

 [image: Travis CI build status (Linux Trusty)]
 [https://travis-ci.org/nighres][image: Documentation Status]
 [http://nighres.readthedocs.io/en/latest/?badge=latest]

Welcome to Nighres!

Nighres is a Python package for processing of high-resolution neuroimaging data.
It developed out of CBS High-Res Brain Processing Tools [https://www.cbs.mpg.de/institute/software/cbs-tools] and aims to make those
tools easier to install, use and extend. Nighres now includes new functions from
the IMCN imaging toolkit [https://github.com/IMCN-UvA/imcn-imaging].

Getting started

	Installing Nighres

	Nighres usage examples

Modules and Functions

	Brain
	mp2rage_skullstripping

	mp2rage_dura_estimation

	mgdm_segmentation

	extract_brain_region

	filter_stacking

	Cortex
	cruise_cortex_extraction

	Data
	download_data

	Filtering
	total_variation_filtering

	filter_ridge_structures

	recursive_ridge_diffusion

	Intensity
	mp2rage_t1_mapping

	flash_t2s_fitting

	background_estimation

	intensity_propagation

	lcpca_denoising

	phase_unwrapping

	Input/Output
	io_volume

	io_mesh

	Laminar
	volumetric_layering

	profile_sampling

	laminar_iterative_smoothing

	Microscopy
	mgdm_cells

	Registration
	embedded_antsreg

	embedded_antsreg_2d

	generate_coordinate_mapping

	apply_coordinate_mappings

	simple_align

	Shape
	topology_correction

	levelset_fusion

	Statistics
	segmentation_statistics

	Surface
	probability_to_levelset

	levelset_to_probability

	levelset_to_mesh

	surface_mesh_mapping

Good to know

	Data handling and formats

	Saving outputs

	Levelsets

Developer's guide

	Overview

	Setting up

	Wrapping an existing CBS Tools class

	Adding a new Python function

	Writing examples

	Adapting the docs

	Making a Pull Request

Reference

Huntenburg, Steele & Bazin (2018). Nighres: processing tools for high-resolution neuroimaging. GigaScience, 7(7). https://doi.org/10.1093/gigascience/giy082

Make sure to also cite the references indicated for the particular functions you use!

Credit

Nighres is a community-developed project made possible by its contributors [https://github.com/nighres/nighres/graphs/contributors]. The project was born and continues to evolve at brainhack [http://www.brainhack.org/]. We thank the Google Summer of Code 2017 [https://summerofcode.withgoogle.com/archive/] and INCF [https://www.incf.org/] as a mentoring organization, for supporting the initial development phase of Nighres. See also the development blog [https://juhuntenburg.github.io/gsoc2017/].

Installing Nighres

Please see Troubleshooting if you run into errors during installation.

Requirements

To build Nighres you need:

	Python 3.5 or higher

	Java JDK 1.7 or higher

	JCC 3.0 [https://pypi.org/project/JCC/] or higher

The following Python packages are automatically installed with Nighres

	numpy [http://www.numpy.org/]

	nibabel [http://nipy.org/nibabel/]

	psutils [https://pypi.org/project/psutil/]

For further dependencies of specific interfaces see Optional dependencies.

From PyPI

You can download the latest stable release of Nighres from PyPI [https://pypi.python.org/pypi/nighres].

Because parts of the package have to be built locally it is currently not possible to use pip install directly from PyPI. Instead, please download and unpack the tarball to Build Nighres. (Or use the Docker image)

From Github

You can also get the latest version from Github

git clone https://github.com/nighres/nighres

Or download and unpack the zip file from Github under Clone and download ->
Download ZIP

Build Nighres

	Make sure you have Java JDK and JCC installed and set up. You will likely need to point the JCC_JDK variable to you Java JDK installation, e.g on a Debian/Ubuntu amd64 system:

sudo apt-get install openjdk-8-jdk
export JCC_JDK=/usr/lib/jvm/java-8-openjdk-amd64
python3 -m pip install jcc

	Navigate to the Nighres directory you downloaded and unpacked, and run the build script:

./build.sh

	Install the Python package:

python3 -m pip install .

Testing the installation

You can often catch installation problems by simply import Nighres in Python. Make sure to navigate out of the directory from which you installed to make sure Nighres has actually been installed correctly and can be accessed from any location

python3 -c "import nighres"

If that works, you can try running one of the examples. You can find them inside the unpacked Nighres directory, in the subdirectory examples. Alternatively, you can also download the examples from the online documentation.

Docker

To quickly try out nighres in a preset, batteries-included environment, you can use the included Dockerfile, which includes Ubuntu 14 Trusty, openJDK-8, nighres, and Jupyter Notebook. The only thing you need to install is Docker [https://www.docker.com/], a lightweight container platform that runs on Linux, Windows and Mac OS X.

To build the Docker image, do the following:

git clone https://github.com/nighres/nighres
cd nighres
docker build . -t nighres

To run the Docker container:

docker run --rm -p 8888:8888 nighres

Now go with your browser to https://localhost:8888 to start a notebook. You should be able
to import nighres by entering:

import nighres

into the first cell of your notebook.

Usually you also want to have access to some data when you run nighres. You can grant the Docker container
access to a data folder on your host OS by using the -v tag when you start the container:

docker run --rm -v /home/me/my_data:/data -p 8888:8888 nighres

Now, in your notebook you will be able to access your data on the path /data

Optional dependencies

Working with surface mesh files

	pandas [https://pandas.pydata.org/]

Using the registration tools

	nipype [https://nipype.readthedocs.io/en/latest/]

	ANTs [https://github.com/ANTsX/ANTs]

Plotting in the examples

	Nilearn [http://nilearn.github.io/] and its dependencies, if Nilearn is not installed, plotting in the examples will be skipped and you can view the results in any other nifti viewer

Using the docker image

	Docker [https://www.docker.com/]

Building the documentation

	sphinx [http://www.sphinx-doc.org/en/stable/]

	sphinx-gallery [https://sphinx-gallery.github.io/]

	matplotlib [http://matplotlib.org/]

	sphinx-rtd-theme [http://docs.readthedocs.io/en/latest/theme.html] (pip install sphinx-rtd-theme)

	pillow [https://python-pillow.org/] (pip install pillow)

	mock [https://pypi.org/project/mock/]

Troubleshooting

If you experience errors not listed here, please help us by reporting them through neurostars.org using the tag nighres, or on github [https://github.com/nighres/nighres/issues]. Or if you solve them yourself help others by contributing your solution here (see Developers guide)

Missing Java libraries

If you get errors regarding missing java libraries (such as ljvm/libjvm or ljava/libjava), although you install Java JDK, it means that JCC does not find the libraries. It can help to search for the “missing” library and make a symbolic link to it like this:

sudo find / -type f -name libjvm.so
>> /usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so
sudo ln -s /usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so /usr/lib/libjvm.so

Missing Python packages

If you get errors about Python packages not being installed, it might be that you are trying to run a function that requires Optional dependencies. If packages are reported missing that you think you have installed, make sure that they are installed under the same python installation as nighres. They should be listed when you run:

python3 -m pip list

If they aren’t, install them using:

python3 -m pip install <package_name>

If there is still confusion, make sure nighres is installed in the same directory that your python3 -m pip command points to. These two commands should give the same base directory:

python3 -m pip
python3 -c 'import nighres; print(nighres.__file__)'

Data handling and formats

Nighres represents data internally using NibabelSpatialImage objects [http://nipy.org/nibabel/reference/nibabel.spatialimages.html#nibabel.spatialimages.SpatialImage]
which are refered to as niimg.

Much of the input and output functionality has been adopted or inspired from
Nilearn’s conventions for data handling [http://nilearn.github.io/manipulating_images/input_output.html]

Todo

Explanation why this is useful and little example how it works,
also mention dictionary outputs

Saving outputs

Each Nighres processing interface allows you to save the outputs by setting the save_data parameter to True. If this parameter is not specified, it defaults to False and the data is returned as a data object (see Data handling and formats) but not saved to disk.

If save_data is set to True, Nighres applies the following logic:

Output directory

	If output_dir is specified, the data is saved there. In case output_dir doesn’t exist, it is created

	If output_dir is not specified, Nighres tries to use the location of an input file as the location for saving. This only works if the input is a file name and not a data object

	Otherwise, the data is saved in the current working directory

File names

	If file_name is specified, this name is used as a base to create the output names. A suffix is added to each output (you can see in the docstrings which suffix refers to which output). The extension of file_name specifies the format in which the output will be saved. If file_name has no extension, Nighres defaults to nii.gz

	If file_name is not specified, Nighres tries to use the name of an input file as a base name for saving. This only works if the input is indeed a file name and not a data object

Levelsets

Todo

What is a levelset and why is Nighres using it, example of creating
levelset using nighres.surface.probability_to_levelset()

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V

A

 	
 	apply_coordinate_mappings() (in module nighres.registration)

B

 	
 	background_estimation() (in module nighres.intensity)

C

 	
 	cruise_cortex_extraction() (in module nighres.cortex)

D

 	
 	download_7T_TRT() (in module nighres.data)

E

 	
 	embedded_antsreg() (in module nighres.registration)

 	
 	embedded_antsreg_2d() (in module nighres.registration)

 	extract_brain_region() (in module nighres.brain)

F

 	
 	filter_ridge_structures() (in module nighres.filtering)

 	
 	filter_stacking() (in module nighres.brain)

 	flash_t2s_fitting() (in module nighres.intensity)

G

 	
 	generate_coordinate_mapping() (in module nighres.registration)

I

 	
 	intensity_propagation() (in module nighres.intensity)

L

 	
 	laminar_iterative_smoothing() (in module nighres.laminar)

 	lcpca_denoising() (in module nighres.intensity)

 	levelset_fusion() (in module nighres.shape)

 	levelset_to_mesh() (in module nighres.surface)

 	
 	levelset_to_probability() (in module nighres.surface)

 	load_mesh_data() (in module nighres.io)

 	load_mesh_geometry() (in module nighres.io)

 	load_volume() (in module nighres.io)

M

 	
 	mgdm_cells() (in module nighres.microscopy)

 	mgdm_segmentation() (in module nighres.brain)

 	
 	mp2rage_dura_estimation() (in module nighres.brain)

 	mp2rage_skullstripping() (in module nighres.brain)

 	mp2rage_t1_mapping() (in module nighres.intensity)

P

 	
 	phase_unwrapping() (in module nighres.intensity)

 	
 	probability_to_levelset() (in module nighres.surface)

 	profile_sampling() (in module nighres.laminar)

R

 	
 	recursive_ridge_diffusion() (in module nighres.filtering)

S

 	
 	save_mesh_data() (in module nighres.io)

 	save_mesh_geometry() (in module nighres.io)

 	save_volume() (in module nighres.io)

 	
 	segmentation_statistics() (in module nighres.statistics)

 	simple_align() (in module nighres.registration)

 	surface_mesh_mapping() (in module nighres.surface)

T

 	
 	topology_correction() (in module nighres.shape)

 	
 	total_variation_filtering() (in module nighres.filtering)

V

 	
 	volumetric_layering() (in module nighres.laminar)

 _images/sphx_glr_example_01_tissue_classification_thumb.png

_images/sphx_glr_example_02_cortical_depth_estimation_thumb.png

_images/cortical_extraction4.png
075

05

025

_images/tissue_classification1.png

_images/tissue_classification2.png

_images/sphx_glr_example_03_brain_coregistration_thumb.png

_images/sphx_glr_example_04_multiatlas_segmentation_thumb.png

_images/tissue_classification3.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/broken_example.png

_static/comment-bright.png

_static/cortical_extraction3.png

_static/cortical_extraction4.png
075

05

025

_static/cortical_extraction1.png
075

05

025

_static/cortical_extraction2.png
075

05

025

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/nighres_logo.png

_static/file.png

_images/cortical_extraction1.png
075

05

025

_images/cortical_extraction2.png
075

05

025

_images/cortical_extraction3.png

