

Introduction

Ncpol2sdpa solves global polynomial optimization problems of either commutative variables or noncommutative operators through a semidefinite programming (SDP) relaxation. The optimization problem can be unconstrained or constrained by equalities and inequalities, and also by constraints on the moments. The objective is to be able to solve large scale optimization problems. Example applications include:

	When the polynomial optimization problem is defined over commutative variables, the generated SDP hierarchy is identical to Lasserre’s [http://dx.doi.org/10.1137/S1052623400366802]. In this case, the functionality resembles the MATLAB toolboxes Gloptipoly [http://homepages.laas.fr/henrion/software/gloptipoly/], and, with the chordal extension, SparsePOP [http://sparsepop.sourceforge.net/].

	Relaxations [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Parameteric%20and%20Bilevel%20Polynomial%20Optimization%20Problems.ipynb] of parametric [http://dx.doi.org/10.1137/090759240] and bilevel [http://arxiv.org/abs/1506.02099] polynomial optimization problems.

	When the polynomials are over noncommutative operators, the generated SDP is a step in the Navascués-Pironio-Acín (NPA) hierarchy. The most notable example is calculating the maximum quantum violation [http:/dx.doi.org/10.1103/PhysRevLett.98.010401] of Bell inequalities [http://peterwittek.com/2014/06/quantum-bound-on-the-chsh-inequality-using-sdp/], also in multipartite scenarios [http://peterwittek.github.io/multipartite_entanglement/].

	Nieto-Silleras [http://dx.doi.org/10.1088/1367-2630/16/1/013035] hierarchy for quantifying randomness [http://peterwittek.com/2014/11/the-nieto-silleras-and-moroder-hierarchies-in-ncpol2sdpa/] and for calculating maximum guessing probability [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Optimal%20randomness%20generation%20from%20entangled%20quantum%20states.ipynb].

	Moroder [http://dx.doi.org/10.1103/PhysRevLett.111.030501] hierarchy to enable PPT-style and other additional constraints.

	Sums-of-square (SOS) decomposition based on the dual solution.

	Ground-state energy problems [http://dx.doi.org/10.1137/090760155]: bosonic and fermionic systems [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Comparing_DMRG_ED_and_SDP.ipynb], Pauli spin operators. This methodology closely resembles the reduced density matrix (RDM) method.

	Hierarchy for quantum steering [http://dx.doi.org/10.1103/physrevlett.115.210401].

The implementation has an intuitive syntax for entering problems and it scales for a larger number of noncommutative variables using a sparse representation of the SDP problem. Further details are found in the following paper:

	Peter Wittek. Algorithm 950: Ncpol2sdpa—Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables. ACM Transactions on Mathematical Software, 41(3), 21, 2015. DOI: 10.1145/2699464 [http://dx.doi.org/10.1145/2699464]. arXiv:1308.6029 [http://arxiv.org/abs/1308.6029].

Copyright and License

Ncpol2sdpa is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License [http://www.gnu.org/licenses/gpl-3.0.html] as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

Ncpol2sdpa is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License [http://www.gnu.org/licenses/gpl-3.0.html] for more details.

Acknowledgment

This work is supported by the European Commission Seventh Framework Programme under Grant Agreement Number FP7-601138 PERICLES [http://pericles-project.eu/], by the Red Espanola de Supercomputacion [http://www.bsc.es/RES] grants number FI-2013-1-0008 and FI-2013-3-0004, and by the Swedish National Infrastructure for Computing [http://www.snic.se/] projects SNIC 2014/2-7 and SNIC 2015/1-162.

Download and Installation

The package is available in the Python Package Index [https://pypi.python.org/pypi/ncpol2sdpa/]. The latest development version is available on GitHub [https://github.com/peterwittek/ncpol2sdpa].

Dependencies

The implementation requires SymPy [http://sympy.org/] and Numpy [http://www.numpy.org/]. The code is compatible with both Python 2 and 3, but using version 3 incurs a major decrease in performance.

While the default CPython interpreter is sufficient for small to medium-scale problems, execution time becomes excessive for larger problems. The code is compatible with Pypy. Using it yields a 10-20x speedup. If you use Pypy, you will need the Pypy fork of Numpy [https://bitbucket.org/pypy/numpy].

By default, Ncpol2sdpa does not require a solver, but then it will not be able to solve a generated relaxation either. Install any supported solver and it will be detected automatically.

Optional dependencies include:

	SDPA [http://sdpa.sourceforge.net/] is a possible target solver.

	SciPy [http://scipy.org/] yields faster execution with the default CPython interpreter.

	PICOS [http://picos.zib.de/] is necessary for using the Cvxopt solver and for converting the problem to a PICOS instance.

	MOSEK [http://www.mosek.com/] Python module is necessary to work with the MOSEK solver.

	CVXPY [http://cvxpy.org/] is required for converting the problem to or by solving it by CVXPY.

	Cvxopt [http://cvxopt.org/] is required by both Chompack and PICOS.

	Chompack [http://chompack.readthedocs.io/] improves the sparsity of the chordal graph extension.

Installation

Follow the standard procedure for installing Python modules:

$ pip install ncpol2sdpa

If you use the development version, install it from the source code:

$ git clone https://github.com/peterwittek/ncpol2sdpa.git
$ cd ncpol2sdpa
$ python setup.py install

Tutorial

The implementation follows an object-oriented design. The core object is
SdpRelaxation. There are three steps to generate the relaxation:

	Instantiate the SdpRelaxation object.

	Get the relaxation.

	Write the relaxation to a file or solve the problem.

The second step is the most time consuming, often running for hours as
the number of variables increases. Once the solution is obtained, it can
be studied further with some helper functions.

To instantiate the SdpRelaxation object, you need to specify the
variables. You can use any SymPy symbolic variable, as long as the adjoint
operator is well-defined. The library also has helper functions to generate
commutative or noncommutative variables or operators.

Getting the relaxation requires at least the level of relaxation, and the
matching method, SdpRelaxation.get_relaxation, will generate the moment
matrix. Additional elements of the problem, such as the objective function,
inequalities, equalities, and constraints on the moments.

The last step in is to either solve or export the relaxation. The function
solve_sdp or the class method SdpRelaxation.solve autodetects the possible
solvers: SDPA, MOSEK, and CVXOPT. Alternatively, the method write_to_file
exports the file to sparse SDPA format, which can be solved externally on a
supercomputer, in MATLAB, or by any other means that accepts this input format.

Defining a Polynomial Optimization Problem of Commuting Variables

Consider the following polynomial optimization problem:

\[\min_{x\in \mathbb{R}^2}2x_1x_2\]

such that

\[-x_2^2+x_2+0.5\geq 0\]

\[x_1^2-x_1=0.\]

The equality constraint is a simple projection. We either substitute it with two
inequalities or treat the equality as a monomial substitution. The second option
leads to a sparser SDP relaxation. The code samples below take this approach.
In this case, the monomial basis is
\(\{1, x_1, x_2, x_1x_2, x_2^2\}\). The corresponding level-2
relaxation is written as

\[\min_{y}2y_{12}\]

such that

\[\begin{split}\left[\begin{array}{c|cc|cc}1 & y_{1} & y_{2} & y_{12} & y_{22}\\
\hline{}y_{1} & y_{1} & y_{12} & y_{12} & y_{122}\\
y_{2} & y_{12} & y_{22} & y_{122} & y_{222}\\
\hline{}y_{12} & y_{12} & y_{122} & y_{122} & y_{1222}\\
y_{22} & y_{122} & y_{222} & y_{1222} & y_{2222}\end{array} \right] \succeq{}0\end{split}\]

\[\begin{split}\left[\begin{array}{c|cc}-y_{22}+y_{2}+0.5 & -y_{122}+y_{12}+0.5y_{1} & -y_{222}+y_{22}+0.5y_{2}\\
\hline{}-y_{122}+y_{12}+0.5y_{1} & -y_{122}+y_{12}+0.5y_{1} & -y_{1222}+y_{122}+0.5y_{12}\\
-y_{222}+y_{22}+0.5y_{2} & -y_{1222}+y_{122}+0.5y_{12} & -y_{2222}+y_{222}+0.5y_{22}
\end{array}\right]\succeq{}0.\end{split}\]

Apart from the matrices being symmetric, notice other regular patterns
between the elements – these are recognized in the relaxation and the same SDP
variables are used for matching moments. To generate the relaxation, first we
set up a few helper variables, including the symbolic variables used to define
the polynomial objective function and constraint. The symbolic manipulations
are based on SymPy.

from ncpol2sdpa import *

n_vars = 2 # Number of variables
level = 2 # Requested level of relaxation
x = generate_variables('x', n_vars)

By default, the generated variables are commutative. Alternatively, you can use
standard SymPy symbols, but it is worth declaring them as real. With these
variables, we can define the objective and the inequality constraint.

obj = x[0]*x[1] + x[1]*x[0]
inequalities = [-x[1]**2 + x[1] + 0.5>=0]

We can also write all inequality-type constraints assuming to be in the form \(\ge 0\) as

inequalities = [-x[1]**2 + x[1] + 0.5]

This is more convenient when we have a large number of constraints.

The equality, as discussed, is entered as a substitution rule:

substitutions = {x[0]**2 : x[0]}

Generating and Solving the Relaxation

After we defined the problem, we need to initialize the SDP relaxation object
with the variables, and request generating the relaxation given the constraints:

sdp = SdpRelaxation(x)
sdp.get_relaxation(level, objective=obj, inequalities=inequalities,
 substitutions=substitutions)

For large problems, getting the relaxation can take a long time. Once we have
the relaxation, we can try to solve it solve it. Currently three solvers are
supported fully: SDPA, MOSEK, and CVXOPT. If any of them are available, we
obtain the solution by calling the solve method:

sdp.solve()
print(sdp.primal, sdp.dual, sdp.status)

This gives a solution close to the optimum around -0.7321. The solution and some
status information and the time it takes to solve it become part of the
relaxation object.

If no solver is detected, or you want more control over the parameters
of the solver, or you want to solve the problem in MATLAB, you export the
relaxation to SDPA format:

sdp.write_to_file('example.dat-s')

You can also specify a solver if you wish. For instance, if you want to use
the arbitrary-precision solver that you have available in the path, along with a
matching parameter file, you can call

sdp.solve(solver='sdpa', solverparameters={"executable":"sdpa_gmp",
 "paramsfile":"params.gmp.sdpa"})

If you have multiple solvers available, you might want to specify which exactly
you want to use. For CVXOPT, call

sdp.solve(solver='cvxopt')
print(sdp.primal, sdp.dual)

This solution also requires PICOS on top of CXOPT. Alternatively, if you have
MOSEK installed and it is callable from your Python distribution, you can
request to use it:

sdp.solve(solver=’mosek’)
print(sdp.primal, sdp.dual)

Analyzing the Solution

We can study individual entries of the solution matrix by providing the monomial
we are interested in. For example:

sdp[X[0]*X[1]]

The sums-of-square (SOS) decomposition is extracted from the dual solution:

sigma = sdp.get_sos_decomposition()

If we solve the SDP with the arbitrary-precision solver sdpa_gmp,
we can find a rank loop at level two, indicating that convergence has
been achieved.

sdp.solve(solver='sdpa', solverparameters={"executable":"sdpa_gmp",
 "paramsfile"="params.gmp.sdpa"})
sdp.find_solution_ranks()

The output for this problem is [2, 3], not showing a rank loop at this level
of relaxation.

Debugging the SDP Relaxation

It often happens that solving a relaxation does not yield the expected results.
To help understand what goes wrong, Ncpol2sdpa provides a function to write the
relaxation in a comma separated file, in which the individual cells contain the
respective monomials. The first line of the file is the objective function.

sdp.write_to_file("examples.csv")

Furthermore, the library can write out which SDP variable corresponds to which
monomial by calling

sdp.save_monomial_index("monomials.txt")

Defining and Solving an Optimization Problem of Noncommuting Variables

Consider a slight variation of the problem discussed in the previous sections:
change the algebra of the variables from commutative to Hermitian noncommutative, and use
the following objective function:

\[\min_{x\in \mathbb{R}^2}x_1x_2+x_2x_1\]

The constraints remain identical:

\[-x_2^2+x_2+0.5\geq 0\]

\[x_1^2-x_1=0.\]

Defining the problem, generating the relaxation, and solving it follow a similar
pattern, but we request operators instead of variables.

X = generate_operators('X', n_vars, hermitian=True)
obj_nc = X[0] * X[1] + X[1] * X[0]
inequalities_nc = [-X[1] ** 2 + X[1] + 0.5]
substitutions_nc = {X[0]**2 : X[0]}
sdp_nc = SdpRelaxation(X)
sdp_nc.get_relaxation(level, objective=obj_nc, inequalities=inequalities_nc,
 substitutions=substitutions_nc)
sdp_nc.solve()

This gives a solution very close to the analytical -3/4. Let us export the
problem again:

sdp.write_to_file("examplenc.dat-s")

Solving this with the arbitrary-precision solver, we discover a rank loop:

sdp.solve(solver='sdpa', solverparameters={"executable":"sdpa_gmp",
 "paramsfile"="params.gmp.sdpa"})
sdp.find_solution_ranks()

The output is [2, 2], indicating a rank loop and showing that the
noncommutative case of the relaxation converges faster.

Examples

Example 1: Max-cut

This is a polynomial optimization problem of commutative variables mentioned in
Section 5.12 of Henrion et. al (2009). We rely on NumPy to remove the equality constraints from the problem

import numpy as np
W = np.diag(np.ones(8), 1) + np.diag(np.ones(7), 2) + np.diag([1, 1], 7) + \
 np.diag([1], 8)
W = W + W.T
n = len(W)
e = np.ones(n)
Q = (np.diag(np.dot(e.T, W)) - W) / 4

x = generate_variables('x', n)
equalities = [xi ** 2 - 1 for xi in x]

objective = -np.dot(x, np.dot(Q, np.transpose(x)))

sdp = SdpRelaxation(x)
sdp.get_relaxation(1, objective=objective, equalities=equalities,
 removeequalities=True)
sdp.solve()

Example 2: Parametric Polynomial Optimization Problems

In a parametric polynomial optimization problem, we can separate two sets of variables, and one set acts as a parameter to the problem. More formally, we would like to find the following function:

\[J(x) = \inf_{y\in\mathbb{R}^m}\{f(x,y): h_j(y)\geq 0, j=1,\ldots,r\}\]

where \(x\in\mathbf{X}=\{x\in \mathbb{R}^n: h_k(x)\geq 0, k=r+1,\ldots,t\}\). We can approximate \(J(x)\) using the dual an SDP relaxation. The following implements Example 4 from Lasserre (2010).

from math import sqrt
from sympy import integrate, N
import matplotlib.pyplot as plt

def J(x):
 return -2*abs(1-2*x)*sqrt(x/(1+x))

def Jk(x, coeffs):
 return sum(ci*x**i for i, ci in enumerate(coeffs))

level = 4
x = generate_variables('x')[0]
y = generate_variables('y', 2)
f = (1-2*x)*(y[0] + y[1])

gamma = [integrate(x**i, (x, 0, 1)) for i in range(1, 2*level+1)]
marginals = flatten([[x**i-N(gamma[i-1]), N(gamma[i-1])-x**i]
 for i in range(1, 2*level+1)])

inequalities = [x*y[0]**2 + y[1]**2 - x, - x*y[0]**2 - y[1]**2 + x,
 y[0]**2 + x*y[1]**2 - x, - y[0]**2 - x*y[1]**2 + x,
 1-x, x]
sdp = SdpRelaxation(flatten([x, y]))
sdp.get_relaxation(level, objective=f, momentinequalities=marginals,
 inequalities=inequalities)
sdp.solve()
coeffs = [sdp.extract_dual_value(0, range(len(inequalities)+1))]
coeffs += [sdp.y_mat[len(inequalities)+1+2*i][0][0] - sdp.y_mat[len(inequalities)+1+2*i+1][0][0]
 for i in range(len(marginals)//2)]

x_domain = [i/100. for i in range(100)]
plt.plot(x_domain, [J(xi) for xi in x_domain], linewidth=2.5)
plt.plot(x_domain, [Jk(xi, coeffs) for xi in x_domain], linewidth=2.5)
plt.show()

[image: _images/jointmarginal.png]

Example 3: Sparse Relaxation with Chordal Extension

This method replicates the behaviour of SparsePOP (Waki et. al, 2008). The following is a
simple example:

level = 2
X = generate_variables('x', 3)

obj = X[1] - 2*X[0]*X[1] + X[1]*X[2]
inequalities = [1-X[0]**2-X[1]**2, 1-X[1]**2-X[2]**2]

sdp = SdpRelaxation(X)
sdp.get_relaxation(level, objective=obj, inequalities=inequalities,
 chordal_extension=True)
sdp.solve()
print(sdp.primal, sdp.dual)

Example 4: Mixed-Level Relaxation of a Bell Inequality

It is often the case that moving to a higher-order relaxation is
computationally prohibitive. For these cases, it is possible to inject
extra monomials to a lower level relaxation. We refer to this case as a
mixed-level relaxation.

As an example, we consider the CHSH inequality in the probability
picture at level 1+AB relaxation. The lazy way of doing this is as follows:

level = 1
I = [[0, -1, 0],
 [-1, 1, 1],
 [0, 1, -1]]
print(maximum_violation(A_configuration, B_configuration, I, level,
 extra='AB')

This will immediately give you the negative of the maximum violation.
The function maximum_violation only works for two-party configuration, so for
educational purposes, we spell out what goes on in the background. With level
and I defined as above, we create the measurements that will make up the
probabilities, and define the objective function with the I matrix.

P = Probability([2, 2], [2, 2])
objective = define_objective_with_I(I, P)

Unfortunately, the function define_objective_with_I only works for two parties
again, which is not surprising, as it would be hard to define an I matrix for
more than two parties. So if you have a multipartite scenario, you can use the
probabilities to define your Bell inequality. For the CHSH, it is

CHSH = -P([0],[0],'A') + P([0,0],[0,0]) + P([0,0],[0,1]) + \
 P([0,0],[1,0]) - P([0,0],[1,1]) - P([0],[0],'B')

Note that we can only minimize a function, so we have to flip the sign to get
the same objective function as above:

objective = -CHSH

We need to generate the monomials we would like to add to the
relaxation. This is aided by a helper function in the class Probability. We
only need to provide the strings we would like to see – this time it is AB:

sdp = SdpRelaxation(P.get_all_operators())
sdp.get_relaxation(level, objective=objective,
 substitutions=P.substitutions,
 extramonomials=P.get_extra_monomials('AB'))
sdp.solve()
print(sdp.primal)

Example 5: Additional manipulation of the generated SDPs with PICOS

A compatibility layer with PICOS allows additional manipulations of the
optimization problem and also calling a wider ranger of solvers.
Assuming that the PICOS dependencies are in PYTHONPATH, we
can pass an argument to the function get_relaxation to generate a
PICOS optimization problem. Using the same example as before, we change
the relevant function call to:

P = sdp.convert_to_picos()

This returns a PICOS problem. For instance, we can manually define the value
of certain elements of the moment matrix before solving the SDP:

X = P.get_variable('X')
P.add_constraint(X[0, 1] == 0.5)

Finally we can solve the SDP with any of solvers that PICOS supports:

P.solve()

Example 6: Bosonic System

The system Hamiltonian describes \(N\) harmonic oscillators with a
parameter \(\omega\). It is the result of second quantization and it
is subject to bosonic constraints on the ladder operators \(a_{k}\)
and \(a_{k}^{\dagger}\) (see, for instance, Section

 Revision History

Revision History

	Version 1.12.2 (2017-07-28)

	
	Changed: Symbolic expression parsing improved.

	Fixed: Chompack-based chordal extension works.

	Fixed: get_item works for cases of moment substitutions.

	Version 1.12.1 (2017-03-16)

	
	Changed: Removed automated detection of simple moment substitutions.

	Changed: Better handling of monomial substitutions.

	Version 1.12.0 (2016-11-28)

	
	New: Pass the optional momentsubstitutions= parameter to the get_relaxation method to substitute out specific moments.

	Changed: Warning message is displayed if the equality constraints are linearly dependent.

	Changed: CVXPY support improved, solver parameters passed on correctly. SCS can directly be requested as a solver.

	Fixed: Chordal graph extension works with blank objective functions and commuting variables.

	Fixed: Parallel computations produce weird deadlocks less frequently.

	Version 1.11.1 (2016-08-07)

	
	Fixed: Major bug in generating localizing matrices with the correct monomials.

	Fixed: fast_substitute is able to handle some more extreme forms of commuting monomials.

	Version 1.11.0 (2016-06-23)

	
	New: Experimental new parallel computation of the moment matrix and the constraints.

	New: CVXPY conversion with convert_to_cvxpy. CVXPY is now also a valid solver.

	New: The method get_dual returns the block in the dual solution corresponding to the requested constraint.

	Changed: Deprecated optional parameter bounds was removed.

	Fixed: Moments are correctly returned even if equalities are removed.

	Fixed: Constants in PICOS conversion are added correctly irrespective of where they are in the matrices.

	Fixed: PICOS conversion handles feasibility problems correctly.

	Fixed: The optional parameter removeequalities=True handles equalities of SDP variables correctly.

	Version 1.10.3 (2016-02-26)

	
	Fixed: Problem with unexpanded moment equality constraints resolved.

	Version 1.10.2 (2016-02-03)

	
	New: Very efficient substitutions of moment equalities if one side of the equality is the moment of a monomial, and the other side is a constant.

	Version 1.10.1 (2016-01-29)

	
	Fixed: The moment equalities are removed correctly if asked.

Version 1.10 (2015-12-08)

	New: The function generate_operators returns a list of operators from the sympy.physics.quantum submodule. This is the old behaviour of generate_variables.

	New: The SdpRelaxation class is now subscriptable. You can retrieve the value of polynomials in the solved relaxation in such way. Internally, it calls get_xmat_value with self.

	New: The convenience method solve() was added to the class SdpRelaxation.

	New: The convenience method write_to_file() was added to the class SdpRelaxation.

	New: The convenience method save_monomial_index() was added to the class SdpRelaxation.

	New: The convenience method find_solution_ranks() was added to the class SdpRelaxation. It replaces the previous stand-alone find_rank_loop() function.

	New: The conversion routines convert_to_picos and convert_to_mosek are also part of the class sdpRelaxation.

	New: The new method extract_dual_value() was added to the class SdpRelaxation to calculate the inner product of the coefficient matrix of an SDP variable with the dual solution.

	New: The class RdmHierarchy was added to generate SDPs of the reduced density matrix method. Initial support for 1D spinless, translational invariant systems is included.

	New: Better support for the steering hierarchy in a new class SteeringHierarchy.

	Changed: The function generate_variables now returns a list of sympy.Symbol variables if commutative variables are requested, and the default is commutative.

	Changed: Many unnecessary user-facing functions were removed.

	Changed: The SOS decomposition is now requested with get_sos_decomposition from the class SdpRelaxation, and it returns a list of the SOS polynomials.

	Changed: The optional parameter bounds for get_relaxation is deprececated, use the optional parameters momentinequalities and momentequalities instead.

	Changed: Removed convert_to_picos_extra_moment_matrix and added optional parameter duplicate_moment_matrix to convert_to_picos to achieve the same effect.

	Changed: The chordal extension is now requested as an optional parameter chordal_extension=True passed to the get_relaxation method, and not by specifying it as a hierarchy type in the constructor.

	Changed: The Moroder hierarchy is now a class.

	Changed: Small improvements in speed in the substitution routines; unit tests for the substitution routines.

	Changed: The read_sdpa_out routine takes an optional argument for a relaxation, and adds the solution to this object if requested.

	Changed: Instead of an examples folder, all examples were migrated to the documentation.

	Changed: The symbolic variables which are not to be relaxed are now supplied to the constructor with the optional parameter parameters.

	Changed: Redundant positive-semidefinite constraint type removed.

	Fixed: PICOS and MOSEK conversion works for complex matrices too (issue #10 [https://github.com/peterwittek/ncpol2sdpa/issues/10]).

	Fixed: The moment symmetries are correctly calculated for both Hermitian and non-Hermitian variables (issue #9 [https://github.com/peterwittek/ncpol2sdpa/issues/9])

Version 1.9 (2015-08-28)

	New: Defining the constraints now also allows using for the symbols <, <=, >=, >. Additionally, the function Eq from SymPy can be used to defined equalities.

	New: The function solve_sdp also accepts solver="cvxopt" to use CVXOPT for solving a relaxation (requires PICOS and CVXOPT).

	New: convert_to_human_readable function returns the objective function and the moment matrix as a string and a matrix of strings to give a symbolic representation of the problem.

	New: get_next_neighbors function retrieves the forward neighbors at a given distance of a site or set of sites in a lattice.

	New: Much faster substitutions if the right-hand side of the substitution never contains variables that are not in the left-hand side.

	New: Non-unique variables are considered only once in each variable set.

	New: When using solve_sdp to solve the relaxation, the solution, its status, and the time it takes to solve are now part of the class SdpRelaxation.

	New: The class Probability provides an intuitive way to define quantum probabilities and Bell inequalities.

	New: The function solve_sdp autodetects available solvers and complains if there is none.

	New: The optional parameter solverparameters to the function solve_sdp can contain a dictionary of options, with a different set for each of the target solvers.

	New: Regression testing framework added.

	Changed: The functions find_rank_loop, sos_decomposition, and get_xmat_value are no longer required an x_mat or y_mat parameter to pass the primal or dual solution. These values are extracted from the solved relaxation. The respective parameters became optional.

	Changed: Constant term in objective function is added to the primal and dual values when using the solve_sdp function.

	Changed: The primal and dual values of the Mosek solution change their signs when using the solve_sdp function.

	Changed: The verbosity parameter also controls the console output of every solver.

	Changed: Faacets relaxations got their own class FaacetsRelaxation.

	Fixed: Localizing matrices are built correctly when substitution rules contain polynomials and when the identity operator is not part of the monomial sets.

	Fixed: The function get_xmat_value also works in Pypy.

Version 1.8 (2015-05-25)

	New: Complex moment matrices are embedded to as real matrices in the SDPA export and the solve_sdp function.

	New: Localizing monomials can be fine-tuned by supplying them to get_relaxation through the optional parameter localizing_monomials.

	New: solve_sdp can also solve a problem with Mosek.

	New: The function get_xmat_value returns the matching value for a monomial from a solution matrix, given the relaxation and the solution.

	Changed: solve_sdp no longer accepts parameters solutionmatrix and solverexecutable. All parameters are now passed via the solverparameters dictionary.

	Changed: Legacy Picos code removed. Requirement is now Picos >=1.0.2.

	Fixed: Determining degree of polynomial also works when coefficient is complex.

Version 1.7 (2015-03-23)

	New: the function find_rank_loop aids the detection of a rank loop.

	New: the function write_to_human_readable writes the relaxation in a human-readable format.

	New: the function read_sdpa_out is now exposed to the user, primarily to help in detecting rank loops.

	New: the function save_monomial_index allows saving the monomial index of a relaxation.

	New: support for obtaining the SOS decomposition from a dual solution through the function sos_decomposition.

	New: optional parameter psd=[matrix1, matrix2, ..., matrixn] can be passed to get_relaxation and process_constraints which contain symbolic matrices that should be positive semidefinite.

	New: solution matrices can be returned by solve_sdp by passing the optional
parameter solutionmatrix=True. It does not work for diagonal blocks.

	New: basic interface for Faacets [https://github.com/denisrosset/faacets-core] via the function get_faacets_relaxation.

	New: PPT constraint can be imposed directly in the Moroder hierarchy by passing the extra parameter ppt=True to the constructor.

	New: Passing the optional parameter extramomentmatrices=... to get_relaxation allows defining new moment matrices either freely or based on the first one. Basic relations of the elements between the moment matrices can be imposed as strings passed through inequalites=....

	Changed: Nieto-Silleras hierarchy is no longer supported through an option. Now constraints have to be manually defined.

	Changed: Monomials are not saved automatically with verbose=2.

	Fixed: wider range of substitutions supported, including a polynomial on the right-hands side of the substitution.

	Fixed: constraints for fermionic and bosonic systems and Pauli operators.

Version 1.6 (2014-12-22)

	Syntax for passing parameters changed. Only the level of the relaxation is compulsory for obtaining a relaxation.

	Extra parameter for bounds on the variables was added. Syntax is identical to the inequalities. The difference is that the inequalities in the bounds will not be relaxed by localizing matrices.

	Support for chordal graph extension in the commutative case (doi:10.1137/050623802 [http://dx.doi.org/10.1137/050623802]). Pass hierarchy="npa_chordal" to the constructor.

	It is possible to pass variables which will not be relaxed. Pass nonrelaxed=[variables] to the constructor.

	It is possible to change the constraints once the moment matrix is generated. Refer to the new function process_constraints.

	Extra parameter nsextraobjvars=[] was added for passing additional variables to the Nieto-Silleras hierarchy. This is important because the top-left elements of the blocks of moment matrices in the relaxation are not one: they add up to one. Hence specifying the last element of a measurement becomes possible with this option. The number of elements in this must match the number of behaviours.

	PICOS conversion routines were separated and reworked to ensure sparsity.

	Moved documentation to Sphinx.

	SciPy dependency made optional.

Version 1.5 (2014-11-27)

	Support for Moroder hierarchy (doi:10.1103/PhysRevLett.111.030501 [http://dx.doi.org/10.1103/PhysRevLett.111.030501]).

	Further symmetries are discovered when all variables are Hermitian.

	Normalization can be turned off.

Version 1.4 (2014-11-18)

	Pypy support restored with limitations.

	Direct export to and optimization by MOSEK.

	Added helper function to add constraints on Pauli operators.

	Handling of complex coefficients improved.

	Added PICOS compatibility layer, enabling solving a problem by a larger range of solvers.

	Bug fixes: Python 3 compatibility restored.

Version 1.3 (2014-11-03)

	Much smaller SDPs are generated when using the helper functions for quantum correlations by not considering the last projector in the measurements and thus removing the sum-to-identity constraint; positive semidefinite condition is not influenced by this.

	Helper functions for fermionic systems and projective measurements are simplified.

	Support for the Nieto-Silleras (doi:10.1088/1367-2630/16/1/013035 [http://dx.doi.org/10.1088/1367-2630/16/1/013035]) hierarchy for level 1+ relaxations.

Version 1.2.4 (2014-06-13)

	Bug fixes: mixed commutative and noncommutative variable monomials are handled correctly in substitutions, constant integer objective functions are accepted.

Version 1.2.3 (2014-06-04)

	CHSH inequality added as an example.

	Allows supplying extra monomials to a given level of relaxation.

	Added functions to make it easier to work with Bell inequalities.

	Bug fixes: constant separation works correctly for integers, max-cut example fixed.

Version 1.2.2 (2014-05-27)

	Much faster SDPA writer for problems with many blocks.

	Removal of equalities does not happen by default.

Version 1.2.1 (2014-05-22)

	Size of localizing matrices adjusts to individual inequalities.

	Internal structure for storing monomials reorganized.

	Checks for maximum order in the constraints added.

	Fermionic constraints corrected.

Version 1.2 (2014-05-16)

	Fast replace was updated and made default.

	Numpy and SciPy are now dependencies.

	Replaced internal data structures by SciPy sparse matrices.

	Pypy is no longer supported.

	Equality constraints are removed by a QR decomposition and basis transformation.

	Functions added to support calling SDPA from Python.

	Helper functions added to help phrasing physics problems.

	More commutative examples added for comparison to Gloptipoly.

	Internal module structure reorganized.

Version 1.1 (2014-05-12)

	Commutative variables also work.

	Major rework of how the moment matrix is generated.

Version 1.0 (2014-04-29)

	Initial release.

 Function Reference

Function Reference

SdpRelaxation Class

	
class ncpol2sdpa.SdpRelaxation(variables, parameters=None, verbose=0, normalized=True, parallel=False)

	Class for obtaining sparse SDP relaxation.

	Parameters:	
	variables (list of sympy.physics.quantum.operator.Operator
or
sympy.physics.quantum.operator.HermitianOperator
or a list of list.) – Commutative or noncommutative, Hermitian or nonhermiatian
variables, possibly a list of list of variables if the
hierarchy is not NPA.

	parameters (list of sympy.physics.quantum.operator.Operator
or
sympy.physics.quantum.operator.HermitianOperator
or a list of list.) – Optional symbolic variables for which moments are not
generated.

	verbose (int.) – Optional parameter for level of verbosity:

	0: quiet (default)

	1: verbose

	2: debug level

	normalized (bool.) – Optional parameter for changing the normalization of
states over which the optimization happens. Turn it off
if further processing is done on the SDP matrix before
solving it.

	parallel (bool.) – Optional parameter for allowing parallel computations.

	Attributes:

	
	monomial_sets: The monomial sets that generate the moment matrix blocks.

	monomial_index: Dictionary that maps monomials to SDP variables.

	constraints: The complete set of constraints after preprocesssing.

	primal: The primal optimal value.

	dual: The dual optimal value.

	x_mat: The primal solution matrix.

	y_mat: The dual solution matrix.

	solution_time: The amount of time taken to solve the relaxation.

	status: The solution status of the relaxation.

	
__getitem__(index)

	Obtained the value for a polynomial in a solved relaxation.

	Parameters:	index (sympy.core.exp.Expr) – The polynomial.

	Returns:	The value of the polynomial extracted from the solved SDP.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
convert_to_mosek()

	Convert an SDP relaxation to a MOSEK task.

	Returns:	mosek.Task.

	
convert_to_picos(duplicate_moment_matrix=False)

	Convert the SDP relaxation to a PICOS problem such that the exported
.dat-s file is extremely sparse, there is not penalty imposed in terms
of SDP variables or number of constraints. This conversion can be used
for imposing extra constraints on the moment matrix, such as partial
transpose.

	Parameters:	duplicate_moment_matrix (bool.) – Optional parameter to add an
unconstrained moment matrix to the
problem with the same structure as the
moment matrix with the PSD constraint.

	Returns:	picos.Problem.

	
extract_dual_value(monomial, blocks=None)

	Given a solution of the dual problem and a monomial, it returns the
inner product of the corresponding coefficient matrix and the dual
solution. It can be restricted to certain blocks.

	Parameters:	
	monomial (sympy.core.exp.Expr.) – The monomial for which the value is requested.

	monomial – The monomial for which the value is requested.

	blocks (list of int.) – Optional parameter to specify the blocks to be included.

	Returns:	The value of the monomial in the solved relaxation.

	Return type:	float.

	
find_solution_ranks(xmat=None, baselevel=0)

	Helper function to detect rank loop in the solution matrix.

	Parameters:	
	sdpRelaxation (ncpol2sdpa.SdpRelaxation.) – The SDP relaxation.

	x_mat (numpy.array.) – Optional parameter providing the primal solution of the
moment matrix. If not provided, the solution is extracted
from the sdpRelaxation object.

	base_level (int.) – Optional parameter for specifying the lower level
relaxation for which the rank loop should be tested
against.

	Returns:	list of int – the ranks of the solution matrix with in the
order of increasing degree.

	
get_relaxation(level, objective=None, inequalities=None, equalities=None, substitutions=None, momentinequalities=None, momentequalities=None, momentsubstitutions=None, removeequalities=False, extramonomials=None, extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None, chordal_extension=False)

	Get the SDP relaxation of a noncommutative polynomial optimization
problem.

	Parameters:	
	level (int.) – The level of the relaxation. The value -1 will skip
automatic monomial generation and use only the monomials
supplied by the option extramonomials.

	obj (sympy.core.exp.Expr.) – Optional parameter to describe the objective function.

	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	substitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing monomials that can
be replaced (e.g., idempotent variables).

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	momentsubstitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing moments that
can be replaced.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	extramonomials (list of sympy.core.exp.Expr.) – Optional paramter of monomials to be included,
on top of the requested level of relaxation.

	extramomentmatrices (list of list of str.) – Optional paramter of duplicating or adding
moment matrices. A new moment matrix can be
unconstrained (“”), a copy of the first one
(“copy”), and satisfying a partial positivity
constraint (“ppt”). Each new moment matrix is
requested as a list of string of these options.
For instance, adding a single new moment matrix
as a copy of the first would be
extramomentmatrices=[["copy"]].

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function.

	localizing_monomials (list of list of sympy.core.exp.Expr.) – Optional parameter to specify sets of
localizing monomials for each constraint.
The internal order of constraints is
inequalities first, followed by the
equalities. If the parameter is specified,
but for a certain constraint the automatic
localization is requested, leave None in
its place in this parameter.

	chordal_extension (bool.) – Optional parameter to request a sparse
chordal extension.

	
get_sos_decomposition(threshold=0.0)

	Given a solution of the dual problem, it returns the SOS
decomposition.

	Parameters:	threshold (float.) – Optional parameter for specifying the threshold value
below which the eigenvalues and entries of the
eigenvectors are disregarded.

	Returns:	The SOS decomposition of [sigma_0, sigma_1, ..., sigma_m]

	Return type:	list of sympy.core.exp.Expr.

	
process_constraints(inequalities=None, equalities=None, momentinequalities=None, momentequalities=None, block_index=0, removeequalities=False)

	Process the constraints and generate localizing matrices. Useful
only if the moment matrix already exists. Call it if you want to
replace your constraints. The number of the respective types of
constraints and the maximum degree of each constraint must remain the
same.

	Parameters:	
	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	removeequalities – Optional parameter to attempt removing the
equalities by solving the linear equations.

	
save_monomial_index(filename)

	Write the monomial index to a file.

	Parameters:	filename (str.) – The name of the file to write to.

	
set_objective(objective, extraobjexpr=None)

	Set or change the objective function of the polynomial optimization
problem.

	Parameters:	
	objective (sympy.core.expr.Expr) – Describes the objective function.

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function

	
solve(solver=None, solverparameters=None)

	Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the sdpRelaxation object,
along with some status information.

	Parameters:	
	sdpRelaxation (ncpol2sdpa.SdpRelaxation.) – The SDP relaxation to be solved.

	solver (str.) – The solver to be called, either None, “sdpa”, “mosek”,
“cvxpy”, “scs”, or “cvxopt”. The default is None,
which triggers autodetect.

	solverparameters (dict of str.) – Parameters to be passed to the solver. Actual
options depend on the solver:

SDPA:

	“executable”:
Specify the executable for SDPA. E.g.,
“executable”:”/usr/local/bin/sdpa”, or
“executable”:”sdpa_gmp”

	“paramsfile”: Specify the parameter file

Mosek:
Refer to the Mosek documentation. All
arguments are passed on.

Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.

Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.

SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.

	
write_to_file(filename, filetype=None)

	Write the relaxation to a file.

	Parameters:	
	filename (str.) – The name of the file to write to. The type can be
autodetected from the extension: .dat-s for SDPA,
.task for mosek or .csv for human readable format.

	filetype (str.) – Optional parameter to define the filetype. It can be
“sdpa” for SDPA , “mosek” for Mosek, or “csv” for
human readable format.

MoroderHierarchy Class

	
class ncpol2sdpa.SteeringHierarchy(variables, verbose=0, matrix_var_dim=None, mark_conjugate=False, parallel=False)

	Class for obtaining a step in the steering hierarchy.

	Parameters:	
	variables (list of sympy.physics.quantum.operator.Operator
or
sympy.physics.quantum.operator.HermitianOperator
or a list of list.) – Commutative or noncommutative, Hermitian or nonhermiatian
variables.

	verbose (int.) – Optional parameter for level of verbosity:

	0: quiet

	1: verbose

	2: debug level

	matrix_var_dim (int.) – Optional parameter to specify the size of matrix
variable blocks

	mark_conjugate (bool.) – Use this optional parameter to generate a symbolic
representation of the steering hierarchy for export.

	Attributes:

	
	monomial_sets: The monomial sets that generate the moment matrix blocks.

	monomial_index: Dictionary that maps monomials to SDP variables.

	constraints: The complete set of constraints after preprocesssing.

	primal: The primal optimal value.

	dual: The dual optimal value.

	x_mat: The primal solution matrix.

	y_mat: The dual solution matrix.

	solution_time: The amount of time taken to solve the relaxation.

	status: The solution status of the relaxation.

	
__getitem__(index)

	Obtained the value for a polynomial in a solved relaxation.

	Parameters:	index (sympy.core.exp.Expr) – The polynomial.

	Returns:	The value of the polynomial extracted from the solved SDP.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
convert_to_mosek()

	Convert an SDP relaxation to a MOSEK task.

	Returns:	mosek.Task.

	
convert_to_picos(duplicate_moment_matrix=False)

	Convert the SDP relaxation to a PICOS problem such that the exported
.dat-s file is extremely sparse, there is not penalty imposed in terms
of SDP variables or number of constraints. This conversion can be used
for imposing extra constraints on the moment matrix, such as partial
transpose.

	Parameters:	duplicate_moment_matrix (bool.) – Optional parameter to add an
unconstrained moment matrix to the
problem with the same structure as the
moment matrix with the PSD constraint.

	Returns:	picos.Problem.

	
get_relaxation(level, objective=None, inequalities=None, equalities=None, substitutions=None, momentinequalities=None, momentequalities=None, momentsubstitutions=None, removeequalities=False, extramonomials=None, extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None, chordal_extension=False)

	Get the SDP relaxation of a noncommutative polynomial optimization
problem.

	Parameters:	
	level (int.) – The level of the relaxation. The value -1 will skip
automatic monomial generation and use only the monomials
supplied by the option extramonomials.

	obj (sympy.core.exp.Expr.) – Optional parameter to describe the objective function.

	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	substitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing monomials that can
be replaced (e.g., idempotent variables).

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	momentsubstitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing moments that
can be replaced.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	extramonomials (list of sympy.core.exp.Expr.) – Optional paramter of monomials to be included,
on top of the requested level of relaxation.

	extramomentmatrices (list of list of str.) – Optional paramter of duplicating or adding
moment matrices. A new moment matrix can be
unconstrained (“”), a copy of the first one
(“copy”), and satisfying a partial positivity
constraint (“ppt”). Each new moment matrix is
requested as a list of string of these options.
For instance, adding a single new moment matrix
as a copy of the first would be
extramomentmatrices=[["copy"]].

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function.

	localizing_monomials (list of list of sympy.core.exp.Expr.) – Optional parameter to specify sets of
localizing monomials for each constraint.
The internal order of constraints is
inequalities first, followed by the
equalities. If the parameter is specified,
but for a certain constraint the automatic
localization is requested, leave None in
its place in this parameter.

	chordal_extension (bool.) – Optional parameter to request a sparse
chordal extension.

	
process_constraints(inequalities=None, equalities=None, momentinequalities=None, momentequalities=None, block_index=0, removeequalities=False)

	Process the constraints and generate localizing matrices. Useful
only if the moment matrix already exists. Call it if you want to
replace your constraints. The number of the respective types of
constraints and the maximum degree of each constraint must remain the
same.

	Parameters:	
	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	removeequalities – Optional parameter to attempt removing the
equalities by solving the linear equations.

	
save_monomial_index(filename)

	Write the monomial index to a file.

	Parameters:	filename (str.) – The name of the file to write to.

	
set_objective(objective, extraobjexpr=None)

	Set or change the objective function of the polynomial optimization
problem.

	Parameters:	
	objective (sympy.core.expr.Expr) – Describes the objective function.

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function

	
solve(solver=None, solverparameters=None)

	Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the sdpRelaxation object,
along with some status information.

	Parameters:	
	sdpRelaxation (ncpol2sdpa.SdpRelaxation.) – The SDP relaxation to be solved.

	solver (str.) – The solver to be called, either None, “sdpa”, “mosek”,
“cvxpy”, “scs”, or “cvxopt”. The default is None,
which triggers autodetect.

	solverparameters (dict of str.) – Parameters to be passed to the solver. Actual
options depend on the solver:

SDPA:

	“executable”:
Specify the executable for SDPA. E.g.,
“executable”:”/usr/local/bin/sdpa”, or
“executable”:”sdpa_gmp”

	“paramsfile”: Specify the parameter file

Mosek:
Refer to the Mosek documentation. All
arguments are passed on.

Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.

Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.

SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.

	
write_to_file(filename, filetype=None)

	Write the relaxation to a file.

	Parameters:	
	filename (str.) – The name of the file to write to. The type can be
autodetected from the extension: .dat-s for SDPA,
.task for mosek, .csv for human readable format, or
.txt for a symbolic export

	filetype (str.) – Optional parameter to define the filetype. It can be
“sdpa” for SDPA , “mosek” for Mosek, “csv” for
human readable format, or “txt” for a symbolic export.

SteeringHierarchy Class

	
class ncpol2sdpa.SteeringHierarchy(variables, verbose=0, matrix_var_dim=None, mark_conjugate=False, parallel=False)

	Class for obtaining a step in the steering hierarchy.

	Parameters:	
	variables (list of sympy.physics.quantum.operator.Operator
or
sympy.physics.quantum.operator.HermitianOperator
or a list of list.) – Commutative or noncommutative, Hermitian or nonhermiatian
variables.

	verbose (int.) – Optional parameter for level of verbosity:

	0: quiet

	1: verbose

	2: debug level

	matrix_var_dim (int.) – Optional parameter to specify the size of matrix
variable blocks

	mark_conjugate (bool.) – Use this optional parameter to generate a symbolic
representation of the steering hierarchy for export.

	Attributes:

	
	monomial_sets: The monomial sets that generate the moment matrix blocks.

	monomial_index: Dictionary that maps monomials to SDP variables.

	constraints: The complete set of constraints after preprocesssing.

	primal: The primal optimal value.

	dual: The dual optimal value.

	x_mat: The primal solution matrix.

	y_mat: The dual solution matrix.

	solution_time: The amount of time taken to solve the relaxation.

	status: The solution status of the relaxation.

	
__getitem__(index)

	Obtained the value for a polynomial in a solved relaxation.

	Parameters:	index (sympy.core.exp.Expr) – The polynomial.

	Returns:	The value of the polynomial extracted from the solved SDP.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
convert_to_mosek()

	Convert an SDP relaxation to a MOSEK task.

	Returns:	mosek.Task.

	
convert_to_picos(duplicate_moment_matrix=False)

	Convert the SDP relaxation to a PICOS problem such that the exported
.dat-s file is extremely sparse, there is not penalty imposed in terms
of SDP variables or number of constraints. This conversion can be used
for imposing extra constraints on the moment matrix, such as partial
transpose.

	Parameters:	duplicate_moment_matrix (bool.) – Optional parameter to add an
unconstrained moment matrix to the
problem with the same structure as the
moment matrix with the PSD constraint.

	Returns:	picos.Problem.

	
get_relaxation(level, objective=None, inequalities=None, equalities=None, substitutions=None, momentinequalities=None, momentequalities=None, momentsubstitutions=None, removeequalities=False, extramonomials=None, extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None, chordal_extension=False)

	Get the SDP relaxation of a noncommutative polynomial optimization
problem.

	Parameters:	
	level (int.) – The level of the relaxation. The value -1 will skip
automatic monomial generation and use only the monomials
supplied by the option extramonomials.

	obj (sympy.core.exp.Expr.) – Optional parameter to describe the objective function.

	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	substitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing monomials that can
be replaced (e.g., idempotent variables).

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	momentsubstitutions (dict of sympy.core.exp.Expr.) – Optional parameter containing moments that
can be replaced.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	extramonomials (list of sympy.core.exp.Expr.) – Optional paramter of monomials to be included,
on top of the requested level of relaxation.

	extramomentmatrices (list of list of str.) – Optional paramter of duplicating or adding
moment matrices. A new moment matrix can be
unconstrained (“”), a copy of the first one
(“copy”), and satisfying a partial positivity
constraint (“ppt”). Each new moment matrix is
requested as a list of string of these options.
For instance, adding a single new moment matrix
as a copy of the first would be
extramomentmatrices=[["copy"]].

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function.

	localizing_monomials (list of list of sympy.core.exp.Expr.) – Optional parameter to specify sets of
localizing monomials for each constraint.
The internal order of constraints is
inequalities first, followed by the
equalities. If the parameter is specified,
but for a certain constraint the automatic
localization is requested, leave None in
its place in this parameter.

	chordal_extension (bool.) – Optional parameter to request a sparse
chordal extension.

	
process_constraints(inequalities=None, equalities=None, momentinequalities=None, momentequalities=None, block_index=0, removeequalities=False)

	Process the constraints and generate localizing matrices. Useful
only if the moment matrix already exists. Call it if you want to
replace your constraints. The number of the respective types of
constraints and the maximum degree of each constraint must remain the
same.

	Parameters:	
	inequalities (list of sympy.core.exp.Expr.) – Optional parameter to list inequality constraints.

	equalities (list of sympy.core.exp.Expr.) – Optional parameter to list equality constraints.

	momentinequalities (list of sympy.core.exp.Expr.) – Optional parameter of inequalities defined
on moments.

	momentequalities (list of sympy.core.exp.Expr.) – Optional parameter of equalities defined
on moments.

	removeequalities (bool.) – Optional parameter to attempt removing the
equalities by solving the linear equations.

	removeequalities – Optional parameter to attempt removing the
equalities by solving the linear equations.

	
save_monomial_index(filename)

	Write the monomial index to a file.

	Parameters:	filename (str.) – The name of the file to write to.

	
set_objective(objective, extraobjexpr=None)

	Set or change the objective function of the polynomial optimization
problem.

	Parameters:	
	objective (sympy.core.expr.Expr) – Describes the objective function.

	extraobjexpr (str.) – Optional parameter of a string expression of a
linear combination of moment matrix elements to be
included in the objective function

	
solve(solver=None, solverparameters=None)

	Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the sdpRelaxation object,
along with some status information.

	Parameters:	
	sdpRelaxation (ncpol2sdpa.SdpRelaxation.) – The SDP relaxation to be solved.

	solver (str.) – The solver to be called, either None, “sdpa”, “mosek”,
“cvxpy”, “scs”, or “cvxopt”. The default is None,
which triggers autodetect.

	solverparameters (dict of str.) – Parameters to be passed to the solver. Actual
options depend on the solver:

SDPA:

	“executable”:
Specify the executable for SDPA. E.g.,
“executable”:”/usr/local/bin/sdpa”, or
“executable”:”sdpa_gmp”

	“paramsfile”: Specify the parameter file

Mosek:
Refer to the Mosek documentation. All
arguments are passed on.

Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.

Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.

SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.

	
write_to_file(filename, filetype=None)

	Write the relaxation to a file.

	Parameters:	
	filename (str.) – The name of the file to write to. The type can be
autodetected from the extension: .dat-s for SDPA,
.task for mosek, .csv for human readable format, or
.txt for a symbolic export

	filetype (str.) – Optional parameter to define the filetype. It can be
“sdpa” for SDPA , “mosek” for Mosek, “csv” for
human readable format, or “txt” for a symbolic export.

FaacetsRelaxation Class

	
class ncpol2sdpa.FaacetsRelaxation

	Class for wrapping around a Faacets relaxation.

	
get_relaxation(A_configuration, B_configuration, I)

	Get the sparse SDP relaxation of a Bell inequality.

	Parameters:	
	A_configuration (list of list of int.) – The definition of measurements of Alice.

	B_configuration (list of list of int.) – The definition of measurements of Bob.

	I (list of list of int.) – The matrix describing the Bell inequality in the
Collins-Gisin picture.

	
solve(solver=None, solverparameters=None)

	Call a solver on the SDP relaxation. Upon successful solution, it
returns the primal and dual objective values along with the solution
matrices. It also sets these values in the sdpRelaxation object,
along with some status information.

	Parameters:	
	sdpRelaxation (ncpol2sdpa.SdpRelaxation.) – The SDP relaxation to be solved.

	solver (str.) – The solver to be called, either None, “sdpa”, “mosek”,
“cvxpy”, “scs”, or “cvxopt”. The default is None,
which triggers autodetect.

	solverparameters (dict of str.) – Parameters to be passed to the solver. Actual
options depend on the solver:

SDPA:

	“executable”:
Specify the executable for SDPA. E.g.,
“executable”:”/usr/local/bin/sdpa”, or
“executable”:”sdpa_gmp”

	“paramsfile”: Specify the parameter file

Mosek:
Refer to the Mosek documentation. All
arguments are passed on.

Cvxopt:
Refer to the PICOS documentation. All
arguments are passed on.

Cvxpy:
Refer to the Cvxpy documentation. All
arguments are passed on.

SCS:
Refer to the Cvxpy documentation. All
arguments are passed on.

Functions to Help Define Polynomial Optimization Problems

	
ncpol2sdpa.generate_operators(name, n_vars=1, hermitian=None, commutative=False)

	Generates a number of commutative or noncommutative operators

	Parameters:	
	name (str.) – The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.

	n_vars (int.) – The number of variables.

	hermitian (bool.) – Optional parameter to request Hermitian variables .

	commutative (bool.) – Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.

	Returns:	list of sympy.physics.quantum.operator.Operator or
sympy.physics.quantum.operator.HermitianOperator
variables

	Example:	

>>> generate_variables('y', 2, commutative=True)
￼[y0, y1]

	
ncpol2sdpa.generate_variables(name, n_vars=1, hermitian=None, commutative=True)

	Generates a number of commutative or noncommutative variables

	Parameters:	
	name (str.) – The prefix in the symbolic representation of the noncommuting
variables. This will be suffixed by a number from 0 to
n_vars-1 if n_vars > 1.

	n_vars (int.) – The number of variables.

	hermitian (bool.) – Optional parameter to request Hermitian variables .

	commutative (bool.) – Optional parameter to request commutative variables.
Commutative variables are Hermitian by default.

	Returns:	list of sympy.physics.quantum.operator.Operator or
sympy.physics.quantum.operator.HermitianOperator
variables or sympy.Symbol

	Example:	

>>> generate_variables('y', 2, commutative=True)
￼[y0, y1]

	
ncpol2sdpa.get_monomials(variables, degree)

	Generates all noncommutative monomials up to a degree

	Parameters:	
	variables (list of sympy.physics.quantum.operator.Operator
or
sympy.physics.quantum.operator.HermitianOperator.) – The noncommutative variables to generate monomials from

	degree (int.) – The maximum degree.

	Returns:	list of monomials.

	
ncpol2sdpa.flatten(lol)

	Flatten a list of lists to a list.

	Parameters:	lol (list of list.) – A list of lists in arbitrary depth.

	Returns:	flat list of elements.

Functions to Study Output of Solver

	
ncpol2sdpa.read_sdpa_out(filename, solutionmatrix=False, status=False, sdp=None)

	Helper function to parse the output file of SDPA.

	Parameters:	
	filename (str.) – The name of the SDPA output file.

	solutionmatrix (bool.) – Optional parameter for retrieving the solution.

	status (bool.) – Optional parameter for retrieving the status.

	sdp (sdp.) – Optional parameter to add the solution to a
relaxation.

	Returns:	tuple of two floats and optionally two lists of numpy.array and
a status string

Functions and Classes to Define Physics Problems

	
class ncpol2sdpa.Probability(*args, **kwargs)

	
	
__call__(output_, input_, marginal=None)

	Obtain your probabilities in the p(ab...|xy...) notation.

	Parameters:	
	output (list of ints.) – Conditional output as [a, b, ...]

	input (list of ints.) – The input to condition on as [x, y, ...]

	marginal (list of str.) – Optional parameter. If it is a marginal, then you can
define which party or parties it belongs to.

	Returns:	polynomial of sympy.physics.quantum.HermitianOperator.

	Example:	

For the CHSH scenario, to get p(10|01), write

P([1,0], [0,1])

To get the marginal p_A(0|1), write

P([0], [1], [‘A’])

	
get_all_operators()

	Return all operators across all parties and measurements to supply
them to the ncpol2sdpa.SdpRelaxation class.

	
ncpol2sdpa.bosonic_constraints(a)

	Return a set of constraints that define fermionic ladder operators.

	Parameters:	a (list of sympy.physics.quantum.operator.Operator.) – The non-Hermitian variables.

	Returns:	a dict of substitutions.

	
ncpol2sdpa.fermionic_constraints(a)

	Return a set of constraints that define fermionic ladder operators.

	Parameters:	a (list of sympy.physics.quantum.operator.Operator.) – The non-Hermitian variables.

	Returns:	a dict of substitutions.

	
ncpol2sdpa.pauli_constraints(X, Y, Z)

	Return a set of constraints that define Pauli spin operators.

	Parameters:	
	X (list of sympy.physics.quantum.operator.HermitianOperator.) – List of Pauli X operator on sites.

	Y (list of sympy.physics.quantum.operator.HermitianOperator.) – List of Pauli Y operator on sites.

	Z (list of sympy.physics.quantum.operator.HermitianOperator.) – List of Pauli Z operator on sites.

	Returns:	tuple of substitutions and equalities.

	
ncpol2sdpa.get_neighbors(index, lattice_length, width=0, periodic=False)

	Get the forward neighbors of a site in a lattice.

	Parameters:	
	index (int.) – Linear index of operator.

	lattice_length (int.) – The size of the 2D lattice in either dimension

	width (int.) – Optional parameter to define width.

	periodic (bool [https://docs.python.org/2/library/functions.html#bool]) – Optional parameter to indicate periodic boundary
conditions.

	Returns:	list of int – the neighbors in linear index.

	
ncpol2sdpa.get_next_neighbors(indices, lattice_length, width=0, distance=1, periodic=False)

	Get the forward neighbors at a given distance of a site or set of sites
in a lattice.

	Parameters:	
	index (int.) – Linear index of operator.

	lattice_length (int.) – The size of the 2D lattice in either dimension

	width (int.) – Optional parameter to define width.

	distance – Optional parameter to define distance.

	periodic (bool [https://docs.python.org/2/library/functions.html#bool]) – Optional parameter to indicate periodic boundary
conditions.

	Returns:	list of int – the neighbors at given distance in linear index.

	
ncpol2sdpa.correlator(A, B)

	Correlators between the probabilities of two parties.

	Parameters:	
	A (list of list of
sympy.physics.quantum.operator.HermitianOperator.) – Measurements of Alice.

	B (list of list of
sympy.physics.quantum.operator.HermitianOperator.) – Measurements of Bob.

	Returns:	list of correlators.

	
ncpol2sdpa.generate_measurements(party, label)

	Generate variables that behave like measurements.

	Parameters:	
	party (list of int.) – The list of number of measurement outputs a party has.

	label (str.) – The label to be given to the symbolic variables.

	Returns:	list of list of
sympy.physics.quantum.operator.HermitianOperator.

	
ncpol2sdpa.projective_measurement_constraints(*parties)

	Return a set of constraints that define projective measurements.

	Parameters:	parties – Measurements of different parties.

	Returns:	substitutions containing idempotency, orthogonality and
commutation relations.

	
ncpol2sdpa.maximum_violation(A_configuration, B_configuration, I, level, extra=None)

	Get the maximum violation of a two-party Bell inequality.

	Parameters:	
	A_configuration (list of int.) – Measurement settings of Alice.

	B_configuration (list of int.) – Measurement settings of Bob.

	I (list of list of int.) – The I matrix of a Bell inequality in the Collins-Gisin notation.

	level (int.) – Level of relaxation.

	Returns:	tuple of primal and dual solutions of the SDP relaxation.

	
ncpol2sdpa.define_objective_with_I(I, *args)

	Define a polynomial using measurements and an I matrix describing a Bell
inequality.

	Parameters:	
	I (list of list of int.) – The I matrix of a Bell inequality in the Collins-Gisin notation.

	args – Either the measurements of Alice and Bob or a Probability
class describing their measurement operators.

	Returns:	sympy.core.expr.Expr – the objective function to be
solved as a minimization problem to find the maximum quantum
violation. Note that the sign is flipped compared to the Bell
inequality.

 Index

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | M
 | P
 | R
 | S
 | W

_

 	
 	__call__() (ncpol2sdpa.Probability method)

 	
 	__getitem__() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

B

 	
 	bosonic_constraints() (in module ncpol2sdpa)

C

 	
 	convert_to_mosek() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	
 	convert_to_picos() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	correlator() (in module ncpol2sdpa)

D

 	
 	define_objective_with_I() (in module ncpol2sdpa)

E

 	
 	extract_dual_value() (ncpol2sdpa.SdpRelaxation method)

F

 	
 	FaacetsRelaxation (class in ncpol2sdpa)

 	fermionic_constraints() (in module ncpol2sdpa)

 	
 	find_solution_ranks() (ncpol2sdpa.SdpRelaxation method)

 	flatten() (in module ncpol2sdpa)

G

 	
 	generate_measurements() (in module ncpol2sdpa)

 	generate_operators() (in module ncpol2sdpa)

 	generate_variables() (in module ncpol2sdpa)

 	get_all_operators() (ncpol2sdpa.Probability method)

 	get_monomials() (in module ncpol2sdpa)

 	
 	get_neighbors() (in module ncpol2sdpa)

 	get_next_neighbors() (in module ncpol2sdpa)

 	get_relaxation() (ncpol2sdpa.FaacetsRelaxation method)

 	(ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	get_sos_decomposition() (ncpol2sdpa.SdpRelaxation method)

M

 	
 	maximum_violation() (in module ncpol2sdpa)

P

 	
 	pauli_constraints() (in module ncpol2sdpa)

 	Probability (class in ncpol2sdpa)

 	
 	process_constraints() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	projective_measurement_constraints() (in module ncpol2sdpa)

R

 	
 	read_sdpa_out() (in module ncpol2sdpa)

S

 	
 	save_monomial_index() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	SdpRelaxation (class in ncpol2sdpa)

 	set_objective() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	
 	solve() (ncpol2sdpa.FaacetsRelaxation method)

 	(ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 	SteeringHierarchy (class in ncpol2sdpa), [1]

W

 	
 	write_to_file() (ncpol2sdpa.SdpRelaxation method)

 	(ncpol2sdpa.SteeringHierarchy method), [1]

 Introduction

Introduction

Ncpol2sdpa solves global polynomial optimization problems of either commutative variables or noncommutative operators through a semidefinite programming (SDP) relaxation. The optimization problem can be unconstrained or constrained by equalities and inequalities, and also by constraints on the moments. The objective is to be able to solve large scale optimization problems. Example applications include:

	When the polynomial optimization problem is defined over commutative variables, the generated SDP hierarchy is identical to Lasserre’s [http://dx.doi.org/10.1137/S1052623400366802]. In this case, the functionality resembles the MATLAB toolboxes Gloptipoly [http://homepages.laas.fr/henrion/software/gloptipoly/], and, with the chordal extension, SparsePOP [http://sparsepop.sourceforge.net/].

	Relaxations [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Parameteric%20and%20Bilevel%20Polynomial%20Optimization%20Problems.ipynb] of parametric [http://dx.doi.org/10.1137/090759240] and bilevel [http://arxiv.org/abs/1506.02099] polynomial optimization problems.

	When the polynomials are over noncommutative operators, the generated SDP is a step in the Navascués-Pironio-Acín (NPA) hierarchy. The most notable example is calculating the maximum quantum violation [http:/dx.doi.org/10.1103/PhysRevLett.98.010401] of Bell inequalities [http://peterwittek.com/2014/06/quantum-bound-on-the-chsh-inequality-using-sdp/], also in multipartite scenarios [http://peterwittek.github.io/multipartite_entanglement/].

	Nieto-Silleras [http://dx.doi.org/10.1088/1367-2630/16/1/013035] hierarchy for quantifying randomness [http://peterwittek.com/2014/11/the-nieto-silleras-and-moroder-hierarchies-in-ncpol2sdpa/] and for calculating maximum guessing probability [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Optimal%20randomness%20generation%20from%20entangled%20quantum%20states.ipynb].

	Moroder [http://dx.doi.org/10.1103/PhysRevLett.111.030501] hierarchy to enable PPT-style and other additional constraints.

	Sums-of-square (SOS) decomposition based on the dual solution.

	Ground-state energy problems [http://dx.doi.org/10.1137/090760155]: bosonic and fermionic systems [http://nbviewer.ipython.org/github/peterwittek/ipython-notebooks/blob/master/Comparing_DMRG_ED_and_SDP.ipynb], Pauli spin operators. This methodology closely resembles the reduced density matrix (RDM) method.

	Hierarchy for quantum steering [http://dx.doi.org/10.1103/physrevlett.115.210401].

The implementation has an intuitive syntax for entering problems and it scales for a larger number of noncommutative variables using a sparse representation of the SDP problem. Further details are found in the following paper:

	Peter Wittek. Algorithm 950: Ncpol2sdpa—Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables. ACM Transactions on Mathematical Software, 41(3), 21, 2015. DOI: 10.1145/2699464 [http://dx.doi.org/10.1145/2699464]. arXiv:1308.6029 [http://arxiv.org/abs/1308.6029].

Copyright and License

Ncpol2sdpa is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License [http://www.gnu.org/licenses/gpl-3.0.html] as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

Ncpol2sdpa is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License [http://www.gnu.org/licenses/gpl-3.0.html] for more details.

Acknowledgment

This work is supported by the European Commission Seventh Framework Programme under Grant Agreement Number FP7-601138 PERICLES [http://pericles-project.eu/], by the Red Espanola de Supercomputacion [http://www.bsc.es/RES] grants number FI-2013-1-0008 and FI-2013-3-0004, and by the Swedish National Infrastructure for Computing [http://www.snic.se/] projects SNIC 2014/2-7 and SNIC 2015/1-162.

 References

References

Bancal, J.D., L. Sheridan, and V. Scarani. 2014. “More
Randomness from the Same Data.” New Journal of Physics 16 (3): 033011.
doi:10.1088/1367-2630/16/3/033011 [http://dx.doi.org/10.1088/1367-2630/16/3/033011].

Fayngold, M., and V. Fayngold. 2013. Quantum Mechanics and Quantum
Information. Wiley-VCH.

Henrion, D., J. Lasserre and J. Löfberg. 2009. “GloptiPoly 3: Moments, Optimization and
Semidefinite Programming.” Optimization Methods & Software, 24: 761–779.

Johansson, J.R., P.D. Nation, and Franco Nori. 2013. “QuTiP 2: A Python
Framework for the Dynamics of Open Quantum Systems.” Computer Physics
Communications 184 (4): 1234–40.
doi:10.1016/j.cpc.2012.11.019 [http://dx.doi.org/10.1016/j.cpc.2012.11.019].

Lasserre, J. B. 2010. “A Joint+Marginal Approach to Parametric Polynomial Optimization.” SIAM Journal on Optimization 20(4):1995–2022.
doi:10.1137/090759240 [http://dx.doi.org/10.1137/090759240].

Moroder, Tobias, Jean-Daniel Bancal, Yeong-Cherng Liang, Martin Hofmann,
and Otfried Gühne. 2013. “Device-Independent Entanglement Quantification
and Related Applications.” Physics Review Letters 111 (3). American
Physical Society: 030501.
doi:10.1103/PhysRevLett.111.030501 [http://dx.doi.org/10.1103/PhysRevLett.111.030501].

Navascués, M., A. García-Sáez, A. Acín, S. Pironio, and M.B. Plenio.
2013. “A Paradox in Bosonic Energy Computations via Semidefinite
Programming Relaxations.” New Journal of Physics 15 (2): 023026.
doi:10.1088/1367-2630/15/2/023026 [http://dx.doi.org/10.1088/1367-2630/15/2/023026].

Nieto-Silleras, O., S. Pironio, and J. Silman. 2014. “Using Complete
Measurement Statistics for Optimal Device-Independent Randomness
Evaluation.” New Journal of Physics 16 (1): 013035.
doi:10.1088/1367-2630/16/1/013035 [http://dx.doi.org/10.1088/1367-2630/16/1/013035].

Pironio, S., M. Navascués, and A. Acín. 2010. “Convergent Relaxations of
Polynomial Optimization Problems with Noncommuting Variables.” SIAM
Journal on Optimization 20 (5). SIAM: 2157–80.
doi:10.1137/090760155 [http://dx.doi.org/10.1137/090760155].

Sturm, J.F. 1999. “Using SeDuMi 1.02, a MATLAB Toolbox for Optimization
over Symmetric Cones.” Optimization Methods and Software 11 (1-4):
625–53.

Waki, H.; S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto. 2008. “Algorithm 883: SparsePOP—A Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems.” ACM Transactions on Mathematical Software, 2008, 35(2), 15.
doi:10.1145/1377612.1377619 [http://dx.doi.org/10.1145/1377612.1377619].

Yamashita, M., K. Fujisawa, and M. Kojima. 2003. “SDPARA: Semidefinite
Programming Algorithm Parallel Version.” Parallel Computing 29 (8):
1053–67.

 Table of Contents

Ncpol2sdpa User’s Guide

	Introduction
	Copyright and License

	Acknowledgment

	Download and Installation
	Dependencies

	Installation

	Tutorial
	Defining a Polynomial Optimization Problem of Commuting Variables

	Generating and Solving the Relaxation

	Analyzing the Solution

	Debugging the SDP Relaxation

	Defining and Solving an Optimization Problem of Noncommuting Variables

	Examples
	E