

Netgen’s Site API for eZ Platform

Site API is a lightweight layer built on top of eZ Platform’s Repository API. It’s purpose
is to solve common use cases, remove boilerplate code and provide better developer experience
for building websites. While it will make PHP developers more productive, it will also lower the
entry barrier for newcomers and open most of the development process to roles other than PHP
developer.

With it, frontend developers, content builders and others will be able to do most of the work
related to eZ Platform content modelling, independently of PHP developers and without the need to
work with PHP. They will require only knowledge of eZ Platform’s content model, Twig templates and
view configuration in YAML.

If you are new to Site API, read the Introduction first.

Reference

	Installation

	Configuration

	Templating

	Query Types

	Objects

	Services

	Custom controllers

	Migration

Upgrades

	Upgrading from 2.3.0 to 2.4.0

	Upgrading from 1.0.0 to 2.0.0

Introduction

The intention of this page is to give you a short overview of what Site API is. For that purpose we
can break the whole package into three main parts:

	Dedicated API layer

	Integration with eZ Platform

	Query Types

Dedicated API layer

As Repository API was designed to be usable for general purpose, it can come as awkward and too
verbose when used for building websites. Site API fixes this by implementing a dedicated API layer
on top of eZ Platform Repository API which is designed for developing websites.

Having a dedicated layer enables us to take an extra step and do things you would not typically want
to do in Repository API. With Site API we can we can implement lazy loaded properties and methods
that enable content model traversal directly from the entities because:

	it’s a dedicated layer for building websites

	
it’s not intended to be layered (meaning no different API implementations

like Cache, Permission etc)

Handling multiple languages

The way Site API handles multiple languages was the initial motive for implementing it and deserves
to be mentioned separately.

Language configuration for a siteaccess consists of a prioritized list of languages. For example,
you could have a siteaccess with two languages, Croatian language as the most prioritized one and
English language as a fallback when Croatian translation does not exist:

ezpublish:
 system:
 cro:
 languages:
 - 'cro-HR'
 - 'eng-GB'

The intention here is that the siteaccess should first show content in Croatian language if it’s
available, fallback to English translation when Croatian is not available and ignore any other
language. However, this is quite hard to implement correctly with vanilla Repository API, even with
the newest addition of siteaccess-aware Repository layer introduced in eZ Platform 7.2.

With Site API this comes out of the box and you don’t have to pay special attention to it. All
possible ways to get a Content or a Location, whether through loading by ID, as a related Content,
accessing the field on the parent Location’s Content, searching or using methods and properties on
the Site API objects – it already respects this configuration. You can depend that you will always
get back only what can and should be rendered on the current siteaccess and then simply stop caring
about it, because it just works.

That feature alone significantly reduces cognitive load for developers, frees them from writing
tedious boilerplate code just to respect the language configuration, avoids ridiculous sanity checks
and mistakes and improves the overall developer experience.

Objects

Site API entities and values are similar to their counterparts in eZ Platform’s Repository API:

	Content

The first difference from Repository Content is that it exist in a single translation,
meaning it contains the fields for only one translation. That translation will always be the
correct one to be rendered, resolved from the language configuration of the siteaccess. You won’t
need to choose the field in the correct translation, manually or through some kind of helper
service. The Content’s single translation is always the correct one.

Content fields are lazy-loaded, which means they are loaded only if accessed. This voids the need
to have a separate, light version of Content (ContentInfo in Repository API). Content object also
provides properties and methods to enable access to Content’s Locations and relations. Example
usage from Twig:

<h1>{{ content.name }}</h1>
<h2>Parent name: {{ content.mainLocation.parent.content.name }}</h2>
<h3>Number of Locations: {{ content.locations|length }}</h3>

{{ ng_render_field(content.fields.title) }}

 {% for relation in content.fieldRelations('articles') %}
 {{ relation.title }}
 {% endfor %}

	ContentInfo

The purpose of ContentInfo object in Repository API is to provide a lightweight version of Content
object, containing only metadata (and omitting the fields). Since in Site API Content’s fields are
lazy-loaded, there is no real need for ContentInfo. Still, Site API provides it to keep the usage
in templates similar to standard eZ Platform templates and through that make the migration and
comparison easier.

Site ContentInfo also provides access to data that is in Repository API available only through
loading other objects, like ContentType identifier. Example usage from Twig:

<h2>Section ID: {{ content.contentInfo.sectionId }}</h2>
<h2>ContentType identifier: {{ content.contentInfo.contentTypeIdentifier }}</h2>

Note

In Site API it is not possible to load ContentInfo directly.

It is only available through properties on Content and Location objects.

	Location

Site Location is similar to Repository Location. It provides properties and methods to enable
simple Location tree traversal (siblings, children, parents, ancestors etc). Example usage from
Twig:

<h1>{{ location.content.name }} - Articles</h1>
<h2>Parent: {{ location.parent.content.name }}</h2>
<h3>Grandparent: {{ location.parent.parent.content.name }}</h3>

{% set children = location.filterChildren(['article']) %}

{% for child in children %}
 {{ child.content.name }}
{% endfor %}

{{ pagerfanta(children, 'twitter_bootstrap') }}

	Field

Field object aggregates some properties from it’s FieldDefinition, like FieldType identifier,
name and description. It also implements isEmpty() method, which makes simple to check if the
field value is empty, without requiring external helpers. Example usage from Twig:

<h1>{{ content.fields.title.name }}</h1>
<p>You can access the value directly: {{ content.fields.title.value.text }}</p>

{% if not content.fields.title.empty %}
 <p>{{ ng_render_field(content.fields.title) }}</p>
{% endif %}

{% set image = content.fields.image %}
{% if not image.empty %}
 <img src="{{ ng_image_alias(image, 'i1140').uri }}"
 alt="{{ image.value.alternativeText }}" />
{% endif %}

For your convenience all objects contain their corresponding Repository objects in properties
prefixed with inner. Example usage from Twig:

<h1>Content ID: {{ content.innerContent.id }}</h1>
<h2>Location ID: {{ location.innerLocation.id }}</h2>
<h3>Field ID: {{ field.innerField.id }}</h3>

For more details see Templating and Objects reference pages.

Services

The API provides you with a set of read-only services:

	LoadService

Provides methods to load Content and Locations by ID (and remote ID):

	FindService

Provides methods to find Content and Locations using eZ Platform Repository Search API.

	FilterService

This is quite similar to the FindService, but only works with Legacy search engine, even if
that is not the configured engine for the repository.

Why? While Solr search engine provides more features and more performance than Legacy search
engine, it’s a separate system needs to be synchronized with changes in the database. This
synchronization comes with a delay, which can be a problem in some cases.

FilterService gives you access to search that is always up to date, because it uses Legacy search
engine that works directly with database. At the same time, search on top of Solr, with all the
advanced features (like fulltext search or facets) is still available through FindService.

	RelationService

Provides methods for loading relations.

All services return only published Content and handle translations in a completely transparent way.
Language fallback configuration for the current siteaccess is automatically taken into account and
you will always get back only what should be rendered on the siteaccess. If the available
translation is not configured for a siteaccess, you won’t be able to find or load Content or
Location. The services will behave as if it does not exist.

Note

All of the Site API services are read-only. If you need to write to the eZ Platform’s content
repository, use it’s existing Repository API.

For more details see Services reference page.

Integration with eZ Platform

You can use the Site API services described above as you would normally do it a Symfony application.
But these are also integrated into eZ Platform’s view layer. There is a Site API version of the view
configuration, available under ngcontent_view key:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 line:
 article:
 template: "NetgenSiteBundle:content/line:article.html.twig"
 match:
 Identifier\ContentType: article

Aside from Query Type configuration described below, the format is exactly the same as eZ Platform’s
view configuration under content_view key. Separate view configuration is also needed because we
need to handle it with code that will inject Site API objects to the template, instead of standard
eZ Platform objects. Together with this we provide Site API version of the Content View object,
which is used by the default Content view controller and custom controllers.

With the configuration from above you you will be able to render a line view for an article by
executing a request to ng_content:viewAction. However, that does not mean URL aliases will be
handled by the Site API view configuration as well. This needs to be explicitly enabled, per
siteaccess:

netgen_ez_platform_site_api:
 system:
 frontend_group:
 override_url_alias_view_action: true

Note

You can use the Site API’s view configuration and eZ Platform’s view configuration at the same
time. However, URL aliases can be handled exclusively by the one or the other.

For more details see Configuration reference page.

Query Types

Query Types provide a set of predefined queries that can be configured for a specific view, as part
of the view configuration under ngcontent_view key. It also provides a system for developing new
queries inheriting common functionality.

While they can be used from PHP, main intention is to use them from the view configuration. This is
best explained with an example:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 folder:
 template: '@ezdesign/content/full/folder.html.twig'
 match:
 Identifier\ContentType: folder
 queries:
 children_documents:
 query_type: SiteAPI:Content/Location/Children
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: document
 section: restricted
 sort: priority desc

Other side of the configuration from the example above is full view folder template:

{% set documents = ng_query('children_documents') %}

<h3>Documents in this folder</h3>

{% for document in documents %}
 {{ document.name }}
{% endfor %}

{{ pagerfanta(documents, 'twitter_bootstrap') }}

If you used Legacy eZ Publish, this is similar to template fetch function. Important difference is
that in Legacy you used template fetch functions to pull the data into the template. Instead, with
Site API Query Types you push the data to the template. This keeps the logic out of the templates
and gives you better control and overview.

For more details see Query Types reference page.

Reference

	Installation

	Configuration

	Templating

	Query Types

	Objects

	Services

	Custom controllers

	Migration

Installation

To install Site API first add it as a dependency to your project:

$ composer require netgen/ezplatform-site-api:^2.5

Once Site API is installed, activate the bundle in app/AppKernel.php file by adding it to the
$bundles array in registerBundles() method, together with other required bundles:

public function registerBundles()
{
 //...

 $bundles[] = new Netgen\Bundle\EzPlatformSiteApiBundle\NetgenEzPlatformSiteApiBundle();
 $bundles[] = new Netgen\Bundle\EzPlatformSearchExtraBundle\NetgenEzPlatformSearchExtraBundle();

 return $bundles;
}

And that’s it. Once you finish the installation you will be able to use Site API services as you
would normally do in a Symfony application. However, at this point Site API is not yet fully
enabled. That is done per siteaccess, see Configuration page to
learn more.

Configuration

Site API has it’s own view configuration, available under ngcontent_view key. Aside from
Query Type options documented separately, this is exactly the same
as eZ Platform’s default view configuration under content_view key. You can use this
configuration right after the installation, but note that it won’t be used for full views rendered
for eZ Platform URL aliases right away. Until you configure that, it will be used only when calling
its controller explicitly with ng_content:viewAction.

To use Site API view rules for pages rendered from eZ Platform URL aliases, you have to enable it
for a specific siteaccess with the following semantic configuration:

netgen_ez_platform_site_api:
 system:
 frontend_group:
 override_url_alias_view_action: true

Here frontend_group is the siteaccess group (or a siteaccess) for which you want to activate the
Site API. This switch is useful if you have some siteaccesses which can’t use the it, like custom
admin or intranet interfaces.

Note

To use Site API view configuration automatically on pages rendered from eZ Platform URL aliases,
you need to enable it manually per siteaccess.

One you do this, all your full view templates and controllers will need to use Site API to keep
working. They will be resolved from Site API view configuration, available under ngcontent_view
key. That means Content and Location variables inside Twig templates will be instances of Site API
Content and Location value objects, $view variable passed to your custom controllers will be an
instance of Site API ContentView variable, and so on.

If needed you can still use content_view rules. This will allow you to have both Site API
template override rules as well as original eZ Platform template override rules, so you can rewrite
your templates bit by bit. You can decide which one to use by calling either
ng_content:viewAction or ez_content:viewAction controller.

Tip

View configuration is the only eZ Platform configuration regularly edited

by frontend developers.

For example, if using the following configuration:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 line:
 article:
 template: 'Bundle:content/line:article.html.twig'
 match:
 Identifier\ContentType: article
 content_view:
 line:
 article:
 template: 'Bundle:content/line:ez_article.html.twig'
 match:
 Identifier\ContentType: article

Rendering a line view for an article with ng_content:viewAction would use
Bundle:content/line:article.html.twig template, while rendering a line view for an article with
ez_content:viewAction would use Bundle:content/line:ez_article.html.twig template.

It is also possible to use custom controllers, this is documented on
Custom controllers reference documentation page.

Templating

Site API objects are used directly in the templates. Below you will find examples for the most
common use cases. Objects are documented in more detail on Objects reference documentation page.

Site API provides two Twig functions for content rendering:

	ng_render_field

Similar to ez_render_field from eZ Platform, this function is used to render the Content’s
field using the configured template:

<p>{{ ng_render_field(content.field.body) }}</p>

	ng_image_alias

Similar to ez_image_alias from eZ Platform, this function provides access to the image
variation of a ezimage type field:

Both are shown in more detail in the examples below. There are two other Twig functions,
ng_query and ng_raw_query. These are used with Query Types and are documented separately on
Query Types reference documentation page.

Basic usage

	Accessing Location’s Content object

Content is available in the Location’s property content:

{{ set content = location.content }}

	Displaying the name of a Content

Content’s name is available in the name property:

<h1>Content's name: {{ content.name }}</h1>

	Linking to a Location

Linking is done using the path() Twig function, same as before.

{{ location.content.name }}

	Linking to a Content

Linking to Content will create a link to Content’s main Location.

{{ content.name }}

Working with Content fields

	Accessing a Content Field

Note

Content’s fields are lazy-loaded, which means they will be transparently loaded only at the
point you access them.

The most convenient way to access a Content field in Twig is using the dot notation:

{% set title_field = content.fields.title %}

Alternatively, you can do the same using the array notation:

{% set title_field = content.fields['title'] %}

Or by calling getField() method on the Content object, also available as field() in Twig,
which requires Field identifier as argument:

{% set title_field = content.field('title') %}

	Checking if the Field exists

Checking if the field exists can be done with hasField() method on the Content object:

{% if content.hasField('title') %}
 <p>Content has a 'title' field</p>
{% endif %}

	Displaying Field’s metadata

Field object aggregates some data from the FieldDefinition:

{% set title_field = content.fields.title %}

<p>Field name: {{ title_field.name }}</p>
<p>Field description: {{ title_field.description }}</p>
<p>FieldType identifier: {{ title_field.fieldTypeIdentifier }}</p>

	Rendering the field using the configured template

To render a field in vanilla eZ Platform you would use
ez_render_field [https://doc.ezplatform.com/en/2.2/guide/twig_functions_reference/#ez_render_field] function, which
does that using the configured template block [https://doc.ezplatform.com/en/2.2/guide/templates/#using-the-field-types-template-block].
For the same purpose and using the same templates, Site API provides it’s own function
ng_render_field. It has two parameters:

	required Field object

	optional hash of parameters, by default an empty array []

This parameter is exactly the same as you would use with ez_render_field. The only
exception is the lang parameter, used to override the language of the rendered field, which
is not used by the ng_render_field.

Basic usage:

{{ ng_render_field(content.fields.title) }}

Using the second parameter to override the default template block:

{{
 ng_render_field(
 content.fields.title,
 { 'template': 'AcmeTestBundle:fields:my_field_template.html.twig' }
)
}}

	Checking if the Field’s value is empty

This is done by calling isEmpty() method on the Field object, also available as
empty() or just empty in Twig:

{% if content.fields.title.empty %}
 <p>Title is empty</p>
{% else %}
 {{ ng_render_field(content.fields.title) }}
{% endif %}

	Accessing the Field’s value

Typically you would render the field using ng_render_field Twig function, but if needed you
can also access field’s value directly. Value format varies by the FieldType, so you’ll need to
know about the type of the Field whose value you’re accessing. You can find out more about that on
the official FieldType reference page [https://doc.ezplatform.com/en/latest/api/field_type_reference/]
or even looking at the value’s code.

Here we’ll assume title field is of the FieldType ezstring. Latest code for that
FieldType’s value can be found here [https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/TextLine/Value.php].

<h1>Value of the title field is: '{{ content.field.title.value.text }}'</h1>

	Rendering the image field

Typically for this you would use the built-in template through ng_render_field function, but
you can also do it manually if needed:

{% set image = content.fields.image %}

{% if not image.empty %}
 <img src="{{ ng_image_alias(image, 'i1140').uri }}"
 alt="{{ image.value.alternativeText }}" />
{% endif %}

Traversing the Content model

Content Locations

	Accessing the main Location of a Content

{% set main_location = content.mainLocation %}

	Listing Content’s Locations

This is done by calling the method getLocations(), also available as locations() in
Twig. It returns an array of Locations sorted by the path string (e.g. /1/2/191/300/) and
optionally accepts maximum number of items returned (by default 25).

{% set locations = content.locations(10) %}

<p>First 10 Content's Locations:</p>

{% for location in locations %}

 Location #{{ location.id }}

{% endif %}

	Paginating through Content’s Locations

This is done by calling the method filterLocations(), which returns a Pagerfanta
instance with Locations sorted by the path string (e.g. /1/2/191/300/) and accepts two
optional parameters:

	optional maximum number of items per page, by default 25

	optional current page, by default 1

{% set locations = content.filterLocations(10, 2) %}

<h3>Content's Location, page {{ locations.currentPage }}</h3>
<p>Total: {{ locations.nbResults }} items</p>

{% for location in locations %}

 Location #{{ location.id }}

{% endfor %}

{{ pagerfanta(locations, 'twitter_bootstrap') }}

Content Field relations

	Accessing a single field relation

This is done by calling the method getFieldRelation(), also available as
fieldRelation() in Twig. It has one required parameter, which is the identifier of the
relation field. In our example, the relation field’s identifier is related_article.

{% set related_content = content.fieldRelation('related_article') %}

{% if related_content is defined %}
 {{ related_content.name }}
{% else %}
 <p>There are two possibilities:</p>

 Relation field 'related_article' is empty</p>
 You don't have a permission to read the related Content

 <p>In any case, you can't render the related Content!</p>
{% endif %}

Note

If relation field contains multiple relations, the first one will be returned. If it doesn’t
contain relations or you don’t have the access to read the related Content, the method will
return null. Make sure to check if that’s the case.

	Accessing all field relations

This is done by calling the method getFieldRelations(), also available as
fieldRelations() in Twig. It returns an array of Content items and has two parameters:

	required identifier of the relation field

	optional maximum number of items returned, by default 25

{% set related_articles = content.fieldRelations('related_articles', 10) %}

{% for article in related_articles %}
 {{ article.name }}
{% endfor %}

	Filtering through field relations

This is done by calling the method filterFieldRelations(), which returns a Pagerfanta
instance and has four parameters:

	required identifier of the relation field

	optional array of ContentType identifiers that will be used to filter the result, by
default an empty array []

	optional maximum number of items per page, by default 25

	optional current page, by default 1

{% set articles = content.filterFieldRelations('related_items', ['article'], 10, 1) %}

{% for article in articles %}
 {{ article.name }}
{% endfor %}

{{ pagerfanta(events, 'twitter_bootstrap') }}

Location children

	Listing Location’s children

This is done by calling the method getChildren(), also available as children() in
Twig. It returns an array of children Locations and optionally accepts maximum number of items
returned (by default 25).

{% set children = location.children(10) %}

<h3>List of 10 Location's children, sorted as is defined on the Location</h3>

{% for child in children %}
 {{ child.name }}
{% endfor %}

	Filtering through Location’s children

This is done by calling the method filterChildren(), which returns a Pagerfanta instance
and has three parameters:

	optional array of ContentType identifiers that will be used to filter the result, by default
an empty array []

	optional maximum number of items per page, by default 25

	optional current page, by default 1

{% set documents = location.filterChildren(['document'], 10, 1) %}

<h3>Children documents, page {{ documents.currentPage }}</h3>
<p>Total: {{ documents.nbResults }} items</p>

{% for document in documents %}
 {{ document.name }}
{% endfor %}

{{ pagerfanta(documents, 'twitter_bootstrap') }}

Location siblings

	Listing Location’s siblings

This is done by calling the method getSiblings(), also available as siblings() in
Twig. It returns an array of children Locations and optionally accepts maximum number of items
returned (by default 25).

{% set children = location.siblings(10) %}

<h3>List of 10 Location's siblings, sorted as is defined on the parent Location</h3>

{% for sibling in siblings %}
 {{ sibling.name }}
{% endfor %}

	Filtering through Location’s siblings

This is done by calling the method filterSiblings(), which returns a Pagerfanta instance
and has three parameters:

	optional array of ContentType identifiers that will be used to filter the result, by default
an empty array []

	optional maximum number of items per page, by default 25

	optional current page, by default 1

{% set articles = location.filterSiblings(['article'], 10, 1) %}

<h3>Sibling articles, page {{ articles.currentPage }}</h3>
<p>Total: {{ articles.nbResults }} items</p>

{% for article in articles %}
 {{ articles.name }}
{% endfor %}

{{ pagerfanta(articles, 'twitter_bootstrap') }}

Query Types

Site API Query Types expand upon Query Type feature from eZ Publish Kernel, using the same basic
interfaces. That will enable using your existing Query Types, but how Site API integrates them with
the rest of the system differs from eZ Publish Kernel.

Built-in Site API Query Types

A number of generic Query Types is provided out of the box. We can separate these into three groups:

General purpose

	General purpose Content fetch

	General purpose Location fetch

Content relations

	All tag fields relations

	Forward field relations

	Reverse field relations

	Tag field relations

Location hierarchy

	Location children

	Location siblings

	Location subtree

Query configuration

Query Types have their own semantic configuration under queries key in configuration for a
particular Content view. Under this key separate queries are defined under their own identifier
keys, which are later used to reference the configured query from the Twig templates.

Available parameters and their default values are:

	query_type - identifies the Query Type to be used

	named_query - identifies named query to be used

	max_per_page: 25 - pagination parameter for maximum number of items per page

	page: 1 - pagination parameter for current page

	use_filter: true - whether to use FilterService or FindService for executing the query

	parameters: [] - contains the actual Query Type parameters

Parameters query_type and named_query are mutually exclusive, you are allowed to set only
one or the other. But they are also mandatory - you will have to set one of them.

Example below shows how described configuration looks in practice:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 category:
 template: '@ezdesign/content/full/category.html.twig'
 match:
 Identifier\ContentType: 'category'
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: 1
 parameters:
 content_type: 'article'
 sort: 'published desc'
 related_images:
 query_type: 'SiteAPI:Content/Relations/ForwardFields'
 max_per_page: 10
 page: 1
 parameters:
 content_type: 'image'
 sort: 'published desc'
 params:
 ...

Note

You can define unlimited number of queries on any controller.

Named query configuration

As hinted above with named_query parameter, it is possible to define “named queries”, which can
be referenced in query configuration for a particular content view. They are configured under
ng_named_query, which is a top section of a siteaccess configuration, on the same level as
ng_content_view:

ezpublish:
 system:
 frontend_group:
 ng_named_query:
 children_named_query:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: 1
 parameters:
 content_type: 'article'
 sort: 'published desc'
 ngcontent_view:
 full:
 category:
 template: '@ezdesign/content/full/category.html.twig'
 match:
 Identifier\ContentType: 'category'
 queries:
 children: 'children_named_query'
 children_5_per_page:
 named_query: 'children_named_query'
 max_per_page: 5
 images:
 named_query: 'children_named_query'
 parameters:
 content_type: 'image'
 params:
 ...

Note

You can override some of the parameters from the referenced named query.

You can notice that there are two ways of referencing a named query. In case when there are no other
parameters, you can do it directly like this:.

queries:
 children: 'children_named_query'

The example above is really just a shortcut to the example below:

queries:
 children:
 named_query: 'children_named_query'

You can also notice that it’s possible to override parameters from the referenced named query. This
is limited to first level keys from the main configuration and also first level keys under the
parameters key.

Parameters with expressions

When defining parameters it’s possible to use expressions. These are evaluated by Symfony’s
Expression Language [https://symfony.com/doc/current/components/expression_language.html]
component, whose syntax is based on Twig and documented here [https://symfony.com/doc/current/components/expression_language/syntax.html].

Expression strings are recognized by @= prefix. Following values resolved from the current view
will be available in expression:

	Site API view object as view

You can access view object and any parameters injected into it [https://doc.ez.no/display/EZP/Parameters+injection+in+content+views],
for example current page in children query:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: '@=view.getParameter("page")'
 parameters:
 content_type: 'article'
 sort: 'published desc'

	Symfony’s Request object as request

Similar to the above, you could access current page directly from the parameter in the Request object:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: '@=request.query.get("page", 1)'
 parameters:
 content_type: 'article'
 sort: 'published desc'

	Site API Content object as content

Full Content object is available, for example you could store ContentType identifier for the
children in a TextLine field content_type and access it like this:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: 1
 parameters:
 content_type: '@=content.fields.content_type.value.text'
 sort: 'published desc'

	Site API Location object as location

Full Location object is also available, in the following example we use it to find only children
of the same ContentType as the parent:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: 1
 parameters:
 content_type: '@=location.contentInfo.contentTypeIdentifier'
 sort: 'published desc'

Several functions are also available for use in expressions. Most of these are provided to access
the values described above in a more convenient way:

	viewParam(name, default)

Method getParameter() on the View object does not support default value fallback and if the
requested parameter is not there an exception will be thrown. Function viewParam() is just a
wrapper around it that provides default value fallback:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: '@=viewParam("page", 10)'
 parameters:
 content_type: 'article'
 sort: 'published desc'

	queryParam(name, default)

This function is just a shortcut to GET parameters on the Request object:

...
 queries:
 children:
 query_type: 'SiteAPI:Location/Children'
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: 'article'
 sort: 'published desc'

	timestamp(value)

This function is used to get a timestamp value, typically used to define time conditions on the
query. For example you could use it to fetch only events that have not yet started:

...
 queries:
 pending_events:
 query_type: SiteAPI:Content/Location/Subtree
 max_per_page: 10
 page: 1
 parameters:
 content_type: event
 field:
 start_date:
 gt: '@=timestamp("today")'

Note

Function timestamp() maps directly to the PHP’s function strtotime [https://secure.php.net/manual/en/function.strtotime.php].
That means you can pass it any supported date and time format [https://secure.php.net/manual/en/datetime.formats.php].

Templating

Configured queries will be available in Twig templates, through ng_query or ng_raw_query.
The difference it that the former will return a Pagerfanta instance, while the latter will
return an instance of SerachResult. That also means ng_query will use max_per_page and
page parameters to configure the pager, while ng_raw_query ignores them and executes the
configured query directly.

Note

Queries are only executed as you access them through ng_query or ng_raw_query. If you
don’t call those functions on any of the configured queries, none of them will be executed.

Both ng_query and ng_raw_query accept a single argument. This is the identifier of the
query, which is the key under the queries section, under which the query is configured.

Example usage of ng_query:

{% set images = ng_query('images') %}

<p>Total images: {{ images.nbResults }}</p>

{% for image in images %}
 <p>{{ image.content.name }}</p>
{% endfor %}

{{ pagerfanta(images, 'twitter_bootstrap') }}

Example usage of ng_raw_query:

{% set searchResult = ng_raw_query('categories') %}

{% for categoryHit in searchResult.searchHits %}
 <p>{{ categoryHit.valueObject.content.name }}: {{ categoryHit.valueObject.score }}</p>
{% endfor %}

Note

You can’t execute named queries. They are only available for referencing in concrete query
configuration for a particular view.

Hint

Execution of queries is not cached. If you call ng_query or ng_raw_query on the same
query multiple times, the same query will be executed multiple times. If you need to access the
query result multiple times, store it in a variable and access the variable instead.

General purpose Content fetch

This Query Type is used to build general purpose Location queries.

	Identifier

	SiteAPI:Location/Fetch

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

General purpose Location fetch

This Query Type is used to build general purpose Location queries.

	Identifier

	SiteAPI:Location/Fetch

	Inherited
Location
conditions

	
	depth

	main

	parent_location_id

	priority

	subtree

	visible

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Inherited Location conditions

depth

Defines absolute depth of the Location in the tree.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
depth: 3

depth:
 eq: 3

identical to the example below
depth: [3, 4, 8]

depth:
 in: [3, 4, 8]

multiple operators are combined with logical AND
depth:
 in: [3, 4, 5]
 gt: 4
 lte: 8

depth:
 between: [4, 7]

main

Defines whether returned Locations are main Locations or not.
Use true to get main Locations, false to get non-main Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
main: true

main:
 eq: true

get both main and non-main Locations, which is also the default behaviour
main: ~

parent_location_id

Defines Location’s parent Location ID.

	value type: integer, string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
parent_location_id: 42

parent_location_id:
 eq: 42

identical to the example below
parent_location_id: [11, 24, 42]

parent_location_id:
 in: [11, 24, 42]

priority

Defines the priority of the Location.

	value type: integer

	value format: single

	operators: gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

multiple operators are combined with logical AND
depth:
 gt: 4
 lte: 8

depth:
 between: [4, 7]

subtree

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

bla bla

visible

Defines whether returned Locations are visible or not.
Use true to get visible Locations, false to get hidden Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
visible: false

visible:
 eq: false

get both visible and hidden Locations, which also the default behaviour
visible: ~

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

All tag fields Content relations Query Type

This Query Type is used to build queries that fetch Content tag field relations from all tag fields
of a given Content.

Hint

Tag field Content relations are Content items tagged with a tag contained in the tag fields of a
given Content.

Hint

This query type assumes Netgen’s TagsBundle [https://github.com/netgen/TagsBundle] is used for tagging functionality.

	Identifier

	SiteAPI:Content/Relations/AllTagFields

	Own
conditions

	
	content

	exclude_self

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

On full view for product type Content fetch all Content of type article that is tagged with
any of the tags from the given product. Sort them by name and paginate them by 10 per page using URL
query parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 product:
 template: '@ezdesign/content/full/product.html.twig'
 match:
 Identifier\ContentType: product
 queries:
 related_articles:
 query_type: SiteAPI:Content/Relations/AllTagFields
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: article
 sort: name

{% set articles = ng_query('related_articles') %}

<h3>Related articles</h3>

{% for article in articles %}
 {{ article.name }}
{% endfor %}

{{ pagerfanta(articles, 'twitter_bootstrap') }}

Own conditions

content

Defines the source (from) relation Content, which is the one containing tag fields.

Note

This condition is required. It’s also automatically set to the Content instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Content

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=content'

fetch relations from Content's main Location parent Location's Content
location: '@=content.mainLocation.parent.content'

fetch relations from Content's main Location parent Location's parent Location's Content
location: '@=content.mainLocation.parent.parent.content'

exclude_self

Defines whether to include Content defined by the content condition in the result set.

	value type: boolean

	value format: single

	operators: none

	target: none

	required: false

	default: true

Examples:

do not include the source relation Content, this is also the default behaviour
exclude_self: true

include the source relation Content
exclude_self: false

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Forward field Content relations Query Type

This Query Type is used to build fetch Content that is related to from relation type fields of the given Content.

	Identifier

	SiteAPI:Content/Relations/ForwardFields

	Own
conditions

	
	content

	relation_field

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Content of type blog_post has relation field images which is used to define relations to
image type Content. On full view for blog_post fetch 10 related images sorted by name and
paginate them by 10 per page using URL query parameter page.

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 blog_post:
 template: '@ezdesign/content/full/blog_post.html.twig'
 match:
 Identifier\ContentType: blog_post
 queries:
 related_images:
 query_type: SiteAPI:Content/Relations/ForwardFields
 max_per_page: 10
 page: 1
 parameters:
 relation_field: images
 content_type: image
 sort: name

<h3>Related images</h3>

{% for image in ng_query('related_images') %}

 {{ ng_image_alias(image.fields.image, 'gallery') }}

{% endfor %}

{{ pagerfanta(documents, 'twitter_bootstrap') }}

Own conditions

content

Defines the source (from) relation Content, which is the one containing relation type fields.

Note

This condition is required. It’s also automatically set to the Content instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Content

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=content'

fetch relations from Content's main Location parent Location's Content
location: '@=content.mainLocation.parent.content'

fetch relations from Content's main Location parent Location's parent Location's Content
location: '@=content.mainLocation.parent.parent.content'

relation_field

Defines Content fields to take into account for determining relations.

	value type: string

	value format: single, array

	operators: none

	target: none

	required: true

	default: not defined

Examples:

relation_field: appellation

relation_field: [head, heart, base]

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Reverse field Content relations Query Type

This Query Type is used to build fetch Content that relates to the given Content from its relation type fields.

	Identifier

	SiteAPI:Content/Relations/ReverseFields

	Own
conditions

	
	content

	relation_field

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Content of type article has relation field authors which is used to define relations to
author type Content. On full view for author fetch all articles authored by that author,
sort them by title and paginate them by 10 per page using URL query parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 author:
 template: '@ezdesign/content/full/author.html.twig'
 match:
 Identifier\ContentType: author
 queries:
 authored_articles:
 query_type: SiteAPI:Content/Relations/ReverseFields
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 relation_field: authors
 content_type: article
 sort: field/article/title asc

<h3>Author's articles</h3>

{% for article in ng_query('authored_articles') %}
 {{ article.name }}
{% endfor %}

{{ pagerfanta(children, 'twitter_bootstrap') }}

Own parameters

content

Defines the destination (to) relation Content.

Note

This condition is required. It’s also automatically set to the Content instance resolved by
the view builder if the query is defined in the view builder configuration.

Note

Since this is about reverse relations, Content defined by this condition is not
the one containing relation type fields referenced by relation_field. It’s the one
receiving relations from Content containing those fields.

	value type: Content

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=content'

fetch relations to Content's main Location parent Location's Content
location: '@=content.mainLocation.parent.content'

fetch relations to Content's main Location parent Location's parent Location's Content
location: '@=content.mainLocation.parent.parent.content'

relation_field

Defines Content fields to take into account for determining relations.

	value type: string

	value format: single, array

	operators: none

	target: none

	required: true

	default: not defined

Examples:

relation_field: authors

relation_field: [color, size]

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Tag field Content relations Query Type

This Query Type is used to build queries that fetch Content tag field relations from selected tag
fields of a given Content.

Hint

Tag field Content relations are Content items tagged with a tag contained in a tag field of a
given Content.

Hint

This query type assumes Netgen’s TagsBundle [https://github.com/netgen/TagsBundle] is used for tagging functionality.

	Identifier

	SiteAPI:Content/Relations/TagFields

	Own
conditions

	
	content

	exclude_self

	relation_field

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Your project is a web shop, where Content of type product is tagged with tags that define
product’s market. Specific tag field named market is used for that. For example, you could have
a wireless keyboard product tagged with market tag components. Various other Content is also
tagged with that tag, for example we could have files and articles using that same tag.

On the full view for Content of type product, fetch articles from the same market, sort them
by their publication date and paginate them by 10 per page using URL query parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 product:
 template: '@ezdesign/content/full/product.html.twig'
 match:
 Identifier\ContentType: product
 queries:
 market_articles:
 query_type: SiteAPI:Content/Relations/TagFields
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 relation_field: market
 content_type: article
 sort: published desc

{% set articles = ng_query('market_articles') %}

<h3>Related market articles</h3>

{% for article in articles %}
 {{ article.name }}
{% endfor %}

{{ pagerfanta(articles, 'twitter_bootstrap') }}

Own conditions

content

Defines the source (from) relation Content, which is the one containing tag fields.

Note

This condition is required. It’s also automatically set to the Content instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Content

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=content'

fetch relations from Content's main Location parent Location's Content
location: '@=content.mainLocation.parent.content'

fetch relations from Content's main Location parent Location's parent Location's Content
location: '@=content.mainLocation.parent.parent.content'

exclude_self

Defines whether to include Content defined by the content condition in the result set.

	value type: boolean

	value format: single

	operators: none

	target: none

	required: false

	default: true

Examples:

do not include the source relation Content, this is also the default behaviour
exclude_self: true

include the source relation Content
exclude_self: false

relation_field

Defines Content fields to take into account for determining relations.

	value type: string

	value format: single, array

	operators: none

	target: none

	required: true

	default: not defined

Examples:

relation_field: appellation

relation_field: [head, heart, base]

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Location children Query Type

This Query Type is used to build queries that fetch children Locations.

	Identifier

	SiteAPI:Location/Children

	Own
conditions

	
	location

	Inherited
Location
conditions

	
	main

	priority

	visible

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

On full view for folder type Location fetch folder’s children Locations of the type
document that are in restricted Section, sort them by priority descending and paginate them
by 10 per page using URL query parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 folder:
 template: '@ezdesign/content/full/folder.html.twig'
 match:
 Identifier\ContentType: folder
 queries:
 children_documents:
 query_type: SiteAPI:Content/Location/Children
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: document
 section: restricted
 sort: priority desc

{% set documents = ng_query('children_documents') %}

<h3>Documents in this folder</h3>

{% for document in documents %}
 {{ document.name }}
{% endfor %}

{{ pagerfanta(documents, 'twitter_bootstrap') }}

Own conditions

location

Defines the parent Location for children Locations.

Note

This condition is required. It’s also automatically set to the Location instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Location

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=location'

fetch children of the parent Location
location: '@=location.parent'

fetch children of the parent Location's parent Location
location: '@=location.parent.parent'

Inherited Location conditions

main

Defines whether returned Locations are main Locations or not.
Use true to get main Locations, false to get non-main Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
main: true

main:
 eq: true

get both main and non-main Locations, which is also the default behaviour
main: ~

priority

Defines the priority of the Location.

	value type: integer

	value format: single

	operators: gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

multiple operators are combined with logical AND
depth:
 gt: 4
 lte: 8

depth:
 between: [4, 7]

visible

Defines whether returned Locations are visible or not.
Use true to get visible Locations, false to get hidden Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
visible: false

visible:
 eq: false

get both visible and hidden Locations, which also the default behaviour
visible: ~

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Location siblings Query Type

This Query Type is used to build queries that fetch Location siblings.

	Identifier

	SiteAPI:Location/Siblings

	Own
conditions

	
	location

	Inherited
Location
conditions

	
	main

	priority

	visible

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

On the full view for article type Content fetch all siblings of type news that are in
ObjectState review/approved, sort them by name and paginate them by 10 per page using URL query
parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 article:
 template: '@ezdesign/content/full/article.html.twig'
 match:
 Identifier\ContentType: article
 queries:
 news_siblings:
 query_type: SiteAPI:Content/Location/Siblings
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: news
 state:
 review: approved
 sort: name

{% set news_list = ng_query('news_siblings') %}

<h3>Article's news siblings</h3>

{% for news in news_list %}
 {{ news.name }}
{% endfor %}

{{ pagerfanta(news_list, 'twitter_bootstrap') }}

Own conditions

location

Defines sibling Location reference for fetching other siblings Locations.

Note

This condition is required. It’s also automatically set to the Location instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Location

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=location'

fetch siblings of the parent Location
location: '@=location.parent'

fetch siblings of the parent Location's parent Location
location: '@=location.parent.parent'

Inherited Location conditions

main

Defines whether returned Locations are main Locations or not.
Use true to get main Locations, false to get non-main Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
main: true

main:
 eq: true

get both main and non-main Locations, which is also the default behaviour
main: ~

priority

Defines the priority of the Location.

	value type: integer

	value format: single

	operators: gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

multiple operators are combined with logical AND
depth:
 gt: 4
 lte: 8

depth:
 between: [4, 7]

visible

Defines whether returned Locations are visible or not.
Use true to get visible Locations, false to get hidden Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
visible: false

visible:
 eq: false

get both visible and hidden Locations, which also the default behaviour
visible: ~

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Location subtree Query Type

This Query Type is used to build queries that fetch from the Location subtree.

	Identifier

	SiteAPI:Location/Subtree

	Own
conditions

	
	exclude_self

	location

	relative_depth

	Inherited
Location
conditions

	
	depth

	main

	priority

	visible

	Common
Content
conditions

	
	content_type

	field

	publication_date

	section

	state

	Common
query
parameters

	
	limit

	offset

	sort

Examples

Subtree of the calendar type Location contains event type Locations. On the full view for
calendar fetch all pending events from its subtree up to depth of 3, sort them by their start
date and paginate them by 10 per page using URL query parameter page:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 calendar:
 template: '@ezdesign/content/full/calendar.html.twig'
 match:
 Identifier\ContentType: calendar
 queries:
 pending_events:
 query_type: SiteAPI:Content/Location/Subtree
 max_per_page: 10
 page: '@=queryParam("page", 1)'
 parameters:
 content_type: event
 relative_depth:
 lte: 3
 field:
 start_date:
 gt: '@=timestamp("today")'
 sort: field/event/start_date asc

{% set events = ng_query('pending_events') %}

<h3>Pending events</h3>

{% for event in events %}
 {{ event.name }}
{% endfor %}

{{ pagerfanta(events, 'twitter_bootstrap') }}

Own conditions

exclude_self

Defines whether to include Location defined by the location condition in the result set.

	value type: boolean

	value format: single

	operators: none

	target: none

	required: false

	default: true

Examples:

do not include the subtree root Location, this is also default behaviour
exclude_self: true

include the subtree root Location
exclude_self: false

location

Defines the root Location of the Location subtree.

Note

This condition is required. It’s also automatically set to the Location instance resolved by
the view builder if the query is defined in the view builder configuration.

	value type: Location

	value format: single

	operators: none

	target: none

	required: true

	default: not defined

Examples:

this is also automatically set when using from view builder configuration
location: '@=location'

fetch from subtree of the parent Location
location: '@=location.parent'

fetch from subtree of the parent Location's parent Location
location: '@=location.parent.parent'

relative_depth

Defines depth of the Location in the tree relative to the Location defined by location
condition.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
depth: 2

depth:
 eq: 2

identical to the example below
depth: [2, 3]

depth:
 in: [2, 3]

multiple operators are combined with logical AND
depth:
 in: [2, 3]
 gt: 1
 lte: 3

depth:
 between: [2, 4]

Inherited Location conditions

depth

Defines absolute depth of the Location in the tree.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
depth: 3

depth:
 eq: 3

identical to the example below
depth: [3, 4, 8]

depth:
 in: [3, 4, 8]

multiple operators are combined with logical AND
depth:
 in: [3, 4, 5]
 gt: 4
 lte: 8

depth:
 between: [4, 7]

main

Defines whether returned Locations are main Locations or not.
Use true to get main Locations, false to get non-main Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
main: true

main:
 eq: true

get both main and non-main Locations, which is also the default behaviour
main: ~

priority

Defines the priority of the Location.

	value type: integer

	value format: single

	operators: gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

multiple operators are combined with logical AND
depth:
 gt: 4
 lte: 8

depth:
 between: [4, 7]

visible

Defines whether returned Locations are visible or not.
Use true to get visible Locations, false to get hidden Locations and null to get both (which is also the default behaviour).

	value type: boolean, null

	value format: single

	operators: eq

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
visible: false

visible:
 eq: false

get both visible and hidden Locations, which also the default behaviour
visible: ~

Common Content conditions

content_type

Defines ContentType of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: string ContentType identifier

	required: false

	default: not defined

Examples:

identical to the example below
content_type: article

content_type:
 eq: article

identical to the example below
content_type: [image, video]

content_type:
 in: [image, video]

field

Defines conditions on Content fields.

	value type: integer, string, boolean

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between, like, contains

	target: string Field identifier

	required: false

	default: not defined

Examples:

field:
 date_field:
 not:
 gt: 'today +5 days'
 price:
 between: [100, 200]
 not: 155

publication_date

Defines the publication date of the Content as a timestamp.

	value type: integer

	value format: single, array

	operators: eq, in, gt, gte, lt, lte, between

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
publication_date: 1535117737

depth:
 eq: 1535117737

identical to the example below
publication_date: [1435117737, 1535117737]

publication_date:
 in: [1435117737, 1535117737]

multiple operators are combined with logical AND
publication_date:
 gt: '29 June 1991'
 lte: '5 August 1995'

publication_date:
 gt: 'today'

publication_date:
 between: ['today', '+1 week 2 days 4 hours 2 seconds']

section

Defines Section of the Content by the identifier.

	value type: string

	value format: single, array

	operators: eq, in

	target: none

	required: false

	default: not defined

Examples:

identical to the example below
section: standard

section:
 eq: standard

identical to the example below
section: [standard, restricted]

section:
 in: [standard, restricted]

state

Defines ObjectState of the Content by the ObjectStateGroup and ObjectState identifiers.

Note

Content can only exist in single ObjectState from the same ObjectStateGroup.

	value type: string ObjectState identifier

	value format: single

	operators: eq

	target: string ObjectStateGroup identifier

	required: false

	default: not defined

Examples:

identical to the example below
state:
 ez_lock: not_locked

state:
 ez_lock:
 eq: not_locked

multiple states are combined with logical AND
identical to the example below
state:
 ez_lock: locked
 approval: rejected

state:
 ez_lock:
 eq: locked
 approval:
 eq: rejected

Common query parameters

limit

Defines the maximum number of items to return.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 25

Examples:

limit: 10

offset

Defines the offset for search hits, used for paging the results.

Note

This parameter will not be used if you execute the query from Twig using ng_query function.
In that case Pargerfanta pager is used with semantic parameters page and max_per_page.
To execute the query directly use ng_raw_query Twig function instead.

	value type: integer

	value format: single

	required: false

	default: 0

Examples:

offset: 20

sort

	value type: string, SortClause

	value format: single, array

	required: false

	default: not defined

For this parameter you can use any SortClause implementation. But if you define the query in the
view configuration, you won’t be able to instantiate the SortClause there. For that reason we
provide a way to define the sort clause as a string instead. We this format a subset of commonly
used SortClauses is supported. Sort direction is defined as asc for ascending and desc for
descending. In can be omitted, in which case it will default to asc.

Strings can be used to define multiple sort clauses through an array of definitions:

sort:
 - depth asc
 - modified desc

Following sort clauses are available through string definition:

	Location depth

	Content Field

	Content modification date

	Content name

	Location priority

	Content publication date

Location depth

String depth enables sorting by Location’s depth:

sort: depth

sort: depth asc

sort: depth desc

Content Field

String in form of of field/[content_type]/[field] enables sorting by any Content Field. For
example by Field with identifier title in ContentType with identifier article:

sort: field/article/title

sort: field/article/title asc

sort: field/article/title desc

Content modification date

String modified enables sorting by the Content modification date:

sort: modified

sort: modified asc

sort: modified desc

Content name

String name enables sorting by the Content name:

sort: name

sort: name asc

sort: name desc

Location priority

String priority enables sorting by the Location priority:

sort: priority

sort: priority asc

sort: priority desc

Content publication date

String published enables sorting by the Content publication/creation date:

sort: published

sort: published asc

sort: published desc

Objects

Site API comes with it’s own set of entities and values. These are similar, but still different from
their counterparts in eZ Platform’s Repository API. Main benefits they provide over them are:

	Content is available in a single translation, this voids the need for various helper services

	Additional properties otherwise available only through separate entities (like ContentType
identifier, FieldType identifier and others)

	Additional properties and methods that enable simple traversal and filtering of the content model
(relations, parent, siblings, children)

Note

Note that content traversal that is achievable through the objects is not complete. It aims to
cover only the most common use cases. For more complex use cases Query Types
should be used.

Note

In Twig templates methods beginning with get and is are also available with that prefix
removed. Also, parentheses can be omitted if there are no required arguments.

For example, method field.isEmpty() is also available as field.empty() or just
field.empty, and method content.getLocations() is available as content.locations()
or just content.locations.

Content on this page:

	Content

	Methods

	hasField

	getField

	hasFieldById

	getFieldById

	getFieldValue

	getFieldValueById

	getLocations

	filterLocations

	getFieldRelation

	getFieldRelations

	filterFieldRelations

	Properties

	ContentInfo

	Properties

	Field

	Methods

	isEmpty

	Properties

	Location

	Methods

	getChildren

	filterChildren

	getSiblings

	filterSiblings

	Properties

Content

The first difference from Repository Content is that it exist it a single translation only, meaning
it contains the fields for only one translation. That will always be the translation to be rendered
on the siteaccess. You won’t need to choose the field in the correct translation, manually or
through some kind of helper service. The Content’s single translation is always the correct one.

Content fields are lazy-loaded, which means they are initially not loaded, but will be transparently
loaded at the point you access them. This voids the need to have separate, lightweight version of
Content (ContentInfo plays this role in Repository API). It also provides you with some additional
properties and methods.

Example usage from Twig:

<h1>{{ content.name }}</h1>
<h2>Parent name: {{ content.mainLocation.parent.content.name }}</h2>
<h3>Number of Locations: {{ content.locations|length }}</h3>

{% for field in content.fields %}
 {% if not field.empty %}
 {{ ng_render_field(field) }}
 {% endif %}
{% endfor %}

Methods

	hasField

	getField

	hasFieldById

	getFieldById

	getFieldValue

	getFieldValueById

	getLocations

	filterLocations

	getFieldRelation

	getFieldRelations

	filterFieldRelations

hasField

Check if Content has a Field with the given $identifier.

	Parameters

	string $identifier

	Returns

	bool

	Example in PHP

	if ($content->hasField('title')) {
 // ...
}

	Example in Twig

	{% if content.hasField('title') %}
 ...
{% endif %}

getField

Get the Field with the given $identifier.

Note

This method can return null if Field with the given $identifier doesn’t exist.

	Parameters

	string $identifier

	Returns

	Field instance or null

	Example in PHP

	$field = $content->getField('title');

	Example in Twig

	{{ set field = content.field('title') }}

hasFieldById

Check if Content has a Field with the given $id.

	Parameters

	int|string $id

	Returns

	bool

	Example in PHP

	$content->hasFieldById(42);

	Example in Twig

	{{ content.hasFieldById(42) }}

getFieldById

Get the Field with the given $id.

Note

This method can return null if Field with the given $id doesn’t exist.

	Parameters

	string $id

	Returns

	Field instance or null

	Example in PHP

	$field = $content->getFieldById(42));

	Example in Twig

	{% set field = content.fieldById(42) %}

getFieldValue

Get the value of the Field with the given $identifier.

Note

This method can return null if Field with the given $identifier doesn’t exist.

Note

Returned value object depends of the FieldType. Best way to learn about the specific value
format is reading the official FieldType reference [https://doc.ez.no/display/EZP/FieldTypes+reference] documentation,
or looking directly at code (for example the code of TextLine Value [https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/TextLine/Value.php]).

	Parameters

	string $identifier

	Returns

	Value instance of the Field or null

	Example in PHP

	$value = $content->getFieldValue('title'));

	Example in Twig

	{% set value = content.fieldValue('title') %}

getFieldValueById

Get the value of the Field with the given $id.

Note

This method can return null if Field with the given $id doesn’t exist.

	Parameters

	string $id

	Returns

	Value instance of the Field or null

	Example in PHP

	$value = $content->getFieldValueById(42));

	Example in Twig

	{% set value = content.fieldValueById(42) %}

getLocations

Used to get Content’s Locations, limited by the $limit. Locations will be sorted their path
string (a string with materialized IDs, e.g. /1/2/45/67/).

	Parameters

	int $limit = 25

	Returns

	An array of Content’s Locations

	Sorting method

	Location’s path string (e.g. /1/2/45/67/)

	Example in PHP

	$locations = $content->locations(10));

	Example in Twig

	{% set locations = content.locations %}

filterLocations

List a slice of Content’s Locations, by the $maxPerPage and $currentPage. Locations will be
sorted their path string (a string with materialized IDs, e.g. /1/2/45/67/).

	Parameters

	
	int $maxPerPage = 25

	int $currentPage = 1

	Returns

	Pagerfanta instance with a slice of Content’s Locations

	Sorting method

	Location’s path string (e.g. /1/2/45/67/)

	Example in PHP

	$locations = $content->filterLocations(10, 2));

	Example in Twig

	{% set locations = content.filterLocations(10, 2) %}

getFieldRelation

Used to get a single field relation from the Field with the given $identifier.

	Parameters

	string $identifier

	Returns

	Related Content or null if the relation does not exist

	Example in PHP

	$relation = $content->getFieldRelation('author'));

	Example in Twig

	{% set relation = content.fieldRelation('author') %}

getFieldRelations

Used to get $limit field relations from the Field with the given $identifier. Relations
will be sorted as is defined by the relation field.

	Parameters

	
	string $identifier

	int $limit = 25

	Returns

	An array of related Content items

	Sorting method

	Sorted as is defined by the relation Field

	Example in PHP

	$relations = $content->getFieldRelations('images', 10));

	Example in Twig

	{% set relations = content.fieldRelation('images') %}

filterFieldRelations

Used to filter field relations from the Field with the given $identifier.

	Parameters

	
	string $identifier

	array $contentTypeIdentifiers = []

	int $maxPerPage = 25

	int $currentPage = 1

	Returns

	Pagerfanta instance with related Content items

	Example in PHP

	$relations = $content->filterFieldRelations(
 'related_items',
 ['images', 'videos'],
 10,
 2
);

	Example in Twig

	{% set relations = content.fieldRelation(
 'related_items'
 ['images', 'videos']
 10,
 2
) %}

Properties

	Name

	Type

	Description

	$id

	string|int

	ID

	$mainLocationId

	string|int|null

	Optional main Location ID

	$name

	string

	Name

	$languageCode

	string

	Translation language code

	$contentInfo

	ContentInfo

	ContentInfo object

	$fields

	Field[]

	
An array of Field instances, which can be accessed

in two different ways:

{{ set field = content.fields.title }}
{{ set field = content.fields['title'] }}

	$mainLocation

	Location

	Optional Location object

	$owner

	Content

	Optional owner user’s Content object

ContentInfo

Site ContentInfo object is similar to the Repository ContentInfo, additionally providing access
to

Properties

	Name

	Type

	Description

	$id

	string|int

	ID of the Content

	$contentTypeId

	string|int

	ID of the ContentType

	$sectionId

	string|int

	ID of the Section

	$currentVersionNo

	int

	Current version number

	$published

	bool

	Indicates that the Content is published

	$ownerId

	string|int

	ID of the owner user Content

	$modificationDate

	\DateTime

	
Modification date

	$publishedDate

	\DateTime

	Publication date

	$alwaysAvailable

	bool

	
Indicates that the Content is always available in it’s

main translation

	$remoteId

	string

	Remote ID of the Content

	$mainLanguageCode

	string

	Main translation language code

	$mainLocationId

	string|int

	ID of the main Location

	$name

	string

	Content’s name

	$languageCode

	string

	Language code of Content’s translation

	$contentTypeIdentifier

	string

	Identifier of the Content Type

	$contentTypeName

	string

	Name of the Content Type

	$contentTypeDescription

	string

	Description of the Content Type

	$mainLocation

	Location

	Content’s main Location object

	$content

	Content

	Content object

Field

Site Field object is similar to the Repository Field, additionally providing access to the
field’s Content and properties that are otherwise available only through the corresponding
FieldDefinition object: name, description and FieldType identifier.

Methods

isEmpty

Checks if the field’s value is empty.

	Parameters

	None

	Returns

	bool

	Example in PHP

	if ($content->getField('title')->isEmpty()) {
 // ...
}

	Example in Twig

	{% if content.fields.title.empty %}
 ...
{% endif %}

Properties

	Name

	Type

	Description

	$id

	string|int

	ID of the Field

	$fieldDefIdentifier

	string

	Identifier (FieldDefinition identifier, e.g. title)

	$value

	Value object

	Value object

	$languageCode

	string

	Translation language code

	$fieldTypeIdentifier

	string

	FieldType identifier (e.g. ezstring)

	$name

	string

	ID of the Content

	$description

	string

	ID of the Content

	$content

	Content

	ID of the Content

Location

Site Location object is similar to the Repository Location, additionally providing methods and
properties that enable simple traversal and filtering of the Location tree (siblings, children,
parent, ancestors etc).

Methods

	getChildren

	filterChildren

	getSiblings

	filterSiblings

getChildren

List children Locations.

Children will be sorted as is defined by their parent Location, which is the Location the method is
called on. The single optional parameter of this method is $limit, which limits the number of
children returned and defaults to 25.

	Parameters

	string $limit = 25

	Returns

	An array of first $limit children Locations

	Sorting method

	As is defined by the Location

	Example in PHP

	$children = $location->getChildren(10));

	Example in Twig

	{% set children = location.children(10) %}

filterChildren

Filter and paginate children Locations.

This enables filtering of the children by their ContentType with $contentTypeIdentifiers
parameter and pagination using $maxPerPage and $currentPage parameters. The method returns
a Pagerfanta instance.

	Parameters

	
	array $contentTypeIdentifiers = []

	int $maxPerPage = 25

	int $currentPage = 1

	Returns

	Pagerfanta instance with a slice of children Locations

	Sorting method

	As is defined by the Location

	Example in PHP

	$children = $content->filterChildren(['articles'], 10, 2);

	Example in Twig

	{% set relation = content.filterChildren(
 ['articles'],
 10,
 2
) %}

getSiblings

List sibling Locations.

Siblings will be sorted as is defined by their parent Location, which is the parent Location of the
Location the method is called on. The single optional parameter of this method is $limit, which
limits the number of siblings returned and defaults to 25.

	Parameters

	string $limit = 25

	Returns

	An array of first $limit sibling Locations

	Sorting method

	As is defined by the parent Location

	Example in PHP

	$siblings = $location->getSiblings(10);

	Example in Twig

	{% set siblings = location.siblings(10) %}

filterSiblings

Filter and paginate sibling Locations.

This enables filtering of the siblings by their ContentType with $contentTypeIdentifiers
parameter and pagination using $maxPerPage and $currentPage parameters. The method returns
a Pagerfanta instance.

	Parameters

	
	array $contentTypeIdentifiers = []

	int $maxPerPage = 25

	int $currentPage = 1

	Returns

	Pagerfanta instance with a slice of filtered sibling Locations

	Sorting method

	As is defined by the parent Location

	Example in PHP

	$siblings = $location->filterSiblings(['articles'], 10, 2);

	Example in Twig

	{% set siblings = location.filterSiblings(
 ['articles'],
 10,
 2
) %}

Properties

	Name

	Type

	Description

	$id

	string|int

	ID of the Location

	$status

	int

	Constant defining status (published or draft)

	$priority

	int

	Priority

	$hidden

	bool

	Own hidden state

	$invisible

	bool

	Invisibility state (hidden by itself or by an ancestor)

	$remoteId

	string

	Remote ID

	$parentLocationId

	string|int

	Parent Location ID

	$pathString

	string

	Path with materialized IDs (/1/2/42/56/)

	$path

	int[]

	An array with materialized IDs ([1, 2, 42, 56])

	$depth

	int

	Depth in the Location tree

	$sortField

	int

	Constant defining field for sorting children Locations

	$sortOrder

	int

	Constant defining sort order for children Locations

	$contentId

	string|int

	ID of the Content

	$contentInfo

	ContentInfo

	ContentInfo object

	$parent

	Location

	Parent Location object (lazy loaded)

	$content

	Content

	Content object (lazy loaded)

Services

First thing to know about the Site API services is that all of them handle language configuration in
a completely transparent way. You can be sure that all objects you work with:

	can be rendered on the current siteaccess

	are loaded in the single correct translation to be rendered on the current siteaccess

This works for both Content and Locations, whether they are obtained through search, loading by the
ID, as relations or otherwise. If the object doesn’t have a translation that can be rendered on a
siteaccess, you won’t be able to load it in the first place. That means you can put the whole
language logic off your mind and solve real problems instead.

Following services are available:

	LoadService

	Methods

	loadContent()

	loadContentByRemoteId()

	loadLocation()

	loadLocationByRemoteId()

	FindService

	Methods

	findContent()

	findLocations()

	FilterService

	Methods

	filterContent()

	filterLocations()

	RelationService

	Methods

	loadFieldRelation()

	loadFieldRelations()

	Settings

	Properties

	Site

	Methods

LoadService

	Instance of

	Netgen\EzPlatformSiteApi\API\LoadService

	Container service ID

	netgen.ezplatform_site.load_service

The purpose of LoadService is to load Site Content and Locations by their ID.

Methods

	loadContent()

	loadContentByRemoteId()

	loadLocation()

	loadLocationByRemoteId()

loadContent()

Load Content object by it’s ID.

	Parameters

	string|int $id

	Returns

	Content object

	Example

	$content = $loadService->loadContent(42);

loadContentByRemoteId()

Load Content object by it’s remote ID.

	Parameters

	string $remoteId

	Returns

	Content object

	Example

	$content = $loadService->loadContentByRemoteId('f2bfc25');

loadLocation()

Load Location object by it’s ID.

	Parameters

	string|int $id

	Returns

	Location object

	Example

	$content = $loadService->loadLocation(42);

loadLocationByRemoteId()

Load Location object by it’s remote ID.

	Parameters

	string $remoteId

	Returns

	Location object

	Example

	$content = $loadService->loadLocationByRemoteId('a44fd4e');

FindService

	Instance of

	Netgen\EzPlatformSiteApi\API\FindService

	Container service ID

	netgen.ezplatform_site.find_service

The purpose of the FindService is to find Content and Locations by using eZ Platform’s
Repository Search API. This service will use the search engine that is configured for the
Repository. That can be Legacy search engine or Solr search engine.

The service will return SearchResult object from the Repository API containing Site API objects.

Methods

	findContent()

	findLocations()

findContent()

Find Content by the Content Query.

	Parameters

	string|int $id

	Returns

	Location object

	Example

	$content = $findService->findContent($query);

findLocations()

Find Locations by the LocationQuery.

	Parameters

	eZ\Publish\API\Repository\Values\Content\LocationQuery $query

	Returns

	eZ\Publish\API\Repository\Values\Content\Search\SearchResult

	Example

	$content = $findService->findLocations($locationQuery);

FilterService

	Instance of

	Netgen\EzPlatformSiteApi\API\FilterService

	Container service ID

	netgen.ezplatform_site.load_service

The purpose of the FindService is to find Content and Locations by using eZ Platform’s
Repository Search API. That is the same as FindService, but with the difference that it will
always use Legacy search engine.

While Solr search engine provides more features and more performance than Legacy search engine, it’s
a separate system needs to be synchronized with changes in the database. This synchronization
comes with a delay, which can be a problem in some cases.

FilterService gives you access to search that is always up to date, because it uses Legacy search
engine that works directly with database. At the same time, search on top of Solr, with all the
advanced features (like fulltext search or facets) is still available through FindService.

The service will return SearchResult object from the Repository API containing Site API objects.

Methods

	filterContent()

	filterLocations()

filterContent()

Filter Content by the Content Query.

	Parameters

	string|int $id

	Returns

	Location object

	Example

	$content = $filterService->filterContent($query);

filterLocations()

Filter Locations by the LocationQuery.

	Parameters

	eZ\Publish\API\Repository\Values\Content\LocationQuery $query

	Returns

	eZ\Publish\API\Repository\Values\Content\Search\SearchResult

	Example

	$content = $filterService->filterLocations($locationQuery);

RelationService

	Instance of

	Netgen\EzPlatformSiteApi\API\RelationService

	Container service ID

	netgen.ezplatform_site.relation_service

The purpose of RelationService is to provide a way to load field relations. This needs to be
done respecting permissions and sort order and actually requires surprising amount of code when
using Repository API.

Methods

	loadFieldRelation()

	loadFieldRelations()

loadFieldRelation()

Load single field relation from a specific field of a specific Content.

The method will return null if the field does not contain relations that can be loaded by the
current user. If the field contains multiple relations, the first one will be returned. The method
supports optional filtering by ContentType.

	Parameters

	
	string|int $contentId

	string $fieldDefinitionIdentifier

	array $contentTypeIdentifiers = []

	Returns

	Content or null

	Example

	$content = $relationService->loadFieldRelation(
 42,
 'relations',
 ['articles']
);

loadFieldRelations()

Load all field relations from a specific field of a specific Content. The method supports optional
filtering by ContentType.

	Parameters

	
	string|int $contentId

	string $fieldDefinitionIdentifier

	array $contentTypeIdentifiers = []

	Returns

	Content or null

	Example

	$content = $relationService->loadFieldRelations(
 42,
 'relations',
 ['articles']
);

Settings

The purpose of Settings object is to provide read access to current configuration.

	Instance of

	Netgen\EzPlatformSiteApi\API\Settings

	Container service ID

	netgen.ezplatform_site.settings

Properties

	Property

	Type

	Description

	$prioritizedLanguages

	string[]

	An array of prioritized languages of the current siteaccess

	$useAlwaysAvailable

	bool

	
Whether always available Content is taken into account

when resolving translations

	$rootLocationId

	string|int

	Root Location of the current siteaccess

Site

The purpose of Site service is to aggregate all other Site API services in one place. It
implements a getter method for each of the services described above.

	Instance of

	Netgen\EzPlatformSiteApi\API\Site

	Container service ID

	netgen.ezplatform_site.site

Methods

	Method

	Returns

	getLoadService()

	LoadService

	getFindService()

	FindService

	getFilterService()

	FilterService

	getRelationService()

	RelationService

	getSettings()

	Settings

Custom controllers

Implementing a custom controller is similar to the vanilla eZ Platform. First, you have to implement
it with extending the Site API base controller:

namespace AppBundle\Controller;

use Netgen\Bundle\EzPlatformSiteApiBundle\Controller\Controller;
use Netgen\Bundle\EzPlatformSiteApiBundle\View\ContentView;

class DemoController extends Controller
{
 /**
 * @param \Netgen\Bundle\EzPlatformSiteApiBundle\View\ContentView $view
 *
 * @return \Netgen\Bundle\EzPlatformSiteApiBundle\View\ContentView
 */
 public function viewArticleAction(ContentView $view)
 {
 $content = $view->getSiteContent();
 $location = $view->getSiteLocation();

 $filterService = $this-getSite()->getFilterService();

 $hasRelatedItems = false;

 if (!$content->getField('related')->isEmpty()) {
 $hasRelatedItems = true;
 }

 // Your other custom logic here
 // ...

 // Add variables to the view
 $view->addParameters([
 'has_related_items' => $hasRelatedItems,
]);

 return $view;
 }
}

Next, register your controller with the DI container. The base controller expects that two setter
methods are called on instantiation: setContainer() and setSite(). You can do this manually:

app.controller.demo:
 class: AppBundle\Controller\DemoController
 calls:
 - [setContainer, ['@service_container']]
 - [setSite, ['@netgen.ezplatform_site.core.site']]

Or by extending the base definition:

app.controller.demo:
 parent: netgen.ezplatform_site.controller.base
 class: AppBundle\Controller\DemoController

Now you can use your custom controller in the view configuration:

ezpublish:
 system:
 frontend_group:
 ngcontent_view:
 full:
 article:
 template: "@App/content/full/article.html.twig"
 controller: "app.controller.demo:viewArticleAction"
 match:
 Identifier\ContentType: article

Migration

If you are starting with a new project on top of vanilla eZ Platform, then you’re starting with a
clean slate and of course there is no need to migrate anything. In that case it’s enough to install
and configure the Site API and you can start working with it.

If that’s the case, we recommend that you look into our Media Site [https://github.com/netgen/media-site], which is built with Site API
and will provide you with a comprehensive base for building a web project on eZ Platform.

On the other hand if you want to add the Site API to an existing project or you have a base site of
your own, read on to find out about your options.

Choosing your migration strategy

You can install the Site API on a existing project without worrying
that something will break – everything should just keep working as before. However, nothing will
use the Site API – you will first have to develop new features or migrate existing ones.

At this point, you can:

	use Site API services as you would normally do in a Symfony application. For example you could
use it in a custom route.

	use Site API’s view configuration, available under
ngcontent_view key. You need to know that eZ Platform URL alias routes still won’t be handled
through it at this point. Until you explicitly turn that on for a siteaccess, you can only use it
by making a subrequest to Site API’s Content view controller ng_content:viewAction.

Handling eZ Platform URL alias routes through Site API’s view configuration has to be enabled per
siteaccess, with the following configuration:

netgen_ez_platform_site_api:
 system:
 frontend_group:
 override_url_alias_view_action: true

Once you do this, all URL alias routes on the siteaccess will be handled through Site API’s view
configuration. That means you will need to migrate or adapt all full view templates, otherwise
expect that things will break. Similar to the point 2. from above will be valid for eZ Platform’s
view configuration, available under content_view key. You will still be able to use it, but only
through explicit subrequests to eZ Platform’s view controller ez_content:viewAction.

All Site API objects contain their eZ Platform counterparts. This will enable initial mixing of both
Site API and vanilla eZ Platform ways of doing things, which means you will be able to migrate your
project one step at a time.

Knowing all that gives you quite some flexibility in choosing exactly how you want to adapt your
project to use Site API.

Comparison with eZ Platform

Here’s a comparison table of Site API and eZ Platform Twig functions [https://doc.ezplatform.com/en/2.2/guide/twig_functions_reference/] to provide a quick overview
of changes needed in the templates.

	eZ Platform

	Netgen’s Site API

	{{ ez_content_name(content) }}

	{{ content.name }}

	{{ ez_field_name(content, 'title') }}

	{{ content.fields.title.name }}

	{{ ez_field_description(content, 'title') }}

	{{ content.fields.title.description }}

	{{ ez_field(content, 'title') }}

	{{ content.fields.title }}

	{{ ez_render_field(content, 'title') }}

	{{ ng_render_field(content.fields.title) }}

	{{ ez_field_value(content, 'title') }}

	{{ content.fields.title.value }}

	{{ ez_is_field_empty(content, 'title') }}

	{{ content.fields.title.empty }}

	{{ ez_image_alias(
 content.field('image'),
 content.versionInfo,
 'large'
) }}

	{{ ng_image_alias(
 content.fields.image,
 'large'
) }}

Search and replace regexes

Here are some regular expressions that you can use to migrate your Twig templates. The list is not
complete, but it should get you started. If you’re using PHP Storm, follow the steps:

	Open your PHPStorm

	Navigate to template

	Press CTRL + R or Command + R

	Enter the one of the search/replace pairs from below and replace away

ez_is_field_empty

	search for

	ez_is_field_empty\s*\(\s*([a-zA-Z0-9_]+)\s*,\s*['"]([a-zA-Z0-9_]+)['"]\s*\)

	replace with

	$1.fields.$2.empty

ez_field_value

	search for

	ez_field_value\s*\(\s*([a-zA-Z0-9_]+)\s*,\s*['"]([a-zA-Z0-9_]+)['"]\s*\)

	replace with

	$1.fields.$2.value

ez_render_field

	search for

	ez_render_field[]?\(\s+([a-zA-Z0-9_]+),\s+['"]([a-zA-Z0-9_]+)['"](.*?)?\)

	replace with

	ng_render_field($1.fields.$2$3)

Upgrades

	Upgrading from 2.3.0 to 2.4.0

	Upgrading from 1.0.0 to 2.0.0

Upgrading from 2.3.0 to 2.4.0

Controllers that extend from Netgen\Bundle\EzPlatformSiteApiBundle\Controller\Controller and are
registered inside dependency injection container should set two setter injection calls:

app.demo.controller.demo_controller:
 class: Acme\Bundle\DemoBundle\Controller\DemoController
 calls:
 - [setContainer, ['@service_container']]
 - [setSite, ['@netgen.ezplatform_site.site']]

Or if you want to avoid setter calls, just set parent service:

app.demo.controller.demo_controller:
 parent: netgen.ezplatform_site.controller.base
 class: Acme\Bundle\DemoBundle\Controller\DemoController

Upgrading from 1.0.0 to 2.0.0

eZ Platform Site API introduces a slight breaking change to ContentView value object, hence the
bump to version 2.0.

	Site API ContentView view object does not extend from eZ Platform ContentView value object
any more to allow implementation of custom view providers. Class signature did not change,
however, since all required interfaces are now implemented directly on Site API ContentView
value object.

	Also, Netgen\Bundle\EzPlatformSiteApiBundle\View\ContentValueView interface does not contain
getSiteLocation method any more. It is moved to a new interface, LocationValueView, in the
same namespace. If you used this method in your code, make sure to check for this new interface.
This was done to keep in line on how eZ kernel uses its ContentView value object and its
interfaces.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Netgen’s Site API for eZ Platform

_static/comment-bright.png

_static/ajax-loader.gif

