your web application and navigate to /backend to configure Platformus.

Storage Scripts

Currently Platformus supports following storage types:

	PostgreSQL database;

	SQLite database;

	SQL Server database;

	Azure SQL database (actually, it is almost the same as SQL Server one).

GitHub repository contains SQL scripts [https://github.com/Platformus/Platformus] for each storage type,
separately with the schema and initial data. You can also use installer to create ready to use storage for you
(even if you are not using compiled executable [http://docs.platformus.net/en/latest/getting_started/use_as_compiled_executable.html]
but using Platformus as NuGet packages [http://docs.platformus.net/en/latest/getting_started/use_as_nuget_packages.html]).

Tutorial: Basic Content Management

We have working Platformus-based web application. Let’s assume it is the default personal website
that goes with the installer. Now we are going to see how to add the blog section on that website.

First of all, we need the blog post pages, right? Each blog post post should have the same properties as the regular page,
but also it needs preview (the small piece of content), image, and creation date. In the Platformus context,
all the pages are objects which are described by the classes. Therefore, to create new type of page
(and new type of object) we need to create the corresponding class first.

Go and login to the backend (navigate to http://localhost:5000/backend/)
and then go to the Administration/Classes section. There are already two classes here: Page and Regular Page.
The Page class is abstract, it means that it is used as the base class for the other ones (class copies all the members
of its parent class). Click the Members link of the Page class to see the list of its members.
As you can see, there are the standard page properties here, like URL, Content, Title, META description,
and META keywords:

[image: ../_images/121.png]
Now return to the class list and click the Create class button. Select the Page class as the parent class
for our new one. Fill the Code, Name, and Pluralized name fields as shown below:

[image: ../_images/219.png]
Click the Save button. New class is created. Now go to the list of its members. It is empty for now
(but don’t forget that our class will have all the members from the Page class, because it is selected
as the parent one).

Let’s add the Preview member to our class. Click the Create member button and fill the Code,
Name, and Position fields as shown below:

[image: ../_images/311.png]
If we had a lot of the members, we could use tabs to group them on the object edit page, but in our case,
we only use it to group the properties that are related to SEO in the parent class. Position is set to 5,
because we want our property editor to appear before the Content property one
(Content member has position set to 10).

Now click the Property tab and fill the fields as shown below:

[image: ../_images/45.png]
When you change the property data type, the set of the fields on this tab is changed too. You can add your own data types
and specify their properties (as well as the client-side editors that are used to edit them) in the
Data types [http://docs.platformus.net/en/latest/fundamentals/administration/datatypes.html] section.
For the properties that have short values we can set the Is property visible in list checkbox,
so that properties will be displayed in the object list (we will see that later).
Now click the Save button again, our member is created.

Add the Image and Creation date members in the same way (but select the Image and Date property types for them).
Our member list will look like this:

[image: ../_images/53.png]
That’s it, we are done with our data model for now. Let’s add some content. Go to the Content/Objects section.
Objects (and again, our pages are objects) are grouped by the parent classes (pluralized names are used to name the groups).
Objects of the classes that doesn’t have parent ones go under the Others group. Our Blog Post Page class is
already here:

[image: ../_images/61.png]
Click the Create blog post page button:

[image: ../_images/71.png]
As you can see, all the properties we have defined in the corresponding class are here. Fill the fields and click
the Save button. New blog post is created:

[image: ../_images/81.png]
There are only the properties are displayed whose members have Is property visible in list checkbox checked.

Now we have our blog post page object created. We can use different ways to present it (view, API, plain text and so on),
but now let’s use old good view for that.

Go to the Development/Views/Default section. The list of the views from the Default subdirectory is displayed (by default,
all the requests are handled by the DefaultController, that’s why subdirectory has that name; you can change the way
requests are handled by Platformus, we will talk about that in the
Advanced [http://docs.platformus.net/en/latest/advanced/index.html] section):

[image: ../_images/9.png]
Click the Create view button and fill the fields as shown below:

[image: ../_images/10.png]
The HTML ifself is very simple. You can see that all the data comes from the view model. There is the Page property
which contains all the properties of our blog post page object that we have described by the class members
(and property names are the same as the member codes). This Page property is created for us by the corresponding data source.
If your view needs more different data in order to be rendered, just add more data sources that will provide this data
to the view model. Data sources are C# classes that implement the
IDataSource [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/DataSources/IDataSource.cs#L10]
interface, you can create your own ones [http://docs.platformus.net/en/latest/advanced/custom_data_sources.html].
They can provide data in any way you need: to load some objects,
to take it from the web services (weather forecast?), or to return some hardcoded values. All the data sources
that are used to process the particular request are grouped inside the endpoint. Endpoints process the requests
and return response in Platformus-based web applications (as well as data sources, they are C# classes that implement the
IEndpoint [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/Endpoints/IEndpoint.cs#L11]
interface, and you can create your own implementations [http://docs.platformus.net/en/latest/advanced/custom_endpoints.html]).
We will see how this all works a bit later in this article. Now click the Save button. The view is created:

[image: ../_images/1110.png]
We have described and created the content (our blog post page object), we have also created the presentation for that content
(our view). The last thing we must do to make it all work is to create the endpoint and the data source.
Go to the Development/Endpoints section. Click the Create endpoint button and fill the fields
as shown below:

[image: ../_images/122.png]
Endpoints are very important. They define how your Platformus-based web application processes the HTTP requests.
By default, if there are no endpoints configured, you will have 404 response on every request. By specifying the URL template
for the endpoint, you tell the instance of the
IEndpointResolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/EndpointResolvers/IEndpointResolver.cs#L10]
interface which endpoint it should use to process the particular request (you can use {*url} one to handle all the requests).
It is done the similar way as the MVC routes configuration (endpoint is something like route and controller at once;
endpoints support URL parameters too). Also, you can specify which C# class (implementation of the IEndpoint interface)
will handle the request. You can write your own implementations of that interface and use them to handle the requests
(or you can take some third-party one and copy the DLL file with it to the Platformus extensions folder and use it).
Specify the view name that we have created earlier that will be used by this endpoint to render the response.
Click the Save button to create our new endpoint:

[image: ../_images/131.png]
One more thing about the endpoints. Default implementation of the IEndpointResolver interface checks endpoints,
sorted by the position, one by one (whether the current one’s URL template matches the request’s URL or not).
That’s why position field value is important. If you have a few endpoints that match the given URL, the first one will be used.

The last thing we have to do is to add the data source that will load the blog post page object by the value of the URL property
and assign it to the view model’s Page property (that will also be created). Click the Data sources link and then the
Create data source button. Fill all the fields as shown below and click the Save button:

[image: ../_images/141.png]
That’s it. Now we can test how our blog post page is displayed. Navigate to
http://localhost:5000/en/blog/my-first-blog-post:

[image: ../_images/151.png]
It works! But we also need to have a page with all the blog posts. We will make it quickly, because now you know enough.
This page will display the blog posts, so we don’t need to create any new class (just create the regular page object with
the URL property value set to /blog). All we need is to create new view, endpoint and two data sources for it.
Let’s start from the view:

[image: ../_images/161.png]
As you can see, we will have a data source that will provide the BlogPosts view model property for us.
Also we have to create the _BlogPost partial view (inside the Shared folder):

[image: ../_images/171.png]
Now create the new endpoint (you have to have the separated endpoint for each page template (or view)):

[image: ../_images/181.png]
Because the page that will display the list of the blog posts is the page too, add the Page data source for
our new endpoint (the same way we have done that for the previous one). It will load our regular page object that holds
Content and other properties of this page.

But in order to be able to display the blog posts on this page, we must add one more data source:

[image: ../_images/191.png]
As you can see, another C# class is selected for this data source. It provides more properties for us. For example,
it allows to specify the class of the objects to load, to specify which their relations (and relations of the relations and so on)
should be loaded, should we use filtering, sorting, or paging etc.

Everything is done. Now you can navigate to http://localhost:5000/en/blog
and see the result:

[image: ../_images/20.png]
Click the image to go to the blog post page. You can add the new menu item in the menu to have your blog there.

In the next tutorial we will see how to display comments on the blog post page and how to create them using the forms,
user input and Platformus object mappers [http://docs.platformus.net/en/latest/advanced/object_mapping.html].

Fundamentals

	Content
	Objects

	Menus

	Forms

	File Manager

	Audience
	Permissions

	Roles

	Users

	Administration
	Cultures

	Data Types

	Classes

	Configurations

	Development
	Endpoints

	Views

	Styles

	Scripts

	Bundles

Content

	Objects

	Menus

	Forms

	File Manager

Objects

Object is the central part of the Platformus data model. It is an elementary piece of the information.
Objects are described by classes and members and consist of properties and relations. You can manage them
(add, edit, and delete) from the backend using the Content/Objects section:

[image: ../../_images/115.png]
As we said, objects consist of properties and relationships and are described by classes and members.
Each property has its own client-side JavaScript editor, which is specified by the data type of the member.
You can create your own data types and client-side JavaScript editors. Also, data types specify
which primitive storage data type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Domain.Data.Entities/StorageDataType.cs#L6]
should be used to store the particular property value (integer, decimal, string and datetime are supported).
String properties can be localizable and nonlocalizable.

The object edit page consist of client-side JavaScript editors grouped by tabs. A typical page can look like this:

[image: ../../_images/213.png]
The property editors may look and behave absolutely different. This is the property editor for the
Image data type looks like:

[image: ../../_images/39.png]
And this is the one for the Date data type:

[image: ../../_images/43.png]

Menus

Menus are used for navigation on the frontend. You can manage them (add, edit, and delete) from the backend
using the Content/Menus section:

[image: ../../_images/114.png]
Each menu item has localized name, URL, and position. Position might be used to sort the menu items in the correct order:

[image: ../../_images/212.png]
After menu is created, you can display it on the frontend using the built-in MenuViewComponent class like this
(the menu code is passed as the parameter to identify the menu we want to display):

@await Component.InvokeAsync("Menu", new { code = "Main", additionalCssClass = "master-detail__menu" })

As you can see, an additional CSS class might be applied using the corresponding optional parameter.

The menu will be displayed using the built-in views
(_Menu [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Menus.Frontend/Views/Shared/_Menu.cshtml] and
_MenuItem [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Menus.Frontend/Views/Shared/_MenuItem.cshtml]).
The HTML elements have unique CSS classes (the BEM [http://getbem.com/] methodology is used), so it is easy
to apply styles to them:

<div class="menu master-detail__menu">
 <div class="menu__items">
 <div class="menu__item menu__item--active">
 Home
 </div>
 <div class="menu__item">
 About me
 </div>
 <div class="menu__item">
 Contacts
 </div>
 </div>
</div>

If you want to change the HTML, just copy the views into your project and they will be used instead of the built-in ones,
so you will be able to modify them as you want.

Forms

Forms are used to get and process user input on the frontend. You can manage them (add, edit, and delete) from the backend
using the Content/Forms section:

[image: ../../_images/113.png]
Each form has code and localized name. The Produce completed forms checkbox allows to specify whether you want
completed forms to be created each time user fills the form. You can review completed forms (user input) from the backend
any time if they are created.

C# class name field allows you to specify the implementation of the
IFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Forms/FormHandlers/IFormHandler.cs#L11]
interface that will handle the user input for this form. There is the only one built-in implementation of this interface:
the EmailFormHandler [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Forms.Frontend/FormHandlers/EmailFormHandler.cs#L17]
class. It sends the user input to the specified recipients by the email. You can write your own implementations
of this interface. For example, you can have form handler that creates objects using the user input and
Platformus object mappers [http://docs.platformus.net/en/latest/advanced/object_mapping.html].

Each form handler can have different (specified by the developer) parameters, which use different parameter editors.
Parameter editors might be created by the developer too. (The built-in form handler has two parameters: Recipient emails
and Redirect URL.)

[image: ../../_images/211.png]
Forms consist of fields. There are different types of fields (and you can add your own ones). Each field has type,
localized name, and position. Position might be used to sort the fields in the correct order:

[image: ../../_images/38.png]
Also, fields have validation parameters.

After form is created, you can display it on the frontend using the built-in FormViewComponent class like this
(the form code is passed as the parameter to identify the form we want to display):

@await Component.InvokeAsync("Form", new { code = "Feedback", additionalCssClass = "master-detail__form" })

As you can see, an additional CSS class might be applied using the corresponding optional parameter.

The form will be displayed using the built-in views
(_Form [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Forms.Frontend/Views/Shared/_Form.cshtml] and
_Field [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Forms.Frontend/Views/Shared/_Field.cshtml]).
The HTML elements have unique CSS classes (the BEM [http://getbem.com/] methodology is used), so it is easy
to apply styles to them:

<form class="form" action="/en/forms/send" enctype="multipart/form-data" method="post" novalidate="novalidate">
 <input name="formId" id="formId" type="hidden" value="1">
 <div class="form__field field">
 <label class="field__label label" for="field1">Your name</label>
 <input name="field1" class="field__text-box text-box" id="field1" type="text" maxlength="64" data-val-required="" data-val-maxlength-max="64" data-val="true">
 </div>
 <div class="form__field field">
 <label class="field__label label" for="field2">Your email</label>
 <input name="field2" class="field__text-box text-box" id="field2" type="text" maxlength="64" data-val-required="" data-val-maxlength-max="64" data-val="true">
 </div>
 <div class="form__field field">
 <label class="field__label label" for="field3">Your message</label>
 <textarea name="field3" class="field__text-area text-area" id="field3" maxlength="1024" data-val-required="" data-val-maxlength-max="1024" data-val="true"></textarea>
 </div>
 <div class="form__buttons buttons">
 <button class="buttons__button button" type="submit">Send</button>
 </div>
</form>

If you want to change the HTML, just copy the views into your project and they will be used instead of the built-in ones,
so you will be able to modify them as you want.

File Manager

File manager allows you to manage your files (upload and delete them) from the backend using the
Content/File manager section:

[image: ../../_images/112.png]
After a file is uploaded you can use it in different ways. You can copy a link to the file and paste it somewhere.
If it is an image, you can paste it in the HTML editor using the file selector (click the Insert/edit image
button and then the Browse one):

[image: ../../_images/210.png]
Please note that if your class contains a member with the Image as the data type, you don’t need to upload an image
using the file manager manually. The image editor will upload, crop, and save the image for the object property automatically
(and the image path will be different: each object has its own images path that includes its identifier).

Audience

	Permissions

	Roles

	Users

Permissions

Permissions are used to control user access to a web application resources. You can manage them (add, edit, and delete)
from the backend using the Audience/Permissions section:

[image: ../../_images/19.png]
Each permission has name, code, and position. Position might be used to sort the permissions in the correct order:

[image: ../../_images/27.png]
Once you have created a permission, you can assign it to a role (and then to a user). While signing in,
all the user roles and all the permissions from that roles are attached to the user as the claims.
These claims then can be checked from the code:

if (context.User.HasClaim(PlatformusClaimTypes.Permission, Permissions.BrowseUsers))
{
}

Platformus uses authorization policies to control access to the controllers and actions:

[Area("Backend")]
[Authorize(Policy = Policies.HasBrowseUsersPermission)]
public class UsersController : Barebone.Backend.Controllers.ControllerBase { }

In order to be able to use an authorization policy, it should be
added to the authorization options [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Security/Actions/AddAuthorizationAction.cs#L28]
inside the services.AddAuthorization() extension method:

services.AddAuthorization(options =>
 {
 foreach (IAuthorizationPolicyProvider authorizationPolicyProvider in ExtCore.Infrastructure.ExtensionManager.GetInstances<IAuthorizationPolicyProvider>())
 options.AddPolicy(authorizationPolicyProvider.Name, authorizationPolicyProvider.GetAuthorizationPolicy());
 }
);

As you can see, the ExtCore framework’s
ExtensionManager [https://github.com/ExtCore/ExtCore/blob/master/src/ExtCore.Infrastructure/ExtensionManager.cs#L15]
class is used to get all the instances of the
IAuthorizationPolicyProvider [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Security/IAuthorizationPolicyProvider.cs#L8]
interface implementations. Then method IAuthorizationPolicyProvider.GetAuthorizationPolicy() is used
to get the authorization policies.

So, if the permission is used to control access to a controller or action, you need to implement
the IAuthorizationPolicyProvider interface and then add corresponding attribute to the controller or action.
If you only want to check the permission from code, you don’t have to implement that interface.

Roles

Roles are used to group the permissions. For now, you can’t assign a permission to a user directly,
it is only possible to assign a role. You can manage them (add, edit, and delete) from the backend
using the Audience/Roles section:

[image: ../../_images/110.png]
Each role has name, code, and position. Position might be used to sort the roles in the correct order:

[image: ../../_images/28.png]
Also, on the Permissions tab you can assign the permissions to a role:

[image: ../../_images/36.png]
The same as permissions [http://docs.platformus.net/en/latest/fundamentals/audience/permissions.html],
the roles are attached to a user as the claims while signing in. You can check them from the code,
but permissions checking is preferred.

Users

Users (as well as permissions [http://docs.platformus.net/en/latest/fundamentals/audience/permissions.html]
and roles [http://docs.platformus.net/en/latest/fundamentals/audience/roles.html]) are used to control access
to a web application resources. You can manage them (add, edit, and delete) from the backend
using the Audience/Users section:

[image: ../../_images/111.png]
Each user has name:

[image: ../../_images/29.png]
Also, on the Roles tab you can assign the roles to a user:

[image: ../../_images/37.png]
In order to be able to get to the backend, user must have the Administrator role. Please note,
that this role only allows to browse the backend, not to access any section. You can use Do everything permission
to provide access to all the sections for a role.

Let’s back to the users. While user itself has only a name, it doesn’t store any information about how it signs in.
This information is stored using the
Credential [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Security.Data.Entities/Credential.cs#L13]
objects. Each user can have different credentials, and each credential has its
type [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Security.Data.Entities/CredentialType.cs#L14]
(it can be email and password, Facebook account, Microsoft account and so on). When user signs in,
Platformus checks whether there is an credential with the given type, identifier, and secret exists. If the credential is found,
corresponding user is signed in.

The credential list looks like this:

[image: ../../_images/42.png]
And this is the credential itself:

[image: ../../_images/52.png]
(MD5 hashing algorithm will be replaced with the stronger one soon.)

Administration

	Cultures

	Data Types

	Classes

	Configurations

Cultures

Cultures are used to specify which languages (date formats and so on) your web application supports.
You can manage them (add, edit, and delete) from the backend using the Administration/Cultures section:

[image: ../../_images/17.png]
Each culture has code and name. The Is default checkbox allows to specify whether this culture should be used
as the default one on the frontend (it means that this culture will be used when the culture is not implicitly selected).
And the Is backend UI specifies whether this cultured should be used as the backend one (UI localization and so on).

[image: ../../_images/25.png]
You can see that there is the Neutral culture exists in the list. This culture is used to store the culture-neutral string values
using the localizations [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Globalization.Data.Entities/Localization.cs#L12].
When you describe your data model using the classes and members, you can specify, whether the particular string property
is localizable or not. If it is localizable, N editors will be displayed, one for each of the cultures. It looks like this:

[image: ../../_images/35.png]
When your string property is not localizable, only the one editor will be displayed, and the property value will be saved
using the neutral culture.

By default, short culture code segment is used in the URL to specify which culture should be used for the request.
For example: /en/some-page. It is done in this way to make it possible for the pages to be indexed by the search engines
with the different cultures. But if you are sure that your web application will always support the only one culture,
you can turn off this behavior using the
configurations [http://docs.platformus.net/en/latest/fundamentals/administration/configurations.html] and have shorter URLs.
In this case, the default culture will be used to display the content (but you can change the way culture is selected
for the requests).

There is the special
DefaultCultureManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Globalization/CultureManager/DefaultCultureManager.cs#L14]
class that you can use to operate the cultures. It implements the
ICultureManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Globalization/CultureManager/ICultureManager.cs#L9]
interface and it is registered as a service inside the DI, so you can replace it with your own implementation.

Data Types

Data types are used to describe how the object property values should be stored, displayed, and edited in the backend.
You can manage them (add, edit, and delete) from the backend using the Administration/Data Types section:

[image: ../../_images/18.png]

Data Type Fields

[image: ../../_images/26.png]

Storage data type

It is the storage-level (real) data type that is used to store the property values of this Platformus-level data type.
You can have multiple Platformus-level data types (with totally different purpose) with the same storage-level data type.
For example, Single line plain text and Image data types both use string as storage data type.

JavaScript editor class name

It is the platformus.memberEditors JavaScript object’s property name. Another JavaScript object is assigned to this property.
This object is used to build the client-side editors for the Platformus-level object’s properties of this data type.
For example, please take a look at the singleLinePlainText [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Domain.Backend/Areas/Backend/Scripts/MemberEditors/single_line_plain_text_member_editor.js#L6] editor.

When the object page is going to be displayed in the backend, editors for all the object properties are created.
Each editor is created using such JavaScript object [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Domain.Backend/Areas/Backend/Scripts/MemberEditors/member_editors.js#L25-L27].

You can easily write your own JavaScript client-side editors and then use them in the standard or custom data types.

Name

Name is used to identify the data types in the backend.

Position

Position is used to sort the data types in the lists.

Classes

Classes are used to describe the objects. Using the members, they describe which properties should the objects have,
how these property values should be stored and edited in the backend. You can manage them (add, edit, and delete)
from the backend using the Administration/Classes section:

[image: ../../_images/15.png]

Data Type Fields

[image: ../../_images/23.png]

Parent class (abstract only)

If you select a parent class, your class will have all the tabs and members of that abstract class.
This feature helps to avoid copying the same members again and again. For example, it is good idea to have the Page class
with such members, like URL, Content, Title, and META tags.
Also, abstract classes are used to group the objects in the Content/Objects section.

Code

It is the unique text identifier of the class. For example, it is used in the Platformus API to specify,
which class of objects you want to manipulate.

Name

Name is used to identify the classes in the backend.

Pluralized name

Pluralized name is used to as the object list titles.

Is abstract

Specifies whether the class is abstract or not (see above).

Tabs

Tabs are used to group the object property editors on the object page. Click the Tabs link in the class row:

[image: ../../_images/33.png]

Tab Fields

[image: ../../_images/41.png]

Name

Name is used to identify the tabs in the backend.

Position

Position is used to sort the tabs in the lists.

Members

Members are used to describe which properties should have the objects of a given class. Click the Members link
in the class row:

[image: ../../_images/51.png]

Member Fields

[image: ../../_images/6.png]

General/Tab

You can select a tab this member should belong to. All the members without a tab selected go under the General tab.

General/Code

It is the unique text identifier of the member. This code is used in the different places, like sorting, mapping etc.

General/Name

Name is used to identify the members in the backend.

General/Position

Position is used to sort the members in the lists.

[image: ../../_images/7.png]

Property/Property data type

Member can be a property or a relation. If you specify the property data type, member will be considered as a property.
Property data type allows to specify how to store the object property value (and which raw storage data type is used for that),
how to display and edit it in the backend.

If a property data type is selected, data type parameters will be also displayed.

[image: ../../_images/8.png]

Relation/Relation class

If you specify the relation class, member will be considered as a relation. Relation selector will be displayed as the editor.
Also, if any relation class is selected, additional fields will be displayed.

Is relation single parent

Specifies whether objects of this class can have the only one relation to the specified class (and this specified class will be considered
as the parent one for the current class). For example, if blog post page can have the only one category page, you can use this option.
In the object list link to the blog post pages will appear in the category page rows, so all the created blog post pages will be automatically related
to the parent category page objects. If the checkbox is not set, there will be two separated lists of the objects: Category pages and Blog post pages,
and you will have to select a category page in every blog post page from the relation selector manually.

Relation/Min related objects number and Relation/Max related objects number

These fields allow to limit the number of the related objects. For example, you can specify that there should be 3-5 tags on every blog post page,
so user will not be able to create a blog post page without the tags, or to specify more than 5.

Configurations

Configurations and variables are used to provide configuration parameters to the web application.
You can manage them (add, edit, and delete) from the backend using the Administration/Configurations section:

[image: ../../_images/16.png]
Each configuration has code and name:

[image: ../../_images/24.png]
Code is used to get the configuration from code.

Configurations consist of variables. Each variable has code, name, value, and position:

[image: ../../_images/34.png]
The same as for configurations, code is used to get the variable from code.

There is the special
DefaultConfigurationManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Configurations/ConfigurationManager/DefaultConfigurationManager.cs#L10]
class that you can use to operate the configurations. It implements the
IConfigurationManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Configurations/ConfigurationManager/IConfigurationManager.cs#L6]
interface and it is registered as a service inside the DI, so you can replace it with your own implementation.

This is the usage example:

public class DefaultController : Controller
{
 public DefaultController(IConfigurationManager configurationManager)
 {
 string emailSmtpServer = configurationManager["Email", "SmtpServer"];
 }
}

Also, you can use the configurationBuilder.AddStorage() extension method:

IConfigurationRoot configurationRoot = new ConfigurationBuilder().AddStorage(storage).Build();

string emailSmtpServer = configurationRoot["Email:SmtpServer"];

Development

	Endpoints

	Views

	Styles

	Scripts

	Bundles

Endpoints

Endpoints are used to handle the requests to a Platformus-based web application. You can manage them
(add, edit, and delete) from the backend using the Development/Endpoints section:

[image: ../../_images/117.png]
Each endpoint has name, URL template, position, and few other fields:

[image: ../../_images/215.png]
Name is used only in the endpoint list. URL template is used by the implementation of the
IEndpointResolver [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/EndpointResolvers/IEndpointResolver.cs#L10]
interface to select the endpoint which should process current request (see below).
Position is important, because endpoint resolver checks the endpoints one by one, and it will return the first
matching endpoint from the list, sorted by position.

The Disallow anonymous checkbox allows you to specify, whether a user must be authenticated
in order to be able to get the response from this endpoint. On the Permissions tab you can specify
which permissions the user must have and where it should be redirected if it doesn’t have any required permission.

The C# class name drop down list allows you to specify, which C# class (implementation of the
IEndpoint [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/Endpoints/IEndpoint.cs#L11]
interface) will handle the requests. It is very important, because you can write your own implementations of this interface
and handle the requests in any way you want. You can return views, JSON, files, plain text, redirects, or any other content.
There is the only one built-in endpoint: the
DefaultEndpoint [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Domain.Frontend/Endpoints/DefaultEndpoint.cs#L15]
class. It returns views (you can specify the view name) and supports caching.

If we are talking about the views, endpoint should provide any information a view needs using the view model.
Endpoint creates and initializes a view model using the data sources. Each endpoint can have different data sources:

[image: ../../_images/310.png]
Data source is a C# class too. It must implement the
IDataSource [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Routing/DataSources/IDataSource.cs#L10]
interface. You can implement this interface in your own classes and return any data you want.

There are few built-in data sources. PageDataSource loads the object by its URL property value.
ObjectsDataSource loads the objects of the specified class. Also, it supports filtegin, sorting, and paging.
PrimaryObjectsDataSource and ForeignObjectsDataSource load the objects that are related to the one,
which URL property value matches current request’s URL (these both support filtegin, sorting, and paging too).

Each data source has code and C# class name:

[image: ../../_images/44.png]
While C# class name is clear for now, code is used as the view model property name. So if you have specified some code,
your view model will have a property with this name.

Both endpoints and data sources can have parameters. These parameters are specified by a developer and
can have different types and client-side JavaScript editors. Developers can add their own parameter editors.

You can read more about custom endpoints [http://docs.platformus.net/en/latest/advanced/custom_endpoints.html]
and data sources [http://docs.platformus.net/en/latest/advanced/custom_data_sources.html] in the
advanced [http://docs.platformus.net/en/latest/advanced/index.html] section.

Views

You can manage (add, edit, and delete) your views from the backend using the Development/Views section:

[image: ../../_images/120.png]
It might be very useful, because you don’t need any special tool to provide quick changes.
There is the built-in simple code editor with the syntax highlighting:

[image: ../../_images/218.png]

Styles

You can manage (add, edit, and delete) your styles from the backend using the Development/Styles section:

[image: ../../_images/119.png]
It might be very useful, because you don’t need any special tool to provide quick changes.
There is the built-in simple code editor with the syntax highlighting:

[image: ../../_images/217.png]
Using the Development/Bundles section you can configure the bundles, so when you click the
Save button on the style create/edit page, all the styles from the bundles will be automatically
concatenated and minified, so you can save traffic and downloading time.

Scripts

You can manage (add, edit, and delete) your scripts from the backend using the Development/Scripts section:

[image: ../../_images/118.png]
It might be very useful, because you don’t need any special tool to provide quick changes.
There is the built-in simple code editor with the syntax highlighting:

[image: ../../_images/216.png]
Using the Development/Bundles section you can configure the bundles, so when you click the
Save button on the script create/edit page, all the scripts from the bundles will be automatically
concatenated and minified, so you can save traffic and downloading time.

Bundles

Bundles are used for automatic minification and concatenation of the CSS style and JavaScript script files.
When you create or edit a file and click the Save button, bundling process is automatically started
and minified and concatenated files are created according to the template you defined.
You can manage the bundles (add, edit, and delete) from the backend using the Development/Bundles section:

[image: ../../_images/116.png]
Bundle files use JSON format. There should be the only two properties in the root object: outputFile (string)
and inputFiles (string array):

[image: ../../_images/214.png]
The RebuildAllBundles [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Designers/BundleManager.cs#L15] method
of the BandleManager [https://github.com/Platformus/Platformus/blob/master/src/Platformus.Designers/BundleManager.cs#L13] class
is used to build the bundles.

Index

 _images/125.png
New Project
P Recent

4 |nstalled

4 \isual C#
Windows Classic Desktop
Web
.NET Core
NET Standard
Cloud
Test
WCF

P Visual Basic

SQL Server

P Azure Data Lake

P Stream Analytics

P Other Project Types

P Online

Not finding what you are looking for?

Open Visual Studio Installer

NET Framework 4.6.2

|

=] 1 e
5 % g

N

Console App (.NET Core)

Class Library (.NET Core)

Unit Test Project (NET Core)

xUnit Test Project (NET Core)

ASP.NET Core Web Application

~ Sort by: Default

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Name: WebAppIication‘

Location: C:\Users\Dmitry Sikorsky\Desktop\

Solution name: WebApplication

Search (Ctrl+E)

Type: Visual C#

Project templates for creating ASP.NET
Core applications for Windows, Linux and

macOS using .NET Core or .NET
Framework.

Browse...

Y| Create directory for solution

oK

Pole

Cancel

_images/181.png
B <& [Create Endpoint|Platfc X =+

é % O m localhost

I Platformus Create Endpoint

Audience Name
Blog

Administration
URL template

Development blog

Position
150

Disallow anonymous

Sign in URL

C# class name

Platformus.Domain.Frontend.DefaultEndpoint

General

View name

BlogPage
v/ Use caching

SEVE Cancel

Administrator

_images/51.png
[<& [Members|Platformus X + —

é % O m localhost * {‘g ﬁv

I Platformus Members
Content = < —- - By10 v Filter
Audience Name Property Data Type Relation Class
Administration URL Single line plain text — 1

Content Html - 10

Title Single line plain text — 1000

META description Single line plain text — 1010

META keywords Single line plain text — 1020

Development Back

Administrator

_images/38.png
B <& [EditField | Platformus X ++ W

é % O m localhost

B Platformus Edit Field

Content Type

Text box
Name

Your name

Bawe nma

. Bawe iM’a
Audience

Administration v/ Isrequired
Max length

Development 64

Position
1

SEVE Cancel

Administrator

_images/31.png
3 localhost

localhost:1234/en/api

_images/311.png
B <& [Create Member | Platfor X =+

é % O m localhost *

I Platformus Create Member

Content Property Relation

Tab
Tab not specified

Audience

Administration
Code

Preview

Name

Preview

Position
Development 5

SEVE Cancel

Administrator

_images/17.png
B <& [Cultures|Platformus X ++ W

é % O m localhost

I Platformus Cultures

Content = “" - Byl0 ~

Audience NEmE

Administration

Neutral
Pycckui

YKpaiHcbka

Create culture

Development

Administrator

_images/116.png
B < [Bundles | Platformus X |+ v

é % O m localhost

I Platformus Bundles

Content = “" - Byl0 ~

e e

Administration platformus.css.json

platformus.js.json

Create bundle

Development

Administrator

_images/113.png
B <& [E Forms| Platformus X 4+ v

é % O ﬁh localhost

I Platformus Forms

Content Feedback

Your name
Your email

Your message

Create field
[Ceste form |

Audience
Administration

Development

Administrator

_images/111.png
B <& [Users| Platformus X

é % O m localhost

I Platformus

Content

Audience A Credentials Created

Administrator Credentials 1/1/2017 12:00:00 AM

Create user

Administration

Development

Administrator

_images/1110.png

