

 Navigation

 	
 index

 	Mutation Testing in Patterns 1.0 documentation

Mutation Testing in Patterns

[image: Documentation Status]
 [http://mutation-testing-patterns.readthedocs.io/en/latest/?badge=latest]Mutation testing is a technique used to evaluate the quality of existing software
tests. Mutation testing involves modifying a program in small ways, for example
replacing True constants with False and re-running its test suite.
When the test suite fails the mutant is killed. This tells us how good the
test suite is. The goal of this paper is to describe different software and
testing patterns related using practical examples.

Some of them are language specific so please see the relevant sections for
information about installing and running the necessary tools and examples.

Make sure your tools work

Mutation testing relies on dynamically modifying program modules and
loading the mutated instance from memory. Depending on the language specifics
there may be several ways to refer to the same module. In Python
the following are equivalent

import sandwich.ham.ham
obj = sandwich.ham.ham.SomeClass()

from sandwich.ham import ham
obj = ham.SomeClass()

Note

The equivalency here is in terms of having access to the same module API.

When we mutation test the right-most ham module our tools may not
be able to resolve to the same module if various importing styles are used.
For example see Mutant not killed due to module import issue.

Another possible issue is with programs that load modules dynamically or
change the module search path at runtime. Depending on how the
mutation testing tool works these operations may interfere with it.
For example see Mutant not killed when dynamically importing module.

TL,DR: explore your test tool first and manually verify the results before
going further. Unless you know the tools don’t trust them!

Make sure your tests work

Mutation testing relies on the fact that your test suite will fail when a
mutation is introduced. In turn any kind of failure will kill the mutant!
The mutation test tool has no way of knowing whether your test suite failed
because the mutant tripped one of the assertions or whether it failed due
to other reasons.

For example see Mutant killed due to flaky test

TL,DR: make sure your test suite is robust and doesn’t randomly fail due to
external factors!

Divide and conquer

The basic mutation test algorithm is this

for operator in mutation-operators:
 for site in operator.sites(code):
 operator.mutate(site)
 run_tests()

	mutation-operators are the things that make small changes to your code

	operator.sites are the places in your code where this operator can be
applied

As you can see mutation testing is a very expensive operation. For example
the pykickstart [http://github.com/rhinstaller/pykickstart] project
started with 5523 possible mutations and 347 tests, which took on average
100 seconds to execute. A full mutation testing execution needs more than
6 days to complete!

In practice however not all tests are related to, or even make use of
all program modules. This means that mutated operators are only tested via
subset of the entire test suite. This fact can be used to reduce
execution time by scheduling mutation tests against each individual
file/module using only the tests which are related to it.
The best case scenario is when your source file names map directly to
test file names.

For example something like this

for f in `find ./src -type f -name "*.py" | sort`; do
 TEST_NAME="tests/$f"
 runTests $f $TEST_NAME
done

Where runTests executes the mutation testing tool against a single file
and executes only the test which is related to this file.
For pykickstart this approach reduced the entire execution time to little
over 6 hours!

TL,DR: Good source code and test organization will allow easy division of test
runs and tremendously speed up your mutation testing execution time!

Fail fast

Mutation testing relies on your test suite failing when it detects a
faulty mutation. It doesn’t matter which particular test has failed because
most of the tools have no way of telling whether or not the failed test is
related to the mutated code. That means it also doesn’t matter if there are
more than one failing tests so you can use this to your advantage.

TL,DR: Whenever your test tools and framework support the fail fast option
make use of it to reduce test execution time even more!

Python: Refactor if string != “”

Comparison operators may be mutated with each other which gives,
depending on the langauge about 10 possible mutations.

Every time str is not an empty string the following 3 variants
are evaluated to True:

	if str != ""

	if str > ""

	if str not in ""

The existing test cases pass and these mutations are never killed.
Refactoring this to

if str:
 do_something()

is the best way to go about it. This also reduces the total number of
possible mutations.

For example see Killing mutants by refactoring if str != “”

TL,DR: Refactor if str != "": to if str:!

Appendix. Mutation testing with Python

Cosmic-Ray [https://github.com/sixty-north/cosmic-ray] is the mutation testing
tool for Python. It is recommended that you install the latest version from git:

pip install https://github.com/sixty-north/cosmic-ray/zipball/master

Cosmic-Ray uses Celery to allow concurrent execution of workers (e.g.
mutation test jobs). To start the worker

cd myproject/
celery -A cosmic_ray.tasks.worker worker

To execute a test job (called session) use a different terminal and

cd myproject/
cosmic-ray run --baseline=10 session_name.json some/module.py -- tests/some/test.py

Note

Test runner and additional test parameters can be specified. Refer to Cosmic-Ray’s
documentation for more details!

To view the mutation results execute

cosmic-ray report session_name.json

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	Mutation Testing in Patterns 1.0 documentation

Index

 Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

 python/example_01/README.html

 Navigation

 		
 index

 		Mutation Testing in Patterns 1.0 documentation »

Mutant not killed when dynamically importing module

Example of how dynamically importing modules allows mutations to
survive. In this case the problem is a bug in Cosmic-Ray which still
hasn’t been diagnosed properly. For more information see
Issue #157 [https://github.com/sixty-north/cosmic-ray/issues/157].

Reproducer

$ pip install https://github.com/sixty-north/cosmic-ray/zipball/b3c57a3
$ celery -A cosmic_ray.tasks.worker worker

$ cosmic-ray run --baseline=10 example.json sandwich/ham/ham.py -- tests
$ cosmic-ray report example.json
job ID 1:Outcome.SURVIVED:sandwich.ham.ham
command: cosmic-ray worker sandwich.ham.ham number_replacer 0 unittest -- tests
--- mutation diff ---
--- a/sandwich/ham/ham.py
+++ b/sandwich/ham/ham.py
@@ -3,6 +3,6 @@

 class Ham(object):

- def __init__(self, pieces=10):
+ def __init__(self, pieces=11):
 self.pieces = pieces

total jobs: 1
complete: 1 (100.00%)
survival rate: 100.00%

Verify test works

In this example test_control.py properly detects the mutant when the
source code is modified by hand and the test executed manually. To verify this
edit sandwich/ham/ham.py as shown above and then execute

$ python -m unittest tests/test_control.py
F
==
FAIL: test_loading_via_importlib (tests.test_control.TestControl)
--
Traceback (most recent call last):
 File "~/example_01/tests/test_control.py", line 7, in test_loading_via_importlib
 self.assertEqual(ham_in_fridge.pieces, 10)
AssertionError: 11 != 10

--
Ran 1 test in 0.000s

FAILED (failures=1)

Source code

sandwich/ham/ham.py

__all__ = ['Ham']

class Ham(object):
 def __init__(self, pieces=10):
 self.pieces = pieces

sandwich/control.py

import os
import sys
import importlib

path = os.path.dirname(__file__)
path = os.path.join(path, "ham")
if not path in sys.path:
 sys.path.append(path)

module = importlib.import_module('ham')
ham_class = module.__dict__[module.__all__[0]]

tests/test_control.py

import sandwich.control
import unittest

class TestControl(unittest.TestCase):
 def test_loading_via_importlib(self):
 ham_in_fridge = sandwich.control.ham_class()
 self.assertEqual(ham_in_fridge.pieces, 10)

if __name__ == "__main__":
 unittest.main()

 © Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

_static/up.png

python/example_03/README.html

 Navigation

 		
 index

 		Mutation Testing in Patterns 1.0 documentation »

Killing mutants by refactoring if str != “”

Reproducer

$ pip install nose
$ pip install https://github.com/sixty-north/cosmic-ray/zipball/master
$ celery -A cosmic_ray.tasks.worker worker

$ cosmic-ray run --test-runner nose --baseline=10 example.json hello.py -- test_hello.py
(mutation_testing)[atodorov@aero example_03]$ cosmic-ray report example.json
job ID 1:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_In 0 nose -- test_hello.py

job ID 2:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_Eq 0 nose -- test_hello.py

job ID 3:Outcome.SURVIVED:hello
command: cosmic-ray worker hello replace_NotEq_with_NotIn 0 nose -- test_hello.py
--- mutation diff ---
--- a/example_03/hello.py
+++ b/example_03/hello.py
@@ -1,7 +1,7 @@

 def sayHello(name, greeting=''):
- if (greeting != ''):
+ if (greeting not in ''):
 return ((greeting + ', ') + name)
 else:
 return ('Hello, ' + name)

job ID 4:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_LtE 0 nose -- test_hello.py

job ID 5:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_Lt 0 nose -- test_hello.py

job ID 6:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_GtE 0 nose -- test_hello.py

job ID 7:Outcome.KILLED:hello
command: cosmic-ray worker hello replace_NotEq_with_Is 0 nose -- test_hello.py

job ID 8:Outcome.SURVIVED:hello
command: cosmic-ray worker hello replace_NotEq_with_Gt 0 nose -- test_hello.py
--- mutation diff ---
--- a/example_03/hello.py
+++ b/example_03/hello.py
@@ -1,7 +1,7 @@

 def sayHello(name, greeting=''):
- if (greeting != ''):
+ if (greeting > ''):
 return ((greeting + ', ') + name)
 else:
 return ('Hello, ' + name)

total jobs: 8
complete: 8 (100.00%)
survival rate: 25.00%

Now compare the results with hello2.py and test_hello2.py where we’ve
refactored the condition to if greeting::

$ cosmic-ray run --test-runner nose --baseline=10 example.json hello2.py -- test_hello2.py
$ cosmic-ray report example.json
total jobs: 0
no jobs completed

Source code

hello.py

def sayHello(name, greeting=""):
 if greeting != "":
 return greeting + ', ' + name
 else:
 return "Hello, " + name

hello2.py

def sayHello(name, greeting=""):
 if greeting:
 return greeting + ', ' + name
 else:
 return "Hello, " + name

test_hello.py

import hello
import unittest

class TestHello(unittest.TestCase):
 def test_sayHello_name(self):
 result = hello.sayHello("Alex")
 self.assertEqual(result, "Hello, Alex")

 def test_sayHello_name_with_greeting(self):
 result = hello.sayHello("Alex", "Happy testing")
 self.assertEqual(result, "Happy testing, Alex")

if __name__ == "__main__":
 unittest.main()

test_hello2.py

import hello2
import unittest

class TestHello(unittest.TestCase):
 def test_sayHello_name(self):
 result = hello2.sayHello("Alex")
 self.assertEqual(result, "Hello, Alex")

 def test_sayHello_name_with_greeting(self):
 result = hello2.sayHello("Alex", "Happy testing")
 self.assertEqual(result, "Happy testing, Alex")

if __name__ == "__main__":
 unittest.main()

 © Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

_static/comment-close.png

README.html

 Navigation

 		
 index

 		Mutation Testing in Patterns 1.0 documentation »

Mutation Testing in Patterns

[image: Documentation Status]
 [http://mutation-testing-patterns.readthedocs.io/en/latest/?badge=latest]Mutation testing is a technique used to evaluate the quality of existing software
tests. Mutation testing involves modifying a program in small ways, for example
replacing True constants with False and re-running its test suite.
When the test suite fails the mutant is killed. This tells us how good the
test suite is. The goal of this paper is to describe different software and
testing patterns related using practical examples.

Some of them are language specific so please see the relevant sections for
information about installing and running the necessary tools and examples.

Make sure your tools work

Mutation testing relies on dynamically modifying program modules and
loading the mutated instance from memory. Depending on the language specifics
there may be several ways to refer to the same module. In Python
the following are equivalent

import sandwich.ham.ham
obj = sandwich.ham.ham.SomeClass()

from sandwich.ham import ham
obj = ham.SomeClass()

Note

The equivalency here is in terms of having access to the same module API.

When we mutation test the right-most ham module our tools may not
be able to resolve to the same module if various importing styles are used.
For example see Mutant not killed due to module import issue.

Another possible issue is with programs that load modules dynamically or
change the module search path at runtime. Depending on how the
mutation testing tool works these operations may interfere with it.
For example see Mutant not killed when dynamically importing module.

TL,DR: explore your test tool first and manually verify the results before
going further. Unless you know the tools don’t trust them!

Make sure your tests work

Mutation testing relies on the fact that your test suite will fail when a
mutation is introduced. In turn any kind of failure will kill the mutant!
The mutation test tool has no way of knowing whether your test suite failed
because the mutant tripped one of the assertions or whether it failed due
to other reasons.

For example see Mutant killed due to flaky test

TL,DR: make sure your test suite is robust and doesn’t randomly fail due to
external factors!

Divide and conquer

The basic mutation test algorithm is this

for operator in mutation-operators:
 for site in operator.sites(code):
 operator.mutate(site)
 run_tests()

		mutation-operators are the things that make small changes to your code

		operator.sites are the places in your code where this operator can be
applied

As you can see mutation testing is a very expensive operation. For example
the pykickstart [http://github.com/rhinstaller/pykickstart] project
started with 5523 possible mutations and 347 tests, which took on average
100 seconds to execute. A full mutation testing execution needs more than
6 days to complete!

In practice however not all tests are related to, or even make use of
all program modules. This means that mutated operators are only tested via
subset of the entire test suite. This fact can be used to reduce
execution time by scheduling mutation tests against each individual
file/module using only the tests which are related to it.
The best case scenario is when your source file names map directly to
test file names.

For example something like this

for f in `find ./src -type f -name "*.py" | sort`; do
 TEST_NAME="tests/$f"
 runTests $f $TEST_NAME
done

Where runTests executes the mutation testing tool against a single file
and executes only the test which is related to this file.
For pykickstart this approach reduced the entire execution time to little
over 6 hours!

TL,DR: Good source code and test organization will allow easy division of test
runs and tremendously speed up your mutation testing execution time!

Fail fast

Mutation testing relies on your test suite failing when it detects a
faulty mutation. It doesn’t matter which particular test has failed because
most of the tools have no way of telling whether or not the failed test is
related to the mutated code. That means it also doesn’t matter if there are
more than one failing tests so you can use this to your advantage.

TL,DR: Whenever your test tools and framework support the fail fast option
make use of it to reduce test execution time even more!

Python: Refactor if string != “”

Comparison operators may be mutated with each other which gives,
depending on the langauge about 10 possible mutations.

Every time str is not an empty string the following 3 variants
are evaluated to True:

		if str != ""

		if str > ""

		if str not in ""

The existing test cases pass and these mutations are never killed.
Refactoring this to

if str:
 do_something()

is the best way to go about it. This also reduces the total number of
possible mutations.

For example see Killing mutants by refactoring if str != “”

TL,DR: Refactor if str != "": to if str:!

Appendix. Mutation testing with Python

Cosmic-Ray [https://github.com/sixty-north/cosmic-ray] is the mutation testing
tool for Python. It is recommended that you install the latest version from git:

pip install https://github.com/sixty-north/cosmic-ray/zipball/master

Cosmic-Ray uses Celery to allow concurrent execution of workers (e.g.
mutation test jobs). To start the worker

cd myproject/
celery -A cosmic_ray.tasks.worker worker

To execute a test job (called session) use a different terminal and

cd myproject/
cosmic-ray run --baseline=10 session_name.json some/module.py -- tests/some/test.py

Note

Test runner and additional test parameters can be specified. Refer to Cosmic-Ray’s
documentation for more details!

To view the mutation results execute

cosmic-ray report session_name.json

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

python/example_00/README.html

 Navigation

 		
 index

 		Mutation Testing in Patterns 1.0 documentation »

Mutant not killed due to module import issue

Example of how importing modules under different names allows mutations to
survive. In this case the problem is related to how Cosmic-Ray loads the
mutated modules. It has already been fixed in
PR #158 [https://github.com/sixty-north/cosmic-ray/pull/158].

Reproducer

$ pip install https://github.com/sixty-north/cosmic-ray/zipball/2a48656
$ celery -A cosmic_ray.tasks.worker worker

$ cosmic-ray run --baseline=10 example.json sandwich/ham/ham.py -- tests
$ cosmic-ray report example.json
job ID 1:Outcome.SURVIVED:sandwich.ham.ham
command: cosmic-ray worker sandwich.ham.ham number_replacer 0 unittest -- tests
--- mutation diff ---
--- a/sandwich/ham/ham.py
+++ b/sandwich/ham/ham.py
@@ -3,6 +3,6 @@

 class Ham(object):

- def __init__(self, pieces=10):
+ def __init__(self, pieces=11):
 self.pieces = pieces

total jobs: 1
complete: 1 (100.00%)
survival rate: 100.00%

Note

In this example test_control.py properly kills the mutant once
the above issue is fixed.

Source code

sandwich/ham/ham.py

class Ham(object):
 def __init__(self, pieces=10):
 self.pieces = pieces

sandwich/control.py

from sandwich.ham import ham
ham_class = ham.Ham

tests/test_control.py

import sandwich.control
import unittest

class TestControl(unittest.TestCase):
 def test_loading_via_importlib(self):
 ham_in_fridge = sandwich.control.ham_class()
 self.assertEqual(ham_in_fridge.pieces, 10)

if __name__ == "__main__":
 unittest.main()

 © Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

python/example_02/README.html

 Navigation

 		
 index

 		Mutation Testing in Patterns 1.0 documentation »

Mutant killed due to flaky test

Sometimes mutants may be falsely reported as killed simply because the
test case failed. When your test suite isn’t reliable your mutation testing
isn’t realiable as well.

Reproducer

$ pip install nose
$ pip install https://github.com/sixty-north/cosmic-ray/zipball/master
$ celery -A cosmic_ray.tasks.worker worker

$ cosmic-ray run --test-runner nose --baseline=10 example.json flaky.py -- test_flaky.py:TestFlaky
$ cosmic-ray report example.json
job ID 1:Outcome.KILLED:flaky
command: cosmic-ray worker flaky boolean_replacer 0 unittest -- .

job ID 2:Outcome.KILLED:flaky
command: cosmic-ray worker flaky number_replacer 0 unittest -- .

total jobs: 2
complete: 2 (100.00%)
survival rate: 0.00%

$ cat test.txt
Hello World
Hello World
HELLO WORLD
HELLO WORLD
Hello World
Hello World
Hello World

Verify mutants have survived

The TestFlaky test isn’t reliable because it doesn’t take into account
the interaction with the filesystem.
In the example above the first 2 lines appear when Cosmic-Ray executes
the baseline test suite, that is execute the test suite without any modifications.
The next 2 lines come when upcase is mutated to True and the last 3
lines come when number is mutated to 3.

Notice that TestFlaky never asserts the contents of the written text,
nor the fact that it may be in upper case. However due to unrelated failures
we’re left to think that the test suite tests everything correctly. To see the
real results execute

$ rm test.txt
$ cosmic-ray worker flaky boolean_replacer 0 nose -- test_flaky.py:TestFlaky
Outcome.SURVIVED
--- mutation diff ---
--- a/example_02/flaky.py
+++ b/example_02/flaky.py
@@ -5,7 +5,7 @@
 data_file.write(content)
 data_file.close()

-def sayHello(times=2, upcase=False):
+def sayHello(times=2, upcase=True):
 text = 'Hello World\\n'
 if upcase:
 text = text.upper()

$ rm test.txt
$ cosmic-ray worker flaky number_replacer 0 nose -- test_flaky.py:TestFlaky
Outcome.KILLED
Traceback (most recent call last):
 File "./example_02/test_flaky.py", line 10, in test_sayHello
 self.assertEqual(len(lines), 2)
 AssertionError: 3 != 2

--- mutation diff ---
--- a/example_02/flaky.py
+++ b/example_02/flaky.py
@@ -5,7 +5,7 @@
 data_file.write(content)
 data_file.close()

-def sayHello(times=2, upcase=False):
+def sayHello(times=3, upcase=False):
 text = 'Hello World\\n'
 if upcase:
 text = text.upper()

The second test TestFlakyWithMock is better because it properly isolates
interaction with the filesystem and because
it properly verifies the expected behavior. All mutants are properly killed
this time

$ cosmic-ray run --test-runner nose --baseline=10 example.json flaky.py -- test_flaky.py:TestFlakyWithMock
$ cosmic-ray report example.json --full-report
$ ls -l test.txt
ls: cannot access test.txt: No such file or directory

Source code

flaky.py

def log_to_file(content):
 data_file = open('./test.txt', 'a+')
 data_file.write(content)
 data_file.close()

def sayHello(times=2, upcase = False):
 text = 'Hello World\n'

 if upcase:
 text = text.upper()

 for i in range(times):
 log_to_file(text)

test_flaky.py

import flaky
import unittest
from unittest import mock

class TestFlaky(unittest.TestCase):
 def test_sayHello(self):
 flaky.sayHello()
 try:
 f = open('./test.txt')
 lines = f.readlines()
 self.assertEqual(len(lines), 2)
 finally:
 f.close()

class TestFlakyWithMock(unittest.TestCase):
 @mock.patch('flaky.log_to_file')
 def test_sayHello(self, _log_to_file):
 calls = [mock.call('Hello World\n'), mock.call('Hello World\n')]
 flaky.sayHello()
 # called twice with lower case string
 self.assertEqual(_log_to_file.call_count, 2)
 _log_to_file.assert_has_calls(calls)

if __name__ == "__main__":
 unittest.main()

 © Copyright 2016, Alexander Todorov.
 Created using Sphinx 1.4.5.

_static/comment-bright.png

