

PlasmaPy Documentation

[image: _images/sphx_glr_plot_physics_thumb.png]
Analysing ITER parameters

[image: _images/sphx_glr_plot_dispersion_function_thumb.png]
The plasma dispersion function

[image: _images/sphx_glr_plot_langmuir_analysis_thumb.png]
Langmuir probe data analysis

[image: PlasmaPy logo]
PlasmaPy [http://www.plasmapy.org/] is an open source
community-developed core Python [https://www.python.org/] 3.6+
package for plasma physics currently under development.

Getting Started

	Installing PlasmaPy

	Feedback and communication

	Contributing to PlasmaPy

	PlasmaPy Community Code of Conduct

	Acknowledging and Citing PlasmaPy

	PlasmaPy’s GitHub repository [https://github.com/PlasmaPy/plasmapy]

	PlasmaPy website [http://www.plasmapy.org/]

	Using astropy.units [http://docs.astropy.org/en/stable/units/]

User Documentation

Theoretical Analysis

	Plasma physics formulas (plasmapy.physics)

	Braginskii and collisional transport theory (plasmapy.transport)

	Mathematics (plasmapy.mathematics)

Experimental Tools

The diagnostics package is in the early stages of
development.

	Plasma diagnostics (plasmapy.diagnostics)

Data Structures and Simulation

	PlasmaPy Plasma

	Particle Tracker (plasmapy.simulation.tracker)

Physical Data

	Atomic (plasmapy.atomic)

Utilities

	Core package utilities (plasmapy.utils)

Examples

	Examples

Development Guide

The PlasmaPy Development Guide contains information on how to
contribute to PlasmaPy, along with guidelines for code, testing, and
documentation.

Project Details

	About PlasmaPy
	Authors and Credits

	Stability of Subpackages

	Release Notes

	Change Log

	PlasmaPy’s Vision Statement

	Acknowledging and Citing PlasmaPy

Index

	Index

	Module Index

	Search Page

Installing PlasmaPy

Note

If you would like to contribute to PlasmaPy, please refer to the
instructions on installing PlasmaPy for development.

Requirements

PlasmaPy requires Python version 3.6 or newer, and is not compatible
with Python 2.7. PlasmaPy requires the following packages for
installation:

	NumPy [http://www.numpy.org/] 1.13 or newer

	SciPy [https://www.scipy.org/] 0.19 or newer

	Astropy [http://www.astropy.org/] 2.0 or newer

	colorama [https://pypi.org/project/colorama/] 0.3 or newer

PlasmaPy also uses the following optional dependencies:

	matplotlib [https://matplotlib.org/] 2.0 or newer

	h5py [https://www.h5py.org/] 2.8 or newer

	mpmath [http://mpmath.org/] 1.0 or newer

	lmfit [https://lmfit.github.io/lmfit-py/] 0.9.7 or newer

PlasmaPy can be installed with all of the optional dependencies via
pip install plasmapy[optional].

Creating a conda environment

We highly recommend installing PlasmaPy from a Python environment
created using conda [https://conda.io/docs/]. Conda allows us to
create and switch between Python environments that are isolated from
each other and the system installation (in contrast to this xkcd [https://xkcd.com/1987/]), while also simplifying the distribution of
binary and compiled dependencies.

After installing conda [https://conda.io/docs/user-guide/install/],
create a PlasmaPy environment by running:

conda create -n plasmapy python=3.7 numpy scipy astropy matplotlib h5py lmfit mpmath colorama -c conda-forge

To activate this environment, run:

conda activate plasmapy

Once the environment is activated, then you may proceed with
installation.

Installation

Note

We recommend that new users create a conda environment.

Installation with pip

To install the most recent release of PlasmaPy on PyPI [https://pypi.org/project/plasmapy/] with pip [https://pip.pypa.io/en/stable/] into an existing Python environment
alongside all optional dependencies, run

pip install plasmapy[optional]

To install a minimal set of dependencies (which does not guarantee that
everything will run and may result in ImportError`s, skip `[all] and run
simply

pip install plasmapy

Installation with conda

You can get PlasmaPy from conda via

conda install -c conda-forge plasmapy

Building and installing from source code

Prerequisites

Building PlasmaPy from source requires a C compiler such as
gcc [https://gcc.gnu.org/] so that code generated by
Cython [http://cython.org/] may be compiled.

Obtaining source code

Stable release

The source code for the most recent stable release of PlasmaPy can be
downloaded from PyPI [https://pypi.org/project/plasmapy/].

Development version on GitHub

If you have git [https://git-scm.com/] installed on your computer,
you may clone PlasmaPy’s GitHub repository [https://github.com/PlasmaPy/PlasmaPy] and access source code
from the most recent development version by running:

git clone https://github.com/PlasmaPy/PlasmaPy.git

The above command uses HTTPS, which is the default protocol and more
straightforward to set up. If you have set up an SSH key [https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/], then an
equivalent and more secure command is:

git clone git@github.com:PlasmaPy/PlasmaPy.git

If you do not have git installed on your computer, then you may download
the most recent source code from PlasmaPy’s GitHub repository [https://github.com/PlasmaPy/PlasmaPy] by
selecting “Clone or Download”, which will give you the option to
download a zip file.

Note

The Contributing to PlasmaPy guide has instructions on how to
fork a repository so that you may make pull requests.

Building and installing

In the top level directory, run

python setup.py install

or

pip install .

Testing a source code build

Testing PlasmaPy requires:

	pytest [https://docs.pytest.org/]

In the top level directory, run

python setup.py test

Building documentation

Building and testing PlasmaPy documentation requires the following
packages:

	Sphinx [http://www.sphinx-doc.org/]

	sphinx-gallery [https://sphinx-gallery.readthedocs.io/]

	sphinx_rtd_theme [https://sphinx-rtd-theme.readthedocs.io/]

	sphinx-automodapi [http://sphinx-automodapi.readthedocs.io/]

	pillow [https://pillow.readthedocs.io/]

	numpydoc [http://numpydoc.readthedocs.io/]

To build the documentation, run the following command in the top level
directory of the repository:

python setup.py build_docs

The HTML files built by this command will be placed in the
docs/_build/html subdirectory and can be read using a web browser.

Feedback and communication

Matrix chat [https://riot.im/app/#/room/#plasmapy:matrix.org]

If you have any questions, the quickest way to get a response is to ask
on our
Matrix [https://riot.im/app/#/room/#plasmapy:matrix.org]/Gitter [https://gitter.im/PlasmaPy/Lobby]
channel.

Mailing list [https://groups.google.com/forum/#!forum/plasmapy]

We also have a mailing
list [https://groups.google.com/forum/#!forum/plasmapy] that serves
as a less volatile discussion forum.

Suggestion box [https://docs.google.com/forms/d/e/1FAIpQLSdT3O5iHZrLJRuavFyzoR23PGy0Prfzx2SQOcwJGWtvHyT2lw/viewform?usp=sf_link]

We have a suggestion
box [https://docs.google.com/forms/d/e/1FAIpQLSdT3O5iHZrLJRuavFyzoR23PGy0Prfzx2SQOcwJGWtvHyT2lw/viewform?usp=sf_link]
if you would like to (optionally anonymously) suggest a feature/topic
for consideration. These will be reposted on the mailing list or
directly in GitHub issues, as appropriate, for further discussion.

Biweekly [https://calendar.google.com/calendar?cid=bzVsb3ZkcW0zaWxsam00ZTlrMDd2cmw5bWdAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ] video calls [https://meet.jit.si/plasmapy]

We also have approximately bi-weekly online meetings at
Jitsi [https://meet.jit.si/plasmapy], for which we have a calendar
here [https://calendar.google.com/calendar?cid=bzVsb3ZkcW0zaWxsam00ZTlrMDd2cmw5bWdAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ]
and written meeting notes
here [https://drive.google.com/drive/folders/0ByPG8nie6fTPV1FQUEkzMTgtRTg?usp=sharing].
Come discuss plasma software with us!

Contributing to PlasmaPy

There are numerous ways to contribute to PlasmaPy, including by
providing code and documentation, suggesting and discussing ideas,
submitting issues and bug reports, and engaging the broader plasma
physics community.

Impostor syndrome disclaimer 1

We want your help. No, really.

There may be a little voice inside your head that is telling you that
you’re not ready to be an open source contributor; that your skills
aren’t nearly good enough to contribute. What could you possibly offer a
project like this one?

We assure you - the little voice in your head is wrong. If you can write
code at all, you can contribute code to open source. Contributing to
open source projects is a fantastic way to advance one’s coding skills.
Writing perfect code isn’t the measure of a good developer (that would
disqualify all of us!); it’s trying to create something, making
mistakes, and learning from those mistakes. That’s how we all improve,
and we are happy to help others learn.

Being an open source contributor doesn’t just mean writing code, either.
You can help out by writing documentation, tests, or even giving
feedback about the project (and yes - that includes giving feedback
about the contribution process). Some of these contributions may be the
most valuable to the project as a whole, because you’re coming to the
project with fresh eyes, so you can see the errors and assumptions that
seasoned contributors have glossed over.

Contributing code or documentation to PlasmaPy

If you see something you’d like to work on amongst our
issues [https://github.com/PlasmaPy/PlasmaPy/issues], start hacking
away on that! However, please announce your intent first in the relevant
issue to make sure there is no work duplication.

Please note that PlasmaPy has a PlasmaPy Community Code of Conduct.

Issues marked by the community as help wanted mean just that - either
they’re good contributions for outsiders or there’s an issue in the
ongoing work that requires a second opinion. Please consider these
first!

Work on PlasmaPy is done via GitHub, so you’ll need a (free)
account [https://github.com/join?source=header-home]. If you are new
to git [https://git-scm.com/], helpful resources include
documentation on git
basics [https://git-scm.com/book/en/v2/Getting-Started-Git-Basics]
and an interactive git
tutorial [https://try.github.io/levels/1/challenges/1]. You must also
install
git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
locally on your computer. We highly recommend getting reasonably
familiar with git by going through these tutorials or a Software
Carpentry [https://software-carpentry.org/] workshop prior to making
code contributions. Do note that you can usually find help in the
PlasmaPy Matrix
chatroom [https://riot.im/app/#/room/#plasmapy:matrix.org].

For actual guidelines for working on PlasmaPy, please see our
PlasmaPy Development Guide.

Towncrier changelog entries

Every pull request should include a changelog entry. Please see
changelog/README.rst for instructions.

To summarize, put a file like <PULL REQUEST>.<TYPE>.rst, where <PULL
REQUEST> is a pull request number, and <TYPE> is one of breaking,
feature, bugfix, doc, removal, trivial. If unsure, ask
a maintainer.

Footnotes

	1

	The imposter syndrome disclaimer [https://github.com/adriennefriend/imposter-syndrome-disclaimer]
was originally written by Adrienne Lowe [https://github.com/adriennefriend] for a PyCon talk [https://www.youtube.com/watch?v=6Uj746j9Heo]. It was adapted
in the README files for
MetPy [https://github.com/Unidata/MetPy] and yt [https://github.com/yt-project/yt], and was then adapted by
PlasmaPy.

PlasmaPy Community Code of Conduct

The PlasmaPy community strives to follow the best practices in open
source software development. New contributors are encouraged to join the
team and contribute to the codebase. We anticipate/encourage a global
participation from people with diverse backgrounds, skills, interests,
and opinions. We believe that such diversity is critical in ensuring a
growth of ideas in our community.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

We as a community pledge to abide by the following guidelines:

	We pledge to treat all people with respect and provide a harassment-
and bullying-free environment, regardless of age, sex, sexual
orientation and/or gender identity, disability, physical appearance,
body size, race, nationality, ethnicity, religion, and level of
experience. In particular, sexual language and imagery, sexist,
racist, or otherwise exclusionary jokes are not appropriate.

	We pledge to respect the work of others by recognizing
acknowledgment/citation requests of original authors. As authors, we
pledge to be explicit about how we want our own work to be cited or
acknowledged.

	We pledge to welcome those interested in joining the community, and
realize that including people with a variety of opinions and
backgrounds will only serve to enrich our community. In particular,
discussions relating to pros/cons of various technologies,
programming languages, and so on are welcome, but these should be
done with respect, taking proactive measure to ensure that all
participants are heard and feel confident that they can freely
express their opinions.

	We pledge to welcome questions and answer them respectfully, paying
particular attention to those new to the community. We pledge to
provide respectful criticisms and feedback in forums, especially in
discussion threads resulting from code contributions.

	We pledge to be conscientious of the perceptions of the wider
community and to respond to criticism respectfully. We will strive to
model behaviors that encourage productive debate and disagreement,
both within our community and where we are criticized. We will treat
those outside our community with the same respect as people within
our community.

	We pledge to work from the very beginning of this project to make
PlasmaPy accessible to people with disabilities.

	We pledge to help the entire community follow these guidelines, and
to not remain silent when we see violations of them. We will take
action when members of our community violate these guidelines.
Members of the PlasmaPy community may contact any member of the
Coordinating Committee to report violations. Members of the
Coordinating Committee will treat these reports in the strictest
confidence. The Coordinating Committee will develop formal procedures
for how to handle reported violations.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting Nick Murphy at namurphy@cfa.harvard.edu or any
member of the Coordinating Committee. All complaints will be reviewed
and investigated and will result in a response that is deemed necessary
and appropriate to the circumstances. The project team is obligated to
maintain confidentiality with regard to the reporter of an incident.
Project team members should recuse themselves from enforcement of the
code of conduct for a given incident if they have an actual or apparent
conflict of interest. Further details of specific enforcement policies
may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

Parts of these guidelines have been adapted from the Contributor
Covenant (version 1.4) [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html],
the Astropy Community Code of Conduct [http://www.astropy.org/code_of_conduct.html], and the
Python Software Foundation code of conduct [https://www.python.org/psf/codeofconduct/].

Contributing to PlasmaPy

There are numerous ways to contribute to PlasmaPy, including by
providing code and documentation, suggesting and discussing ideas,
submitting issues and bug reports, and engaging the broader plasma
physics community.

Impostor syndrome disclaimer 1

We want your help. No, really.

There may be a little voice inside your head that is telling you that
you’re not ready to be an open source contributor; that your skills
aren’t nearly good enough to contribute. What could you possibly offer a
project like this one?

We assure you - the little voice in your head is wrong. If you can write
code at all, you can contribute code to open source. Contributing to
open source projects is a fantastic way to advance one’s coding skills.
Writing perfect code isn’t the measure of a good developer (that would
disqualify all of us!); it’s trying to create something, making
mistakes, and learning from those mistakes. That’s how we all improve,
and we are happy to help others learn.

Being an open source contributor doesn’t just mean writing code, either.
You can help out by writing documentation, tests, or even giving
feedback about the project (and yes - that includes giving feedback
about the contribution process). Some of these contributions may be the
most valuable to the project as a whole, because you’re coming to the
project with fresh eyes, so you can see the errors and assumptions that
seasoned contributors have glossed over.

Contributing code or documentation to PlasmaPy

If you see something you’d like to work on amongst our
issues [https://github.com/PlasmaPy/PlasmaPy/issues], start hacking
away on that! However, please announce your intent first in the relevant
issue to make sure there is no work duplication.

Please note that PlasmaPy has a PlasmaPy Community Code of Conduct.

Issues marked by the community as help wanted mean just that - either
they’re good contributions for outsiders or there’s an issue in the
ongoing work that requires a second opinion. Please consider these
first!

Work on PlasmaPy is done via GitHub, so you’ll need a (free)
account [https://github.com/join?source=header-home]. If you are new
to git [https://git-scm.com/], helpful resources include
documentation on git
basics [https://git-scm.com/book/en/v2/Getting-Started-Git-Basics]
and an interactive git
tutorial [https://try.github.io/levels/1/challenges/1]. You must also
install
git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
locally on your computer. We highly recommend getting reasonably
familiar with git by going through these tutorials or a Software
Carpentry [https://software-carpentry.org/] workshop prior to making
code contributions. Do note that you can usually find help in the
PlasmaPy Matrix
chatroom [https://riot.im/app/#/room/#plasmapy:matrix.org].

For actual guidelines for working on PlasmaPy, please see our
PlasmaPy Development Guide.

Towncrier changelog entries

Every pull request should include a changelog entry. Please see
changelog/README.rst for instructions.

To summarize, put a file like <PULL REQUEST>.<TYPE>.rst, where <PULL
REQUEST> is a pull request number, and <TYPE> is one of breaking,
feature, bugfix, doc, removal, trivial. If unsure, ask
a maintainer.

Footnotes

	1

	The imposter syndrome disclaimer [https://github.com/adriennefriend/imposter-syndrome-disclaimer]
was originally written by Adrienne Lowe [https://github.com/adriennefriend] for a PyCon talk [https://www.youtube.com/watch?v=6Uj746j9Heo]. It was adapted
in the README files for
MetPy [https://github.com/Unidata/MetPy] and yt [https://github.com/yt-project/yt], and was then adapted by
PlasmaPy.

PlasmaPy Community Code of Conduct

The PlasmaPy community strives to follow the best practices in open
source software development. New contributors are encouraged to join the
team and contribute to the codebase. We anticipate/encourage a global
participation from people with diverse backgrounds, skills, interests,
and opinions. We believe that such diversity is critical in ensuring a
growth of ideas in our community.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

We as a community pledge to abide by the following guidelines:

	We pledge to treat all people with respect and provide a harassment-
and bullying-free environment, regardless of age, sex, sexual
orientation and/or gender identity, disability, physical appearance,
body size, race, nationality, ethnicity, religion, and level of
experience. In particular, sexual language and imagery, sexist,
racist, or otherwise exclusionary jokes are not appropriate.

	We pledge to respect the work of others by recognizing
acknowledgment/citation requests of original authors. As authors, we
pledge to be explicit about how we want our own work to be cited or
acknowledged.

	We pledge to welcome those interested in joining the community, and
realize that including people with a variety of opinions and
backgrounds will only serve to enrich our community. In particular,
discussions relating to pros/cons of various technologies,
programming languages, and so on are welcome, but these should be
done with respect, taking proactive measure to ensure that all
participants are heard and feel confident that they can freely
express their opinions.

	We pledge to welcome questions and answer them respectfully, paying
particular attention to those new to the community. We pledge to
provide respectful criticisms and feedback in forums, especially in
discussion threads resulting from code contributions.

	We pledge to be conscientious of the perceptions of the wider
community and to respond to criticism respectfully. We will strive to
model behaviors that encourage productive debate and disagreement,
both within our community and where we are criticized. We will treat
those outside our community with the same respect as people within
our community.

	We pledge to work from the very beginning of this project to make
PlasmaPy accessible to people with disabilities.

	We pledge to help the entire community follow these guidelines, and
to not remain silent when we see violations of them. We will take
action when members of our community violate these guidelines.
Members of the PlasmaPy community may contact any member of the
Coordinating Committee to report violations. Members of the
Coordinating Committee will treat these reports in the strictest
confidence. The Coordinating Committee will develop formal procedures
for how to handle reported violations.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting Nick Murphy at namurphy@cfa.harvard.edu or any
member of the Coordinating Committee. All complaints will be reviewed
and investigated and will result in a response that is deemed necessary
and appropriate to the circumstances. The project team is obligated to
maintain confidentiality with regard to the reporter of an incident.
Project team members should recuse themselves from enforcement of the
code of conduct for a given incident if they have an actual or apparent
conflict of interest. Further details of specific enforcement policies
may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

Parts of these guidelines have been adapted from the Contributor
Covenant (version 1.4) [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html],
the Astropy Community Code of Conduct [http://www.astropy.org/code_of_conduct.html], and the
Python Software Foundation code of conduct [https://www.python.org/psf/codeofconduct/].

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 plasmapy	

 	
 	
 plasmapy.atomic	

 	
 	
 plasmapy.classes	

 	
 	
 plasmapy.classes.sources	

 	
 	
 plasmapy.diagnostics.langmuir	

 	
 	
 plasmapy.mathematics	

 	
 	
 plasmapy.physics	

 	
 	
 plasmapy.physics.dielectric	

 	
 	
 plasmapy.physics.dimensionless	

 	
 	
 plasmapy.physics.distribution	

 	
 	
 plasmapy.physics.magnetostatics	

 	
 	
 plasmapy.physics.parameters	

 	
 	
 plasmapy.physics.quantum	

 	
 	
 plasmapy.physics.relativity	

 	
 	
 plasmapy.transport	

 	
 	
 plasmapy.transport.braginskii	

 	
 	
 plasmapy.transport.collisions	

 	
 	
 plasmapy.utils	

 	
 	
 plasmapy.utils.decorators	

 	
 	
 plasmapy.utils.exceptions	

 	
 	
 plasmapy.utils.pytest_helpers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	abundances (plasmapy.atomic.IonizationStates attribute)

 	add_magnetostatic() (plasmapy.classes.sources.Plasma3D method)

 	alfven_speed (plasmapy.classes.sources.Plasma3D attribute)

 	Alfven_speed() (in module plasmapy.physics.parameters)

 	all_variables() (plasmapy.transport.braginskii.ClassicalTransport method)

 	angular_freq_to_hz() (in module plasmapy.utils.decorators)

 	antiparticle (plasmapy.atomic.Particle attribute)

 	
 	assert_can_handle_nparray() (in module plasmapy.utils.pytest_helpers)

 	atomic_number (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.Particle attribute)

 	atomic_number() (in module plasmapy.atomic)

 	atomic_symbol() (in module plasmapy.atomic)

 	average_ionization (plasmapy.classes.BasePlasma attribute)

 	average_ionization() (plasmapy.classes.GenericPlasma method)

B

 	
 	baryon_number (plasmapy.atomic.Particle attribute)

 	base_particle (plasmapy.atomic.IonizationState attribute)

 	base_particles (plasmapy.atomic.IonizationStates attribute)

 	BasePlasma (class in plasmapy.classes)

 	
 	beta() (in module plasmapy.physics.dimensionless)

 	bias (plasmapy.diagnostics.langmuir.Characteristic attribute)

 	binding_energy (plasmapy.atomic.Particle attribute)

 	boris_push() (plasmapy.simulation.particletracker.ParticleTracker method)

C

 	
 	call_string() (in module plasmapy.utils.pytest_helpers)

 	categories (plasmapy.atomic.Particle attribute)

 	Characteristic (class in plasmapy.diagnostics.langmuir)

 	charge (plasmapy.atomic.Particle attribute)

 	charge_density (plasmapy.classes.sources.HDF5Reader attribute)

 	check_quantity() (in module plasmapy.utils.decorators)

 	check_relativistic() (in module plasmapy.utils.decorators)

 	check_validity() (plasmapy.diagnostics.langmuir.Characteristic method)

 	chemical_potential() (in module plasmapy.physics.quantum)

 	CircularWire (class in plasmapy.physics.magnetostatics)

 	Classical() (in module plasmapy.transport.collisions)

 	ClassicalTransport (class in plasmapy.transport.braginskii)

 	
 	close() (plasmapy.classes.sources.HDF5Reader method)

 	cold_plasma_permittivity_LRP() (in module plasmapy.physics.dielectric)

 	cold_plasma_permittivity_SDP() (in module plasmapy.physics.dielectric)

 	collision_frequency() (in module plasmapy.transport.collisions)

 	common_isotopes() (in module plasmapy.atomic)

 	composition (plasmapy.classes.sources.PlasmaBlob attribute)

 	Coulomb_cross_section() (in module plasmapy.transport.collisions)

 	Coulomb_logarithm() (in module plasmapy.transport.collisions)

 	coupling() (plasmapy.classes.sources.PlasmaBlob method)

 	coupling_parameter() (in module plasmapy.transport.collisions)

 	CouplingWarning

 	current (plasmapy.diagnostics.langmuir.Characteristic attribute)

D

 	
 	deBroglie_wavelength() (in module plasmapy.physics.quantum)

 	Debye_length() (in module plasmapy.physics.parameters)

 	
 	Debye_number() (in module plasmapy.physics.parameters)

 	density (plasmapy.classes.sources.Plasma3D attribute)

 	domain_shape (plasmapy.classes.sources.Plasma3D attribute)

E

 	
 	eff_m (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	eff_q (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	electric_charge() (in module plasmapy.atomic)

 	electric_current (plasmapy.classes.sources.HDF5Reader attribute)

 	electric_field (plasmapy.classes.sources.HDF5Reader attribute)

 	electric_field_strength (plasmapy.classes.sources.Plasma3D attribute)

 	electron_density (plasmapy.classes.BasePlasma attribute)

 	(plasmapy.classes.sources.PlasmaBlob attribute)

 	electron_density() (plasmapy.classes.GenericPlasma method)

 	electron_number (plasmapy.atomic.Particle attribute)

 	electron_temperature (plasmapy.classes.BasePlasma attribute)

 	(plasmapy.classes.sources.PlasmaBlob attribute)

 	electron_temperature() (plasmapy.classes.GenericPlasma method)

 	electron_thermal_conductivity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	
 	electron_viscosity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	element (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.Particle attribute)

 	element_name (plasmapy.atomic.Particle attribute)

 	element_name() (in module plasmapy.atomic)

 	equil_ionic_fractions (plasmapy.atomic.IonizationState attribute)

 	equilibrate() (plasmapy.atomic.IonizationState method)

 	(plasmapy.atomic.IonizationStates method)

 	extract_exponential_section() (in module plasmapy.diagnostics.langmuir)

 	extract_ion_section() (in module plasmapy.diagnostics.langmuir)

 	extrapolate_electron_current() (in module plasmapy.diagnostics.langmuir)

 	extrapolate_ion_current_OML() (in module plasmapy.diagnostics.langmuir)

F

 	
 	Fermi_energy() (in module plasmapy.physics.quantum)

 	Fermi_integral() (in module plasmapy.mathematics)

 	
 	FiniteStraightWire (class in plasmapy.physics.magnetostatics)

 	fundamental_electron_collision_freq() (in module plasmapy.transport.collisions)

 	fundamental_ion_collision_freq() (in module plasmapy.transport.collisions)

G

 	
 	GeneralWire (class in plasmapy.physics.magnetostatics)

 	GenericPlasma (class in plasmapy.classes)

 	get_EEDF() (in module plasmapy.diagnostics.langmuir)

 	get_electron_density_LM() (in module plasmapy.diagnostics.langmuir)

 	get_electron_saturation_current() (in module plasmapy.diagnostics.langmuir)

 	get_electron_temperature() (in module plasmapy.diagnostics.langmuir)

 	get_floating_potential() (in module plasmapy.diagnostics.langmuir)

 	get_ion_density_LM() (in module plasmapy.diagnostics.langmuir)

 	
 	get_ion_density_OML() (in module plasmapy.diagnostics.langmuir)

 	get_ion_saturation_current() (in module plasmapy.diagnostics.langmuir)

 	get_padded_limit() (plasmapy.diagnostics.langmuir.Characteristic method)

 	get_plasma_potential() (in module plasmapy.diagnostics.langmuir)

 	get_unique_bias() (plasmapy.diagnostics.langmuir.Characteristic method)

 	grid (plasmapy.classes.sources.Plasma3D attribute)

 	gyrofrequency() (in module plasmapy.physics.parameters)

 	gyroradius() (in module plasmapy.physics.parameters)

H

 	
 	half_life (plasmapy.atomic.Particle attribute)

 	half_life() (in module plasmapy.atomic)

 	
 	Hall_parameter() (in module plasmapy.physics.parameters)

 	HDF5Reader (class in plasmapy.classes.sources)

I

 	
 	impact_parameter() (in module plasmapy.transport.collisions)

 	impact_parameter_perp() (in module plasmapy.transport.collisions)

 	InconsistentTypeError

 	IncorrectResultError

 	inertial_length() (in module plasmapy.physics.parameters)

 	InfiniteStraightWire (class in plasmapy.physics.magnetostatics)

 	info() (plasmapy.atomic.IonizationState method)

 	(plasmapy.atomic.IonizationStates method)

 	integer_charge (plasmapy.atomic.Particle attribute)

 	integer_charge() (in module plasmapy.atomic)

 	integer_charges (plasmapy.atomic.IonizationState attribute)

 	InvalidTestError

 	ion_density (plasmapy.classes.BasePlasma attribute)

 	ion_density() (plasmapy.classes.GenericPlasma method)

 	ion_sound_speed() (in module plasmapy.physics.parameters)

 	ion_temperature (plasmapy.classes.BasePlasma attribute)

 	ion_temperature() (plasmapy.classes.GenericPlasma method)

 	ion_thermal_conductivity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	ion_viscosity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	
 	ionic_fractions (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

 	ionic_symbol (plasmapy.atomic.Particle attribute)

 	ionic_symbol() (in module plasmapy.atomic)

 	ionic_symbols (plasmapy.atomic.IonizationState attribute)

 	ionization (plasmapy.classes.sources.PlasmaBlob attribute)

 	IonizationState (class in plasmapy.atomic)

 	IonizationStates (class in plasmapy.atomic)

 	ionize() (plasmapy.atomic.Particle method)

 	is_category() (plasmapy.atomic.Particle method)

 	is_datasource_for() (plasmapy.classes.sources.HDF5Reader class method)

 	(plasmapy.classes.sources.Plasma3D class method)

 	(plasmapy.classes.sources.PlasmaBlob class method)

 	is_electron (plasmapy.atomic.Particle attribute)

 	is_ion (plasmapy.atomic.Particle attribute)

 	is_stable() (in module plasmapy.atomic)

 	isotope (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.Particle attribute)

 	isotope_name (plasmapy.atomic.Particle attribute)

 	isotope_symbol() (in module plasmapy.atomic)

 	isotopic_abundance (plasmapy.atomic.Particle attribute)

 	isotopic_abundance() (in module plasmapy.atomic)

K

 	
 	kappa (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

 	kappa_thermal_speed() (in module plasmapy.physics.parameters)

 	kappa_velocity_1D() (in module plasmapy.physics.distribution)

 	
 	kappa_velocity_3D() (in module plasmapy.physics.distribution)

 	kinetic_energy (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	kinetic_energy_history (plasmapy.simulation.particletracker.ParticleTracker attribute), [1]

 	known_isotopes() (in module plasmapy.atomic)

 	Knudsen_number() (in module plasmapy.transport.collisions)

L

 	
 	lepton_number (plasmapy.atomic.Particle attribute)

 	log_abundances (plasmapy.atomic.IonizationStates attribute)

 	
 	Lorentz_factor() (in module plasmapy.physics.relativity)

 	lower_hybrid_frequency() (in module plasmapy.physics.parameters)

M

 	
 	m (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	magnetic_energy_density() (in module plasmapy.physics.parameters)

 	magnetic_field (plasmapy.classes.sources.HDF5Reader attribute)

 	(plasmapy.classes.sources.Plasma3D attribute)

 	magnetic_field() (plasmapy.physics.magnetostatics.CircularWire method)

 	(plasmapy.physics.magnetostatics.FiniteStraightWire method)

 	(plasmapy.physics.magnetostatics.GeneralWire method)

 	(plasmapy.physics.magnetostatics.InfiniteStraightWire method)

 	(plasmapy.physics.magnetostatics.MagneticDipole method)

 	(plasmapy.physics.magnetostatics.MagnetoStatics method)

 	magnetic_field_strength (plasmapy.classes.sources.Plasma3D attribute)

 	magnetic_pressure() (in module plasmapy.physics.parameters)

 	MagneticDipole (class in plasmapy.physics.magnetostatics)

 	MagnetoStatics (class in plasmapy.physics.magnetostatics)

 	mass (plasmapy.atomic.Particle attribute)

 	
 	mass_density() (in module plasmapy.physics.parameters)

 	mass_energy (plasmapy.atomic.Particle attribute)

 	mass_number (plasmapy.atomic.Particle attribute)

 	mass_number() (in module plasmapy.atomic)

 	Maxwellian_1D() (in module plasmapy.physics.distribution)

 	Maxwellian_speed_1D() (in module plasmapy.physics.distribution)

 	Maxwellian_speed_2D() (in module plasmapy.physics.distribution)

 	Maxwellian_speed_3D() (in module plasmapy.physics.distribution)

 	Maxwellian_velocity_2D() (in module plasmapy.physics.distribution)

 	Maxwellian_velocity_3D() (in module plasmapy.physics.distribution)

 	mean_free_path() (in module plasmapy.transport.collisions)

 	MissingExceptionError

 	MissingWarningError

 	mobility() (in module plasmapy.transport.collisions)

 	momentum (plasmapy.classes.sources.Plasma3D attribute)

N

 	
 	n (plasmapy.atomic.IonizationStates attribute)

 	n_e (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

 	n_elem (plasmapy.atomic.IonizationState attribute)

 	neutron_number (plasmapy.atomic.Particle attribute)

 	normalize() (plasmapy.atomic.IonizationState method)

 	(plasmapy.atomic.IonizationStates method)

 	
 	nuclear_binding_energy() (in module plasmapy.atomic)

 	nuclear_reaction_energy() (in module plasmapy.atomic)

 	nuclide_mass (plasmapy.atomic.Particle attribute)

 	number_densities (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

P

 	
 	Particle (class in plasmapy.atomic)

 	particle (plasmapy.atomic.Particle attribute)

 	particle_input() (in module plasmapy.atomic)

 	particle_mass() (in module plasmapy.atomic)

 	particle_symbol() (in module plasmapy.atomic)

 	ParticleTracker (class in plasmapy.simulation.particletracker)

 	periodic_table (plasmapy.atomic.Particle attribute)

 	permittivity_1D_Maxwellian() (in module plasmapy.physics.dielectric)

 	PhysicsError

 	PhysicsWarning

 	Plasma3D (class in plasmapy.classes.sources)

 	plasma_dispersion_func() (in module plasmapy.mathematics)

 	plasma_dispersion_func_deriv() (in module plasmapy.mathematics)

 	plasma_frequency() (in module plasmapy.physics.parameters)

 	PlasmaBlob (class in plasmapy.classes.sources)

 	PlasmaFactory (class in plasmapy.classes.plasma_factory)

 	plasmapy.atomic (module)

 	plasmapy.classes (module)

 	plasmapy.classes.sources (module)

 	plasmapy.diagnostics.langmuir (module)

 	plasmapy.mathematics (module)

 	plasmapy.physics (module)

 	
 	plasmapy.physics.dielectric (module)

 	plasmapy.physics.dimensionless (module)

 	plasmapy.physics.distribution (module)

 	plasmapy.physics.magnetostatics (module)

 	plasmapy.physics.parameters (module)

 	plasmapy.physics.quantum (module)

 	plasmapy.physics.relativity (module)

 	plasmapy.transport (module)

 	plasmapy.transport.braginskii (module)

 	plasmapy.transport.collisions (module)

 	plasmapy.utils (module)

 	plasmapy.utils.decorators (module)

 	plasmapy.utils.exceptions (module)

 	plasmapy.utils.pytest_helpers (module)

 	PlasmaPyError

 	PlasmaPyWarning

 	plot() (plasmapy.diagnostics.langmuir.Characteristic method)

 	plot_time_trajectories() (plasmapy.simulation.particletracker.ParticleTracker method)

 	plot_trajectories() (plasmapy.simulation.particletracker.ParticleTracker method)

 	position_history (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	preserve_signature() (in module plasmapy.utils.decorators)

 	pressure (plasmapy.classes.sources.Plasma3D attribute)

Q

 	
 	q (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	
 	quantum_theta() (in module plasmapy.physics.dimensionless)

 	(plasmapy.classes.sources.PlasmaBlob method)

R

 	
 	recombine() (plasmapy.atomic.Particle method)

 	reduce_bimaxwellian_temperature() (in module plasmapy.diagnostics.langmuir)

 	reduced_mass() (in module plasmapy.atomic)

 	regimes() (plasmapy.classes.sources.PlasmaBlob method)

 	RelativityError

 	RelativityWarning

 	
 	resistivity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	roman_symbol (plasmapy.atomic.Particle attribute)

 	run() (plasmapy.simulation.particletracker.ParticleTracker method)

 	run_test() (in module plasmapy.utils.pytest_helpers)

 	run_test_equivalent_calls() (in module plasmapy.utils.pytest_helpers)

 	RunTestError

S

 	
 	sort() (plasmapy.diagnostics.langmuir.Characteristic method)

 	spin (plasmapy.atomic.Particle attribute)

 	Spitzer_resistivity() (in module plasmapy.transport.collisions)

 	stable_isotopes() (in module plasmapy.atomic)

 	
 	standard_atomic_weight (plasmapy.atomic.Particle attribute)

 	standard_atomic_weight() (in module plasmapy.atomic)

 	State (class in plasmapy.atomic)

 	swept_probe_analysis() (in module plasmapy.diagnostics.langmuir)

T

 	
 	T_e (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

 	test_kinetic_energy() (plasmapy.simulation.particletracker.ParticleTracker method)

 	thermal_deBroglie_wavelength() (in module plasmapy.physics.quantum)

 	thermal_pressure() (in module plasmapy.physics.parameters)

 	thermal_speed() (in module plasmapy.physics.parameters)

 	
 	thermoelectric_conductivity() (in module plasmapy.transport.braginskii)

 	(plasmapy.transport.braginskii.ClassicalTransport method)

 	Thomas_Fermi_length() (in module plasmapy.physics.quantum)

 	to_GeneralWire() (plasmapy.physics.magnetostatics.CircularWire method)

 	(plasmapy.physics.magnetostatics.FiniteStraightWire method)

 	tol (plasmapy.atomic.IonizationState attribute)

 	(plasmapy.atomic.IonizationStates attribute)

U

 	
 	UnexpectedExceptionError

 	
 	UnexpectedResultError

 	upper_hybrid_frequency() (in module plasmapy.physics.parameters)

V

 	
 	v (plasmapy.simulation.particletracker.ParticleTracker attribute)

 	
 	velocity (plasmapy.classes.sources.Plasma3D attribute)

 	velocity_history (plasmapy.simulation.particletracker.ParticleTracker attribute)

W

 	
 	Wigner_Seitz_radius() (in module plasmapy.physics.quantum)

 	
 	Wire (class in plasmapy.physics.magnetostatics)

X

 	
 	x (plasmapy.classes.sources.Plasma3D attribute)

 	(plasmapy.simulation.particletracker.ParticleTracker attribute)

Y

 	
 	y (plasmapy.classes.sources.Plasma3D attribute)

Z

 	
 	z (plasmapy.classes.sources.Plasma3D attribute)

 	Z_mean (plasmapy.atomic.IonizationState attribute)

 	
 	Z_most_abundant (plasmapy.atomic.IonizationState attribute)

 	Z_rms (plasmapy.atomic.IonizationState attribute)

 _images/graphic-circular.png

_images/inheritance-0cd43d94705c77fee524a81a7ba2315624106506.png
state

particle

lonizationstates

lonizationState

_images/inheritance-7c74008a363d29525536722600414806203e7ea2.png
ClassicalTransport

_images/inheritance-868d72a7953f640eaca902a3ab23afffe921b59d.png
PlasmaPyError

PhysicsError

RelativityError

v

v

CouplingWarning

PlasmapyWarning

PhysicsWarning

RelativityWaming

_images/inheritance-5f82cbba72b7f4877290c31ac89027aeac9688d7.png
Characteristic

_images/inheritance-69faea7762a3abfa67d2872f06a1e8d48ca112f1.png
ABC

BasePlasma

»| Genericplasma

_images/inheritance-d2a5f291db028e0931b2ba5e299ddb61264f34c7.png
HDFSReader

ABC

Baseplasma

GenericPlasma Plasma3D

\—

plasmaglob

_images/inheritance-e7b33152a33c400a646239192ef48f3f9a91a803.png
ParticleTracker

_images/inheritance-b0f0e1f2c4454437647f95fd7fba07c0ca536d3c.png
ABC

v

MagnetoStatics

CircularWire

MagneticDipole

InfiniteStraightWire

_images/inheritance-c83f00bfd0017a5d5cc263624f825637f1bceb38.png
InconsistentTypeError

IncorrectResultError

InvalidTestError

MissingExceptionError

RunTestError,

MissingWarningError

UnexpectedExceptionError

UnexpectedResultError

_images/sphx_glr_plot_braginskii_thumb.png

_images/sphx_glr_plot_cold_plasma_tensor_elements_001.png
Absolute value

10° & T T
— S$>0
— D>0
— P>0

S<0
D<o0
P<0

100 107 108 10° 1010
RF Frequency [Hz]

_images/sphx_glr_plot_cold_plasma_tensor_elements_002.png
Absolute value

T T TTTIT T T T T TTTIT]
— L>0 --- L<0
— R>0 --- R<0
— P>0 --- P<0 |
102 s FTrtke
-=\\\§-__- S N J
o 5 —
\‘/ \
!

108 10° 1010 1011
RF Frequency [Hz]

_images/sphx_glr_plot_dispersion_function_002.png
Real values Imaginary values

8 8
2 2
g g
z z
5 5
£ £
))
8 8
E E

-10 -05 00 05 10 -10 -05 00 05 10
Real values Real values

_images/sphx_glr_plot_dispersion_function_003.png
Imaginary values

-1.0

Real values

-05 00 05
Real values

10

Imaginary values

-0.25

-0.50

-0.75

-1.00

-1.0

Imaginary values

-05 00 05
Real values

10

_images/sphx_glr_plot_cold_plasma_tensor_elements_thumb.png
 Freqency (1

_images/sphx_glr_plot_dispersion_function_001.png
Imaginary values

-1.0

Real values

Imaginary values

-05 00 05
Real values

10

Imaginary values

1.00

075

0.50

-1.0

-05 00 05
Real values

10

_images/sphx_glr_plot_dispersion_function_006.png
10

0.8

0.6

0.4

02

0.0

0.0

05

10

15

2.0

2.5

3.0

35

4.0

_images/sphx_glr_plot_dispersion_function_thumb.png
Real values g maginary volues

i
i

magioary vakes

s

Reatvaues

_images/sphx_glr_plot_dispersion_function_004.png
Real values Imaginary values

8 8
E] E]
g g
z z
5 5
£ £
))
8 8
E E

-10 -05 00 05 10 -10 -05 00 05 10
Real values Real values

_images/sphx_glr_plot_dispersion_function_005.png
Real values Imaginary values

8 8
2 2
g g
z z
5 5
£ £
))
8 8
E E

0 0
Real values Real values

_images/sphx_glr_plot_distribution_001.png
0.000025 —r

0.000020

0.000015

0.000010

0.000005

0.000000

~4000000 —2000000 0 2000000 4000000
ms~!

_images/sphx_glr_plot_distribution_thumb.png
ooo0azs —»

ooovats

Thotowo w00 6 2000000 4006000

_images/sphx_glr_plot_langmuir_analysis_001.png
Probe characteristic

T
0039« Pprobe current |
lon current '
0:02 1 Electron current ===~ - -
1
0.01 i
i
1
|

0.00

-30 -25 -20 -15 -10
v

Logarithmic

1072

oL

1072
« Probe current
fon current
—— Electron current

107*

107°

-30 -25 -20 -15 -10

_images/sphx_glr_plot_langmuir_analysis_004.png
Logarithmic current

6.0

6.5

-7.0

-75

-8.0

-85

Exponential fit

Bimaxwellian exponential section fit
Exponential fit
Exponential section

-30 -28 -26 24

-22

-20

-18

_images/sphx_glr_plot_langmuir_analysis_005.png
0.006

0.004

0.002

0.000

1072

107°

Probe characteristic

« Probe current
lon current
—— Electron current

S —

-60 -50

—40 -30 -20 -10 0
v

Logarithmic

« Probe current
lon current
—— Electron current

-60 -50

-40 -30 -20 -10 0

_images/sphx_glr_plot_langmuir_analysis_002.png
Electron Energy Distribution Function

1071

8
2
&

1072

0 1 2 3 4 5 6
Energy (eV)

_images/sphx_glr_plot_langmuir_analysis_003.png
Logarithmic current

-10

-1

-12

-13

Exponential fit

Exponential fit
Exponential section

-325

-30.0

215

-25.0
v

-225

-20.0

-17.5

_images/sphx_glr_plot_langmuir_analysis_thumb.png
Probe characteristic

00 e H
902 1 ecuon curent {
a1
EREEE R)
togarithmic
« ke cument i
— decuoncrent i

_images/sphx_glr_plot_magnetic_statics_001.png
3
g

&

o

=

Ed

E

H

\ \ 5
Ed

s

N

a

3

2

-
e
"= ////

))

J,

| /

\\\\\\\

_images/sphx_glr_plot_langmuir_analysis_006.png
Logarithmic current

-10

-1

-12

Exponential fit

Exponential fit
« Exponential section

Bimaxwellian exponential section fit

-20

-10

_images/sphx_glr_plot_langmuir_analysis_007.png
Probe characteristic

« Probe current

T
H
0.06 lon current !
—— Electron current 1
0.04 1
i
0.02
0.00
-50 —40 -3 -20 -10 0 10 20 30
v

1071

103 4
« Probe current
lon current

—— Electron current

107°

-50 -40 30 -20 -10 0 10 20 30

_images/sphx_glr_plot_magnetic_statics_002.png

