

    
      
          
            
  
micca - MICrobial Community Analysis

[image: _images/micca.svg]
 [https://travis-ci.org/compmetagen/micca]micca (MICrobial Community Analysis) is a software pipeline for the
processing of amplicon sequencing data, from raw sequences to
OTU tables, taxonomy classification and phylogenetic tree
inference. The pipeline can be applied to a range of highly conserved
genes/spacers, such as 16S rRNA gene, Internal Transcribed
Spacer (ITS) 18S and 28S rRNA. micca is an open-source, GPLv3-licensed
software.


	Homepage [http://micca.org/]


	Documentation (latest) [https://micca.readthedocs.io]


	Issues [https://github.com/compmetagen/micca/issues]


	Github page [https://github.com/compmetagen/micca]




Key features:


	supports single-end (Roche 454, Illumina MiSeq/HiSeq ,Ion
Torrent) and overlapping paired-end reads (Illumina MiSeq/HiSeq);


	multithread de novo greedy, closed-reference, open-reference and swarm OTU
picking protocols;


	denoising of Illumina reads;


	state-of-the-art taxonomic classification algorithms (RDP and
consensus-based classifier);


	fast and and memory efficient NAST multiple sequence alignment (MSA);


	filters low quality sequences according to the maximum allowed expected
error (EE) rate %;


	runs on Linux, Mac OS X and MS Windows (through Docker
containers)


	simple, easy to use.




Docker images are available (compmetagen/micca) starting from version 1.2.2,
see the documentation (>=1.3.0) to learn how to use them. Docker hub page [https://hub.docker.com/r/compmetagen/micca/].

How to cite: Davide Albanese, Paolo Fontana, Carlotta De Filippo, Duccio
Cavalieri and Claudio Donati. MICCA: a complete and accurate software for
taxonomic profiling of metagenomic data. Scientific Reports 5, Article number:
9743 (2015), doi:10.1038/srep09743, Link [http://www.nature.com/articles/srep09743/]. Dataset download:
ftp://ftp.fmach.it/metagenomics/micca/scirep/.

micca wraps third party software packages and these should be
cited if they are used:


	VSEARCH (doi: 10.7717/peerj.2584) used in classify,
filter, mergepairs, otu and msa commands


	MUSCLE (doi: 10.1093/nar/gkh340) used in msa and tree commands


	FastTree (doi: 10.1371/journal.pone.0009490) used in the tree command


	Cutadapt (doi: 10.14806/ej.17.1.200) used in the trim command


	RDP classifier (doi: 10.1128/AEM.00062-07) used in the classify command


	swarm (doi: 10.7717/peerj.1420) used in the otu command





Getting Started


	Install

	Supported databases






Tutorials


	Paired-end sequencing - 97% OTU

	Denoising (Illumina only)

	Single-end sequencing

	An introduction to the downstream analysis with R and phyloseq

	Compute basic statistics, rarefy and summarize OTU/SV tables using micca

	Picking OTUs for use in PICRUSt






In Depth


	OTU picking and Denoising

	Supported file formats

	Changes






Command reference


	classify

	convert

	filter

	filterstats

	merge

	mergepairs

	msa

	otu

	root

	split

	stats

	tablebar

	tablerare

	tablestats

	tabletotax

	tobiom

	tree

	trim









          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Install


Using Docker (that is, on MS Windows, Mac OS X and Linux!)

The easiest way to run micca is through Docker [https://www.docker.com/].
Docker works similarly to a virtual machine image, providing a container in
which all the software has already been installed, configured and tested.



	Install Docker for Linux [https://docs.docker.com/linux/],
Mac OS X [https://docs.docker.com/mac/] or
Windows [https://docs.docker.com/windows/].


	Run the Docker Quickstart Terminal (Mac OS X, Windows) or the
docker daemon (Linux, sudo service docker start).


	Download the latest version:

docker pull compmetagen/micca







	Run an instance of the image, mounting the host working directory
(e.g. /Users/davide/micca) on to the container working directory
/micca:

docker run --rm -t -i -v /Users/davide/micca:/micca -w /micca compmetagen/micca /bin/bash





You need to write something like -v //c/Users/davide/micca:/micca if
you are in Windows or -v /home/davide/micca:/micca in Linux. The
--rm option automatically removes the container when it exits.



	Now you can use micca:

root@68f6784e1101:/micca# micca -h













Note

The RDP classifier is preinstalled in the Docker image, so you can check the
software version by typing echo $RDPPATH






Using pip

At the moment, only Python 2.7 is supported.


On Ubuntu >= 12.04 and Debian >=7

We suggest to install the following packages through the package manager:

sudo apt-get update
sudo apt-get install build-essential python-numpy gcc gfortran python-dev libblas-dev liblapack-dev cython pkg-config libfreetype6 libfreetype6-dev libpng-dev





Then, upgrade pip and install setuptools:

pip install --upgrade pip
pip install 'setuptools >=14.0'





Finally, install micca:

sudo pip install micca








On Mac OS X

In Mac OS X, we recommend to install Python from Homebrew [http://brew.sh/]:



	Install Xcode [https://developer.apple.com/xcode/];


	Install Homebrew [http://brew.sh/];


	Make sure the environment variable PATH is properly setted in your
~/.bash_profile or ~/.bashrc:

.. code-block:: sh






export PATH=/usr/local/bin:$PATH






	Install Python:

brew update
brew install python












Install the GNU Fortran and the NumPy package:

brew install gcc
pip install numpy





Finally, install micca:

sudo pip install micca








Installation problems


	BIOM fatal error: ‘numpy/arrayobject.h’. If the installation process returns
a message like this:

biom/_filter.c:258:10: fatal error: 'numpy/arrayobject.h' file not found
#include "numpy/arrayobject.h"
        ^
1 error generated.
error: command 'clang' failed with exit status 1





then you need to run:

pip install --global-option=build_ext --global-option="-I/usr/local/lib/python2.7/site-packages/numpy/core/include/" biom-format





After that you can install the micca package.










Install micca from source

In order to install micca from sources (with the standard procedure
python setup.py install), in addition to Python (>=2.7) and NumPy
(>=1.8.0), the following Python packages must be installed:



	SciPy >=0.13.0


	Pandas >=0.17.0


	matplotlib >=1.3.0


	Biopython >=1.50


	cutadapt >=1.9


	biom-format >=1.3.1







The easiest way to install these packages is to is using pip:

sudo pip install 'scipy >=0.13.0' 'pandas >=0.17.0' 'matplotlib >=1.3.0' 'biopython >= 1.50' 'cutadapt >=1.9' 'biom-format >=1.3.1'





Download the latest version from
https://github.com/compmetagen/micca/releases and complete the
installation:

tar -zxvf micca-X.Y.Z.tar.gz
sudo python setup.py install






If you don’t have root access

Install micca in a local directory by specifying the --prefix argument. Then
you need to set the environment variable PYTHONPATH:

python setup.py install --prefix=/path/to/modules
export PYTHONPATH=$PYTHONPATH:/path/to/modules/lib/python{version}/site-packages






Note

In order to export the variable permanently add the command
at the bottom of your ~/.bash_profile or ~/.bashrc file.








Testing the installation

micca -h








Install RDP classifier (optional)

The RDP Classifier is a naive bayesian classifier for taxonomic assignments
(http://sourceforge.net/projects/rdp-classifier/). The RDP classifier can be
used in the classify command (option -m/--method rdp).


Warning

Only RDP Classifier version >2.8 is supported. Install the standard Java or
Java compatible runtime (sudo apt-get install default-jre in
Ubuntu/Debian or go to the Oracle Java homepage for OS X)



Download and unzip the file (RDP classifier 2.11 2015-09-14):

wget https://sourceforge.net/projects/rdp-classifier/files/rdp-classifier/rdp_classifier_2.11.zip
unzip rdp_classifier_2.11.zip





Now you must set the environment variable RDPPATH by typing:

$ export RDPPATH=/path-to-rdp-classifier/rdp_classifier_2.11/





e.g. export RDPPATH=/Users/David/rdp_classifier_2.11.


Note

In order to export the variable permanently add the latest command
at the bottom of your .bashrc file.









          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Supported databases


16S rRNA



	Greengenes ftp://greengenes.microbio.me/greengenes_release/


	Greengenes Core Set (useful for NAST) http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.imputed


	QIIME-formatted SILVA https://www.arb-silva.de/download/archive/qiime/










ITS



	UNITE https://unite.ut.ee/repository.php (QIIME releases)


Note

In the QIIME releases of the UNITE database the _s in the
filename (e.g. sh_qiime_release_s_DD.MM.YYY.zip) specifies
that the database includes singletons.
















          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Paired-end sequencing - 97% OTU

This tutorial describes a standard micca pipeline for the analysis of
overlapping paired-end sequences. The main products of this pipeline are:


	the Operational Taxonomic Units (OTUs), defined clustering the processed
sequences at a similarity threshold of 97%;


	an OTU table, containining the number of times each OTU is observed in each
sample;


	a taxonomic classification for each OTU;


	an OTU phylogenetic tree.




This pipeline is intended for different platforms, such as Illumina MiSeq
and Illumina HiSeq. Although this tutorial explains how to apply the
pipeline to 16S rRNA amplicons, it can be adapted to others markers
gene/spacers, e.g. Internal Transcribed Spacer (ITS), 18S or 28S.


Table of Contents


	Dataset download


	Merge paired-end sequences


	Compute reads statistics






	Primer trimming


	Quality filtering


	Choosing parameters for filtering


	Filter sequences






	OTU picking


	Assign taxonomy


	Infer the phylogenetic tree


	Multiple Sequence Alignment (MSA)


	Build the phylogenetic tree


	Midpoint rooting






	Build the BIOM file


	Further steps







Dataset download

The following paired-end 16S rRNA dataset contains 34 samples from  in FASTQ
format (V3-V4 region, 341F 5’-CCTACGGGNGGCWGCAG-3’, 806Rmod
5’-GACTACNVGGGTWTCTAATCC-3’).

Samples comes from the paper “Diversity and Cyclical Seasonal Transitions in
the Bacterial Community in a Large and Deep Perialpine Lake [https://link.springer.com/article/10.1007/s00248-017-1120-x]” were seasonal
variations in the bacterioplankton community composition in the lake Garda were
analized. Sampling was carried out at monthly intervals in three layers
representative of the epilimnetic and euphotic zones of the lake, 1, 10, and 20
m. The dataset contains only a subset of the entire study (2014 samples only)
and raw data were randomly subsampled at 3000 sequences per sample.

The 2x300-bp paired-end sequencing was carried out on an Illumina MiSeq.

Open a terminal, download the data and prepare the working directory:

wget ftp://ftp.fmach.it/metagenomics/micca/examples/garda.tar.gz
tar -zxvf garda.tar.gz
cd garda








Merge paired-end sequences

Overlapping paired-end sequences must be merged to obtain consensus sequences
(sometimes called assembly). This operation can be performed with the
mergepairs command.

[image: _images/readpaired.png]
Moreover, the command merges the samples in a single file where sample names are
appended to the sequence identifier, as in merge and
split commands.

Since the sequenced region is about of 465-bp (806-341) and the reads are of
300-bp, the overlap region is quite large ((2x300)-465=135 bp), as rule of thumb
we set a minimum overlap length of 100 and maximum number of allowed mismatches
of about 1/3, say 30:

micca mergepairs -i fastq/*_R1*.fastq -o merged.fastq -l 100 -d 30






Note

Starting from micca 1.6.0 staggered read pairs (staggered pairs are pairs
where the 3’ end of the reverse read has an overhang to the left of the 5’
end of the forward read) will be merged by default. To override this feature
(and therefore to discard staggered alignments) set the -n/--nostagger
option.




Note

mergepairs works with FASTQ files only.




Note

Reverse file names will be constructed by replacing the string _R1 in
the forward file name with _R2 (typical in Illumina file names, see
options -p/--pattern and -e/--repl).




Compute reads statistics

We can report sequences statistics computed on the file merged.fastq. Run
the command stats:

micca stats -i merged.fastq -o stats_merged





The command reports in 3 text files and in the relative plots (in PNG format)
the length distribution, the Q score distribution and a quality summary. The
quality summary plot (stats_merged/stats_qualsumm_plot.png) is reported below:

[image: _images/garda_stats_qualsumm_plot.png]





Primer trimming

Segments which match PCR primers should be now removed. For paired-end (already
merged) reads, we recommend to trim both forward and reverse primers and
discard reads that do not contain the forward OR the reverse primer.

These operations can be performed with the trim command:

micca trim -i merged.fastq -o trimmed.fastq -w CCTACGGGNGGCWGCAG -r GACTACNVGGGTWTCTAATCC -W -R -c





The option -W/--duforward and -R/--dureverse ensures that reads that do
not contain the forward or the reverse primer will be discarded. With the option
-c/--searchrc the command searches reverse complement primers too.




Quality filtering

Producing high-quality OTUs requires high-quality reads. filter
filters sequences according to the maximum allowed expected error (EE) rate %.
We recommend values <=1%.

For paired-end reads, we recommend to merge pairs first, then quality filter
using a maximum EE threshold with no length truncation.


Warning

Parameters for the filter command should be chosen using the
tool filterstats.




Choosing parameters for filtering

The command filterstats reports the fraction of reads that
would pass for each specified maximum expected error (EE) rate %:

micca filterstats -i trimmed.fastq -o filterstats





Open the PNG file filterstats/stats_plot.png:

[image: _images/garda_stats_plot.png]
In this case (overlapping paired paired-end reads) we are interested in the plot
on top (minimum length filtering only). A minimum read length (L) of 400 and a
maximum error rate of 0.75% seems to be a good compromise between the
expected error rate and the number of reads remaining. Inspecting the file
filterstats/minlen_stats.txt, you can see that more than 85% reads will
pass the filter:

L   0.25    0.5     0.75    1.0     1.25    1.5
...
399 63.856  77.766  85.664  90.844  94.484  96.853
400 63.856  77.765  85.661  90.842  94.481  96.850
401 63.842  77.747  85.643  90.822  94.459  96.827
...






Note

To obtain general sequencing statistics, run the micca command
stats on the file trimmed.fastq.






Filter sequences

Now we can run the filter command with the selected parameters:

micca filter -i trimmed.fastq -o filtered.fasta -e 0.75 -m 400






Note

The maximum number of allowed Ns after truncation can be also specified in
filterstats and in filter.








OTU picking

To characterize the taxonomic structure of the samples, the sequences are now
organized into Operational Taxonomic Units (OTUs) [https://en.wikipedia.org/wiki/Operational_taxonomic_unit] at varying levels
of identity. An identity of 97% represent the common working definition of
bacterial species. The otu command implements several
state-of-the-art approaches for OTU clustering, but in this tutorial we will
focus on the de novo greedy clustering (see OTU picking and Denoising):

micca otu -m denovo_greedy -i filtered.fasta -o denovo_greedy_otus -t 4 -c





The otu command returns several files in the output directory,
including the SV table (otutable.txt) and a FASTA file containing the
representative sequences (otus.fasta).


Note

See OTU picking and Denoising to see how to apply the de novo swarm,
closed-reference and the open-reference OTU picking strategies to
these data.






Assign taxonomy

Now we can assign taxonomy to each representative sequence using the
classify command. In this tutorial we use the RDP
(https://doi.org/10.1128/AEM.00062-07) classifier.


Note

See Install on how to install the RDP classifier on your system.



micca classify -m rdp -i denovo_greedy_otus/otus.fasta -o denovo_greedy_otus/taxa.txt





classify returns a taxonomy file like this:

DENOVO1     Bacteria;Cyanobacteria/Chloroplast;Cyanobacteria
DENOVO2     Bacteria;Cyanobacteria/Chloroplast;Cyanobacteria;Family II;Family II;GpIIa
DENOVO3     Bacteria;Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae
DENOVO4     Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Limnohabitans
...








Infer the phylogenetic tree

These steps are necessary if you want to use phylogenetic-based metrics such as
the UniFrac distance (https://doi.org/10.1128/AEM.01996-06) in the downstream
analysis.


Multiple Sequence Alignment (MSA)

The  msa command provides two approaches for MSA [https://en.wikipedia.org/wiki/Multiple_sequence_alignment]: MUSCLE
(https://doi.org/10.1093/nar/gkh340) (de novo alignment) and Nearest Alignment
Space Termination (NAST) (https://doi.org/10.1093/nar/gkl244) (which uses a
template alignment). In this tutorial we will use the NAST alignment method. For
16S rRNA sequences, a good template alignment is the Greengenes Core Set:

wget ftp://ftp.fmach.it/metagenomics/micca/dbs/core_set.tar.gz
tar -zxvf core_set.tar.gz





At this point we can run the msa command:

micca msa -m nast -i denovo_greedy_otus/otus.fasta -o denovo_greedy_otus/msa.fasta \
    --nast-template core_set_aligned.fasta.imputed --nast-threads 4








Build the phylogenetic tree

At this point we can build the phylogenetic tree from the MSA using
tree:

micca tree -i denovo_greedy_otus/msa.fasta -o denovo_greedy_otus/tree.tree






Note

The output tree is in Newick format [https://en.wikipedia.org/wiki/Newick_format].






Midpoint rooting

UniFrac metrics require phylogenetic trees to be rooted. The tree can be rooted
(in this case at midpoint between the two most distant tips of the tree) using
the root command:

micca root -i denovo_greedy_otus/tree.tree -o denovo_greedy_otus/tree_rooted.tree






Note

Tree can also be rooted with the outgroup clade containing selected
targets, see root.








Build the BIOM file

The Biological Observation Matrix (BIOM) [http://biom-format.org/] is a
common format for representing OTU tables and metadata and is the core data type
for downstream analyses in QIIME [http://qiime.org] and in phyloseq [https://joey711.github.io/phyloseq/]. tobiom converts the
OTU table and the taxonomy table produced by the previous steps to the BIOM
format. In addition, the Sample data can be added:

micca tobiom -i denovo_greedy_otus/otutable.txt -o denovo_greedy_otus/tables.biom \
    -t denovo_greedy_otus/taxa.txt -s sampledata.txt








Further steps


	An introduction to the downstream analysis with R and phyloseq


	Compute basic statistics, rarefy and summarize OTU/SV tables using micca










          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Denoising (Illumina only)

Usually, amplicon sequences are clustered into Operational Taxonomic Units
(OTUs) using a similarity threshold of 97%, which represents the common working
definition of bacterial species.

Another approach consists to identify the Sequence Variants (SVs, see
OTU picking and Denoising for details). This approach avoids clustering sequences at a
predefined similarity threshold and usually includes a denoising algorithm in
order to identify SVs.

In this tutorial we show how to perform the denoising of Illumina overlapping
paired-end sequences in order to detect the SVs. Athough this tutorial explains
how to apply the pipeline to 16S paired-end Illumina reads, it can be adapted to
Illumina single-end sequening or to others markers gene/spacers, e.g. Internal
Transcribed Spacer (ITS), 18S or 28S.


Table of Contents


	Data download and preprocessing


	Denoising - Sequence Variants identification


	Further steps







Data download and preprocessing

In this tutorial we analyze the same dataset used in Paired-end sequencing - 97% OTU. Reads
merging, primer trimming and quality filtering are the same as in
Paired-end sequencing - 97% OTU:

wget ftp://ftp.fmach.it/metagenomics/micca/examples/garda.tar.gz
tar -zxvf garda.tar.gz
cd garda

micca mergepairs -i fastq/*_R1*.fastq -o merged.fastq -l 100 -d 30
micca trim -i merged.fastq -o trimmed.fastq -w CCTACGGGNGGCWGCAG -r GACTACNVGGGTWTCTAATCC -W -R -c
micca filter -i trimmed.fastq -o filtered.fasta -e 0.75 -m 400








Denoising - Sequence Variants identification

The otu command implements the UNOISE3 protocol
(denovo_unoise) which includes dereplication, denoising and chimera
filtering:

micca otu -m denovo_unoise -i filtered.fasta -o denovo_unoise_otus -t 4 -c





The otu command returns several files in the output directory,
including the SV table (otutable.txt) and a FASTA file containing the
representative sequences (otus.fasta).


Note

See OTU picking and Denoising to see how to apply the de novo swarm,
closed-reference and the open-reference OTU picking strategies to
these data.






Further steps


	Assign taxonomy


	Infer the phylogenetic tree


	Build the BIOM file


	An introduction to the downstream analysis with R and phyloseq


	Compute basic statistics, rarefy and summarize OTU/SV tables using micca










          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Single-end sequencing

This tutorial describes a standard micca pipeline for the analysis of
single-end amplicon data. This pipeline is intended for different platforms,
such as Roche 454, Illumina MiSeq/HiSeq and Ion Torrent. Although
this tutorial explains how to apply the pipeline to 16S rRNA amplicons, it
can be adapted to others markers gene/spacers, e.g. Internal Transcribed
Spacer (ITS), 18S or 28S.


Table of Contents


	Dataset download


	Merge files


	Primer trimming


	Quality filtering


	Choosing parameters for filtering


	Filter sequences






	OTU picking


	Further steps







Dataset download

The dataset used in this tutorial is taken from the Barelli et al. paper
Habitat fragmentation is associated to gut microbiota diversity of an
endangered primate: implications for conservation
(https://doi.org/doi:10.1038/srep14862). The dataset contains only a subset of
the entire study (Mwanihana samples only) for a total of 15 samples (in
FASTQ format) and 235179 16S rRNA amplicon reads (V1-V3 hypervariable
regions, 27F 5’-AGAGTTTGATCMTGGCTCAG, 533R 5’-TTACCGCGGCTGCTGGCAC). The 454
pyrosequencing was carried out on the GS FLX+ system using the XL+ chemistry.

Open a terminal, download the data and prepare the working directory:

wget ftp://ftp.fmach.it/metagenomics/micca/examples/mwanihana.tar.gz
tar -zxvf mwanihana.tar.gz
cd mwanihana








Merge files

Now the FASTQ files must be merged in a single file. This operation
can be performed with the merge command. Sample names
will be included into the sequence indentifiers.

micca merge -i fastq/*.fastq -o merged.fastq






Note

The merge command works with FASTQ or FASTA files. If your
sequences are in a different format (e.g. SFF or FASTA+QUAL) use
convert to convert them.




Warning

In the case of multiplexed reads (with 5’ barcode sequences) use
split instead of merge. This command will
perform demultiplexing and merging at the same time.




Note

In the case of overlapping paired-end reads go to Paired-end sequencing - 97% OTU or
Denoising (Illumina only).






Primer trimming

Segments which match PCR primers should be now removed. Typical Roche 454 reads
start with a sequence key (e.g. TCAG) followed by the barcode (if it was not
previously removed) and the forward primer. For these types of data (and in
general, for single-end sequencing) we recommend to trim both forward reverse
primers and discard reads that do not contain the forward primer. Moreover,
sequence preceding (for the forward) or succeding (for the reverse, if found)
primers should be removed:

[image: _images/read454.png]
These operations can be performed with the trim command:

micca trim -i merged.fastq -o trimmed.fastq -w AGAGTTTGATCMTGGCTCAG -r GTGCCAGCAGCCGCGGTAA -W





The option -W/--duforward ensures that reads that do not contain
the forward primer will be discarded.


Warning

Do not use the -R/--dureverse with single-end reads.




Note

The trim command supports IUPAC [http://www.bioinformatics.org/sms/iupac.html] nucleotide codes and
multiple primers. With the option -c/--searchrc the command searches
reverse complement primers too. trim works with FASTQ or
FASTA files.






Quality filtering

Producing high-quality OTUs requires high-quality reads. The
filter command filters sequences according to the maximum
allowed expected error (EE) rate %. We recommend values
<=1%. Moreover, to obtain good results in clustering (see otu),
reads should be truncated at the same length when they cover partial
amplicons or if quality deteriorates towards the end (common when you have long
amplicons in 454 or Illumina single-end sequencing).


Warning

Parameters for the filter command should be chosen using
the command filterstats.




Choosing parameters for filtering

The command filterstats reports the fraction of reads
that would pass for each specified maximum expected error (EE) rate %:

micca filterstats -i trimmed.fastq -o filterstats





Open the PNG file filterstats/stats_plot.png:

[image: _images/filterstats454.png]
In this case we are interested in the plot below (minimum length filtering +
truncation). A truncation length of 350 and a maximum error rate of 0.5%
seems to be a good compromise between read read length, expected error rate and
number of reads remaining. Inspecting the file
filterstats/trunclen_stats.txt, you can see that more than 92% reads
will pass the filter:

L       0.25    0.5     0.75    1.0     1.25    1.5
...
349     78.905  92.472  97.425  99.135  99.705  99.897
350     78.639  92.385  97.389  99.126  99.704  99.896
351     78.369  92.300  97.357  99.116  99.700  99.892
...






Note

To obtain general sequencing statistics, run stats.






Filter sequences

Now we can run the filter command with
the selected parameters:

micca filter -i trimmed.fastq -o filtered.fasta -e 0.5 -m 350 -t






Note

The maximum number of allowed Ns after truncation can be also specified in
filterstats and in filter.








OTU picking

To characterize the taxonomic structure of the samples, the sequences are now
organized into Operational Taxonomic Units (OTUs) [https://en.wikipedia.org/wiki/Operational_taxonomic_unit] at varying levels
of identity. An identity of 97% represent the common working definition of
bacterial species. The otu command implements several
state-of-the-art approaches for OTU clustering, but in this tutorial we will
focus on the de novo greedy clustering (see OTU picking and Denoising):

micca otu -i filtered.fasta -o denovo_greedy_otus -d 0.97 -c -t 4





The otu command returns several files in the output directory,
including the OTU table (otutable.txt) and a FASTA file containing the
representative sequences (otus.fasta).




Further steps


	Assign taxonomy


	Infer the phylogenetic tree


	Build the BIOM file


	An introduction to the downstream analysis with R and phyloseq


	Compute basic statistics, rarefy and summarize OTU/SV tables using micca










          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
An introduction to the downstream analysis with R and phyloseq


Note

This tutorial requires Paired-end sequencing - 97% OTU to be done.




Note

This tutorial requires R [https://www.r-project.org/], phyloseq [https://joey711.github.io/phyloseq/] ggplot2 and vegan (tested on R v3.4
and phyloseq v1.22.3) to be installed in your system.




Import data and preparation

We can import the micca processed data (the BIOM file, the phylogenetic tree and
the representative sequences) into the R [https://www.r-project.org/]
environment using the phyloseq [https://joey711.github.io/phyloseq/] library.

The import_biom() function allows to simultaneously import the BIOM
file and an associated phylogenetic tree file and reference sequence
file.

> library("phyloseq")
> library("ggplot2")
> library("vegan")
> setwd("denovo_greedy_otus") # set the working directory
> ps = import_biom("tables.biom", treefilename="tree_rooted.tree", refseqfilename="otus.fasta")
> sample_data(ps)$Month <- as.numeric(sample_data(ps)$Month)
> ps
phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 529 taxa and 34 samples ]
sample_data() Sample Data:       [ 34 samples by 4 sample variables ]
tax_table()   Taxonomy Table:    [ 529 taxa by 6 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 529 tips and 528 internal nodes ]
refseq()      DNAStringSet:      [ 529 reference sequences ]





In this case, the phyloseq object includes the OTU table (which contains the OTU
counts for each sample), the sample data matrix (containing the sample
metadata), the taxonomy table (the predicted taxonomy for each OTU), the
phylogenetic tree, and the OTU representative sequences.

Now this point we can plot the rarefaction curves using vegan:

> rarecurve(t(otu_table(ps)), step=50, cex=0.5)





[image: _images/garda_rarecurves.png]
Now, we can rarefy in order to bring the samples to the same depth (in this case
is the 90% of the abundance of the sample with less reads):

> # rarefy without replacement
> ps.rarefied = rarefy_even_depth(ps, rngseed=1, sample.size=0.9*min(sample_sums(ps)), replace=F)








Plot abundances

Plot the abundances and color each OTU according its classified phylum (Rank2):

> plot_bar(ps.rarefied, fill="Rank2") + facet_wrap(~Season, scales = "free_x", nrow = 1)





[image: _images/garda_bar.png]
Alternatively, we can merge the OTU at the phylum level and build a new phyloseq
object:

> ps.phylum = tax_glom(ps.rarefied, taxrank = "Rank2", NArm = F)
> ps.phylum
phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 35 taxa and 34 samples ]
sample_data() Sample Data:       [ 34 samples by 4 sample variables ]
tax_table()   Taxonomy Table:    [ 35 taxa by 6 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 35 tips and 34 internal nodes ]
refseq()      DNAStringSet:      [ 35 reference sequences ]





Now we can make the new bar plot at the class level:

> plot_bar(ps.phylum, fill="Rank2") + facet_wrap(~Season, scales = "free_x", nrow = 1)








Alpha diversity

Now we can plot the number of observed OTUs in each month, coloring the values
according to the sampling depth:

> plot_richness(ps.rarefied, x="Month", color="Depth", measures=c("Observed"))





[image: _images/garda_alpha.png]
Moreover, we can make a boxplot of the number of OTUs and the Shannon entropy
grouping the different months by season:

> plot_richness(ps.rarefied, x="Season", measures=c("Observed", "Shannon")) + geom_boxplot()





[image: _images/garda_alpha2.png]



Beta diversity

Now, we can plot the PCoA using the unweighted UniFrac as distance:

> # PCoA plot using the unweighted UniFrac as distance
> wunifrac_dist = distance(ps.rarefied, method="unifrac", weighted=F)
> ordination = ordinate(ps.rarefied, method="PCoA", distance=wunifrac_dist)
> plot_ordination(ps.rarefied, ordination, color="Season") + theme(aspect.ratio=1)





[image: _images/garda_beta.png]
At this point, we test whether the seasons differ significantly from each other
using the permutational ANOVA (PERMANOVA) analysis:

> adonis(wunifrac_dist~sample_data(ps.rarefied)$Season)

Call:
adonis(formula = wunifrac_dist ~ sample_data(ps.rarefied)$Season)

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

                                Df SumsOfSqs  MeanSqs F.Model     R2 Pr(>F)
sample_data(ps.rarefied)$Season  3    0.6833 0.227765  4.3451 0.3029  0.001 ***
Residuals                       30    1.5726 0.052419         0.6971
Total                           33    2.2559                  1.0000
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1











          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Compute basic statistics, rarefy and summarize OTU/SV tables using micca


Note

This tutorial requires Paired-end sequencing - 97% OTU to be done.



The command tablestats reports a sample summary, an OTU summary
and the rarefaction curves for the input OTU/SV table:

micca tablestats -i denovo_greedy_otus/otutable.txt -o tablestats





Inspecting the file tablestats/tablestats_samplesumm.txt you can see that
the less abundant sample contains 512 reads:

Sample          Depth   NOTU    NSingle
B1114D1-PL1-E4  512     145     68
B1014D2-PL1-C4  1356    152     57
B0214D3-PL1-F1  1665    192     74
...             ...     ...     ...






Note

Rarefaction curves can be inspected through
tablestats/tablestats_rarecurve.txt and
tablestats/tablestats_rarecurve_plot.png.



To compare different samples, the OTU/SV table must be subsampled (rarefied [https://en.wikipedia.org/wiki/Rarefaction_(ecology)]) using the command
tablerare. In this case we are interested in rarefy the table
with the depth of the less abundant sample (B1114D1-PL1-E4):

micca tablerare -i denovo_greedy_otus/otutable.txt -o denovo_greedy_otus/otutable_rare.txt -d 500





Now we can summarize communities by their taxonomic composition. The
tabletotax creates in the output directory a table for each
taxonomic level (taxtable1.txt, …, taxtableN.txt). OTU counts are
summed together if they have the same taxonomy at the considered level.

micca tabletotax -i denovo_greedy_otus/otutable_rare.txt -t denovo_greedy_otus/taxa.txt -o taxtables





Finally, we can generate a relative abundance bar plot from generated taxa
tables, using the command tablebar. In this case only the bar
plot relative to the taxonomy level 2 (phylum) will be generated:

micca tablebar -i taxtables/taxtable2.txt -o taxtables/taxtable2.png





[image: _images/garda_taxtable2.png]




          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Picking OTUs for use in PICRUSt

PICRUSt [http://picrust.github.io/picrust/] (doi: 10.1038/nbt.2676) is a
software designed to predict metagenome functional content from marker gene
(e.g., 16S rRNA) surveys and full genomes. This tutorial covers how to pick OTUs
from 16S rRNA sequences data to use with PICRUSt.


Note

Requires Quality filtering in Single-end sequencing to
be done and the PICRUSt software to be installed in your system.
Warning: PICRUSt 1.0.0 requires the biom-format package v1.3.1 to
be installed in your system (from the command line run: pip
install biom-format==1.3.1, for more information see
http://biom-format.org/).



PICRUSt requires an Closed-reference OTU table computed against the
Greengenes reference (clustered at 97% identity). Download the reference
database (Greengenes, version 2013/05), clustered at 97% identity:

wget ftp://ftp.fmach.it/metagenomics/micca/dbs/gg_2013_05.tar.gz
tar -zxvf gg_2013_05.tar.gz





Run the micca closed-reference protocol:

micca otu -m closed_ref -i filtered.fasta -o closed_ref_otus -r 97_otus.fasta -d 0.97 -t 4
cd closed_ref_otus





Report the sample summary:

micca tablestats -i otutable.txt -o tablestats
head tablestats/tablestats_samplesumm.txt

Sample       Depth   NOTU    NSingle
Mw_03        1084    132     39
Mw_06        1387    122     27
Mw_11        1485    155     44
Mw_07        1528    150     36
Mw_01        1537    143     35
Mw_15        1565    144     35
Mw_14        1610    149     42
Mw_02        1670    143     43
Mw_12        1710    153     54





Rarefy the OTU table for the PICRUSt analysis is always a good idea (see
https://groups.google.com/forum/#!topic/picrust-users/ev5uZGUIPrQ), so we will
rarefy the table at 1084 sequences per sample using tablerare:

micca tablerare -i otutable.txt -o otutable_rare.txt -d 1084





Convert the rarefied OTU table into the BIOM format replacing the OTU IDs with
the original sequence IDs using the tobiom command:

micca tobiom -i otutable_rare.txt -o tables.biom -u otuids.txt





Normalize the OTU table by dividing each OTU by the known/predicted 16S copy
number abundance using the PICRUSt script normalize_by_copy_number.py:

normalize_by_copy_number.py -i tables.biom -o normalized_otus.biom





Create the final metagenome functional predictions using the PICRUSt script
predict_metagenomes.py:

predict_metagenomes.py -i normalized_otus.biom -o metagenome_predictions.biom





Now you can analyze the PICRUSt predicted metagenome as described in
http://picrust.github.io/picrust/tutorials/downstream_analysis.html#downstream-analysis-guide.





          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
OTU picking and Denoising

Usually, amplicon sequences are clustered into Operational Taxonomic Units
(OTUs) [https://en.wikipedia.org/wiki/Operational_taxonomic_unit] using a
similarity threshold of 97%, which represents the common working definition
of bacterial species.

Another approach consists to define the so-called Sequence Variants (SVs,
a.k.a Amplicon Sequence Variants - ASVs, Exact Sequence Variants ESVs,
zero-radius OTUs - ZOTU, unique sequence variants or sub-OTUs). This
approach avoids clustering sequences at a predefined similarity threshold and
usually includes a denoising algorithm in order to identify SVs (see UNOISE [https://www.biorxiv.org/content/early/2016/10/15/081257], DADA2 [https://www.nature.com/articles/nmeth.3869], Deblur [http://msystems.asm.org/content/2/2/e00191-16], oligotyping [https://www.nature.com/articles/ismej2014195] and
swarm [https://peerj.com/articles/1420/]).

The otu command assigns similar sequences (marker genes such as
16S rRNA and the fungal ITS region) to operational taxonomic units or sequence
variants (OTUs or SVs).



	Methods


	De novo greedy


	De novo UNOISE


	Closed-reference


	Open-reference


	De novo swarm






	Definition of identity


	Output files







Methods


De novo greedy

In denovo greedy clustering (parameter --method denovo_greedy), sequences
are clustered without relying on an external reference database, using an
approach similar to the UPARSE pipeline (https://doi.org/10.1038/nmeth.2604) and
tested in https://doi.org/10.7287/peerj.preprints.1466v1. This protocol
includes in a single command dereplication, clustering and chimera filtering:



	Dereplication. Predict sequence abundances of each sequence by
dereplication, order by abundance and discard sequences with abundance
value smaller than MINSIZE (option -s/--minsize, default value 2);


	Greedy clustering. Distance (DGC) and abundance-based (AGC) strategies
are supported (option --greedy, see
https://doi.org/10.1186/s40168-015-0081-x and
https://doi.org/10.7287/peerj.preprints.1466v1 ). Therefore, the
candidate representative sequences are obtained;


	Chimera filtering (optional). Remove chimeric sequences from the
representatives performing a de novo chimera detection (option
--rmchim);


	Map sequences. Map sequences to the representatives.







Example:

micca otu -m denovo_greedy -i filtered.fasta -o denovo_greedy_otus -d 0.97 -c -t 4








De novo UNOISE

Denoise amplicon sequences using the UNOISE3 [https://www.biorxiv.org/content/early/2016/10/15/081257]  protocol. The
method is designed for Illumina (paired or unpaired) reads. This protocol
includes in a single command dereplication, denoising and chimera filtering:



	Dereplication; Predict sequence abundances of each sequence by
dereplication, order by abundance and discard sequences with abundance
value smaller than MINSIZE (option -s/--minsize, default value 8);


	Denoising;


	Chimera filtering (optional);


	Map sequences. Map sequences to the representatives.







Example:

micca otu -m denovo_unoise -i filtered.fasta -o denovo_unoise_otus -c -t 4








Closed-reference

Sequences are clustered against an external reference database and reads that
could not be matched are discarded (method closed_ref). Example:

Download the reference database (Greengenes), clustered at 97%
identity:

wget ftp://ftp.fmach.it/metagenomics/micca/dbs/gg_2013_05.tar.gz
tar -zxvf gg_2013_05.tar.gz





Run the closed-reference protocol:

micca otu -m closed_ref -i filtered.fasta -o closed_ref_otus -r 97_otus.fasta -d 0.97 -t 4





Simply perform a sequence ID matching with the reference taxonomy
file (see classify):

cd closed_ref_otus
micca classify -m otuid -i otuids.txt -o taxa.txt -x ../97_otu_taxonomy.txt








Open-reference

Open-reference clustering (open_ref): sequences are clustered against an
external reference database (as in Closed-reference) and reads that
could not be matched are clustered with the De novo greedy protocol.
Example:

Download the reference database (Greengenes), clustered at 97% identity:

wget ftp://ftp.fmach.it/metagenomics/micca/dbs/gg_2013_05.tar.gz
tar -zxvf gg_2013_05.tar.gz





Run the open-reference protocol:

micca otu -m open_ref -i filtered.fasta -o open_ref_otus -r 97_otus.fasta -d 0.97 -t 4 -c





Run the VSEARCH-based consensus classifier or the RDP classifier (see
classify):

cd open_ref_otus
micca classify -m cons -i otus.fasta -o taxa.txt -r ../97_otus.fasta -x ../97_otu_taxonomy.txt -t 4








De novo swarm

In denovo swarm clustering (doi: 10.7717/peerj.593, doi: 10.7717/peerj.1420,
https://github.com/torognes/swarm, parameter --method denovo_swarm),
sequences are clustered without relying on an external reference database. From
https://github.com/torognes/swarm:


The purpose of swarm is to provide a novel clustering algorithm that handles
massive sets of amplicons. Results of traditional clustering algorithms are
strongly input-order dependent, and rely on an arbitrary global clustering
threshold. swarm results are resilient to input-order changes and rely on a
small local linking threshold d, representing the maximum number of
differences between two amplicons. swarm forms stable, high-resolution
clusters, with a high yield of biological information.




otu includes in a single command dereplication, clustering and
de novo chimera filtering:



	Dereplication. Predict sequence abundances of each sequence by
dereplication, order by abundance and discard sequences with abundance
value smaller than MINSIZE (option --minsize default value is 1, i.e.
no filtering);


	Swarm clustering. Fastidious option is recommended
(--swarm-fastidious);


	Chimera filtering (optional).








Warning

Removing ambiguous nucleotides (N) (with the option --maxns 0 in
filter) is mandatory if you use the de novo swarm clustering
method.



Example:

micca filter -i trimmed.fastq -o filtered.fasta -e 0.5 -m 350 -t --maxns 0
micca otu -m denovo_swarm -i filtered.fasta -o otus_denovo_swarm -c --minsize 1 --swarm-fastidious -t 4










Definition of identity

In micca, the pairwise identity (except for ‘de novo swarm’ and ‘denovo unoise’)
is defined as the edit distance excluding terminal gaps (same as in USEARCH and
BLAST):


[image: \frac{\textrm{\# matching columns}}{\textrm{alignment length} - \textrm{terminal gaps}}]





Output files

The otu command returns in a single directory 5 files:


	otutable.txt

	TAB-delimited file, containing the number of times an OTU is found in
each sample (OTU x sample, see Supported file formats):

OTU     Mw_01 Mw_02 Mw_03 ...
DENOVO1 151   178   177   ...
DENOVO2 339   181   142   ...
DENOVO3 533   305   63    ...
...     ...   ...   ...   ...







	otus.fasta

	FASTA containing the representative sequences (OTUs):

>DENOVO1
GACGAACGCTGGCGGCGTGCCTAACACATGCAAGTCGAACGGGG...
>DENOVO2
GATGAACGCTAGCTACAGGCTTAACACATGCAAGTCGAGGGGCA...
>DENOVO3
AGTGAACGCTGGCGACGTGGTTAAGACATGCAAGTCGAGCGGTA...
...







	otuids.txt

	TAB-delimited file which maps the OTU ids to original sequence ids:

DENOVO1 IS0AYJS04JQKIS;sample=Mw_01
DENOVO2 IS0AYJS04JL6RS;sample=Mw_01
DENOVO3 IS0AYJS04H4XNN;sample=Mw_01
...







	hits.txt

	TAB-separated file, three-columns, where each column contains: the
matching sequence, the representative (seed) and the identity (if
available, see Definition of identity):

IS0AYJS04JE658;sample=Mw_01; IS0AYJS04I4XYN;sample=Mw_01 99.4
IS0AYJS04JPH34;sample=Mw_01; IS0AYJS04JVUBC;sample=Mw_01 98.0
IS0AYJS04I67XN;sample=Mw_01; IS0AYJS04JVUBC;sample=Mw_01 99.7
...







	otuschim.fasta

	(only for ‘denovo_greedy’, ‘denovo_swarm’ and ‘open_ref’ mathods, when
-c/--rmchim is specified) FASTA file containing the chimeric
otus.






Warning

Trimming the sequences to a fixed position before clustering is strongly
recommended when they cover partial amplicons or if quality deteriorates
towards the end (common when you have long amplicons and single-end
sequencing), see Quality filtering.




Note

De novo OTUs are renamed to DENOVO[N] and reference OTUs to REF[N].









          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Supported file formats


Sequence files

FASTA [https://en.wikipedia.org/wiki/FASTA_format] and FASTQ [https://en.wikipedia.org/wiki/FASTQ_format] Sanger/Illumina 1.8+ format
(phred+33) formats are supported. micca provides the convert
command to convert between sequence file formats.




Taxonomy files

Taxonomy files map sequence IDs to taxonomy. Input taxonomy files must
be TAB-delimited files where rows are either in the form:


	SEQID[TAB]k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__;g__;


	SEQID[TAB]Bacteria;Firmicutes;Clostridia;Clostridiales;;;


	SEQID[TAB]Bacteria;Firmicutes;Clostridia;Clostridiales


	SEQID[TAB]D_0__Bacteria;D_1__Firmicutes;D_2__Clostridia;D_3__Clostridiales;D_4__;D_5__;




Compatible taxonomy files are:



	Greengenes (http://greengenes.secondgenome.com/downloads);


	QIIME-formatted SILVA (https://www.arb-silva.de/download/archive/qiime/);


	UNITE (https://unite.ut.ee/repository.php);


	Human Oral Microbiome Database (HOMD) (http://www.homd.org/).







The output taxonomy file returned by classify is a
TAB-delimited file where each row is in the format:

SEQID[TAB]Bacteria;Firmicutes;Clostridia;Clostridiales








OTU/SV tables and taxonomy tables

The OTU table returned by otu is an OTU x sample, TAB-delimited
text file, containing the number of times an OTU is found in each sample:

OTU     Mw_01 Mw_02 Mw_03 ...
DENOVO1 151   178   177   ...
DENOVO2 339   181   142   ...
DENOVO3 533   305   63    ...
DENOVO4 166   299   115   ...
...     ...   ...   ...   ...





The tabletotax command returns the “taxonomy tables” for each
taxonomic level, e.g.:

OTU                                Mw_01 Mw_02 Mw_03 ...
Bacteria;Bacteroidetes             1363  1543  1168  ...
Bacteria;Cyanobacteria/Chloroplast 0     0     0     ...
Bacteria;Firmicutes                6257  5780  6761  ...
Bacteria;Lentisphaerae             0     1     0     ...
...                                ...   ...   ...   ...








Sample data

The sample data file contains all of the information about the samples. In QIIME
this file is called Mapping File [http://qiime.org/tutorials/tutorial.html#mapping-file-tab-delimited-txt]. In
micca, the sample data file must be a TAB-delimited text file (a row for each
sample). The first column must be the sample identifier (assigned in
merge, split or mergepairs):

ID    Group Altitude
Mw_01 Mw1   492
Mw_02 Mw1   492
Mw_09 Mw1   492
Mw_12 Mw1   492
...   ...   ...








Phylogenetic tree

Only the Newick format [https://en.wikipedia.org/wiki/Newick_format] is
supported.




BIOM file

The tobiom command generates OTU/SV tables in the biom version
1.0 JSON file format
(http://biom-format.org/documentation/format_versions/biom-1.0.html).







          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            
  
Changes


Version 1.7.0


	VSEARCH updated to version 2.7.1;


	Denoising protocol added to the otu command for Illumina reads (UNOISE);


	-S/–chim-abskew option added to micca otu command;


	Documentation updated;


	multithread option added to the mergepairs command.







Version 1.6.2 (bug fix release)


	Definitely fix the “new-line error” in classify;


	Fix bar plots in “stats”.







Version 1.6.1 (bug fix release)


	Fix the “new-line error” in classify.







Version 1.6.0


	swarm updated to version 2.1.12;


	Now the mergepairs command allows merging staggered reads by default.
With the new option -n/--nostagger the command produces the same
results of the previous versions (<=1.5);


	classify and tabletotax commands  now strip the D_X__ prefix from the Silva
taxonomy files;


	Documentation updated;


	Fix: remove duplicate file closing in micca.api.merge().







Version 1.5.0


	Now the NAST algorithm trims candidate sequences to that which is bound by the
beginning and end points of the alignment span; with the new option
--nast-notrim in micca msa produces the same results of the previous
version (<=1.4.0);


	Y-scale in micca tablebar when --raw fixed;


	“text file busy error” in micca msa (nast) fixed;


	pandas deprecation warnings fixed;


	documentation updated.







Version 1.4.0


	No-filter option added to micca.api.msa.nast() (do not remove positions
which are gaps in every sequenceces) and to the msa command
(--nast-nofilter option);


	documentation improved.







Version 1.3.0


	Swarm clustering algorithm added to micca otu;


	micca.api.otu.denovo_swarm() function added;


	micca v1.3.0 includes: VSEARCH v1.9.5, MUSCLE v3.8.31, FastTree v2.1.8, swarm
v2.1.8;


	documentation updated.







Version 1.2.2


	Mow micca can generate plots with matplotlib when the DISPLAY environment
variable is undefined;


	MANIFEST.in, Dockerfile updated.







Version 1.2.1


	Dockerfile added;


	Documentation improved.







Version 1.2.0


	Hits output file option added to micca.api.msa.nast() (hits_fn
option) and to the msa command (--nast-hits option);


	setup.py improved.







Version 1.1.0


	Strand option added in classify (consensus-based classifier), msa
(NAST) and otu (closed-reference and open reference OTU picking protolcols)
commands. Now these commands search both strand (default) instead the plus
strand only.







Version 1.0.0


	micca 1.0.0 includes: VSEARCH v1.9.5, MUSCLE v3.8.31, FastTree v2.1.8.










          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  

    
      
          
            

Index



 




          

      

      

    


This page uses 
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.





  _images/filterstats454.png
Min. length filtering (--minlen L)
T

# of reads %

Max EE rate % (--maxeerate)
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%

200 400 600 800 1000 1200 1400 1600

=

# of reads %

in. length filtering + truncation (--minlen L --trunc)

200 400 600 800 1000 1200 1400 1600






_images/garda_bar.png
Nirospirae
Parcubacteria
Planclomyceles
Profeobacieria

[ cemmatimonadetes

[ cranovactenachiopies

£
£
O

Winter

Summer

Spring

Fall

[ verucomeroma
w

“Bar0114D2-PL1-B1

“Bar0114D1-PLT

B1214D3-PL1
“B1214D2-PL1
“B1214D1-PL1
“B0214D3-PL1
“Bo214D2-PL1
“B0214D1-PL1

~B0814D3-PL1
“Bo814D2-PL1
“B0814D1-PL1
~B0714D3-PL1
“Bo714D2-PL1
“Bo614D2-PL1
“B0814D1-PL1

B0514D3-PL1
“Bos14D2-PL1
“B0514D1-PL1
“B0414D3-PL1
“Bo414D2-PL1
“B0414D1-PL1
“B0314D3-PL1
“B0314D2-PL1
“B0314D1-PL1

“B1114D3-PL1
“B1114D2-PL1
“B1114D1-PLY
“B1014D3-PL1
“B1014D2-PL1
“B1014D1-PL1
“B0914D3-PL1
“Bo914D2-PL1
“B0914D1-PLY

Bs
A5
Ha
Fi
El
D1

Sample





_images/garda_beta.png
Axis.2 [15.5%]

01-
¢ -
00-
.
01+ P
02-
o2 01

Axis.A

.
.
Season
© Fal
. . * Sprng
 Summer
o Winter
.
.
0o 01

[18.7%]





_images/garda_alpha.png
g.-¢28
§ i
&
s
Ld
100
Los
m £
s
4 EI =

o es-50

25

130+

ainseapy Ausiania eydiy





_images/garda_alpha2.png
‘Shannon

Observed

40~
35-

- o
T

po—e

130+

ainseapy Ausiania eydiy

90~

70-

- Summer

-Spring

-Fall

- summer

~Fall

Season





_images/garda_rarecurves.png
Species

150 200 250

100

0 500 1000 1500

Sample Size





_images/garda_stats_plot.png
# of reads %

# of reads %

Min. length filtering (--minlen L)

100 i T ! T
80 ﬂ
Max EE rate % (--maxeerate)
0.25%
60 —— 0.50%
— 0.75%
I [¢)
40 1.00%
1.25%
~ 1.50%
20
0
100 200 300 400
Min. length filtering + truncation (--minlen L --trunc)
100 T T —T
80
60
40
20
0
100 200 300 400





_images/garda_stats_qualsumm_plot.png
T
400

T
300

T
200

T
100

400

300

200

100

T T T T T
o o o o o o

o [o¢] (e] < o~
—

(@A11B|NWIND) 9, Speal JOo #

O obeiany

0.1+

9% 9ley JoJi3 UwuuwQXm_ ‘NY

400

300

200

100

Read position





_images/read454.png


_images/garda_taxtable2.png
Bacteria;Cyanobacteria/Chloroplast

I Bacteria;Proteobacteria
Bacteria;Acidobacteria

I Bacteria;Armatimonadetes
- Bacteria;Gemmatimonadetes

[ Bacteria;Verrucomicrobia
I Bacteria;Nitrospirae

I Bacteria;Bacteroidetes
[ Bacteria;Unclassified

I Bacteria;Chloroflexi
[ Bacteria;Actinobacteria

I Bacteria;Planctomycetes

Sample

¥

1.0
0.8
6
4
0.0

0.2

o o
acuepunqy

IO-T1d-€dv1104ed
189-T1d-¢dv1104ed
Tv-T1d-Td¥1104e8
S8-T1d-€dv1d1d
SV-T1d-¢dv1cid
YH-T1d-1dv1lT14
¥O-T1d-€Av111d
v4-T1d-¢AvIT1d
¥3-T14-1dv1T14
¥d-11d4-edv1o1d
¥2-T1d-¢dv1014d
¥9-11d-1d¥1014
vv-11d-€dv1609d
€H-T1d-¢dv1604
€9-T1d-1dv1604
€4-T1d-€Av1809d
€3-T1d-¢dv1804
€d-T11d-1dv1804
€D0-T1d-edviLod
€9-T1d-¢aviLod
€V-T1d-¢av1909d
CH-T1d-Tdv 1904
¢9-T1d-€Adv1504
¢4-11d-¢dv1s049
¢3-T1d-1dv1S04d
¢a-11d-€dvivod
¢0-Td-¢aviv0od
¢8-T1d-1dv1v04
¢v-Td-€dv1e0d
TH-T1d-¢dv1e0d
I9-T1d-1dv1€04
T4-T1d-€dv1204
T3-T1d-¢dv1209d
1d-114-1dv1c04





