

 Navigation

 	
 index

 	
 next |

 	Navigator 1.0.0 documentation

Introduction

A PHP library for geographic calculations:

	Calculate the distance between two coordinate points on the earth’s surface (using Vincenty, Haversine, Great Circle or The Cosine Law)

	Conversion between units (metres to kilometres, nautical miles and miles).

	Convert coordinate notation (decimals to degrees, minutes & seconds and back again).

This is an improved (PHP5.3.2+) and tested version of Geographic Calculations in PHP [https://github.com/treffynnon/Geographic-Calculations-in-PHP].

Contents:

	Installation
	Packagist with Composer

	git Clone or Zip Package

	Quickstart Tutorial
	Super Simple Example

	A Slightly More Advanced Example

	Coordinates
	Custom Parser

	LatLong

	Distance
	Calculators

	Converters

	Tests
	Travis-CI

	Code Coverage

	Contribution

	Licence
	BSD 2-Clause License

Indices and tables

	Index

	Search Page

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Installation

There are a few ways of installing this library, the easiest of which is via Packagist [http://packagist.org/packages/Treffynnon/Navigator] with Composer [http://getcomposer.org].

Packagist with Composer

Composer [http://getcomposer.org] is a great way to manage dependencies for PHP projects and there is a ready made package for Navigator available on Packagist [http://packagist.org/packages/Treffynnon/Navigator].

In your projects composer.json file you should enter the following information:

{
 "require": {
 "treffynnon/navigator": "1.*"
 }
}

Next you need to install composer on your system with

curl -s http://getcomposer.org/installer | php

Install the Composer [http://getcomposer.org] managed dependencies with:

php composer.phar install

You will now have a vendors directory in your project that contains Navigator.

Composer also automatically generates an autoload file that you can use to autoload the classes of the Navigator library (and any other dependencies you have managed with Composer [http://getcomposer.org]). To do this add the following to your projects bootstrap file:

<?php require 'vendor/autoload.php';

Navigator is now installed in your project with Composer [http://getcomposer.org] meaning that it is easy to keep up to date!

git Clone or Zip Package

Navigator can also be installed from source by either using git to clone or export the repository or by downloading a zipped release [https://github.com/treffynnon/Navigator/tags] from GitHub [https://github.com/treffynnon/Navigator].

To obtain the library with git it is as simple as:

git clone git://github.com/treffynnon/Navigator.git

Otherwise you can download a zip or tar file [https://github.com/treffynnon/Navigator/tags] of the latest release from GitHub [https://github.com/treffynnon/Navigator] and extract it.

Then to initialise the autoloader for the Navigator library add the following to your projects bootstrap:

<?php
require_once __DIR__ . 'Navigator/lib/Treffynnon/Navigator.php';
use Treffynnon\Navigator as N;
N::autoloader();

The Navigator library is now available to your project.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Quickstart Tutorial

Please ensure you have completed the installation instructions for the Navigator library before continuing with these quickstart tutorials.

Super Simple Example

This is the easiest way to get a quick distance between two points of the Earth in metres.

<?php
use Treffynnon\Navigator as N;
$distance = N::getDistance(10, 81.098, 15.6, '5° 10\' 11.009"W');

The function takes a sequence of latitude and longitude values:

	
N::getDistance(lat1, long1, lat2, long2)

	Returns the distance in metres between the supplied points on Earth

	Parameters:	
	lat1 (string or float) – The latitude of point 1

	long1 (string or float) – The longitude of point 1

	lat2 (string or float) – The latitude of point 2

	long2 (string or float) – The longitude of point 2

	Return type:	float

A Slightly More Advanced Example

To get more control over the setup of the distance calculation you can make use of the distance factory. The following snippet will give the $distance using the Haversine formula and converted to parsecs.

<?php
use Treffynnon\Navigator as N;
use Treffynnon\Navigator\Distance\Calculator\Haversine as H;
use Treffynnon\Navigator\Distance\Converter\MetreToParsec as P;
$Distance = N::distanceFactory(10, 81.098, 15.6, '5° 10\' 11.009"W');
$distance = $Distance->get(new H, new P);

	
N::distanceFactory(lat1, long1, lat2, long2)

	Get a distance instance pre-populated with the supplied sequence of latitude and longitude values

	Parameters:	
	lat1 (string or float) – The latitude of point 1

	long1 (string or float) – The longitude of point 1

	lat2 (string or float) – The latitude of point 2

	long2 (string or float) – The longitude of point 2

	Return type:	TreffynnonNavigatorDistance

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Coordinates

The coordinate class must be combined with LatLong to create a point on the celestial bodies surfaces (most commonly this is the Earth). It handles the storage of a supplied coordinate value and its conversion to radians for internal use by Calculators.

This scheme makes it easy to supply a custom coordinate parser or specify whether to use Decimal or Degrees Minutes Seconds notation from the standard set of parsers.

<?php
use Treffynnon\Navigator\Coordinate as C;
$coord = new C('5° 10\' 11.009"W', new C\DmsParser);

Custom Parser

Creating a custom parser is as simple as extending Treffynnon\Navigator\Coordinate\ParserAbstract like in this Radian parsing example

<?php
namespace YourProject\Navigator\Coordinate;
use Treffynnon\Navigator\Coordinate as C;
class RadianParser extends C\ParserAbstract {
 public function parse($coord) {
 return $coord;
 }
 public function get($coord) {
 return $coord;
 }
}

Then you can put it into action by injecting it into a coordinate instance

<?php
use YourProject\Navigator\Coordinate as YPC;
use Treffynnon\Navigator\Coordinate as C;
$coord = new C(1.2175876579, new YPC\RadianParser);

Please note the namespace YourProject\Navigator\Coordinate should be changed to reflect the real names in your project.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

LatLong

It is just a simple construct to combine coordinate instances into a latitude and longitude point. It will also prime the coordinate with its direction (either latitude or longitude). This can later be used by a parser to add in any meta information about a coordinate. This can be most easily seen the in the get() method of the DmsParser class.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Distance

When Distance is supplied with two instances of LatLng it can be used to calculate the distance between the points. It does this by using a Calculator such as Great Circle and optionally a unit converter such as MetreToNauticalMile:

<?php
use Treffynnon\Navigator as N;
$coord1 = new N\LatLong(
 new N\Coordinate(10.9978),
 new N\Coordinate(35.6234)
);
$coord2 = new N\LatLong(
 new N\Coordinate(25),
 new N\Coordinate(-13.456)
);
$Distance = new N\Distance($coord1, $coord2);

Specify the calculator and conversion on the get() method of Distance:

<?php
use Treffynnon\Navigator\Distance as D;
$distance = $Distance->get(new D\Calculator\GreatCircle,
 new D\Converter\MetreToNauticalMile);

$distance now has the distance value calculated by Great Circle in Nautical Miles.

Calculators

The Navigator library comes with four distance calculators by default:

	The Cosine Law

	Great Circle

	Haversine

	Vincenty

Of the selection Vincenty is the most accurate and also the default. It is the most computationally intensive, but not prohibitively so by any stretch.

Celestial Bodies

Most commonly and by default Navigator will be using Earth, but it can be altered by passing in a different Celestial Body such as Mars or the Moon:

<?php
use Treffynnon\Navigator\CelestialBody\Mars as M;
use Treffynnon\Navigator\Distance as D;
$distance = $Distance->get(new D\Calculator\GreatCircle(new M),
 new D\Converter\MetreToNauticalMile);

Custom Celestial Bodies

Custom celestial bodies are very simple to setup with a set of statistics - see Treffynnon\Navigator\CelestialBody\CelestialBodyAbstract for more information.

Custom Calculators

As with coordinate parsers it is a trivial matter to create custom calculators. Simply extend the abstract class - Treffynnon\Navigator\Distance\Calculator\CalculatorAbstract.

Converters

Converters can be used independently of the Navigator library or injected into the Distance->get() method. By default Navigator returns distances in metres, but this can be converted to the following units:

	Furlong

	Kilometre

	League

	Mile

	Nautical Mile

	Parsec

An example follows:

<?php
use Treffynnon\Navigator\Distance\Converter\MetreToFurlong as F;
$distance = $Distance->get(null, new F);

Custom Converters

As with custom calculators, but even simpler! See Treffynnon\Navigator\Distance\Converter\ConverterAbstract.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Tests

Tests are written for PHPUnit [http://phpunit.de] 3.5+ with 100% code coverage and can be run with:

phpunit --bootstrap tests/bootstrap.php tests

Travis-CI

Continuous integration is handled by Travis-CI [http://travis-ci.org]:

[image: Build Status]
 [http://travis-ci.org/treffynnon/Navigator]

Code Coverage

Code coverage can be obtained from PHPUnit [http://phpunit.de] with the following command:

phpunit --bootstrap tests/bootstrap.php --coverage-html ../coverage tests

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Navigator 1.0.0 documentation

Contribution

Contributions are welcome through pull requests, but they must not break any tests and all new features should come with 100% code coverage.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Navigator 1.0.0 documentation

Licence

BSD 2-Clause License

Copyright (c) 2012, Simon Holywell
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Navigator 1.0.0 documentation

Index

 Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		
 index

 		Navigator 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Simon Holywell.
 Created using Sphinx 1.3.4.

_static/plus.png

_static/down-pressed.png

_static/comment.png

