

Miniflux

Miniflux is a minimalist and opinionated feed reader.

	Introduction

	Opinionated?

	Features

	Requirements

	Installation Instructions

	Configuration

	Upgrading Miniflux

	Installation Tutorials

	How-Tos

	Command Line Usage

	User Interface Usage

	Keyboard Shortcuts

	Integration with External Services

	Scraper Rules

	Rewrite Rules

	REST API

	Development

	Internationalization

	Migration from Miniflux 1.2.x

	Frequently Asked Questions

Introduction

Miniflux is a self-hosted software to read RSS/RDF/Atom/JSON feeds.

Screenshots

[image: _images/overview.png]

License

Apache 2.0

Opinionated?

Miniflux is a minimalist software.
The purpose of this application is to read feeds.
Nothing else.

Focus on Simplicity

	Having a gazillion of features makes the software hard to maintain, hard to troubleshoot and increase the number of bugs.

	This software doesn’t try to satisfy the needs of everyone.

Why the user interface is ugly?

	The Miniflux layout is optimized to scan entries quickly.

	The design of Miniflux is inspired by Hacker News [https://news.ycombinator.com/], Lobsters [https://lobste.rs/] and Pinboard [https://pinboard.in/].

Why are you not developing my feature request?

	Developing a software takes a lot of time. Don’t expect anyone to work for free.

	As mentioned above, the number of features is voluntarily limited. Nobody likes bloatware.

	Improving existing features is more important than adding new ones.

Why choose Golang as a programming language?

Go [https://golang.org/] is probably the best choice for self-hosted software:

	Go is a simple programming language.

	Running code concurrently is part of the language.

	It’s faster than a scripting language like PHP or Python.

	The final application is a binary compiled statically without any dependency.

	You just need to drop the executable on your server to deploy the application.

	You don’t have to worry about what version of PHP/Python is installed on your machine.

	Packaging the software using RPM/Debian/Docker is straightforward.

Why Postgresql?

Miniflux is compatible only with Postgres.

	Supporting multiple databases increases the complexity of the software.

	We do not have the resources to test the software with all major versions of MySQL, MariaDB, Sqlite, and so on.

	ORM abstracts some interesting features provided by your database.

	Managing schema migrations with Sqlite is painful.

	Postgresql is powerful, rock solid and battle tested.

	Postgresql is a great independent open source software.

	Miniflux uses hstore/jsonb/inet data types, window functions, full-text search and handles user timezones with Postgres.

Why no Javascript framework?

Miniflux uses Javascript only where it’s necessary.

	Rendering templates server side is very simple and fast enough for that kind of application.

	Using Javascript frameworks increase complexity.

	The Javascript ecosystem is moving all the time, sticking to the standard is probably more sustainable.

	Having too many dependencies is painful to maintain and update on the long term.

Why only ECMAScript 6?

Miniflux uses ES6 and the Fetch API.

	All modern browsers support ES6 nowadays.

	Only Internet Explorer doesn’t support ES6, but who cares?

	Using a Javascript transpiler introduce another set of useless dependencies.

Why there is no mobile application?

Using the web UI on your smartphone is not so bad:

	Miniflux is a progressive web app [https://developer.mozilla.org/en-US/Apps/Progressive]

	The layout adapts to the screen size (responsive design)

	You could add the application to the home screen like any native application

	You can swipe entries horizontally to change their status

	The web browser is a pretty good sandbox, the application cannot access to the data stored on your phone

	It’s cross platform: works on iOS and Android

The development of mobile clients is left to the open source community:

	Developing a native mobile application for each platform (iOS and Android) and different devices (smartphones and tablets) takes a lot of work

	The main developer of Miniflux is not a mobile application developer

	You have to pay a fee to publish your app on the store even if your app doesn’t make any money

Features

Reader

	Feed formats supported: Atom, RSS 1.0/2.0, RDF and JSON

	OPML import/export

	Support multiple enclosures/attachments (Podcasts, videos, music, and images)

	Play videos from YouTube channels directly inside Miniflux

	Categories

	Bookmarks

	Fetch website icons (favicons)

	Save articles to third-party services

	Available in Chinese, Dutch, English, French, German, Italian, Polish, Russian, and Spanish

Privacy

	Remove pixel trackers

	Fetch original links when the feed is coming from FeedBurner

	Open external links with the attributes rel="noopener noreferrer" referrerpolicy="no-referrer"

	Image proxy to avoid mixed content warnings with HTTPS

	Play Youtube videos by using the domain youtube-nocookie.com

	Block any external Javascript code to avoid tracking

Content Manipulation

	Fetch original article and returns relevant contents (Readability)

	Custom scraper rules based on CSS selectors

	
	Custom rewriting rules

	
	Append image title for comics

	Add Youtube video

	Override default user agent to bypass websites restrictions

User Interface

	Stylesheet optimized for readability

	Responsive design (works on desktop, tablet, and mobile devices)

	No fancy user interface

	Doesn’t require to download an application from the App/Play Store

	You could add Miniflux to the home screen

	Keyboard shortcuts

	Touch events on mobile devices

	Themes: Default (white), Black (Dark mode) and Sans-Serif

Integration

	Send articles to Pinboard, Instapaper, Pocket, Wallabag, or Nunux Keeper

	Bookmarklet to subscribe to a website directly from any browsers

	Use existing mobile applications to read your feeds by using the Fever API

	REST API with clients written in Go and Python

Authentication

	Username/password

	Google (OAuth2)

Technical stuff

	Self-hosted

	Written in Go (Golang)

	Designed to run only with Postgresql

	Single static binary (no more dependency hell)

	Automatic HTTPS configuration with Let’s Encrypt

	Use your own SSL certificate

	Supports HTTP/2.0 if TLS is configured

	Feeds are updated in the background by an internal scheduler

	External content is sanitized before being displayed

	Use content security policy that allows only application Javascript and block inline code and styles

	Works only in modern browsers

	Follows the Twelve-Factor App [https://12factor.net/] principle

Requirements

Hardware

	Rasbperry Pi, small virtual machine, platform as a service…

	Probably anything that can run Linux

	x86_64 or ARM architecture

Operating Systems

	GNU/Linux

	Darwin [https://github.com/golang/go/wiki/Darwin]

	FreedBSD [https://github.com/golang/go/wiki/FreeBSD]

	OpenBSD [https://github.com/golang/go/wiki/OpenBSD]

	Windows

Note

All operating systems supported by Golang should work but Miniflux is mainly tested with Linux.

Databases

	Postgresql >= 9.5

Web Browsers

A browser compatible with ECMAScript 6 is required.

	Mozilla Firefox

	Chrome

	Safari

	Microsoft Edge

Warning

Internet Explorer and the Kindle browser are not supported.

Installation Instructions

Packages

	Platform

	Type

	Repository URL

	Debian/Ubuntu

	Upstream (Binary)

	https://github.com/miniflux/package-deb

	RHEL/Fedora

	Upstream (Binary)

	https://github.com/miniflux/package-rpm

	Arch Linux

	Community (Source)

	https://aur.archlinux.org/packages/miniflux/

	FreeBSD Port

	Community (Source)

	www/miniflux [https://svnweb.freebsd.org/ports/head/www/miniflux/]

	Nix

	Community (Source)

	https://github.com/NixOS/nixpkgs/tree/master/pkgs/servers/miniflux

You can download precompiled binaries and packages on the releases page: https://github.com/miniflux/miniflux/releases.
You could also build the application from the source code.

Manual Installation

	Copy the binary somewhere

	Make the file executable: chmod +x miniflux

	Define the environment variable DATABASE_URL if necessary

	CREATE EXTENSION hstore in the database or specify a user with SUPERUSER privileges. (Details)

	Run the SQL migrations: miniflux -migrate

	Create an admin user: miniflux -create-admin

	Start the application: miniflux

You should configure a process manager like systemd or supervisord to supervise the Miniflux daemon.
The Debian or RPM packages are doing that for you.

Debian Package Installation

You must have Debian >= 8 or Ubuntu >= 16.04.
When using the Debian package, the Miniflux daemon is supervised by systemd.

	Install Debian package: dpkg -i miniflux_2.0.13_amd64.deb

	Check process status: systemctl status miniflux

	Define the environment variable DATABASE_URL if necessary

	Run the SQL migrations: miniflux -migrate

	Create an admin user: miniflux -create-admin

Systemd reads the environment variables from the file /etc/miniflux.conf.
You must restart the service to take the new values into consideration.

RPM Package Installation

You must have Fedora or Centos/Redhat >= 7.
When you use the RPM package, the Miniflux daemon is supervised by systemd.

	Install Miniflux RPM: rpm -ivh miniflux-2.0.13-1.0.x86_64.rpm

	Define the environment variable DATABASE_URL if necessary

	Run the SQL migrations: miniflux -migrate

	Create an admin user: miniflux -create-admin

	Enable the systemd service: systemctl enable miniflux

	Start the process with systemd: systemctl start miniflux

	Check process status: systemctl status miniflux

Systemd reads the environment variables from the file /etc/miniflux.conf.
You must restart the service to take the new values into consideration.

Docker Usage

Pull the image and run the container: docker run -d -p 80:8080 miniflux/miniflux:latest.
You will probably need to pass some environment variables like the DATABASE_URL.

You could also use Docker Compose. Here an example of docker-compose.yml file:

version: '3'
services:
 miniflux:
 image: miniflux/miniflux:latest
 ports:
 - "80:8080"
 depends_on:
 - db
 environment:
 - DATABASE_URL=postgres://miniflux:secret@db/miniflux?sslmode=disable
 db:
 image: postgres:10.1
 environment:
 - POSTGRES_USER=miniflux
 - POSTGRES_PASSWORD=secret
 volumes:
 - miniflux-db:/var/lib/postgresql/data
volumes:
 miniflux-db:

Remember that you still need to run the database migrations and create the first user:

Run database migrations
docker exec -ti <container-name> /usr/bin/miniflux -migrate

Create the first user
docker exec -ti <container-name> /usr/bin/miniflux -create-admin

Another way of doing the same thing is to populate the variables RUN_MIGRATIONS, CREATE_ADMIN, ADMIN_USERNAME and ADMIN_PASSWORD.

Configuration

Miniflux doesn’t use any configuration file, only environment variables.

Systemd uses the file /etc/miniflux.conf to populate environment variables.

	Variable Name

	Description

	Default Value

	DEBUG

	Set the value to 1 to enable debug logs

	None

	WORKER_POOL_SIZE

	Number of background workers

	5

	POLLING_FREQUENCY

	Refresh interval in minutes for feeds

	60 (minutes)

	BATCH_SIZE

	Number of feeds to send to the queue for each interval

	10

	DATABASE_URL

	Postgresql connection parameters

	user=postgres password=postgres dbname=miniflux2 sslmode=disable

	DATABASE_MAX_CONNS

	Maximum number of database connections

	20

	DATABASE_MIN_CONNS

	Minimum number of database connections

	1

	ARCHIVE_READ_DAYS

	Number of days after which marking read items as removed. Set the
value to -1 to disable removal.

	60

	LISTEN_ADDR

	Address to listen on (use absolute path for Unix socket)

	127.0.0.1:8080

	PORT

	Override LISTEN_ADDR to 0.0.0.0:$PORT (PaaS)

	None

	BASE_URL

	Base URL to generate HTML links and base path for cookies

	http://localhost/

	CLEANUP_FREQUENCY

	Cleanup job frequency, remove old sessions and archive read entries

	24 (hours)

	HTTPS

	Forces cookies to use secure flag and send HSTS headers

	None

	DISABLE_HSTS

	Disable HTTP Strict Transport Security header if HTTPS is set

	None

	DISABLE_HTTP_SERVICE

	Disable HTTP service

	None

	DISABLE_SCHEDULER_SERVICE

	Disable scheduler service

	None

	CERT_FILE

	Path to SSL certificate

	None

	KEY_FILE

	Path to SSL private key

	None

	CERT_DOMAIN

	Use Let’s Encrypt to get automatically a certificate for this domain

	None

	CERT_CACHE

	Let’s Encrypt cache directory

	/tmp/cert_cache

	OAUTH2_PROVIDER

	OAuth2 provider to use, at this time only google is supported

	None

	OAUTH2_CLIENT_ID

	OAuth2 client ID

	None

	OAUTH2_CLIENT_SECRET

	OAuth2 client secret

	None

	OAUTH2_REDIRECT_URL

	OAuth2 redirect URL

	None

	OAUTH2_USER_CREATION

	Set to 1 to authorize OAuth2 user creation

	None

	RUN_MIGRATIONS

	Set to 1 to run database migrations

	None

	CREATE_ADMIN

	Set to 1 to create an admin user from environment variables

	None

	ADMIN_USERNAME

	Admin user login, used only if CREATE_ADMIN is enabled

	None

	ADMIN_PASSWORD

	Admin user password, used only if CREATE_ADMIN is enabled

	None

	POCKET_CONSUMER_KEY

	Pocket consumer API key for all users

	None

	PROXY_IMAGES

	Avoids mixed content warnings for external images:
http-only, all, or none

	http-only

Accepted boolean values are 1, yes, true, and on.

Database Connection Parameters

Miniflux uses the Golang library pq [https://github.com/lib/pq] to communicate with Postgres.
Connection parameters are available on this page [https://godoc.org/github.com/lib/pq#hdr-Connection_String_Parameters].

The default value for DATABASE_URL is user=postgres password=postgres dbname=miniflux2 sslmode=disable.

You could also use the URL format postgres://postgres:postgres@localhost/miniflux2?sslmode=disable.

Warning

Password that contains special characters like ^ might be rejected since Miniflux 2.0.3.
Golang v1.10 is now validating the password [https://go-review.googlesource.com/c/go/+/87038] and will return this error: net/url: invalid userinfo.
To avoid this issue, do not use the URL format for DATABASE_URL or make sure the password is URL encoded.

Enabling HSTORE extension for Postgresql

Creating Postgresql extensions requires the SUPERUSER privilege.
Several solutions are available:

	Give SUPERUSER privileges to miniflux user only during the schema migration:

ALTER USER miniflux WITH SUPERUSER;
-- Run the migrations (miniflux -migrate)
ALTER USER miniflux WITH NOSUPERUSER;

	You could create the hstore extension [https://www.postgresql.org/docs/current/static/sql-createextension.html] with another user that have the SUPERUSER privileges before to run the migrations.

sudo -u postgres psql $MINIFLUX_DATABASE
> CREATE EXTENSION hstore;

Upgrading Miniflux

Warning

Please, do not update the software blindly without reading the ChangeLog [https://github.com/miniflux/miniflux/blob/master/ChangeLog].
Always check for breaking changes if any.

Procedure

	Export environment variable DATABASE_URL if not already done

	Disconnect all users by flushing all sessions: miniflux -flush-sessions

	Stop the process

	Backup your database

	Check that your backup is really working

	Run database migrations: miniflux -migrate

	Start the process

Debian Package

Follow instructions mentioned above and run: dpkg -i miniflux_2.x.x_amd64.deb.

RPM Package

Follow instructions mentioned above and run: rpm -Uvh miniflux-2.x.x-1.0.x86_64.rpm.

Docker Image

	Pull the new image with the new tag: docker pull miniflux/miniflux:2.x.x

	Stop and remove the old container: docker stop <container_name> && docker rm <container_name>

	Start a new container with the latest tag: docker run -d -p 80:8080 miniflux/miniflux:2.x.x

If you use Docker Compose, define the new tag in the YAML file and restart the container.

Installation Tutorials

Here are a couple of tutorials to help you to install Miniflux (They are only examples).

Installing Miniflux on your own server

Ubuntu 16.04

	Install Postgresql: apt install postgresql

	Prepare the database:

Switch to the postgres user
$ su - postgres

Create a database user for Miniflux
$ createuser -P miniflux
Enter password for new role: ******
Enter it again: ******

Create a database for miniflux that belongs to our user
$ createdb -O miniflux miniflux

Create the extension hstore as superuser
$ psql miniflux -c 'create extension hstore'
CREATE EXTENSION

	Install Miniflux:

Download the latest Debian package from the release page
In this example, this is the version 2.0.13
$ wget https://github.com/miniflux/miniflux/releases/download/2.0.13/miniflux_2.0.13_amd64.deb

Install the package
$ dpkg -i miniflux_2.0.13_amd64.deb

Run the SQL migrations
$ export DATABASE_URL=postgres://miniflux:secret@localhost/miniflux?sslmode=disable
$ miniflux -migrate
Current schema version: 0
Latest schema version: 16
Migrating to version: 1
Migrating to version: 2
Migrating to version: 3
[...]

Create the first user
$ miniflux -create-admin
Enter Username: superman
Enter Password: ******

Update the config file /etc/miniflux.conf
Add/Edit this lines:
DATABASE_URL=postgres://miniflux:secret@localhost/miniflux?sslmode=disable
LISTEN_ADDR=0.0.0.0:80
$ vim /etc/miniflux.conf

Authorize Miniflux to listen on port 80
$ setcap cap_net_bind_service=+ep /usr/bin/miniflux

Restart the process to take the new config values into consideration
systemctl restart miniflux

Check the logs to make sure the process is running properly
$ journalctl -u miniflux
[INFO] Starting Miniflux...
[INFO] [Worker] #0 started
[INFO] [Worker] #1 started
[INFO] [Worker] #2 started
[INFO] [Worker] #3 started
[INFO] Listening on "0.0.0.0:80" without TLS

	Now, you can access to your Miniflux instance via http://your-server/

Fedora 28

Database installation and configuration:

	Install Postgresql: sudo dnf install -y postgresql-server postgresql-contrib

	Enable Postgres service: sudo systemctl enable postgresql

	Initialize the database: sudo postgresql-setup --initdb --unit postgresql

	Start Postgres service: sudo systemctl start postgresql

	Create Miniflux database user: sudo su - postgres and createuser -P miniflux

	Create Miniflux database: createdb -O miniflux miniflux

	Create HSTORE extension: psql miniflux -c 'create extension hstore'

Note

More information available on the Fedora Wiki [https://fedoraproject.org/wiki/PostgreSQL].

Miniflux installation:

	Install RPM package:

sudo dnf install https://github.com/miniflux/miniflux/releases/download/2.0.13/miniflux-2.0.13-1.0.x86_64.rpm

	Run SQL migrations and create first user:

export DATABASE_URL=postgres://miniflux:secret@127.0.0.1/miniflux?sslmode=disable

Create database structure:
miniflux -migrate

Create frist user:
miniflux -create-admin

	Start the service:

systemctl enable miniflux
systemctl start miniflux

To watch the logs:
journalctl -f -u miniflux

	Access your Miniflux instance via http://your-server:8080/

Running Miniflux with Docker Compose

You could use Docker to try quickly Miniflux on your local machine:

Create a docker-compose.yml file into a folder called miniflux for example.

version: '3'
services:
 miniflux:
 image: miniflux/miniflux:latest
 ports:
 - "80:8080"
 depends_on:
 - db
 environment:
 - DATABASE_URL=postgres://miniflux:secret@db/miniflux?sslmode=disable
 - RUN_MIGRATIONS=1
 - CREATE_ADMIN=1
 - ADMIN_USERNAME=admin
 - ADMIN_PASSWORD=test123
 db:
 image: postgres:10.1
 environment:
 - POSTGRES_USER=miniflux
 - POSTGRES_PASSWORD=secret
 volumes:
 - miniflux-db:/var/lib/postgresql/data
volumes:
 miniflux-db:

Then run docker-compose up and go to http://localhost/.

After the first user has been created, you should remove the variables CREATE_ADMIN, ADMIN_USERNAME and ADMIN_PASSWORD.

Deploying Miniflux on Heroku

Since the version 2.0.6, you can deploy Miniflux on Heroku [https://www.heroku.com/] in few seconds.

	Clone the repository on your machine: git clone https://github.com/miniflux/miniflux.git

	Switch to a stable version, for example git checkout 2.0.13 (master is the development branch)

	Create a new Heroku application: heroku apps:create

	Add the Postgresql addon: heroku addons:create heroku-postgresql:hobby-dev

	Add environment variables to setup the application:

This parameter will create all tables in the database.
heroku config:set RUN_MIGRATIONS=1

The following parameters will create the first user.
heroku config:set CREATE_ADMIN=1
heroku config:set ADMIN_USERNAME=admin
heroku config:set ADMIN_PASSWORD=test123

	Deploy the application on Heroku: git push heroku master

	After the application is installed successfully, you don’t need these variables anymore:

heroku config:unset CREATE_ADMIN
heroku config:unset ADMIN_USERNAME
heroku config:unset ADMIN_PASSWORD

	To watch the logs, use heroku logs.

	You can also run a one-off container to run the commands manually: heroku run bash.
The Miniflux binary will be located into the folder bin.

	To update Miniflux, pull the new version from the repository and push to Heroku again.

Deploying Miniflux on Google App Engine

	Create a Postgresql instance via Google Cloud SQL, then create a user and a new database

	Clone the repository and create a app.yaml file in the project root directory

runtime: go111
env_variables:
 CLOUDSQL_CONNECTION_NAME: INSTANCE_CONNECTION_NAME
 CLOUDSQL_USER: replace-me
 CLOUDSQL_PASSWORD: top-secret

 CREATE_ADMIN: 1
 ADMIN_USERNAME: foobar
 ADMIN_PASSWORD: test123
 RUN_MIGRATIONS: 1
 DATABASE_URL: "user=replace-me password=top-secret host=/cloudsql/INSTANCE_CONNECTION_NAME dbname=miniflux"

	Last step, deploy your application: gcloud app deploy

Replace the values according to your project configuration.
The database connection is made over a Unix socket on App Engine.

Refer to Google Cloud documentation for more details:

	https://cloud.google.com/appengine/docs/standard/go111/building-app/

	https://cloud.google.com/appengine/docs/standard/go111/using-cloud-sql

Warning

Running Miniflux on Google App Engine should work but it’s considered experimental.

Deploying Miniflux on AlwaysData

AlwaysData [https://www.alwaysdata.com/] is a French shared hosting provider.
You can install Miniflux in few minutes on their platform.

	Open an account

	Via the admin panel, create a Postgresql database and define a user/password

	Create a website, choose “User Program”, use a custom shell-script, for example ~/start.sh

[image: _images/alwaysdata_1.png]

	Enable the SSH access and open a session ssh account@ssh-account.alwaysdata.net

	Install Miniflux:

wget https://github.com/miniflux/miniflux/releases/download/2.0.13/miniflux-linux-amd64
mv miniflux-linux-amd64 miniflux
chmod +x miniflux

	Create a shell script to start miniflux, let’s call it start.sh:

#!/bin/sh

export LISTEN_ADDR=$ALWAYSDATA_HTTPD_IP:$ALWAYSDATA_HTTPD_PORT
export DATABASE_URL="host=postgresql-xxxxx.alwaysdata.net dbname=xxxx user=xxxx password=xxx sslmode=disable"

env --unset PORT ~/miniflux

	Make the script executable: chmod +x start.sh

	Run the db migrations and a create the first user:

export DATABASE_URL=".... replace me...."
./miniflux -migrate
./miniflux -create-admin

	Go to https://your-account.alwaysdata.net

Via the admin panel, in Advanced > Processes, you can even see the Miniflux process running:

[image: _images/alwaysdata_2.png]

How-Tos

Use a Unix socket for Postgresql

If you would like to connect via a Unix socket to Postgresql, set the parameter host=/path/to/socket/folder.

Example:

export DATABASE_URL="user=postgres password=postgres dbname=miniflux2 sslmode=disable host=/path/to/socket/folder"
./miniflux

How to run Miniflux on port 443 or 80

Ports less than 1024 are reserved for privileged users.
If you have installed Miniflux with the RPM or Debian package, systemd run the process as the miniflux user.

To give Miniflux the ability to bind to privileged ports as a non-root user, add the capability CAP_NET_BIND_SERVICE to the binary:

setcap cap_net_bind_service=+ep /usr/bin/miniflux

Check that the capability is added:

getcap /usr/bin/miniflux
/usr/bin/miniflux = cap_net_bind_service+ep

Note

Another way of doing this is to use the Systemd Socket Activation or a reverse-proxy like Nginx.

Reverse-Proxy Configuration

You can use the reverse-proxy software of your choice, here an example with Nginx:

server {
 server_name my.domain.tld;
 listen 80;

 location / {
 proxy_pass http://127.0.0.1:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

This example assumes that you are running the Miniflux daemon on 127.0.0.1:8080.

Reverse-Proxy with a subfolder

Since the version 2.0.2, you can host your Miniflux instance under a subfolder.

You must define the environment variable BASE_URL for Miniflux, for example:

export BASE_URL=http://example.org/rss/

Example with Nginx:

server {
 server_name my.domain.tld;
 listen 80;

 location /rss/ {
 proxy_pass http://127.0.0.1:8080/rss/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

Alternative Nginx configuration:

server {
 server_name my.domain.tld;
 listen 80;

 location / {
 proxy_pass http://127.0.0.1:8080;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

This example assumes that you are running the Miniflux daemon on 127.0.0.1:8080.

Now you can access your Miniflux instance at http://example.org/rss/.
In this configuration, cookies are using the path /rss.

Apache 2.4 example:

This configuration assumes the same base-url as the nginx-example.
Place this inside your vhosts config, needed modules: mod_proxy, mod_proxy_http

ProxyRequests Off
<Proxy *>
 Order allow,deny
 Allow from all
</Proxy>

<Location "/rss/">
 ProxyPreserveHost On
 ProxyPass http://127.0.0.1:8080/rss/
 ProxyPassReverse http://127.0.0.1:8080/rss/
</Location>

Reverse-Proxy with a Unix socket

If you prefer to use a Unix socket, change the environment variable LISTEN_ADDR to the path of your socket.

Configure Miniflux to use a Unix socket:

LISTEN_ADDR=/run/miniflux/miniflux.sock

The socket folder must be writeable by the miniflux user:

sudo mkdir /run/miniflux
sudo chown miniflux: /run/miniflux

Example with Nginx as reverse-proxy:

server {
 server_name my.domain.tld;
 listen 80;

 location / {
 proxy_pass http://unix:/run/miniflux/miniflux.sock;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

Note

	By default, the socket has the permissions 0666 to make it accessible from other processes like Nginx or others.

	If you don’t set the header X-Forwarded-For, Miniflux won’t be able to determine the remote IP address.

	Listening on Unix socket is available only since Miniflux v2.0.13.

Systemd Socket Activation

In this example, we are going to expose Miniflux on port 80 via Systemd.

Miniflux will be started by systemd at boot or on-demand.
The process is running under an unprivileged user miniflux and we load the environment variables from /etc/miniflux.conf.

Create a file /etc/systemd/system/miniflux.socket:

[Unit]
Description=Miniflux Socket

[Socket]
NoDelay=true

Listen on port 80.
To use a unix socket, define the absolute path here.
ListenStream=80

[Install]
WantedBy=sockets.target

Create a file /etc/systemd/system/miniflux.service:

[Unit]
Description=Miniflux Service
Requires=mniflux.socket

[Service]
ExecStart=/usr/bin/miniflux
EnvironmentFile=/etc/miniflux.conf
User=miniflux
NonBlocking=true

[Install]
WantedBy=multi-user.target

Enable this:

sudo systemctl enable miniflux.socket
sudo systemctl enable miniflux.service

Tell systemd to listen on port 80 for us:

sudo systemctl start miniflux.socket

If you go to http://127.0.0.1/, systemd will start the Miniflux service automatically.

If you watch the logs with journalctl -u miniflux.service, you will see [INFO] Listening on systemd socket.

Note

	Systemd socket activation is available only since Miniflux v2.0.13.

	When using this feature, Miniflux ignores LISTEN_ADDR.

Warning

This feature is experimental.

Let’s Encrypt Configuration

You could use Let’s Encrypt to manage the SSL certificate automatically and activate HTTP/2.0.

export CERT_DOMAIN=my.domain.tld
miniflux

	Your server must be reachable publicly on port 443 and port 80 (http-01 challenge)

	In this mode, LISTEN_ADDR is automatically set to :https

	A cache directory is required, by default /tmp/cert_cache is used, it could be overrided by using the variable CERT_CACHE

Note

Miniflux supports http-01 challenge since the version 2.0.2

Manual HTTPS Configuration

Here an example to generate a self-signed certificate:

Generate the private key:
openssl genrsa -out server.key 2048
openssl ecparam -genkey -name secp384r1 -out server.key

Generate the certificate:
openssl req -new -x509 -sha256 -key server.key -out server.crt -days 3650

Start the server like this:

Configure the environment variables:
export CERT_FILE=/path/to/server.crt
export KEY_FILE=/path/to/server.key
export LISTEN_ADDR=":https"

Start the server:
miniflux

Then you can access to your server by using an encrypted connection with the HTTP/2.0 protocol.

OAuth2 Authentication

OAuth2 allows you to sign in with an external provider.
At this time, only Google is supported.

	Create a new project in Google Console

	Create a new OAuth2 client

	Set an authorized redirect URL, for example https://my.domain.tld/oauth2/google/callback

	Define the OAuth2 environment variables and start the process

export OAUTH2_PROVIDER=google
export OAUTH2_CLIENT_ID=replace_me
export OAUTH2_CLIENT_SECRET=replace_me
export OAUTH2_REDIRECT_URL=https://my.domain.tld/oauth2/google/callback

miniflux

Now from the settings page, you can link your existing user to your Google account.

If you would like to authorize anyone to create a user account, you must set OAUTH2_USER_CREATION=1.
Since Google do not have the concept of username, the email address is used as username.

Build Docker Image

Miniflux supports 3 different architectures for Docker containers: amd64, arm32v6, and arm64v8.
There is one image for each architecture and a manifest.

Here an example to build your own image:

make docker-images DOCKER_IMAGE=your-namespace/miniflux

To override the build version:

make docker-images DOCKER_IMAGE=your-namespace/miniflux VERSION=42

To create the manifest and push the images:

make docker-manifest DOCKER_IMAGE=your-namespace/miniflux

Command Line Usage

Show Version

miniflux -version # or -v
2.0.0

Show Build Information

miniflux -info # or -i
Version: 2.0.0
Build Date: 2017-11-20T22:45:00
Go Version: go1.9

Enable Debug Mode

miniflux -debug
[2018-02-05T02:38:32] [INFO] Debug mode enabled
[2018-02-05T02:38:32] [INFO] Starting Miniflux...

Run Database Migrations

export DATABASE_URL=replace_me

miniflux -migrate
Current schema version: 0
Latest schema version: 12
Migrating to version: 1
Migrating to version: 2
Migrating to version: 3
Migrating to version: 4
Migrating to version: 5
Migrating to version: 6
Migrating to version: 7
Migrating to version: 8
Migrating to version: 9
Migrating to version: 10
Migrating to version: 11
Migrating to version: 12

When you run the migrations, make sure that all Miniflux processes are stopped.

Create Admin User

miniflux -create-admin
Enter Username: root
Enter Password:

Reset User Password

miniflux -reset-password
Enter Username: myusername
Enter Password: ****

Flush All Sessions

Flushing all sessions disconnect all users.

miniflux -flush-sessions
Flushing all sessions (disconnect users)

Reset All Feed Errors

Reset error counters and clear error messages for all feeds.

miniflux -reset-feed-errors

User Interface Usage

List View

[image: _images/list_view.png]

	Save: Send an article to third-party services if enabled (Pinboard, Instapaper, etc…)

	Star/Unstar: Add/Remove entry to/from bookmarks

	Original: Open original entry link in a new tab

Note

Since the version 2.0.7, the link “Save” will be shown only if at least one integration is configured.

Article View

[image: _images/entry_view.png]

	Fetch original content: Download the original web page and try to find relevant contents

Edit Feed

[image: _images/edit_feed.png]

	Scraper Rules: CSS selectors to use when fetching the original web page (Use Readability if nothing provided)

	Rewrite Rules: Name of the rewrite rules to use to alter item content

	Fetch original content: Always download original articles (consume more resources)

Keyboard Shortcuts

Sections navigation:

	g u: Go to unread page

	g b: Go to bookmark page

	g h: Go to the history page

	g f: Go to feed page

	g c: Go to categories page

	g s: Go to settings page

	?: Show keyboard shortcuts help

Items navigation:

	Left Arrow: Go to previous item

	j: Go to previous item

	p: Go to previous item

	Right Arrow: Go to next item

	k: Go to next item

	n: Go to next item

	g f: Go to feed

Pages navigation:

	h: Go to previous page

	l: Go to next page

Actions:

	o: Open selected item

	v: Open original link to a new tab

	m: Mark selected item as read/unread

	A: Mark current page as read

	d: Fetch original web page and apply scraper rules or readability

	f: Star or unstar the current entry

	s: Save article to configured third-party services

	#: Removes current feed

	/: Set focus on search form

	Escape: Close modal dialogs

Note

Mozilla Firefox will block the opening of a new tab if you use the shortcut v.
You must authorize Miniflux to open new tabs in your Firefox settings.

Integration with External Services

Fever API

Miniflux implements the Fever API in addition to its own REST API.
The Fever API allows you to use existing mobile applications to read your feeds instead of the web user interface.

To activate the Fever API, go into the integration section and choose a username/password.

[image: _images/fever.png]
The API endpoint is https://example.org/fever/

Compatible Apps

	Reeder [http://reederapp.com/] (iOS/Mac OS)

	Unread [https://www.goldenhillsoftware.com/unread/] (iOS)

	Readably [https://play.google.com/store/apps/details?id=com.isaiasmatewos.readably] (Android)

Note

	Saving an entry will add a new bookmark and save the article

	Only the JSON format is supported

	Refreshing feeds is not possible with Reeder because no user information is sent

	Links, sparks, and kindlings are not supported

Pinboard

You could save articles to Pinboard [https://pinboard.in/].

[image: _images/pinboard.png]
To activate this service, go to the integration section and enter your Pinboard API credentials.
You must use the API token, not your password.

Instapaper

You could save articles to Instapaper [https://www.instapaper.com/].

[image: _images/instapaper.png]
To activate this service, go to the integration section and enter your Instapaper credentials.

Pocket

Configuration

To configure the Pocket integration on your own Miniflux instance, you need to create an application on Pocket’s website.

Go to https://getpocket.com/developer/apps/new and create a new application.

	You can define the Pocket Consumer Key for all users by using the environment variable POCKET_CONSUMER_KEY.

	Or, you can set the Pocket Consumer Key only for your user by using the form.

[image: _images/pocket_1.png]
If the environment variable is defined, the text field for the Pocket Consumer API key will be hidden.

Make sure the environment variable BASE_URL is defined properly to allow the authorization flow to work afterward.

Usage

Once the consumer key is configured, you need to get a Pocket Access Token.
This token could be fetched automatically by using the authorization flow or manually by making some HTTP calls.

[image: _images/pocket_2.png]
The simplest solution is to use the link, “Connect your Pocket account”.
This method redirects the end user to Pocket’s website and ask for authorization.

[image: _images/pocket_3.png]
After the authorization is given, Miniflux will fetch the Pocket Access Token for you.

If you prefer to fetch Pocket Access Token manually, the process is described in Pocket’s developer documentation [https://getpocket.com/developer/docs/authentication].

Wallabag

Wallabag [https://wallabag.org/] is a self-hosted application for saving web pages.

[image: _images/wallabag.png]

	The API URL is the root URL of your instance, for example, if you have the hosted version use: https://app.wallabag.it/.

	To create a new API client, go to the section “API clients management” and choose “Create a new client”.

Nunux Keeper

Nunux Keeper [https://keeper.nunux.org/] is a “personal content curation service”.
It’s an alternative to Pocket or Wallabag.

[image: _images/nunux_reader.png]

	The API URL is the root URL of your instance, for example, if you are using the hosted version: https://api.nunux.org/keeper.

	To create a new API key, go to the settings tab: “API key” and choose “Regenerate API key”.

[image: _images/nunux_reader_api_key.png]

Scraper Rules

When an article contains only an extract of the content, you could fetch the original web page and apply a set of rules to get relevant contents.

Miniflux uses CSS selectors for custom rules.
These custom rules can be saved in the feed properties (Select a feed and click on edit).

Examples

	div#articleBody: Fetch a div element with the ID articleBody

	div.content: Fetch all div elements with the class content

	article, div.article: Use a comma to define multiple rules

Miniflux includes a list of predefined rules for popular websites.
You could contribute to the project to keep them up to date.

Under the hood, Miniflux uses the library Goquery [https://github.com/PuerkitoBio/goquery].

Rewrite Rules

To improve the reading experience, it’s possible to alter the content of feed items.

For example, if you are reading a popular comic website like XKCD, it’s nice to have to image title (the alt attribute) added under the image.
Especially on mobile devices when there is no hover event.

List of Rules

	add_dynamic_image: Tries to add the highest quality images from sites that use JavaScript to load images (e.g. either lazily when scrolling or based on screen size).

	add_image_title: Add each image’s title as a caption under the image.

	add_youtube_video: Insert Youtube video inside the article (automatic for Youtube.com)

Adding Rewrite Rules

Miniflux includes a set of default rules for some websites, but you could define your own rules.

On the feed edit page, enter your custom rules in the field “Rewrite Rules” like this:

rule1,rule2

Separate each rule by a comma.
As of now, only add_dynamic_image and add_image_title are available.
Of course, other rules could be added later.

REST API

Authentication

The Miniflux API uses HTTP Basic authentication.
The credentials are the username/password of your account.

Clients

There are 2 official API clients, one written in Go and another one written in Python.

Golang Client

	Repository: https://github.com/miniflux/miniflux/tree/master/client

	Reference: https://godoc.org/miniflux.app/client

Installation:

go get -u miniflux.app/client

Usage Example:

package main

import (
 "fmt"

 miniflux "miniflux.app/client"
)

func main() {
 client := miniflux.New("https://miniflux.example.org", "admin", "secret")

 // Fetch all feeds.
 feeds, err := client.Feeds()
 if err != nil {
 fmt.Println(err)
 return
 }
 fmt.Println(feeds)
}

Python Client

	Repository: https://github.com/miniflux/miniflux-python

	PyPi: https://pypi.org/project/miniflux/

Installation:

pip install miniflux

Usage example:

import miniflux

client = miniflux.Client("https://miniflux.example.org", "my_username", "my_secret_password")

Get all feeds
feeds = client.get_feeds()

Refresh a feed
client.refresh_feed(123)

Discover subscriptions from a website
subscriptions = client.discover("https://example.org")

Create a new feed, with a personalized user agent and with the crawler enabled
feed_id = client.create_feed("http://example.org/feed.xml", 42, crawler=True, user_agent="GoogleBot")

Fetch 10 starred entries
entries = client.get_entries(starred=True, limit=10)

Fetch last 5 feed entries
feed_entries = client.get_feed_entries(123, direction='desc', order='published_at', limit=5)

Update a feed category
client.update_Feed(123, category_id=456)

API Reference

Status Codes

	200: Everything is OK

	201: Resource created/modified

	204: Resource removed/modified

	400: Bad request

	401: Unauthorized (bad username/password)

	403: Forbidden (access not allowed)

	500: Internal server error

Error Response

{
 "error_message": "Some error"
}

Discover Subscriptions

Request:

POST /v1/discover
Content-Type: application/json

{
 "url": "http://example.org"
}

Response:

[
 {
 "url": "http://example.org/feed.atom",
 "title": "Atom Feed",
 "type": "atom"
 },
 {
 "url": "http://example.org/feed.rss",
 "title": "RSS Feed",
 "type": "rss"
 }
]

Optional fields:

	username: Feed username (string)

	password: Feed password (string)

	user_agent: Custom user agent (string)

Get Feeds

Request:

GET /v1/feeds

Response:

[
 {
 "id": 42,
 "user_id": 123,
 "title": "Example Feed",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 793,
 "user_id": 123,
 "title": "Some category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
 }
]

Notes:

	icon is null when the feed doesn’t have any favicon.

Get Feed

Request:

GET /v1/feeds/42

Response:

{
 "id": 42,
 "user_id": 123,
 "title": "Example Feed",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 793,
 "user_id": 123,
 "title": "Some category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
}

Notes:

	icon is null when the feed doesn’t have any favicon.

Get Feed Icon

Request:

GET /v1/feeds/42/icon

Response:

{
 "id": 262,
 "data": "image/png;base64,iVBORw0KGgoAAA....",
 "mime_type": "image/png"
}

Notes:

	If the feed doesn’t have any favicon, a 404 is returned.

Create Feed

Request:

POST /v1/feeds
Content-Type: application/json

{
 "feed_url": "http://example.org/feed.atom",
 "category_id": 22
}

Response:

{
 "feed_id": 262,
}

Required fields:

	feed_url: Feed URL (string)

	category_id: Category ID (int)

Optional fields:

	username: Feed username (string)

	password: Feed password (string)

	crawler: Enable/Disable scraper (boolean)

	user_agent: Custom user agent for the feed (string)

Update Feed

Request:

PUT /v1/feeds/42
Content-Type: application/json

{
 "title": "New Feed Title",
 "category": {
 "id": 22
 }
}

Response:

{
 "id": 42,
 "user_id": 123,
 "title": "New Feed Title",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 22,
 "user_id": 123,
 "title": "Another category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
}

Available fields:

	feed_url: (string)

	site_url: (string)

	title: (string)

	category_id: (int)

	scraper_rules: (string)

	rewrite_rules: (string)

	crawler: (boolean)

	username: (string)

	password: (string)

	user_agent: Custom user agent for the feed (string)

Refresh Feed

Request:

PUT /v1/feeds/42/refresh

Note

	Returns 204 status code for success.

	This API call is synchronous and can takes hundred of milliseconds.

Remove Feed

Request:

DELETE /v1/feeds/42

Get Feed Entry

Request:

GET /v1/feeds/42/entries/888

Response:

{
 "id": 888,
 "user_id": 123,
 "feed_id": 42,
 "title": "Entry Title",
 "url": "http://example.org/article.html",
 "comments_url": "",
 "author": "Foobar",
 "content": "<p>HTML contents</p>",
 "hash": "29f99e4074cdacca1766f47697d03c66070ef6a14770a1fd5a867483c207a1bb",
 "published_at": "2016-12-12T16:15:19Z",
 "status": "read",
 "starred": false,
 "feed": {
 "id": 42,
 "user_id": 123,
 "title": "New Feed Title",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 22,
 "user_id": 123,
 "title": "Another category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
 }
}

Note

	The field comments_url is available since Miniflux v2.0.5.

Get Entry

Request:

GET /v1/entries/888

Response:

{
 "id": 888,
 "user_id": 123,
 "feed_id": 42,
 "title": "Entry Title",
 "url": "http://example.org/article.html",
 "comments_url": "",
 "author": "Foobar",
 "content": "<p>HTML contents</p>",
 "hash": "29f99e4074cdacca1766f47697d03c66070ef6a14770a1fd5a867483c207a1bb",
 "published_at": "2016-12-12T16:15:19Z",
 "status": "read",
 "starred": false,
 "feed": {
 "id": 42,
 "user_id": 123,
 "title": "New Feed Title",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 22,
 "user_id": 123,
 "title": "Another category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
 }
}

Get Feed Entries

Request:

GET /v1/feeds/42/entries?limit=1&order=id&direction=asc

Available filters:

	status: Entry status (read, unread or removed)

	offset

	limit

	order: “id”, “status”, “published_at”, “category_title”, “category_id”

	direction: “asc” or “desc”

	before (unix timestamp, available since Miniflux 2.0.9)

	after (unix timestamp, available since Miniflux 2.0.9)

	before_entry_id (int64, available since Miniflux 2.0.9)

	after_entry_id (int64, available since Miniflux 2.0.9)

	starred (boolean, available since Miniflux 2.0.9)

	search: search query (text, available since Miniflux 2.0.10)

Response:

{
 "total": 10,
 "entries": [
 {
 "id": 888,
 "user_id": 123,
 "feed_id": 42,
 "title": "Entry Title",
 "url": "http://example.org/article.html",
 "comments_url": "",
 "author": "Foobar",
 "content": "<p>HTML contents</p>",
 "hash": "29f99e4074cdacca1766f47697d03c66070ef6a14770a1fd5a867483c207a1bb",
 "published_at": "2016-12-12T16:15:19Z",
 "status": "read",
 "starred": false,
 "feed": {
 "id": 42,
 "user_id": 123,
 "title": "New Feed Title",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 22,
 "user_id": 123,
 "title": "Another category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
 }
 }
]

Get Entries

Request:

GET /v1/entries?status=unread&direction=desc

Available filters:

	status: Entry status (read, unread or removed)

	offset

	limit

	order: “id”, “status”, “published_at”, “category_title”, “category_id”

	direction: “asc” or “desc”

	before (unix timestamp, available since Miniflux 2.0.9)

	after (unix timestamp, available since Miniflux 2.0.9)

	before_entry_id (int64, available since Miniflux 2.0.9)

	after_entry_id (int64, available since Miniflux 2.0.9)

	starred (boolean, available since Miniflux 2.0.9)

	search: search query (text, available since Miniflux 2.0.10)

Response:

{
 "total": 10,
 "entries": [
 {
 "id": 888,
 "user_id": 123,
 "feed_id": 42,
 "title": "Entry Title",
 "url": "http://example.org/article.html",
 "comments_url": "",
 "author": "Foobar",
 "content": "<p>HTML contents</p>",
 "hash": "29f99e4074cdacca1766f47697d03c66070ef6a14770a1fd5a867483c207a1bb",
 "published_at": "2016-12-12T16:15:19Z",
 "status": "unread",
 "starred": false,
 "feed": {
 "id": 42,
 "user_id": 123,
 "title": "New Feed Title",
 "site_url": "http://example.org",
 "feed_url": "http://example.org/feed.atom",
 "rewrite_rules": "",
 "scraper_rules": "",
 "crawler": false,
 "checked_at": "2017-12-22T21:06:03.133839-05:00",
 "etag_header": "KyLxEflwnTGF5ecaiqZ2G0TxBCc",
 "last_modified_header": "Sat, 23 Dec 2017 01:04:21 GMT",
 "parsing_error_count": 0,
 "parsing_error_message": "",
 "category": {
 "id": 22,
 "user_id": 123,
 "title": "Another category"
 },
 "icon": {
 "feed_id": 42,
 "icon_id": 84
 }
 }
 }
]

Update Entries

Request:

PUT /v1/entries
Content-Type: application/json

{
 "entry_ids": [1234, 4567],
 "status": "read"
}

Note

	Returns 204 status code for success.

Toggle Entry Bookmark

Request:

PUT /v1/entries/1234/bookmark

Note

	Returns 204 status code for success.

Get Categories

Request:

GET /v1/categories

Response:

[
 {"title": "All", "user_id": 267, "id": 792},
 {"title": "Engineering Blogs", "user_id": 267, "id": 793}
]

Create Category

Request:

POST /v1/categories
Content-Type: application/json

{
 "title": "My category"
}

Response:

{
 "id": 802,
 "user_id": 267,
 "title": "My category"
}

Update Category

Request:

PUT /v1/categories/802
Content-Type: application/json

{
 "title": "My new title"
}

Response:

{
 "id": 802,
 "user_id": 267,
 "title": "My new title"
}

Delete Category

Request:

DELETE /v1/categories/802

OPML Export

Request:

GET /v1/export

The response is a XML document (OPML file).

Note

This API call is available since Miniflux v2.0.1.

OPML Import

Request:

POST /v1/import

XML data

	The body is your OPML file (XML).

	Returns 201 Created if imported successfully.

Response:

{
 "message": "Feeds imported successfully"
}

Note

This API call is available since Miniflux v2.0.7.

Create User

Request:

POST /v1/users
Content-Type: application/json

{
 "username": "bob",
 "password": "test123",
 "is_admin": false
}

Response:

{
 "id": 270,
 "username": "bob",
 "language": "en_US",
 "timezone": "UTC",
 "theme": "default",
 "entry_sorting_direction": "asc"
}

Note

	You must be an administrator to create users.

Update User

Request:

PUT /v1/users/270
Content-Type: application/json

{
 "username": "joe"
}

Available fields:

	username: (string)

	password: (string)

	is_admin: (boolean)

	theme: (string)

	language: (string)

	timezone: (string)

	entry_sorting_direction: “desc” or “asc” (available since Miniflux 2.0.9)

Response:

{
 "id": 270,
 "username": "joe",
 "language": "en_US",
 "timezone": "UTC",
 "theme": "default",
 "entry_sorting_direction": "asc"
}

Note

	You must be an administrator to update users.

Get Current User

Request:

GET /v1/me

Response:

{
 "id": 1,
 "username": "admin",
 "is_admin": true,
 "theme": "default",
 "language": "en_US",
 "timezone": "America/Vancouver",
 "entry_sorting_direction": "desc",
 "last_login_at": "2018-06-01T19:54:30.723051-07:00",
 "extra": {}
}

Note

This API endpoint is available since Miniflux v2.0.8.

Get User

Request:

Get user by user ID
GET /v1/users/270

Get user by username
GET /v1/users/foobar

Response:

{
 "id": 270,
 "username": "bob",
 "is_admin": false,
 "language": "en_US",
 "timezone": "UTC",
 "theme": "default",
 "entry_sorting_direction": "asc",
 "last_login_at": "2017-12-27T16:40:58.841841-05:00",
 "extra": {
 "google_id": "42424242424242"
 }
}

Note

	You must be an administrator to fetch users.

	The extra field is a dictionary of optional values.

Get Users

Request:

GET /v1/users

Response:

[
 {
 "id": 270,
 "username": "bob",
 "is_admin": false,
 "language": "en_US",
 "timezone": "UTC",
 "theme": "default",
 "entry_sorting_direction": "asc",
 "last_login_at": "2017-12-27T16:40:58.841841-05:00",
 "extra": {}
 }
]

Note

	You must be an administrator to fetch users.

	The extra field is a dictionary of optional values.

Delete User

Request:

DELETE /v1/users/270

Note

	You must be an administrator to delete users.

Healthcheck

The healthcheck endpoint is useful for monitoring and load-balancer configuration.

Request:

GET /healthcheck

Response:

OK

Return a status code 200 when the service is up.

Development

Requirements

	Git

	Go >= 1.11

Checkout the source code

Fork the project and clone the repository locally.

Since Go 1.11, you don’t need to work inside the $GOPATH.
You can checkout the source code anywhere on your filesystem.

Miniflux is using Go Modules [https://github.com/golang/go/wiki/Modules] to manage dependencies.

Build a binary of the application

Build the application for the actual platform:

make miniflux

To define a specific version number:

make miniflux VERSION=2.0.13

Cross compilation:

Build all binaries for all supported platforms
make build

Build Linux binary for amd64 architecture
make linux-amd64

ARM 64 bits (arm64v8)
make linux-armv8

ARM 32 bits variant 7 (arm32v7)
make linux-armv7

ARM 32 bits variant 6 (arm32v6)
make linux-armv6

ARM 32 bits variant 5 (arm32v5)
make linux-armv5

Mac OS (amd64)
make darwin-amd64

FreeBSD (amd64)
make freebsd-amd64

OpenBSD (amd64)
make openbsd-amd64

Windows (amd64)
make windows-amd64

Remove precompiled binaries

make clean

Run the software locally

make run

This command execute go generate and go run main.go.

Regenerate embedded files

To avoid any dependencies, all assets (Javascript, CSS, images, translations) are automatically included in the source code.

make generate

Linter

make lint

Unit tests

make test

Integration tests

Integration tests are testing API endpoints with a real database.

You need to have Postgresql installed locally preconfigured with the user “postgres” and the password “postgres”.

To run integration tests, execute the following command:

make integration-test ; make clean-integration-test

If the test suite fail, you will see the logs of Miniflux.

Internationalization

Translation files

Translations are simple JSON files.
This is a mapping table, the key could be a unique ID or an English string.

{
 "menu.unread": "Non lus",
 "entry.status.unread": "Non lu",
 "This feed already exists (%s)": "Cet abonnement existe déjà (%s)",
 "time_elapsed.minutes": [
 "il y a %d minute",
 "il y a %d minutes"
]
}

	Translation keys with unique IDs allows you to give a different translation according to the context.

	Translation keys with English text are mostly used for internal errors.
The English text is used to display the error in logs and API responses,
but the translation is used for the user interface.

	Placeholders are the ones used by the Golang package fmt [https://golang.org/pkg/fmt/#hdr-Printing].

Plural forms

Some languages have different rules regarding plurals.
These rules are defined in the file locale/plural.go.
You could add more rules if yours is not available.

In the JSON file, a plural translation is defined like that:

{
 "page.feeds.error_count": [
 "%d error",
 "%d errors"
]
}

This example is for the English language, the plural form is plurals=2; plural=(n != 1);.
For one error, we will have 1 error, for 2 or more errors: 3 errors.

You can find the different plural forms here:

	https://localization-guide.readthedocs.io/en/latest/l10n/pluralforms.html

	http://www.unicode.org/cldr/charts/29/supplemental/language_plural_rules.html

How to add a new language?

1) Checkout the source code from the repository

Fork the project, fetch the source code locally and add your fork as Git remote (Details).

2) Create a new translation file

	In the folder locale/translations, create a new JSON file, for example, de_DE.json for German.

	You could copy the translations from fr_FR.json and replace the strings.

3) Add the language to the list

Open the file locale/locale.go, and edit the function AvailableLanguages().

func AvailableLanguages() map[string]string {
 return map[string]string{
 "en_US": "English",
 "fr_FR": "Français",
 "de_DE": "Deutsch",
 "pl_PL": "Polski",
 "zh_CN": "简体中文",
 "nl_NL": "Nederlands",
 "ru_RU": "Русский",
 }
}

This function returns a mapping table of available languages.
On the left, you have the language code and on the right the language name written in native language.

4) Test the translations

Translation files are embedded into the application executable.
You must compile the software to see the changes.

make run

You must have a local development environment configured properly.

5) Create a branch and send a pull-request

Your pull-request should contains only 3 files:

	locale/translations/xx_XX.json

	locale/locale.go

	locale/translations.go

If you don’t know how to send a pull-request, here is the documentation of GitHub: https://help.github.com/articles/creating-a-pull-request/#creating-the-pull-request

Migration from Miniflux 1.2.x

Miniflux 2.x is not backward compatible with Miniflux 1.x.

Differences between Miniflux 1.2 and Miniflux 2.0

	Miniflux 2 supports multiple attachments.

	Miniflux 2 uses categories instead of groups, only one category can be assigned to a feed.

	Miniflux 2 have fewer settings.

	Miniflux 2 doesn’t have public RSS feed or cronjobs.

	Miniflux 2 doesn’t use API tokens anymore, for the Fever API, choose your own password and for the REST API use your account password.

	Miniflux 2 stores favicons into the database instead of using the local filesystem.

	Miniflux 2 themes are embedded into the application.

	Miniflux 2 doesn’t support RTL languages.

	Miniflux 2 supports only Postgresql.

	Miniflux 2 is written in Go (Golang) instead of PHP.

OPML Import

If you don’t care about your previous data, export your feeds from Miniflux 1.x in OPML and import them into Miniflux 2.

Migration Script

There is a migration script in the archived repository [https://github.com/miniflux/archives]: scripts/migrate-v2.php.

	This script requires direct access to the old and the new database.

	The first group linked to a feed will become the category associated with the imported feed.

	Only bookmarked items are migrated.

	Since entries are not identified in the same way in Miniflux 2, you may have duplicated entries when refreshing your imported feeds.

Step 1

Make sure you are using the latest version of Miniflux 1.2.x.

Step 2

Install Miniflux 2 without creating any users. Create only the database schema (just run the migrations).

Step 3

Go into the Miniflux 1.2.x directory and run the script:

php scripts/migrate-v2.php --dsn="pgsql:host=localhost;dbname=miniflux2;user=postgres;password=postgres"

Destination is "pgsql:host=localhost;dbname=miniflux2;user=postgres;password=postgres"
* 2 user(s) to migrate
* Migrating user: #254 => #284
* Migrating integrations
* Migrating categories
* Migrating feeds
* Migrating entries
[...]

The script takes the PDO DSN [http://php.net/manual/en/ref.pdo-pgsql.connection.php#refsect1-ref.pdo-pgsql.connection-examples] of Miniflux 2 database as argument.
Adjust the parameters to your own environment.

Frequently Asked Questions

Feature X was available in Miniflux v1?

Miniflux 2 doesn’t try to reimplement all features of Miniflux 1.
The minimalist approach is pushed a little bit further.

If you really miss something, you must contribute to the project, but remember, you have to keep the minimalist philosophy of Miniflux.

Why are you not developing my feature request?

	Developing a software takes a lot of time.

	This is a free and open source project, no one owes you anything.

	If you miss something, contribute to the project.

	Don’t expect anyone to work for free.

	As mentioned above, the number of features is voluntarily limited. Nobody likes bloatware.

	Improving existing features is more important than adding new ones.

Why Miniflux stores favicons into the database?

Miniflux follows the the Twelve Factors principle [https://12factor.net/].
Nothing is stored on the local file system.
The application is designed to run on ephemeral containers without persistent storage.

How to create themes for Miniflux 2?

As of now, Miniflux 2 doesn’t have any mechanism to load external stylesheets to avoid dependencies.
Themes are embedded into the binary.

If you would like to submit a new official theme, you must send a pull-request.
But do not forget that you will have to maintain your theme over the time, otherwise, your theme will be removed from the code base.

Why there is no plugin system?

	Because this software has a minimalist approach.

	Because implementing a plugin system increase the complexity of the software.

	Because people do not maintain their plugins after a while.

What is “Save this article”?

“Save” sends the feed entry to third-party services like Pinboard or Instapaper if configured.

How are items removed from the database?

When a subscription is refreshed, entries marked as “removed” and not visible anymore in the XML feed are removed from the database.

What “Flush History” does?

“Flush History” changes the status of entries from “read” to “removed” (except for bookmarks).
Entries with the status “removed” are not visible in the user interface.

Is there any browser extensions for Miniflux?

	Miniflux Notifications: Chrome Web Store [https://chrome.google.com/webstore/detail/miniflux-notifications/jpeplhckmjlpahnkpblakfligkbfefkg] - Source Code [https://github.com/modInfo/miniflux-chrome-notifier]

Which binary do I need to use on my Raspberry Pi?

	Raspberry Pi Model

	Miniflux Binary

	A, A+, B, B+, Zero

	miniflux-linux-armv6

	2 and 3

	miniflux-linux-armv7

Which binary do I need to use on Scaleway ARM machines?

	Server Type

	Miniflux Binary

	uname -m

	Scaleway C1

	miniflux-linux-armv6

	armv7l

	Scaleway ARM64

	miniflux-linux-armv8

	aarch6

Which Docker architecture should I use?

Pulling the latest tag or a specific version should download the correct image according to your machine.

	Docker Architecture

	uname -m

	Example

	amd64

	x86_64

	

	arm32v6

	armhf

	Raspberry Pi

	arm32v6

	armv7l

	Scaleway C1

	arm64v8

	aarch6

	Scaleway ARM64

If you use the wrong architecture, Docker will returns an error like this one: standard_init_linux.go:178: exec user process caused "exec format error".

Note

Multi-arch Docker images are available only since Miniflux v2.0.12

Why SQL migrations are not executed automatically?

	Because it’s a source of problems.

	Only one process should manipulate the database schema at once.

	If you run multiple containers with an orchestrator that may cause issues.

	You can still run the migrations by defining the variable RUN_MIGRATIONS=1.

How to backup my data?

Just use standard Postgresql tools: https://www.postgresql.org/docs/current/app-pgdump.html

Index

 _static/list_view.png
2 Security updates for Tuesday
Iwn.net | 10 hours ago | Save | Original | % Star

2 [$] A new kernel polling interface

Iwn.net| 10 hours ago | Save | Original | ¥ Star

_static/minus.png

_static/file.png

_static/instapaper.png
Instapaper
Save articles to Instapaper

Instapaper Userame

Instapaper Password

_static/overview.png
Miniflux Unread 52) Stared History Feeds Categories Settings Logout

Unread (52)
Mark this page as read

L1 The Essential Open Source Reading List: 21 Must-Read Books
www.iinuxfoundation.org | 3 days ago | Save | Original | ¥ Star

@ Debian Policy call for participation -- December 2017
planet.debian.org | 4 days ago | Save | Original | % Star

© Reproducible Builds: Weekly report #139
planet.debian.org | 4 days ago | Save | Original | % Star

© Testing Ansible Playbooks With Vagrant
planet.debian.org | 5 days ago | Save | Original | % Star

B darktable 2.4.0

linuxirorg | 5 days ago | Save | Original | # Star

_static/pinboard.png
Pinboard
Save articles to Pinboard
Pinboard API Token

Pinboard Tags
miniflux

Mark bookmark as unread

_static/nunux_reader.png
Nunux Keeper
Save articles to Nunux Keeper

Nunux Keeper API Endpoint
https://api.nunux.org/keeper

Nunux Keeper APl key

_static/nunux_reader_api_key.png
a2, Nicolas Carlier

2 Documents.

W Labels

(3
® devwed
(3

config

W Bookmarklet @ APIkey U APIclients & Export A Webhooks

APl key

Tofully access the APl you have to use an OpenlD Connect client and claim a valid access token. It's the standard way to interact with the API
ity to use an AP key. You only have to use this key as a basic password to acces the APL

Bui

you want something a bit simpler you have the pos:

Ex: curl https://api:KEY@api.nunux.org/keeper/v2/dos

An APl key is not something secure. It's why you only have a
You can only make POST or GET actions onto the /documents AP,

2 Regenerate AP key

cuments

ted acces to the API:

_static/plus.png

_static/pocket_1.png
Pocket
Save articles to Pocket

Pocket Consumer Key

Pocket Access Token

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Miniflux

 		
 Introduction

 		
 Screenshots

 		
 License

 		
 Opinionated?

 		
 Focus on Simplicity

 		
 Why the user interface is ugly?

 		
 Why are you not developing my feature request?

 		
 Why choose Golang as a programming language?

 		
 Why Postgresql?

 		
 Why no Javascript framework?

 		
 Why only ECMAScript 6?

 		
 Why there is no mobile application?

 		
 Features

 		
 Reader

 		
 Privacy

 		
 Content Manipulation

 		
 User Interface

 		
 Integration

 		
 Authentication

 		
 Technical stuff

 		
 Requirements

 		
 Hardware

 		
 Operating Systems

 		
 Databases

 		
 Web Browsers

 		
 Installation Instructions

 		
 Packages

 		
 Manual Installation

 		
 Debian Package Installation

 		
 RPM Package Installation

 		
 Docker Usage

 		
 Configuration

 		
 Database Connection Parameters

 		
 Enabling HSTORE extension for Postgresql

 		
 Upgrading Miniflux

 		
 Procedure

 		
 Debian Package

 		
 RPM Package

 		
 Docker Image

 		
 Installation Tutorials

 		
 Installing Miniflux on your own server

 		
 Ubuntu 16.04

 		
 Fedora 28

 		
 Running Miniflux with Docker Compose

 		
 Deploying Miniflux on Heroku

 		
 Deploying Miniflux on Google App Engine

 		
 Deploying Miniflux on AlwaysData

 		
 How-Tos

 		
 Use a Unix socket for Postgresql

 		
 How to run Miniflux on port 443 or 80

 		
 Reverse-Proxy Configuration

 		
 Reverse-Proxy with a subfolder

 		
 Reverse-Proxy with a Unix socket

 		
 Systemd Socket Activation

 		
 Let’s Encrypt Configuration

 		
 Manual HTTPS Configuration

 		
 OAuth2 Authentication

 		
 Build Docker Image

 		
 Command Line Usage

 		
 Show Version

 		
 Show Build Information

 		
 Enable Debug Mode

 		
 Run Database Migrations

 		
 Create Admin User

 		
 Reset User Password

 		
 Flush All Sessions

 		
 Reset All Feed Errors

 		
 User Interface Usage

 		
 List View

 		
 Article View

 		
 Edit Feed

 		
 Keyboard Shortcuts

 		
 Integration with External Services

 		
 Fever API

 		
 Compatible Apps

 		
 Pinboard

 		
 Instapaper

 		
 Pocket

 		
 Configuration

 		
 Usage

 		
 Wallabag

 		
 Nunux Keeper

 		
 Scraper Rules

 		
 Examples

 		
 Rewrite Rules

 		
 List of Rules

 		
 Adding Rewrite Rules

 		
 REST API

 		
 Authentication

 		
 Clients

 		
 Golang Client

 		
 Python Client

 		
 API Reference

 		
 Status Codes

 		
 Error Response

 		
 Discover Subscriptions

 		
 Get Feeds

 		
 Get Feed

 		
 Get Feed Icon

 		
 Create Feed

 		
 Update Feed

 		
 Refresh Feed

 		
 Remove Feed

 		
 Get Feed Entry

 		
 Get Entry

 		
 Get Feed Entries

 		
 Get Entries

 		
 Update Entries

 		
 Toggle Entry Bookmark

 		
 Get Categories

 		
 Create Category

 		
 Update Category

 		
 Delete Category

 		
 OPML Export

 		
 OPML Import

 		
 Create User

 		
 Update User

 		
 Get Current User

 		
 Get User

 		
 Get Users

 		
 Delete User

 		
 Healthcheck

 		
 Development

 		
 Requirements

 		
 Checkout the source code

 		
 Build a binary of the application

 		
 Remove precompiled binaries

 		
 Run the software locally

 		
 Regenerate embedded files

 		
 Linter

 		
 Unit tests

 		
 Integration tests

 		
 Internationalization

 		
 Translation files

 		
 Plural forms

 		
 How to add a new language?

 		
 1) Checkout the source code from the repository

 		
 2) Create a new translation file

 		
 3) Add the language to the list

 		
 4) Test the translations

 		
 5) Create a branch and send a pull-request

 		
 Migration from Miniflux 1.2.x

 		
 Differences between Miniflux 1.2 and Miniflux 2.0

 		
 OPML Import

 		
 Migration Script

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Frequently Asked Questions

 		
 Feature X was available in Miniflux v1?

 		
 Why are you not developing my feature request?

 		
 Why Miniflux stores favicons into the database?

 		
 How to create themes for Miniflux 2?

 		
 Why there is no plugin system?

 		
 What is “Save this article”?

 		
 How are items removed from the database?

 		
 What “Flush History” does?

 		
 Is there any browser extensions for Miniflux?

 		
 Which binary do I need to use on my Raspberry Pi?

 		
 Which binary do I need to use on Scaleway ARM machines?

 		
 Which Docker architecture should I use?

 		
 Why SQL migrations are not executed automatically?

 		
 How to backup my data?

_static/pocket_3.png
Log In and Authorize

© Log In with Firefox

Email or username

Password

Forgot your usemame or password »

_images/alwaysdata_2.png
Command PID

/oin/sh /nome/miniflux/start.sh

474050

/home/miniflux/miniflux

474056

CPU time

00:00:00

00:00:00

Launch date

05:35

05:35

Vsz

4336

29688

RSS

756

16260

Analyse

Terminate

Kilt

_images/edit_feed.png
Title

LWN.net

Site URL.
http://lwn.net
Feed URL

https://lwn.net/headlines/newrss

Scraper Rules
Rewrite Rules

Category
Open Source

 Fetch original content

{I[.[.ETCH or cancel

_static/wallabag.png
Wallabag
1@ Save articles to Wallabag
Wallabag API Endpoint
https://app.wallabag.it/
Wallabag Client ID
replace_me

Wallabag Client Secret

Wallabag Username

replace_me

Wallabag Password

_images/alwaysdata_1.png
Configuration

Type®

User program -

© setec the type of your applcation

Command*

~/start.sh

T
~/myapp/app.You can use the ALWAYSDATA_HTTPD_IP and ALWAYSDATA_HTTPD_PORT environment variables.

Working directory

@ Workdirecay i e path does ot st with ¢/ 3,1 v theroa ofyour accou

Environment

© Environment variables, format: FOO=bar LOREM=ipsum.

_images/instapaper.png
Instapaper
Save articles to Instapaper

Instapaper Userame

Instapaper Password

_images/list_view.png
2 Security updates for Tuesday
Iwn.net | 10 hours ago | Save | Original | % Star

2 [$] A new kernel polling interface

Iwn.net| 10 hours ago | Save | Original | ¥ Star

_images/entry_view.png
Security updates for Friday

¢ Star | Save | Fetch original content

2 LWN.net - ris (Open Source

10 hour ago

« Previous Next »
Security updates have been issued by Arch Linux (intel-ucode), Debian (gifsicle),
Fedora (awstats and kernel), Gentoo (icoutils, pysamlz2, and tigervnc), Mageia

(dokuwiki and poppler), Oracle (kernel), SUSE (glibc, kernel, microcode_ctl, tiff, and
ucode-intel), and Ubuntu (intel-microcode).

_images/fever.png
Fever
Activate Fever API

Fever Username
foobar

Fever Password

_images/nunux_reader.png
Nunux Keeper
Save articles to Nunux Keeper

Nunux Keeper API Endpoint
https://api.nunux.org/keeper

Nunux Keeper APl key

_static/pocket_2.png
Pocket
" Save articles to Pocket

Pocket Access Token

Connect your Pocket account

_images/nunux_reader_api_key.png
a2, Nicolas Carlier

2 Documents.

W Labels

(3
® devwed
(3

config

W Bookmarklet @ APIkey U APIclients & Export A Webhooks

APl key

Tofully access the APl you have to use an OpenlD Connect client and claim a valid access token. It's the standard way to interact with the API
ity to use an AP key. You only have to use this key as a basic password to acces the APL

Bui

you want something a bit simpler you have the pos:

Ex: curl https://api:KEY@api.nunux.org/keeper/v2/dos

An APl key is not something secure. It's why you only have a
You can only make POST or GET actions onto the /documents AP,

2 Regenerate AP key

cuments

ted acces to the API:

_images/overview.png
Miniflux Unread 52) Stared History Feeds Categories Settings Logout

Unread (52)
Mark this page as read

L1 The Essential Open Source Reading List: 21 Must-Read Books
www.iinuxfoundation.org | 3 days ago | Save | Original | ¥ Star

@ Debian Policy call for participation -- December 2017
planet.debian.org | 4 days ago | Save | Original | % Star

© Reproducible Builds: Weekly report #139
planet.debian.org | 4 days ago | Save | Original | % Star

© Testing Ansible Playbooks With Vagrant
planet.debian.org | 5 days ago | Save | Original | % Star

B darktable 2.4.0

linuxirorg | 5 days ago | Save | Original | # Star

_images/pocket_2.png
Pocket
" Save articles to Pocket

Pocket Access Token

Connect your Pocket account

_images/pocket_3.png
Log In and Authorize

© Log In with Firefox

Email or username

Password

Forgot your usemame or password »

_images/pinboard.png
Pinboard
Save articles to Pinboard
Pinboard API Token

Pinboard Tags
miniflux

Mark bookmark as unread

_images/pocket_1.png
Pocket
Save articles to Pocket

Pocket Consumer Key

Pocket Access Token

_static/alwaysdata_1.png
Configuration

Type®

User program -

© setec the type of your applcation

Command*

~/start.sh

T
~/myapp/app.You can use the ALWAYSDATA_HTTPD_IP and ALWAYSDATA_HTTPD_PORT environment variables.

Working directory

@ Workdirecay i e path does ot st with ¢/ 3,1 v theroa ofyour accou

Environment

© Environment variables, format: FOO=bar LOREM=ipsum.

_static/alwaysdata_2.png
Command PID

/oin/sh /nome/miniflux/start.sh

474050

/home/miniflux/miniflux

474056

CPU time

00:00:00

00:00:00

Launch date

05:35

05:35

Vsz

4336

29688

RSS

756

16260

Analyse

Terminate

Kilt

_images/wallabag.png
Wallabag
1@ Save articles to Wallabag
Wallabag API Endpoint
https://app.wallabag.it/
Wallabag Client ID
replace_me

Wallabag Client Secret

Wallabag Username

replace_me

Wallabag Password

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/edit_feed.png
Title

LWN.net

Site URL.
http://lwn.net
Feed URL

https://lwn.net/headlines/newrss

Scraper Rules
Rewrite Rules

Category
Open Source

 Fetch original content

{I[.[.ETCH or cancel

_static/comment.png

_static/down-pressed.png

_static/fever.png
Fever
Activate Fever API

Fever Username
foobar

Fever Password

_static/entry_view.png
Security updates for Friday

¢ Star | Save | Fetch original content

2 LWN.net - ris (Open Source

10 hour ago

« Previous Next »
Security updates have been issued by Arch Linux (intel-ucode), Debian (gifsicle),
Fedora (awstats and kernel), Gentoo (icoutils, pysamlz2, and tigervnc), Mageia

(dokuwiki and poppler), Oracle (kernel), SUSE (glibc, kernel, microcode_ctl, tiff, and
ucode-intel), and Ubuntu (intel-microcode).

