

Mars

Mars is a tensor-based unified framework for large-scale data computation.

Mars tensor

documentation

Mars tensor provides a familiar interface like Numpy.

	Numpy

	Mars tensor

	import numpy as np
a = np.random.rand(1000, 2000)
(a + 1).sum(axis=1)

	import mars.tensor as mt
a = mt.random.rand(1000, 2000)
(a + 1).sum(axis=1).execute()

Easy to scale in and scale out

Mars can scale in to a single machine, and scale out to a cluster with hundreds of machines.
Both the local and distributed version share the same piece of code,
it’s fairly simple to migrate from a single machine to a cluster due to the increase of data.

Standalone mode

Threaded

You can install Mars via pip:

pip install pymars

After installation, you can simply open a Python console and run

import mars.tensor as mt
from mars.session import new_session

a = mt.ones((5, 5), chunk_size=3)
b = a * 4
if there isn't a local session,
execute will create a default one first
b.execute()

or create a session explicitly
sess = new_session()
sess.run(b) # run b

Local cluster

Users can start the distributed runtime of Mars on a single machine. First,
install Mars distributed by run

pip install 'pymars[distributed]'

For now, local cluster mode can only run on Linux and Mac OS.

Then start a local cluster by run

import mars.tensor as mt
from mars.deploy.local import new_cluster
from mars.session import new_session

cluster = new_cluster()

new cluster will start a session and set it as default one
execute will then run in the local cluster
a = mt.random.rand(10, 10)
a.dot(a.T).execute()

cluster.session is the session created
cluster.session.run(a + 1)

users can also create a session explicitly
cluster.endpoint needs to be passed to new_session
session2 = new_session(cluster.endpoint)
session2.run(a * 2)

Run on Clusters

Basic Steps

Mars can be deployed on a cluster. First, you need to run

pip install 'pymars[distributed]'

on every node in the cluster. This will install dependencies needed for
distributed execution on your cluster. After that, you may select a node as
scheduler and another as web service, leaving other nodes as workers. The
scheduler can be started with the following command:

mars-scheduler -a <scheduler_ip> -p <scheduler_port>

Web service can be started with the following command:

mars-web -a <web_ip> -p <web_port> -s <scheduler_ip>:<scheduler_port>

Workers can be started with the following command:

mars-worker -a <worker_ip> -p <worker_port> -s <scheduler_ip>:<scheduler_port>

After all Mars processes are started, you can open a Python console and run

import mars.tensor as mt
from mars.session import new_session
sess = new_session('http://<web_ip>:<web_port>')
a = mt.ones((2000, 2000), chunk_size=200)
b = mt.inner(a, a)
sess.run(b)

You can open a web browser and type http://<web_ip>:<web_port> to open Mars
UI to look up resource usage of workers and execution progress of the task
submitted just now.

Using Command Lines

When running Mars with command line, you can specify arguments to control the
behavior of Mars processes. All Mars services have common arguments listed
below.

	Argument

	Description

	-a

	Advertise address exposed to other processes in the cluster,
useful when the server has multiple IP addresses, or the
service is deployed inside a VM or container

	-H

	Service IP binding, 0.0.0.0 by default

	-p

	Port of the service. If absent, a randomized port will be used

	-s

	List of scheduler endpoints, separated by commas. Useful for
workers and webs to spot schedulers, or when you want to run
more than one schedulers

	--log-level

	Log level, can be debug, info, warning, error

	--log-format

	Log format, can be Python logging format

	--log-conf

	Python logging configuration file, logging.conf by default

Extra arguments for schedulers are listed below.

	Argument

	Description

	--nproc

	Number of processes. If absent, the value will be the
available number of cores

Extra arguments for workers are listed below. Details about memory tuning can
be found at the next section.

	Argument

	Description

	--cpu-procs

	Number of computation processes on CPUs. If absent, the value
will be the available number of cores

	--net-procs

	Number of processes for network transfer. 1 by default

	--phy-mem

	Limit of physical memory, can be percentages of total memory
or multiple of bytes. For instance, 4g or 80% are both
acceptable. If absent, the size of physical memory will be
used

	--cache-mem

	Size of shared memory, can be percentages of total memory or
multiple of bytes. For instance, 4g or 80% are both
acceptable. If absent, 50% of free memory will be used

	--min-mem

	Minimal free memory to start worker, can be percentages of
total memory or multiple of bytes. For instance, 4g or
80% are both acceptable. 128m by default

	--spill-dir

	Directories to spill to, separated by : in MacOS or Linux.

For instance, if you want to start a Mars cluster with two schedulers, two
workers and one web service, you can run commands below (memory and CPU tunings
are omitted):

On Scheduler 1 (192.168.1.10):

mars-scheduler -a 192.168.1.10 -p 7001 -s 192.168.1.10:7001,192.168.1.11:7002

On Scheduler 2 (192.168.1.11):

mars-scheduler -a 192.168.1.11 -p 7002 -s 192.168.1.10:7001,192.168.1.11:7002

On Worker 1 (192.168.1.20):

mars-worker -a 192.168.1.20 -p 7003 -s 192.168.1.10:7001,192.168.1.11:7002 \
 --spill-dirs /mnt/disk2/spill:/mnt/disk3/spill

On Worker 2 (192.168.1.21):

mars-worker -a 192.168.1.21 -p 7004 -s 192.168.1.10:7001,192.168.1.11:7002 \
 --spill-dirs /mnt/disk2/spill:/mnt/disk3/spill

On the web server (192.168.1.30):

mars-web -p 7005 -s 192.168.1.10:7001,192.168.1.11:7002

Memory Tuning

Mars worker manages two different parts of memory. The first is private process
memory and the second is shared memory between all worker processes handled by
plasma_store in Apache Arrow [https://arrow.apache.org/docs/python/plasma.html]. When Mars Worker starts,
it will take 50% of free memory space by default as shared memory and the left
as private process memory. What’s more, Mars provides soft and hard memory
limits for memory allocations, which are 75% and 90% by default. If these
configurations does not meet your need, you can configure them when Mars Worker
starts. You can use --cache-mem argument to configure the size of shared
memory, --phy-mem to configure total memory size, from which the soft and
hard limits are computed.

For instance, by using

mars-worker -a localhost -p 9012 -s localhost:9010 --cache-mem 512m --phy-mem 90%

We limit the size of shared memory as 512MB and the worker can use up to 90% of
total physical memory.

Overview

Mars tensor is the counterpart of Numpy numpy.ndarray and implements a subset of the Numpy ndarray interface.
It tiles a large tensor into small chunks and describe the inner computation with a directed graph.
This lets us compute on tensors larger than memory and take advantage of the ability of multi-cores or distributed clusters.

The following is a brief overview of supported subset of Numpy interface.

	Arithmetic and mathematics: +, -, *, /, exp, log, etc.

	Reduction along axes (sum, max, argmax, etc).

	Most of the array creation routines [https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html]
(empty, ones_like, diag, etc). What’s more, Mars does not only support create array/tensor on GPU,
but also support create sparse tensor.

	Most of the array manipulation routines [https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html]
(reshape, rollaxis, concatenate, etc.)

	Basic indexing [https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html]
(indexing by ints, slices, newaxes, and Ellipsis).

	Advanced indexing [https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing]
(except combing boolean array indexing and integer array indexing).

	universal functions [https://docs.scipy.org/doc/numpy/reference/ufuncs.html]
for elementwise operations.

	Linear algebra functions [https://docs.scipy.org/doc/numpy/reference/routines.linalg.html],
including product (dot, matmul, etc.) and decomposition (cholesky, svd, etc.).

However, Mars has not implemented entire Numpy interface, either the time limitation or difficulty is the main handicap.
Any contribution from community is sincerely welcomed. The main feature not implemented are listed below:

	Tensor with unknown shape does not support all operations.

	Only small subset of np.linalg are implemented.

	Operations like sort which is hard to execute in parallel are not implemented.

	Mars tensor doesn’t implement interface like tolist and nditer etc,
because the iteration or loops over a large tensor is very inefficient.

Create Mars tensor

You can create mars tensor from Python array like object just like Numpy, or create from Numpy array directly.
More details on array creation routine and random sampling.

	mars.tensor.tensor

	

	mars.tensor.array

	Create a tensor.

Create tensor on GPU

Mars tensor can run on GPU, for tensor creation, just add a gpu parameter, and set it to True.

import mars.tensor as mt

a = mt.random.rand(1000, 2000, gpu=True) # allocate the tensor on GPU

Create sparse tensor

Mars tensor can be sparse, unfortunately, only 2-D sparse tensors are supported for now,
multi-dimensional tensor will be supported later soon.

import mars.tensor as mt

a = mt.eye(1000, sparse=True) # create a sparse 2-D tensor with ones on the diagonal and zeros elsewhere

Chunks

In mars tensor, we tile a tensor into small chunks. Argument chunk_size is not always required,
a chunk’s bytes occupation will be 128M for the default setting.
However, user can specify each chunk’s size in a more flexible way which may be adaptive to the data scale.
The fact is that chunk’s size may effect heavily on the performance of execution.

The options or arguments which will effect the chunk’s size are listed below:

	Change options.tensor.chunk_size_limit which is 128*1024*1024(128M) by default.

	Specify chunk_size as integer, like 5000, means chunk’s size is 5000 at most for all dimensions

	Specify chunk_size as tuple, like (5000, 3000)

	Explicitly define sizes of all chunks along all dimensions, like ((5000, 5000, 2000), (2000, 1000))

Chunks Examples

Assume we have such a tensor with the data shown below.

0 9 6 7 6 6
5 7 5 6 9 0
1 6 7 8 6 1
8 0 9 9 9 3
5 4 3 5 8 2
6 2 2 6 9 3
4 2 4 6 2 0
6 8 2 6 5 4

We will show how different chunk_size arguments will tile the tensor.

chunk_size=3:

0 9 6 7 6 6
5 7 5 6 9 0
1 6 7 8 6 1

8 0 9 9 9 3
5 4 3 5 8 2
6 2 2 6 9 3

4 2 4 6 2 0
6 8 2 6 5 4

chunk_size=2:

0 9 6 7 6 6
5 7 5 6 9 0

1 6 7 8 6 1
8 0 9 9 9 3

5 4 3 5 8 2
6 2 2 6 9 3

4 2 4 6 2 0
6 8 2 6 5 4

chunk_size=(3, 2):

0 9 6 7 6 6
5 7 5 6 9 0
1 6 7 8 6 1

8 0 9 9 9 3
5 4 3 5 8 2
6 2 2 6 9 3

4 2 4 6 2 0
6 8 2 6 5 4

chunk_size=((3, 1, 2, 2), (3, 2, 1)):

0 9 6 7 6 6
5 7 5 6 9 0
1 6 7 8 6 1

8 0 9 9 9 3

5 4 3 5 8 2
6 2 2 6 9 3

4 2 4 6 2 0
6 8 2 6 5 4

mars.tensor.tensor

	
mars.tensor.tensor(data, dtype=None, order='K', chunk_size=None, gpu=None, sparse=False)

	

mars.tensor.array

	
mars.tensor.array(x, dtype=None, copy=True, order='K', ndmin=None, chunk_size=None)

	Create a tensor.

	objectarray_like

	An array, any object exposing the array interface, an object whose
__array__ method returns an array, or any (nested) sequence.

	dtypedata-type, optional

	The desired data-type for the array. If not given, then the type will
be determined as the minimum type required to hold the objects in the
sequence. This argument can only be used to ‘upcast’ the array. For
downcasting, use the .astype(t) method.

	copybool, optional

	If true (default), then the object is copied. Otherwise, a copy will
only be made if __array__ returns a copy, if obj is a nested sequence,
or if a copy is needed to satisfy any of the other requirements
(dtype, order, etc.).

	order{‘K’, ‘A’, ‘C’, ‘F’}, optional

	Specify the memory layout of the array. If object is not an array, the
newly created array will be in C order (row major) unless ‘F’ is
specified, in which case it will be in Fortran order (column major).
If object is an array the following holds.

	order

	no copy

	copy=True

	‘K’

	unchanged

	F & C order preserved, otherwise most similar order

	‘A’

	unchanged

	F order if input is F and not C, otherwise C order

	‘C’

	C order

	C order

	‘F’

	F order

	F order

When copy=False and a copy is made for other reasons, the result is
the same as if copy=True, with some exceptions for A, see the
Notes section. The default order is ‘K’.

	ndminint, optional

	Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.

	chunk_size: int, tuple, optional

	Specifies chunk size for each dimension.

	outTensor

	An tensor object satisfying the specified requirements.

empty, empty_like, zeros, zeros_like, ones, ones_like, full, full_like

>>> import mars.tensor as mt

>>> mt.array([1, 2, 3]).execute()
array([1, 2, 3])

Upcasting:

>>> mt.array([1, 2, 3.0]).execute()
array([1., 2., 3.])

More than one dimension:

>>> mt.array([[1, 2], [3, 4]]).execute()
array([[1, 2],
 [3, 4]])

Minimum dimensions 2:

>>> mt.array([1, 2, 3], ndmin=2).execute()
array([[1, 2, 3]])

Type provided:

>>> mt.array([1, 2, 3], dtype=complex).execute()
array([1.+0.j, 2.+0.j, 3.+0.j])

Universal Functions (ufunc)

Mars tensor provides universal functions(a.k.a ufuncs) to support various elementwise operations.
Mars tensor’s ufunc supports following features of Numpy’s one:

	Broadcasting

	Output type determination

	Casting rules

Mars tensor’s ufunc currently does not support methods
like reduce, accumulate, reduceat, outer, and at.

Available ufuncs

Math operations

	mars.tensor.add

	Add arguments element-wise.

	mars.tensor.subtract

	Subtract arguments, element-wise.

	mars.tensor.multiply

	Multiply arguments element-wise.

	mars.tensor.divide

	Divide arguments element-wise.

	mars.tensor.logaddexp

	Logarithm of the sum of exponentiations of the inputs.

	mars.tensor.logaddexp2

	Logarithm of the sum of exponentiations of the inputs in base-2.

	mars.tensor.true_divide

	Returns a true division of the inputs, element-wise.

	mars.tensor.floor_divide

	Return the largest integer smaller or equal to the division of the inputs.

	mars.tensor.negative

	Numerical negative, element-wise.

	mars.tensor.power

	First tensor elements raised to powers from second tensor, element-wise.

	mars.tensor.remainder

	Return element-wise remainder of division.

	mars.tensor.mod

	Return element-wise remainder of division.

	mars.tensor.fmod

	Return the element-wise remainder of division.

	mars.tensor.absolute

	Calculate the absolute value element-wise.

	mars.tensor.rint

	Round elements of the tensor to the nearest integer.

	mars.tensor.sign

	Returns an element-wise indication of the sign of a number.

	mars.tensor.exp

	Calculate the exponential of all elements in the input tensor.

	mars.tensor.exp2

	Calculate 2**p for all p in the input tensor.

	mars.tensor.log

	Natural logarithm, element-wise.

	mars.tensor.log2

	Base-2 logarithm of x.

	mars.tensor.log10

	Return the base 10 logarithm of the input tensor, element-wise.

	mars.tensor.expm1

	Calculate exp(x) - 1 for all elements in the tensor.

	mars.tensor.log1p

	Return the natural logarithm of one plus the input tensor, element-wise.

	mars.tensor.sqrt

	Return the positive square-root of an tensor, element-wise.

	mars.tensor.square

	Return the element-wise square of the input.

	mars.tensor.reciprocal

	Return the reciprocal of the argument, element-wise.

Trigonometric functions

	mars.tensor.sin

	Trigonometric sine, element-wise.

	mars.tensor.cos

	Cosine element-wise.

	mars.tensor.tan

	Compute tangent element-wise.

	mars.tensor.arcsin

	Inverse sine, element-wise.

	mars.tensor.arccos

	Trigonometric inverse cosine, element-wise.

	mars.tensor.arctan

	Trigonometric inverse tangent, element-wise.

	mars.tensor.arctan2

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	mars.tensor.hypot

	Given the “legs” of a right triangle, return its hypotenuse.

	mars.tensor.sinh

	Hyperbolic sine, element-wise.

	mars.tensor.cosh

	Hyperbolic cosine, element-wise.

	mars.tensor.tanh

	Compute hyperbolic tangent element-wise.

	mars.tensor.arcsinh

	Inverse hyperbolic sine element-wise.

	mars.tensor.arccosh

	Inverse hyperbolic cosine, element-wise.

	mars.tensor.arctanh

	Inverse hyperbolic tangent element-wise.

	mars.tensor.deg2rad

	Convert angles from degrees to radians.

	mars.tensor.rad2deg

	Convert angles from radians to degrees.

Bit-twiddling functions

	mars.tensor.bitwise_and

	Compute the bit-wise AND of two tensors element-wise.

	mars.tensor.bitwise_or

	Compute the bit-wise OR of two tensors element-wise.

	mars.tensor.bitwise_xor

	Compute the bit-wise XOR of two arrays element-wise.

	mars.tensor.invert

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	mars.tensor.left_shift

	Shift the bits of an integer to the left.

	mars.tensor.right_shift

	Shift the bits of an integer to the right.

Comparison functions

	mars.tensor.greater

	Return the truth value of (x1 > x2) element-wise.

	mars.tensor.greater_equal

	Return the truth value of (x1 >= x2) element-wise.

	mars.tensor.less

	Return the truth value of (x1 < x2) element-wise.

	mars.tensor.less_equal

	Return the truth value of (x1 =< x2) element-wise.

	mars.tensor.not_equal

	Return (x1 != x2) element-wise.

	mars.tensor.equal

	Return (x1 == x2) element-wise.

	mars.tensor.logical_and

	Compute the truth value of x1 AND x2 element-wise.

	mars.tensor.logical_or

	Compute the truth value of x1 OR x2 element-wise.

	mars.tensor.logical_xor

	Compute the truth value of x1 XOR x2, element-wise.

	mars.tensor.logical_not

	Compute the truth value of NOT x element-wise.

	mars.tensor.maximum

	Element-wise maximum of tensor elements.

	mars.tensor.minimum

	Element-wise minimum of tensor elements.

	mars.tensor.fmax

	Element-wise maximum of array elements.

	mars.tensor.fmin

	Element-wise minimum of array elements.

Floating point values

	mars.tensor.isfinite

	Test element-wise for finiteness (not infinity or not Not a Number).

	mars.tensor.isinf

	Test element-wise for positive or negative infinity.

	mars.tensor.isnan

	Test element-wise for NaN and return result as a boolean tensor.

	mars.tensor.signbit

	Returns element-wise True where signbit is set (less than zero).

	mars.tensor.copysign

	Change the sign of x1 to that of x2, element-wise.

	mars.tensor.nextafter

	Return the next floating-point value after x1 towards x2, element-wise.

	mars.tensor.modf

	Return the fractional and integral parts of a tensor, element-wise.

	mars.tensor.ldexp

	Returns x1 * 2**x2, element-wise.

	mars.tensor.frexp

	Decompose the elements of x into mantissa and twos exponent.

	mars.tensor.fmod

	Return the element-wise remainder of division.

	mars.tensor.floor

	Return the floor of the input, element-wise.

	mars.tensor.ceil

	Return the ceiling of the input, element-wise.

	mars.tensor.trunc

	Return the truncated value of the input, element-wise.

mars.tensor.add

	
mars.tensor.add(x1, x2, out=None, where=None, **kwargs)

	Add arguments element-wise.

	x1, x2array_like

	The tensors to be added. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	addTensor or scalar

	The sum of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 + x2 in terms of tensor broadcasting.

>>> import mars.tensor as mt

>>> mt.add(1.0, 4.0).execute()
5.0
>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.add(x1, x2).execute()
array([[0., 2., 4.],
 [3., 5., 7.],
 [6., 8., 10.]])

mars.tensor.subtract

	
mars.tensor.subtract(x1, x2, out=None, where=None, **kwargs)

	Subtract arguments, element-wise.

	x1, x2array_like

	The tensors to be subtracted from each other.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The difference of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 - x2 in terms of tensor broadcasting.

>>> import mars.tensor as mt

>>> mt.subtract(1.0, 4.0).execute()
-3.0

>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.subtract(x1, x2).execute()
array([[0., 0., 0.],
 [3., 3., 3.],
 [6., 6., 6.]])

mars.tensor.multiply

	
mars.tensor.multiply(x1, x2, out=None, where=None, **kwargs)

	Multiply arguments element-wise.

	x1, x2array_like

	Input arrays to be multiplied.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The product of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 * x2 in terms of array broadcasting.

>>> import mars.tensor as mt

>>> mt.multiply(2.0, 4.0).execute()
8.0

>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.multiply(x1, x2).execute()
array([[0., 1., 4.],
 [0., 4., 10.],
 [0., 7., 16.]])

mars.tensor.divide

	
mars.tensor.divide(x1, x2, out=None, where=None, **kwargs)

	Divide arguments element-wise.

	x1array_like

	Dividend tensor.

	x2array_like

	Divisor tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	The quotient x1/x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Equivalent to x1 / x2 in terms of array-broadcasting.

Behavior on division by zero can be changed using seterr.

In Python 2, when both x1 and x2 are of an integer type, divide will behave like floor_divide.
In Python 3, it behaves like true_divide.

>>> import mars.tensor as mt

>>> mt.divide(2.0, 4.0).execute()
0.5
>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.divide(x1, x2).execute()
array([[NaN, 1. , 1.],
 [Inf, 4. , 2.5],
 [Inf, 7. , 4.]])
Note the behavior with integer types (Python 2 only):
>>> mt.divide(2, 4).execute()
0
>>> mt.divide(2, 4.).execute()
0.5
Division by zero always yields zero in integer arithmetic (again, Python 2 only),
and does not raise an exception or a warning:
>>> mt.divide(mt.array([0, 1], dtype=int), mt.array([0, 0], dtype=int)).execute()
array([0, 0])
Division by zero can, however, be caught using seterr:
>>> old_err_state = mt.seterr(divide='raise')
>>> mt.divide(1, 0).execute()
Traceback (most recent call last):
...
FloatingPointError: divide by zero encountered in divide
>>> ignored_states = mt.seterr(**old_err_state)
>>> mt.divide(1, 0).execute()
0

mars.tensor.logaddexp

	
mars.tensor.logaddexp(x1, x2, out=None, where=None, **kwargs)

	Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in
statistics where the calculated probabilities of events may be so small
as to exceed the range of normal floating point numbers. In such cases
the logarithm of the calculated probability is stored. This function
allows adding probabilities stored in such a fashion.

	x1, x2array_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	resultTensor

	Logarithm of exp(x1) + exp(x2).

logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2.

>>> import mars.tensor as mt

>>> prob1 = mt.log(1e-50)
>>> prob2 = mt.log(2.5e-50)
>>> prob12 = mt.logaddexp(prob1, prob2)
>>> prob12.execute()
-113.87649168120691
>>> mt.exp(prob12).execute()
3.5000000000000057e-50

mars.tensor.logaddexp2

	
mars.tensor.logaddexp2(x1, x2, out=None, where=None, **kwargs)

	Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine
learning when the calculated probabilities of events may be so small as
to exceed the range of normal floating point numbers. In such cases
the base-2 logarithm of the calculated probability can be used instead.
This function allows adding probabilities stored in such a fashion.

	x1, x2array_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	resultTensor

	Base-2 logarithm of 2**x1 + 2**x2.

logaddexp: Logarithm of the sum of exponentiations of the inputs.

>>> import mars.tensor as mt

>>> prob1 = mt.log2(1e-50)
>>> prob2 = mt.log2(2.5e-50)
>>> prob12 = mt.logaddexp2(prob1, prob2)
>>> prob1.execute(), prob2.execute(), prob12.execute()
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> (2**prob12).execute()
3.4999999999999914e-50

mars.tensor.true_divide

	
mars.tensor.true_divide(x1, x2, out=None, where=None, **kwargs)

	Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true
division. True division adjusts the output type to present the best
answer, regardless of input types.

	x1array_like

	Dividend tensor.

	x2array_like

	Divisor tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Result is scalar if both inputs are scalar, tensor otherwise.

The floor division operator // was added in Python 2.2 making
// and / equivalent operators. The default floor division
operation of / can be replaced by true division with from
__future__ import division.

In Python 3.0, // is the floor division operator and / the
true division operator. The true_divide(x1, x2) function is
equivalent to true division in Python.

>>> import mars.tensor as mt

>>> x = mt.arange(5)
>>> mt.true_divide(x, 4).execute()
array([0. , 0.25, 0.5 , 0.75, 1.])

for python 2
>>> (x/4).execute()
array([0, 0, 0, 0, 1])
>>> (x//4).execute()
array([0, 0, 0, 0, 1])

mars.tensor.floor_divide

	
mars.tensor.floor_divide(x1, x2, out=None, where=None, **kwargs)

	Return the largest integer smaller or equal to the division of the inputs.
It is equivalent to the Python // operator and pairs with the
Python % (remainder), function so that b = a % b + b * (a // b)
up to roundoff.

	x1array_like

	Numerator.

	x2array_like

	Denominator.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	y = floor(x1/x2)

remainder : Remainder complementary to floor_divide.
divmod : Simultaneous floor division and remainder.
divide : Standard division.
floor : Round a number to the nearest integer toward minus infinity.
ceil : Round a number to the nearest integer toward infinity.

>>> import mars.tensor as mt

>>> mt.floor_divide(7,3).execute()
2
>>> mt.floor_divide([1., 2., 3., 4.], 2.5).execute()
array([0., 0., 1., 1.])

mars.tensor.negative

	
mars.tensor.negative(x, out=None, where=None, **kwargs)

	Numerical negative, element-wise.

	xarray_like or scalar

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	yTensor or scalar

	Returned array or scalar: y = -x.

>>> import mars.tensor as mt

>>> mt.negative([1.,-1.]).execute()
array([-1., 1.])

mars.tensor.power

	
mars.tensor.power(x1, x2, out=None, where=None, **kwargs)

	First tensor elements raised to powers from second tensor, element-wise.

Raise each base in x1 to the positionally-corresponding power in
x2. x1 and x2 must be broadcastable to the same shape. Note that an
integer type raised to a negative integer power will raise a ValueError.

	x1array_like

	The bases.

	x2array_like

	The exponents.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The bases in x1 raised to the exponents in x2.

float_power : power function that promotes integers to float

Cube each element in a list.

>>> import mars.tensor as mt

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> mt.power(x1, 3).execute()
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> mt.power(x1, x2).execute()
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = mt.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2.execute()
array([[1, 2, 3, 3, 2, 1],
 [1, 2, 3, 3, 2, 1]])
>>> mt.power(x1, x2).execute()
array([[0, 1, 8, 27, 16, 5],
 [0, 1, 8, 27, 16, 5]])

mars.tensor.remainder

	
mars.tensor.remainder(x1, x2, out=None, where=None, **kwargs)

	Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is
equivalent to the Python modulus operator``x1 % x2`` and has the same sign
as the divisor x2. The MATLAB function equivalent to np.remainder
is mod.

Warning

This should not be confused with:

	Python 3.7’s math.remainder and C’s remainder, which
computes the IEEE remainder, which are the complement to
round(x1 / x2).

	The MATLAB rem function and or the C % operator which is the
complement to int(x1 / x2).

	x1array_like

	Dividend array.

	x2array_like

	Divisor array.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The element-wise remainder of the quotient floor_divide(x1, x2).
Returns a scalar if both x1 and x2 are scalars.

floor_divide : Equivalent of Python // operator.
divmod : Simultaneous floor division and remainder.
fmod : Equivalent of the MATLAB rem function.
divide, floor

Returns 0 when x2 is 0 and both x1 and x2 are (tensors of)
integers.

>>> import mars.tensor as mt

>>> mt.remainder([4, 7], [2, 3]).execute()
array([0, 1])
>>> mt.remainder(mt.arange(7), 5).execute()
array([0, 1, 2, 3, 4, 0, 1])

mars.tensor.mod

	
mars.tensor.mod(x1, x2, out=None, where=None, **kwargs)

	Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is
equivalent to the Python modulus operator``x1 % x2`` and has the same sign
as the divisor x2. The MATLAB function equivalent to np.remainder
is mod.

Warning

This should not be confused with:

	Python 3.7’s math.remainder and C’s remainder, which
computes the IEEE remainder, which are the complement to
round(x1 / x2).

	The MATLAB rem function and or the C % operator which is the
complement to int(x1 / x2).

	x1array_like

	Dividend array.

	x2array_like

	Divisor array.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The element-wise remainder of the quotient floor_divide(x1, x2).
Returns a scalar if both x1 and x2 are scalars.

floor_divide : Equivalent of Python // operator.
divmod : Simultaneous floor division and remainder.
fmod : Equivalent of the MATLAB rem function.
divide, floor

Returns 0 when x2 is 0 and both x1 and x2 are (tensors of)
integers.

>>> import mars.tensor as mt

>>> mt.remainder([4, 7], [2, 3]).execute()
array([0, 1])
>>> mt.remainder(mt.arange(7), 5).execute()
array([0, 1, 2, 3, 4, 0, 1])

mars.tensor.fmod

	
mars.tensor.fmod(x1, x2, out=None, where=None, **kwargs)

	Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend x1. It is equivalent to
the Matlab(TM) rem function and should not be confused with the
Python modulus operator x1 % x2.

	x1array_like

	Dividend.

	x2array_like

	Divisor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	yTensor_like

	The remainder of the division of x1 by x2.

remainder : Equivalent to the Python % operator.
divide

The result of the modulo operation for negative dividend and divisors
is bound by conventions. For fmod, the sign of result is the sign of
the dividend, while for remainder the sign of the result is the sign
of the divisor. The fmod function is equivalent to the Matlab(TM)
rem function.

>>> import mars.tensor as mt

>>> mt.fmod([-3, -2, -1, 1, 2, 3], 2).execute()
array([-1, 0, -1, 1, 0, 1])
>>> mt.remainder([-3, -2, -1, 1, 2, 3], 2).execute()
array([1, 0, 1, 1, 0, 1])

>>> mt.fmod([5, 3], [2, 2.]).execute()
array([1., 1.])
>>> a = mt.arange(-3, 3).reshape(3, 2)
>>> a.execute()
array([[-3, -2],
 [-1, 0],
 [1, 2]])
>>> mt.fmod(a, [2,2]).execute()
array([[-1, 0],
 [-1, 0],
 [1, 0]])

mars.tensor.absolute

	
mars.tensor.absolute(x, out=None, where=None, **kwargs)

	Calculate the absolute value element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	absoluteTensor

	An tensor containing the absolute value of
each element in x. For complex input, a + ib, the
absolute value is \(\sqrt{ a^2 + b^2 }\).

>>> import mars.tensor as mt

>>> x = mt.array([-1.2, 1.2])
>>> mt.absolute(x).execute()
array([1.2, 1.2])
>>> mt.absolute(1.2 + 1j).execute()
1.5620499351813308

mars.tensor.rint

	
mars.tensor.rint(x, out=None, where=None, **kwargs)

	Round elements of the tensor to the nearest integer.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor or scalar

	Output array is same shape and type as x.

ceil, floor, trunc

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.rint(a).execute()
array([-2., -2., -0., 0., 2., 2., 2.])

mars.tensor.sign

	
mars.tensor.sign(x, out=None, where=None, **kwargs)

	Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan
is returned for nan inputs.

For complex inputs, the sign function returns
sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.

complex(nan, 0) is returned for complex nan inputs.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The sign of x.

There is more than one definition of sign in common use for complex
numbers. The definition used here is equivalent to \(x/\sqrt{x*x}\)
which is different from a common alternative, \(x/|x|\).

>>> import mars.tensor as mt

>>> mt.sign([-5., 4.5]).execute()
array([-1., 1.])
>>> mt.sign(0).execute()
0
>>> mt.sign(5-2j).execute()
(1+0j)

mars.tensor.exp

	
mars.tensor.exp(x, out=None, where=None, **kwargs)

	Calculate the exponential of all elements in the input tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	outTensor

	Output tensor, element-wise exponential of x.

expm1 : Calculate exp(x) - 1 for all elements in the array.
exp2 : Calculate 2**x for all elements in the array.

The irrational number e is also known as Euler’s number. It is
approximately 2.718281, and is the base of the natural logarithm,
ln (this means that, if \(x = \ln y = \log_e y\),
then \(e^x = y\). For real input, exp(x) is always positive.

For complex arguments, x = a + ib, we can write
\(e^x = e^a e^{ib}\). The first term, \(e^a\), is already
known (it is the real argument, described above). The second term,
\(e^{ib}\), is \(\cos b + i \sin b\), a function with
magnitude 1 and a periodic phase.

	1

	Wikipedia, “Exponential function”,
http://en.wikipedia.org/wiki/Exponential_function

	2

	M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import mars.tensor as mt
>>> import matplotlib.pyplot as plt

>>> x = mt.linspace(-2*mt.pi, 2*mt.pi, 100)
>>> xx = x + 1j * x[:, mt.newaxis] # a + ib over complex plane
>>> out = mt.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(mt.abs(out).execute(),
... extent=[-2*mt.pi, 2*mt.pi, -2*mt.pi, 2*mt.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(mt.angle(out).execute(),
... extent=[-2*mt.pi, 2*mt.pi, -2*mt.pi, 2*mt.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

mars.tensor.exp2

	
mars.tensor.exp2(x, out=None, where=None, **kwargs)

	Calculate 2**p for all p in the input tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise 2 to the power x.

power

>>> import mars.tensor as mt

>>> mt.exp2([2, 3]).execute()
array([4., 8.])

mars.tensor.log

	
mars.tensor.log(x, out=None, where=None, **kwargs)

	Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function,
so that log(exp(x)) = x. The natural logarithm is logarithm in base
e.

	xarray_like

	Input value.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The natural logarithm of x, element-wise.

log10, log2, log1p

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log([1, mt.e, mt.e**2, 0]).execute()
array([0., 1., 2., -Inf])

mars.tensor.log2

	
mars.tensor.log2(x, out=None, where=None, **kwargs)

	Base-2 logarithm of x.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Base-2 logarithm of x.

log, log10, log1p

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 2**z = x. The convention is to return the z
whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log2
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

>>> import mars.tensor as mt

>>> x = mt.array([0, 1, 2, 2**4])
>>> mt.log2(x).execute()
array([-Inf, 0., 1., 4.])

>>> xi = mt.array([0+1.j, 1, 2+0.j, 4.j])
>>> mt.log2(xi).execute()
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

mars.tensor.log10

	
mars.tensor.log10(x, out=None, where=None, **kwargs)

	Return the base 10 logarithm of the input tensor, element-wise.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The logarithm to the base 10 of x, element-wise. NaNs are
returned where x is negative.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 10**z = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it.
log10 handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log10([1e-15, -3.]).execute()
array([-15., NaN])

mars.tensor.expm1

	
mars.tensor.expm1(x, out=None, where=None, **kwargs)

	Calculate exp(x) - 1 for all elements in the tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise exponential minus one: out = exp(x) - 1.

log1p : log(1 + x), the inverse of expm1.

This function provides greater precision than exp(x) - 1
for small values of x.

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to
about 32 significant digits. This example shows the superiority of
expm1 in this case.

>>> import mars.tensor as mt

>>> mt.expm1(1e-10).execute()
1.00000000005e-10
>>> (mt.exp(1e-10) - 1).execute()
1.000000082740371e-10

mars.tensor.log1p

	
mars.tensor.log1p(x, out=None, where=None, **kwargs)

	Return the natural logarithm of one plus the input tensor, element-wise.

Calculates log(1 + x).

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Natural logarithm of 1 + x, element-wise.

expm1 : exp(x) - 1, the inverse of log1p.

For real-valued input, log1p is accurate also for x so small
that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = 1 + x. The convention is to return
the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that
has a branch cut [-inf, -1] and is continuous from above on it.
log1p handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log1p(1e-99).execute()
1e-99
>>> mt.log(1 + 1e-99).execute()
0.0

mars.tensor.sqrt

	
mars.tensor.sqrt(x, out=None, where=None, **kwargs)

	Return the positive square-root of an tensor, element-wise.

	xarray_like

	The values whose square-roots are required.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	An tensor of the same shape as x, containing the positive
square-root of each element in x. If any element in x is
complex, a complex tensor is returned (and the square-roots of
negative reals are calculated). If all of the elements in x
are real, so is y, with negative elements returning nan.
If out was provided, y is a reference to it.

sqrt has–consistent with common convention–as its branch cut the
real “interval” [-inf, 0), and is continuous from above on it.
A branch cut is a curve in the complex plane across which a given
complex function fails to be continuous.

>>> import mars.tensor as mt

>>> mt.sqrt([1,4,9]).execute()
array([1., 2., 3.])

>>> mt.sqrt([4, -1, -3+4J]).execute()
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> mt.sqrt([4, -1, mt.inf]).execute()
array([2., NaN, Inf])

mars.tensor.square

	
mars.tensor.square(x, out=None, where=None, **kwargs)

	Return the element-wise square of the input.

	xarray_like

	Input data.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise x*x, of the same shape and dtype as x.
Returns scalar if x is a scalar.

sqrt
power

>>> import mars.tensor as mt

>>> mt.square([-1j, 1]).execute()
array([-1.-0.j, 1.+0.j])

mars.tensor.reciprocal

	
mars.tensor.reciprocal(x, out=None, where=None, **kwargs)

	Return the reciprocal of the argument, element-wise.

Calculates 1/x.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Return tensor.

Note

This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is
always zero because of the way Python handles integer division. For
integer zero the result is an overflow.

>>> import mars.tensor as mt

>>> mt.reciprocal(2.).execute()
0.5
>>> mt.reciprocal([1, 2., 3.33]).execute()
array([1. , 0.5 , 0.3003003])

mars.tensor.sin

	
mars.tensor.sin(x, out=None, where=None, **kwargs)

	Trigonometric sine, element-wise.

	xarray_like

	Angle, in radians (\(2 \pi\) rad equals 360 degrees).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yarray_like

	The sine of each element of x.

arcsin, sinh, cos

The sine is one of the fundamental functions of trigonometry (the
mathematical study of triangles). Consider a circle of radius 1
centered on the origin. A ray comes in from the \(+x\) axis, makes
an angle at the origin (measured counter-clockwise from that axis), and
departs from the origin. The \(y\) coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It
ranges from -1 for \(x=3\pi / 2\) to +1 for \(\pi / 2.\) The
function has zeroes where the angle is a multiple of \(\pi\).
Sines of angles between \(\pi\) and \(2\pi\) are negative.
The numerous properties of the sine and related functions are included
in any standard trigonometry text.

Print sine of one angle:

>>> import mars.tensor as mt

>>> mt.sin(mt.pi/2.).execute()
1.0

Print sines of an array of angles given in degrees:

>>> mt.sin(mt.array((0., 30., 45., 60., 90.)) * mt.pi / 180.).execute()
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = mt.linspace(-mt.pi, mt.pi, 201)
>>> plt.plot(x.execute(), mt.sin(x).execute())
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.cos

	
mars.tensor.cos(x, out=None, where=None, **kwargs)

	Cosine element-wise.

	xarray_like

	Input tensor in radians.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding cosine values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

>>> import mars.tensor as mt

>>> mt.cos(mt.array([0, mt.pi/2, mt.pi])).execute()
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out1 = mt.empty(1)
>>> out2 = mt.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.cos(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.tan

	
mars.tensor.tan(x, out=None, where=None, **kwargs)

	Compute tangent element-wise.

Equivalent to mt.sin(x)/mt.cos(x) element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding tangent values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

>>> from math import pi
>>> import mars.tensor as mt
>>> mt.tan(mt.array([-pi,pi/2,pi])).execute()
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.cos(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

mars.tensor.arcsin

	
mars.tensor.arcsin(x, out=None, where=None, **kwargs)

	Inverse sine, element-wise.

	xarray_like

	y-coordinate on the unit circle.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	The inverse sine of each element in x, in radians and in the
closed interval [-pi/2, pi/2]. If x is a scalar, a scalar
is returned, otherwise a tensor.

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

arcsin is a multivalued function: for each x there are infinitely
many numbers z such that \(sin(z) = x\). The convention is to
return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that
has, by convention, the branch cuts [-inf, -1] and [1, inf] and is
continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/

>>> import mars.tensor as mt
>>> mt.arcsin(1).execute() # pi/2
1.5707963267948966
>>> mt.arcsin(-1).execute() # -pi/2
-1.5707963267948966
>>> mt.arcsin(0).execute()
0.0

mars.tensor.arccos

	
mars.tensor.arccos(x, out=None, where=None, **kwargs)

	Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

	xarray_like

	x-coordinate on the unit circle.
For real arguments, the domain is [-1, 1].

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	The angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi]. If x is a scalar then a
scalar is returned, otherwise an array of the same shape as x
is returned.

cos, arctan, arcsin

arccos is a multivalued function: for each x there are infinitely
many numbers z such that cos(z) = x. The convention is to return
the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that
has branch cuts [-inf, -1] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

We expect the arccos of 1 to be 0, and of -1 to be pi:
>>> import mars.tensor as mt

>>> mt.arccos([1, -1]).execute()
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-1, 1, num=100)
>>> plt.plot(x.execute(), mt.arccos(x).execute())
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.arctan

	
mars.tensor.arctan(x, out=None, where=None, **kwargs)

	Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

x : array_like
out : Tensor, None, or tuple of Tensor and None, optional

A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Out has the same shape as x. Its real part is in
[-pi/2, pi/2] (arctan(+/-inf) returns +/-pi/2).
It is a scalar if x is a scalar.

	arctan2The “four quadrant” arctan of the angle formed by (x, y)

	and the positive x-axis.

angle : Argument of complex values.

arctan is a multi-valued function: for each x there are infinitely
many numbers z such that tan(z) = x. The convention is to return
the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that
has [1j, infj] and [-1j, -infj] as branch cuts, and is continuous
from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/

We expect the arctan of 0 to be 0, and of 1 to be pi/4:
>>> import mars.tensor as mt

>>> mt.arctan([0, 1]).execute()
array([0. , 0.78539816])

>>> mt.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-10, 10)
>>> plt.plot(x.execute(), mt.arctan(x).execute())
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.arctan2

	
mars.tensor.arctan2(x1, x2, out=None, where=None, **kwargs)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is
the signed angle in radians between the ray ending at the origin and
passing through the point (1,0), and the ray ending at the origin and
passing through the point (x2, x1). (Note the role reversal: the
“y-coordinate” is the first function parameter, the “x-coordinate”
is the second.) By IEEE convention, this function is defined for
x2 = +/-0 and for either or both of x1 and x2 = +/-inf (see
Notes for specific values).

This function is not defined for complex-valued arguments; for the
so-called argument of complex values, use angle.

	x1array_like, real-valued

	y-coordinates.

	x2array_like, real-valued

	x-coordinates. x2 must be broadcastable to match the shape of
x1 or vice versa.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	Array of angles in radians, in the range [-pi, pi].

arctan, tan, angle

arctan2 is identical to the atan2 function of the underlying
C library. The following special values are defined in the C
standard: 1

	x1

	x2

	arctan2(x1,x2)

	+/- 0

	+0

	+/- 0

	+/- 0

	-0

	+/- pi

	> 0

	+/-inf

	+0 / +pi

	< 0

	+/-inf

	-0 / -pi

	+/-inf

	+inf

	+/- (pi/4)

	+/-inf

	-inf

	+/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf
and -inf.

	1

	ISO/IEC standard 9899:1999, “Programming language C.”

Consider four points in different quadrants:
>>> import mars.tensor as mt

>>> x = mt.array([-1, +1, +1, -1])
>>> y = mt.array([-1, -1, +1, +1])
>>> (mt.arctan2(y, x) * 180 / mt.pi).execute()
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0
and at several other special points, obtaining values in
the range [-pi, pi]:

>>> mt.arctan2([1., -1.], [0., 0.]).execute()
array([1.57079633, -1.57079633])
>>> mt.arctan2([0., 0., mt.inf], [+0., -0., mt.inf]).execute()
array([0. , 3.14159265, 0.78539816])

mars.tensor.hypot

	
mars.tensor.hypot(x1, x2, out=None, where=None, **kwargs)

	Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or
x2 is scalar_like (i.e., unambiguously cast-able to a scalar type),
it is broadcast for use with each element of the other argument.
(See Examples)

	x1, x2array_like

	Leg of the triangle(s).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	zTensor

	The hypotenuse of the triangle(s).

>>> import mars.tensor as mt

>>> mt.hypot(3*mt.ones((3, 3)), 4*mt.ones((3, 3))).execute()
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> mt.hypot(3*mt.ones((3, 3)), [4]).execute()
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

mars.tensor.sinh

	
mars.tensor.sinh(x, out=None, where=None, **kwargs)

	Hyperbolic sine, element-wise.

Equivalent to 1/2 * (mt.exp(x) - mt.exp(-x)) or
-1j * mt.sin(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding hyperbolic sine values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.

>>> import mars.tensor as mt

>>> mt.sinh(0).execute()
0.0
>>> mt.sinh(mt.pi*1j/2).execute()
1j
>>> mt.sinh(mt.pi*1j).execute() # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.sinh(mt.zeros((3,3)),mt.zeros((2,2))).execute()
Traceback (most recent call last):
...
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.cosh

	
mars.tensor.cosh(x, out=None, where=None, **kwargs)

	Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (mt.exp(x) + mt.exp(-x)) and mt.cos(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Output array of same shape as x.

>>> import mars.tensor as mt

>>> mt.cosh(0).execute()
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-4, 4, 1000)
>>> plt.plot(x.execute(), mt.cosh(x).execute())
>>> plt.show()

mars.tensor.tanh

	
mars.tensor.tanh(x, out=None, where=None, **kwargs)

	Compute hyperbolic tangent element-wise.

Equivalent to mt.sinh(x)/np.cosh(x) or -1j * mt.tan(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding hyperbolic tangent values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

	1

	M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Hyperbolic function”,
http://en.wikipedia.org/wiki/Hyperbolic_function

>>> import mars.tensor as mt

>>> mt.tanh((0, mt.pi*1j, mt.pi*1j/2)).execute()
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.tanh(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
...
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.arcsinh

	
mars.tensor.arcsinh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic sine element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Tensor of of the same shape as x.

arcsinh is a multivalued function: for each x there are infinitely
many numbers z such that sinh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that
has branch cuts [1j, infj] and [-1j, -infj] and is continuous from
the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arcsinh

>>> import mars.tensor as mt

>>> mt.arcsinh(mt.array([mt.e, 10.0])).execute()
array([1.72538256, 2.99822295])

mars.tensor.arccosh

	
mars.tensor.arccosh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic cosine, element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	arccoshTensor

	Array of the same shape as x.

cosh, arcsinh, sinh, arctanh, tanh

arccosh is a multivalued function: for each x there are infinitely
many numbers z such that cosh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi] and the real part in
[0, inf].

For real-valued input data types, arccosh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that
has a branch cut [-inf, 1] and is continuous from above on it.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arccosh

>>> import mars.tensor as mt

>>> mt.arccosh([mt.e, 10.0]).execute()
array([1.65745445, 2.99322285])
>>> mt.arccosh(1).execute()
0.0

mars.tensor.arctanh

	
mars.tensor.arctanh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic tangent element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Array of the same shape as x.

arctanh is a multivalued function: for each x there are infinitely
many numbers z such that tanh(z) = x. The convention is to return
the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function
that has branch cuts [-1, -inf] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arctanh

>>> import mars.tensor as mt

>>> mt.arctanh([0, -0.5]).execute()
array([0. , -0.54930614])

mars.tensor.deg2rad

	
mars.tensor.deg2rad(x, out=None, where=None, **kwargs)

	Convert angles from degrees to radians.

	xarray_like

	Angles in degrees.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding angle in radians.

rad2deg : Convert angles from radians to degrees.
unwrap : Remove large jumps in angle by wrapping.

deg2rad(x) is x * pi / 180.

>>> import mars.tensor as mt

>>> mt.deg2rad(180).execute()
3.1415926535897931

mars.tensor.rad2deg

	
mars.tensor.rad2deg(x, out=None, where=None, **kwargs)

	Convert angles from radians to degrees.

	xarray_like

	Angle in radians.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding angle in degrees.

deg2rad : Convert angles from degrees to radians.

rad2deg(x) is 180 * x / pi.

>>> import mars.tensor as mt

>>> mt.rad2deg(mt.pi/2).execute()
90.0

mars.tensor.bitwise_and

	
mars.tensor.bitwise_and(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise AND of two tensors element-wise.

Computes the bit-wise AND of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator &.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_and
bitwise_or
bitwise_xor

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise AND of 13 and 17 is
therefore 000000001, or 1:

>>> import mars.tensor as mt

>>> mt.bitwise_and(13, 17).execute()
1

>>> mt.bitwise_and(14, 13).execute()
12
>>> mt.bitwise_and([14,3], 13).execute()
array([12, 1])

>>> mt.bitwise_and([11,7], [4,25]).execute()
array([0, 1])
>>> mt.bitwise_and(mt.array([2,5,255]), mt.array([3,14,16])).execute()
array([2, 4, 16])
>>> mt.bitwise_and([True, True], [False, True]).execute()
array([False, True])

mars.tensor.bitwise_or

	
mars.tensor.bitwise_or(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise OR of two tensors element-wise.

Computes the bit-wise OR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator |.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_or
bitwise_and
bitwise_xor
binary_repr :

Return the binary representation of the input number as a string.

The number 13 has the binaray representation 00001101. Likewise,
16 is represented by 00010000. The bit-wise OR of 13 and 16 is
then 000111011, or 29:

>>> import mars.tensor as mt

>>> mt.bitwise_or(13, 16).execute()
29

>>> mt.bitwise_or(32, 2).execute()
34
>>> mt.bitwise_or([33, 4], 1).execute()
array([33, 5])
>>> mt.bitwise_or([33, 4], [1, 2]).execute()
array([33, 6])

>>> mt.bitwise_or(mt.array([2, 5, 255]), mt.array([4, 4, 4])).execute()
array([6, 5, 255])
>>> (mt.array([2, 5, 255]) | mt.array([4, 4, 4])).execute()
array([6, 5, 255])
>>> mt.bitwise_or(mt.array([2, 5, 255, 2147483647], dtype=mt.int32),
... mt.array([4, 4, 4, 2147483647], dtype=mt.int32)).execute()
array([6, 5, 255, 2147483647])
>>> mt.bitwise_or([True, True], [False, True]).execute()
array([True, True])

mars.tensor.bitwise_xor

	
mars.tensor.bitwise_xor(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ^.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_xor
bitwise_and
bitwise_or
binary_repr :

Return the binary representation of the input number as a string.

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise XOR of 13 and 17 is
therefore 00011100, or 28:

>>> import mars.tensor as mt

>>> mt.bitwise_xor(13, 17).execute()
28

>>> mt.bitwise_xor(31, 5).execute()
26
>>> mt.bitwise_xor([31,3], 5).execute()
array([26, 6])

>>> mt.bitwise_xor([31,3], [5,6]).execute()
array([26, 5])
>>> mt.bitwise_xor([True, True], [False, True]).execute()
array([True, False])

mars.tensor.invert

	
mars.tensor.invert(x, out=None, where=None, **kwargs)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of
the integers in the input tensors. This ufunc implements the C/Python
operator ~.

For signed integer inputs, the two’s complement is returned. In a
two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers 1. A N-bit
two’s-complement system can represent every integer in the range
\(-2^{N-1}\) to \(+2^{N-1}-1\).

	xarray_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

bitwise_and, bitwise_or, bitwise_xor
logical_not

bitwise_not is an alias for invert:

>>> import mars.tensor as mt

>>> mt.bitwise_not is mt.invert
True

	1

	Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement [http://en.wikipedia.org/wiki/Two's_complement]

We’ve seen that 13 is represented by 00001101.
The invert or bit-wise NOT of 13 is then:

>>> mt.invert(mt.array([13], dtype=mt.uint8)).execute()
array([242], dtype=uint8)

The result depends on the bit-width:

>>> mt.invert(mt.array([13], dtype=mt.uint16)).execute()
array([65522], dtype=uint16)

When using signed integer types the result is the two’s complement of
the result for the unsigned type:

>>> mt.invert(mt.array([13], dtype=mt.int8)).execute()
array([-14], dtype=int8)

Booleans are accepted as well:

>>> mt.invert(mt.array([True, False])).execute()
array([False, True])

mars.tensor.left_shift

	
mars.tensor.left_shift(x1, x2, out=None, where=None, **kwargs)

	Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x1 by 2**x2.

	x1array_like of integer type

	Input values.

	x2array_like of integer type

	Number of zeros to append to x1. Has to be non-negative.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outtensor of integer type

	Return x1 with bits shifted x2 times to the left.

right_shift : Shift the bits of an integer to the right.

>>> import mars.tensor as mt

>>> mt.left_shift(5, 2).execute()
20

>>> mt.left_shift(5, [1,2,3]).execute()
array([10, 20, 40])

mars.tensor.right_shift

	
mars.tensor.right_shift(x1, x2, out=None, where=None, **kwargs)

	Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal
representation of numbers is in binary format, this operation is
equivalent to dividing x1 by 2**x2.

	x1array_like, int

	Input values.

	x2array_like, int

	Number of bits to remove at the right of x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor, int

	Return x1 with bits shifted x2 times to the right.

left_shift : Shift the bits of an integer to the left.

>>> import mars.tensor as mt
>>> mt.right_shift(10, 1).execute()
5

>>> mt.right_shift(10, [1,2,3]).execute()
array([5, 2, 1])

mars.tensor.greater

	
mars.tensor.greater(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 > x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater_equal, less, less_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.greater([4,2],[2,2]).execute()
array([True, False])

If the inputs are ndarrays, then np.greater is equivalent to ‘>’.

>>> a = mt.array([4,2])
>>> b = mt.array([2,2])
>>> (a > b).execute()
array([True, False])

mars.tensor.greater_equal

	
mars.tensor.greater_equal(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 >= x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less, less_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.greater_equal([4, 2, 1], [2, 2, 2]).execute()
array([True, True, False])

mars.tensor.less

	
mars.tensor.less(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 < x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less_equal, greater_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.less([1, 2], [2, 2]).execute()
array([True, False])

mars.tensor.less_equal

	
mars.tensor.less_equal(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 =< x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less, greater_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.less_equal([4, 2, 1], [2, 2, 2]).execute()
array([False, True, True])

mars.tensor.not_equal

	
mars.tensor.not_equal(x1, x2, out=None, where=None, **kwargs)

	Return (x1 != x2) element-wise.

	x1, x2array_like

	Input tensors.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	not_equaltensor bool, scalar bool

	For each element in x1, x2, return True if x1 is not equal
to x2 and False otherwise.

equal, greater, greater_equal, less, less_equal

>>> import mars.tensor as mt

>>> mt.not_equal([1.,2.], [1., 3.]).execute()
array([False, True])
>>> mt.not_equal([1, 2], [[1, 3],[1, 4]]).execute()
array([[False, True],
 [False, True]])

mars.tensor.equal

	
mars.tensor.equal(x1, x2, out=None, where=None, **kwargs)

	Return (x1 == x2) element-wise.

	x1, x2array_like

	Input tensors of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	outTensor or bool

	Output tensor of bools, or a single bool if x1 and x2 are scalars.

not_equal, greater_equal, less_equal, greater, less

>>> import mars.tensor as mt

>>> mt.equal([0, 1, 3], mt.arange(3)).execute()
array([True, True, False])

What is compared are values, not types. So an int (1) and a tensor of
length one can evaluate as True:

>>> mt.equal(1, mt.ones(1))
array([True])

mars.tensor.logical_and

	
mars.tensor.logical_and(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 AND x2 element-wise.

	x1, x2array_like

	Input tensors. x1 and x2 must be of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	Boolean result with the same shape as x1 and x2 of the logical
AND operation on corresponding elements of x1 and x2.

logical_or, logical_not, logical_xor
bitwise_and

>>> import mars.tensor as mt

>>> mt.logical_and(True, False).execute()
False
>>> mt.logical_and([True, False], [False, False]).execute()
array([False, False])

>>> x = mt.arange(5)
>>> mt.logical_and(x>1, x<4).execute()
array([False, False, True, True, False])

mars.tensor.logical_or

	
mars.tensor.logical_or(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 OR x2 element-wise.

	x1, x2array_like

	Logical OR is applied to the elements of x1 and x2.
They have to be of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	Boolean result with the same shape as x1 and x2 of the logical
OR operation on elements of x1 and x2.

logical_and, logical_not, logical_xor
bitwise_or

>>> import mars.tensor as mt

>>> mt.logical_or(True, False).execute()
True
>>> mt.logical_or([True, False], [False, False]).execute()
array([True, False])

>>> x = mt.arange(5)
>>> mt.logical_or(x < 1, x > 3).execute()
array([True, False, False, False, True])

mars.tensor.logical_xor

	
mars.tensor.logical_xor(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 XOR x2, element-wise.

	x1, x2array_like

	Logical XOR is applied to the elements of x1 and x2. They must
be broadcastable to the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool or Tensor of bool

	Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by whether or not
broadcasting of one or both arrays was required.

logical_and, logical_or, logical_not, bitwise_xor

>>> import mars.tensor as mt

>>> mt.logical_xor(True, False).execute()
True
>>> mt.logical_xor([True, True, False, False], [True, False, True, False]).execute()
array([False, True, True, False])

>>> x = mt.arange(5)
>>> mt.logical_xor(x < 1, x > 3).execute()
array([True, False, False, False, True])

Simple example showing support of broadcasting

>>> mt.logical_xor(0, mt.eye(2)).execute()
array([[True, False],
 [False, True]])

mars.tensor.logical_not

	
mars.tensor.logical_not(x, out=None, where=None, **kwargs)

	Compute the truth value of NOT x element-wise.

	xarray_like

	Logical NOT is applied to the elements of x.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool or Tensor of bool

	Boolean result with the same shape as x of the NOT operation
on elements of x.

logical_and, logical_or, logical_xor

>>> import mars.tensor as mt

>>> mt.logical_not(3).execute()
False
>>> mt.logical_not([True, False, 0, 1]).execute()
array([False, True, True, False])

>>> x = mt.arange(5)
>>> mt.logical_not(x<3).execute()
array([False, False, False, True, True])

mars.tensor.maximum

	
mars.tensor.maximum(x1, x2, out=None, where=None, **kwargs)

	Element-wise maximum of tensor elements.

Compare two tensors and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yndarray or scalar

	The maximum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	minimum :

	Element-wise minimum of two tensors, propagates NaNs.

	fmax :

	Element-wise maximum of two tensors, ignores NaNs.

	amax :

	The maximum value of a tensor along a given axis, propagates NaNs.

	nanmax :

	The maximum value of a tensor along a given axis, ignores NaNs.

fmin, amin, nanmin

The maximum is equivalent to mt.where(x1 >= x2, x1, x2) when
neither x1 nor x2 are nans, but it is faster and does proper
broadcasting.

>>> import mars.tensor as mt

>>> mt.maximum([2, 3, 4], [1, 5, 2]).execute()
array([2, 5, 4])

>>> mt.maximum(mt.eye(2), [0.5, 2]).execute() # broadcasting
array([[1. , 2.],
 [0.5, 2.]])

>>> mt.maximum([mt.nan, 0, mt.nan], [0, mt.nan, mt.nan]).execute()
array([NaN, NaN, NaN])
>>> mt.maximum(mt.Inf, 1).execute()
inf

mars.tensor.minimum

	
mars.tensor.minimum(x1, x2, out=None, where=None, **kwargs)

	Element-wise minimum of tensor elements.

Compare two tensors and returns a new tensor containing the element-wise
minima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	maximum :

	Element-wise maximum of two tensors, propagates NaNs.

	fmin :

	Element-wise minimum of two tensors, ignores NaNs.

	amin :

	The minimum value of a tensor along a given axis, propagates NaNs.

	nanmin :

	The minimum value of a tenosr along a given axis, ignores NaNs.

fmax, amax, nanmax

The minimum is equivalent to mt.where(x1 <= x2, x1, x2) when
neither x1 nor x2 are NaNs, but it is faster and does proper
broadcasting.

>>> import mars.tensor as mt

>>> mt.minimum([2, 3, 4], [1, 5, 2]).execute()
array([1, 3, 2])

>>> mt.minimum(mt.eye(2), [0.5, 2]).execute() # broadcasting
array([[0.5, 0.],
 [0. , 1.]])

>>> mt.minimum([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([NaN, NaN, NaN])
>>> mt.minimum(-mt.Inf, 1).execute()
-inf

mars.tensor.fmax

	
mars.tensor.fmax(x1, x2, out=None, where=None, **kwargs)

	Element-wise maximum of array elements.

Compare two tensors and returns a new tensor containing the element-wise
maxima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The maximum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	fmin :

	Element-wise minimum of two tensors, ignores NaNs.

	maximum :

	Element-wise maximum of two tensors, propagates NaNs.

	amax :

	The maximum value of an tensor along a given axis, propagates NaNs.

	nanmax :

	The maximum value of an tensor along a given axis, ignores NaNs.

minimum, amin, nanmin

The fmax is equivalent to mt.where(x1 >= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

>>> import mars.tensor as mt

>>> mt.fmax([2, 3, 4], [1, 5, 2]).execute()
array([2., 5., 4.])

>>> mt.fmax(mt.eye(2), [0.5, 2]).execute()
array([[1. , 2.],
 [0.5, 2.]])

>>> mt.fmax([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([0., 0., NaN])

mars.tensor.fmin

	
mars.tensor.fmin(x1, x2, out=None, where=None, **kwargs)

	Element-wise minimum of array elements.

Compare two tensors and returns a new tensor containing the element-wise
minima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	fmax :

	Element-wise maximum of two tensors, ignores NaNs.

	minimum :

	Element-wise minimum of two tensors, propagates NaNs.

	amin :

	The minimum value of a tensor along a given axis, propagates NaNs.

	nanmin :

	The minimum value of a tensor along a given axis, ignores NaNs.

maximum, amax, nanmax

The fmin is equivalent to mt.where(x1 <= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

>>> import mars.tensor as mt

>>> mt.fmin([2, 3, 4], [1, 5, 2]).execute()
array([1, 3, 2])

>>> mt.fmin(mt.eye(2), [0.5, 2]).execute()
array([[0.5, 0.],
 [0. , 1.]])

>>> mt.fmin([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([0., 0., NaN])

mars.tensor.isfinite

	
mars.tensor.isfinite(x, out=None, where=None, **kwargs)

	Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor, bool

	For scalar input, the result is a new boolean with value True
if the input is finite; otherwise the value is False (input is
either positive infinity, negative infinity or Not a Number).

For array input, the result is a boolean array with the same
dimensions as the input and the values are True if the
corresponding element of the input is finite; otherwise the values
are False (element is either positive infinity, negative infinity
or Not a Number).

isinf, isneginf, isposinf, isnan

Not a Number, positive infinity and negative infinity are considered
to be non-finite.

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity. Errors result if the
second argument is also supplied when x is a scalar input, or if
first and second arguments have different shapes.

>>> import mars.tensor as mt

>>> mt.isfinite(1).execute()
True
>>> mt.isfinite(0).execute()
True
>>> mt.isfinite(mt.nan).execute()
False
>>> mt.isfinite(mt.inf).execute()
False
>>> mt.isfinite(mt.NINF).execute()
False
>>> mt.isfinite([mt.log(-1.).execute(),1.,mt.log(0).execute()]).execute()
array([False, True, False])

>>> x = mt.array([-mt.inf, 0., mt.inf])
>>> y = mt.array([2, 2, 2])
>>> mt.isfinite(x, y).execute()
array([0, 1, 0])
>>> y.execute()
array([0, 1, 0])

mars.tensor.isinf

	
mars.tensor.isinf(x, out=None, where=None, **kwargs)

	Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x ==
+/-inf, otherwise False.

	xarray_like

	Input values

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool (scalar) or boolean Tensor

	For scalar input, the result is a new boolean with value True if
the input is positive or negative infinity; otherwise the value is
False.

For tensor input, the result is a boolean tensor with the same shape
as the input and the values are True where the corresponding
element of the input is positive or negative infinity; elsewhere
the values are False. If a second argument was supplied the result
is stored there. If the type of that array is a numeric type the
result is represented as zeros and ones, if the type is boolean
then as False and True, respectively. The return value y is then
a reference to that tensor.

isneginf, isposinf, isnan, isfinite

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is supplied when the first
argument is a scalar, or if the first and second arguments have
different shapes.

>>> import mars.tensor as mt

>>> mt.isinf(mt.inf).execute()
True
>>> mt.isinf(mt.nan).execute()
False
>>> mt.isinf(mt.NINF).execute()
True
>>> mt.isinf([mt.inf, -mt.inf, 1.0, mt.nan]).execute()
array([True, True, False, False])

>>> x = mt.array([-mt.inf, 0., mt.inf])
>>> y = mt.array([2, 2, 2])
>>> mt.isinf(x, y).execute()
array([1, 0, 1])
>>> y.execute()
array([1, 0, 1])

mars.tensor.isnan

	
mars.tensor.isnan(x, out=None, where=None, **kwargs)

	Test element-wise for NaN and return result as a boolean tensor.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	For scalar input, the result is a new boolean with value True if
the input is NaN; otherwise the value is False.

For array input, the result is a boolean tensor of the same
dimensions as the input and the values are True if the
corresponding element of the input is NaN; otherwise the values are
False.

isinf, isneginf, isposinf, isfinite, isnat

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

>>> import mars.tensor as mt

>>> mt.isnan(mt.nan).execute()
True
>>> mt.isnan(mt.inf).execute()
False
>>> mt.isnan([mt.log(-1.).execute(),1.,mt.log(0).execute()]).execute()
array([True, False, False])

mars.tensor.signbit

	
mars.tensor.signbit(x, out=None, where=None, **kwargs)

	Returns element-wise True where signbit is set (less than zero).

	xarray_like

	The input value(s).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	resultTensor of bool

	Output tensor, or reference to out if that was supplied.

>>> import mars.tensor as mt

>>> mt.signbit(-1.2).execute()
True
>>> mt.signbit(mt.array([1, -2.3, 2.1])).execute()
array([False, True, False])

mars.tensor.copysign

	
mars.tensor.copysign(x1, x2, out=None, where=None, **kwargs)

	Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same
length. If x2 is a scalar, its sign will be copied to all elements of
x1.

	x1array_like

	Values to change the sign of.

	x2array_like

	The sign of x2 is copied to x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	The values of x1 with the sign of x2.

>>> import mars.tensor as mt

>>> mt.copysign(1.3, -1).execute()
-1.3
>>> (1/mt.copysign(0, 1)).execute()
inf
>>> (1/mt.copysign(0, -1)).execute()
-inf

>>> mt.copysign([-1, 0, 1], -1.1).execute()
array([-1., -0., -1.])
>>> mt.copysign([-1, 0, 1], mt.arange(3)-1).execute()
array([-1., 0., 1.])

mars.tensor.nextafter

	
mars.tensor.nextafter(x1, x2, out=None, where=None, **kwargs)

	Return the next floating-point value after x1 towards x2, element-wise.

	x1array_like

	Values to find the next representable value of.

	x2array_like

	The direction where to look for the next representable value of x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	The next representable values of x1 in the direction of x2.

>>> import mars.tensor as mt

>>> eps = mt.finfo(mt.float64).eps
>>> (mt.nextafter(1, 2) == eps + 1).execute()
True
>>> (mt.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]).execute()
array([True, True])

mars.tensor.modf

	
mars.tensor.modf(x, out1=None, out2=None, out=None, where=None, **kwargs)

	Return the fractional and integral parts of a tensor, element-wise.

The fractional and integral parts are negative if the given number is
negative.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	y1Tensor

	Fractional part of x.

	y2Tensor

	Integral part of x.

For integer input the return values are floats.

	divmoddivmod(x, 1) is equivalent to modf with the return values

	switched, except it always has a positive remainder.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()
>>> sess.run(mt.modf([0, 3.5]))
(array([0. , 0.5]), array([0., 3.]))
>>> sess.run(mt.modf(-0.5))
(-0.5, -0)

mars.tensor.ldexp

	
mars.tensor.ldexp(x1, x2, out=None, where=None, **kwargs)

	Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct
floating point numbers x1 * 2**x2.

	x1array_like

	Tensor of multipliers.

	x2array_like, int

	Tensor of twos exponents.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The result of x1 * 2**x2.

frexp : Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is
more clear to simply use the expression x1 * 2**x2.

>>> import mars.tensor as mt

>>> mt.ldexp(5, mt.arange(4)).execute()
array([5., 10., 20., 40.], dtype=float32)

>>> x = mt.arange(6)
>>> mt.ldexp(*mt.frexp(x)).execute()
array([0., 1., 2., 3., 4., 5.])

mars.tensor.frexp

	
mars.tensor.frexp(x, out1=None, out2=None, out=None, where=None, **kwargs)

	Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent`.
The mantissa is lies in the open interval(-1, 1), while the twos
exponent is a signed integer.

	xarray_like

	Tensor of numbers to be decomposed.

	out1Tensor, optional

	Output tensor for the mantissa. Must have the same shape as x.

	out2Tensor, optional

	Output tensor for the exponent. Must have the same shape as x.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	(mantissa, exponent)tuple of tensors, (float, int)

	mantissa is a float array with values between -1 and 1.
exponent is an int array which represents the exponent of 2.

ldexp : Compute y = x1 * 2**x2, the inverse of frexp.

Complex dtypes are not supported, they will raise a TypeError.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> x = mt.arange(9)
>>> y1, y2 = mt.frexp(x)

>>> sess = new_session().as_default()
>>> y1_result, y2_result = sess.run(y1, y2)
>>> y1_result
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,
 0.5])
>>> y2_result
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> (y1 * 2**y2).execute(session=sess)
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

mars.tensor.fmod

	
mars.tensor.fmod(x1, x2, out=None, where=None, **kwargs)

	Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend x1. It is equivalent to
the Matlab(TM) rem function and should not be confused with the
Python modulus operator x1 % x2.

	x1array_like

	Dividend.

	x2array_like

	Divisor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	yTensor_like

	The remainder of the division of x1 by x2.

remainder : Equivalent to the Python % operator.
divide

The result of the modulo operation for negative dividend and divisors
is bound by conventions. For fmod, the sign of result is the sign of
the dividend, while for remainder the sign of the result is the sign
of the divisor. The fmod function is equivalent to the Matlab(TM)
rem function.

>>> import mars.tensor as mt

>>> mt.fmod([-3, -2, -1, 1, 2, 3], 2).execute()
array([-1, 0, -1, 1, 0, 1])
>>> mt.remainder([-3, -2, -1, 1, 2, 3], 2).execute()
array([1, 0, 1, 1, 0, 1])

>>> mt.fmod([5, 3], [2, 2.]).execute()
array([1., 1.])
>>> a = mt.arange(-3, 3).reshape(3, 2)
>>> a.execute()
array([[-3, -2],
 [-1, 0],
 [1, 2]])
>>> mt.fmod(a, [2,2]).execute()
array([[-1, 0],
 [-1, 0],
 [1, 0]])

mars.tensor.floor

	
mars.tensor.floor(x, out=None, where=None, **kwargs)

	Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that
i <= x. It is often denoted as \(\lfloor x \rfloor\).

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The floor of each element in x.

ceil, trunc, rint

Some spreadsheet programs calculate the “floor-towards-zero”, in other
words floor(-2.5) == -2. NumPy instead uses the definition of
floor where floor(-2.5) == -3.

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.floor(a).execute()
array([-2., -2., -1., 0., 1., 1., 2.])

mars.tensor.ceil

	
mars.tensor.ceil(x, out=None, where=None, **kwargs)

	Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that
i >= x. It is often denoted as \(\lceil x \rceil\).

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The ceiling of each element in x, with float dtype.

floor, trunc, rint

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.ceil(a).execute()
array([-1., -1., -0., 1., 2., 2., 2.])

mars.tensor.trunc

	
mars.tensor.trunc(x, out=None, where=None, **kwargs)

	Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which
is closer to zero than x is. In short, the fractional part of the
signed number x is discarded.

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The truncated value of each element in x.

ceil, floor, rint

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.trunc(a).execute()
array([-1., -1., -0., 0., 1., 1., 2.])

Routines

The following pages describe Numpy-compatible routines. These functions cover a subset of
NumPy routines [https://docs.scipy.org/doc/numpy/reference/routines.html].

	Tensor Creation Routines
	Basic creation routines

	Creation from other data

	Numerical ranges

	Building matrices

	Tensor Manipulation Routines
	Basic manipulations

	Shape manipulation

	Transposition

	Edit dimensionalities

	Changing kind of tensor

	Joining tensors

	Splitting tensors

	Tiling tensors

	Rearranging elements

	Binary Operations
	Elementwise bit operations

	Discrete Fourier Transform
	Standard FFTs

	Real FFTs

	Hermitian FFTs

	Helper routines

	Indexing Routines
	Generating index arrays

	Indexing-like operations

	Linear Algebra
	Matrix and vector products

	Decompositions

	Norms and other numbers

	Logic Functions
	Truth value testing

	Array contents

	Array type testing

	Logic operations

	Comparison

	Mathematical Functions
	Trigonometric functions

	Hyperbolic functions

	Rounding

	Sums, products, differences

	Exponential and logarithms

	Other special functions

	Floating point routines

	Arithmetic operations

	Handling complex numbers

	Miscellaneous

	Random Sampling
	Sample random data

	Distributions

	Random number generator

	Set routines
	Boolean operations

	Sorting, Searching, and Counting
	Searching

	Counting

	Statistics
	Order statistics

	Average and variances

	Correlating

	Histograms

Tensor Creation Routines

Basic creation routines

	mars.tensor.empty

	Return a new tensor of given shape and type, without initializing entries.

	mars.tensor.empty_like

	Return a new tensor with the same shape and type as a given tensor.

	mars.tensor.eye

	Return a 2-D tensor with ones on the diagonal and zeros elsewhere.

	mars.tensor.identity

	Return the identity tensor.

	mars.tensor.ones

	Return a new tensor of given shape and type, filled with ones.

	mars.tensor.ones_like

	Return a tensor of ones with the same shape and type as a given tensor.

	mars.tensor.zeros

	Return a new tensor of given shape and type, filled with zeros.

	mars.tensor.zeros_like

	Return a tensor of zeros with the same shape and type as a given tensor.

	mars.tensor.full

	Return a new tensor of given shape and type, filled with fill_value.

Creation from other data

	mars.tensor.array

	Create a tensor.

	mars.tensor.asarray

	Convert the input to an array.

Numerical ranges

	mars.tensor.arange

	Return evenly spaced values within a given interval.

	mars.tensor.linspace

	Return evenly spaced numbers over a specified interval.

	mars.tensor.meshgrid

	Return coordinate matrices from coordinate vectors.

	mars.tensor.mgrid

	Construct a multi-dimensional “meshgrid”.

	mars.tensor.ogrid

	Construct a multi-dimensional “meshgrid”.

Building matrices

	mars.tensor.diag

	Extract a diagonal or construct a diagonal tensor.

	mars.tensor.diagflat

	Create a two-dimensional tensor with the flattened input as a diagonal.

	mars.tensor.tril

	Lower triangle of a tensor.

	mars.tensor.triu

	Upper triangle of a tensor.

mars.tensor.empty

	
mars.tensor.empty(shape, dtype=None, chunk_size=None, gpu=False, order='C')

	Return a new tensor of given shape and type, without initializing entries.
Parameters
———-
shape : int or tuple of int

Shape of the empty tensor

	dtypedata-type, optional

	Desired output data-type.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’}, optional, default: ‘C’

	Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.

	outTensor

	Tensor of uninitialized (arbitrary) data of the given shape, dtype, and
order. Object arrays will be initialized to None.

empty_like, zeros, ones
Notes
—–
empty, unlike zeros, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.
Examples
——–
>>> import mars.tensor as mt
>>> mt.empty([2, 2]).execute()
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #random

>>> mt.empty([2, 2], dtype=int).execute()
array([[-1073741821, -1067949133],
 [496041986, 19249760]]) #random

mars.tensor.empty_like

	
mars.tensor.empty_like(a, dtype=None, gpu=None, order='K')

	Return a new tensor with the same shape and type as a given tensor.
Parameters
———-
a : array_like

The shape and data-type of a define these same attributes of the
returned tensor.

	dtypedata-type, optional

	Overrides the data type of the result.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’, ‘A’, or ‘K’}, optional

	Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran
contiguous, ‘C’ otherwise. ‘K’ means match the layout of prototype
as closely as possible.

	outTensor

	Array of uninitialized (arbitrary) data with the same
shape and type as a.

ones_like : Return a tensor of ones with shape and type of input.
zeros_like : Return a tensor of zeros with shape and type of input.
empty : Return a new uninitialized tensor.
ones : Return a new tensor setting values to one.
zeros : Return a new tensor setting values to zero.
Notes
—–
This function does not initialize the returned tensor; to do that use
zeros_like or ones_like instead. It may be marginally faster than
the functions that do set the array values.
Examples
——–
>>> import mars.tensor as mt
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> mt.empty_like(a).execute()
array([[-1073741821, -1073741821, 3], #ranm

[0, 0, -1073741821]])

>>> a = mt.array([[1., 2., 3.],[4.,5.,6.]])
>>> mt.empty_like(a).execute()
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
 [4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

mars.tensor.eye

	
mars.tensor.eye(N, M=None, k=0, dtype=None, sparse=False, gpu=False, chunk_size=None, order='C')

	Return a 2-D tensor with ones on the diagonal and zeros elsewhere.

	Nint

	Number of rows in the output.

	Mint, optional

	Number of columns in the output. If None, defaults to N.

	kint, optional

	Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal, and a negative value
to a lower diagonal.

	dtypedata-type, optional

	Data-type of the returned tensor.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	order{‘C’, ‘F’}, optional

	Whether the output should be stored in row-major (C-style) or
column-major (Fortran-style) order in memory.

	ITensor of shape (N,M)

	An tensor where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

identity : (almost) equivalent function
diag : diagonal 2-D tensor from a 1-D tensor specified by the user.

>>> import mars.tensor as mt

>>> mt.eye(2, dtype=int).execute()
array([[1, 0],
 [0, 1]])
>>> mt.eye(3, k=1).execute()
array([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 0.]])

mars.tensor.identity

	
mars.tensor.identity(n, dtype=None, sparse=False, gpu=False, chunk_size=None)

	Return the identity tensor.

The identity tensor is a square array with ones on
the main diagonal.

	nint

	Number of rows (and columns) in n x n output.

	dtypedata-type, optional

	Data-type of the output. Defaults to float.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunksint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	outTensor

	n x n array with its main diagonal set to one,
and all other elements 0.

>>> import mars.tensor as mt

>>> mt.identity(3).execute()
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

mars.tensor.ones

	
mars.tensor.ones(shape, dtype=None, chunk_size=None, gpu=False, order='C')

	Return a new tensor of given shape and type, filled with ones.

	shapeint or sequence of ints

	Shape of the new tensor, e.g., (2, 3) or 2.

	dtypedata-type, optional

	The desired data-type for the tensor, e.g., mt.int8. Default is
mt.float64.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’}, optional, default: C

	Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.

	outTensor

	Tensor of ones with the given shape, dtype, and order.

zeros, ones_like

>>> import mars.tensor as mt

>>> mt.ones(5).execute()
array([1., 1., 1., 1., 1.])

>>> mt.ones((5,), dtype=int).execute()
array([1, 1, 1, 1, 1])

>>> mt.ones((2, 1)).execute()
array([[1.],
 [1.]])

>>> s = (2,2)
>>> mt.ones(s).execute()
array([[1., 1.],
 [1., 1.]])

mars.tensor.ones_like

	
mars.tensor.ones_like(a, dtype=None, gpu=None, order='K')

	Return a tensor of ones with the same shape and type as a given tensor.

	aarray_like

	The shape and data-type of a define these same attributes of
the returned tensor.

	dtypedata-type, optional

	Overrides the data type of the result.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’, ‘A’, or ‘K’}, optional

	Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

	outTensor

	Tensor of ones with the same shape and type as a.

zeros_like : Return a tensor of zeros with shape and type of input.
empty_like : Return a empty tensor with shape and type of input.
zeros : Return a new tensor setting values to zero.
ones : Return a new tensor setting values to one.
empty : Return a new uninitialized tensor.

>>> import mars.tensor as mt

>>> x = mt.arange(6)
>>> x = x.reshape((2, 3))
>>> x.execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.ones_like(x).execute()
array([[1, 1, 1],
 [1, 1, 1]])

>>> y = mt.arange(3, dtype=float)
>>> y.execute()
array([0., 1., 2.])
>>> mt.ones_like(y).execute()
array([1., 1., 1.])

mars.tensor.zeros

	
mars.tensor.zeros(shape, dtype=None, chunk_size=None, gpu=False, sparse=False, order='C')

	Return a new tensor of given shape and type, filled with zeros.
Parameters
———-
shape : int or sequence of ints

Shape of the new tensor, e.g., (2, 3) or 2.

	dtypedata-type, optional

	The desired data-type for the array, e.g., mt.int8. Default is
mt.float64.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	sparse: bool, optional

	Create sparse tensor if True, False as default

	order{‘C’, ‘F’}, optional, default: ‘C’

	Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.

	outTensor

	Tensor of zeros with the given shape, dtype, and order.

zeros_like : Return a tensor of zeros with shape and type of input.
ones_like : Return a tensor of ones with shape and type of input.
empty_like : Return a empty tensor with shape and type of input.
ones : Return a new tensor setting values to one.
empty : Return a new uninitialized tensor.
Examples
——–
>>> import mars.tensor as mt
>>> mt.zeros(5).execute()
array([0., 0., 0., 0., 0.])
>>> mt.zeros((5,), dtype=int).execute()
array([0, 0, 0, 0, 0])
>>> mt.zeros((2, 1)).execute()
array([[0.],

[0.]])

>>> s = (2,2)
>>> mt.zeros(s).execute()
array([[0., 0.],
 [0., 0.]])
>>> mt.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]).execute() # custom dtype
array([(0, 0), (0, 0)],
 dtype=[('x', '<i4'), ('y', '<i4')])

mars.tensor.zeros_like

	
mars.tensor.zeros_like(a, dtype=None, gpu=None, order='K')

	Return a tensor of zeros with the same shape and type as a given tensor.
Parameters
———-
a : array_like

The shape and data-type of a define these same attributes of
the returned array.

	dtypedata-type, optional

	Overrides the data type of the result.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’, ‘A’, or ‘K’}, optional

	Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

	outTensor

	tensor of zeros with the same shape and type as a.

ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
——–
>>> import mars.tensr as mt
>>> x = mt.arange(6)
>>> x = x.reshape((2, 3))
>>> x.execute()
array([[0, 1, 2],

[3, 4, 5]])

>>> mt.zeros_like(x).execute()
array([[0, 0, 0],
 [0, 0, 0]])
>>> y = mt.arange(3, dtype=float)
>>> y.execute()
array([0., 1., 2.])
>>> mt.zeros_like(y).execute()
array([0., 0., 0.])

mars.tensor.full

	
mars.tensor.full(shape, fill_value, dtype=None, chunk_size=None, gpu=False, order='C')

	Return a new tensor of given shape and type, filled with fill_value.

	shapeint or sequence of ints

	Shape of the new tensor, e.g., (2, 3) or 2.

	fill_valuescalar

	Fill value.

	dtypedata-type, optional

	
	The desired data-type for the tensor The default, None, means

	np.array(fill_value).dtype.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	order{‘C’, ‘F’}, optional

	Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	outTensor

	Tensor of fill_value with the given shape, dtype, and order.

zeros_like : Return a tensor of zeros with shape and type of input.
ones_like : Return a tensor of ones with shape and type of input.
empty_like : Return an empty tensor with shape and type of input.
full_like : Fill a tensor with shape and type of input.
zeros : Return a new tensor setting values to zero.
ones : Return a new tensor setting values to one.
empty : Return a new uninitialized tensor.

>>> import mars.tensor as mt

>>> mt.full((2, 2), mt.inf).execute()
array([[inf, inf],
 [inf, inf]])
>>> mt.full((2, 2), 10).execute()
array([[10, 10],
 [10, 10]])

mars.tensor.array

	
mars.tensor.array(x, dtype=None, copy=True, order='K', ndmin=None, chunk_size=None)

	Create a tensor.

	objectarray_like

	An array, any object exposing the array interface, an object whose
__array__ method returns an array, or any (nested) sequence.

	dtypedata-type, optional

	The desired data-type for the array. If not given, then the type will
be determined as the minimum type required to hold the objects in the
sequence. This argument can only be used to ‘upcast’ the array. For
downcasting, use the .astype(t) method.

	copybool, optional

	If true (default), then the object is copied. Otherwise, a copy will
only be made if __array__ returns a copy, if obj is a nested sequence,
or if a copy is needed to satisfy any of the other requirements
(dtype, order, etc.).

	order{‘K’, ‘A’, ‘C’, ‘F’}, optional

	Specify the memory layout of the array. If object is not an array, the
newly created array will be in C order (row major) unless ‘F’ is
specified, in which case it will be in Fortran order (column major).
If object is an array the following holds.

	order

	no copy

	copy=True

	‘K’

	unchanged

	F & C order preserved, otherwise most similar order

	‘A’

	unchanged

	F order if input is F and not C, otherwise C order

	‘C’

	C order

	C order

	‘F’

	F order

	F order

When copy=False and a copy is made for other reasons, the result is
the same as if copy=True, with some exceptions for A, see the
Notes section. The default order is ‘K’.

	ndminint, optional

	Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.

	chunk_size: int, tuple, optional

	Specifies chunk size for each dimension.

	outTensor

	An tensor object satisfying the specified requirements.

empty, empty_like, zeros, zeros_like, ones, ones_like, full, full_like

>>> import mars.tensor as mt

>>> mt.array([1, 2, 3]).execute()
array([1, 2, 3])

Upcasting:

>>> mt.array([1, 2, 3.0]).execute()
array([1., 2., 3.])

More than one dimension:

>>> mt.array([[1, 2], [3, 4]]).execute()
array([[1, 2],
 [3, 4]])

Minimum dimensions 2:

>>> mt.array([1, 2, 3], ndmin=2).execute()
array([[1, 2, 3]])

Type provided:

>>> mt.array([1, 2, 3], dtype=complex).execute()
array([1.+0.j, 2.+0.j, 3.+0.j])

mars.tensor.asarray

	
mars.tensor.asarray(x, dtype=None, order=None, chunk_size=None)

	Convert the input to an array.

	aarray_like

	Input data, in any form that can be converted to a tensor. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and tensors.

	dtypedata-type, optional

	By default, the data-type is inferred from the input data.

	order{‘C’, ‘F’}, optional

	Whether to use row-major (C-style) or
column-major (Fortran-style) memory representation.

	chunk_size: int, tuple, optional

	Specifies chunk size for each dimension.

	outTensor

	Tensor interpretation of a. No copy is performed if the input
is already an ndarray with matching dtype and order. If a is a
subclass of ndarray, a base class ndarray is returned.

ascontiguousarray : Convert input to a contiguous tensor.
asfortranarray : Convert input to a tensor with column-major

memory order.

Convert a list into a tensor:

>>> import mars.tensor as mt

>>> a = [1, 2]
>>> mt.asarray(a).execute()
array([1, 2])

Existing arrays are not copied:

>>> a = mt.array([1, 2])
>>> mt.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = mt.array([1, 2], dtype=mt.float32)
>>> mt.asarray(a, dtype=mt.float32) is a
True
>>> mt.asarray(a, dtype=mt.float64) is a
False

mars.tensor.arange

	
mars.tensor.arange(*args, **kwargs)

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns a tensor rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use linspace for these cases.

	startnumber, optional

	Start of interval. The interval includes this value. The default
start value is 0.

	stopnumber

	End of interval. The interval does not include this value, except
in some cases where step is not an integer and floating point
round-off affects the length of out.

	stepnumber, optional

	Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step is specified as a position argument,
start must also be given.

	dtypedtype

	The type of the output tensor. If dtype is not given, infer the data
type from the other input arguments.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	arangeTensor

	Tensor of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop.

linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Tensors of evenly spaced numbers in N-dimensions.
mgrid: Grid-shaped tensors of evenly spaced numbers in N-dimensions.

>>> import mars.tensor as mt

>>> mt.arange(3).execute()
array([0, 1, 2])
>>> mt.arange(3.0).execute()
array([0., 1., 2.])
>>> mt.arange(3,7).execute()
array([3, 4, 5, 6])
>>> mt.arange(3,7,2).execute()
array([3, 5])

mars.tensor.linspace

	
mars.tensor.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, gpu=False, chunk_size=None)

	Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the
interval [start, stop].

The endpoint of the interval can optionally be excluded.

	startscalar

	The starting value of the sequence.

	stopscalar

	The end value of the sequence, unless endpoint is set to False.
In that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.

	numint, optional

	Number of samples to generate. Default is 50. Must be non-negative.

	endpointbool, optional

	If True, stop is the last sample. Otherwise, it is not included.
Default is True.

	retstepbool, optional

	If True, return (samples, step), where step is the spacing
between samples.

	dtypedtype, optional

	The type of the output tensor. If dtype is not given, infer the data
type from the other input arguments.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	samplesTensor

	There are num equally spaced samples in the closed interval
[start, stop] or the half-open interval [start, stop)
(depending on whether endpoint is True or False).

	stepfloat, optional

	Only returned if retstep is True

Size of spacing between samples.

	arangeSimilar to linspace, but uses a step size (instead of the

	number of samples).

logspace : Samples uniformly distributed in log space.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> mt.linspace(2.0, 3.0, num=5).execute()
array([2. , 2.25, 2.5 , 2.75, 3.])
>>> mt.linspace(2.0, 3.0, num=5, endpoint=False).execute()
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> sess.run(mt.linspace(2.0, 3.0, num=5, retstep=True).execute())
(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = mt.zeros(N)
>>> x1 = mt.linspace(0, 10, N, endpoint=True)
>>> x2 = mt.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1.execute(), y.execute(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2.execute(), y.execute() + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

mars.tensor.meshgrid

	
mars.tensor.meshgrid(*xi, **kwargs)

	Return coordinate matrices from coordinate vectors.

Make N-D coordinate arrays for vectorized evaluations of
N-D scalar/vector fields over N-D grids, given
one-dimensional coordinate tensors x1, x2,…, xn.

	x1, x2,…, xnarray_like

	1-D arrays representing the coordinates of a grid.

	indexing{‘xy’, ‘ij’}, optional

	Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output.
See Notes for more details.

	sparsebool, optional

	If True a sparse grid is returned in order to conserve memory.
Default is False.

	X1, X2,…, XNTensor

	For vectors x1, x2,…, ‘xn’ with lengths Ni=len(xi) ,
return (N1, N2, N3,...Nn) shaped tensors if indexing=’ij’
or (N2, N1, N3,...Nn) shaped tensors if indexing=’xy’
with the elements of xi repeated to fill the matrix along
the first dimension for x1, the second for x2 and so on.

This function supports both indexing conventions through the indexing
keyword argument. Giving the string ‘ij’ returns a meshgrid with
matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing.
In the 2-D case with inputs of length M and N, the outputs are of shape
(N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing. In the 3-D case
with inputs of length M, N and P, outputs are of shape (N, M, P) for
‘xy’ indexing and (M, N, P) for ‘ij’ indexing. The difference is
illustrated by the following code snippet:

xv, yv = mt.meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):
 for j in range(ny):
 # treat xv[i,j], yv[i,j]

xv, yv = mt.meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):
 for j in range(ny):
 # treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

>>> import mars.tensor as mt

>>> nx, ny = (3, 2)
>>> x = mt.linspace(0, 1, nx)
>>> y = mt.linspace(0, 1, ny)
>>> xv, yv = mt.meshgrid(x, y)
>>> xv.execute()
array([[0. , 0.5, 1.],
 [0. , 0.5, 1.]])
>>> yv.execute()
array([[0., 0., 0.],
 [1., 1., 1.]])
>>> xv, yv = mt.meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv.execute()
array([[0. , 0.5, 1.]])
>>> yv.execute()
array([[0.],
 [1.]])

meshgrid is very useful to evaluate functions on a grid.

>>> import matplotlib.pyplot as plt
>>> x = mt.arange(-5, 5, 0.1)
>>> y = mt.arange(-5, 5, 0.1)
>>> xx, yy = mt.meshgrid(x, y, sparse=True)
>>> z = mt.sin(xx**2 + yy**2) / (xx**2 + yy**2)
>>> h = plt.contourf(x,y,z)

mars.tensor.mgrid

	
mars.tensor.mgrid = <mars.tensor.lib.index_tricks.nd_grid object>

	Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.

	sparsebool, optional

	Whether the grid is sparse or not. Default is False.

Two instances of nd_grid are made available in the Mars.tensor namespace,
mgrid and ogrid:

mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)

Users should use these pre-defined instances instead of using nd_grid
directly.

>>> import mars.tensor as mt

>>> mgrid = mt.lib.index_tricks.nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]],
 [[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

>>> ogrid = mt.lib.index_tricks.nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
 [1],
 [2],
 [3],
 [4]]), array([[0, 1, 2, 3, 4]])]

mars.tensor.ogrid

	
mars.tensor.ogrid = <mars.tensor.lib.index_tricks.nd_grid object>

	Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.

	sparsebool, optional

	Whether the grid is sparse or not. Default is False.

Two instances of nd_grid are made available in the Mars.tensor namespace,
mgrid and ogrid:

mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)

Users should use these pre-defined instances instead of using nd_grid
directly.

>>> import mars.tensor as mt

>>> mgrid = mt.lib.index_tricks.nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]],
 [[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

>>> ogrid = mt.lib.index_tricks.nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
 [1],
 [2],
 [3],
 [4]]), array([[0, 1, 2, 3, 4]])]

mars.tensor.diag

	
mars.tensor.diag(v, k=0, sparse=None, gpu=False, chunk_size=None)

	Extract a diagonal or construct a diagonal tensor.

See the more detailed documentation for mt.diagonal if you use this
function to extract a diagonal and wish to write to the resulting tensor

	varray_like

	If v is a 2-D tensor, return its k-th diagonal.
If v is a 1-D tensor, return a 2-D tensor with v on the k-th
diagonal.

	kint, optional

	Diagonal in question. The default is 0. Use k>0 for diagonals
above the main diagonal, and k<0 for diagonals below the main
diagonal.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	outTensor

	The extracted diagonal or constructed diagonal tensor.

diagonal : Return specified diagonals.
diagflat : Create a 2-D array with the flattened input as a diagonal.
trace : Sum along diagonals.
triu : Upper triangle of a tensor.
tril : Lower triangle of a tensor.

>>> import mars.tensor as mt

>>> x = mt.arange(9).reshape((3,3))
>>> x.execute()
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

>>> mt.diag(x).execute()
array([0, 4, 8])
>>> mt.diag(x, k=1).execute()
array([1, 5])
>>> mt.diag(x, k=-1).execute()
array([3, 7])

>>> mt.diag(mt.diag(x)).execute()
array([[0, 0, 0],
 [0, 4, 0],
 [0, 0, 8]])

mars.tensor.diagflat

	
mars.tensor.diagflat(v, k=0, sparse=None, gpu=None, chunk_size=None)

	Create a two-dimensional tensor with the flattened input as a diagonal.

	varray_like

	Input data, which is flattened and set as the k-th
diagonal of the output.

	kint, optional

	Diagonal to set; 0, the default, corresponds to the “main” diagonal,
a positive (negative) k giving the number of the diagonal above
(below) the main.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	outTensor

	The 2-D output tensor.

diag : MATLAB work-alike for 1-D and 2-D tensors.
diagonal : Return specified diagonals.
trace : Sum along diagonals.

>>> import mars.tensor as mt

>>> mt.diagflat([[1,2], [3,4]]).execute()
array([[1, 0, 0, 0],
 [0, 2, 0, 0],
 [0, 0, 3, 0],
 [0, 0, 0, 4]])

>>> mt.diagflat([1,2], 1).execute()
array([[0, 1, 0],
 [0, 0, 2],
 [0, 0, 0]])

mars.tensor.tril

	
mars.tensor.tril(m, k=0)

	Lower triangle of a tensor.

Return a copy of a tensor with elements above the k-th diagonal zeroed.

	marray_like, shape (M, N)

	Input tensor.

	kint, optional

	Diagonal above which to zero elements. k = 0 (the default) is the
main diagonal, k < 0 is below it and k > 0 is above.

	trilTensor, shape (M, N)

	Lower triangle of m, of same shape and data-type as m.

triu : same thing, only for the upper triangle

>>> import mars.tensor as mt

>>> mt.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1).execute()
array([[0, 0, 0],
 [4, 0, 0],
 [7, 8, 0],
 [10, 11, 12]])

mars.tensor.triu

	
mars.tensor.triu(m, k=0)

	Upper triangle of a tensor.

Return a copy of a matrix with the elements below the k-th diagonal
zeroed.

Please refer to the documentation for tril for further details.

tril : lower triangle of a tensor

>>> import mars.tensor as mt

>>> mt.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1).execute()
array([[1, 2, 3],
 [4, 5, 6],
 [0, 8, 9],
 [0, 0, 12]])

Tensor Manipulation Routines

Basic manipulations

	mars.tensor.copyto

	Copies values from one array to another, broadcasting as necessary.

Shape manipulation

	mars.tensor.reshape

	Gives a new shape to a tensor without changing its data.

	mars.tensor.ravel

	Return a contiguous flattened tensor.

Transposition

	mars.tensor.moveaxis

	Move axes of a tensor to new positions.

	mars.tensor.rollaxis

	Roll the specified axis backwards, until it lies in a given position.

	mars.tensor.swapaxes

	Interchange two axes of a tensor.

	mars.tensor.core.Tensor.T

	Same as self.transpose(), except that self is returned if self.ndim < 2.

	mars.tensor.transpose

	Permute the dimensions of a tensor.

Edit dimensionalities

	mars.tensor.atleast_1d

	Convert inputs to tensors with at least one dimension.

	mars.tensor.atleast_2d

	View inputs as tensors with at least two dimensions.

	mars.tensor.atleast_3d

	View inputs as tensors with at least three dimensions.

	mars.tensor.broadcast_to

	Broadcast an tensor to a new shape.

	mars.tensor.broadcast_arrays

	Broadcast any number of arrays against each other.

	mars.tensor.expand_dims

	Expand the shape of a tensor.

	mars.tensor.squeeze

	Remove single-dimensional entries from the shape of a tensor.

Changing kind of tensor

	mars.tensor.asarray

	Convert the input to an array.

Joining tensors

	mars.tensor.concatenate

	Join a sequence of arrays along an existing axis.

	mars.tensor.stack

	Join a sequence of tensors along a new axis.

	mars.tensor.column_stack

	Stack 1-D tensors as columns into a 2-D tensor.

	mars.tensor.dstack

	Stack tensors in sequence depth wise (along third axis).

	mars.tensor.hstack

	Stack tensors in sequence horizontally (column wise).

	mars.tensor.vstack

	Stack tensors in sequence vertically (row wise).

Splitting tensors

	mars.tensor.split

	Split a tensor into multiple sub-tensors.

	mars.tensor.array_split

	Split a tensor into multiple sub-tensors.

	mars.tensor.dsplit

	Split tensor into multiple sub-tensors along the 3rd axis (depth).

	mars.tensor.hsplit

	Split a tensor into multiple sub-tensors horizontally (column-wise).

	mars.tensor.vsplit

	Split a tensor into multiple sub-tensors vertically (row-wise).

Tiling tensors

	mars.tensor.tile

	Construct a tensor by repeating A the number of times given by reps.

	mars.tensor.repeat

	Repeat elements of a tensor.

Rearranging elements

	mars.tensor.flip

	Reverse the order of elements in a tensor along the given axis.

	mars.tensor.fliplr

	Flip tensor in the left/right direction.

	mars.tensor.flipud

	Flip tensor in the up/down direction.

	mars.tensor.reshape

	Gives a new shape to a tensor without changing its data.

	mars.tensor.roll

	Roll tensor elements along a given axis.

mars.tensor.copyto

	
mars.tensor.copyto(dst, src, casting='same_kind', where=True)

	Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if
where is provided, it selects which elements to copy.

	dstTensor

	The tensor into which values are copied.

	srcarray_like

	The tensor from which values are copied.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

	Controls what kind of data casting may occur when copying.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	wherearray_like of bool, optional

	A boolean tensor which is broadcasted to match the dimensions
of dst, and selects elements to copy from src to dst
wherever it contains the value True.

mars.tensor.reshape

	
mars.tensor.reshape(a, newshape, order='C')

	Gives a new shape to a tensor without changing its data.

	aarray_like

	Tensor to be reshaped.

	newshapeint or tuple of ints

	The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D tensor of that length.
One shape dimension can be -1. In this case, the value is
inferred from the length of the tensor and remaining dimensions.

	order{‘C’, ‘F’, ‘A’}, optional

	Read the elements of a using this index order, and place the
elements into the reshaped array using this index order. ‘C’
means to read / write the elements using C-like index order,
with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to read / write the
elements using Fortran-like index order, with the first index
changing fastest, and the last index changing slowest. Note that
the ‘C’ and ‘F’ options take no account of the memory layout of
the underlying array, and only refer to the order of indexing.
‘A’ means to read / write the elements in Fortran-like index
order if a is Fortran contiguous in memory, C-like order
otherwise.

	reshaped_arrayTensor

	This will be a new view object if possible; otherwise, it will
be a copy.

Tensor.reshape : Equivalent method.

It is not always possible to change the shape of a tensor without
copying the data. If you want an error to be raised when the data is copied,
you should assign the new shape to the shape attribute of the array:

>>> import mars.tensor as mt

>>> a = mt.arange(6).reshape((3, 2))
>>> a.execute()
array([[0, 1],
 [2, 3],
 [4, 5]])

You can think of reshaping as first raveling the tensor (using the given
index order), then inserting the elements from the raveled tensor into the
new tensor using the same kind of index ordering as was used for the
raveling.

>>> mt.reshape(a, (2, 3)).execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.reshape(mt.ravel(a), (2, 3)).execute()
array([[0, 1, 2],
 [3, 4, 5]])

>>> a = mt.array([[1,2,3], [4,5,6]])
>>> mt.reshape(a, 6).execute()
array([1, 2, 3, 4, 5, 6])

>>> mt.reshape(a, (3,-1)).execute() # the unspecified value is inferred to be 2
array([[1, 2],
 [3, 4],
 [5, 6]])

mars.tensor.ravel

	
mars.tensor.ravel(a, order='C')

	Return a contiguous flattened tensor.

A 1-D tensor, containing the elements of the input, is returned. A copy is
made only if needed.

	aarray_like

	Input tensor. The elements in a are packed as a 1-D tensor.

order : {‘C’,’F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means
to index the elements in row-major, C-style order,
with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to index the elements
in column-major, Fortran-style order, with the
first index changing fastest, and the last index changing
slowest. Note that the ‘C’ and ‘F’ options take no account of
the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in
Fortran-like index order if a is Fortran contiguous in
memory, C-like order otherwise. ‘K’ means to read the
elements in the order they occur in memory, except for
reversing the data when strides are negative. By default, ‘C’
index order is used.

	yarray_like

	If a is a matrix, y is a 1-D tensor, otherwise y is a tensor of
the same subtype as a. The shape of the returned array is
(a.size,). Matrices are special cased for backward
compatibility.

Tensor.flat : 1-D iterator over an array.
Tensor.flatten : 1-D array copy of the elements of an array

in row-major order.

Tensor.reshape : Change the shape of an array without changing its data.

It is equivalent to reshape(-1).

>>> import mars.tensor as mt

>>> x = mt.array([[1, 2, 3], [4, 5, 6]])
>>> print(mt.ravel(x).execute())
[1 2 3 4 5 6]

>>> print(x.reshape(-1).execute())
[1 2 3 4 5 6]

>>> print(mt.ravel(x.T).execute())
[1 4 2 5 3 6]

>>> a = mt.arange(12).reshape(2,3,2).swapaxes(1,2); a.execute()
array([[[0, 2, 4],
 [1, 3, 5]],
 [[6, 8, 10],
 [7, 9, 11]]])
>>> a.ravel().execute()
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])

mars.tensor.moveaxis

	
mars.tensor.moveaxis(a, source, destination)

	Move axes of a tensor to new positions.

Other axes remain in their original order.

	aTensor

	The tensor whose axes should be reordered.

	sourceint or sequence of int

	Original positions of the axes to move. These must be unique.

	destinationint or sequence of int

	Destination positions for each of the original axes. These must also be
unique.

	resultTensor

	Array with moved axes. This tensor is a view of the input tensor.

transpose: Permute the dimensions of an array.
swapaxes: Interchange two axes of an array.

>>> import mars.tensor as mt

>>> x = mt.zeros((3, 4, 5))
>>> mt.moveaxis(x, 0, -1).shape
(4, 5, 3)
>>> mt.moveaxis(x, -1, 0).shape
(5, 3, 4),

These all achieve the same result:

>>> mt.transpose(x).shape
(5, 4, 3)
>>> mt.swapaxes(x, 0, -1).shape
(5, 4, 3)
>>> mt.moveaxis(x, [0, 1], [-1, -2]).shape
(5, 4, 3)
>>> mt.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
(5, 4, 3)

mars.tensor.rollaxis

	
mars.tensor.rollaxis(tensor, axis, start=0)

	Roll the specified axis backwards, until it lies in a given position.

This function continues to be supported for backward compatibility, but you
should prefer moveaxis.

	aTensor

	Input tensor.

	axisint

	The axis to roll backwards. The positions of the other axes do not
change relative to one another.

	startint, optional

	The axis is rolled until it lies before this position. The default,
0, results in a “complete” roll.

	resTensor

	a view of a is always returned.

moveaxis : Move array axes to new positions.
roll : Roll the elements of an array by a number of positions along a

given axis.

>>> import mars.tensor as mt

>>> a = mt.ones((3,4,5,6))
>>> mt.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> mt.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> mt.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

mars.tensor.swapaxes

	
mars.tensor.swapaxes(a, axis1, axis2)

	Interchange two axes of a tensor.

	aarray_like

	Input tensor.

	axis1int

	First axis.

	axis2int

	Second axis.

	a_swappedTensor

	If a is a Tensor, then a view of a is
returned; otherwise a new tensor is created.

>>> import mars.tensor as mt

>>> x = mt.array([[1,2,3]])
>>> mt.swapaxes(x,0,1).execute()
array([[1],
 [2],
 [3]])

>>> x = mt.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x.execute()
array([[[0, 1],
 [2, 3]],
 [[4, 5],
 [6, 7]]])

>>> mt.swapaxes(x,0,2).execute()
array([[[0, 4],
 [2, 6]],
 [[1, 5],
 [3, 7]]])

mars.tensor.core.Tensor.T

	
Tensor.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

>>> import mars.tensor as mt

>>> x = mt.array([[1.,2.],[3.,4.]])
>>> x.execute()
array([[1., 2.],
 [3., 4.]])
>>> x.T.execute()
array([[1., 3.],
 [2., 4.]])
>>> x = mt.array([1.,2.,3.,4.])
>>> x.execute()
array([1., 2., 3., 4.])
>>> x.T.execute()
array([1., 2., 3., 4.])

mars.tensor.transpose

	
mars.tensor.transpose(a, axes=None)

	Permute the dimensions of a tensor.

	aarray_like

	Input tensor.

	axeslist of ints, optional

	By default, reverse the dimensions, otherwise permute the axes
according to the values given.

	pTensor

	a with its axes permuted. A view is returned whenever
possible.

moveaxis
argsort

Use transpose(a, argsort(axes)) to invert the transposition of tensors
when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original tensor.

>>> import mars.tensor as mt

>>> x = mt.arange(4).reshape((2,2))
>>> x.execute()
array([[0, 1],
 [2, 3]])

>>> mt.transpose(x).execute()
array([[0, 2],
 [1, 3]])

>>> x = mt.ones((1, 2, 3))
>>> mt.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

mars.tensor.atleast_1d

	
mars.tensor.atleast_1d(*tensors)

	Convert inputs to tensors with at least one dimension.

Scalar inputs are converted to 1-dimensional tensors, whilst
higher-dimensional inputs are preserved.

	tensors1, tensors2, …array_like

	One or more input tensors.

	retTensor

	An tensor, or list of tensors, each with a.ndim >= 1.
Copies are made only if necessary.

atleast_2d, atleast_3d

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> mt.atleast_1d(1.0).execute()
array([1.])

>>> x = mt.arange(9.0).reshape(3,3)
>>> mt.atleast_1d(x).execute()
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]])
>>> mt.atleast_1d(x) is x
True

>>> sess.run(mt.atleast_1d(1, [3, 4]))
[array([1]), array([3, 4])]

mars.tensor.atleast_2d

	
mars.tensor.atleast_2d(*tensors)

	View inputs as tensors with at least two dimensions.

	tensors1, tensors2, …array_like

	One or more array-like sequences. Non-tensor inputs are converted
to tensors. Tensors that already have two or more dimensions are
preserved.

	res, res2, …Tensor

	A tensor, or list of tensors, each with a.ndim >= 2.
Copies are avoided where possible, and views with two or more
dimensions are returned.

atleast_1d, atleast_3d

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> mt.atleast_2d(3.0).execute()
array([[3.]])

>>> x = mt.arange(3.0)
>>> mt.atleast_2d(x).execute()
array([[0., 1., 2.]])

>>> sess.run(mt.atleast_2d(1, [1, 2], [[1, 2]]))
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

mars.tensor.atleast_3d

	
mars.tensor.atleast_3d(*tensors)

	View inputs as tensors with at least three dimensions.

	tensors1, tensors2, …array_like

	One or more tensor-like sequences. Non-tensor inputs are converted to
tensors. Tensors that already have three or more dimensions are
preserved.

	res1, res2, …Tensor

	A tensor, or list of tensors, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are
returned. For example, a 1-D tensor of shape (N,) becomes a view
of shape (1, N, 1), and a 2-D tensor of shape (M, N) becomes a
view of shape (M, N, 1).

atleast_1d, atleast_2d

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session()

>>> mt.atleast_3d(3.0).execute()
array([[[3.]]])

>>> x = mt.arange(3.0)
>>> mt.atleast_3d(x).shape
(1, 3, 1)

>>> x = mt.arange(12.0).reshape(4,3)
>>> mt.atleast_3d(x).shape
(4, 3, 1)

>>> for arr in sess.run(mt.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]])):
... print(arr, arr.shape)
...
[[[1]
 [2]]] (1, 2, 1)
[[[1]
 [2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)

mars.tensor.broadcast_to

	
mars.tensor.broadcast_to(tensor, shape)

	Broadcast an tensor to a new shape.

	tensorarray_like

	The tensor to broadcast.

	shapetuple

	The shape of the desired array.

broadcast : Tensor

	ValueError

	If the tensor is not compatible with the new shape according to Mars’s
broadcasting rules.

>>> import mars.tensor as mt

>>> x = mt.array([1, 2, 3])
>>> mt.broadcast_to(x, (3, 3)).execute()
array([[1, 2, 3],
 [1, 2, 3],
 [1, 2, 3]])

mars.tensor.broadcast_arrays

	
mars.tensor.broadcast_arrays(*args, **kwargs)

	Broadcast any number of arrays against each other.

	*argsarray_likes

	The tensors to broadcast.

broadcasted : list of tensors

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()
>>> x = mt.array([[1,2,3]])
>>> y = mt.array([[1],[2],[3]])
>>> sess.run(mt.broadcast_arrays(x, y))
[array([[1, 2, 3],
 [1, 2, 3],
 [1, 2, 3]]), array([[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]])]

mars.tensor.expand_dims

	
mars.tensor.expand_dims(a, axis)

	Expand the shape of a tensor.

Insert a new axis that will appear at the axis position in the expanded
array shape.

	aarray_like

	Input tensor.

	axisint

	Position in the expanded axes where the new axis is placed.

	resTensor

	Output tensor. The number of dimensions is one greater than that of
the input tensor.

squeeze : The inverse operation, removing singleton dimensions
reshape : Insert, remove, and combine dimensions, and resize existing ones
doc.indexing, atleast_1d, atleast_2d, atleast_3d

>>> import mars.tensor as mt

>>> x = mt.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x[mt.newaxis,:] or x[mt.newaxis]:

>>> y = mt.expand_dims(x, axis=0)
>>> y.execute()
array([[1, 2]])
>>> y.shape
(1, 2)

>>> y = mt.expand_dims(x, axis=1) # Equivalent to x[:,mt.newaxis]
>>> y.execute()
array([[1],
 [2]])
>>> y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis. These
are the same objects:

>>> mt.newaxis is None
True

mars.tensor.squeeze

	
mars.tensor.squeeze(a, axis=None)

	Remove single-dimensional entries from the shape of a tensor.

	aarray_like

	Input data.

	axisNone or int or tuple of ints, optional

	Selects a subset of the single-dimensional entries in the
shape. If an axis is selected with shape entry greater than
one, an error is raised.

	squeezedTensor

	The input tensor, but with all or a subset of the
dimensions of length 1 removed. This is always a itself
or a view into a.

	ValueError

	If axis is not None, and an axis being squeezed is not of length 1

expand_dims : The inverse operation, adding singleton dimensions
reshape : Insert, remove, and combine dimensions, and resize existing ones

>>> import mars.tensor as mt

>>> x = mt.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> mt.squeeze(x).shape
(3,)
>>> mt.squeeze(x, axis=0).shape
(3, 1)
>>> mt.squeeze(x, axis=1).shape
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> mt.squeeze(x, axis=2).shape
(1, 3)

mars.tensor.asarray

	
mars.tensor.asarray(x, dtype=None, order=None, chunk_size=None)

	Convert the input to an array.

	aarray_like

	Input data, in any form that can be converted to a tensor. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and tensors.

	dtypedata-type, optional

	By default, the data-type is inferred from the input data.

	order{‘C’, ‘F’}, optional

	Whether to use row-major (C-style) or
column-major (Fortran-style) memory representation.

	chunk_size: int, tuple, optional

	Specifies chunk size for each dimension.

	outTensor

	Tensor interpretation of a. No copy is performed if the input
is already an ndarray with matching dtype and order. If a is a
subclass of ndarray, a base class ndarray is returned.

ascontiguousarray : Convert input to a contiguous tensor.
asfortranarray : Convert input to a tensor with column-major

memory order.

Convert a list into a tensor:

>>> import mars.tensor as mt

>>> a = [1, 2]
>>> mt.asarray(a).execute()
array([1, 2])

Existing arrays are not copied:

>>> a = mt.array([1, 2])
>>> mt.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = mt.array([1, 2], dtype=mt.float32)
>>> mt.asarray(a, dtype=mt.float32) is a
True
>>> mt.asarray(a, dtype=mt.float64) is a
False

mars.tensor.concatenate

	
mars.tensor.concatenate(tensors, axis=0)

	Join a sequence of arrays along an existing axis.

	a1, a2, …sequence of array_like

	The tensors must have the same shape, except in the dimension
corresponding to axis (the first, by default).

	axisint, optional

	The axis along which the tensors will be joined. Default is 0.

	resTensor

	The concatenated tensor.

	array_splitSplit a tensor into multiple sub-arrays of equal or

	near-equal size.

split : Split tensor into a list of multiple sub-tensors of equal size.
hsplit : Split tensor into multiple sub-tensors horizontally (column wise)
vsplit : Split tensor into multiple sub-tensors vertically (row wise)
dsplit : Split tensor into multiple sub-tensors along the 3rd axis (depth).
stack : Stack a sequence of tensors along a new axis.
hstack : Stack tensors in sequence horizontally (column wise)
vstack : Stack tensors in sequence vertically (row wise)
dstack : Stack tensors in sequence depth wise (along third dimension)

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, 4]])
>>> b = mt.array([[5, 6]])
>>> mt.concatenate((a, b), axis=0).execute()
array([[1, 2],
 [3, 4],
 [5, 6]])
>>> mt.concatenate((a, b.T), axis=1).execute()
array([[1, 2, 5],
 [3, 4, 6]])

mars.tensor.stack

	
mars.tensor.stack(tensors, axis=0, out=None)

	Join a sequence of tensors along a new axis.

The axis parameter specifies the index of the new axis in the dimensions
of the result. For example, if axis=0 it will be the first dimension
and if axis=-1 it will be the last dimension.

	tensorssequence of array_like

	Each tensor must have the same shape.

	axisint, optional

	The axis in the result tensor along which the input tensors are stacked.

	outTensor, optional

	If provided, the destination to place the result. The shape must be
correct, matching that of what stack would have returned if no
out argument were specified.

	stackedTensor

	The stacked tensor has one more dimension than the input tensors.

concatenate : Join a sequence of tensors along an existing axis.
split : Split tensor into a list of multiple sub-tensors of equal size.
block : Assemble tensors from blocks.

>>> import mars.tensor as mt

>>> arrays = [mt.random.randn(3, 4) for _ in range(10)]
>>> mt.stack(arrays, axis=0).shape
(10, 3, 4)

>>> mt.stack(arrays, axis=1).shape
(3, 10, 4)

>>> mt.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = mt.array([1, 2, 3])
>>> b = mt.array([2, 3, 4])
>>> mt.stack((a, b)).execute()
array([[1, 2, 3],
 [2, 3, 4]])

>>> mt.stack((a, b), axis=-1).execute()
array([[1, 2],
 [2, 3],
 [3, 4]])

mars.tensor.column_stack

	
mars.tensor.column_stack(tup)

	Stack 1-D tensors as columns into a 2-D tensor.

Take a sequence of 1-D tensors and stack them as columns
to make a single 2-D tensor. 2-D tensors are stacked as-is,
just like with hstack. 1-D tensors are turned into 2-D columns
first.

	tupsequence of 1-D or 2-D tensors.

	Tensors to stack. All of them must have the same first dimension.

	stacked2-D tensor

	The tensor formed by stacking the given tensors.

stack, hstack, vstack, concatenate

>>> import mars.tensor as mt

>>> a = mt.array((1,2,3))
>>> b = mt.array((2,3,4))
>>> mt.column_stack((a,b)).execute()
array([[1, 2],
 [2, 3],
 [3, 4]])

mars.tensor.dstack

	
mars.tensor.dstack(tup)

	Stack tensors in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D tensors
of shape (M,N) have been reshaped to (M,N,1) and 1-D arrays of shape
(N,) have been reshaped to (1,N,1). Rebuilds arrays divided by
dsplit.

This function makes most sense for arrays with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

	tupsequence of tensors

	The tensors must have the same shape along all but the third axis.
1-D or 2-D arrays must have the same shape.

	stackedTensor

	The array formed by stacking the given tensors, will be at least 3-D.

stack : Join a sequence of tensors along a new axis.
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split tensor along third axis.

>>> import mars.tensor as mt

>>> a = mt.array((1,2,3))
>>> b = mt.array((2,3,4))
>>> mt.dstack((a,b)).execute()
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = mt.array([[1],[2],[3]])
>>> b = mt.array([[2],[3],[4]])
>>> mt.dstack((a,b)).execute()
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

mars.tensor.hstack

	
mars.tensor.hstack(tup)

	Stack tensors in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D
tensors where it concatenates along the first axis. Rebuilds tensors divided
by hsplit.

This function makes most sense for tensors with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

	tupsequence of tensors

	The tensors must have the same shape along all but the second axis,
except 1-D tensors which can be any length.

	stackedTensor

	The tensor formed by stacking the given tensors.

stack : Join a sequence of tensors along a new axis.
vstack : Stack tensors in sequence vertically (row wise).
dstack : Stack tensors in sequence depth wise (along third axis).
concatenate : Join a sequence of tensors along an existing axis.
hsplit : Split tensor along second axis.
block : Assemble tensors from blocks.

>>> import mars.tensor as mt

>>> a = mt.array((1,2,3))
>>> b = mt.array((2,3,4))
>>> mt.hstack((a,b)).execute()
array([1, 2, 3, 2, 3, 4])
>>> a = mt.array([[1],[2],[3]])
>>> b = mt.array([[2],[3],[4]])
>>> mt.hstack((a,b)).execute()
array([[1, 2],
 [2, 3],
 [3, 4]])

mars.tensor.vstack

	
mars.tensor.vstack(tup)

	Stack tensors in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D tensors
of shape (N,) have been reshaped to (1,N). Rebuilds tensors divided by
vsplit.

This function makes most sense for tensors with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

	tupsequence of tensors

	The tensors must have the same shape along all but the first axis.
1-D tensors must have the same length.

	stackedTensor

	The tensor formed by stacking the given tensors, will be at least 2-D.

stack : Join a sequence of tensors along a new axis.
hstack : Stack tensors in sequence horizontally (column wise).
dstack : Stack tensors in sequence depth wise (along third dimension).
concatenate : Join a sequence of tensors along an existing axis.
vsplit : Split tensor into a list of multiple sub-arrays vertically.
block : Assemble tensors from blocks.

>>> import mars.tensor as mt

>>> a = mt.array([1, 2, 3])
>>> b = mt.array([2, 3, 4])
>>> mt.vstack((a,b)).execute()
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = mt.array([[1], [2], [3]])
>>> b = mt.array([[2], [3], [4]])
>>> mt.vstack((a,b)).execute()
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

mars.tensor.split

	
mars.tensor.split(ary, indices_or_sections, axis=0)

	Split a tensor into multiple sub-tensors.

	aryTensor

	Tensor to be divided into sub-tensors.

	indices_or_sectionsint or 1-D tensor

	If indices_or_sections is an integer, N, the array will be divided
into N equal tensors along axis. If such a split is not possible,
an error is raised.

If indices_or_sections is a 1-D tensor of sorted integers, the entries
indicate where along axis the array is split. For example,
[2, 3] would, for axis=0, result in

	ary[:2]

	ary[2:3]

	ary[3:]

If an index exceeds the dimension of the tensor along axis,
an empty sub-tensor is returned correspondingly.

	axisint, optional

	The axis along which to split, default is 0.

	sub-tensorslist of Tensors

	A list of sub-tensors.

	ValueError

	If indices_or_sections is given as an integer, but
a split does not result in equal division.

	array_splitSplit a tensor into multiple sub-tensors of equal or

	near-equal size. Does not raise an exception if
an equal division cannot be made.

hsplit : Split into multiple sub-arrays horizontally (column-wise).
vsplit : Split tensor into multiple sub-tensors vertically (row wise).
dsplit : Split tensor into multiple sub-tensors along the 3rd axis (depth).
concatenate : Join a sequence of tensors along an existing axis.
stack : Join a sequence of tensors along a new axis.
hstack : Stack tensors in sequence horizontally (column wise).
vstack : Stack tensors in sequence vertically (row wise).
dstack : Stack tensors in sequence depth wise (along third dimension).

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> x = mt.arange(9.0)
>>> sess.run(mt.split(x, 3))
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]

>>> x = mt.arange(8.0)
>>> sess.run(mt.split(x, [3, 5, 6, 10]))
[array([0., 1., 2.]),
 array([3., 4.]),
 array([5.]),
 array([6., 7.]),
 array([], dtype=float64)]

mars.tensor.array_split

	
mars.tensor.array_split(a, indices_or_sections, axis=0)

	Split a tensor into multiple sub-tensors.

Please refer to the split documentation. The only difference
between these functions is that array_split allows
indices_or_sections to be an integer that does not equally
divide the axis. For a tensor of length l that should be split
into n sections, it returns l % n sub-arrays of size l//n + 1
and the rest of size l//n.

split : Split tensor into multiple sub-tensors of equal size.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> x = mt.arange(8.0)
>>> sess.run(mt.array_split(x, 3))
 [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]

>>> x = mt.arange(7.0)
>>> sess.run(mt.array_split(x, 3))
 [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])]

mars.tensor.dsplit

	
mars.tensor.dsplit(a, indices_or_sections)

	Split tensor into multiple sub-tensors along the 3rd axis (depth).

Please refer to the split documentation. dsplit is equivalent
to split with axis=2, the array is always split along the third
axis provided the tensor dimension is greater than or equal to 3.

split : Split a tensor into multiple sub-arrays of equal size.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> x = mt.arange(16.0).reshape(2, 2, 4)
>>> x.execute()
array([[[0., 1., 2., 3.],
 [4., 5., 6., 7.]],
 [[8., 9., 10., 11.],
 [12., 13., 14., 15.]]])
>>> sess.run(mt.dsplit(x, 2))
[array([[[0., 1.],
 [4., 5.]],
 [[8., 9.],
 [12., 13.]]]),
 array([[[2., 3.],
 [6., 7.]],
 [[10., 11.],
 [14., 15.]]])]
>>> sess.run(mt.dsplit(x, mt.array([3, 6])))
[array([[[0., 1., 2.],
 [4., 5., 6.]],
 [[8., 9., 10.],
 [12., 13., 14.]]]),
 array([[[3.],
 [7.]],
 [[11.],
 [15.]]]),
 array([], dtype=float64)]

mars.tensor.hsplit

	
mars.tensor.hsplit(a, indices_or_sections)

	Split a tensor into multiple sub-tensors horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent
to split with axis=1, the tensor is always split along the second
axis regardless of the tensor dimension.

split : Split an array into multiple sub-arrays of equal size.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> x = mt.arange(16.0).reshape(4, 4)
>>> x.execute()
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> sess.run(mt.hsplit(x, 2))
[array([[0., 1.],
 [4., 5.],
 [8., 9.],
 [12., 13.]]),
 array([[2., 3.],
 [6., 7.],
 [10., 11.],
 [14., 15.]])]
>>> sess.run(mt.hsplit(x, mt.array([3, 6])))
[array([[0., 1., 2.],
 [4., 5., 6.],
 [8., 9., 10.],
 [12., 13., 14.]]),
 array([[3.],
 [7.],
 [11.],
 [15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = mt.arange(8.0).reshape(2, 2, 2)
>>> x.execute()
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> mt.hsplit(x, 2)
[array([[[0., 1.]],
 [[4., 5.]]]),
 array([[[2., 3.]],
 [[6., 7.]]])]

mars.tensor.vsplit

	
mars.tensor.vsplit(a, indices_or_sections)

	Split a tensor into multiple sub-tensors vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent
to split with axis=0 (default), the tensor is always split along the
first axis regardless of the tensor dimension.

split : Split a tensor into multiple sub-tensors of equal size.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session()

>>> x = mt.arange(16.0).reshape(4, 4)
>>> x.execute()
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> sess.run(mt.vsplit(x, 2))
[array([[0., 1., 2., 3.],
 [4., 5., 6., 7.]]),
 array([[8., 9., 10., 11.],
 [12., 13., 14., 15.]])]
>>> sess.run(mt.vsplit(x, mt.array([3, 6])))
[array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]]),
 array([[12., 13., 14., 15.]]),
 array([], dtype=float64)]

With a higher dimensional tensor the split is still along the first axis.

>>> x = mt.arange(8.0).reshape(2, 2, 2)
>>> x.execute()
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> sess.run(mt.vsplit(x, 2))
[array([[[0., 1.],
 [2., 3.]]]),
 array([[[4., 5.],
 [6., 7.]]])]

mars.tensor.tile

	
mars.tensor.tile(A, reps)

	Construct a tensor by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of
max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote A to d-dimensions manually before calling this
function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it.
Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as
(1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly
recommended to use Mars’ broadcasting operations and functions.

	Aarray_like

	The input tensor.

	repsarray_like

	The number of repetitions of A along each axis.

	cTensor

	The tiled output tensor.

repeat : Repeat elements of a tensor.
broadcast_to : Broadcast a tensor to a new shape

>>> import mars.tensor as mt

>>> a = mt.array([0, 1, 2])
>>> mt.tile(a, 2).execute()
array([0, 1, 2, 0, 1, 2])
>>> mt.tile(a, (2, 2)).execute()
array([[0, 1, 2, 0, 1, 2],
 [0, 1, 2, 0, 1, 2]])
>>> mt.tile(a, (2, 1, 2)).execute()
array([[[0, 1, 2, 0, 1, 2]],
 [[0, 1, 2, 0, 1, 2]]])

>>> b = mt.array([[1, 2], [3, 4]])
>>> mt.tile(b, 2).execute()
array([[1, 2, 1, 2],
 [3, 4, 3, 4]])
>>> mt.tile(b, (2, 1)).execute()
array([[1, 2],
 [3, 4],
 [1, 2],
 [3, 4]])

>>> c = mt.array([1,2,3,4])
>>> mt.tile(c,(4,1)).execute()
array([[1, 2, 3, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 4]])

mars.tensor.repeat

	
mars.tensor.repeat(a, repeats, axis=None)

	Repeat elements of a tensor.

	aarray_like

	Input tensor.

	repeatsint or tensor of ints

	The number of repetitions for each element. repeats is broadcasted
to fit the shape of the given axis.

	axisint, optional

	The axis along which to repeat values. By default, use the
flattened input tensor, and return a flat output tensor.

	repeated_tensorTensor

	Output array which has the same shape as a, except along
the given axis.

tile : Tile a tensor.

>>> import mars.tensor as mt

>>> mt.repeat(3, 4).execute()
array([3, 3, 3, 3])
>>> x = mt.array([[1,2],[3,4]])
>>> mt.repeat(x, 2).execute()
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> mt.repeat(x, 3, axis=1).execute()
array([[1, 1, 1, 2, 2, 2],
 [3, 3, 3, 4, 4, 4]])
>>> mt.repeat(x, [1, 2], axis=0).execute()
array([[1, 2],
 [3, 4],
 [3, 4]])

mars.tensor.flip

	
mars.tensor.flip(m, axis)

	Reverse the order of elements in a tensor along the given axis.

The shape of the array is preserved, but the elements are reordered.

	marray_like

	Input tensor.

	axisinteger

	Axis in tensor, which entries are reversed.

	outarray_like

	A view of m with the entries of axis reversed. Since a view is
returned, this operation is done in constant time.

flipud : Flip a tensor vertically (axis=0).
fliplr : Flip a tensor horizontally (axis=1).

flip(m, 0) is equivalent to flipud(m).
flip(m, 1) is equivalent to fliplr(m).
flip(m, n) corresponds to m[...,::-1,...] with ::-1 at position n.

>>> import mars.tensor as mt

>>> A = mt.arange(8).reshape((2,2,2))
>>> A.execute()
array([[[0, 1],
 [2, 3]],

	[[4, 5],

	[6, 7]]])

>>> mt.flip(A, 0).execute()
array([[[4, 5],
 [6, 7]],

	[[0, 1],

	[2, 3]]])

>>> mt.flip(A, 1).execute()
array([[[2, 3],
 [0, 1]],

	[[6, 7],

	[4, 5]]])

>>> A = mt.random.randn(3,4,5)
>>> mt.all(mt.flip(A,2) == A[:,:,::-1,...]).execute()
True

mars.tensor.fliplr

	
mars.tensor.fliplr(m)

	Flip tensor in the left/right direction.

Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.

	marray_like

	Input tensor, must be at least 2-D.

	fTensor

	A view of m with the columns reversed. Since a view
is returned, this operation is \(\mathcal O(1)\).

flipud : Flip array in the up/down direction.
rot90 : Rotate array counterclockwise.

Equivalent to m[:,::-1]. Requires the tensor to be at least 2-D.

>>> import mars.tensor as mt

>>> A = mt.diag([1.,2.,3.])
>>> A.execute()
array([[1., 0., 0.],
 [0., 2., 0.],
 [0., 0., 3.]])
>>> mt.fliplr(A).execute()
array([[0., 0., 1.],
 [0., 2., 0.],
 [3., 0., 0.]])

>>> A = mt.random.randn(2,3,5)
>>> mt.all(mt.fliplr(A) == A[:,::-1,...]).execute()
True

mars.tensor.flipud

	
mars.tensor.flipud(m)

	Flip tensor in the up/down direction.

Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.

	marray_like

	Input tensor.

	outarray_like

	A view of m with the rows reversed. Since a view is
returned, this operation is \(\mathcal O(1)\).

fliplr : Flip tensor in the left/right direction.
rot90 : Rotate tensor counterclockwise.

Equivalent to m[::-1,...].
Does not require the tensor to be two-dimensional.

>>> import mars.tensor as mt

>>> A = mt.diag([1.0, 2, 3])
>>> A.execute()
array([[1., 0., 0.],
 [0., 2., 0.],
 [0., 0., 3.]])
>>> mt.flipud(A).execute()
array([[0., 0., 3.],
 [0., 2., 0.],
 [1., 0., 0.]])

>>> A = mt.random.randn(2,3,5)
>>> mt.all(mt.flipud(A) == A[::-1,...]).execute()
True

>>> mt.flipud([1,2]).execute()
array([2, 1])

mars.tensor.reshape

	
mars.tensor.reshape(a, newshape, order='C')

	Gives a new shape to a tensor without changing its data.

	aarray_like

	Tensor to be reshaped.

	newshapeint or tuple of ints

	The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D tensor of that length.
One shape dimension can be -1. In this case, the value is
inferred from the length of the tensor and remaining dimensions.

	order{‘C’, ‘F’, ‘A’}, optional

	Read the elements of a using this index order, and place the
elements into the reshaped array using this index order. ‘C’
means to read / write the elements using C-like index order,
with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to read / write the
elements using Fortran-like index order, with the first index
changing fastest, and the last index changing slowest. Note that
the ‘C’ and ‘F’ options take no account of the memory layout of
the underlying array, and only refer to the order of indexing.
‘A’ means to read / write the elements in Fortran-like index
order if a is Fortran contiguous in memory, C-like order
otherwise.

	reshaped_arrayTensor

	This will be a new view object if possible; otherwise, it will
be a copy.

Tensor.reshape : Equivalent method.

It is not always possible to change the shape of a tensor without
copying the data. If you want an error to be raised when the data is copied,
you should assign the new shape to the shape attribute of the array:

>>> import mars.tensor as mt

>>> a = mt.arange(6).reshape((3, 2))
>>> a.execute()
array([[0, 1],
 [2, 3],
 [4, 5]])

You can think of reshaping as first raveling the tensor (using the given
index order), then inserting the elements from the raveled tensor into the
new tensor using the same kind of index ordering as was used for the
raveling.

>>> mt.reshape(a, (2, 3)).execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.reshape(mt.ravel(a), (2, 3)).execute()
array([[0, 1, 2],
 [3, 4, 5]])

>>> a = mt.array([[1,2,3], [4,5,6]])
>>> mt.reshape(a, 6).execute()
array([1, 2, 3, 4, 5, 6])

>>> mt.reshape(a, (3,-1)).execute() # the unspecified value is inferred to be 2
array([[1, 2],
 [3, 4],
 [5, 6]])

mars.tensor.roll

	
mars.tensor.roll(a, shift, axis=None)

	Roll tensor elements along a given axis.

Elements that roll beyond the last position are re-introduced at
the first.

	aarray_like

	Input tensor.

	shiftint or tuple of ints

	The number of places by which elements are shifted. If a tuple,
then axis must be a tuple of the same size, and each of the
given axes is shifted by the corresponding number. If an int
while axis is a tuple of ints, then the same value is used for
all given axes.

	axisint or tuple of ints, optional

	Axis or axes along which elements are shifted. By default, the
tensor is flattened before shifting, after which the original
shape is restored.

	resTensor

	Output tensor, with the same shape as a.

	rollaxisRoll the specified axis backwards, until it lies in a

	given position.

Supports rolling over multiple dimensions simultaneously.

>>> import mars.tensor as mt

>>> x = mt.arange(10)
>>> mt.roll(x, 2).execute()
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

>>> x2 = mt.reshape(x, (2,5))
>>> x2.execute()
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> mt.roll(x2, 1).execute()
array([[9, 0, 1, 2, 3],
 [4, 5, 6, 7, 8]])
>>> mt.roll(x2, 1, axis=0).execute()
array([[5, 6, 7, 8, 9],
 [0, 1, 2, 3, 4]])
>>> mt.roll(x2, 1, axis=1).execute()
array([[4, 0, 1, 2, 3],
 [9, 5, 6, 7, 8]])

Binary Operations

Elementwise bit operations

	mars.tensor.bitwise_and

	Compute the bit-wise AND of two tensors element-wise.

	mars.tensor.bitwise_or

	Compute the bit-wise OR of two tensors element-wise.

	mars.tensor.bitwise_xor

	Compute the bit-wise XOR of two arrays element-wise.

	mars.tensor.invert

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	mars.tensor.left_shift

	Shift the bits of an integer to the left.

	mars.tensor.right_shift

	Shift the bits of an integer to the right.

mars.tensor.bitwise_and

	
mars.tensor.bitwise_and(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise AND of two tensors element-wise.

Computes the bit-wise AND of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator &.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_and
bitwise_or
bitwise_xor

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise AND of 13 and 17 is
therefore 000000001, or 1:

>>> import mars.tensor as mt

>>> mt.bitwise_and(13, 17).execute()
1

>>> mt.bitwise_and(14, 13).execute()
12
>>> mt.bitwise_and([14,3], 13).execute()
array([12, 1])

>>> mt.bitwise_and([11,7], [4,25]).execute()
array([0, 1])
>>> mt.bitwise_and(mt.array([2,5,255]), mt.array([3,14,16])).execute()
array([2, 4, 16])
>>> mt.bitwise_and([True, True], [False, True]).execute()
array([False, True])

mars.tensor.bitwise_or

	
mars.tensor.bitwise_or(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise OR of two tensors element-wise.

Computes the bit-wise OR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator |.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_or
bitwise_and
bitwise_xor
binary_repr :

Return the binary representation of the input number as a string.

The number 13 has the binaray representation 00001101. Likewise,
16 is represented by 00010000. The bit-wise OR of 13 and 16 is
then 000111011, or 29:

>>> import mars.tensor as mt

>>> mt.bitwise_or(13, 16).execute()
29

>>> mt.bitwise_or(32, 2).execute()
34
>>> mt.bitwise_or([33, 4], 1).execute()
array([33, 5])
>>> mt.bitwise_or([33, 4], [1, 2]).execute()
array([33, 6])

>>> mt.bitwise_or(mt.array([2, 5, 255]), mt.array([4, 4, 4])).execute()
array([6, 5, 255])
>>> (mt.array([2, 5, 255]) | mt.array([4, 4, 4])).execute()
array([6, 5, 255])
>>> mt.bitwise_or(mt.array([2, 5, 255, 2147483647], dtype=mt.int32),
... mt.array([4, 4, 4, 2147483647], dtype=mt.int32)).execute()
array([6, 5, 255, 2147483647])
>>> mt.bitwise_or([True, True], [False, True]).execute()
array([True, True])

mars.tensor.bitwise_xor

	
mars.tensor.bitwise_xor(x1, x2, out=None, where=None, **kwargs)

	Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ^.

	x1, x2array_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

logical_xor
bitwise_and
bitwise_or
binary_repr :

Return the binary representation of the input number as a string.

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise XOR of 13 and 17 is
therefore 00011100, or 28:

>>> import mars.tensor as mt

>>> mt.bitwise_xor(13, 17).execute()
28

>>> mt.bitwise_xor(31, 5).execute()
26
>>> mt.bitwise_xor([31,3], 5).execute()
array([26, 6])

>>> mt.bitwise_xor([31,3], [5,6]).execute()
array([26, 5])
>>> mt.bitwise_xor([True, True], [False, True]).execute()
array([True, False])

mars.tensor.invert

	
mars.tensor.invert(x, out=None, where=None, **kwargs)

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of
the integers in the input tensors. This ufunc implements the C/Python
operator ~.

For signed integer inputs, the two’s complement is returned. In a
two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers 1. A N-bit
two’s-complement system can represent every integer in the range
\(-2^{N-1}\) to \(+2^{N-1}-1\).

	xarray_like

	Only integer and boolean types are handled.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	Result.

bitwise_and, bitwise_or, bitwise_xor
logical_not

bitwise_not is an alias for invert:

>>> import mars.tensor as mt

>>> mt.bitwise_not is mt.invert
True

	1

	Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement [http://en.wikipedia.org/wiki/Two's_complement]

We’ve seen that 13 is represented by 00001101.
The invert or bit-wise NOT of 13 is then:

>>> mt.invert(mt.array([13], dtype=mt.uint8)).execute()
array([242], dtype=uint8)

The result depends on the bit-width:

>>> mt.invert(mt.array([13], dtype=mt.uint16)).execute()
array([65522], dtype=uint16)

When using signed integer types the result is the two’s complement of
the result for the unsigned type:

>>> mt.invert(mt.array([13], dtype=mt.int8)).execute()
array([-14], dtype=int8)

Booleans are accepted as well:

>>> mt.invert(mt.array([True, False])).execute()
array([False, True])

mars.tensor.left_shift

	
mars.tensor.left_shift(x1, x2, out=None, where=None, **kwargs)

	Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x1 by 2**x2.

	x1array_like of integer type

	Input values.

	x2array_like of integer type

	Number of zeros to append to x1. Has to be non-negative.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outtensor of integer type

	Return x1 with bits shifted x2 times to the left.

right_shift : Shift the bits of an integer to the right.

>>> import mars.tensor as mt

>>> mt.left_shift(5, 2).execute()
20

>>> mt.left_shift(5, [1,2,3]).execute()
array([10, 20, 40])

mars.tensor.right_shift

	
mars.tensor.right_shift(x1, x2, out=None, where=None, **kwargs)

	Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal
representation of numbers is in binary format, this operation is
equivalent to dividing x1 by 2**x2.

	x1array_like, int

	Input values.

	x2array_like, int

	Number of bits to remove at the right of x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor, int

	Return x1 with bits shifted x2 times to the right.

left_shift : Shift the bits of an integer to the left.

>>> import mars.tensor as mt
>>> mt.right_shift(10, 1).execute()
5

>>> mt.right_shift(10, [1,2,3]).execute()
array([5, 2, 1])

Discrete Fourier Transform

Standard FFTs

	mars.tensor.fft.fft

	Compute the one-dimensional discrete Fourier Transform.

	mars.tensor.fft.ifft

	Compute the one-dimensional inverse discrete Fourier Transform.

	mars.tensor.fft.fft2

	Compute the 2-dimensional discrete Fourier Transform

	mars.tensor.fft.ifft2

	Compute the 2-dimensional inverse discrete Fourier Transform.

	mars.tensor.fft.fftn

	Compute the N-dimensional discrete Fourier Transform.

	mars.tensor.fft.ifftn

	Compute the N-dimensional inverse discrete Fourier Transform.

Real FFTs

	mars.tensor.fft.rfft

	Compute the one-dimensional discrete Fourier Transform for real input.

	mars.tensor.fft.irfft

	Compute the inverse of the n-point DFT for real input.

	mars.tensor.fft.rfft2

	Compute the 2-dimensional FFT of a real tensor.

	mars.tensor.fft.irfft2

	Compute the 2-dimensional inverse FFT of a real array.

	mars.tensor.fft.rfftn

	Compute the N-dimensional discrete Fourier Transform for real input.

	mars.tensor.fft.irfftn

	Compute the inverse of the N-dimensional FFT of real input.

Hermitian FFTs

	mars.tensor.fft.hfft

	Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

	mars.tensor.fft.ihfft

	Compute the inverse FFT of a signal that has Hermitian symmetry.

Helper routines

	mars.tensor.fft.fftfreq

	Return the Discrete Fourier Transform sample frequencies.

	mars.tensor.fft.rfftfreq

	Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

	mars.tensor.fft.fftshift

	Shift the zero-frequency component to the center of the spectrum.

	mars.tensor.fft.ifftshift

	The inverse of fftshift.

mars.tensor.fft.fft

	
mars.tensor.fft.fft(a, n=None, axis=-1, norm=None)

	Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].

	aarray_like

	Input tensor, can be complex.

	nint, optional

	Length of the transformed axis of the output.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

	axisint, optional

	Axis over which to compute the FFT. If not given, the last axis is
used.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.

	IndexError

	if axes is larger than the last axis of a.

mt.fft : for definition of the DFT and conventions used.
ifft : The inverse of fft.
fft2 : The two-dimensional FFT.
fftn : The n-dimensional FFT.
rfftn : The n-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.

FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when n is a power of 2, and
the transform is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in
the documentation for the numpy.fft module.

	CT

	Cooley, James W., and John W. Tukey, 1965, “An algorithm for the
machine calculation of complex Fourier series,” Math. Comput.
19: 297-301.

>>> import mars.tensor as mt

>>> mt.fft.fft(mt.exp(2j * mt.pi * mt.arange(8) / 8)).execute()
array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-6.89018570e-16j,
 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+0.00000000e+00j,
 -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+1.99159850e-16j,
 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+0.00000000e+00j])

In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the numpy.fft documentation:

>>> import matplotlib.pyplot as plt
>>> t = mt.arange(256)
>>> sp = mt.fft.fft(mt.sin(t))
>>> freq = mt.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq.execute(), sp.real.execute(), freq.execute(), sp.imag.execute())
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

mars.tensor.fft.ifft

	
mars.tensor.fft.ifft(a, n=None, axis=-1, norm=None)

	Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point
discrete Fourier transform computed by fft. In other words,
ifft(fft(a)) == a to within numerical accuracy.
For a general description of the algorithm and definitions,
see mt.fft.

The input should be ordered in the same way as is returned by fft,
i.e.,

	a[0] should contain the zero frequency term,

	a[1:n//2] should contain the positive-frequency terms,

	a[n//2 + 1:] should contain the negative-frequency terms, in
increasing order starting from the most negative frequency.

For an even number of input points, A[n//2] represents the sum of
the values at the positive and negative Nyquist frequencies, as the two
are aliased together. See numpy.fft for details.

	aarray_like

	Input tensor, can be complex.

	nint, optional

	Length of the transformed axis of the output.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.
See notes about padding issues.

	axisint, optional

	Axis over which to compute the inverse DFT. If not given, the last
axis is used.

	norm{None, “ortho”}, optional

	Normalization mode (see numpy.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.

	IndexError

	If axes is larger than the last axis of a.

mt.fft : An introduction, with definitions and general explanations.
fft : The one-dimensional (forward) FFT, of which ifft is the inverse
ifft2 : The two-dimensional inverse FFT.
ifftn : The n-dimensional inverse FFT.

If the input parameter n is larger than the size of the input, the input
is padded by appending zeros at the end. Even though this is the common
approach, it might lead to surprising results. If a different padding is
desired, it must be performed before calling ifft.

>>> import mars.tensor as mt

>>> mt.fft.ifft([0, 4, 0, 0]).execute()
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = mt.arange(400)
>>> n = mt.zeros((400,), dtype=complex)
>>> n[40:60] = mt.exp(1j*mt.random.uniform(0, 2*mt.pi, (20,)))
>>> s = mt.fft.ifft(n)
>>> plt.plot(t.execute(), s.real.execute(), 'b-', t.execute(), s.imag.execute(), 'r--')
...
>>> plt.legend(('real', 'imaginary'))
...
>>> plt.show()

mars.tensor.fft.fft2

	
mars.tensor.fft.fft2(a, s=None, axes=(-2, -1), norm=None)

	Compute the 2-dimensional discrete Fourier Transform

This function computes the n-dimensional discrete Fourier Transform
over any axes in an M-dimensional array by means of the
Fast Fourier Transform (FFT). By default, the transform is computed over
the last two axes of the input array, i.e., a 2-dimensional FFT.

	aarray_like

	Input tensor, can be complex

	ssequence of ints, optional

	Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for fft(x, n).
Along each axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

	axessequence of ints, optional

	Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over
that axis is performed multiple times. A one-element sequence means
that a one-dimensional FFT is performed.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or the last two axes if axes is not given.

	ValueError

	If s and axes have different length, or axes not given and
len(s) != 2.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	mt.fftOverall view of discrete Fourier transforms, with definitions

	and conventions used.

ifft2 : The inverse two-dimensional FFT.
fft : The one-dimensional FFT.
fftn : The n-dimensional FFT.
fftshift : Shifts zero-frequency terms to the center of the array.

For two-dimensional input, swaps first and third quadrants, and second
and fourth quadrants.

fft2 is just fftn with a different default for axes.

The output, analogously to fft, contains the term for zero frequency in
the low-order corner of the transformed axes, the positive frequency terms
in the first half of these axes, the term for the Nyquist frequency in the
middle of the axes and the negative frequency terms in the second half of
the axes, in order of decreasingly negative frequency.

See fftn for details and a plotting example, and mt.fft for
definitions and conventions used.

>>> import mars.tensor as mt

>>> a = mt.mgrid[:5, :5][0]
>>> mt.fft.fft2(a).execute()
array([[50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j]])

mars.tensor.fft.ifft2

	
mars.tensor.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)

	Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier
Transform over any number of axes in an M-dimensional array by means of
the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a)) == a
to within numerical accuracy. By default, the inverse transform is
computed over the last two axes of the input array.

The input, analogously to ifft, should be ordered in the same way as is
returned by fft2, i.e. it should have the term for zero frequency
in the low-order corner of the two axes, the positive frequency terms in
the first half of these axes, the term for the Nyquist frequency in the
middle of the axes and the negative frequency terms in the second half of
both axes, in order of decreasingly negative frequency.

	aarray_like

	Input tensor, can be complex.

	ssequence of ints, optional

	Shape (length of each axis) of the output (s[0] refers to axis 0,
s[1] to axis 1, etc.). This corresponds to n for ifft(x, n).
Along each axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

	axessequence of ints, optional

	Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over
that axis is performed multiple times. A one-element sequence means
that a one-dimensional FFT is performed.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or the last two axes if axes is not given.

	ValueError

	If s and axes have different length, or axes not given and
len(s) != 2.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	mt.fftOverall view of discrete Fourier transforms, with definitions

	and conventions used.

fft2 : The forward 2-dimensional FFT, of which ifft2 is the inverse.
ifftn : The inverse of the n-dimensional FFT.
fft : The one-dimensional FFT.
ifft : The one-dimensional inverse FFT.

ifft2 is just ifftn with a different default for axes.

See ifftn for details and a plotting example, and numpy.fft for
definition and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to
the input along the specified dimension. Although this is the common
approach, it might lead to surprising results. If another form of zero
padding is desired, it must be performed before ifft2 is called.

>>> import mars.tensor as mt

>>> a = 4 * mt.eye(4)
>>> mt.fft.ifft2(a).execute()
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

mars.tensor.fft.fftn

	
mars.tensor.fft.fftn(a, s=None, axes=None, norm=None)

	Compute the N-dimensional discrete Fourier Transform.

This function computes the N-dimensional discrete Fourier Transform over
any number of axes in an M-dimensional tensor by means of the Fast Fourier
Transform (FFT).

	aarray_like

	Input tensor, can be complex.

	ssequence of ints, optional

	Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for fft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

	axessequence of ints, optional

	Axes over which to compute the FFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the transform over that axis is
performed multiple times.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s and a,
as explained in the parameters section above.

	ValueError

	If s and axes have different length.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	mt.fftOverall view of discrete Fourier transforms, with definitions

	and conventions used.

ifftn : The inverse of fftn, the inverse n-dimensional FFT.
fft : The one-dimensional FFT, with definitions and conventions used.
rfftn : The n-dimensional FFT of real input.
fft2 : The two-dimensional FFT.
fftshift : Shifts zero-frequency terms to centre of tensor

The output, analogously to fft, contains the term for zero frequency in
the low-order corner of all axes, the positive frequency terms in the
first half of all axes, the term for the Nyquist frequency in the middle
of all axes and the negative frequency terms in the second half of all
axes, in order of decreasingly negative frequency.

See mt.fft for details, definitions and conventions used.

>>> import mars.tensor as mt

>>> a = mt.mgrid[:3, :3, :3][0]
>>> mt.fft.fftn(a, axes=(1, 2)).execute()
array([[[0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[9.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[18.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]])
>>> mt.fft.fftn(a, (2, 2), axes=(0, 1)).execute()
array([[[2.+0.j, 2.+0.j, 2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[-2.+0.j, -2.+0.j, -2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = mt.meshgrid(2 * mt.pi * mt.arange(200) / 12,
... 2 * mt.pi * mt.arange(200) / 34)
>>> S = mt.sin(X) + mt.cos(Y) + mt.random.uniform(0, 1, X.shape)
>>> FS = mt.fft.fftn(S)
>>> plt.imshow(mt.log(mt.abs(mt.fft.fftshift(FS))**2).execute())
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

mars.tensor.fft.ifftn

	
mars.tensor.fft.ifftn(a, s=None, axes=None, norm=None)

	Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete
Fourier Transform over any number of axes in an M-dimensional tensor by
means of the Fast Fourier Transform (FFT). In other words,
ifftn(fftn(a)) == a to within numerical accuracy.
For a description of the definitions and conventions used, see mt.fft.

The input, analogously to ifft, should be ordered in the same way as is
returned by fftn, i.e. it should have the term for zero frequency
in all axes in the low-order corner, the positive frequency terms in the
first half of all axes, the term for the Nyquist frequency in the middle
of all axes and the negative frequency terms in the second half of all
axes, in order of decreasingly negative frequency.

	aarray_like

	Input tensor, can be complex.

	ssequence of ints, optional

	Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for ifft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

	axessequence of ints, optional

	Axes over which to compute the IFFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the inverse transform over that
axis is performed multiple times.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s or a,
as explained in the parameters section above.

	ValueError

	If s and axes have different length.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	mt.fftOverall view of discrete Fourier transforms, with definitions

	and conventions used.

fftn : The forward n-dimensional FFT, of which ifftn is the inverse.
ifft : The one-dimensional inverse FFT.
ifft2 : The two-dimensional inverse FFT.
ifftshift : Undoes fftshift, shifts zero-frequency terms to beginning

of tensor.

See mt.fft for definitions and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to
the input along the specified dimension. Although this is the common
approach, it might lead to surprising results. If another form of zero
padding is desired, it must be performed before ifftn is called.

>>> import mars.tensor as mt

>>> a = mt.eye(4)
>>> mt.fft.ifftn(mt.fft.fftn(a, axes=(0,)), axes=(1,)).execute()
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

>>> import matplotlib.pyplot as plt
>>> n = mt.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = mt.exp(1j*mt.random.uniform(0, 2*mt.pi, (20, 20)))
>>> im = mt.fft.ifftn(n).real
>>> plt.imshow(im.execute())
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

mars.tensor.fft.rfft

	
mars.tensor.fft.rfft(a, n=None, axis=-1, norm=None)

	Compute the one-dimensional discrete Fourier Transform for real input.

This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) of a real-valued array by means of an efficient algorithm
called the Fast Fourier Transform (FFT).

	aarray_like

	Input tensor

	nint, optional

	Number of points along transformation axis in the input to use.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

	axisint, optional

	Axis over which to compute the FFT. If not given, the last axis is
used.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
If n is even, the length of the transformed axis is (n/2)+1.
If n is odd, the length is (n+1)/2.

	IndexError

	If axis is larger than the last axis of a.

mt.fft : For definition of the DFT and conventions used.
irfft : The inverse of rfft.
fft : The one-dimensional FFT of general (complex) input.
fftn : The n-dimensional FFT.
rfftn : The n-dimensional FFT of real input.

When the DFT is computed for purely real input, the output is
Hermitian-symmetric, i.e. the negative frequency terms are just the complex
conjugates of the corresponding positive-frequency terms, and the
negative-frequency terms are therefore redundant. This function does not
compute the negative frequency terms, and the length of the transformed
axis of the output is therefore n//2 + 1.

When A = rfft(a) and fs is the sampling frequency, A[0] contains
the zero-frequency term 0*fs, which is real due to Hermitian symmetry.

If n is even, A[-1] contains the term representing both positive
and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
real. If n is odd, there is no term at fs/2; A[-1] contains
the largest positive frequency (fs/2*(n-1)/n), and is complex in the
general case.

If the input a contains an imaginary part, it is silently discarded.

>>> import mars.tensor as mt

>>> mt.fft.fft([0, 1, 0, 0]).execute()
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
>>> mt.fft.rfft([0, 1, 0, 0]).execute()
array([1.+0.j, 0.-1.j, -1.+0.j])

Notice how the final element of the fft output is the complex conjugate
of the second element, for real input. For rfft, this symmetry is
exploited to compute only the non-negative frequency terms.

mars.tensor.fft.irfft

	
mars.tensor.fft.irfft(a, n=None, axis=-1, norm=None)

	Compute the inverse of the n-point DFT for real input.

This function computes the inverse of the one-dimensional n-point
discrete Fourier Transform of real input computed by rfft.
In other words, irfft(rfft(a), len(a)) == a to within numerical
accuracy. (See Notes below for why len(a) is necessary here.)

The input is expected to be in the form returned by rfft, i.e. the
real zero-frequency term followed by the complex positive frequency terms
in order of increasing frequency. Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken
to be the complex conjugates of the corresponding positive frequency terms.

	aarray_like

	The input tensor.

	nint, optional

	Length of the transformed axis of the output.
For n output points, n//2+1 input points are necessary. If the
input is longer than this, it is cropped. If it is shorter than this,
it is padded with zeros. If n is not given, it is determined from
the length of the input along the axis specified by axis.

	axisint, optional

	Axis over which to compute the inverse FFT. If not given, the last
axis is used.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outTensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
The length of the transformed axis is n, or, if n is not given,
2*(m-1) where m is the length of the transformed axis of the
input. To get an odd number of output points, n must be specified.

	IndexError

	If axis is larger than the last axis of a.

mt.fft : For definition of the DFT and conventions used.
rfft : The one-dimensional FFT of real input, of which irfft is inverse.
fft : The one-dimensional FFT.
irfft2 : The inverse of the two-dimensional FFT of real input.
irfftn : The inverse of the n-dimensional FFT of real input.

Returns the real valued n-point inverse discrete Fourier transform
of a, where a contains the non-negative frequency terms of a
Hermitian-symmetric sequence. n is the length of the result, not the
input.

If you specify an n such that a must be zero-padded or truncated, the
extra/removed values will be added/removed at high frequencies. One can
thus resample a series to m points via Fourier interpolation by:
a_resamp = irfft(rfft(a), m).

>>> import mars.tenosr as mt

>>> mt.fft.ifft([1, -1j, -1, 1j]).execute()
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
>>> mt.fft.irfft([1, -1j, -1]).execute()
array([0., 1., 0., 0.])

Notice how the last term in the input to the ordinary ifft is the
complex conjugate of the second term, and the output has zero imaginary
part everywhere. When calling irfft, the negative frequencies are not
specified, and the output array is purely real.

mars.tensor.fft.rfft2

	
mars.tensor.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)

	Compute the 2-dimensional FFT of a real tensor.

	aarray_like

	Input tensor, taken to be real.

	ssequence of ints, optional

	Shape of the FFT.

	axessequence of ints, optional

	Axes over which to compute the FFT.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outTensor

	The result of the real 2-D FFT.

	rfftnCompute the N-dimensional discrete Fourier Transform for real

	input.

This is really just rfftn with different default behavior.
For more details see rfftn.

mars.tensor.fft.irfft2

	
mars.tensor.fft.irfft2(a, s=None, axes=(-2, -1), norm=None)

	Compute the 2-dimensional inverse FFT of a real array.

	aarray_like

	The input tensor

	ssequence of ints, optional

	Shape of the inverse FFT.

	axessequence of ints, optional

	The axes over which to compute the inverse fft.
Default is the last two axes.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outTensor

	The result of the inverse real 2-D FFT.

irfftn : Compute the inverse of the N-dimensional FFT of real input.

This is really irfftn with different defaults.
For more details see irfftn.

mars.tensor.fft.rfftn

	
mars.tensor.fft.rfftn(a, s=None, axes=None, norm=None)

	Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over
any number of axes in an M-dimensional real tensor by means of the Fast
Fourier Transform (FFT). By default, all axes are transformed, with the
real transform performed over the last axis, while the remaining
transforms are complex.

	aarray_like

	Input tensor, taken to be real.

	ssequence of ints, optional

	Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.).
The final element of s corresponds to n for rfft(x, n), while
for the remaining axes, it corresponds to n for fft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

	axessequence of ints, optional

	Axes over which to compute the FFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s and a,
as explained in the parameters section above.
The length of the last axis transformed will be s[-1]//2+1,
while the remaining transformed axes will have lengths according to
s, or unchanged from the input.

	ValueError

	If s and axes have different length.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	irfftnThe inverse of rfftn, i.e. the inverse of the n-dimensional FFT

	of real input.

fft : The one-dimensional FFT, with definitions and conventions used.
rfft : The one-dimensional FFT of real input.
fftn : The n-dimensional FFT.
rfft2 : The two-dimensional FFT of real input.

The transform for real input is performed over the last transformation
axis, as by rfft, then the transform over the remaining axes is
performed as by fftn. The order of the output is as for rfft for the
final transformation axis, and as for fftn for the remaining
transformation axes.

See fft for details, definitions and conventions used.

>>> import mars.tensor as mt

>>> a = mt.ones((2, 2, 2))
>>> mt.fft.rfftn(a).execute()
array([[[8.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]])

>>> mt.fft.rfftn(a, axes=(2, 0)).execute()
array([[[4.+0.j, 0.+0.j],
 [4.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]])

mars.tensor.fft.irfftn

	
mars.tensor.fft.irfftn(a, s=None, axes=None, norm=None)

	Compute the inverse of the N-dimensional FFT of real input.

This function computes the inverse of the N-dimensional discrete
Fourier Transform for real input over any number of axes in an
M-dimensional tensor by means of the Fast Fourier Transform (FFT). In
other words, irfftn(rfftn(a), a.shape) == a to within numerical
accuracy. (The a.shape is necessary like len(a) is for irfft,
and for the same reason.)

The input should be ordered in the same way as is returned by rfftn,
i.e. as for irfft for the final transformation axis, and as for ifftn
along all the other axes.

	aarray_like

	Input tensor.

	ssequence of ints, optional

	Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.). s is also the
number of input points used along this axis, except for the last axis,
where s[-1]//2+1 points of the input are used.
Along any axis, if the shape indicated by s is smaller than that of
the input, the input is cropped. If it is larger, the input is padded
with zeros. If s is not given, the shape of the input along the
axes specified by axes is used.

	axessequence of ints, optional

	Axes over which to compute the inverse FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the inverse transform over that
axis is performed multiple times.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outTensor

	The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s or a,
as explained in the parameters section above.
The length of each transformed axis is as given by the corresponding
element of s, or the length of the input in every axis except for the
last one if s is not given. In the final transformed axis the length
of the output when s is not given is 2*(m-1) where m is the
length of the final transformed axis of the input. To get an odd
number of output points in the final axis, s must be specified.

	ValueError

	If s and axes have different length.

	IndexError

	If an element of axes is larger than than the number of axes of a.

	rfftnThe forward n-dimensional FFT of real input,

	of which ifftn is the inverse.

fft : The one-dimensional FFT, with definitions and conventions used.
irfft : The inverse of the one-dimensional FFT of real input.
irfft2 : The inverse of the two-dimensional FFT of real input.

See fft for definitions and conventions used.

See rfft for definitions and conventions used for real input.

>>> import mars.tensor as mt

>>> a = mt.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> mt.fft.irfftn(a).execute()
array([[[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]]])

mars.tensor.fft.hfft

	
mars.tensor.fft.hfft(a, n=None, axis=-1, norm=None)

	Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
spectrum.

	aarray_like

	The input tensor.

	nint, optional

	Length of the transformed axis of the output. For n output
points, n//2 + 1 input points are necessary. If the input is
longer than this, it is cropped. If it is shorter than this, it is
padded with zeros. If n is not given, it is determined from the
length of the input along the axis specified by axis.

	axisint, optional

	Axis over which to compute the FFT. If not given, the last
axis is used.

	norm{None, “ortho”}, optional

	Normalization mode (see mt.fft). Default is None.

	outTensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
The length of the transformed axis is n, or, if n is not given,
2*m - 2 where m is the length of the transformed axis of
the input. To get an odd number of output points, n must be
specified, for instance as 2*m - 1 in the typical case,

	IndexError

	If axis is larger than the last axis of a.

rfft : Compute the one-dimensional FFT for real input.
ihfft : The inverse of hfft.

hfft/ihfft are a pair analogous to rfft/irfft, but for the
opposite case: here the signal has Hermitian symmetry in the time
domain and is real in the frequency domain. So here it’s hfft for
which you must supply the length of the result if it is to be odd.

	even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

	odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

>>> import mars.tensor as mt

>>> signal = mt.array([1, 2, 3, 4, 3, 2])
>>> mt.fft.fft(signal).execute()
array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
>>> mt.fft.hfft(signal[:4]).execute() # Input first half of signal
array([15., -4., 0., -1., 0., -4.])
>>> mt.fft.hfft(signal, 6).execute() # Input entire signal and truncate
array([15., -4., 0., -1., 0., -4.])

>>> signal = mt.array([[1, 1.j], [-1.j, 2]])
>>> (mt.conj(signal.T) - signal).execute() # check Hermitian symmetry
array([[0.-0.j, 0.+0.j],
 [0.+0.j, 0.-0.j]])
>>> freq_spectrum = mt.fft.hfft(signal)
>>> freq_spectrum.execute()
array([[1., 1.],
 [2., -2.]])

mars.tensor.fft.ihfft

	
mars.tensor.fft.ihfft(a, n=None, axis=-1, norm=None)

	Compute the inverse FFT of a signal that has Hermitian symmetry.

	aarray_like

	Input tensor.

	nint, optional

	Length of the inverse FFT, the number of points along
transformation axis in the input to use. If n is smaller than
the length of the input, the input is cropped. If it is larger,
the input is padded with zeros. If n is not given, the length of
the input along the axis specified by axis is used.

	axisint, optional

	Axis over which to compute the inverse FFT. If not given, the last
axis is used.

	norm{None, “ortho”}, optional

	Normalization mode (see numpy.fft). Default is None.

	outcomplex Tensor

	The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
The length of the transformed axis is n//2 + 1.

hfft, irfft

hfft/ihfft are a pair analogous to rfft/irfft, but for the
opposite case: here the signal has Hermitian symmetry in the time
domain and is real in the frequency domain. So here it’s hfft for
which you must supply the length of the result if it is to be odd:

	even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

	odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

>>> import mars.tensor as mt

>>> spectrum = mt.array([15, -4, 0, -1, 0, -4])
>>> mt.fft.ifft(spectrum).execute()
array([1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
>>> mt.fft.ihfft(spectrum).execute()
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])

mars.tensor.fft.fftfreq

	
mars.tensor.fft.fftfreq(n, d=1.0, gpu=False, chunk_size=None)

	Return the Discrete Fourier Transform sample frequencies.

The returned float tensor f contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

	nint

	Window length.

	dscalar, optional

	Sample spacing (inverse of the sampling rate). Defaults to 1.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	fTensor

	Array of length n containing the sample frequencies.

>>> import mars.tensor as mt

>>> signal = mt.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = mt.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = mt.fft.fftfreq(n, d=timestep)
>>> freq.execute()
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

mars.tensor.fft.rfftfreq

	
mars.tensor.fft.rfftfreq(n, d=1.0, gpu=False, chunk_size=None)

	Return the Discrete Fourier Transform sample frequencies
(for usage with rfft, irfft).

The returned float tensor f contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fftfreq (but like scipy.fftpack.rfftfreq)
the Nyquist frequency component is considered to be positive.

	nint

	Window length.

	dscalar, optional

	Sample spacing (inverse of the sampling rate). Defaults to 1.

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	fTensor

	Tensor of length n//2 + 1 containing the sample frequencies.

>>> import mars.tensor as mt

>>> signal = mt.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = mt.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = mt.fft.fftfreq(n, d=1./sample_rate)
>>> freq.execute()
array([0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = mt.fft.rfftfreq(n, d=1./sample_rate)
>>> freq.execute()
array([0., 10., 20., 30., 40., 50.])

mars.tensor.fft.fftshift

	
mars.tensor.fft.fftshift(x, axes=None)

	Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all).
Note that y[0] is the Nyquist component only if len(x) is even.

	xarray_like

	Input tensor.

	axesint or shape tuple, optional

	Axes over which to shift. Default is None, which shifts all axes.

	yTensor

	The shifted tensor.

ifftshift : The inverse of fftshift.

>>> import mars.tensor as mt

>>> freqs = mt.fft.fftfreq(10, 0.1)
>>> freqs.execute()
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> mt.fft.fftshift(freqs).execute()
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = mt.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs.execute()
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> mt.fft.fftshift(freqs, axes=(1,)).execute()
array([[2., 0., 1.],
 [-4., 3., 4.],
 [-1., -3., -2.]])

mars.tensor.fft.ifftshift

	
mars.tensor.fft.ifftshift(x, axes=None)

	The inverse of fftshift. Although identical for even-length x, the
functions differ by one sample for odd-length x.

	xarray_like

	Input tensor.

	axesint or shape tuple, optional

	Axes over which to calculate. Defaults to None, which shifts all axes.

	yTensor

	The shifted tensor.

fftshift : Shift zero-frequency component to the center of the spectrum.

>>> import mars.tensor as mt

>>> freqs = mt.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs.execute()
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> mt.fft.ifftshift(mt.fft.fftshift(freqs)).execute()
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])

Indexing Routines

Generating index arrays

	mars.tensor.nonzero

	

	mars.tensor.where

	Return elements, either from x or y, depending on condition.

	mars.tensor.indices

	Return a tensor representing the indices of a grid.

	mars.tensor.ogrid

	Construct a multi-dimensional “meshgrid”.

	mars.tensor.unravel_index

	

Indexing-like operations

	mars.tensor.take

	

	mars.tensor.choose

	

	mars.tensor.compress

	

	mars.tensor.diag

	Extract a diagonal or construct a diagonal tensor.

mars.tensor.nonzero

mars.tensor.where

	
mars.tensor.where(condition, x=None, y=None)

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	conditionarray_like, bool

	When True, yield x, otherwise yield y.

	x, yarray_like, optional

	Values from which to choose. x, y and condition need to be
broadcastable to some shape.

	outTensor or tuple of Tensors

	If both x and y are specified, the output tensor contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

nonzero, choose

If x and y are given and input arrays are 1-D, where is
equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> mt.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]]).execute()
array([[1, 8],
 [3, 4]])

>>> sess.run(mt.where([[0, 1], [1, 0]]))
(array([0, 1]), array([1, 0]))

>>> x = mt.arange(9.).reshape(3, 3)
>>> sess.run(mt.where(x > 5))
(array([2, 2, 2]), array([0, 1, 2]))
>>> mt.where(x < 5, x, -1).execute() # Note: broadcasting.
array([[0., 1., 2.],
 [3., 4., -1.],
 [-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = mt.isin(x, goodvalues)
>>> ix.execute()
array([[False, False, False],
 [True, True, False],
 [False, True, False]])
>>> sess.run(mt.where(ix))
(array([1, 1, 2]), array([0, 1, 1]))

mars.tensor.indices

	
mars.tensor.indices(dimensions, dtype=<class 'int'>, chunk_size=None)

	Return a tensor representing the indices of a grid.

Compute a tensor where the subtensors contain index values 0,1,…
varying only along the corresponding axis.

	dimensionssequence of ints

	The shape of the grid.

	dtypedtype, optional

	Data type of the result.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gridTensor

	The tensor of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

mgrid, meshgrid

The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if dimensions is a tuple
(r0, ..., rN-1) of length N, the output shape is
(N,r0,...,rN-1).

The subtensors grid[k] contains the N-D array of indices along the
k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

>>> import mars.tensor as mt

>>> grid = mt.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0].execute() # row indices
array([[0, 0, 0],
 [1, 1, 1]])
>>> grid[1].execute() # column indices
array([[0, 1, 2],
 [0, 1, 2]])

The indices can be used as an index into a tensor.

>>> x = mt.arange(20).reshape(5, 4)
>>> row, col = mt.indices((2, 3))
>>> # x[row, col] # TODO(jisheng): accomplish this if multiple fancy indexing is supported

Note that it would be more straightforward in the above example to
extract the required elements directly with x[:2, :3].

mars.tensor.ogrid

	
mars.tensor.ogrid = <mars.tensor.lib.index_tricks.nd_grid object>

	Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.

	sparsebool, optional

	Whether the grid is sparse or not. Default is False.

Two instances of nd_grid are made available in the Mars.tensor namespace,
mgrid and ogrid:

mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)

Users should use these pre-defined instances instead of using nd_grid
directly.

>>> import mars.tensor as mt

>>> mgrid = mt.lib.index_tricks.nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]],
 [[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

>>> ogrid = mt.lib.index_tricks.nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
 [1],
 [2],
 [3],
 [4]]), array([[0, 1, 2, 3, 4]])]

mars.tensor.unravel_index

mars.tensor.take

mars.tensor.choose

mars.tensor.compress

mars.tensor.diag

	
mars.tensor.diag(v, k=0, sparse=None, gpu=False, chunk_size=None)

	Extract a diagonal or construct a diagonal tensor.

See the more detailed documentation for mt.diagonal if you use this
function to extract a diagonal and wish to write to the resulting tensor

	varray_like

	If v is a 2-D tensor, return its k-th diagonal.
If v is a 1-D tensor, return a 2-D tensor with v on the k-th
diagonal.

	kint, optional

	Diagonal in question. The default is 0. Use k>0 for diagonals
above the main diagonal, and k<0 for diagonals below the main
diagonal.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	outTensor

	The extracted diagonal or constructed diagonal tensor.

diagonal : Return specified diagonals.
diagflat : Create a 2-D array with the flattened input as a diagonal.
trace : Sum along diagonals.
triu : Upper triangle of a tensor.
tril : Lower triangle of a tensor.

>>> import mars.tensor as mt

>>> x = mt.arange(9).reshape((3,3))
>>> x.execute()
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

>>> mt.diag(x).execute()
array([0, 4, 8])
>>> mt.diag(x, k=1).execute()
array([1, 5])
>>> mt.diag(x, k=-1).execute()
array([3, 7])

>>> mt.diag(mt.diag(x)).execute()
array([[0, 0, 0],
 [0, 4, 0],
 [0, 0, 8]])

Linear Algebra

Matrix and vector products

	mars.tensor.dot

	Dot product of two arrays.

	mars.tensor.vdot

	Return the dot product of two vectors.

	mars.tensor.inner

	Returns the inner product of a and b for arrays of floating point types.

	mars.tensor.matmul

	Matrix product of two tensors.

	mars.tensor.tensordot

	Compute tensor dot product along specified axes for tensors >= 1-D.

Decompositions

	mars.tensor.linalg.cholesky

	Cholesky decomposition.

	mars.tensor.linalg.qr

	Compute the qr factorization of a matrix.

	mars.tensor.linalg.svd

	Singular Value Decomposition.

Norms and other numbers

	mars.tensor.linalg.norm

	Matrix or vector norm.

mars.tensor.dot

	
mars.tensor.dot(a, b, out=None, sparse=None)

	Dot product of two arrays. Specifically,

	If both a and b are 1-D arrays, it is inner product of vectors
(without complex conjugation).

	If both a and b are 2-D arrays, it is matrix multiplication,
but using matmul() or a @ b is preferred.

	If either a or b is 0-D (scalar), it is equivalent to multiply()
and using numpy.multiply(a, b) or a * b is preferred.

	If a is an N-D array and b is a 1-D array, it is a sum product over
the last axis of a and b.

	If a is an N-D array and b is an M-D array (where M>=2), it is a
sum product over the last axis of a and the second-to-last axis of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

	aarray_like

	First argument.

	barray_like

	Second argument.

	outTensor, optional

	Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be
C-contiguous, and its dtype must be the dtype that would be returned
for dot(a,b). This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.

	outputTensor

	Returns the dot product of a and b. If a and b are both
scalars or both 1-D arrays then a scalar is returned; otherwise
a tensor is returned.
If out is given, then it is returned.

	ValueError

	If the last dimension of a is not the same size as
the second-to-last dimension of b.

vdot : Complex-conjugating dot product.
tensordot : Sum products over arbitrary axes.
einsum : Einstein summation convention.
matmul : ‘@’ operator as method with out parameter.

>>> import mars.tensor as mt

>>> mt.dot(3, 4).execute()
12

Neither argument is complex-conjugated:

>>> mt.dot([2j, 3j], [2j, 3j]).execute()
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> mt.dot(a, b).execute()
array([[4, 1],
 [2, 2]])

>>> a = mt.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = mt.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> mt.dot(a, b)[2,3,2,1,2,2].execute()
499128
>>> mt.sum(a[2,3,2,:] * b[1,2,:,2]).execute()
499128

mars.tensor.vdot

	
mars.tensor.vdot(a, b)

	Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than
dot(a, b). If the first argument is complex the complex conjugate
of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional tensors differently than dot:
it does not perform a matrix product, but flattens input arguments
to 1-D vectors first. Consequently, it should only be used for vectors.

	aarray_like

	If a is complex the complex conjugate is taken before calculation
of the dot product.

	barray_like

	Second argument to the dot product.

	outputTensor

	Dot product of a and b. Can be an int, float, or
complex depending on the types of a and b.

	dotReturn the dot product without using the complex conjugate of the

	first argument.

>>> import mars.tensor as mt

>>> a = mt.array([1+2j,3+4j])
>>> b = mt.array([5+6j,7+8j])
>>> mt.vdot(a, b).execute()
(70-8j)
>>> mt.vdot(b, a).execute()
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = mt.array([[1, 4], [5, 6]])
>>> b = mt.array([[4, 1], [2, 2]])
>>> mt.vdot(a, b).execute()
30
>>> mt.vdot(b, a).execute()
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30

mars.tensor.inner

	
mars.tensor.inner(a, b, sparse=None)

	Returns the inner product of a and b for arrays of floating point types.

Like the generic NumPy equivalent the product sum is over the last dimension
of a and b. The first argument is not conjugated.

mars.tensor.matmul

	
mars.tensor.matmul(a, b, sparse=None, out=None, **kw)

	Matrix product of two tensors.

The behavior depends on the arguments in the following way.

	If both arguments are 2-D they are multiplied like conventional
matrices.

	If either argument is N-D, N > 2, it is treated as a stack of
matrices residing in the last two indexes and broadcast accordingly.

	If the first argument is 1-D, it is promoted to a matrix by
prepending a 1 to its dimensions. After matrix multiplication
the prepended 1 is removed.

	If the second argument is 1-D, it is promoted to a matrix by
appending a 1 to its dimensions. After matrix multiplication
the appended 1 is removed.

Multiplication by a scalar is not allowed, use * instead. Note that
multiplying a stack of matrices with a vector will result in a stack of
vectors, but matmul will not recognize it as such.

matmul differs from dot in two important ways.

	Multiplication by scalars is not allowed.

	Stacks of matrices are broadcast together as if the matrices
were elements.

	aarray_like

	First argument.

	barray_like

	Second argument.

	outTensor, optional

	Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type,
and its dtype must be the dtype that would be returned
for dot(a,b). This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.

	outputTensor

	Returns the dot product of a and b. If a and b are both
1-D arrays then a scalar is returned; otherwise an array is
returned. If out is given, then it is returned.

	ValueError

	If the last dimension of a is not the same size as
the second-to-last dimension of b.

If scalar value is passed.

vdot : Complex-conjugating dot product.
tensordot : Sum products over arbitrary axes.
dot : alternative matrix product with different broadcasting rules.

The matmul function implements the semantics of the @ operator introduced
in Python 3.5 following PEP465.

For 2-D arrays it is the matrix product:

>>> import mars.tensor as mt

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> mt.matmul(a, b).execute()
array([[4, 1],
 [2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = [[1, 0], [0, 1]]
>>> b = [1, 2]
>>> mt.matmul(a, b).execute()
array([1, 2])
>>> mt.matmul(b, a).execute()
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = mt.arange(2*2*4).reshape((2,2,4))
>>> b = mt.arange(2*2*4).reshape((2,4,2))
>>> mt.matmul(a,b).shape
(2, 2, 2)
>>> mt.matmul(a,b)[0,1,1].execute()
98
>>> mt.sum(a[0,1,:] * b[0,:,1]).execute()
98

Vector, vector returns the scalar inner product, but neither argument
is complex-conjugated:

>>> mt.matmul([2j, 3j], [2j, 3j]).execute()
(-13+0j)

Scalar multiplication raises an error.

>>> mt.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: Scalar operands are not allowed, use '*' instead

mars.tensor.tensordot

	
mars.tensor.tensordot(a, b, axes=2, sparse=None)

	Compute tensor dot product along specified axes for tensors >= 1-D.
Given two tensors (arrays of dimension greater than or equal to one),
a and b, and an array_like object containing two array_like
objects, (a_axes, b_axes), sum the products of a’s and b’s
elements (components) over the axes specified by a_axes and
b_axes. The third argument can be a single non-negative
integer_like scalar, N; if it is such, then the last N
dimensions of a and the first N dimensions of b are summed
over.
Parameters
———-
a, b : array_like, len(shape) >= 1

Tensors to “dot”.

	axesint or (2,) array_like

	
	integer_like
If an int N, sum over the last N axes of a and the first N axes
of b in order. The sizes of the corresponding axes must match.

	(2,) array_like
Or, a list of axes to be summed over, first sequence applying to a,
second to b. Both elements array_like must be of the same length.

dot, einsum
Notes
—–
Three common use cases are:

	axes = 0 : tensor product \(a\otimes b\)

	axes = 1 : tensor dot product \(a\cdot b\)

	axes = 2 : (default) tensor double contraction \(a:b\)

When axes is integer_like, the sequence for evaluation will be: first
the -Nth axis in a and 0th axis in b, and the -1th axis in a and
Nth axis in b last.
When there is more than one axis to sum over - and they are not the last
(first) axes of a (b) - the argument axes should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.
Examples
——–
>>> import mars.tensor as mt

A “traditional” example:
>>> a = mt.arange(60.).reshape(3,4,5)
>>> b = mt.arange(24.).reshape(4,3,2)
>>> c = mt.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> r = c.execute()
>>> r
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> # A slower but equivalent way of computing the same...
>>> ra = np.arange(60.).reshape(3,4,5)
>>> rb = np.arange(24.).reshape(4,3,2)
>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += ra[k,n,i] * rb[n,k,j]
>>> r == d
array([[True, True],
 [True, True],
 [True, True],
 [True, True],
 [True, True]], dtype=bool)
An extended example taking advantage of the overloading of + and *:
>>> a = mt.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = mt.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a.execute(); A.execute()
array([[[1, 2],
 [3, 4]],
 [[5, 6],
 [7, 8]]])
array([[a, b],
 [c, d]], dtype=object)
>>> mt.tensordot(a, A).execute() # third argument default is 2 for double-contraction
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)
>>> mt.tensordot(a, A, 1).execute()
array([[[acc, bdd],
 [aaacccc, bbbdddd]],
 [[aaaaacccccc, bbbbbdddddd],
 [aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)
>>> mt.tensordot(a, A, 0).execute() # tensor product (result too long to incl.)
array([[[[[a, b],
 [c, d]],
 ...
>>> mt.tensordot(a, A, (0, 1)).execute()
array([[[abbbbb, cddddd],
 [aabbbbbb, ccdddddd]],
 [[aaabbbbbbb, cccddddddd],
 [aaaabbbbbbbb, ccccdddddddd]]], dtype=object)
>>> mt.tensordot(a, A, (2, 1)).execute()
array([[[abb, cdd],
 [aaabbbb, cccdddd]],
 [[aaaaabbbbbb, cccccdddddd],
 [aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)
>>> mt.tensordot(a, A, ((0, 1), (0, 1))).execute()
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)
>>> mt.tensordot(a, A, ((2, 1), (1, 0))).execute()
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

mars.tensor.linalg.cholesky

	
mars.tensor.linalg.cholesky(a, lower=False)

	Cholesky decomposition.

Return the Cholesky decomposition, L * L.H, of the square matrix a,
where L is lower-triangular and .H is the conjugate transpose operator
(which is the ordinary transpose if a is real-valued). a must be
Hermitian (symmetric if real-valued) and positive-definite. Only L is
actually returned.

	a(…, M, M) array_like

	Hermitian (symmetric if all elements are real), positive-definite
input matrix.

	lowerbool

	Whether to compute the upper or lower triangular Cholesky
factorization. Default is upper-triangular.

	L(…, M, M) array_like

	Upper or lower-triangular Cholesky factor of a.

	LinAlgError

	If the decomposition fails, for example, if a is not
positive-definite.

Broadcasting rules apply, see the mt.linalg documentation for
details.

The Cholesky decomposition is often used as a fast way of solving

\[A \mathbf{x} = \mathbf{b}\]

(when A is both Hermitian/symmetric and positive-definite).

First, we solve for \(\mathbf{y}\) in

\[L \mathbf{y} = \mathbf{b},\]

and then for \(\mathbf{x}\) in

\[L.H \mathbf{x} = \mathbf{y}.\]

>>> import mars.tensor as mt

>>> A = mt.array([[1,-2j],[2j,5]])
>>> A.execute()
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> L = mt.linalg.cholesky(A, lower=True)
>>> L.execute()
array([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])
>>> mt.dot(L, L.T.conj()).execute() # verify that L * L.H = A
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> mt.linalg.cholesky(A, lower=True).execute()
array([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])

mars.tensor.linalg.qr

	
mars.tensor.linalg.qr(a, method='tsqr')

	Compute the qr factorization of a matrix.

Factor the matrix a as qr, where q is orthonormal and r is
upper-triangular.

	aarray_like, shape (M, N)

	Matrix to be factored.

	method: {‘tsqr’, ‘sfqr’}, optional

	method to calculate qr factorization, tsqr as default

TSQR is presented in:

A. Benson, D. Gleich, and J. Demmel.
Direct QR factorizations for tall-and-skinny matrices in
MapReduce architectures.
IEEE International Conference on Big Data, 2013.
http://arxiv.org/abs/1301.1071

	FSQR is a QR decomposition for fat and short matrix:

	A = [A1, A2, A3, …], A1 may be decomposed as A1 = Q1 * R1,
for A = Q * R, Q = Q1, R = [R1, R2, R3, …] where A2 = Q1 * R2, A3 = Q1 * R3, …

	qTensor of float or complex, optional

	A matrix with orthonormal columns. When mode = ‘complete’ the
result is an orthogonal/unitary matrix depending on whether or not
a is real/complex. The determinant may be either +/- 1 in that
case.

	rTensor of float or complex, optional

	The upper-triangular matrix.

	LinAlgError

	If factoring fails.

For more information on the qr factorization, see for example:
http://en.wikipedia.org/wiki/QR_factorization

>>> import mars.tensor as mt

>>> a = mt.random.randn(9, 6)
>>> q, r = mt.linalg.qr(a)
>>> mt.allclose(a, mt.dot(q, r)).execute() # a does equal qr
True

mars.tensor.linalg.svd

	
mars.tensor.linalg.svd(a, method='tsqr')

	Singular Value Decomposition.

When a is a 2D tensor, it is factorized as u @ np.diag(s) @ vh
= (u * s) @ vh, where u and vh are 2D unitary tensors and s is a 1D
tensor of a’s singular values. When a is higher-dimensional, SVD is
applied in stacked mode as explained below.

	a(…, M, N) array_like

	A real or complex tensor with a.ndim >= 2.

	method: {‘tsqr’}, optional

	method to calculate qr factorization, tsqr as default

TSQR is presented in:

A. Benson, D. Gleich, and J. Demmel.
Direct QR factorizations for tall-and-skinny matrices in
MapReduce architectures.
IEEE International Conference on Big Data, 2013.
http://arxiv.org/abs/1301.1071

	u{ (…, M, M), (…, M, K) } tensor

	Unitary tensor(s). The first a.ndim - 2 dimensions have the same
size as those of the input a. The size of the last two dimensions
depends on the value of full_matrices. Only returned when
compute_uv is True.

	s(…, K) tensor

	Vector(s) with the singular values, within each vector sorted in
descending order. The first a.ndim - 2 dimensions have the same
size as those of the input a.

	vh{ (…, N, N), (…, K, N) } tensor

	Unitary tensor(s). The first a.ndim - 2 dimensions have the same
size as those of the input a. The size of the last two dimensions
depends on the value of full_matrices. Only returned when
compute_uv is True.

	LinAlgError

	If SVD computation does not converge.

SVD is usually described for the factorization of a 2D matrix \(A\).
The higher-dimensional case will be discussed below. In the 2D case, SVD is
written as \(A = U S V^H\), where \(A = a\), \(U= u\),
\(S= \mathtt{np.diag}(s)\) and \(V^H = vh\). The 1D tensor s
contains the singular values of a and u and vh are unitary. The rows
of vh are the eigenvectors of \(A^H A\) and the columns of u are
the eigenvectors of \(A A^H\). In both cases the corresponding
(possibly non-zero) eigenvalues are given by s**2.

If a has more than two dimensions, then broadcasting rules apply, as
explained in routines.linalg-broadcasting. This means that SVD is
working in “stacked” mode: it iterates over all indices of the first
a.ndim - 2 dimensions and for each combination SVD is applied to the
last two indices. The matrix a can be reconstructed from the
decomposition with either (u * s[..., None, :]) @ vh or
u @ (s[..., None] * vh). (The @ operator can be replaced by the
function mt.matmul for python versions below 3.5.)

>>> import mars.tensor as mt
>>> a = mt.random.randn(9, 6) + 1j*mt.random.randn(9, 6)
>>> b = mt.random.randn(2, 7, 8, 3) + 1j*mt.random.randn(2, 7, 8, 3)

Reconstruction based on reduced SVD, 2D case:

>>> u, s, vh = mt.linalg.svd(a)
>>> u.shape, s.shape, vh.shape
((9, 6), (6,), (6, 6))
>>> np.allclose(a, np.dot(u * s, vh))
True
>>> smat = np.diag(s)
>>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
True

mars.tensor.linalg.norm

	
mars.tensor.linalg.norm(x, ord=None, axis=None, keepdims=False)

	Matrix or vector norm.

This function is able to return one of eight different matrix norms,
or one of an infinite number of vector norms (described below), depending
on the value of the ord parameter.

	xarray_like

	Input tensor. If axis is None, x must be 1-D or 2-D.

	ord{non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional

	Order of the norm (see table under Notes). inf means mars tensor’s
inf object.

	axis{int, 2-tuple of ints, None}, optional

	If axis is an integer, it specifies the axis of x along which to
compute the vector norms. If axis is a 2-tuple, it specifies the
axes that hold 2-D matrices, and the matrix norms of these matrices
are computed. If axis is None then either a vector norm (when x
is 1-D) or a matrix norm (when x is 2-D) is returned.

	keepdimsbool, optional

	If this is set to True, the axes which are normed over are left in the
result as dimensions with size one. With this option the result will
broadcast correctly against the original x.

	nfloat or Tensor

	Norm of the matrix or vector(s).

For values of ord <= 0, the result is, strictly speaking, not a
mathematical ‘norm’, but it may still be useful for various numerical
purposes.

The following norms can be calculated:

	ord

	norm for matrices

	norm for vectors

	None

	Frobenius norm

	2-norm

	‘fro’

	Frobenius norm

	–

	‘nuc’

	nuclear norm

	–

	inf

	max(sum(abs(x), axis=1))

	max(abs(x))

	-inf

	min(sum(abs(x), axis=1))

	min(abs(x))

	0

	–

	sum(x != 0)

	1

	max(sum(abs(x), axis=0))

	as below

	-1

	min(sum(abs(x), axis=0))

	as below

	2

	2-norm (largest sing. value)

	as below

	-2

	smallest singular value

	as below

	other

	–

	sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by 1:

\(||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)

The nuclear norm is the sum of the singular values.

	1

	G. H. Golub and C. F. Van Loan, Matrix Computations,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

>>> from mars.tensor import linalg as LA
>>> import mars.tensor as mt
>>> a = mt.arange(9) - 4
>>> a.execute()
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b.execute()
array([[-4, -3, -2],
 [-1, 0, 1],
 [2, 3, 4]])

>>> LA.norm(a).execute()
7.745966692414834
>>> LA.norm(b).execute()
7.745966692414834
>>> LA.norm(b, 'fro').execute()
7.745966692414834
>>> LA.norm(a, mt.inf).execute()
4.0
>>> LA.norm(b, mt.inf).execute()
9.0
>>> LA.norm(a, -mt.inf).execute()
0.0
>>> LA.norm(b, -mt.inf).execute()
2.0

>>> LA.norm(a, 1).execute()
20.0
>>> LA.norm(b, 1).execute()
7.0
>>> LA.norm(a, -1).execute()
0.0
>>> LA.norm(b, -1).execute()
6.0
>>> LA.norm(a, 2).execute()
7.745966692414834
>>> LA.norm(b, 2).execute()
7.3484692283495345

>>> LA.norm(a, -2).execute()
0.0
>>> LA.norm(b, -2).execute()
4.351066026358965e-18
>>> LA.norm(a, 3).execute()
5.8480354764257312
>>> LA.norm(a, -3).execute()
0.0

Using the axis argument to compute vector norms:

>>> c = mt.array([[1, 2, 3],
... [-1, 1, 4]])
>>> LA.norm(c, axis=0).execute()
array([1.41421356, 2.23606798, 5.])
>>> LA.norm(c, axis=1).execute()
array([3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1).execute()
array([6., 6.])

Using the axis argument to compute matrix norms:

>>> m = mt.arange(8).reshape(2,2,2)
>>> LA.norm(m, axis=(1,2)).execute()
array([3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]).execute(), LA.norm(m[1, :, :]).execute()
(3.7416573867739413, 11.224972160321824)

Logic Functions

Truth value testing

	mars.tensor.all

	Test whether all array elements along a given axis evaluate to True.

	mars.tensor.any

	Test whether any tensor element along a given axis evaluates to True.

Array contents

	mars.tensor.isfinite

	Test element-wise for finiteness (not infinity or not Not a Number).

	mars.tensor.isinf

	Test element-wise for positive or negative infinity.

	mars.tensor.isnan

	Test element-wise for NaN and return result as a boolean tensor.

Array type testing

	mars.tensor.iscomplex

	Returns a bool tensor, where True if input element is complex.

	mars.tensor.isreal

	Returns a bool tensor, where True if input element is real.

Logic operations

	mars.tensor.logical_and

	Compute the truth value of x1 AND x2 element-wise.

	mars.tensor.logical_or

	Compute the truth value of x1 OR x2 element-wise.

	mars.tensor.logical_not

	Compute the truth value of NOT x element-wise.

	mars.tensor.logical_xor

	Compute the truth value of x1 XOR x2, element-wise.

Comparison

	mars.tensor.allclose

	Returns True if two tensors are element-wise equal within a tolerance.

	mars.tensor.isclose

	Returns a boolean tensor where two tensors are element-wise equal within a tolerance.

	mars.tensor.array_equal

	True if two tensors have the same shape and elements, False otherwise.

	mars.tensor.greater

	Return the truth value of (x1 > x2) element-wise.

	mars.tensor.greater_equal

	Return the truth value of (x1 >= x2) element-wise.

	mars.tensor.less

	Return the truth value of (x1 < x2) element-wise.

	mars.tensor.less_equal

	Return the truth value of (x1 =< x2) element-wise.

	mars.tensor.equal

	Return (x1 == x2) element-wise.

	mars.tensor.not_equal

	Return (x1 != x2) element-wise.

mars.tensor.all

	
mars.tensor.all(a, axis=None, out=None, keepdims=None, combine_size=None)

	Test whether all array elements along a given axis evaluate to True.

	aarray_like

	Input tensor or object that can be converted to a tensor.

	axisNone or int or tuple of ints, optional

	Axis or axes along which a logical AND reduction is performed.
The default (axis = None) is to perform a logical AND over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.

	outTensor, optional

	Alternate output tensor in which to place the result.
It must have the same shape as the expected output and its
type is preserved (e.g., if dtype(out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section
“Output arguments”) for more details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the all method of sub-classes of
ndarray, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	allTensor, bool

	A new boolean or tensor is returned unless out is specified,
in which case a reference to out is returned.

Tensor.all : equivalent method

any : Test whether any element along a given axis evaluates to True.

Not a Number (NaN), positive infinity and negative infinity
evaluate to True because these are not equal to zero.

>>> import mars.tensor as mt

>>> mt.all([[True,False],[True,True]]).execute()
False

>>> mt.all([[True,False],[True,True]], axis=0).execute()
array([True, False])

>>> mt.all([-1, 4, 5]).execute()
True

>>> mt.all([1.0, mt.nan]).execute()
True

mars.tensor.any

	
mars.tensor.any(a, axis=None, out=None, keepdims=None, combine_size=None)

	Test whether any tensor element along a given axis evaluates to True.

Returns single boolean unless axis is not None

	aarray_like

	Input tensor or object that can be converted to an array.

	axisNone or int or tuple of ints, optional

	Axis or axes along which a logical OR reduction is performed.
The default (axis = None) is to perform a logical OR over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.

	outTensor, optional

	Alternate output tensor in which to place the result. It must have
the same shape as the expected output and its type is preserved
(e.g., if it is of type float, then it will remain so, returning
1.0 for True and 0.0 for False, regardless of the type of a).
See doc.ufuncs (Section “Output arguments”) for details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the any method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	anybool or Tensor

	A new boolean or Tensor is returned unless out is specified,
in which case a reference to out is returned.

Tensor.any : equivalent method

all : Test whether all elements along a given axis evaluate to True.

Not a Number (NaN), positive infinity and negative infinity evaluate
to True because these are not equal to zero.

>>> import mars.tensor as mt

>>> mt.any([[True, False], [True, True]]).execute()
True

>>> mt.any([[True, False], [False, False]], axis=0).execute()
array([True, False])

>>> mt.any([-1, 0, 5]).execute()
True

>>> mt.any(mt.nan).execute()
True

mars.tensor.isfinite

	
mars.tensor.isfinite(x, out=None, where=None, **kwargs)

	Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor, bool

	For scalar input, the result is a new boolean with value True
if the input is finite; otherwise the value is False (input is
either positive infinity, negative infinity or Not a Number).

For array input, the result is a boolean array with the same
dimensions as the input and the values are True if the
corresponding element of the input is finite; otherwise the values
are False (element is either positive infinity, negative infinity
or Not a Number).

isinf, isneginf, isposinf, isnan

Not a Number, positive infinity and negative infinity are considered
to be non-finite.

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity. Errors result if the
second argument is also supplied when x is a scalar input, or if
first and second arguments have different shapes.

>>> import mars.tensor as mt

>>> mt.isfinite(1).execute()
True
>>> mt.isfinite(0).execute()
True
>>> mt.isfinite(mt.nan).execute()
False
>>> mt.isfinite(mt.inf).execute()
False
>>> mt.isfinite(mt.NINF).execute()
False
>>> mt.isfinite([mt.log(-1.).execute(),1.,mt.log(0).execute()]).execute()
array([False, True, False])

>>> x = mt.array([-mt.inf, 0., mt.inf])
>>> y = mt.array([2, 2, 2])
>>> mt.isfinite(x, y).execute()
array([0, 1, 0])
>>> y.execute()
array([0, 1, 0])

mars.tensor.isinf

	
mars.tensor.isinf(x, out=None, where=None, **kwargs)

	Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x ==
+/-inf, otherwise False.

	xarray_like

	Input values

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool (scalar) or boolean Tensor

	For scalar input, the result is a new boolean with value True if
the input is positive or negative infinity; otherwise the value is
False.

For tensor input, the result is a boolean tensor with the same shape
as the input and the values are True where the corresponding
element of the input is positive or negative infinity; elsewhere
the values are False. If a second argument was supplied the result
is stored there. If the type of that array is a numeric type the
result is represented as zeros and ones, if the type is boolean
then as False and True, respectively. The return value y is then
a reference to that tensor.

isneginf, isposinf, isnan, isfinite

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is supplied when the first
argument is a scalar, or if the first and second arguments have
different shapes.

>>> import mars.tensor as mt

>>> mt.isinf(mt.inf).execute()
True
>>> mt.isinf(mt.nan).execute()
False
>>> mt.isinf(mt.NINF).execute()
True
>>> mt.isinf([mt.inf, -mt.inf, 1.0, mt.nan]).execute()
array([True, True, False, False])

>>> x = mt.array([-mt.inf, 0., mt.inf])
>>> y = mt.array([2, 2, 2])
>>> mt.isinf(x, y).execute()
array([1, 0, 1])
>>> y.execute()
array([1, 0, 1])

mars.tensor.isnan

	
mars.tensor.isnan(x, out=None, where=None, **kwargs)

	Test element-wise for NaN and return result as a boolean tensor.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	For scalar input, the result is a new boolean with value True if
the input is NaN; otherwise the value is False.

For array input, the result is a boolean tensor of the same
dimensions as the input and the values are True if the
corresponding element of the input is NaN; otherwise the values are
False.

isinf, isneginf, isposinf, isfinite, isnat

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

>>> import mars.tensor as mt

>>> mt.isnan(mt.nan).execute()
True
>>> mt.isnan(mt.inf).execute()
False
>>> mt.isnan([mt.log(-1.).execute(),1.,mt.log(0).execute()]).execute()
array([True, False, False])

mars.tensor.iscomplex

	
mars.tensor.iscomplex(x, **kwargs)

	Returns a bool tensor, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if
the input type is complex.

	xarray_like

	Input tensor.

	outTensor of bools

	Output tensor.

isreal
iscomplexobj : Return True if x is a complex type or an array of complex

numbers.

>>> import mars.tensor as mt

>>> mt.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]).execute()
array([True, False, False, False, False, True])

mars.tensor.isreal

	
mars.tensor.isreal(x, **kwargs)

	Returns a bool tensor, where True if input element is real.

If element has complex type with zero complex part, the return value
for that element is True.

	xarray_like

	Input tensor.

	outTensor, bool

	Boolean tensor of same shape as x.

iscomplex
isrealobj : Return True if x is not a complex type.

>>> import mars.tensor as mt

>>> mt.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j]).execute()
array([False, True, True, True, True, False])

mars.tensor.logical_and

	
mars.tensor.logical_and(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 AND x2 element-wise.

	x1, x2array_like

	Input tensors. x1 and x2 must be of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	Boolean result with the same shape as x1 and x2 of the logical
AND operation on corresponding elements of x1 and x2.

logical_or, logical_not, logical_xor
bitwise_and

>>> import mars.tensor as mt

>>> mt.logical_and(True, False).execute()
False
>>> mt.logical_and([True, False], [False, False]).execute()
array([False, False])

>>> x = mt.arange(5)
>>> mt.logical_and(x>1, x<4).execute()
array([False, False, True, True, False])

mars.tensor.logical_or

	
mars.tensor.logical_or(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 OR x2 element-wise.

	x1, x2array_like

	Logical OR is applied to the elements of x1 and x2.
They have to be of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or bool

	Boolean result with the same shape as x1 and x2 of the logical
OR operation on elements of x1 and x2.

logical_and, logical_not, logical_xor
bitwise_or

>>> import mars.tensor as mt

>>> mt.logical_or(True, False).execute()
True
>>> mt.logical_or([True, False], [False, False]).execute()
array([True, False])

>>> x = mt.arange(5)
>>> mt.logical_or(x < 1, x > 3).execute()
array([True, False, False, False, True])

mars.tensor.logical_not

	
mars.tensor.logical_not(x, out=None, where=None, **kwargs)

	Compute the truth value of NOT x element-wise.

	xarray_like

	Logical NOT is applied to the elements of x.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool or Tensor of bool

	Boolean result with the same shape as x of the NOT operation
on elements of x.

logical_and, logical_or, logical_xor

>>> import mars.tensor as mt

>>> mt.logical_not(3).execute()
False
>>> mt.logical_not([True, False, 0, 1]).execute()
array([False, True, True, False])

>>> x = mt.arange(5)
>>> mt.logical_not(x<3).execute()
array([False, False, False, True, True])

mars.tensor.logical_xor

	
mars.tensor.logical_xor(x1, x2, out=None, where=None, **kwargs)

	Compute the truth value of x1 XOR x2, element-wise.

	x1, x2array_like

	Logical XOR is applied to the elements of x1 and x2. They must
be broadcastable to the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	ybool or Tensor of bool

	Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by whether or not
broadcasting of one or both arrays was required.

logical_and, logical_or, logical_not, bitwise_xor

>>> import mars.tensor as mt

>>> mt.logical_xor(True, False).execute()
True
>>> mt.logical_xor([True, True, False, False], [True, False, True, False]).execute()
array([False, True, True, False])

>>> x = mt.arange(5)
>>> mt.logical_xor(x < 1, x > 3).execute()
array([True, False, False, False, True])

Simple example showing support of broadcasting

>>> mt.logical_xor(0, mt.eye(2)).execute()
array([[True, False],
 [False, True]])

mars.tensor.allclose

	
mars.tensor.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)

	Returns True if two tensors are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The
relative difference (rtol * abs(b)) and the absolute difference
atol are added together to compare against the absolute difference
between a and b.

If either array contains one or more NaNs, False is returned.
Infs are treated as equal if they are in the same place and of the same
sign in both tensors.

	a, barray_like

	Input tensors to compare.

	rtolfloat

	The relative tolerance parameter (see Notes).

	atolfloat

	The absolute tolerance parameter (see Notes).

	equal_nanbool

	Whether to compare NaN’s as equal. If True, NaN’s in a will be
considered equal to NaN’s in b in the output tensor.

	allclosebool

	Returns True if the two tensors are equal within the given
tolerance; False otherwise.

isclose, all, any, equal

If the following equation is element-wise True, then allclose returns
True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that
allclose(a, b) might be different from allclose(b, a) in
some rare cases.

The comparison of a and b uses standard broadcasting, which
means that a and b need not have the same shape in order for
allclose(a, b) to evaluate to True. The same is true for
equal but not array_equal.

>>> import mars.tensor as mt

>>> mt.allclose([1e10,1e-7], [1.00001e10,1e-8]).execute()
False
>>> mt.allclose([1e10,1e-8], [1.00001e10,1e-9]).execute()
True
>>> mt.allclose([1e10,1e-8], [1.0001e10,1e-9]).execute()
False
>>> mt.allclose([1.0, mt.nan], [1.0, mt.nan]).execute()
False
>>> mt.allclose([1.0, mt.nan], [1.0, mt.nan], equal_nan=True).execute()
True

mars.tensor.isclose

	
mars.tensor.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)

	Returns a boolean tensor where two tensors are element-wise equal within a
tolerance.

The tolerance values are positive, typically very small numbers. The
relative difference (rtol * abs(b)) and the absolute difference
atol are added together to compare against the absolute difference
between a and b.

	a, barray_like

	Input tensors to compare.

	rtolfloat

	The relative tolerance parameter (see Notes).

	atolfloat

	The absolute tolerance parameter (see Notes).

	equal_nanbool

	Whether to compare NaN’s as equal. If True, NaN’s in a will be
considered equal to NaN’s in b in the output tensor.

	yarray_like

	Returns a boolean tensor of where a and b are equal within the
given tolerance. If both a and b are scalars, returns a single
boolean value.

allclose

For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that
isclose(a, b) might be different from isclose(b, a) in
some rare cases.

>>> import mars.tensor as mt

>>> mt.isclose([1e10,1e-7], [1.00001e10,1e-8]).execute()
array([True, False])
>>> mt.isclose([1e10,1e-8], [1.00001e10,1e-9]).execute()
array([True, True])
>>> mt.isclose([1e10,1e-8], [1.0001e10,1e-9]).execute()
array([False, True])
>>> mt.isclose([1.0, mt.nan], [1.0, mt.nan]).execute()
array([True, False])
>>> mt.isclose([1.0, mt.nan], [1.0, mt.nan], equal_nan=True).execute()
array([True, True])

mars.tensor.array_equal

	
mars.tensor.array_equal(a1, a2)

	True if two tensors have the same shape and elements, False otherwise.

	a1, a2array_like

	Input arrays.

	bbool

	Returns True if the tensors are equal.

	allclose: Returns True if two tensors are element-wise equal within a

	tolerance.

	array_equiv: Returns True if input tensors are shape consistent and all

	elements equal.

>>> import mars.tensor as mt

>>> mt.array_equal([1, 2], [1, 2]).execute()
True
>>> mt.array_equal(mt.array([1, 2]), mt.array([1, 2])).execute()
True
>>> mt.array_equal([1, 2], [1, 2, 3]).execute()
False
>>> mt.array_equal([1, 2], [1, 4]).execute()
False

mars.tensor.greater

	
mars.tensor.greater(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 > x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater_equal, less, less_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.greater([4,2],[2,2]).execute()
array([True, False])

If the inputs are ndarrays, then np.greater is equivalent to ‘>’.

>>> a = mt.array([4,2])
>>> b = mt.array([2,2])
>>> (a > b).execute()
array([True, False])

mars.tensor.greater_equal

	
mars.tensor.greater_equal(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 >= x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less, less_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.greater_equal([4, 2, 1], [2, 2, 2]).execute()
array([True, True, False])

mars.tensor.less

	
mars.tensor.less(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 < x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or Tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less_equal, greater_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.less([1, 2], [2, 2]).execute()
array([True, False])

mars.tensor.less_equal

	
mars.tensor.less_equal(x1, x2, out=None, where=None, **kwargs)

	Return the truth value of (x1 =< x2) element-wise.

	x1, x2array_like

	Input tensors. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outbool or tensor of bool

	Array of bools, or a single bool if x1 and x2 are scalars.

greater, less, greater_equal, equal, not_equal

>>> import mars.tensor as mt

>>> mt.less_equal([4, 2, 1], [2, 2, 2]).execute()
array([False, True, True])

mars.tensor.equal

	
mars.tensor.equal(x1, x2, out=None, where=None, **kwargs)

	Return (x1 == x2) element-wise.

	x1, x2array_like

	Input tensors of the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	outTensor or bool

	Output tensor of bools, or a single bool if x1 and x2 are scalars.

not_equal, greater_equal, less_equal, greater, less

>>> import mars.tensor as mt

>>> mt.equal([0, 1, 3], mt.arange(3)).execute()
array([True, True, False])

What is compared are values, not types. So an int (1) and a tensor of
length one can evaluate as True:

>>> mt.equal(1, mt.ones(1))
array([True])

mars.tensor.not_equal

	
mars.tensor.not_equal(x1, x2, out=None, where=None, **kwargs)

	Return (x1 != x2) element-wise.

	x1, x2array_like

	Input tensors.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	not_equaltensor bool, scalar bool

	For each element in x1, x2, return True if x1 is not equal
to x2 and False otherwise.

equal, greater, greater_equal, less, less_equal

>>> import mars.tensor as mt

>>> mt.not_equal([1.,2.], [1., 3.]).execute()
array([False, True])
>>> mt.not_equal([1, 2], [[1, 3],[1, 4]]).execute()
array([[False, True],
 [False, True]])

Mathematical Functions

Trigonometric functions

	mars.tensor.sin

	Trigonometric sine, element-wise.

	mars.tensor.cos

	Cosine element-wise.

	mars.tensor.tan

	Compute tangent element-wise.

	mars.tensor.arcsin

	Inverse sine, element-wise.

	mars.tensor.arccos

	Trigonometric inverse cosine, element-wise.

	mars.tensor.arctan

	Trigonometric inverse tangent, element-wise.

	mars.tensor.hypot

	Given the “legs” of a right triangle, return its hypotenuse.

	mars.tensor.arctan2

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	mars.tensor.degrees

	Convert angles from radians to degrees.

	mars.tensor.radians

	Convert angles from degrees to radians.

	mars.tensor.deg2rad

	Convert angles from degrees to radians.

	mars.tensor.rad2deg

	Convert angles from radians to degrees.

Hyperbolic functions

	mars.tensor.sinh

	Hyperbolic sine, element-wise.

	mars.tensor.cosh

	Hyperbolic cosine, element-wise.

	mars.tensor.tanh

	Compute hyperbolic tangent element-wise.

	mars.tensor.arcsinh

	Inverse hyperbolic sine element-wise.

	mars.tensor.arccosh

	Inverse hyperbolic cosine, element-wise.

	mars.tensor.arctanh

	Inverse hyperbolic tangent element-wise.

Rounding

	mars.tensor.around

	Evenly round to the given number of decimals.

	mars.tensor.round_

	Evenly round to the given number of decimals.

	mars.tensor.rint

	Round elements of the tensor to the nearest integer.

	mars.tensor.fix

	Round to nearest integer towards zero.

	mars.tensor.floor

	Return the floor of the input, element-wise.

	mars.tensor.ceil

	Return the ceiling of the input, element-wise.

	mars.tensor.trunc

	Return the truncated value of the input, element-wise.

Sums, products, differences

	mars.tensor.prod

	Return the product of tensor elements over a given axis.

	mars.tensor.sum

	Sum of tensor elements over a given axis.

	mars.tensor.nanprod

	Return the product of array elements over a given axis treating Not a Numbers (NaNs) as ones.

	mars.tensor.nansum

	Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.

	mars.tensor.cumprod

	Return the cumulative product of elements along a given axis.

	mars.tensor.cumsum

	Return the cumulative sum of the elements along a given axis.

	mars.tensor.nancumprod

	Return the cumulative product of tensor elements over a given axis treating Not a Numbers (NaNs) as one.

	mars.tensor.nancumsum

	Return the cumulative sum of tensor elements over a given axis treating Not a Numbers (NaNs) as zero.

	mars.tensor.diff

	Calculate the n-th discrete difference along the given axis.

	mars.tensor.ediff1d

	The differences between consecutive elements of a tensor.

Exponential and logarithms

	mars.tensor.exp

	Calculate the exponential of all elements in the input tensor.

	mars.tensor.expm1

	Calculate exp(x) - 1 for all elements in the tensor.

	mars.tensor.exp2

	Calculate 2**p for all p in the input tensor.

	mars.tensor.log

	Natural logarithm, element-wise.

	mars.tensor.log10

	Return the base 10 logarithm of the input tensor, element-wise.

	mars.tensor.log2

	Base-2 logarithm of x.

	mars.tensor.log1p

	Return the natural logarithm of one plus the input tensor, element-wise.

	mars.tensor.logaddexp

	Logarithm of the sum of exponentiations of the inputs.

	mars.tensor.logaddexp2

	Logarithm of the sum of exponentiations of the inputs in base-2.

Other special functions

	mars.tensor.i0

	Modified Bessel function of the first kind, order 0.

	mars.tensor.sinc

	Return the sinc function.

Floating point routines

	mars.tensor.signbit

	Returns element-wise True where signbit is set (less than zero).

	mars.tensor.copysign

	Change the sign of x1 to that of x2, element-wise.

	mars.tensor.frexp

	Decompose the elements of x into mantissa and twos exponent.

	mars.tensor.ldexp

	Returns x1 * 2**x2, element-wise.

	mars.tensor.nextafter

	Return the next floating-point value after x1 towards x2, element-wise.

	mars.tensor.spacing

	Return the distance between x and the nearest adjacent number.

Arithmetic operations

	mars.tensor.add

	Add arguments element-wise.

	mars.tensor.reciprocal

	Return the reciprocal of the argument, element-wise.

	mars.tensor.positive

	Numerical positive, element-wise.

	mars.tensor.negative

	Numerical negative, element-wise.

	mars.tensor.multiply

	Multiply arguments element-wise.

	mars.tensor.divide

	Divide arguments element-wise.

	mars.tensor.power

	First tensor elements raised to powers from second tensor, element-wise.

	mars.tensor.subtract

	Subtract arguments, element-wise.

	mars.tensor.true_divide

	Returns a true division of the inputs, element-wise.

	mars.tensor.floor_divide

	Return the largest integer smaller or equal to the division of the inputs.

	mars.tensor.float_power

	First tensor elements raised to powers from second array, element-wise.

	mars.tensor.fmod

	Return the element-wise remainder of division.

	mars.tensor.mod

	Return element-wise remainder of division.

	mars.tensor.modf

	Return the fractional and integral parts of a tensor, element-wise.

	mars.tensor.remainder

	Return element-wise remainder of division.

Handling complex numbers

	mars.tensor.angle

	Return the angle of the complex argument.

	mars.tensor.real

	Return the real part of the complex argument.

	mars.tensor.imag

	Return the imaginary part of the complex argument.

	mars.tensor.conj

	Return the complex conjugate, element-wise.

Miscellaneous

	mars.tensor.clip

	Clip (limit) the values in a tensor.

	mars.tensor.sqrt

	Return the positive square-root of an tensor, element-wise.

	mars.tensor.cbrt

	Return the cube-root of an tensor, element-wise.

	mars.tensor.square

	Return the element-wise square of the input.

	mars.tensor.absolute

	Calculate the absolute value element-wise.

	mars.tensor.sign

	Returns an element-wise indication of the sign of a number.

	mars.tensor.maximum

	Element-wise maximum of tensor elements.

	mars.tensor.minimum

	Element-wise minimum of tensor elements.

	mars.tensor.fmax

	Element-wise maximum of array elements.

	mars.tensor.fmin

	Element-wise minimum of array elements.

	mars.tensor.nan_to_num

	Replace nan with zero and inf with large finite numbers.

mars.tensor.sin

	
mars.tensor.sin(x, out=None, where=None, **kwargs)

	Trigonometric sine, element-wise.

	xarray_like

	Angle, in radians (\(2 \pi\) rad equals 360 degrees).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yarray_like

	The sine of each element of x.

arcsin, sinh, cos

The sine is one of the fundamental functions of trigonometry (the
mathematical study of triangles). Consider a circle of radius 1
centered on the origin. A ray comes in from the \(+x\) axis, makes
an angle at the origin (measured counter-clockwise from that axis), and
departs from the origin. The \(y\) coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It
ranges from -1 for \(x=3\pi / 2\) to +1 for \(\pi / 2.\) The
function has zeroes where the angle is a multiple of \(\pi\).
Sines of angles between \(\pi\) and \(2\pi\) are negative.
The numerous properties of the sine and related functions are included
in any standard trigonometry text.

Print sine of one angle:

>>> import mars.tensor as mt

>>> mt.sin(mt.pi/2.).execute()
1.0

Print sines of an array of angles given in degrees:

>>> mt.sin(mt.array((0., 30., 45., 60., 90.)) * mt.pi / 180.).execute()
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = mt.linspace(-mt.pi, mt.pi, 201)
>>> plt.plot(x.execute(), mt.sin(x).execute())
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.cos

	
mars.tensor.cos(x, out=None, where=None, **kwargs)

	Cosine element-wise.

	xarray_like

	Input tensor in radians.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding cosine values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

>>> import mars.tensor as mt

>>> mt.cos(mt.array([0, mt.pi/2, mt.pi])).execute()
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out1 = mt.empty(1)
>>> out2 = mt.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.cos(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.tan

	
mars.tensor.tan(x, out=None, where=None, **kwargs)

	Compute tangent element-wise.

Equivalent to mt.sin(x)/mt.cos(x) element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding tangent values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

>>> from math import pi
>>> import mars.tensor as mt
>>> mt.tan(mt.array([-pi,pi/2,pi])).execute()
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.cos(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

mars.tensor.arcsin

	
mars.tensor.arcsin(x, out=None, where=None, **kwargs)

	Inverse sine, element-wise.

	xarray_like

	y-coordinate on the unit circle.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	The inverse sine of each element in x, in radians and in the
closed interval [-pi/2, pi/2]. If x is a scalar, a scalar
is returned, otherwise a tensor.

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

arcsin is a multivalued function: for each x there are infinitely
many numbers z such that \(sin(z) = x\). The convention is to
return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that
has, by convention, the branch cuts [-inf, -1] and [1, inf] and is
continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/

>>> import mars.tensor as mt
>>> mt.arcsin(1).execute() # pi/2
1.5707963267948966
>>> mt.arcsin(-1).execute() # -pi/2
-1.5707963267948966
>>> mt.arcsin(0).execute()
0.0

mars.tensor.arccos

	
mars.tensor.arccos(x, out=None, where=None, **kwargs)

	Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

	xarray_like

	x-coordinate on the unit circle.
For real arguments, the domain is [-1, 1].

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	The angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi]. If x is a scalar then a
scalar is returned, otherwise an array of the same shape as x
is returned.

cos, arctan, arcsin

arccos is a multivalued function: for each x there are infinitely
many numbers z such that cos(z) = x. The convention is to return
the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that
has branch cuts [-inf, -1] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

We expect the arccos of 1 to be 0, and of -1 to be pi:
>>> import mars.tensor as mt

>>> mt.arccos([1, -1]).execute()
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-1, 1, num=100)
>>> plt.plot(x.execute(), mt.arccos(x).execute())
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.arctan

	
mars.tensor.arctan(x, out=None, where=None, **kwargs)

	Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

x : array_like
out : Tensor, None, or tuple of Tensor and None, optional

A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Out has the same shape as x. Its real part is in
[-pi/2, pi/2] (arctan(+/-inf) returns +/-pi/2).
It is a scalar if x is a scalar.

	arctan2The “four quadrant” arctan of the angle formed by (x, y)

	and the positive x-axis.

angle : Argument of complex values.

arctan is a multi-valued function: for each x there are infinitely
many numbers z such that tan(z) = x. The convention is to return
the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that
has [1j, infj] and [-1j, -infj] as branch cuts, and is continuous
from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/

We expect the arctan of 0 to be 0, and of 1 to be pi/4:
>>> import mars.tensor as mt

>>> mt.arctan([0, 1]).execute()
array([0. , 0.78539816])

>>> mt.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-10, 10)
>>> plt.plot(x.execute(), mt.arctan(x).execute())
>>> plt.axis('tight')
>>> plt.show()

mars.tensor.hypot

	
mars.tensor.hypot(x1, x2, out=None, where=None, **kwargs)

	Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or
x2 is scalar_like (i.e., unambiguously cast-able to a scalar type),
it is broadcast for use with each element of the other argument.
(See Examples)

	x1, x2array_like

	Leg of the triangle(s).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	zTensor

	The hypotenuse of the triangle(s).

>>> import mars.tensor as mt

>>> mt.hypot(3*mt.ones((3, 3)), 4*mt.ones((3, 3))).execute()
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> mt.hypot(3*mt.ones((3, 3)), [4]).execute()
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

mars.tensor.arctan2

	
mars.tensor.arctan2(x1, x2, out=None, where=None, **kwargs)

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is
the signed angle in radians between the ray ending at the origin and
passing through the point (1,0), and the ray ending at the origin and
passing through the point (x2, x1). (Note the role reversal: the
“y-coordinate” is the first function parameter, the “x-coordinate”
is the second.) By IEEE convention, this function is defined for
x2 = +/-0 and for either or both of x1 and x2 = +/-inf (see
Notes for specific values).

This function is not defined for complex-valued arguments; for the
so-called argument of complex values, use angle.

	x1array_like, real-valued

	y-coordinates.

	x2array_like, real-valued

	x-coordinates. x2 must be broadcastable to match the shape of
x1 or vice versa.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	angleTensor

	Array of angles in radians, in the range [-pi, pi].

arctan, tan, angle

arctan2 is identical to the atan2 function of the underlying
C library. The following special values are defined in the C
standard: 1

	x1

	x2

	arctan2(x1,x2)

	+/- 0

	+0

	+/- 0

	+/- 0

	-0

	+/- pi

	> 0

	+/-inf

	+0 / +pi

	< 0

	+/-inf

	-0 / -pi

	+/-inf

	+inf

	+/- (pi/4)

	+/-inf

	-inf

	+/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf
and -inf.

	1

	ISO/IEC standard 9899:1999, “Programming language C.”

Consider four points in different quadrants:
>>> import mars.tensor as mt

>>> x = mt.array([-1, +1, +1, -1])
>>> y = mt.array([-1, -1, +1, +1])
>>> (mt.arctan2(y, x) * 180 / mt.pi).execute()
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0
and at several other special points, obtaining values in
the range [-pi, pi]:

>>> mt.arctan2([1., -1.], [0., 0.]).execute()
array([1.57079633, -1.57079633])
>>> mt.arctan2([0., 0., mt.inf], [+0., -0., mt.inf]).execute()
array([0. , 3.14159265, 0.78539816])

mars.tensor.degrees

	
mars.tensor.degrees(x, out=None, where=None, **kwargs)

	Convert angles from radians to degrees.

	xarray_like

	Input tensor in radians.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor of floats

	The corresponding degree values; if out was supplied this is a
reference to it.

rad2deg : equivalent function

Convert a radian array to degrees

>>> import mars.tensor as mt

>>> rad = mt.arange(12.)*mt.pi/6
>>> mt.degrees(rad).execute()
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,
 270., 300., 330.])

>>> out = mt.zeros((rad.shape))
>>> r = mt.degrees(out)
>>> mt.all(r == out).execute()
True

mars.tensor.radians

	
mars.tensor.radians(x, out=None, where=None, **kwargs)

	Convert angles from degrees to radians.

	xarray_like

	Input tensor in degrees.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding radian values.

deg2rad : equivalent function

Convert a degree array to radians

>>> import mars.tensor as mt

>>> deg = mt.arange(12.) * 30.
>>> mt.radians(deg).execute()
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,
 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
 5.23598776, 5.75958653])

>>> out = mt.zeros((deg.shape))
>>> ret = mt.radians(deg, out)
>>> ret is out
True

mars.tensor.deg2rad

	
mars.tensor.deg2rad(x, out=None, where=None, **kwargs)

	Convert angles from degrees to radians.

	xarray_like

	Angles in degrees.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding angle in radians.

rad2deg : Convert angles from radians to degrees.
unwrap : Remove large jumps in angle by wrapping.

deg2rad(x) is x * pi / 180.

>>> import mars.tensor as mt

>>> mt.deg2rad(180).execute()
3.1415926535897931

mars.tensor.rad2deg

	
mars.tensor.rad2deg(x, out=None, where=None, **kwargs)

	Convert angles from radians to degrees.

	xarray_like

	Angle in radians.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding angle in degrees.

deg2rad : Convert angles from degrees to radians.

rad2deg(x) is 180 * x / pi.

>>> import mars.tensor as mt

>>> mt.rad2deg(mt.pi/2).execute()
90.0

mars.tensor.sinh

	
mars.tensor.sinh(x, out=None, where=None, **kwargs)

	Hyperbolic sine, element-wise.

Equivalent to 1/2 * (mt.exp(x) - mt.exp(-x)) or
-1j * mt.sin(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding hyperbolic sine values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.

>>> import mars.tensor as mt

>>> mt.sinh(0).execute()
0.0
>>> mt.sinh(mt.pi*1j/2).execute()
1j
>>> mt.sinh(mt.pi*1j).execute() # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.sinh(mt.zeros((3,3)),mt.zeros((2,2))).execute()
Traceback (most recent call last):
...
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.cosh

	
mars.tensor.cosh(x, out=None, where=None, **kwargs)

	Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (mt.exp(x) + mt.exp(-x)) and mt.cos(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Output array of same shape as x.

>>> import mars.tensor as mt

>>> mt.cosh(0).execute()
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = mt.linspace(-4, 4, 1000)
>>> plt.plot(x.execute(), mt.cosh(x).execute())
>>> plt.show()

mars.tensor.tanh

	
mars.tensor.tanh(x, out=None, where=None, **kwargs)

	Compute hyperbolic tangent element-wise.

Equivalent to mt.sinh(x)/np.cosh(x) or -1j * mt.tan(1j*x).

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The corresponding hyperbolic tangent values.

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

	1

	M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Hyperbolic function”,
http://en.wikipedia.org/wiki/Hyperbolic_function

>>> import mars.tensor as mt

>>> mt.tanh((0, mt.pi*1j, mt.pi*1j/2)).execute()
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = mt.zeros(1)
>>> out2 = mt.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> mt.tanh(mt.zeros((3,3)),mt.zeros((2,2)))
Traceback (most recent call last):
...
ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

mars.tensor.arcsinh

	
mars.tensor.arcsinh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic sine element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Tensor of of the same shape as x.

arcsinh is a multivalued function: for each x there are infinitely
many numbers z such that sinh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that
has branch cuts [1j, infj] and [-1j, -infj] and is continuous from
the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arcsinh

>>> import mars.tensor as mt

>>> mt.arcsinh(mt.array([mt.e, 10.0])).execute()
array([1.72538256, 2.99822295])

mars.tensor.arccosh

	
mars.tensor.arccosh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic cosine, element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	arccoshTensor

	Array of the same shape as x.

cosh, arcsinh, sinh, arctanh, tanh

arccosh is a multivalued function: for each x there are infinitely
many numbers z such that cosh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi] and the real part in
[0, inf].

For real-valued input data types, arccosh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that
has a branch cut [-inf, 1] and is continuous from above on it.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arccosh

>>> import mars.tensor as mt

>>> mt.arccosh([mt.e, 10.0]).execute()
array([1.65745445, 2.99322285])
>>> mt.arccosh(1).execute()
0.0

mars.tensor.arctanh

	
mars.tensor.arctanh(x, out=None, where=None, **kwargs)

	Inverse hyperbolic tangent element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Array of the same shape as x.

arctanh is a multivalued function: for each x there are infinitely
many numbers z such that tanh(z) = x. The convention is to return
the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function
that has branch cuts [-1, -inf] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arctanh

>>> import mars.tensor as mt

>>> mt.arctanh([0, -0.5]).execute()
array([0. , -0.54930614])

mars.tensor.around

	
mars.tensor.around(a, decimals=0, out=None)

	Evenly round to the given number of decimals.

	aarray_like

	Input data.

	decimalsint, optional

	Number of decimal places to round to (default: 0). If
decimals is negative, it specifies the number of positions to
the left of the decimal point.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary.

	rounded_arrayTensor

	An tensor of the same type as a, containing the rounded values.
Unless out was specified, a new tensor is created. A reference to
the result is returned.

The real and imaginary parts of complex numbers are rounded
separately. The result of rounding a float is a float.

Tensor.round : equivalent method

ceil, fix, floor, rint, trunc

For values exactly halfway between rounded decimal values, NumPy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
to the inexact representation of decimal fractions in the IEEE
floating point standard 1 and errors introduced when scaling
by powers of ten.

	1

	“Lecture Notes on the Status of IEEE 754”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

	2

	“How Futile are Mindless Assessments of
Roundoff in Floating-Point Computation?”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

>>> import mars.tensor as mt

>>> mt.around([0.37, 1.64]).execute()
array([0., 2.])
>>> mt.around([0.37, 1.64], decimals=1).execute()
array([0.4, 1.6])
>>> mt.around([.5, 1.5, 2.5, 3.5, 4.5]).execute() # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> mt.around([1,2,3,11], decimals=1).execute() # tensor of ints is returned
array([1, 2, 3, 11])
>>> mt.around([1,2,3,11], decimals=-1).execute()
array([0, 0, 0, 10])

mars.tensor.round_

	
mars.tensor.round_(a, decimals=0, out=None)

	Evenly round to the given number of decimals.

	aarray_like

	Input data.

	decimalsint, optional

	Number of decimal places to round to (default: 0). If
decimals is negative, it specifies the number of positions to
the left of the decimal point.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary.

	rounded_arrayTensor

	An tensor of the same type as a, containing the rounded values.
Unless out was specified, a new tensor is created. A reference to
the result is returned.

The real and imaginary parts of complex numbers are rounded
separately. The result of rounding a float is a float.

Tensor.round : equivalent method

ceil, fix, floor, rint, trunc

For values exactly halfway between rounded decimal values, NumPy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
to the inexact representation of decimal fractions in the IEEE
floating point standard 1 and errors introduced when scaling
by powers of ten.

	1

	“Lecture Notes on the Status of IEEE 754”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

	2

	“How Futile are Mindless Assessments of
Roundoff in Floating-Point Computation?”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

>>> import mars.tensor as mt

>>> mt.around([0.37, 1.64]).execute()
array([0., 2.])
>>> mt.around([0.37, 1.64], decimals=1).execute()
array([0.4, 1.6])
>>> mt.around([.5, 1.5, 2.5, 3.5, 4.5]).execute() # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> mt.around([1,2,3,11], decimals=1).execute() # tensor of ints is returned
array([1, 2, 3, 11])
>>> mt.around([1,2,3,11], decimals=-1).execute()
array([0, 0, 0, 10])

mars.tensor.rint

	
mars.tensor.rint(x, out=None, where=None, **kwargs)

	Round elements of the tensor to the nearest integer.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor or scalar

	Output array is same shape and type as x.

ceil, floor, trunc

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.rint(a).execute()
array([-2., -2., -0., 0., 2., 2., 2.])

mars.tensor.fix

	
mars.tensor.fix(x, out=None, **kwargs)

	Round to nearest integer towards zero.

Round a tensor of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.

	xarray_like

	An tensor of floats to be rounded

	outTensor, optional

	Output tensor

	outTensor of floats

	The array of rounded numbers

trunc, floor, ceil
around : Round to given number of decimals

>>> import mars.tensor as mt

>>> mt.fix(3.14).execute()
3.0
>>> mt.fix(3).execute()
3.0
>>> mt.fix([2.1, 2.9, -2.1, -2.9]).execute()
array([2., 2., -2., -2.])

mars.tensor.floor

	
mars.tensor.floor(x, out=None, where=None, **kwargs)

	Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that
i <= x. It is often denoted as \(\lfloor x \rfloor\).

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The floor of each element in x.

ceil, trunc, rint

Some spreadsheet programs calculate the “floor-towards-zero”, in other
words floor(-2.5) == -2. NumPy instead uses the definition of
floor where floor(-2.5) == -3.

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.floor(a).execute()
array([-2., -2., -1., 0., 1., 1., 2.])

mars.tensor.ceil

	
mars.tensor.ceil(x, out=None, where=None, **kwargs)

	Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that
i >= x. It is often denoted as \(\lceil x \rceil\).

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The ceiling of each element in x, with float dtype.

floor, trunc, rint

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.ceil(a).execute()
array([-1., -1., -0., 1., 2., 2., 2.])

mars.tensor.trunc

	
mars.tensor.trunc(x, out=None, where=None, **kwargs)

	Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which
is closer to zero than x is. In short, the fractional part of the
signed number x is discarded.

	xarray_like

	Input data.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The truncated value of each element in x.

ceil, floor, rint

>>> import mars.tensor as mt

>>> a = mt.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> mt.trunc(a).execute()
array([-1., -1., -0., 0., 1., 1., 2.])

mars.tensor.prod

	
mars.tensor.prod(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Return the product of tensor elements over a given axis.

	aarray_like

	Input data.

	axisNone or int or tuple of ints, optional

	Axis or axes along which a product is performed. The default,
axis=None, will calculate the product of all the elements in the
input tensor. If axis is negative it counts from the last to the
first axis.

If axis is a tuple of ints, a product is performed on all of the
axes specified in the tuple instead of a single axis or all the
axes as before.

	dtypedtype, optional

	The type of the returned tensor, as well as of the accumulator in
which the elements are multiplied. The dtype of a is used by
default unless a has an integer dtype of less precision than the
default platform integer. In that case, if a is signed then the
platform integer is used while if a is unsigned then an unsigned
integer of the same precision as the platform integer is used.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be
passed through to the prod method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	product_along_axisTensor, see dtype parameter above.

	An tensor shaped as a but with the specified axis removed.
Returns a reference to out if specified.

Tensor.prod : equivalent method

Arithmetic is modular when using integer types, and no error is
raised on overflow. That means that, on a 32-bit platform:

>>> import mars.tensor as mt

>>> x = mt.array([536870910, 536870910, 536870910, 536870910])
>>> mt.prod(x).execute() # random
16

The product of an empty array is the neutral element 1:

>>> mt.prod([]).execute()
1.0

By default, calculate the product of all elements:

>>> mt.prod([1.,2.]).execute()
2.0

Even when the input array is two-dimensional:

>>> mt.prod([[1.,2.],[3.,4.]]).execute()
24.0

But we can also specify the axis over which to multiply:

>>> mt.prod([[1.,2.],[3.,4.]], axis=1).execute()
array([2., 12.])

If the type of x is unsigned, then the output type is
the unsigned platform integer:

>>> x = mt.array([1, 2, 3], dtype=mt.uint8)
>>> mt.prod(x).dtype == mt.uint
True

If x is of a signed integer type, then the output type
is the default platform integer:

>>> x = mt.array([1, 2, 3], dtype=mt.int8)
>>> mt.prod(x).dtype == int
True

mars.tensor.sum

	
mars.tensor.sum(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Sum of tensor elements over a given axis.

	aarray_like

	Elements to sum.

	axisNone or int or tuple of ints, optional

	Axis or axes along which a sum is performed. The default,
axis=None, will sum all of the elements of the input tensor. If
axis is negative it counts from the last to the first axis.

If axis is a tuple of ints, a sum is performed on all of the axes
specified in the tuple instead of a single axis or all the axes as
before.

	dtypedtype, optional

	The type of the returned tensor and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a
has an integer dtype of less precision than the default platform
integer. In that case, if a is signed then the platform integer
is used while if a is unsigned then an unsigned integer of the
same precision as the platform integer is used.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the sum method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	sum_along_axisTensor

	An array with the same shape as a, with the specified
axis removed. If a is a 0-d tensor, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Tensor.sum : Equivalent method.

cumsum : Cumulative sum of tensor elements.

trapz : Integration of tensor values using the composite trapezoidal rule.

mean, average

Arithmetic is modular when using integer types, and no error is
raised on overflow.

The sum of an empty array is the neutral element 0:

>>> import mars.tensor as mt

>>> mt.sum([]).execute()
0.0

>>> mt.sum([0.5, 1.5]).execute()
2.0
>>> mt.sum([0.5, 0.7, 0.2, 1.5], dtype=mt.int32).execute()
1
>>> mt.sum([[0, 1], [0, 5]]).execute()
6
>>> mt.sum([[0, 1], [0, 5]], axis=0).execute()
array([0, 6])
>>> mt.sum([[0, 1], [0, 5]], axis=1).execute()
array([1, 5])

If the accumulator is too small, overflow occurs:

>>> mt.ones(128, dtype=mt.int8).sum(dtype=mt.int8).execute()
-128

mars.tensor.nanprod

	
mars.tensor.nanprod(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Return the product of array elements over a given axis treating Not a
Numbers (NaNs) as ones.

One is returned for slices that are all-NaN or empty.

	aarray_like

	Tensor containing numbers whose product is desired. If a is not an
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the product is computed. The default is to compute
the product of the flattened tensor.

	dtypedata-type, optional

	The type of the returned tensor and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An
exception is when a has an integer type with less precision than
the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
bits. For inexact inputs, dtype must be inexact.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None. If provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details. The casting of NaN to integer can yield
unexpected results.

	keepdimsbool, optional

	If True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the original arr.

	combine_size: int, optional

	The number of chunks to combine.

	nanprodTensor

	A new tensor holding the result is returned unless out is
specified, in which case it is returned.

mt.prod : Product across array propagating NaNs.
isnan : Show which elements are NaN.

>>> import mars.tensor as mt

>>> mt.nanprod(1).execute()
1
>>> mt.nanprod([1]).execute()
1
>>> mt.nanprod([1, mt.nan]).execute()
1.0
>>> a = mt.array([[1, 2], [3, mt.nan]])
>>> mt.nanprod(a).execute()
6.0
>>> mt.nanprod(a, axis=0).execute()
array([3., 2.])

mars.tensor.nansum

	
mars.tensor.nansum(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Return the sum of array elements over a given axis treating Not a
Numbers (NaNs) as zero.

Zero is returned for slices that are all-NaN or
empty.

	aarray_like

	Tensor containing numbers whose sum is desired. If a is not an
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the sum is computed. The default is to compute the
sum of the flattened array.

	dtypedata-type, optional

	The type of the returned tensor and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An
exception is when a has an integer type with less precision than
the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
bits. For inexact inputs, dtype must be inexact.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None. If provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details. The casting of NaN to integer can yield
unexpected results.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

If the value is anything but the default, then
keepdims will be passed through to the mean or sum methods
of sub-classes of Tensor. If the sub-classes methods
does not implement keepdims any exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	nansumTensor.

	A new tensor holding the result is returned unless out is
specified, in which it is returned. The result has the same
size as a, and the same shape as a if axis is not None
or a is a 1-d array.

mt.sum : Sum across tensor propagating NaNs.
isnan : Show which elements are NaN.
isfinite: Show which elements are not NaN or +/-inf.

If both positive and negative infinity are present, the sum will be Not
A Number (NaN).

>>> import mars.tensor as mt

>>> mt.nansum(1).execute()
1
>>> mt.nansum([1]).execute()
1
>>> mt.nansum([1, mt.nan]).execute()
1.0
>>> a = mt.array([[1, 1], [1, mt.nan]])
>>> mt.nansum(a).execute()
3.0
>>> mt.nansum(a, axis=0).execute()
array([2., 1.])
>>> mt.nansum([1, mt.nan, mt.inf]).execute()
inf
>>> mt.nansum([1, mt.nan, mt.NINF]).execute()
-inf
>>> mt.nansum([1, mt.nan, mt.inf, -mt.inf]).execute() # both +/- infinity present
nan

mars.tensor.cumprod

	
mars.tensor.cumprod(a, axis=None, dtype=None, out=None)

	Return the cumulative product of elements along a given axis.

	aarray_like

	Input tensor.

	axisint, optional

	Axis along which the cumulative product is computed. By default
the input is flattened.

	dtypedtype, optional

	Type of the returned tensor, as well as of the accumulator in which
the elements are multiplied. If dtype is not specified, it
defaults to the dtype of a, unless a has an integer dtype with
a precision less than that of the default platform integer. In
that case, the default platform integer is used instead.

	outTensor, optional

	Alternative output tensor in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.

	cumprodTensor

	A new tensor holding the result is returned unless out is
specified, in which case a reference to out is returned.

numpy.doc.ufuncs : Section “Output arguments”

Arithmetic is modular when using integer types, and no error is
raised on overflow.

>>> import mars.tensor as mt

>>> a = mt.array([1,2,3])
>>> mt.cumprod(a).execute() # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = mt.array([[1, 2, 3], [4, 5, 6]])
>>> mt.cumprod(a, dtype=float).execute() # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> mt.cumprod(a, axis=0).execute()
array([[1, 2, 3],
 [4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

>>> mt.cumprod(a,axis=1).execute()
array([[1, 2, 6],
 [4, 20, 120]])

mars.tensor.cumsum

	
mars.tensor.cumsum(a, axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along a given axis.

	aarray_like

	Input tensor.

	axisint, optional

	Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened tensor.

	dtypedtype, optional

	Type of the returned tensor and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

	outTensor, optional

	Alternative output tensor in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

	cumsum_along_axisTensor.

	A new tensor holding the result is returned unless out is
specified, in which case a reference to out is returned. The
result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d tensor.

sum : Sum tensor elements.

trapz : Integration of tensor values using the composite trapezoidal rule.

diff : Calculate the n-th discrete difference along given axis.

Arithmetic is modular when using integer types, and no error is
raised on overflow.

>>> import mars.tensor as mt

>>> a = mt.array([[1,2,3], [4,5,6]])
>>> a.execute()
array([[1, 2, 3],
 [4, 5, 6]])
>>> mt.cumsum(a).execute()
array([1, 3, 6, 10, 15, 21])
>>> mt.cumsum(a, dtype=float).execute() # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> mt.cumsum(a,axis=0).execute() # sum over rows for each of the 3 columns
array([[1, 2, 3],
 [5, 7, 9]])
>>> mt.cumsum(a,axis=1).execute() # sum over columns for each of the 2 rows
array([[1, 3, 6],
 [4, 9, 15]])

mars.tensor.nancumprod

	
mars.tensor.nancumprod(a, axis=None, dtype=None, out=None)

	Return the cumulative product of tensor elements over a given axis treating Not a
Numbers (NaNs) as one. The cumulative product does not change when NaNs are
encountered and leading NaNs are replaced by ones.

Ones are returned for slices that are all-NaN or empty.

	aarray_like

	Input tensor.

	axisint, optional

	Axis along which the cumulative product is computed. By default
the input is flattened.

	dtypedtype, optional

	Type of the returned tensor, as well as of the accumulator in which
the elements are multiplied. If dtype is not specified, it
defaults to the dtype of a, unless a has an integer dtype with
a precision less than that of the default platform integer. In
that case, the default platform integer is used instead.

	outTensor, optional

	Alternative output tensor in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.

	nancumprodTensor

	A new array holding the result is returned unless out is
specified, in which case it is returned.

mt.cumprod : Cumulative product across array propagating NaNs.
isnan : Show which elements are NaN.

>>> import mars.tensor as mt

>>> mt.nancumprod(1).execute()
array([1])
>>> mt.nancumprod([1]).execute()
array([1])
>>> mt.nancumprod([1, mt.nan]).execute()
array([1., 1.])
>>> a = mt.array([[1, 2], [3, mt.nan]])
>>> mt.nancumprod(a).execute()
array([1., 2., 6., 6.])
>>> mt.nancumprod(a, axis=0).execute()
array([[1., 2.],
 [3., 2.]])
>>> mt.nancumprod(a, axis=1).execute()
array([[1., 2.],
 [3., 3.]])

mars.tensor.nancumsum

	
mars.tensor.nancumsum(a, axis=None, dtype=None, out=None)

	Return the cumulative sum of tensor elements over a given axis treating Not a
Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are
encountered and leading NaNs are replaced by zeros.

Zeros are returned for slices that are all-NaN or empty.

	aarray_like

	Input tensor.

	axisint, optional

	Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened tensor.

	dtypedtype, optional

	Type of the returned tensor and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

	outTensor, optional

	Alternative output tensor in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

	nancumsumTensor.

	A new tensor holding the result is returned unless out is
specified, in which it is returned. The result has the same
size as a, and the same shape as a if axis is not None
or a is a 1-d tensor.

numpy.cumsum : Cumulative sum across tensor propagating NaNs.
isnan : Show which elements are NaN.

>>> import mars.tensor as mt

>>> mt.nancumsum(1).execute()
array([1])
>>> mt.nancumsum([1]).execute()
array([1])
>>> mt.nancumsum([1, mt.nan]).execute()
array([1., 1.])
>>> a = mt.array([[1, 2], [3, mt.nan]])
>>> mt.nancumsum(a).execute()
array([1., 3., 6., 6.])
>>> mt.nancumsum(a, axis=0).execute()
array([[1., 2.],
 [4., 2.]])
>>> mt.nancumsum(a, axis=1).execute()
array([[1., 3.],
 [3., 3.]])

mars.tensor.diff

	
mars.tensor.diff(a, n=1, axis=-1)

	Calculate the n-th discrete difference along the given axis.

The first difference is given by out[n] = a[n+1] - a[n] along
the given axis, higher differences are calculated by using diff
recursively.

	aarray_like

	Input tensor

	nint, optional

	The number of times values are differenced. If zero, the input
is returned as-is.

	axisint, optional

	The axis along which the difference is taken, default is the
last axis.

	diffTensor

	The n-th differences. The shape of the output is the same as a
except along axis where the dimension is smaller by n. The
type of the output is the same as the type of the difference
between any two elements of a. This is the same as the type of
a in most cases. A notable exception is datetime64, which
results in a timedelta64 output tensor.

gradient, ediff1d, cumsum

Type is preserved for boolean tensors, so the result will contain
False when consecutive elements are the same and True when they
differ.

For unsigned integer tensors, the results will also be unsigned. This
should not be surprising, as the result is consistent with
calculating the difference directly:

>>> import mars.tensor as mt

>>> u8_arr = mt.array([1, 0], dtype=mt.uint8)
>>> mt.diff(u8_arr).execute()
array([255], dtype=uint8)
>>> (u8_arr[1,...] - u8_arr[0,...]).execute()
255

If this is not desirable, then the array should be cast to a larger
integer type first:

>>> i16_arr = u8_arr.astype(mt.int16)
>>> mt.diff(i16_arr).execute()
array([-1], dtype=int16)

>>> x = mt.array([1, 2, 4, 7, 0])
>>> mt.diff(x).execute()
array([1, 2, 3, -7])
>>> mt.diff(x, n=2).execute()
array([1, 1, -10])

>>> x = mt.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> mt.diff(x).execute()
array([[2, 3, 4],
 [5, 1, 2]])
>>> mt.diff(x, axis=0).execute()
array([[-1, 2, 0, -2]])

>>> x = mt.arange('1066-10-13', '1066-10-16', dtype=mt.datetime64)
>>> mt.diff(x).execute()
array([1, 1], dtype='timedelta64[D]')

mars.tensor.ediff1d

	
mars.tensor.ediff1d(a, to_end=None, to_begin=None)

	The differences between consecutive elements of a tensor.

	aarray_like

	If necessary, will be flattened before the differences are taken.

	to_endarray_like, optional

	Number(s) to append at the end of the returned differences.

	to_beginarray_like, optional

	Number(s) to prepend at the beginning of the returned differences.

	ediff1dTensor

	The differences. Loosely, this is a.flat[1:] - a.flat[:-1].

diff, gradient

>>> import mars.tensor as mt

>>> x = mt.array([1, 2, 4, 7, 0])
>>> mt.ediff1d(x).execute()
array([1, 2, 3, -7])

>>> mt.ediff1d(x, to_begin=-99, to_end=mt.array([88, 99])).execute()
array([-99, 1, 2, 3, -7, 88, 99])

The returned tensor is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> mt.ediff1d(y).execute()
array([1, 2, -3, 5, 18])

mars.tensor.exp

	
mars.tensor.exp(x, out=None, where=None, **kwargs)

	Calculate the exponential of all elements in the input tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	outTensor

	Output tensor, element-wise exponential of x.

expm1 : Calculate exp(x) - 1 for all elements in the array.
exp2 : Calculate 2**x for all elements in the array.

The irrational number e is also known as Euler’s number. It is
approximately 2.718281, and is the base of the natural logarithm,
ln (this means that, if \(x = \ln y = \log_e y\),
then \(e^x = y\). For real input, exp(x) is always positive.

For complex arguments, x = a + ib, we can write
\(e^x = e^a e^{ib}\). The first term, \(e^a\), is already
known (it is the real argument, described above). The second term,
\(e^{ib}\), is \(\cos b + i \sin b\), a function with
magnitude 1 and a periodic phase.

	1

	Wikipedia, “Exponential function”,
http://en.wikipedia.org/wiki/Exponential_function

	2

	M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import mars.tensor as mt
>>> import matplotlib.pyplot as plt

>>> x = mt.linspace(-2*mt.pi, 2*mt.pi, 100)
>>> xx = x + 1j * x[:, mt.newaxis] # a + ib over complex plane
>>> out = mt.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(mt.abs(out).execute(),
... extent=[-2*mt.pi, 2*mt.pi, -2*mt.pi, 2*mt.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(mt.angle(out).execute(),
... extent=[-2*mt.pi, 2*mt.pi, -2*mt.pi, 2*mt.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

mars.tensor.expm1

	
mars.tensor.expm1(x, out=None, where=None, **kwargs)

	Calculate exp(x) - 1 for all elements in the tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise exponential minus one: out = exp(x) - 1.

log1p : log(1 + x), the inverse of expm1.

This function provides greater precision than exp(x) - 1
for small values of x.

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to
about 32 significant digits. This example shows the superiority of
expm1 in this case.

>>> import mars.tensor as mt

>>> mt.expm1(1e-10).execute()
1.00000000005e-10
>>> (mt.exp(1e-10) - 1).execute()
1.000000082740371e-10

mars.tensor.exp2

	
mars.tensor.exp2(x, out=None, where=None, **kwargs)

	Calculate 2**p for all p in the input tensor.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise 2 to the power x.

power

>>> import mars.tensor as mt

>>> mt.exp2([2, 3]).execute()
array([4., 8.])

mars.tensor.log

	
mars.tensor.log(x, out=None, where=None, **kwargs)

	Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function,
so that log(exp(x)) = x. The natural logarithm is logarithm in base
e.

	xarray_like

	Input value.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The natural logarithm of x, element-wise.

log10, log2, log1p

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log([1, mt.e, mt.e**2, 0]).execute()
array([0., 1., 2., -Inf])

mars.tensor.log10

	
mars.tensor.log10(x, out=None, where=None, **kwargs)

	Return the base 10 logarithm of the input tensor, element-wise.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The logarithm to the base 10 of x, element-wise. NaNs are
returned where x is negative.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 10**z = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it.
log10 handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log10([1e-15, -3.]).execute()
array([-15., NaN])

mars.tensor.log2

	
mars.tensor.log2(x, out=None, where=None, **kwargs)

	Base-2 logarithm of x.

	xarray_like

	Input values.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Base-2 logarithm of x.

log, log10, log1p

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 2**z = x. The convention is to return the z
whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log2
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

>>> import mars.tensor as mt

>>> x = mt.array([0, 1, 2, 2**4])
>>> mt.log2(x).execute()
array([-Inf, 0., 1., 4.])

>>> xi = mt.array([0+1.j, 1, 2+0.j, 4.j])
>>> mt.log2(xi).execute()
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

mars.tensor.log1p

	
mars.tensor.log1p(x, out=None, where=None, **kwargs)

	Return the natural logarithm of one plus the input tensor, element-wise.

Calculates log(1 + x).

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Natural logarithm of 1 + x, element-wise.

expm1 : exp(x) - 1, the inverse of log1p.

For real-valued input, log1p is accurate also for x so small
that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = 1 + x. The convention is to return
the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that
has a branch cut [-inf, -1] and is continuous from above on it.
log1p handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

	1

	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	2

	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

>>> import mars.tensor as mt

>>> mt.log1p(1e-99).execute()
1e-99
>>> mt.log(1 + 1e-99).execute()
0.0

mars.tensor.logaddexp

	
mars.tensor.logaddexp(x1, x2, out=None, where=None, **kwargs)

	Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in
statistics where the calculated probabilities of events may be so small
as to exceed the range of normal floating point numbers. In such cases
the logarithm of the calculated probability is stored. This function
allows adding probabilities stored in such a fashion.

	x1, x2array_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	resultTensor

	Logarithm of exp(x1) + exp(x2).

logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2.

>>> import mars.tensor as mt

>>> prob1 = mt.log(1e-50)
>>> prob2 = mt.log(2.5e-50)
>>> prob12 = mt.logaddexp(prob1, prob2)
>>> prob12.execute()
-113.87649168120691
>>> mt.exp(prob12).execute()
3.5000000000000057e-50

mars.tensor.logaddexp2

	
mars.tensor.logaddexp2(x1, x2, out=None, where=None, **kwargs)

	Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine
learning when the calculated probabilities of events may be so small as
to exceed the range of normal floating point numbers. In such cases
the base-2 logarithm of the calculated probability can be used instead.
This function allows adding probabilities stored in such a fashion.

	x1, x2array_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	resultTensor

	Base-2 logarithm of 2**x1 + 2**x2.

logaddexp: Logarithm of the sum of exponentiations of the inputs.

>>> import mars.tensor as mt

>>> prob1 = mt.log2(1e-50)
>>> prob2 = mt.log2(2.5e-50)
>>> prob12 = mt.logaddexp2(prob1, prob2)
>>> prob1.execute(), prob2.execute(), prob12.execute()
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> (2**prob12).execute()
3.4999999999999914e-50

mars.tensor.i0

	
mars.tensor.i0(x, **kwargs)

	Modified Bessel function of the first kind, order 0.

Usually denoted \(I_0\). This function does broadcast, but will not
“up-cast” int dtype arguments unless accompanied by at least one float or
complex dtype argument (see Raises below).

	xarray_like, dtype float or complex

	Argument of the Bessel function.

	outTensor, shape = x.shape, dtype = x.dtype

	The modified Bessel function evaluated at each of the elements of x.

	TypeError: array cannot be safely cast to required type

	If argument consists exclusively of int dtypes.

scipy.special.iv, scipy.special.ive

We use the algorithm published by Clenshaw 1 and referenced by
Abramowitz and Stegun 2, for which the function domain is
partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
polynomial expansions are employed in each interval. Relative error on
the domain [0,30] using IEEE arithmetic is documented 3 as having a
peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

	1

	C. W. Clenshaw, “Chebyshev series for mathematical functions”, in
National Physical Laboratory Mathematical Tables, vol. 5, London:
Her Majesty’s Stationery Office, 1962.

	2

	M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, 10th printing, New York: Dover, 1964, pp. 379.
http://www.math.sfu.ca/~cbm/aands/page_379.htm

	3

	http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

>>> import mars.tensor as mt

>>> mt.i0([0.]).execute()
array([1.])
>>> mt.i0([0., 1. + 2j]).execute()
array([1.00000000+0.j , 0.18785373+0.64616944j])

mars.tensor.sinc

	
mars.tensor.sinc(x, **kwargs)

	Return the sinc function.

The sinc function is \(\\sin(\\pi x)/(\\pi x)\).

	xTensor

	Tensor (possibly multi-dimensional) of values for which to to
calculate sinc(x).

	outTensor

	sinc(x), which has the same shape as the input.

sinc(0) is the limit value 1.

The name sinc is short for “sine cardinal” or “sinus cardinalis”.

The sinc function is used in various signal processing applications,
including in anti-aliasing, in the construction of a Lanczos resampling
filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal
interpolation kernel is proportional to the sinc function.

	1

	Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/SincFunction.html

	2

	Wikipedia, “Sinc function”,
http://en.wikipedia.org/wiki/Sinc_function

>>> import mars.tensor as mt

>>> x = mt.linspace(-4, 4, 41)
>>> mt.sinc(x).execute()
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02,
 -8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
 6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
 8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
 -1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
 3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
 7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
 9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
 2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
 -2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
 -3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
 1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
 -5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
 -4.92362781e-02, -3.89804309e-17])

>>> import matplotlib.pyplot as plt
>>> plt.plot(x.execute(), np.sinc(x).execute())
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("X")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

mars.tensor.signbit

	
mars.tensor.signbit(x, out=None, where=None, **kwargs)

	Returns element-wise True where signbit is set (less than zero).

	xarray_like

	The input value(s).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	resultTensor of bool

	Output tensor, or reference to out if that was supplied.

>>> import mars.tensor as mt

>>> mt.signbit(-1.2).execute()
True
>>> mt.signbit(mt.array([1, -2.3, 2.1])).execute()
array([False, True, False])

mars.tensor.copysign

	
mars.tensor.copysign(x1, x2, out=None, where=None, **kwargs)

	Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same
length. If x2 is a scalar, its sign will be copied to all elements of
x1.

	x1array_like

	Values to change the sign of.

	x2array_like

	The sign of x2 is copied to x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	The values of x1 with the sign of x2.

>>> import mars.tensor as mt

>>> mt.copysign(1.3, -1).execute()
-1.3
>>> (1/mt.copysign(0, 1)).execute()
inf
>>> (1/mt.copysign(0, -1)).execute()
-inf

>>> mt.copysign([-1, 0, 1], -1.1).execute()
array([-1., -0., -1.])
>>> mt.copysign([-1, 0, 1], mt.arange(3)-1).execute()
array([-1., 0., 1.])

mars.tensor.frexp

	
mars.tensor.frexp(x, out1=None, out2=None, out=None, where=None, **kwargs)

	Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent`.
The mantissa is lies in the open interval(-1, 1), while the twos
exponent is a signed integer.

	xarray_like

	Tensor of numbers to be decomposed.

	out1Tensor, optional

	Output tensor for the mantissa. Must have the same shape as x.

	out2Tensor, optional

	Output tensor for the exponent. Must have the same shape as x.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	(mantissa, exponent)tuple of tensors, (float, int)

	mantissa is a float array with values between -1 and 1.
exponent is an int array which represents the exponent of 2.

ldexp : Compute y = x1 * 2**x2, the inverse of frexp.

Complex dtypes are not supported, they will raise a TypeError.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> x = mt.arange(9)
>>> y1, y2 = mt.frexp(x)

>>> sess = new_session().as_default()
>>> y1_result, y2_result = sess.run(y1, y2)
>>> y1_result
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,
 0.5])
>>> y2_result
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> (y1 * 2**y2).execute(session=sess)
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

mars.tensor.ldexp

	
mars.tensor.ldexp(x1, x2, out=None, where=None, **kwargs)

	Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct
floating point numbers x1 * 2**x2.

	x1array_like

	Tensor of multipliers.

	x2array_like, int

	Tensor of twos exponents.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The result of x1 * 2**x2.

frexp : Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is
more clear to simply use the expression x1 * 2**x2.

>>> import mars.tensor as mt

>>> mt.ldexp(5, mt.arange(4)).execute()
array([5., 10., 20., 40.], dtype=float32)

>>> x = mt.arange(6)
>>> mt.ldexp(*mt.frexp(x)).execute()
array([0., 1., 2., 3., 4., 5.])

mars.tensor.nextafter

	
mars.tensor.nextafter(x1, x2, out=None, where=None, **kwargs)

	Return the next floating-point value after x1 towards x2, element-wise.

	x1array_like

	Values to find the next representable value of.

	x2array_like

	The direction where to look for the next representable value of x1.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	The next representable values of x1 in the direction of x2.

>>> import mars.tensor as mt

>>> eps = mt.finfo(mt.float64).eps
>>> (mt.nextafter(1, 2) == eps + 1).execute()
True
>>> (mt.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]).execute()
array([True, True])

mars.tensor.spacing

	
mars.tensor.spacing(x, out=None, where=None, **kwargs)

	Return the distance between x and the nearest adjacent number.

	xarray_like

	Values to find the spacing of.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outarray_like

	The spacing of values of x1.

It can be considered as a generalization of EPS:
spacing(mt.float64(1)) == mt.finfo(mt.float64).eps, and there
should not be any representable number between x + spacing(x) and
x for any finite x.

Spacing of +- inf and NaN is NaN.

>>> import mars.tensor as mt

>>> (mt.spacing(1) == mt.finfo(mt.float64).eps).execute()
True

mars.tensor.add

	
mars.tensor.add(x1, x2, out=None, where=None, **kwargs)

	Add arguments element-wise.

	x1, x2array_like

	The tensors to be added. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	addTensor or scalar

	The sum of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 + x2 in terms of tensor broadcasting.

>>> import mars.tensor as mt

>>> mt.add(1.0, 4.0).execute()
5.0
>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.add(x1, x2).execute()
array([[0., 2., 4.],
 [3., 5., 7.],
 [6., 8., 10.]])

mars.tensor.reciprocal

	
mars.tensor.reciprocal(x, out=None, where=None, **kwargs)

	Return the reciprocal of the argument, element-wise.

Calculates 1/x.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	Return tensor.

Note

This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is
always zero because of the way Python handles integer division. For
integer zero the result is an overflow.

>>> import mars.tensor as mt

>>> mt.reciprocal(2.).execute()
0.5
>>> mt.reciprocal([1, 2., 3.33]).execute()
array([1. , 0.5 , 0.3003003])

mars.tensor.positive

	
mars.tensor.positive(x, out=None, where=None, **kwargs)

	Numerical positive, element-wise.

	xarray_like or scalar

	Input tensor.

	yTensor or scalar

	Returned array or scalar: y = +x.

mars.tensor.negative

	
mars.tensor.negative(x, out=None, where=None, **kwargs)

	Numerical negative, element-wise.

	xarray_like or scalar

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	yTensor or scalar

	Returned array or scalar: y = -x.

>>> import mars.tensor as mt

>>> mt.negative([1.,-1.]).execute()
array([-1., 1.])

mars.tensor.multiply

	
mars.tensor.multiply(x1, x2, out=None, where=None, **kwargs)

	Multiply arguments element-wise.

	x1, x2array_like

	Input arrays to be multiplied.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The product of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 * x2 in terms of array broadcasting.

>>> import mars.tensor as mt

>>> mt.multiply(2.0, 4.0).execute()
8.0

>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.multiply(x1, x2).execute()
array([[0., 1., 4.],
 [0., 4., 10.],
 [0., 7., 16.]])

mars.tensor.divide

	
mars.tensor.divide(x1, x2, out=None, where=None, **kwargs)

	Divide arguments element-wise.

	x1array_like

	Dividend tensor.

	x2array_like

	Divisor tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	The quotient x1/x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Equivalent to x1 / x2 in terms of array-broadcasting.

Behavior on division by zero can be changed using seterr.

In Python 2, when both x1 and x2 are of an integer type, divide will behave like floor_divide.
In Python 3, it behaves like true_divide.

>>> import mars.tensor as mt

>>> mt.divide(2.0, 4.0).execute()
0.5
>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.divide(x1, x2).execute()
array([[NaN, 1. , 1.],
 [Inf, 4. , 2.5],
 [Inf, 7. , 4.]])
Note the behavior with integer types (Python 2 only):
>>> mt.divide(2, 4).execute()
0
>>> mt.divide(2, 4.).execute()
0.5
Division by zero always yields zero in integer arithmetic (again, Python 2 only),
and does not raise an exception or a warning:
>>> mt.divide(mt.array([0, 1], dtype=int), mt.array([0, 0], dtype=int)).execute()
array([0, 0])
Division by zero can, however, be caught using seterr:
>>> old_err_state = mt.seterr(divide='raise')
>>> mt.divide(1, 0).execute()
Traceback (most recent call last):
...
FloatingPointError: divide by zero encountered in divide
>>> ignored_states = mt.seterr(**old_err_state)
>>> mt.divide(1, 0).execute()
0

mars.tensor.power

	
mars.tensor.power(x1, x2, out=None, where=None, **kwargs)

	First tensor elements raised to powers from second tensor, element-wise.

Raise each base in x1 to the positionally-corresponding power in
x2. x1 and x2 must be broadcastable to the same shape. Note that an
integer type raised to a negative integer power will raise a ValueError.

	x1array_like

	The bases.

	x2array_like

	The exponents.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The bases in x1 raised to the exponents in x2.

float_power : power function that promotes integers to float

Cube each element in a list.

>>> import mars.tensor as mt

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> mt.power(x1, 3).execute()
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> mt.power(x1, x2).execute()
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = mt.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2.execute()
array([[1, 2, 3, 3, 2, 1],
 [1, 2, 3, 3, 2, 1]])
>>> mt.power(x1, x2).execute()
array([[0, 1, 8, 27, 16, 5],
 [0, 1, 8, 27, 16, 5]])

mars.tensor.subtract

	
mars.tensor.subtract(x1, x2, out=None, where=None, **kwargs)

	Subtract arguments, element-wise.

	x1, x2array_like

	The tensors to be subtracted from each other.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The difference of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Equivalent to x1 - x2 in terms of tensor broadcasting.

>>> import mars.tensor as mt

>>> mt.subtract(1.0, 4.0).execute()
-3.0

>>> x1 = mt.arange(9.0).reshape((3, 3))
>>> x2 = mt.arange(3.0)
>>> mt.subtract(x1, x2).execute()
array([[0., 0., 0.],
 [3., 3., 3.],
 [6., 6., 6.]])

mars.tensor.true_divide

	
mars.tensor.true_divide(x1, x2, out=None, where=None, **kwargs)

	Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true
division. True division adjusts the output type to present the best
answer, regardless of input types.

	x1array_like

	Dividend tensor.

	x2array_like

	Divisor tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Result is scalar if both inputs are scalar, tensor otherwise.

The floor division operator // was added in Python 2.2 making
// and / equivalent operators. The default floor division
operation of / can be replaced by true division with from
__future__ import division.

In Python 3.0, // is the floor division operator and / the
true division operator. The true_divide(x1, x2) function is
equivalent to true division in Python.

>>> import mars.tensor as mt

>>> x = mt.arange(5)
>>> mt.true_divide(x, 4).execute()
array([0. , 0.25, 0.5 , 0.75, 1.])

for python 2
>>> (x/4).execute()
array([0, 0, 0, 0, 1])
>>> (x//4).execute()
array([0, 0, 0, 0, 1])

mars.tensor.floor_divide

	
mars.tensor.floor_divide(x1, x2, out=None, where=None, **kwargs)

	Return the largest integer smaller or equal to the division of the inputs.
It is equivalent to the Python // operator and pairs with the
Python % (remainder), function so that b = a % b + b * (a // b)
up to roundoff.

	x1array_like

	Numerator.

	x2array_like

	Denominator.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	y = floor(x1/x2)

remainder : Remainder complementary to floor_divide.
divmod : Simultaneous floor division and remainder.
divide : Standard division.
floor : Round a number to the nearest integer toward minus infinity.
ceil : Round a number to the nearest integer toward infinity.

>>> import mars.tensor as mt

>>> mt.floor_divide(7,3).execute()
2
>>> mt.floor_divide([1., 2., 3., 4.], 2.5).execute()
array([0., 0., 1., 1.])

mars.tensor.float_power

	
mars.tensor.float_power(x1, x2, out=None, where=None, **kwargs)

	First tensor elements raised to powers from second array, element-wise.

Raise each base in x1 to the positionally-corresponding power in x2.
x1 and x2 must be broadcastable to the same shape. This differs from
the power function in that integers, float16, and float32 are promoted to
floats with a minimum precision of float64 so that the result is always
inexact. The intent is that the function will return a usable result for
negative powers and seldom overflow for positive powers.

	x1array_like

	The bases.

	x2array_like

	The exponents.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The bases in x1 raised to the exponents in x2.

power : power function that preserves type

Cube each element in a list.

>>> import mars.tensor as mt

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> mt.float_power(x1, 3).execute()
array([0., 1., 8., 27., 64., 125.])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> mt.float_power(x1, x2).execute()
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = mt.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2.execute()
array([[1, 2, 3, 3, 2, 1],
 [1, 2, 3, 3, 2, 1]])
>>> mt.float_power(x1, x2).execute()
array([[0., 1., 8., 27., 16., 5.],
 [0., 1., 8., 27., 16., 5.]])

mars.tensor.fmod

	
mars.tensor.fmod(x1, x2, out=None, where=None, **kwargs)

	Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend x1. It is equivalent to
the Matlab(TM) rem function and should not be confused with the
Python modulus operator x1 % x2.

	x1array_like

	Dividend.

	x2array_like

	Divisor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

	**kwargs

	For other keyword-only arguments, see the
ufunc docs.

	yTensor_like

	The remainder of the division of x1 by x2.

remainder : Equivalent to the Python % operator.
divide

The result of the modulo operation for negative dividend and divisors
is bound by conventions. For fmod, the sign of result is the sign of
the dividend, while for remainder the sign of the result is the sign
of the divisor. The fmod function is equivalent to the Matlab(TM)
rem function.

>>> import mars.tensor as mt

>>> mt.fmod([-3, -2, -1, 1, 2, 3], 2).execute()
array([-1, 0, -1, 1, 0, 1])
>>> mt.remainder([-3, -2, -1, 1, 2, 3], 2).execute()
array([1, 0, 1, 1, 0, 1])

>>> mt.fmod([5, 3], [2, 2.]).execute()
array([1., 1.])
>>> a = mt.arange(-3, 3).reshape(3, 2)
>>> a.execute()
array([[-3, -2],
 [-1, 0],
 [1, 2]])
>>> mt.fmod(a, [2,2]).execute()
array([[-1, 0],
 [-1, 0],
 [1, 0]])

mars.tensor.mod

	
mars.tensor.mod(x1, x2, out=None, where=None, **kwargs)

	Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is
equivalent to the Python modulus operator``x1 % x2`` and has the same sign
as the divisor x2. The MATLAB function equivalent to np.remainder
is mod.

Warning

This should not be confused with:

	Python 3.7’s math.remainder and C’s remainder, which
computes the IEEE remainder, which are the complement to
round(x1 / x2).

	The MATLAB rem function and or the C % operator which is the
complement to int(x1 / x2).

	x1array_like

	Dividend array.

	x2array_like

	Divisor array.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The element-wise remainder of the quotient floor_divide(x1, x2).
Returns a scalar if both x1 and x2 are scalars.

floor_divide : Equivalent of Python // operator.
divmod : Simultaneous floor division and remainder.
fmod : Equivalent of the MATLAB rem function.
divide, floor

Returns 0 when x2 is 0 and both x1 and x2 are (tensors of)
integers.

>>> import mars.tensor as mt

>>> mt.remainder([4, 7], [2, 3]).execute()
array([0, 1])
>>> mt.remainder(mt.arange(7), 5).execute()
array([0, 1, 2, 3, 4, 0, 1])

mars.tensor.modf

	
mars.tensor.modf(x, out1=None, out2=None, out=None, where=None, **kwargs)

	Return the fractional and integral parts of a tensor, element-wise.

The fractional and integral parts are negative if the given number is
negative.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	y1Tensor

	Fractional part of x.

	y2Tensor

	Integral part of x.

For integer input the return values are floats.

	divmoddivmod(x, 1) is equivalent to modf with the return values

	switched, except it always has a positive remainder.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()
>>> sess.run(mt.modf([0, 3.5]))
(array([0. , 0.5]), array([0., 3.]))
>>> sess.run(mt.modf(-0.5))
(-0.5, -0)

mars.tensor.remainder

	
mars.tensor.remainder(x1, x2, out=None, where=None, **kwargs)

	Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is
equivalent to the Python modulus operator``x1 % x2`` and has the same sign
as the divisor x2. The MATLAB function equivalent to np.remainder
is mod.

Warning

This should not be confused with:

	Python 3.7’s math.remainder and C’s remainder, which
computes the IEEE remainder, which are the complement to
round(x1 / x2).

	The MATLAB rem function and or the C % operator which is the
complement to int(x1 / x2).

	x1array_like

	Dividend array.

	x2array_like

	Divisor array.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The element-wise remainder of the quotient floor_divide(x1, x2).
Returns a scalar if both x1 and x2 are scalars.

floor_divide : Equivalent of Python // operator.
divmod : Simultaneous floor division and remainder.
fmod : Equivalent of the MATLAB rem function.
divide, floor

Returns 0 when x2 is 0 and both x1 and x2 are (tensors of)
integers.

>>> import mars.tensor as mt

>>> mt.remainder([4, 7], [2, 3]).execute()
array([0, 1])
>>> mt.remainder(mt.arange(7), 5).execute()
array([0, 1, 2, 3, 4, 0, 1])

mars.tensor.angle

	
mars.tensor.angle(z, deg=0, **kwargs)

	Return the angle of the complex argument.

	zarray_like

	A complex number or sequence of complex numbers.

	degbool, optional

	Return angle in degrees if True, radians if False (default).

	angleTensor or scalar

	The counterclockwise angle from the positive real axis on
the complex plane, with dtype as numpy.float64.

arctan2
absolute

>>> import mars.tensor as mt

>>> mt.angle([1.0, 1.0j, 1+1j]).execute() # in radians
array([0. , 1.57079633, 0.78539816])
>>> mt.angle(1+1j, deg=True).execute() # in degrees
45.0

mars.tensor.real

	
mars.tensor.real(val, **kwargs)

	Return the real part of the complex argument.

	valarray_like

	Input tensor.

	outTensor or scalar

	The real component of the complex argument. If val is real, the type
of val is used for the output. If val has complex elements, the
returned type is float.

real_if_close, imag, angle

>>> import mars.tensor as mt

>>> a = mt.array([1+2j, 3+4j, 5+6j])
>>> a.real.execute()
array([1., 3., 5.])
>>> a.real = 9
>>> a.execute()
array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = mt.array([9, 8, 7])
>>> a.execute()
array([9.+2.j, 8.+4.j, 7.+6.j])
>>> mt.real(1 + 1j).execute()
1.0

mars.tensor.imag

	
mars.tensor.imag(val, **kwargs)

	Return the imaginary part of the complex argument.

	valarray_like

	Input tensor.

	outTensor or scalar

	The imaginary component of the complex argument. If val is real,
the type of val is used for the output. If val has complex
elements, the returned type is float.

real, angle, real_if_close

>>> import mars.tensor as mt

>>> a = mt.array([1+2j, 3+4j, 5+6j])
>>> a.imag.execute()
array([2., 4., 6.])
>>> a.imag = mt.array([8, 10, 12])
>>> a.execute()
array([1. +8.j, 3.+10.j, 5.+12.j])
>>> mt.imag(1 + 1j).execute()
1.0

mars.tensor.conj

	
mars.tensor.conj(x, out=None, where=None, **kwargs)

	Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

	xarray_like

	Input value.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The complex conjugate of x, with same dtype as y.

>>> import mars.tensor as mt

>>> mt.conjugate(1+2j).execute()
(1-2j)

>>> x = mt.eye(2) + 1j * mt.eye(2)
>>> mt.conjugate(x).execute()
array([[1.-1.j, 0.-0.j],
 [0.-0.j, 1.-1.j]])

mars.tensor.clip

	
mars.tensor.clip(a, a_min, a_max, out=None)

	Clip (limit) the values in a tensor.

Given an interval, values outside the interval are clipped to
the interval edges. For example, if an interval of [0, 1]
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

	aarray_like

	Tensor containing elements to clip.

	a_minscalar or array_like or None

	Minimum value. If None, clipping is not performed on lower
interval edge. Not more than one of a_min and a_max may be
None.

	a_maxscalar or array_like or None

	Maximum value. If None, clipping is not performed on upper
interval edge. Not more than one of a_min and a_max may be
None. If a_min or a_max are array_like, then the three
arrays will be broadcasted to match their shapes.

	outTensor, optional

	The results will be placed in this tensor. It may be the input
array for in-place clipping. out must be of the right shape
to hold the output. Its type is preserved.

	clipped_arrayTensor

	An tensor with the elements of a, but where values
< a_min are replaced with a_min, and those > a_max
with a_max.

>>> import mars.tensor as mt

>>> a = mt.arange(10)
>>> mt.clip(a, 1, 8).execute()
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a.execute()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> mt.clip(a, 3, 6, out=a).execute()
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = mt.arange(10)
>>> a.execute()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> mt.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8).execute()
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

mars.tensor.sqrt

	
mars.tensor.sqrt(x, out=None, where=None, **kwargs)

	Return the positive square-root of an tensor, element-wise.

	xarray_like

	The values whose square-roots are required.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	An tensor of the same shape as x, containing the positive
square-root of each element in x. If any element in x is
complex, a complex tensor is returned (and the square-roots of
negative reals are calculated). If all of the elements in x
are real, so is y, with negative elements returning nan.
If out was provided, y is a reference to it.

sqrt has–consistent with common convention–as its branch cut the
real “interval” [-inf, 0), and is continuous from above on it.
A branch cut is a curve in the complex plane across which a given
complex function fails to be continuous.

>>> import mars.tensor as mt

>>> mt.sqrt([1,4,9]).execute()
array([1., 2., 3.])

>>> mt.sqrt([4, -1, -3+4J]).execute()
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> mt.sqrt([4, -1, mt.inf]).execute()
array([2., NaN, Inf])

mars.tensor.cbrt

	
mars.tensor.cbrt(x, out=None, where=None, **kwargs)

	Return the cube-root of an tensor, element-wise.

	xarray_like

	The values whose cube-roots are required.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	An tensor of the same shape as x, containing the cube
cube-root of each element in x.
If out was provided, y is a reference to it.

>>> import mars.tensor as mt

>>> mt.cbrt([1,8,27]).execute()
array([1., 2., 3.])

mars.tensor.square

	
mars.tensor.square(x, out=None, where=None, **kwargs)

	Return the element-wise square of the input.

	xarray_like

	Input data.

	outTensor, None, or tuple of tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	outTensor

	Element-wise x*x, of the same shape and dtype as x.
Returns scalar if x is a scalar.

sqrt
power

>>> import mars.tensor as mt

>>> mt.square([-1j, 1]).execute()
array([-1.-0.j, 1.+0.j])

mars.tensor.absolute

	
mars.tensor.absolute(x, out=None, where=None, **kwargs)

	Calculate the absolute value element-wise.

	xarray_like

	Input tensor.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	absoluteTensor

	An tensor containing the absolute value of
each element in x. For complex input, a + ib, the
absolute value is \(\sqrt{ a^2 + b^2 }\).

>>> import mars.tensor as mt

>>> x = mt.array([-1.2, 1.2])
>>> mt.absolute(x).execute()
array([1.2, 1.2])
>>> mt.absolute(1.2 + 1j).execute()
1.5620499351813308

mars.tensor.sign

	
mars.tensor.sign(x, out=None, where=None, **kwargs)

	Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan
is returned for nan inputs.

For complex inputs, the sign function returns
sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.

complex(nan, 0) is returned for complex nan inputs.

	xarray_like

	Input values.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor

	The sign of x.

There is more than one definition of sign in common use for complex
numbers. The definition used here is equivalent to \(x/\sqrt{x*x}\)
which is different from a common alternative, \(x/|x|\).

>>> import mars.tensor as mt

>>> mt.sign([-5., 4.5]).execute()
array([-1., 1.])
>>> mt.sign(0).execute()
0
>>> mt.sign(5-2j).execute()
(1+0j)

mars.tensor.maximum

	
mars.tensor.maximum(x1, x2, out=None, where=None, **kwargs)

	Element-wise maximum of tensor elements.

Compare two tensors and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yndarray or scalar

	The maximum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	minimum :

	Element-wise minimum of two tensors, propagates NaNs.

	fmax :

	Element-wise maximum of two tensors, ignores NaNs.

	amax :

	The maximum value of a tensor along a given axis, propagates NaNs.

	nanmax :

	The maximum value of a tensor along a given axis, ignores NaNs.

fmin, amin, nanmin

The maximum is equivalent to mt.where(x1 >= x2, x1, x2) when
neither x1 nor x2 are nans, but it is faster and does proper
broadcasting.

>>> import mars.tensor as mt

>>> mt.maximum([2, 3, 4], [1, 5, 2]).execute()
array([2, 5, 4])

>>> mt.maximum(mt.eye(2), [0.5, 2]).execute() # broadcasting
array([[1. , 2.],
 [0.5, 2.]])

>>> mt.maximum([mt.nan, 0, mt.nan], [0, mt.nan, mt.nan]).execute()
array([NaN, NaN, NaN])
>>> mt.maximum(mt.Inf, 1).execute()
inf

mars.tensor.minimum

	
mars.tensor.minimum(x1, x2, out=None, where=None, **kwargs)

	Element-wise minimum of tensor elements.

Compare two tensors and returns a new tensor containing the element-wise
minima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	maximum :

	Element-wise maximum of two tensors, propagates NaNs.

	fmin :

	Element-wise minimum of two tensors, ignores NaNs.

	amin :

	The minimum value of a tensor along a given axis, propagates NaNs.

	nanmin :

	The minimum value of a tenosr along a given axis, ignores NaNs.

fmax, amax, nanmax

The minimum is equivalent to mt.where(x1 <= x2, x1, x2) when
neither x1 nor x2 are NaNs, but it is faster and does proper
broadcasting.

>>> import mars.tensor as mt

>>> mt.minimum([2, 3, 4], [1, 5, 2]).execute()
array([1, 3, 2])

>>> mt.minimum(mt.eye(2), [0.5, 2]).execute() # broadcasting
array([[0.5, 0.],
 [0. , 1.]])

>>> mt.minimum([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([NaN, NaN, NaN])
>>> mt.minimum(-mt.Inf, 1).execute()
-inf

mars.tensor.fmax

	
mars.tensor.fmax(x1, x2, out=None, where=None, **kwargs)

	Element-wise maximum of array elements.

Compare two tensors and returns a new tensor containing the element-wise
maxima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The maximum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	fmin :

	Element-wise minimum of two tensors, ignores NaNs.

	maximum :

	Element-wise maximum of two tensors, propagates NaNs.

	amax :

	The maximum value of an tensor along a given axis, propagates NaNs.

	nanmax :

	The maximum value of an tensor along a given axis, ignores NaNs.

minimum, amin, nanmin

The fmax is equivalent to mt.where(x1 >= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

>>> import mars.tensor as mt

>>> mt.fmax([2, 3, 4], [1, 5, 2]).execute()
array([2., 5., 4.])

>>> mt.fmax(mt.eye(2), [0.5, 2]).execute()
array([[1. , 2.],
 [0.5, 2.]])

>>> mt.fmax([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([0., 0., NaN])

mars.tensor.fmin

	
mars.tensor.fmin(x1, x2, out=None, where=None, **kwargs)

	Element-wise minimum of array elements.

Compare two tensors and returns a new tensor containing the element-wise
minima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	x1, x2array_like

	The tensors holding the elements to be compared. They must have
the same shape.

	outTensor, None, or tuple of Tensor and None, optional

	A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.

	wherearray_like, optional

	Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

**kwargs

	yTensor or scalar

	The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

	fmax :

	Element-wise maximum of two tensors, ignores NaNs.

	minimum :

	Element-wise minimum of two tensors, propagates NaNs.

	amin :

	The minimum value of a tensor along a given axis, propagates NaNs.

	nanmin :

	The minimum value of a tensor along a given axis, ignores NaNs.

maximum, amax, nanmax

The fmin is equivalent to mt.where(x1 <= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

>>> import mars.tensor as mt

>>> mt.fmin([2, 3, 4], [1, 5, 2]).execute()
array([1, 3, 2])

>>> mt.fmin(mt.eye(2), [0.5, 2]).execute()
array([[0.5, 0.],
 [0. , 1.]])

>>> mt.fmin([mt.nan, 0, mt.nan],[0, mt.nan, mt.nan]).execute()
array([0., 0., NaN])

mars.tensor.nan_to_num

	
mars.tensor.nan_to_num(x, copy=True, **kwargs)

	Replace nan with zero and inf with large finite numbers.

If x is inexact, NaN is replaced by zero, and infinity and -infinity
replaced by the respectively largest and most negative finite floating
point values representable by x.dtype.

For complex dtypes, the above is applied to each of the real and
imaginary components of x separately.

If x is not inexact, then no replacements are made.

	xarray_like

	Input data.

	copybool, optional

	Whether to create a copy of x (True) or to replace values
in-place (False). The in-place operation only occurs if
casting to an array does not require a copy.
Default is True.

	outTensor

	x, with the non-finite values replaced. If copy is False, this may
be x itself.

isinf : Shows which elements are positive or negative infinity.
isneginf : Shows which elements are negative infinity.
isposinf : Shows which elements are positive infinity.
isnan : Shows which elements are Not a Number (NaN).
isfinite : Shows which elements are finite (not NaN, not infinity)

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

>>> import mars.tensor as mt

>>> x = mt.array([mt.inf, -mt.inf, mt.nan, -128, 128])
>>> mt.nan_to_num(x).execute()
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000,
 -1.28000000e+002, 1.28000000e+002])
>>> y = mt.array([complex(mt.inf, mt.nan), mt.nan, complex(mt.nan, mt.inf)])
>>> mt.nan_to_num(y).execute()
array([1.79769313e+308 +0.00000000e+000j,
 0.00000000e+000 +0.00000000e+000j,
 0.00000000e+000 +1.79769313e+308j])

Random Sampling

Sample random data

	mars.tensor.random.rand

	Random values in a given shape.

	mars.tensor.random.randn

	Return a sample (or samples) from the “standard normal” distribution.

	mars.tensor.random.randint

	Return random integers from low (inclusive) to high (exclusive).

	mars.tensor.random.random_integers

	Random integers of type mt.int between low and high, inclusive.

	mars.tensor.random.random_sample

	Return random floats in the half-open interval [0.0, 1.0).

	mars.tensor.random.random

	Return random floats in the half-open interval [0.0, 1.0).

	mars.tensor.random.ranf

	Return random floats in the half-open interval [0.0, 1.0).

	mars.tensor.random.sample

	Return random floats in the half-open interval [0.0, 1.0).

	mars.tensor.random.choice

	Generates a random sample from a given 1-D array

	mars.tensor.random.bytes

	Return random bytes.

Distributions

	mars.tensor.random.beta

	Draw samples from a Beta distribution.

	mars.tensor.random.binomial

	Draw samples from a binomial distribution.

	mars.tensor.random.chisquare

	Draw samples from a chi-square distribution.

	mars.tensor.random.dirichlet

	Draw samples from the Dirichlet distribution.

	mars.tensor.random.exponential

	Draw samples from an exponential distribution.

	mars.tensor.random.f

	Draw samples from an F distribution.

	mars.tensor.random.gamma

	Draw samples from a Gamma distribution.

	mars.tensor.random.geometric

	Draw samples from the geometric distribution.

	mars.tensor.random.gumbel

	Draw samples from a Gumbel distribution.

	mars.tensor.random.hypergeometric

	Draw samples from a Hypergeometric distribution.

	mars.tensor.random.laplace

	Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).

	mars.tensor.random.lognormal

	Draw samples from a log-normal distribution.

	mars.tensor.random.logseries

	Draw samples from a logarithmic series distribution.

	mars.tensor.random.multinomial

	Draw samples from a multinomial distribution.

	mars.tensor.random.multivariate_normal

	Draw random samples from a multivariate normal distribution.

	mars.tensor.random.negative_binomial

	Draw samples from a negative binomial distribution.

	mars.tensor.random.noncentral_chisquare

	Draw samples from a noncentral chi-square distribution.

	mars.tensor.random.noncentral_f

	Draw samples from the noncentral F distribution.

	mars.tensor.random.normal

	Draw random samples from a normal (Gaussian) distribution.

	mars.tensor.random.pareto

	Draw samples from a Pareto II or Lomax distribution with specified shape.

	mars.tensor.random.poisson

	Draw samples from a Poisson distribution.

	mars.tensor.random.power

	Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

	mars.tensor.random.rayleigh

	Draw samples from a Rayleigh distribution.

	mars.tensor.random.standard_cauchy

	Draw samples from a standard Cauchy distribution with mode = 0.

	mars.tensor.random.standard_exponential

	Draw samples from the standard exponential distribution.

	mars.tensor.random.standard_gamma

	Draw samples from a standard Gamma distribution.

	mars.tensor.random.standard_normal

	Draw samples from a standard Normal distribution (mean=0, stdev=1).

	mars.tensor.random.standard_t

	Draw samples from a standard Student’s t distribution with df degrees of freedom.

	mars.tensor.random.triangular

	Draw samples from the triangular distribution over the interval [left, right].

	mars.tensor.random.uniform

	Draw samples from a uniform distribution.

	mars.tensor.random.vonmises

	Draw samples from a von Mises distribution.

	mars.tensor.random.wald

	Draw samples from a Wald, or inverse Gaussian, distribution.

	mars.tensor.random.weibull

	Draw samples from a Weibull distribution.

	mars.tensor.random.zipf

	Draw samples from a Zipf distribution.

Random number generator

	mars.tensor.random.seed

	Seed the generator.

	mars.tensor.random.RandomState

	

mars.tensor.random.rand

	
mars.tensor.random.rand = <bound method rand of <mars.tensor.random.core.RandomState object>>

	Random values in a given shape.

Create a tensor of the given shape and populate it with
random samples from a uniform distributionc
over [0, 1).

	d0, d1, …, dnint, optional

	The dimensions of the returned tensor, should all be positive.
If no argument is given a single Python float is returned.

	outTensor, shape (d0, d1, ..., dn)

	Random values.

random

This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
mt.random.random_sample .

>>> import mars.tensor as mt

>>> mt.random.rand(3, 2).execute()
array([[0.14022471, 0.96360618], #random
 [0.37601032, 0.25528411], #random
 [0.49313049, 0.94909878]]) #random

mars.tensor.random.randn

	
mars.tensor.random.randn = <bound method randn of <mars.tensor.random.core.RandomState object>>

	Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided,
randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian)
distribution of mean 0 and variance 1 (if any of the \(d_i\) are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.

This is a convenience function. If you want an interface that takes a
tuple as the first argument, use numpy.random.standard_normal instead.

	d0, d1, …, dnint, optional

	The dimensions of the returned tensor, should be all positive.
If no argument is given a single Python float is returned.

	ZTensor or float

	A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.

random.standard_normal : Similar, but takes a tuple as its argument.

For random samples from \(N(\mu, \sigma^2)\), use:

sigma * mt.random.randn(...) + mu

>>> import mars.tensor as mt

>>> mt.random.randn().execute()
2.1923875335537315 #random

Two-by-four tensor of samples from N(3, 6.25):

>>> (2.5 * mt.random.randn(2, 4) + 3).execute()
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

mars.tensor.random.randint

	
mars.tensor.random.randint = <bound method randint of <mars.tensor.random.core.RandomState object>>

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of
the specified dtype in the “half-open” interval [low, high). If
high is None (the default), then results are from [0, low).

	lowint

	Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is one above the
highest such integer).

	highint, optional

	If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	dtypedtype, optional

	Desired dtype of the result. All dtypes are determined by their
name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available
and a specific precision may have different C types depending
on the platform. The default value is ‘np.int’.

	density: float, optional

	if density specified, a sparse tensor will be created

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outint or Tensor of ints

	size-shaped tensor of random integers from the appropriate
distribution, or a single such random int if size not provided.

	random.random_integerssimilar to randint, only for the closed

	interval [low, high], and 1 is the lowest value if high is
omitted. In particular, this other one is the one to use to generate
uniformly distributed discrete non-integers.

>>> import mars.tensor as mt

>>> mt.random.randint(2, size=10).execute()
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> mt.random.randint(1, size=10).execute()
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 tensor of ints between 0 and 4, inclusive:

>>> mt.random.randint(5, size=(2, 4)).execute()
array([[4, 0, 2, 1],
 [3, 2, 2, 0]])

mars.tensor.random.random_integers

	
mars.tensor.random.random_integers = <bound method random_integers of <mars.tensor.random.core.RandomState object>>

	Random integers of type mt.int between low and high, inclusive.

Return random integers of type mt.int from the “discrete uniform”
distribution in the closed interval [low, high]. If high is
None (the default), then results are from [1, low]. The np.int
type translates to the C long type used by Python 2 for “short”
integers and its precision is platform dependent.

This function has been deprecated. Use randint instead.

	lowint

	Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

	highint, optional

	If provided, the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	outint or Tensor of ints

	size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

	random.randintSimilar to random_integers, only for the half-open

	interval [low, high), and 0 is the lowest value if high is
omitted.

To sample from N evenly spaced floating-point numbers between a and b,
use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

>>> import mars.tensor as mt

>>> mt.random.random_integers(5).execute()
4
>>> type(mt.random.random_integers(5).execute())
<type 'int'>
>>> mt.random.random_integers(5, size=(3,2)).execute()
array([[5, 4],
 [3, 3],
 [4, 5]])

Choose five random numbers from the set of five evenly-spaced
numbers between 0 and 2.5, inclusive (i.e., from the set
\({0, 5/8, 10/8, 15/8, 20/8}\)):

>>> (2.5 * (mt.random.random_integers(5, size=(5,)) - 1) / 4.).execute()
array([0.625, 1.25 , 0.625, 0.625, 2.5])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = mt.random.random_integers(1, 6, 1000)
>>> d2 = mt.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums.execute(), 11, normed=True)
>>> plt.show()

mars.tensor.random.random_sample

	
mars.tensor.random.random_sample = <bound method random_sample of <mars.tensor.random.core.RandomState object>>

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor of floats

	Array of random floats of shape size (unless size=None, in which
case a single float is returned).

>>> import mars.tensor as mt

>>> mt.random.random_sample().execute()
0.47108547995356098
>>> type(mt.random.random_sample().execute())
<type 'float'>
>>> mt.random.random_sample((5,)).execute()
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> (5 * mt.random.random_sample((3, 2)) - 5).execute()
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

mars.tensor.random.random

	
mars.tensor.random.random = <bound method random_sample of <mars.tensor.random.core.RandomState object>>

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor of floats

	Array of random floats of shape size (unless size=None, in which
case a single float is returned).

>>> import mars.tensor as mt

>>> mt.random.random_sample().execute()
0.47108547995356098
>>> type(mt.random.random_sample().execute())
<type 'float'>
>>> mt.random.random_sample((5,)).execute()
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> (5 * mt.random.random_sample((3, 2)) - 5).execute()
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

mars.tensor.random.ranf

	
mars.tensor.random.ranf = <bound method random_sample of <mars.tensor.random.core.RandomState object>>

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor of floats

	Array of random floats of shape size (unless size=None, in which
case a single float is returned).

>>> import mars.tensor as mt

>>> mt.random.random_sample().execute()
0.47108547995356098
>>> type(mt.random.random_sample().execute())
<type 'float'>
>>> mt.random.random_sample((5,)).execute()
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> (5 * mt.random.random_sample((3, 2)) - 5).execute()
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

mars.tensor.random.sample

	
mars.tensor.random.sample = <bound method random_sample of <mars.tensor.random.core.RandomState object>>

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample \(Unif[a, b), b > a\) multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor of floats

	Array of random floats of shape size (unless size=None, in which
case a single float is returned).

>>> import mars.tensor as mt

>>> mt.random.random_sample().execute()
0.47108547995356098
>>> type(mt.random.random_sample().execute())
<type 'float'>
>>> mt.random.random_sample((5,)).execute()
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> (5 * mt.random.random_sample((3, 2)) - 5).execute()
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

mars.tensor.random.choice

	
mars.tensor.random.choice = <bound method choice of <mars.tensor.random.core.RandomState object>>

	Generates a random sample from a given 1-D array

	a1-D array-like or int

	If a tensor, a random sample is generated from its elements.
If an int, the random sample is generated as if a were mt.arange(a)

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	replaceboolean, optional

	Whether the sample is with or without replacement

	p1-D array-like, optional

	The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	samplessingle item or tensor

	The generated random samples

	ValueError

	If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size

randint, shuffle, permutation

Generate a uniform random sample from mt.arange(5) of size 3:

>>> import mars.tensor as mt

>>> mt.random.choice(5, 3).execute()
array([0, 3, 4])
>>> #This is equivalent to mt.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> mt.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]).execute()
array([3, 3, 0])

Generate a uniform random sample from mt.arange(5) of size 3 without
replacement:

>>> mt.random.choice(5, 3, replace=False).execute()
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from mt.arange(5) of size
3 without replacement:

>>> mt.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]).execute()
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
 dtype='|S11')

mars.tensor.random.bytes

	
mars.tensor.random.bytes = <bound method bytes of <mars.tensor.random.core.RandomState object>>

	
Return random bytes.

	lengthint

	Number of random bytes.

	outstr

	String of length length.

>>> import mars.tensor as mt

>>> mt.random.bytes(10)
' eh

 mars.tensor.random.beta

mars.tensor.random.beta

	
mars.tensor.random.beta = <bound method beta of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution. It has the probability
distribution function

\[f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
(1 - x)^{\beta - 1},\]

where the normalisation, B, is the beta function,

\[B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
(1 - t)^{\beta - 1} dt.\]

It is often seen in Bayesian inference and order statistics.

	afloat or array_like of floats

	Alpha, non-negative.

	bfloat or array_like of floats

	Beta, non-negative.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a and b are both scalars.
Otherwise, mt.broadcast(a, b).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized beta distribution.

 mars.tensor.random.binomial

mars.tensor.random.binomial

	
mars.tensor.random.binomial = <bound method binomial of <mars.tensor.random.core.RandomState object>>

	Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified
parameters, n trials and p probability of success where
n an integer >= 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)

	nint or array_like of ints

	Parameter of the distribution, >= 0. Floats are also accepted,
but they will be truncated to integers.

	pfloat or array_like of floats

	Parameter of the distribution, >= 0 and <=1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if n and p are both scalars.
Otherwise, mt.broadcast(n, p).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized binomial distribution, where
each sample is equal to the number of successes over the n trials.

	scipy.stats.binomprobability density function, distribution or

	cumulative density function, etc.

The probability density for the binomial distribution is

\[P(N) = \binom{n}{N}p^N(1-p)^{n-N},\]

where \(n\) is the number of trials, \(p\) is the probability
of success, and \(N\) is the number of successes.

When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.

	1

	Dalgaard, Peter, “Introductory Statistics with R”,
Springer-Verlag, 2002.

	2

	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	3

	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	4

	Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

	5

	Wikipedia, “Binomial distribution”,
http://en.wikipedia.org/wiki/Binomial_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = mt.random.binomial(n, p, 1000).execute()
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that
generate zero positive results.

>>> (mt.sum(mt.random.binomial(9, 0.1, 20000) == 0)/20000.).execute()
answer = 0.38885, or 38%.

 mars.tensor.random.chisquare

mars.tensor.random.chisquare

	
mars.tensor.random.chisquare = <bound method chisquare of <mars.tensor.random.core.RandomState object>>

	Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal
distributions (mean 0, variance 1), are squared and summed, the
resulting distribution is chi-square (see Notes). This distribution
is often used in hypothesis testing.

	dffloat or array_like of floats

	Number of degrees of freedom, should be > 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df is a scalar. Otherwise,
mt.array(df).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized chi-square distribution.

	ValueError

	When df <= 0 or when an inappropriate size (e.g. size=-1)
is given.

The variable obtained by summing the squares of df independent,
standard normally distributed random variables:

\[Q = \sum_{i=0}^{\mathtt{df}} X^2_i\]

is chi-square distributed, denoted

\[Q \sim \chi^2_k.\]

The probability density function of the chi-squared distribution is

\[p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
x^{k/2 - 1} e^{-x/2},\]

where \(\Gamma\) is the gamma function,

\[\Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.\]

	1

	NIST “Engineering Statistics Handbook”
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

>>> import mars.tensor as mt

>>> mt.random.chisquare(2,4).execute()
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

 mars.tensor.random.dirichlet

mars.tensor.random.dirichlet

	
mars.tensor.random.dirichlet = <bound method dirichlet of <mars.tensor.random.core.RandomState object>>

	Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. Dirichlet pdf is the conjugate
prior of a multinomial in Bayesian inference.

	alphaarray

	Parameter of the distribution (k dimension for sample of
dimension k).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	samplesTensor

	The drawn samples, of shape (size, alpha.ndim).

	ValueError

	If any value in alpha is less than or equal to zero

\[X \approx \prod_{i=1}^{k}{x^{\alpha_i-1}_i}\]

Uses the following property for computation: for each dimension,
draw a random sample y_i from a standard gamma generator of shape
alpha_i, then
\(X = \frac{1}{\sum_{i=1}^k{y_i}} (y_1, \ldots, y_n)\) is
Dirichlet distributed.

	1

	David McKay, “Information Theory, Inference and Learning
Algorithms,” chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/

	2

	Wikipedia, “Dirichlet distribution”,
http://en.wikipedia.org/wiki/Dirichlet_distribution

Taking an example cited in Wikipedia, this distribution can be used if
one wanted to cut strings (each of initial length 1.0) into K pieces
with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of
the pieces.

>>> import mars.tensor as mt

>>> s = mt.random.dirichlet((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt

>>> plt.barh(range(20), s[0].execute())
>>> plt.barh(range(20), s[1].execute(), left=s[0].execute(), color='g')
>>> plt.barh(range(20), s[2].execute(), left=(s[0]+s[1]).execute(), color='r')
>>> plt.title("Lengths of Strings")

 mars.tensor.random.exponential

mars.tensor.random.exponential

	
mars.tensor.random.exponential = <bound method exponential of <mars.tensor.random.core.RandomState object>>

	Draw samples from an exponential distribution.

Its probability density function is

\[f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),\]

for x > 0 and 0 elsewhere. \(\beta\) is the scale parameter,
which is the inverse of the rate parameter \(\lambda = 1/\beta\).
The rate parameter is an alternative, widely used parameterization
of the exponential distribution 3.

The exponential distribution is a continuous analogue of the
geometric distribution. It describes many common situations, such as
the size of raindrops measured over many rainstorms 1, or the time
between page requests to Wikipedia 2.

	scalefloat or array_like of floats

	The scale parameter, \(\beta = 1/\lambda\).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if scale is a scalar. Otherwise,
np.array(scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized exponential distribution.

	1

	Peyton Z. Peebles Jr., “Probability, Random Variables and
Random Signal Principles”, 4th ed, 2001, p. 57.

	2

	Wikipedia, “Poisson process”,
http://en.wikipedia.org/wiki/Poisson_process

	3

	Wikipedia, “Exponential distribution”,
http://en.wikipedia.org/wiki/Exponential_distribution

 mars.tensor.random.f

mars.tensor.random.f

	
mars.tensor.random.f = <bound method f of <mars.tensor.random.core.RandomState object>>

	Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters should be greater than
zero.

The random variate of the F distribution (also known as the
Fisher distribution) is a continuous probability distribution
that arises in ANOVA tests, and is the ratio of two chi-square
variates.

	dfnumfloat or array_like of floats

	Degrees of freedom in numerator, should be > 0.

	dfdenfloat or array_like of float

	Degrees of freedom in denominator, should be > 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if dfnum and dfden are both scalars.
Otherwise, np.broadcast(dfnum, dfden).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Fisher distribution.

	scipy.stats.fprobability density function, distribution or

	cumulative density function, etc.

The F statistic is used to compare in-group variances to between-group
variances. Calculating the distribution depends on the sampling, and
so it is a function of the respective degrees of freedom in the
problem. The variable dfnum is the number of samples minus one, the
between-groups degrees of freedom, while dfden is the within-groups
degrees of freedom, the sum of the number of samples in each group
minus the number of groups.

	1

	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	2

	Wikipedia, “F-distribution”,
http://en.wikipedia.org/wiki/F-distribution

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people
without diabetes (25 controls). Fasting blood glucose was measured,
case group had a mean value of 86.1, controls had a mean value of
82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
data consistent with the null hypothesis that the parents diabetic
status does not affect their children’s blood glucose levels?
Calculating the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = mt.random.f(dfnum, dfden, 1000).execute()

The lower bound for the top 1% of the samples is :

>>> sorted(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
level.

 mars.tensor.random.gamma

mars.tensor.random.gamma

	
mars.tensor.random.gamma = <bound method gamma of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale (sometimes designated
“theta”), where both parameters are > 0.

	shapefloat or array_like of floats

	The shape of the gamma distribution. Should be greater than zero.

	scalefloat or array_like of floats, optional

	The scale of the gamma distribution. Should be greater than zero.
Default is equal to 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if shape and scale are both scalars.
Otherwise, np.broadcast(shape, scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized gamma distribution.

	scipy.stats.gammaprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Gamma distribution is

\[p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},\]

where \(k\) is the shape and \(\theta\) the scale,
and \(\Gamma\) is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

	1

	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	2

	Wikipedia, “Gamma distribution”,
http://en.wikipedia.org/wiki/Gamma_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = mt.random.gamma(shape, scale, 1000).execute()

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> import numpy as np
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.geometric

mars.tensor.random.geometric

	
mars.tensor.random.geometric = <bound method geometric of <mars.tensor.random.core.RandomState object>>

	Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

\[f(k) = (1 - p)^{k - 1} p\]

where p is the probability of success of an individual trial.

	pfloat or array_like of floats

	The probability of success of an individual trial.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if p is a scalar. Otherwise,
mt.array(p).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized geometric distribution.

Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:

>>> import mars.tensor as mt

>>> z = mt.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> ((z == 1).sum() / 10000.).execute()
0.34889999999999999 #random

 mars.tensor.random.gumbel

mars.tensor.random.gumbel

	
mars.tensor.random.gumbel = <bound method gumbel of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and
scale. For more information on the Gumbel distribution, see
Notes and References below.

	locfloat or array_like of floats, optional

	The location of the mode of the distribution. Default is 0.

	scalefloat or array_like of floats, optional

	The scale parameter of the distribution. Default is 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Gumbel distribution.

scipy.stats.gumbel_l
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
Value Type I) distribution is one of a class of Generalized Extreme
Value (GEV) distributions used in modeling extreme value problems.
The Gumbel is a special case of the Extreme Value Type I distribution
for maximums from distributions with “exponential-like” tails.

The probability density for the Gumbel distribution is

\[p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
\beta}},\]

where \(\mu\) is the mode, a location parameter, and
\(\beta\) is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and
rainfall rates. It is a “fat-tailed” distribution - the probability of
an event in the tail of the distribution is larger than if one used a
Gaussian, hence the surprisingly frequent occurrence of 100-year
floods. Floods were initially modeled as a Gaussian process, which
underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.

The function has a mean of \(\mu + 0.57721\beta\) and a variance
of \(\frac{\pi^2}{6}\beta^2\).

	1

	Gumbel, E. J., “Statistics of Extremes,”
New York: Columbia University Press, 1958.

	2

	Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme
Values from Insurance, Finance, Hydrology and Other Fields,”
Basel: Birkhauser Verlag, 2001.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> mu, beta = 0, 0.1 # location and scale
>>> s = mt.random.gumbel(mu, beta, 1000).execute()

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = mt.random.normal(mu, beta, 1000)
... means.append(a.mean().execute())
... maxima.append(a.max().execute())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = mt.std(maxima) * mt.sqrt(6) / mt.pi
>>> mu = mt.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, ((1/beta)*mt.exp(-(bins - mu)/beta)
... * mt.exp(-mt.exp(-(bins - mu)/beta))).execute(),
... linewidth=2, color='r')
>>> plt.plot(bins, (1/(beta * mt.sqrt(2 * mt.pi))
... * mt.exp(-(bins - mu)**2 / (2 * beta**2))).execute(),
... linewidth=2, color='g')
>>> plt.show()

 mars.tensor.random.hypergeometric

mars.tensor.random.hypergeometric

	
mars.tensor.random.hypergeometric = <bound method hypergeometric of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified
parameters, ngood (ways to make a good selection), nbad (ways to make
a bad selection), and nsample = number of items sampled, which is less
than or equal to the sum ngood + nbad.

	ngoodint or array_like of ints

	Number of ways to make a good selection. Must be nonnegative.

	nbadint or array_like of ints

	Number of ways to make a bad selection. Must be nonnegative.

	nsampleint or array_like of ints

	Number of items sampled. Must be at least 1 and at most
ngood + nbad.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if ngood, nbad, and nsample
are all scalars. Otherwise, np.broadcast(ngood, nbad, nsample).size
samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized hypergeometric distribution.

	scipy.stats.hypergeomprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Hypergeometric distribution is

\[P(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}},\]

where \(0 \le x \le m\) and \(n+m-N \le x \le n\)

for P(x) the probability of x successes, n = ngood, m = nbad, and
N = number of samples.

Consider an urn with black and white marbles in it, ngood of them
black and nbad are white. If you draw nsample balls without
replacement, then the hypergeometric distribution describes the
distribution of black balls in the drawn sample.

Note that this distribution is very similar to the binomial
distribution, except that in this case, samples are drawn without
replacement, whereas in the Binomial case samples are drawn with
replacement (or the sample space is infinite). As the sample space
becomes large, this distribution approaches the binomial.

	1

	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	2

	Weisstein, Eric W. “Hypergeometric Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

	3

	Wikipedia, “Hypergeometric distribution”,
http://en.wikipedia.org/wiki/Hypergeometric_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = mt.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles.
If you pull 15 marbles at random, how likely is it that
12 or more of them are one color?

>>> s = mt.random.hypergeometric(15, 15, 15, 100000)
>>> (mt.sum(s>=12)/100000. + mt.sum(s<=3)/100000.).execute()
answer = 0.003 ... pretty unlikely!

 mars.tensor.random.laplace

mars.tensor.random.laplace

	
mars.tensor.random.laplace = <bound method laplace of <mars.tensor.random.core.RandomState object>>

	Draw samples from the Laplace or double exponential distribution with
specified location (or mean) and scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution,
but is sharper at the peak and has fatter tails. It represents the
difference between two independent, identically distributed exponential
random variables.

	locfloat or array_like of floats, optional

	The position, \(\mu\), of the distribution peak. Default is 0.

	scalefloat or array_like of floats, optional

	\(\lambda\), the exponential decay. Default is 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, np.broadcast(loc, scale).size samples are drawn.

	chunksint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Laplace distribution.

It has the probability density function

\[f(x; \mu, \lambda) = \frac{1}{2\lambda}
\exp\left(-\frac{|x - \mu|}{\lambda}\right).\]

The first law of Laplace, from 1774, states that the frequency
of an error can be expressed as an exponential function of the
absolute magnitude of the error, which leads to the Laplace
distribution. For many problems in economics and health
sciences, this distribution seems to model the data better
than the standard Gaussian distribution.

	1

	Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing,” New York: Dover, 1972.

	2

	Kotz, Samuel, et. al. “The Laplace Distribution and
Generalizations, ” Birkhauser, 2001.

	3

	Weisstein, Eric W. “Laplace Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

	4

	Wikipedia, “Laplace distribution”,
http://en.wikipedia.org/wiki/Laplace_distribution

Draw samples from the distribution

>>> import mars.tensor as mt

>>> loc, scale = 0., 1.
>>> s = mt.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), 30, normed=True)
>>> x = mt.arange(-8., 8., .01)
>>> pdf = mt.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x.execute(), pdf.execute())

Plot Gaussian for comparison:

>>> g = (1/(scale * mt.sqrt(2 * np.pi)) *
... mt.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x.execute(),g.execute())

 mars.tensor.random.lognormal

mars.tensor.random.lognormal

	
mars.tensor.random.lognormal = <bound method lognormal of <mars.tensor.random.core.RandomState object>>

	Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.

	meanfloat or array_like of floats, optional

	Mean value of the underlying normal distribution. Default is 0.

	sigmafloat or array_like of floats, optional

	Standard deviation of the underlying normal distribution. Should
be greater than zero. Default is 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mean and sigma are both scalars.
Otherwise, np.broadcast(mean, sigma).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized log-normal distribution.

	scipy.stats.lognormprobability density function, distribution,

	cumulative density function, etc.

A variable x has a log-normal distribution if log(x) is normally
distributed. The probability density function for the log-normal
distribution is:

\[p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}\]

where \(\mu\) is the mean and \(\sigma\) is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
sum of a large number of independent, identically-distributed
variables.

	1

	Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal
Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001.
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

	2

	Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme
Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = mt.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), 100, normed=True, align='mid')

>>> x = mt.linspace(min(bins), max(bins), 10000)
>>> pdf = (mt.exp(-(mt.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * mt.sqrt(2 * mt.pi)))

>>> plt.plot(x.execute(), pdf.execute(), linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density
function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + mt.random.random(100)
... b.append(mt.product(a).execute())

>>> b = mt.array(b) / mt.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b.execute(), 100, normed=True, align='mid')
>>> sigma = mt.std(mt.log(b))
>>> mu = mt.mean(mt.log(b))

>>> x = mt.linspace(min(bins), max(bins), 10000)
>>> pdf = (mt.exp(-(mt.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * mt.sqrt(2 * mt.pi)))

>>> plt.plot(x.execute(), pdf.execute(), color='r', linewidth=2)
>>> plt.show()

 mars.tensor.random.logseries

mars.tensor.random.logseries

	
mars.tensor.random.logseries = <bound method logseries of <mars.tensor.random.core.RandomState object>>

	Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified
shape parameter, 0 < p < 1.

	pfloat or array_like of floats

	Shape parameter for the distribution. Must be in the range (0, 1).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if p is a scalar. Otherwise,
np.array(p).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized logarithmic series distribution.

	scipy.stats.logserprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Log Series distribution is

\[P(k) = \frac{-p^k}{k \ln(1-p)},\]

where p = probability.

The log series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].

	1

	Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).

	2

	Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.

	3

	D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.

	4

	Wikipedia, “Logarithmic distribution”,
http://en.wikipedia.org/wiki/Logarithmic_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt
>>> import matplotlib.pyplot as plt

>>> a = .6
>>> s = mt.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s.execute())

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*mt.log(1-p))
>>> plt.plot(bins, (logseries(bins, a)*count.max()/
... logseries(bins, a).max()).execute(), 'r')
>>> plt.show()

 mars.tensor.random.multinomial

mars.tensor.random.multinomial

	
mars.tensor.random.multinomial = <bound method multinomial of <mars.tensor.random.core.RandomState object>>

	Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the
binomial distribution. Take an experiment with one of p
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents n such experiments. Its values,
X_i = [X_0, X_1, ..., X_p], represent the number of times the
outcome was i.

	nint

	Number of experiments.

	pvalssequence of floats, length p

	Probabilities of each of the p different outcomes. These
should sum to 1 (however, the last element is always assumed to
account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor

	The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Throw a dice 20 times:

>>> import mars.tensor as mt

>>> mt.random.multinomial(20, [1/6.]*6, size=1).execute()
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> mt.random.multinomial(20, [1/6.]*6, size=2).execute()
array([[3, 4, 3, 3, 4, 3],
 [2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> mt.random.multinomial(100, [1/7.]*5 + [2/7.]).execute()
array([11, 16, 14, 17, 16, 26])

The probability inputs should be normalized. As an implementation
detail, the value of the last entry is ignored and assumed to take
up any leftover probability mass, but this should not be relied on.
A biased coin which has twice as much weight on one side as on the
other should be sampled like so:

>>> mt.random.multinomial(100, [1.0 / 3, 2.0 / 3]).execute() # RIGHT
array([38, 62])

not like:

>>> mt.random.multinomial(100, [1.0, 2.0]).execute() # WRONG
array([100, 0])

 mars.tensor.random.multivariate_normal

mars.tensor.random.multivariate_normal

	
mars.tensor.random.multivariate_normal = <bound method multivariate_normal of <mars.tensor.random.core.RandomState object>>

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

	mean1-D array_like, of length N

	Mean of the N-dimensional distribution.

	cov2-D array_like, of shape (N, N)

	Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.

	sizeint or tuple of ints, optional

	Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	check_valid{ ‘warn’, ‘raise’, ‘ignore’ }, optional

	Behavior when the covariance matrix is not positive semidefinite.

	tolfloat, optional

	Tolerance when checking the singular values in covariance matrix.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor

	The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix
element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\).
The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> import mars.tensor as mt
>>> x, y = mt.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x.execute(), y.execute(), 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.

	1

	Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” 3rd ed., New York: McGraw-Hill, 1991.

	2

	Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern
Classification,” 2nd ed., New York: Wiley, 2001.

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = mt.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> list(((x[0,0,:] - mean) < 0.6).execute())
[True, True]

 mars.tensor.random.negative_binomial

mars.tensor.random.negative_binomial

	
mars.tensor.random.negative_binomial = <bound method negative_binomial of <mars.tensor.random.core.RandomState object>>

	Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified
parameters, n trials and p probability of success where n is an
integer > 0 and p is in the interval [0, 1].

	nint or array_like of ints

	Parameter of the distribution, > 0. Floats are also accepted,
but they will be truncated to integers.

	pfloat or array_like of floats

	Parameter of the distribution, >= 0 and <=1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if n and p are both scalars.
Otherwise, np.broadcast(n, p).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of trials it took to
achieve n - 1 successes, N - (n - 1) failures, and a success on the,
(N + n)th trial.

The probability density for the negative binomial distribution is

\[P(N;n,p) = \binom{N+n-1}{n-1}p^{n}(1-p)^{N},\]

where \(n-1\) is the number of successes, \(p\) is the
probability of success, and \(N+n-1\) is the number of trials.
The negative binomial distribution gives the probability of n-1
successes and N failures in N+n-1 trials, and success on the (N+n)th
trial.

If one throws a die repeatedly until the third time a “1” appears,
then the probability distribution of the number of non-“1”s that
appear before the third “1” is a negative binomial distribution.

	1

	Weisstein, Eric W. “Negative Binomial Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

	2

	Wikipedia, “Negative binomial distribution”,
http://en.wikipedia.org/wiki/Negative_binomial_distribution

Draw samples from the distribution:

A real world example. A company drills wild-cat oil
exploration wells, each with an estimated probability of
success of 0.1. What is the probability of having one success
for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> import mars.tensor as mt

>>> s = mt.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = (mt.sum(s<i) / 100000.).execute()
... print i, "wells drilled, probability of one success =", probability

 mars.tensor.random.noncentral_chisquare

mars.tensor.random.noncentral_chisquare

	
mars.tensor.random.noncentral_chisquare = <bound method noncentral_chisquare of <mars.tensor.random.core.RandomState object>>

	Draw samples from a noncentral chi-square distribution.

The noncentral \(\chi^2\) distribution is a generalisation of
the \(\chi^2\) distribution.

	dffloat or array_like of floats

	Degrees of freedom, should be > 0.

	noncfloat or array_like of floats

	Non-centrality, should be non-negative.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df and nonc are both scalars.
Otherwise, mt.broadcast(df, nonc).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized noncentral chi-square distribution.

The probability density function for the noncentral Chi-square
distribution is

\[P(x;df,nonc) = \sum^{\infty}_{i=0}
\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
\P_{Y_{df+2i}}(x),\]

where \(Y_{q}\) is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is
useful in bombing and coverage problems, the probability of
killing the point target given by the noncentral chi-squared
distribution.

	1

	Delhi, M.S. Holla, “On a noncentral chi-square distribution in
the analysis of weapon systems effectiveness”, Metrika,
Volume 15, Number 1 / December, 1970.

	2

	Wikipedia, “Noncentral chi-square distribution”
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> import mars.tensor as mt
>>> values = plt.hist(mt.random.noncentral_chisquare(3, 20, 100000).execute(),
... bins=200, normed=True)
>>> plt.show()

Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(mt.random.noncentral_chisquare(3, .0000001, 100000).execute(),
... bins=mt.arange(0., 25, .1).execute(), normed=True)
>>> values2 = plt.hist(mt.random.chisquare(3, 100000).execute(),
... bins=mt.arange(0., 25, .1).execute(), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

Demonstrate how large values of non-centrality lead to a more symmetric
distribution.

>>> plt.figure()
>>> values = plt.hist(mt.random.noncentral_chisquare(3, 20, 100000).execute(),
... bins=200, normed=True)
>>> plt.show()

 mars.tensor.random.noncentral_f

mars.tensor.random.noncentral_f

	
mars.tensor.random.noncentral_f = <bound method noncentral_f of <mars.tensor.random.core.RandomState object>>

	Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters > 1.
nonc is the non-centrality parameter.

	dfnumfloat or array_like of floats

	Numerator degrees of freedom, should be > 0.

	dfdenfloat or array_like of floats

	Denominator degrees of freedom, should be > 0.

	noncfloat or array_like of floats

	Non-centrality parameter, the sum of the squares of the numerator
means, should be >= 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if dfnum, dfden, and nonc
are all scalars. Otherwise, np.broadcast(dfnum, dfden, nonc).size
samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized noncentral Fisher distribution.

When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.

	1

	Weisstein, Eric W. “Noncentral F-Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html

	2

	Wikipedia, “Noncentral F-distribution”,
http://en.wikipedia.org/wiki/Noncentral_F-distribution

In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We’ll plot the two probability
distributions for comparison.

>>> import mars.tensor as mt
>>> import matplotlib.pyplot as plt

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = mt.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals.execute(), bins=50, normed=True) # TODO(jisheng): implement mt.histogram
>>> c_vals = mt.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals.execute(), bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

 mars.tensor.random.normal

mars.tensor.random.normal

	
mars.tensor.random.normal = <bound method normal of <mars.tensor.random.core.RandomState object>>

	Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently 2, is often called the bell curve because of
its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution 2.

	locfloat or array_like of floats

	Mean (“centre”) of the distribution.

	scalefloat or array_like of floats

	Standard deviation (spread or “width”) of the distribution.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if loc and scale are both scalars.
Otherwise, mt.broadcast(loc, scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized normal distribution.

	scipy.stats.normprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Gaussian distribution is

\[p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },\]

where \(\mu\) is the mean and \(\sigma\) the standard
deviation. The square of the standard deviation, \(\sigma^2\),
is called the variance.

The function has its peak at the mean, and its “spread” increases with
the standard deviation (the function reaches 0.607 times its maximum at
\(x + \sigma\) and \(x - \sigma\) 2). This implies that
numpy.random.normal is more likely to return samples lying close to
the mean, rather than those far away.

	1

	Wikipedia, “Normal distribution”,
http://en.wikipedia.org/wiki/Normal_distribution

	2(1,2,3)

	P. R. Peebles Jr., “Central Limit Theorem” in “Probability,
Random Variables and Random Signal Principles”, 4th ed., 2001,
pp. 51, 51, 125.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = mt.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> (abs(mu - mt.mean(s)) < 0.01).execute()
True

>>> (abs(sigma - mt.std(s, ddof=1)) < 0.01).execute()
True

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), 30, normed=True)
>>> plt.plot(bins, (1/(sigma * mt.sqrt(2 * mt.pi)) *
... mt.exp(- (bins - mu)**2 / (2 * sigma**2))).execute(),
... linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.pareto

mars.tensor.random.pareto

	
mars.tensor.random.pareto = <bound method pareto of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Pareto II or Lomax distribution with
specified shape.

The Lomax or Pareto II distribution is a shifted Pareto
distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and
multiplying by the scale parameter m (see Notes). The
smallest value of the Lomax distribution is zero while for the
classical Pareto distribution it is mu, where the standard
Pareto distribution has location mu = 1. Lomax can also
be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set
to one and the location set to zero.

The Pareto distribution must be greater than zero, and is
unbounded above. It is also known as the “80-20 rule”. In
this distribution, 80 percent of the weights are in the lowest
20 percent of the range, while the other 20 percent fill the
remaining 80 percent of the range.

	afloat or array_like of floats

	Shape of the distribution. Should be greater than zero.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
mt.array(a).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Pareto distribution.

	scipy.stats.lomaxprobability density function, distribution or

	cumulative density function, etc.

	scipy.stats.genparetoprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Pareto distribution is

\[p(x) = \frac{am^a}{x^{a+1}}\]

where \(a\) is the shape and \(m\) the scale.

The Pareto distribution, named after the Italian economist
Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of
economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe
the distribution of wealth in an economy. It has also found
use in insurance, web page access statistics, oil field sizes,
and many other problems, including the download frequency for
projects in Sourceforge 1. It is one of the so-called
“fat-tailed” distributions.

	1

	Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.

	2

	Pareto, V. (1896). Course of Political Economy. Lausanne.

	3

	Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.

	4

	Wikipedia, “Pareto distribution”,
http://en.wikipedia.org/wiki/Pareto_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> a, m = 3., 2. # shape and mode
>>> s = (mt.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability
density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s.execute(), 100, normed=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.poisson

mars.tensor.random.poisson

	
mars.tensor.random.poisson = <bound method poisson of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution
for large N.

	lamfloat or array_like of floats

	Expectation of interval, should be >= 0. A sequence of expectation
intervals must be broadcastable over the requested size.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if lam is a scalar. Otherwise,
mt.array(lam).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Poisson distribution.

The Poisson distribution

\[f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}\]

For events with an expected separation \(\lambda\) the Poisson
distribution \(f(k; \lambda)\) describes the probability of
\(k\) events occurring within the observed
interval \(\lambda\).

Because the output is limited to the range of the C long type, a
ValueError is raised when lam is within 10 sigma of the maximum
representable value.

	1

	Weisstein, Eric W. “Poisson Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PoissonDistribution.html

	2

	Wikipedia, “Poisson distribution”,
http://en.wikipedia.org/wiki/Poisson_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt
>>> s = mt.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), 14, normed=True)
>>> plt.show()

Draw each 100 values for lambda 100 and 500:

>>> s = mt.random.poisson(lam=(100., 500.), size=(100, 2))

 mars.tensor.random.power

mars.tensor.random.power

	
mars.tensor.random.power = <bound method power of <mars.tensor.random.core.RandomState object>>

	Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.

Also known as the power function distribution.

	afloat or array_like of floats

	Parameter of the distribution. Should be greater than zero.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
mt.array(a).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized power distribution.

	ValueError

	If a < 1.

The probability density function is

\[P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.\]

The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.

It is used, for example, in modeling the over-reporting of insurance
claims.

	1

	Christian Kleiber, Samuel Kotz, “Statistical size distributions
in economics and actuarial sciences”, Wiley, 2003.

	2

	Heckert, N. A. and Filliben, James J. “NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions”, National Institute of Standards and Technology
Handbook Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> a = 5. # shape
>>> samples = 1000
>>> s = mt.random.power(a, samples)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), bins=30)
>>> x = mt.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*mt.diff(bins)[0]*y
>>> plt.plot(x.execute(), normed_y.execute())
>>> plt.show()

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = mt.random.power(5, 1000000)
>>> rvsp = mt.random.pareto(5, 1000000)
>>> xx = mt.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx.execute(),5)

>>> plt.figure()
>>> plt.hist(rvs.execute(), bins=50, normed=True)
>>> plt.plot(xx.execute(),powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist((1./(1.+rvsp)).execute(), bins=50, normed=True)
>>> plt.plot(xx.execute(),powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist((1./(1.+rvsp)).execute(), bins=50, normed=True)
>>> plt.plot(xx.execute(),powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

 mars.tensor.random.rayleigh

mars.tensor.random.rayleigh

	
mars.tensor.random.rayleigh = <bound method rayleigh of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Rayleigh distribution.

The \(\chi\) and Weibull distributions are generalizations of the
Rayleigh.

	scalefloat or array_like of floats, optional

	Scale, also equals the mode. Should be >= 0. Default is 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if scale is a scalar. Otherwise,
mt.array(scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Rayleigh distribution.

The probability density function for the Rayleigh distribution is

\[P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}\]

The Rayleigh distribution would arise, for example, if the East
and North components of the wind velocity had identical zero-mean
Gaussian distributions. Then the wind speed would have a Rayleigh
distribution.

	1

	Brighton Webs Ltd., “Rayleigh Distribution,”
http://www.brighton-webs.co.uk/distributions/rayleigh.asp

	2

	Wikipedia, “Rayleigh distribution”
http://en.wikipedia.org/wiki/Rayleigh_distribution

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> import mars.tensor as mt

>>> values = plt.hist(mt.random.rayleigh(3, 100000).execute(), bins=200, normed=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave
height is 1 meter, what fraction of waves are likely to be larger than 3
meters?

>>> meanvalue = 1
>>> modevalue = mt.sqrt(2 / mt.pi) * meanvalue
>>> s = mt.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> (100.*mt.sum(s>3)/1000000.).execute()
0.087300000000000003

 mars.tensor.random.standard_cauchy

mars.tensor.random.standard_cauchy

	
mars.tensor.random.standard_cauchy = <bound method standard_cauchy of <mars.tensor.random.core.RandomState object>>

	Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	samplesTensor or scalar

	The drawn samples.

The probability density function for the full Cauchy distribution is

\[P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[1+
(\frac{x-x_0}{\gamma})^2 \bigr] }\]

and the Standard Cauchy distribution just sets \(x_0=0\) and
\(\gamma=1\)

The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

	1

	NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy
Distribution”,
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

	2

	Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

	3

	Wikipedia, “Cauchy distribution”
http://en.wikipedia.org/wiki/Cauchy_distribution

Draw samples and plot the distribution:

>>> import mars.tensor as mt
>>> import matplotlib.pyplot as plt

>>> s = mt.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s.execute(), bins=100)
>>> plt.show()

 mars.tensor.random.standard_exponential

mars.tensor.random.standard_exponential

	
mars.tensor.random.standard_exponential = <bound method standard_exponential of <mars.tensor.random.core.RandomState object>>

	Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution
with a scale parameter of 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor

	Drawn samples.

Output a 3x8000 tensor:

>>> import mars.tensor as mt
>>> n = mt.random.standard_exponential((3, 8000))

 mars.tensor.random.standard_gamma

mars.tensor.random.standard_gamma

	
mars.tensor.random.standard_gamma = <bound method standard_gamma of <mars.tensor.random.core.RandomState object>>

	Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale=1.

	shapefloat or array_like of floats

	Parameter, should be > 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if shape is a scalar. Otherwise,
mt.array(shape).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized standard gamma distribution.

	scipy.stats.gammaprobability density function, distribution or

	cumulative density function, etc.

The probability density for the Gamma distribution is

\[p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},\]

where \(k\) is the shape and \(\theta\) the scale,
and \(\Gamma\) is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

	1

	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	2

	Wikipedia, “Gamma distribution”,
http://en.wikipedia.org/wiki/Gamma_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> shape, scale = 2., 1. # mean and width
>>> s = mt.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s.execute(), 50, normed=True)
>>> y = bins**(shape-1) * ((mt.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y.execute(), linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.standard_normal

mars.tensor.random.standard_normal

	
mars.tensor.random.standard_normal = <bound method standard_normal of <mars.tensor.random.core.RandomState object>>

	Draw samples from a standard Normal distribution (mean=0, stdev=1).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outfloat or Tensor

	Drawn samples.

>>> import mars.tensor as mt

>>> s = mt.random.standard_normal(8000)
>>> s.execute()
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random
 -0.38672696, -0.4685006]) #random
>>> s.shape
(8000,)
>>> s = mt.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

 mars.tensor.random.standard_t

mars.tensor.random.standard_t

	
mars.tensor.random.standard_t = <bound method standard_t of <mars.tensor.random.core.RandomState object>>

	Draw samples from a standard Student’s t distribution with df degrees
of freedom.

A special case of the hyperbolic distribution. As df gets
large, the result resembles that of the standard normal
distribution (standard_normal).

	dffloat or array_like of floats

	Degrees of freedom, should be > 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if df is a scalar. Otherwise,
mt.array(df).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized standard Student’s t distribution.

The probability density function for the t distribution is

\[P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
\Gamma(\frac{df}{2})}\Bigl(1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}\]

The t test is based on an assumption that the data come from a
Normal distribution. The t test provides a way to test whether
the sample mean (that is the mean calculated from the data) is
a good estimate of the true mean.

The derivation of the t-distribution was first published in
1908 by William Gosset while working for the Guinness Brewery
in Dublin. Due to proprietary issues, he had to publish under
a pseudonym, and so he used the name Student.

	1

	Dalgaard, Peter, “Introductory Statistics With R”,
Springer, 2002.

	2

	Wikipedia, “Student’s t-distribution”
http://en.wikipedia.org/wiki/Student’s_t-distribution [http://en.wikipedia.org/wiki/Student's_t-distribution]

From Dalgaard page 83 1, suppose the daily energy intake for 11
women in Kj is:

>>> import mars.tensor as mt

>>> intake = mt.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended
value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the
recommended value?

>>> s = mt.random.standard_t(10, size=100000)
>>> mt.mean(intake).execute()
6753.636363636364
>>> intake.std(ddof=1).execute()
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased
value so the divisor in the standard deviation will be degrees of
freedom, N-1.

>>> t = (mt.mean(intake)-7725)/(intake.std(ddof=1)/mt.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s.execute(), bins=100, normed=True)

For a one-sided t-test, how far out in the distribution does the t
statistic appear?

>>> (mt.sum(s<t) / float(len(s))).execute()
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a
probability of about 99% of being true.

 mars.tensor.random.triangular

mars.tensor.random.triangular

	
mars.tensor.random.triangular = <bound method triangular of <mars.tensor.random.core.RandomState object>>

	Draw samples from the triangular distribution over the
interval [left, right].

The triangular distribution is a continuous probability
distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters
directly define the shape of the pdf.

	leftfloat or array_like of floats

	Lower limit.

	modefloat or array_like of floats

	The value where the peak of the distribution occurs.
The value should fulfill the condition left <= mode <= right.

	rightfloat or array_like of floats

	Upper limit, should be larger than left.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if left, mode, and right
are all scalars. Otherwise, mt.broadcast(left, mode, right).size
samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized triangular distribution.

The probability density function for the triangular distribution is

\[\begin{split}P(x;l, m, r) = \begin{cases}
\frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
\frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
0& \text{otherwise}.
\end{cases}\end{split}\]

The triangular distribution is often used in ill-defined
problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used
in simulations.

	1

	Wikipedia, “Triangular distribution”
http://en.wikipedia.org/wiki/Triangular_distribution

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> import mars.tensor as mt
>>> h = plt.hist(mt.random.triangular(-3, 0, 8, 100000).execute(), bins=200,
... normed=True)
>>> plt.show()

 mars.tensor.random.uniform

mars.tensor.random.uniform

	
mars.tensor.random.uniform = <bound method uniform of <mars.tensor.random.core.RandomState object>>

	Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by uniform.

	lowfloat or array_like of floats, optional

	Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.

	highfloat or array_like of floats

	Upper boundary of the output interval. All values generated will be
less than high. The default value is 1.0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if low and high are both scalars.
Otherwise, mt.broadcast(low, high).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized uniform distribution.

randint : Discrete uniform distribution, yielding integers.
random_integers : Discrete uniform distribution over the closed

interval [low, high].

random_sample : Floats uniformly distributed over [0, 1).
random : Alias for random_sample.
rand : Convenience function that accepts dimensions as input, e.g.,

rand(2,2) would generate a 2-by-2 array of floats,
uniformly distributed over [0, 1).

The probability density function of the uniform distribution is

\[p(x) = \frac{1}{b - a}\]

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of low will be returned.
If high < low, the results are officially undefined
and may eventually raise an error, i.e. do not rely on this
function to behave when passed arguments satisfying that
inequality condition.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> s = mt.random.uniform(-1,0,1000)

All values are within the given interval:

>>> mt.all(s >= -1).execute()
True
>>> mt.all(s < 0).execute()
True

Display the histogram of the samples, along with the
probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s.execute(), 15, normed=True)
>>> plt.plot(bins, mt.ones_like(bins).execute(), linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.vonmises

mars.tensor.random.vonmises

	
mars.tensor.random.vonmises = <bound method vonmises of <mars.tensor.random.core.RandomState object>>

	Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode
(mu) and dispersion (kappa), on the interval [-pi, pi].

The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the unit
circle. It may be thought of as the circular analogue of the normal
distribution.

	mufloat or array_like of floats

	Mode (“center”) of the distribution.

	kappafloat or array_like of floats

	Dispersion of the distribution, has to be >=0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mu and kappa are both scalars.
Otherwise, np.broadcast(mu, kappa).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized von Mises distribution.

	scipy.stats.vonmisesprobability density function, distribution, or

	cumulative density function, etc.

The probability density for the von Mises distribution is

\[p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},\]

where \(\mu\) is the mode and \(\kappa\) the dispersion,
and \(I_0(\kappa)\) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.

	1

	Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing,” New York: Dover, 1972.

	2

	von Mises, R., “Mathematical Theory of Probability
and Statistics”, New York: Academic Press, 1964.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = mt.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s.execute(), 50, normed=True)
>>> x = mt.linspace(-mt.pi, mt.pi, num=51)
>>> y = mt.exp(kappa*mt.cos(x-mu))/(2*mt.pi*i0(kappa))
>>> plt.plot(x.execute(), y.execute(), linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.wald

mars.tensor.random.wald

	
mars.tensor.random.wald = <bound method wald of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a
Gaussian. Some references claim that the Wald is an inverse Gaussian
with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
because there is an inverse relationship between the time to cover a
unit distance and distance covered in unit time.

	meanfloat or array_like of floats

	Distribution mean, should be > 0.

	scalefloat or array_like of floats

	Scale parameter, should be >= 0.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if mean and scale are both scalars.
Otherwise, np.broadcast(mean, scale).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Wald distribution.

The probability density function for the Wald distribution is

\[P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
\frac{-scale(x-mean)^2}{2\cdotp mean^2x}\]

As noted above the inverse Gaussian distribution first arise
from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and
modeling stock returns and interest rate processes.

	1

	Brighton Webs Ltd., Wald Distribution,
http://www.brighton-webs.co.uk/distributions/wald.asp

	2

	Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian
Distribution: Theory : Methodology, and Applications”, CRC Press,
1988.

	3

	Wikipedia, “Wald distribution”
http://en.wikipedia.org/wiki/Wald_distribution

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> import mars.tensor as mt
>>> h = plt.hist(mt.random.wald(3, 2, 100000).execute(), bins=200, normed=True)
>>> plt.show()

 mars.tensor.random.weibull

mars.tensor.random.weibull

	
mars.tensor.random.weibull = <bound method weibull of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given
shape parameter a.

\[X = (-ln(U))^{1/a}\]

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter
\(\lambda\) is just \(X = \lambda(-ln(U))^{1/a}\).

	afloat or array_like of floats

	Shape of the distribution. Should be greater than zero.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
mt.array(a).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Weibull distribution.

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel

The Weibull (or Type III asymptotic extreme value distribution
for smallest values, SEV Type III, or Rosin-Rammler
distribution) is one of a class of Generalized Extreme Value
(GEV) distributions used in modeling extreme value problems.
This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

\[p(x) = \frac{a}
{\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},\]

where \(a\) is the shape and \(\lambda\) the scale.

The function has its peak (the mode) at
\(\lambda(\frac{a-1}{a})^{1/a}\).

When a = 1, the Weibull distribution reduces to the exponential
distribution.

	1

	Waloddi Weibull, Royal Technical University, Stockholm,
1939 “A Statistical Theory Of The Strength Of Materials”,
Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
Generalstabens Litografiska Anstalts Forlag, Stockholm.

	2

	Waloddi Weibull, “A Statistical Distribution Function of
Wide Applicability”, Journal Of Applied Mechanics ASME Paper
1951.

	3

	Wikipedia, “Weibull distribution”,
http://en.wikipedia.org/wiki/Weibull_distribution

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> a = 5. # shape
>>> s = mt.random.weibull(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = mt.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * mt.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(mt.random.weibull(5.,1000).execute())
>>> x = mt.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x.execute(), (weib(x, 1., 5.)*scale).execute())
>>> plt.show()

 mars.tensor.random.zipf

mars.tensor.random.zipf

	
mars.tensor.random.zipf = <bound method zipf of <mars.tensor.random.core.RandomState object>>

	Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter
a > 1.

The Zipf distribution (also known as the zeta distribution) is a
continuous probability distribution that satisfies Zipf’s law: the
frequency of an item is inversely proportional to its rank in a
frequency table.

	afloat or array_like of floats

	Distribution parameter. Should be greater than 1.

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default),
a single value is returned if a is a scalar. Otherwise,
mt.array(a).size samples are drawn.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outTensor or scalar

	Drawn samples from the parameterized Zipf distribution.

	scipy.stats.zipfprobability density function, distribution, or

	cumulative density function, etc.

The probability density for the Zipf distribution is

\[p(x) = \frac{x^{-a}}{\zeta(a)},\]

where \(\zeta\) is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted
that the frequency of any word in a sample of a language is inversely
proportional to its rank in the frequency table.

	1

	Zipf, G. K., “Selected Studies of the Principle of Relative
Frequency in Language,” Cambridge, MA: Harvard Univ. Press,
1932.

Draw samples from the distribution:

>>> import mars.tensor as mt

>>> a = 2. # parameter
>>> s = mt.random.zipf(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy import special

Truncate s values at 50 so plot is interesting:

>>> count, bins, ignored = plt.hist(s[s<50].execute(), 50, normed=True)
>>> x = mt.arange(1., 50.)
>>> y = x**(-a) / special.zetac(a)
>>> plt.plot(x.execute(), (y/mt.max(y)).execute(), linewidth=2, color='r')
>>> plt.show()

 mars.tensor.random.seed

mars.tensor.random.seed

	
mars.tensor.random.seed = <bound method RandomState.seed of <mars.tensor.random.core.RandomState object>>

	Seed the generator.

This method is called when RandomState is initialized. It can be
called again to re-seed the generator. For details, see RandomState.

	seedint or 1-d array_like, optional

	Seed for RandomState.
Must be convertible to 32 bit unsigned integers.

RandomState

 mars.tensor.random.RandomState

mars.tensor.random.RandomState

	
class mars.tensor.random.RandomState(seed=None)

	
	
__init__(seed=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__([seed])

	Initialize self.

	beta(a, b[, size, chunk_size, gpu, dtype])

	Draw samples from a Beta distribution.

	binomial(n, p[, size, chunk_size, gpu, dtype])

	Draw samples from a binomial distribution.

	bytes(length)

	Return random bytes.

	chisquare(df[, size, chunk_size, gpu, dtype])

	Draw samples from a chi-square distribution.

	choice(a[, size, replace, p, chunk_size, gpu])

	Generates a random sample from a given 1-D array

	dirichlet(alpha[, size, chunk_size, gpu, dtype])

	Draw samples from the Dirichlet distribution.

	exponential([scale, size, chunk_size, gpu, …])

	Draw samples from an exponential distribution.

	f(dfnum, dfden[, size, chunk_size, gpu, dtype])

	Draw samples from an F distribution.

	gamma(shape[, scale, size, chunk_size, gpu, …])

	Draw samples from a Gamma distribution.

	geometric(p[, size, chunk_size, gpu, dtype])

	Draw samples from the geometric distribution.

	gumbel([loc, scale, size, chunk_size, gpu, …])

	Draw samples from a Gumbel distribution.

	hypergeometric(ngood, nbad, nsample[, size, …])

	Draw samples from a Hypergeometric distribution.

	laplace([loc, scale, size, chunk_size, gpu, …])

	Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).

	logistic([loc, scale, size, chunk_size, …])

	Draw samples from a logistic distribution.

	lognormal([mean, sigma, size, chunk_size, …])

	Draw samples from a log-normal distribution.

	logseries(p[, size, chunk_size, gpu, dtype])

	Draw samples from a logarithmic series distribution.

	multinomial(n, pvals[, size, chunk_size, …])

	Draw samples from a multinomial distribution.

	multivariate_normal(mean, cov[, size, …])

	Draw random samples from a multivariate normal distribution.

	negative_binomial(n, p[, size, chunk_size, …])

	Draw samples from a negative binomial distribution.

	noncentral_chisquare(df, nonc[, size, …])

	Draw samples from a noncentral chi-square distribution.

	noncentral_f(dfnum, dfden, nonc[, size, …])

	Draw samples from the noncentral F distribution.

	normal([loc, scale, size, chunk_size, gpu, …])

	Draw random samples from a normal (Gaussian) distribution.

	pareto(a[, size, chunk_size, gpu, dtype])

	Draw samples from a Pareto II or Lomax distribution with specified shape.

	poisson([lam, size, chunk_size, gpu, dtype])

	Draw samples from a Poisson distribution.

	power(a[, size, chunk_size, gpu, dtype])

	Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

	rand(*dn, **kw)

	Random values in a given shape.

	randint(low[, high, size, dtype, density, …])

	Return random integers from low (inclusive) to high (exclusive).

	randn(*dn, **kw)

	Return a sample (or samples) from the “standard normal” distribution.

	random([size, chunk_size, gpu, dtype])

	Return random floats in the half-open interval [0.0, 1.0).

	random_integers(low[, high, size, …])

	Random integers of type mt.int between low and high, inclusive.

	random_sample([size, chunk_size, gpu, dtype])

	Return random floats in the half-open interval [0.0, 1.0).

	ranf([size, chunk_size, gpu, dtype])

	Return random floats in the half-open interval [0.0, 1.0).

	rayleigh([scale, size, chunk_size, gpu, dtype])

	Draw samples from a Rayleigh distribution.

	sample([size, chunk_size, gpu, dtype])

	Return random floats in the half-open interval [0.0, 1.0).

	seed([seed])

	Seed the generator.

	standard_cauchy([size, chunk_size, gpu, dtype])

	Draw samples from a standard Cauchy distribution with mode = 0.

	standard_exponential([size, chunk_size, …])

	Draw samples from the standard exponential distribution.

	standard_gamma(shape[, size, chunk_size, …])

	Draw samples from a standard Gamma distribution.

	standard_normal([size, chunk_size, gpu, dtype])

	Draw samples from a standard Normal distribution (mean=0, stdev=1).

	standard_t(df[, size, chunk_size, gpu, dtype])

	Draw samples from a standard Student’s t distribution with df degrees of freedom.

	triangular(left, mode, right[, size, …])

	Draw samples from the triangular distribution over the interval [left, right].

	uniform([low, high, size, chunk_size, gpu, …])

	Draw samples from a uniform distribution.

	vonmises(mu, kappa[, size, chunk_size, gpu, …])

	Draw samples from a von Mises distribution.

	wald(mean, scale[, size, chunk_size, gpu, dtype])

	Draw samples from a Wald, or inverse Gaussian, distribution.

	weibull(a[, size, chunk_size, gpu, dtype])

	Draw samples from a Weibull distribution.

	zipf(a[, size, chunk_size, gpu, dtype])

	Draw samples from a Zipf distribution.

 Set routines

Set routines

Boolean operations

	mars.tensor.isin

	Calculates element in test_elements, broadcasting over element only.

 mars.tensor.isin

mars.tensor.isin

	
mars.tensor.isin(element, test_elements, assume_unique=False, invert=False)

	Calculates element in test_elements, broadcasting over element only.
Returns a boolean array of the same shape as element that is True
where an element of element is in test_elements and False otherwise.

	elementarray_like

	Input tensor.

	test_elementsarray_like

	The values against which to test each value of element.
This argument is flattened if it is a tensor or array_like.
See notes for behavior with non-array-like parameters.

	assume_uniquebool, optional

	If True, the input tensors are both assumed to be unique, which
can speed up the calculation. Default is False.

	invertbool, optional

	If True, the values in the returned tensor are inverted, as if
calculating element not in test_elements. Default is False.
mt.isin(a, b, invert=True) is equivalent to (but faster
than) mt.invert(mt.isin(a, b)).

	isinTensor, bool

	Has the same shape as element. The values element[isin]
are in test_elements.

in1d : Flattened version of this function.

isin is an element-wise function version of the python keyword in.
isin(a, b) is roughly equivalent to
mt.array([item in b for item in a]) if a and b are 1-D sequences.

element and test_elements are converted to tensors if they are not
already. If test_elements is a set (or other non-sequence collection)
it will be converted to an object tensor with one element, rather than a
tensor of the values contained in test_elements. This is a consequence
of the tensor constructor’s way of handling non-sequence collections.
Converting the set to a list usually gives the desired behavior.

>>> import mars.tensor as mt

>>> element = 2*mt.arange(4).reshape((2, 2))
>>> element.execute()
array([[0, 2],
 [4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = mt.isin(element, test_elements)
>>> mask.execute()
array([[False, True],
 [True, False]])
>>> element[mask].execute()
array([2, 4])
>>> mask = mt.isin(element, test_elements, invert=True)
>>> mask.execute()
array([[True, False],
 [False, True]])
>>> element[mask]
array([0, 6])

Because of how array handles sets, the following does not
work as expected:

>>> test_set = {1, 2, 4, 8}
>>> mt.isin(element, test_set).execute()
array([[False, False],
 [False, False]])

Casting the set to a list gives the expected result:

>>> mt.isin(element, list(test_set)).execute()
array([[False, True],
 [True, False]])

 Sorting, Searching, and Counting

Sorting, Searching, and Counting

Searching

	mars.tensor.argmax

	Returns the indices of the maximum values along an axis.

	mars.tensor.nanargmax

	Return the indices of the maximum values in the specified axis ignoring NaNs.

	mars.tensor.argmin

	Returns the indices of the minimum values along an axis.

	mars.tensor.nanargmin

	Return the indices of the minimum values in the specified axis ignoring NaNs.

	mars.tensor.argwhere

	Find the indices of tensor elements that are non-zero, grouped by element.

	mars.tensor.argmin

	Returns the indices of the minimum values along an axis.

	mars.tensor.nonzero

	

	mars.tensor.flatnonzero

	

	mars.tensor.where

	Return elements, either from x or y, depending on condition.

	mars.tensor.extract

	

Counting

	mars.tensor.count_nonzero

	Counts the number of non-zero values in the tensor a.

 mars.tensor.argmax

mars.tensor.argmax

	
mars.tensor.argmax(a, axis=None, out=None, combine_size=None)

	Returns the indices of the maximum values along an axis.

	aarray_like

	Input tensor.

	axisint, optional

	By default, the index is into the flattened tensor, otherwise
along the specified axis.

	outTensor, optional

	If provided, the result will be inserted into this tensor. It should
be of the appropriate shape and dtype.

	combine_size: int, optional

	The number of chunks to combine.

	index_arrayTensor of ints

	Tensor of indices into the tensor. It has the same shape as a.shape
with the dimension along axis removed.

Tensor.argmax, argmin
amax : The maximum value along a given axis.
unravel_index : Convert a flat index into an index tuple.

In case of multiple occurrences of the maximum values, the indices
corresponding to the first occurrence are returned.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> a = mt.arange(6).reshape(2,3)
>>> a.execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.argmax(a).execute()
5
>>> mt.argmax(a, axis=0).execute()
array([1, 1, 1])
>>> mt.argmax(a, axis=1).execute()
array([2, 2])

Indexes of the maximal elements of a N-dimensional tensor:

>>> ind = mt.unravel_index(mt.argmax(a, axis=None), a.shape)
>>> sess.run(ind)
(1, 2)
>>> a[ind].execute() # TODO(jisheng): accomplish when fancy index on tensor is supported

>>> b = mt.arange(6)
>>> b[1] = 5
>>> b.execute()
array([0, 5, 2, 3, 4, 5])
>>> mt.argmax(b).execute() # Only the first occurrence is returned.
1

 mars.tensor.nanargmax

mars.tensor.nanargmax

	
mars.tensor.nanargmax(a, axis=None, out=None, combine_size=None)

	Return the indices of the maximum values in the specified axis ignoring
NaNs. For all-NaN slices ValueError is raised. Warning: the
results cannot be trusted if a slice contains only NaNs and -Infs.

	aarray_like

	Input data.

	axisint, optional

	Axis along which to operate. By default flattened input is used.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

	combine_size: int, optional

	The number of chunks to combine.

	index_arrayTensor

	An tensor of indices or a single index value.

argmax, nanargmin

>>> import mars.tensor as mt

>>> a = mt.array([[mt.nan, 4], [2, 3]])
>>> mt.argmax(a).execute()
0
>>> mt.nanargmax(a).execute()
1
>>> mt.nanargmax(a, axis=0).execute()
array([1, 0])
>>> mt.nanargmax(a, axis=1).execute()
array([1, 1])

 mars.tensor.argmin

mars.tensor.argmin

	
mars.tensor.argmin(a, axis=None, out=None, combine_size=None)

	Returns the indices of the minimum values along an axis.

	aarray_like

	Input tensor.

	axisint, optional

	By default, the index is into the flattened tensor, otherwise
along the specified axis.

	outTensor, optional

	If provided, the result will be inserted into this tensor. It should
be of the appropriate shape and dtype.

	combine_size: int, optional

	The number of chunks to combine.

	index_arrayTensor of ints

	Tensor of indices into the tensor. It has the same shape as a.shape
with the dimension along axis removed.

Tensor.argmin, argmax
amin : The minimum value along a given axis.
unravel_index : Convert a flat index into an index tuple.

In case of multiple occurrences of the minimum values, the indices
corresponding to the first occurrence are returned.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> a = mt.arange(6).reshape(2,3)
>>> a.execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.argmin(a).execute()
0
>>> mt.argmin(a, axis=0).execute()
array([0, 0, 0])
>>> mt.argmin(a, axis=1).execute()
array([0, 0])

Indices of the minimum elements of a N-dimensional tensor:

>>> ind = mt.unravel_index(mt.argmin(a, axis=None), a.shape)
>>> sess.run(ind)
(0, 0)
>>> a[ind] # TODO(jisheng): accomplish when fancy index on tensor is supported

>>> b = mt.arange(6)
>>> b[4] = 0
>>> b.execute()
array([0, 1, 2, 3, 0, 5])
>>> mt.argmin(b).execute() # Only the first occurrence is returned.
0

 mars.tensor.nanargmin

mars.tensor.nanargmin

	
mars.tensor.nanargmin(a, axis=None, out=None, combine_size=None)

	Return the indices of the minimum values in the specified axis ignoring
NaNs. For all-NaN slices ValueError is raised. Warning: the results
cannot be trusted if a slice contains only NaNs and Infs.

	aarray_like

	Input data.

	axisint, optional

	Axis along which to operate. By default flattened input is used.

	combine_size: int, optional

	The number of chunks to combine.

	index_arrayTensor

	A tensor of indices or a single index value.

argmin, nanargmax

>>> import mars.tensor as mt

>>> a = mt.array([[mt.nan, 4], [2, 3]])
>>> mt.argmin(a).execute()
0
>>> mt.nanargmin(a).execute()
2
>>> mt.nanargmin(a, axis=0).execute()
array([1, 1])
>>> mt.nanargmin(a, axis=1).execute()
array([1, 0])

 mars.tensor.argwhere

mars.tensor.argwhere

	
mars.tensor.argwhere(a)

	Find the indices of tensor elements that are non-zero, grouped by element.

	aarray_like

	Input data.

	index_tensorTensor

	Indices of elements that are non-zero. Indices are grouped by element.

where, nonzero

mt.argwhere(a) is the same as mt.transpose(mt.nonzero(a)).

The output of argwhere is not suitable for indexing tensors.
For this purpose use nonzero(a) instead.

>>> import mars.tensor as mt

>>> x = mt.arange(6).reshape(2,3)
>>> x.execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.argwhere(x>1).execute()
array([[0, 2],
 [1, 0],
 [1, 1],
 [1, 2]])

 mars.tensor.argmin

mars.tensor.argmin

	
mars.tensor.argmin(a, axis=None, out=None, combine_size=None)

	Returns the indices of the minimum values along an axis.

	aarray_like

	Input tensor.

	axisint, optional

	By default, the index is into the flattened tensor, otherwise
along the specified axis.

	outTensor, optional

	If provided, the result will be inserted into this tensor. It should
be of the appropriate shape and dtype.

	combine_size: int, optional

	The number of chunks to combine.

	index_arrayTensor of ints

	Tensor of indices into the tensor. It has the same shape as a.shape
with the dimension along axis removed.

Tensor.argmin, argmax
amin : The minimum value along a given axis.
unravel_index : Convert a flat index into an index tuple.

In case of multiple occurrences of the minimum values, the indices
corresponding to the first occurrence are returned.

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> a = mt.arange(6).reshape(2,3)
>>> a.execute()
array([[0, 1, 2],
 [3, 4, 5]])
>>> mt.argmin(a).execute()
0
>>> mt.argmin(a, axis=0).execute()
array([0, 0, 0])
>>> mt.argmin(a, axis=1).execute()
array([0, 0])

Indices of the minimum elements of a N-dimensional tensor:

>>> ind = mt.unravel_index(mt.argmin(a, axis=None), a.shape)
>>> sess.run(ind)
(0, 0)
>>> a[ind] # TODO(jisheng): accomplish when fancy index on tensor is supported

>>> b = mt.arange(6)
>>> b[4] = 0
>>> b.execute()
array([0, 1, 2, 3, 0, 5])
>>> mt.argmin(b).execute() # Only the first occurrence is returned.
0

 mars.tensor.nonzero

mars.tensor.nonzero

 mars.tensor.flatnonzero

mars.tensor.flatnonzero

 mars.tensor.where

mars.tensor.where

	
mars.tensor.where(condition, x=None, y=None)

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	conditionarray_like, bool

	When True, yield x, otherwise yield y.

	x, yarray_like, optional

	Values from which to choose. x, y and condition need to be
broadcastable to some shape.

	outTensor or tuple of Tensors

	If both x and y are specified, the output tensor contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

nonzero, choose

If x and y are given and input arrays are 1-D, where is
equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> import mars.tensor as mt
>>> from mars.session import new_session

>>> sess = new_session().as_default()

>>> mt.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]]).execute()
array([[1, 8],
 [3, 4]])

>>> sess.run(mt.where([[0, 1], [1, 0]]))
(array([0, 1]), array([1, 0]))

>>> x = mt.arange(9.).reshape(3, 3)
>>> sess.run(mt.where(x > 5))
(array([2, 2, 2]), array([0, 1, 2]))
>>> mt.where(x < 5, x, -1).execute() # Note: broadcasting.
array([[0., 1., 2.],
 [3., 4., -1.],
 [-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = mt.isin(x, goodvalues)
>>> ix.execute()
array([[False, False, False],
 [True, True, False],
 [False, True, False]])
>>> sess.run(mt.where(ix))
(array([1, 1, 2]), array([0, 1, 1]))

 mars.tensor.extract

mars.tensor.extract

 mars.tensor.count_nonzero

mars.tensor.count_nonzero

	
mars.tensor.count_nonzero(a, axis=None, combine_size=None)

	Counts the number of non-zero values in the tensor a.

The word “non-zero” is in reference to the Python 2.x
built-in method __nonzero__() (renamed __bool__()
in Python 3.x) of Python objects that tests an object’s
“truthfulness”. For example, any number is considered
truthful if it is nonzero, whereas any string is considered
truthful if it is not the empty string. Thus, this function
(recursively) counts how many elements in a (and in
sub-tensors thereof) have their __nonzero__() or __bool__()
method evaluated to True.

	aarray_like

	The tensor for which to count non-zeros.

	axisint or tuple, optional

	Axis or tuple of axes along which to count non-zeros.
Default is None, meaning that non-zeros will be counted
along a flattened version of a.

	combine_size: int, optional

	The number of chunks to combine.

	countint or tensor of int

	Number of non-zero values in the array along a given axis.
Otherwise, the total number of non-zero values in the tensor
is returned.

nonzero : Return the coordinates of all the non-zero values.

>>> import mars.tensor as mt

>>> mt.count_nonzero(mt.eye(4)).execute()
4
>>> mt.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]).execute()
5
>>> mt.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0).execute()
array([1, 1, 1, 1, 1])
>>> mt.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1).execute()
array([2, 3])

 Statistics

Statistics

Order statistics

	mars.tensor.amin

	Return the minimum of a tensor or minimum along an axis.

	mars.tensor.amax

	Return the maximum of an array or maximum along an axis.

	mars.tensor.nanmin

	Return minimum of a tensor or minimum along an axis, ignoring any NaNs.

	mars.tensor.nanmax

	Return the maximum of an array or maximum along an axis, ignoring any NaNs.

	mars.tensor.ptp

	Range of values (maximum - minimum) along an axis.

Average and variances

	mars.tensor.average

	Compute the weighted average along the specified axis.

	mars.tensor.mean

	Compute the arithmetic mean along the specified axis.

	mars.tensor.std

	Compute the standard deviation along the specified axis.

	mars.tensor.var

	Compute the variance along the specified axis.

	mars.tensor.nanmean

	Compute the arithmetic mean along the specified axis, ignoring NaNs.

	mars.tensor.nanstd

	Compute the standard deviation along the specified axis, while ignoring NaNs.

	mars.tensor.nanvar

	Compute the variance along the specified axis, while ignoring NaNs.

Correlating

	mars.tensor.corrcoef

	Return Pearson product-moment correlation coefficients.

	mars.tensor.cov

	Estimate a covariance matrix, given data and weights.

Histograms

	mars.tensor.digitize

	Return the indices of the bins to which each value in input tensor belongs.

 mars.tensor.amin

mars.tensor.amin

	
mars.tensor.amin(a, axis=None, out=None, keepdims=None, combine_size=None)

	Return the minimum of a tensor or minimum along an axis.

	aarray_like

	Input data.

	axisNone or int or tuple of ints, optional

	Axis or axes along which to operate. By default, flattened input is
used.

If this is a tuple of ints, the minimum is selected over multiple axes,
instead of a single axis or all the axes as before.

	outTensor, optional

	Alternative output tensor in which to place the result. Must
be of the same shape and buffer length as the expected output.
See doc.ufuncs (Section “Output arguments”) for more details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the amin method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	aminTensor or scalar

	Minimum of a. If axis is None, the result is a scalar value.
If axis is given, the result is an array of dimension
a.ndim - 1.

	amax :

	The maximum value of a tensor along a given axis, propagating any NaNs.

	nanmin :

	The minimum value of a tensor along a given axis, ignoring any NaNs.

	minimum :

	Element-wise minimum of two tensors, propagating any NaNs.

	fmin :

	Element-wise minimum of two tensors, ignoring any NaNs.

	argmin :

	Return the indices of the minimum values.

nanmax, maximum, fmax

NaN values are propagated, that is if at least one item is NaN, the
corresponding min value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmin.

Don’t use amin for element-wise comparison of 2 tensors; when
a.shape[0] is 2, minimum(a[0], a[1]) is faster than
amin(a, axis=0).

>>> import mars.tensor as mt

>>> a = mt.arange(4).reshape((2,2))
>>> a.execute()
array([[0, 1],
 [2, 3]])
>>> mt.amin(a).execute() # Minimum of the flattened array
0
>>> mt.amin(a, axis=0).execute() # Minima along the first axis
array([0, 1])
>>> mt.amin(a, axis=1).execute() # Minima along the second axis
array([0, 2])

>>> b = mt.arange(5, dtype=float)
>>> b[2] = mt.NaN
>>> mt.amin(b).execute()
nan
>>> mt.nanmin(b).execute()
0.0

 mars.tensor.amax

mars.tensor.amax

	
mars.tensor.amax(a, axis=None, out=None, keepdims=None, combine_size=None)

	Return the maximum of an array or maximum along an axis.

	aarray_like

	Input data.

	axisNone or int or tuple of ints, optional

	Axis or axes along which to operate. By default, flattened input is
used.

If this is a tuple of ints, the maximum is selected over multiple axes,
instead of a single axis or all the axes as before.

	outTensor, optional

	Alternative output tensor in which to place the result. Must
be of the same shape and buffer length as the expected output.
See doc.ufuncs (Section “Output arguments”) for more details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.

If the default value is passed, then keepdims will not be
passed through to the amax method of sub-classes of
ndarray, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	amaxTensor or scalar

	Maximum of a. If axis is None, the result is a scalar value.
If axis is given, the result is a tensor of dimension
a.ndim - 1.

	amin :

	The minimum value of a tensor along a given axis, propagating any NaNs.

	nanmax :

	The maximum value of a tensor along a given axis, ignoring any NaNs.

	maximum :

	Element-wise maximum of two tensors, propagating any NaNs.

	fmax :

	Element-wise maximum of two tensors, ignoring any NaNs.

	argmax :

	Return the indices of the maximum values.

nanmin, minimum, fmin

NaN values are propagated, that is if at least one item is NaN, the
corresponding max value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmax.

Don’t use amax for element-wise comparison of 2 arrays; when
a.shape[0] is 2, maximum(a[0], a[1]) is faster than
amax(a, axis=0).

>>> import mars.tensor as mt

>>> a = mt.arange(4).reshape((2,2))
>>> a.execute()
array([[0, 1],
 [2, 3]])
>>> mt.amax(a).execute() # Maximum of the flattened array
3
>>> mt.amax(a, axis=0).execute() # Maxima along the first axis
array([2, 3])
>>> mt.amax(a, axis=1).execute() # Maxima along the second axis
array([1, 3])

>>> b = mt.arange(5, dtype=float)
>>> b[2] = mt.NaN
>>> mt.amax(b).execute()
nan
>>> mt.nanmax(b).execute()
4.0

 mars.tensor.nanmin

mars.tensor.nanmin

	
mars.tensor.nanmin(a, axis=None, out=None, keepdims=None, combine_size=None)

	Return minimum of a tensor or minimum along an axis, ignoring any NaNs.
When all-NaN slices are encountered a RuntimeWarning is raised and
Nan is returned for that slice.

	aarray_like

	Tensor containing numbers whose minimum is desired. If a is not an
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the minimum is computed. The default is to compute
the minimum of the flattened tensor.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

If the value is anything but the default, then
keepdims will be passed through to the min method
of sub-classes of Tensor. If the sub-classes methods
does not implement keepdims any exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	nanminTensor

	An tensor with the same shape as a, with the specified axis
removed. If a is a 0-d tensor, or if axis is None, a tensor
scalar is returned. The same dtype as a is returned.

	nanmax :

	The maximum value of an array along a given axis, ignoring any NaNs.

	amin :

	The minimum value of an array along a given axis, propagating any NaNs.

	fmin :

	Element-wise minimum of two arrays, ignoring any NaNs.

	minimum :

	Element-wise minimum of two arrays, propagating any NaNs.

	isnan :

	Shows which elements are Not a Number (NaN).

	isfinite:

	Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to mt.min.

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, mt.nan]])
>>> mt.nanmin(a).execute()
1.0
>>> mt.nanmin(a, axis=0).execute()
array([1., 2.])
>>> mt.nanmin(a, axis=1).execute()
array([1., 3.])

When positive infinity and negative infinity are present:

>>> mt.nanmin([1, 2, mt.nan, mt.inf]).execute()
1.0
>>> mt.nanmin([1, 2, mt.nan, mt.NINF]).execute()
-inf

 mars.tensor.nanmax

mars.tensor.nanmax

	
mars.tensor.nanmax(a, axis=None, out=None, keepdims=None, combine_size=None)

	Return the maximum of an array or maximum along an axis, ignoring any
NaNs. When all-NaN slices are encountered a RuntimeWarning is
raised and NaN is returned for that slice.

	aarray_like

	Tensor containing numbers whose maximum is desired. If a is not a
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the maximum is computed. The default is to compute
the maximum of the flattened tensor.

	outndarray, optional

	Alternate output array in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

If the value is anything but the default, then
keepdims will be passed through to the max method
of sub-classes of Tensor. If the sub-classes methods
does not implement keepdims any exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	nanmaxTensor

	A tensor with the same shape as a, with the specified axis removed.
If a is a 0-d tensor, or if axis is None, a Tensor scalar is
returned. The same dtype as a is returned.

	nanmin :

	The minimum value of a tensor along a given axis, ignoring any NaNs.

	amax :

	The maximum value of a tensor along a given axis, propagating any NaNs.

	fmax :

	Element-wise maximum of two tensors, ignoring any NaNs.

	maximum :

	Element-wise maximum of two tensors, propagating any NaNs.

	isnan :

	Shows which elements are Not a Number (NaN).

	isfinite:

	Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

Mars uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.max.

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, mt.nan]])
>>> mt.nanmax(a).execute()
3.0
>>> mt.nanmax(a, axis=0).execute()
array([3., 2.])
>>> mt.nanmax(a, axis=1).execute()
array([2., 3.])

When positive infinity and negative infinity are present:

>>> mt.nanmax([1, 2, mt.nan, mt.NINF]).execute()
2.0
>>> mt.nanmax([1, 2, mt.nan, mt.inf]).execute()
inf

 mars.tensor.ptp

mars.tensor.ptp

	
mars.tensor.ptp(a, axis=None, out=None)

	Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

	aarray_like

	Input values.

	axisint, optional

	Axis along which to find the peaks. By default, flatten the
array.

	outarray_like

	Alternative output tensor in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type of the output values will be cast if necessary.

	ptpTensor

	A new tensor holding the result, unless out was
specified, in which case a reference to out is returned.

>>> import mars.tensor as mt

>>> x = mt.arange(4).reshape((2,2))
>>> x.execute()
array([[0, 1],
 [2, 3]])

>>> mt.ptp(x, axis=0).execute()
array([2, 2])

>>> mt.ptp(x, axis=1).execute()
array([1, 1])

 mars.tensor.average

mars.tensor.average

	
mars.tensor.average(a, axis=None, weights=None, returned=False)

	Compute the weighted average along the specified axis.

	aarray_like

	Tensor containing data to be averaged. If a is not a tensor, a
conversion is attempted.

	axisNone or int or tuple of ints, optional

	Axis or axes along which to average a. The default,
axis=None, will average over all of the elements of the input tensor.
If axis is negative it counts from the last to the first axis.

If axis is a tuple of ints, averaging is performed on all of the axes
specified in the tuple instead of a single axis or all the axes as
before.

	weightsarray_like, optional

	A tensor of weights associated with the values in a. Each value in
a contributes to the average according to its associated weight.
The weights tensor can either be 1-D (in which case its length must be
the size of a along the given axis) or of the same shape as a.
If weights=None, then all data in a are assumed to have a
weight equal to one.

	returnedbool, optional

	Default is False. If True, the tuple (average, sum_of_weights)
is returned, otherwise only the average is returned.
If weights=None, sum_of_weights is equivalent to the number of
elements over which the average is taken.

	average, [sum_of_weights]tensor_type or double

	Return the average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is Float
if a is of integer type, otherwise it is of the same type as a.
sum_of_weights is of the same type as average.

	ZeroDivisionError

	When all weights along axis are zero. See numpy.ma.average for a
version robust to this type of error.

	TypeError

	When the length of 1D weights is not the same as the shape of a
along axis.

mean

>>> import mars.tensor as mt

>>> data = list(range(1,5))
>>> data
[1, 2, 3, 4]
>>> mt.average(data).execute()
2.5
>>> mt.average(range(1,11), weights=range(10,0,-1)).execute()
4.0

>>> data = mt.arange(6).reshape((3,2))
>>> data.execute()
array([[0, 1],
 [2, 3],
 [4, 5]])
>>> mt.average(data, axis=1, weights=[1./4, 3./4]).execute()
array([0.75, 2.75, 4.75])
>>> mt.average(data, weights=[1./4, 3./4]).execute()
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.

 mars.tensor.mean

mars.tensor.mean

	
mars.tensor.mean(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over
the flattened tensor by default, otherwise over the specified axis.
float64 intermediate and return values are used for integer inputs.

	aarray_like

	Tensor containing numbers whose mean is desired. If a is not an
tensor, a conversion is attempted.

	axisNone or int or tuple of ints, optional

	Axis or axes along which the means are computed. The default is to
compute the mean of the flattened array.

If this is a tuple of ints, a mean is performed over multiple axes,
instead of a single axis or all the axes as before.

	dtypedata-type, optional

	Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the mean method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	mTensor, see dtype parameter above

	If out=None, returns a new tensor containing the mean values,
otherwise a reference to the output array is returned.

average : Weighted average
std, var, nanmean, nanstd, nanvar

The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Note that for floating-point input, the mean is computed using the
same precision the input has. Depending on the input data, this can
cause the results to be inaccurate, especially for float32 (see
example below). Specifying a higher-precision accumulator using the
dtype keyword can alleviate this issue.

By default, float16 results are computed using float32 intermediates
for extra precision.

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, 4]])
>>> mt.mean(a).execute()
2.5
>>> mt.mean(a, axis=0).execute()
array([2., 3.])
>>> mt.mean(a, axis=1).execute()
array([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = mt.zeros((2, 512*512), dtype=mt.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> mt.mean(a).execute()
0.54999924

Computing the mean in float64 is more accurate:

>>> mt.mean(a, dtype=mt.float64).execute()
0.55000000074505806

 mars.tensor.std

mars.tensor.std

	
mars.tensor.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None, combine_size=None)

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the tensor elements. The standard deviation is computed for the
flattened tensor by default, otherwise over the specified axis.

	aarray_like

	Calculate the standard deviation of these values.

	axisNone or int or tuple of ints, optional

	Axis or axes along which the standard deviation is computed. The
default is to compute the standard deviation of the flattened tensor.

If this is a tuple of ints, a standard deviation is performed over
multiple axes, instead of a single axis or all the axes as before.

	dtypedtype, optional

	Type to use in computing the standard deviation. For tensors of
integer type the default is float64, for tensors of float types it is
the same as the array type.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

	ddofint, optional

	Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the std method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	standard_deviationTensor, see dtype parameter above.

	If out is None, return a new tensor containing the standard deviation,
otherwise return a reference to the output array.

var, mean, nanmean, nanstd, nanvar

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, 4]])
>>> mt.std(a).execute()
1.1180339887498949
>>> mt.std(a, axis=0).execute()
array([1., 1.])
>>> mt.std(a, axis=1).execute()
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = mt.zeros((2, 512*512), dtype=mt.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> mt.std(a).execute()
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> mt.std(a, dtype=mt.float64).execute()
0.44999999925494177

 mars.tensor.var

mars.tensor.var

	
mars.tensor.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None, combine_size=None)

	Compute the variance along the specified axis.

Returns the variance of the tensor elements, a measure of the spread of a
distribution. The variance is computed for the flattened tensor by
default, otherwise over the specified axis.

	aarray_like

	Tensor containing numbers whose variance is desired. If a is not a
tensor, a conversion is attempted.

	axisNone or int or tuple of ints, optional

	Axis or axes along which the variance is computed. The default is to
compute the variance of the flattened array.

If this is a tuple of ints, a variance is performed over multiple axes,
instead of a single axis or all the axes as before.

	dtypedata-type, optional

	Type to use in computing the variance. For arrays of integer type
the default is float32; for tensors of float types it is the same as
the tensor type.

	outTensor, optional

	Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

	ddofint, optional

	“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input tensor.

If the default value is passed, then keepdims will not be
passed through to the var method of sub-classes of
Tensor, however any non-default value will be. If the
sub-classes sum method does not implement keepdims any
exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	varianceTensor, see dtype parameter above

	If out=None, returns a new tensor containing the variance;
otherwise, a reference to the output tensor is returned.

std , mean, nanmean, nanstd, nanvar

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

>>> import mars.tensor as mt

>>> a = mt.array([[1, 2], [3, 4]])
>>> mt.var(a).execute()
1.25
>>> mt.var(a, axis=0).execute()
array([1., 1.])
>>> mt.var(a, axis=1).execute()
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = mt.zeros((2, 512*512), dtype=mt.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> mt.var(a).execute()
0.20250003

Computing the variance in float64 is more accurate:

>>> mt.var(a, dtype=mt.float64).execute()
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

 mars.tensor.nanmean

mars.tensor.nanmean

	
mars.tensor.nanmean(a, axis=None, dtype=None, out=None, keepdims=None, combine_size=None)

	Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the tensor elements. The average is taken over
the flattened tensor by default, otherwise over the specified axis.
float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

	aarray_like

	Tensor containing numbers whose mean is desired. If a is not an
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the means are computed. The default is to compute
the mean of the flattened tensor.

	dtypedata-type, optional

	Type to use in computing the mean. For integer inputs, the default
is float64; for inexact inputs, it is the same as the input
dtype.

	outTensor, optional

	Alternate output tensor in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

If the value is anything but the default, then
keepdims will be passed through to the mean or sum methods
of sub-classes of Tensor. If the sub-classes methods
does not implement keepdims any exceptions will be raised.

	combine_size: int, optional

	The number of chunks to combine.

	mTensor, see dtype parameter above

	If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned. Nan is
returned for slices that contain only NaNs.

average : Weighted average
mean : Arithmetic mean taken while not ignoring NaNs
var, nanvar

The arithmetic mean is the sum of the non-NaN elements along the axis
divided by the number of non-NaN elements.

Note that for floating-point input, the mean is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32. Specifying a
higher-precision accumulator using the dtype keyword can alleviate
this issue.

>>> import mars.tensor as mt

>>> a = mt.array([[1, mt.nan], [3, 4]])
>>> mt.nanmean(a).execute()
2.6666666666666665
>>> mt.nanmean(a, axis=0).execute()
array([2., 4.])
>>> mt.nanmean(a, axis=1).execute()
array([1., 3.5])

 mars.tensor.nanstd

mars.tensor.nanstd

	
mars.tensor.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None, combine_size=None)

	Compute the standard deviation along the specified axis, while
ignoring NaNs.

Returns the standard deviation, a measure of the spread of a
distribution, of the non-NaN tensor elements. The standard deviation is
computed for the flattened tensor by default, otherwise over the
specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a RuntimeWarning is raised.

	aarray_like

	Calculate the standard deviation of the non-NaN values.

	axisint, optional

	Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened tensor.

	dtypedtype, optional

	Type to use in computing the standard deviation. For tensors of
integer type the default is float64, for tensors of float types it
is the same as the tensor type.

	outTensor, optional

	Alternative output tensor in which to place the result. It must have
the same shape as the expected output but the type (of the
calculated values) will be cast if necessary.

	ddofint, optional

	Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of non-NaN
elements. By default ddof is zero.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

If this value is anything but the default it is passed through
as-is to the relevant functions of the sub-classes. If these
functions do not have a keepdims kwarg, a RuntimeError will
be raised.

	combine_size: int, optional

	The number of chunks to combine.

	standard_deviationndarray, see dtype parameter above.

	If out is None, return a new array containing the standard
deviation, otherwise return a reference to the output tensor. If
ddof is >= the number of non-NaN elements in a slice or the slice
contains only NaNs, then the result for that slice is NaN.

var, mean, std
nanvar, nanmean

The standard deviation is the square root of the average of the squared
deviations from the mean: std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is
specified, the divisor N - ddof is used instead. In standard
statistical practice, ddof=1 provides an unbiased estimator of the
variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables.
The standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute value before
squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

>>> import mars.tensor as mt

>>> a = mt.array([[1, mt.nan], [3, 4]])
>>> mt.nanstd(a).execute()
1.247219128924647
>>> mt.nanstd(a, axis=0).execute()
array([1., 0.])
>>> mt.nanstd(a, axis=1).execute()
array([0., 0.5])

 mars.tensor.nanvar

mars.tensor.nanvar

	
mars.tensor.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None, combine_size=None)

	Compute the variance along the specified axis, while ignoring NaNs.

Returns the variance of the tensor elements, a measure of the spread of
a distribution. The variance is computed for the flattened tensor by
default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a RuntimeWarning is raised.

	aarray_like

	Tensor containing numbers whose variance is desired. If a is not a
tensor, a conversion is attempted.

	axisint, optional

	Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

	dtypedata-type, optional

	Type to use in computing the variance. For tensors of integer type
the default is float32; for tensors of float types it is the same as
the tensor type.

	outTensor, optional

	Alternate output tensor in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

	ddofint, optional

	“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of non-NaN
elements. By default ddof is zero.

	keepdimsbool, optional

	If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original a.

	combine_size: int, optional

	The number of chunks to combine.

	varianceTensor, see dtype parameter above

	If out is None, return a new tensor containing the variance,
otherwise return a reference to the output tensor. If ddof is >= the
number of non-NaN elements in a slice or the slice contains only
NaNs, then the result for that slice is NaN.

std : Standard deviation
mean : Average
var : Variance while not ignoring NaNs
nanstd, nanmean

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite
population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

For this function to work on sub-classes of Tensor, they must define
sum with the kwarg keepdims

>>> import mars.tensor as mt

>>> a = mt.array([[1, mt.nan], [3, 4]])
>>> mt.nanvar(a).execute()
1.5555555555555554
>>> mt.nanvar(a, axis=0).execute()
array([1., 0.])
>>> mt.nanvar(a, axis=1).execute()
array([0., 0.25])

 mars.tensor.corrcoef

mars.tensor.corrcoef

	
mars.tensor.corrcoef(x, y=None, rowvar=True)

	Return Pearson product-moment correlation coefficients.

Please refer to the documentation for cov for more detail. The
relationship between the correlation coefficient matrix, R, and the
covariance matrix, C, is

\[R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }\]

The values of R are between -1 and 1, inclusive.

	xarray_like

	A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

	yarray_like, optional

	An additional set of variables and observations. y has the same
shape as x.

	rowvarbool, optional

	If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

	RTensor

	The correlation coefficient matrix of the variables.

cov : Covariance matrix

Due to floating point rounding the resulting tensor may not be Hermitian,
the diagonal elements may not be 1, and the elements may not satisfy the
inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1, 1] in an attempt to improve on that situation but is not
much help in the complex case.

This function accepts but discards arguments bias and ddof. This is
for backwards compatibility with previous versions of this function. These
arguments had no effect on the return values of the function and can be
safely ignored in this and previous versions of numpy.

 mars.tensor.cov

mars.tensor.cov

	
mars.tensor.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

	Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, \(X = [x_1, x_2, ... x_N]^T\),
then the covariance matrix element \(C_{ij}\) is the covariance of
\(x_i\) and \(x_j\). The element \(C_{ii}\) is the variance
of \(x_i\).

See the notes for an outline of the algorithm.

	marray_like

	A 1-D or 2-D array containing multiple variables and observations.
Each row of m represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

	yarray_like, optional

	An additional set of variables and observations. y has the same form
as that of m.

	rowvarbool, optional

	If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

	biasbool, optional

	Default normalization (False) is by (N - 1), where N is the
number of observations given (unbiased estimate). If bias is True,
then normalization is by N. These values can be overridden by using
the keyword ddof in numpy versions >= 1.5.

	ddofint, optional

	If not None the default value implied by bias is overridden.
Note that ddof=1 will return the unbiased estimate, even if both
fweights and aweights are specified, and ddof=0 will return
the simple average. See the notes for the details. The default value
is None.

	fweightsarray_like, int, optional

	1-D tensor of integer freguency weights; the number of times each
observation vector should be repeated.

	aweightsarray_like, optional

	1-D tensor of observation vector weights. These relative weights are
typically large for observations considered “important” and smaller for
observations considered less “important”. If ddof=0 the array of
weights can be used to assign probabilities to observation vectors.

	outTensor

	The covariance matrix of the variables.

corrcoef : Normalized covariance matrix

Assume that the observations are in the columns of the observation
array m and let f = fweights and a = aweights for brevity. The
steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = mt.sum(w)
>>> v2 = mt.sum(w * a)
>>> m -= mt.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = mt.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor
v1 / (v1**2 - ddof * v2) goes over to 1 / (np.sum(f) - ddof)
as it should.

Consider two variables, \(x_0\) and \(x_1\), which
correlate perfectly, but in opposite directions:

>>> import mars.tensor as mt

>>> x = mt.array([[0, 2], [1, 1], [2, 0]]).T
>>> x.execute()
array([[0, 1, 2],
 [2, 1, 0]])

Note how \(x_0\) increases while \(x_1\) decreases. The covariance
matrix shows this clearly:

>>> mt.cov(x).execute()
array([[1., -1.],
 [-1., 1.]])

Note that element \(C_{0,1}\), which shows the correlation between
\(x_0\) and \(x_1\), is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = mt.stack((x, y), axis=0)
>>> print(mt.cov(X).execute())
[[11.71 -4.286]
 [-4.286 2.14413333]]
>>> print(mt.cov(x, y).execute())
[[11.71 -4.286]
 [-4.286 2.14413333]]
>>> print(mt.cov(x).execute())
11.71

 mars.tensor.digitize

mars.tensor.digitize

	
mars.tensor.digitize(x, bins, right=False)

	Return the indices of the bins to which each value in input tensor belongs.

Each index i returned is such that bins[i-1] <= x < bins[i] if
bins is monotonically increasing, or bins[i-1] > x >= bins[i] if
bins is monotonically decreasing. If values in x are beyond the
bounds of bins, 0 or len(bins) is returned as appropriate. If right
is True, then the right bin is closed so that the index i is such
that bins[i-1] < x <= bins[i] or bins[i-1] >= x > bins[i] if bins
is monotonically increasing or decreasing, respectively.

	xarray_like

	Input tensor to be binned.

	binsarray_like

	Array of bins. It has to be 1-dimensional and monotonic.

	rightbool, optional

	Indicating whether the intervals include the right or the left bin
edge. Default behavior is (right==False) indicating that the interval
does not include the right edge. The left bin end is open in this
case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

	outTensor of ints

	Output tensor of indices, of same shape as x.

	ValueError

	If bins is not monotonic.

	TypeError

	If the type of the input is complex.

bincount, histogram, unique, searchsorted

If values in x are such that they fall outside the bin range,
attempting to index bins with the indices that digitize returns
will result in an IndexError.

mt.digitize is implemented in terms of mt.searchsorted. This means
that a binary search is used to bin the values, which scales much better
for larger number of bins than the previous linear search. It also removes
the requirement for the input array to be 1-dimensional.

>>> import mars.tensor as mt

>>> x = mt.array([0.2, 6.4, 3.0, 1.6])
>>> bins = mt.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = mt.digitize(x, bins)
>>> inds.execute()
array([1, 4, 3, 2])

>>> x = mt.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = mt.array([0, 5, 10, 15, 20])
>>> mt.digitize(x,bins,right=True).execute()
array([1, 2, 3, 4, 4])
>>> mt.digitize(x,bins,right=False).execute()
array([1, 3, 3, 4, 5])

 Sparse tensor

Sparse tensor

Mars tensor supports sparse tensor, unfortunately, only 2-D sparse tensors are
available for now. Multi-dimensional sparse tensors will be supported later.

Functions to create sparse tensor

	mars.tensor.tensor

	

	mars.tensor.zeros

	Return a new tensor of given shape and type, filled with zeros.

	mars.tensor.eye

	Return a 2-D tensor with ones on the diagonal and zeros elsewhere.

	mars.tensor.identity

	Return the identity tensor.

	mars.tensor.random.randint

	Return random integers from low (inclusive) to high (exclusive).

 mars.tensor.tensor

mars.tensor.tensor

	
mars.tensor.tensor(data, dtype=None, order='K', chunk_size=None, gpu=None, sparse=False)

	

 mars.tensor.zeros

mars.tensor.zeros

	
mars.tensor.zeros(shape, dtype=None, chunk_size=None, gpu=False, sparse=False, order='C')

	Return a new tensor of given shape and type, filled with zeros.
Parameters
———-
shape : int or sequence of ints

Shape of the new tensor, e.g., (2, 3) or 2.

	dtypedata-type, optional

	The desired data-type for the array, e.g., mt.int8. Default is
mt.float64.

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	sparse: bool, optional

	Create sparse tensor if True, False as default

	order{‘C’, ‘F’}, optional, default: ‘C’

	Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.

	outTensor

	Tensor of zeros with the given shape, dtype, and order.

zeros_like : Return a tensor of zeros with shape and type of input.
ones_like : Return a tensor of ones with shape and type of input.
empty_like : Return a empty tensor with shape and type of input.
ones : Return a new tensor setting values to one.
empty : Return a new uninitialized tensor.
Examples
——–
>>> import mars.tensor as mt
>>> mt.zeros(5).execute()
array([0., 0., 0., 0., 0.])
>>> mt.zeros((5,), dtype=int).execute()
array([0, 0, 0, 0, 0])
>>> mt.zeros((2, 1)).execute()
array([[0.],

[0.]])

>>> s = (2,2)
>>> mt.zeros(s).execute()
array([[0., 0.],
 [0., 0.]])
>>> mt.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]).execute() # custom dtype
array([(0, 0), (0, 0)],
 dtype=[('x', '<i4'), ('y', '<i4')])

 mars.tensor.eye

mars.tensor.eye

	
mars.tensor.eye(N, M=None, k=0, dtype=None, sparse=False, gpu=False, chunk_size=None, order='C')

	Return a 2-D tensor with ones on the diagonal and zeros elsewhere.

	Nint

	Number of rows in the output.

	Mint, optional

	Number of columns in the output. If None, defaults to N.

	kint, optional

	Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal, and a negative value
to a lower diagonal.

	dtypedata-type, optional

	Data-type of the returned tensor.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	order{‘C’, ‘F’}, optional

	Whether the output should be stored in row-major (C-style) or
column-major (Fortran-style) order in memory.

	ITensor of shape (N,M)

	An tensor where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

identity : (almost) equivalent function
diag : diagonal 2-D tensor from a 1-D tensor specified by the user.

>>> import mars.tensor as mt

>>> mt.eye(2, dtype=int).execute()
array([[1, 0],
 [0, 1]])
>>> mt.eye(3, k=1).execute()
array([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 0.]])

 mars.tensor.identity

mars.tensor.identity

	
mars.tensor.identity(n, dtype=None, sparse=False, gpu=False, chunk_size=None)

	Return the identity tensor.

The identity tensor is a square array with ones on
the main diagonal.

	nint

	Number of rows (and columns) in n x n output.

	dtypedata-type, optional

	Data-type of the output. Defaults to float.

	sparse: bool, optional

	Create sparse tensor if True, False as default

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	chunksint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	outTensor

	n x n array with its main diagonal set to one,
and all other elements 0.

>>> import mars.tensor as mt

>>> mt.identity(3).execute()
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 mars.tensor.random.randint

mars.tensor.random.randint

	
mars.tensor.random.randint = <bound method randint of <mars.tensor.random.core.RandomState object>>

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of
the specified dtype in the “half-open” interval [low, high). If
high is None (the default), then results are from [0, low).

	lowint

	Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is one above the
highest such integer).

	highint, optional

	If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

	sizeint or tuple of ints, optional

	Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	dtypedtype, optional

	Desired dtype of the result. All dtypes are determined by their
name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available
and a specific precision may have different C types depending
on the platform. The default value is ‘np.int’.

	density: float, optional

	if density specified, a sparse tensor will be created

	chunk_sizeint or tuple of int or tuple of ints, optional

	Desired chunk size on each dimension

	gpubool, optional

	Allocate the tensor on GPU if True, False as default

	dtypedata-type, optional

	Data-type of the returned tensor.

	outint or Tensor of ints

	size-shaped tensor of random integers from the appropriate
distribution, or a single such random int if size not provided.

	random.random_integerssimilar to randint, only for the closed

	interval [low, high], and 1 is the lowest value if high is
omitted. In particular, this other one is the one to use to generate
uniformly distributed discrete non-integers.

>>> import mars.tensor as mt

>>> mt.random.randint(2, size=10).execute()
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> mt.random.randint(1, size=10).execute()
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 tensor of ints between 0 and 4, inclusive:

>>> mt.random.randint(5, size=(2, 4)).execute()
array([[4, 0, 2, 1],
 [3, 2, 2, 0]])

 Local Execution

Local Execution

When eager mode is not enabled, which is the default
behavior, Mars tensor will not be executed unless users call execute or
session.run methods.

If no session is created explicitly, the execute will create a local
session, and mark it as a default session.

Session

Users can create a new session by new_session method, if no argument is
provided, a local session will be generated.

>>> from mars.session import new_session

>>> sess = new_session() # create a session

By calling as_default of a session, the session will be marked as the
default session.

>>> sess.as_default()

More than one mars tensors can be passed to session.run, and calculate the
results for each tensor.

>>> a = mt.ones((5, 5), chunk_size=3)
>>> b = a + 1
>>> c = a * 4
>>> sess.run(b, c)
(array([[2., 2., 2., 2., 2.],
 [2., 2., 2., 2., 2.],
 [2., 2., 2., 2., 2.],
 [2., 2., 2., 2., 2.],
 [2., 2., 2., 2., 2.]]), array([[4., 4., 4., 4., 4.],
 [4., 4., 4., 4., 4.],
 [4., 4., 4., 4., 4.],
 [4., 4., 4., 4., 4.],
 [4., 4., 4., 4., 4.]]))

Execute a tensor

For a single tensor, execute can be called.

>>> a = mt.random.rand(3, 4)
>>> a.sum().execute()
7.0293719034458455

Session can be specified by the argument session.

>>> a.sum().execute(session=sess)
6.12833989477539

 Eager Mode

Eager Mode

Note

New in version 0.2.0a2

Mars supports eager mode which makes it friendly for developing and easy to
debug.

Users can enable the eager mode by options, set options at the beginning of the
program or console session.

>>> from mars.config import options
>>> options.eager_mode = True

Or use a context.

>>> from mars.config import option_context

>>> with option_context() as options:
>>> options.eager_mode = True
>>> # the eager mode is on only for the with statement
>>> ...

If eager mode is on, tensor will be executed immediately by default session
once it is created.

>>> import mars.tensor as mt
>>> from mars.config import options
>>> options.eager_mode = True
>>> t = mt.arange(6).reshape((2, 3))
>>> print(t)
Tensor(op=TensorRand, shape=(2, 3), data=
[[0 1 2]
[3 4 5]])

Use fetch to obtain numpy value from a tensor:

>>> t.fetch()
array([[0, 1, 2],
 [3, 4, 5]])

 Architecture

Architecture

Mars provides a library for distributed execution of tensors. The distributed
applications are built with actor model provided by mars.actors and
consists of three parts: the scheduler, the worker and the web service.

Users submit their tasks in graphs built with tensors. The web service accepts
tensor graphs and sends them into a scheduler, where graphs are compiled into
operand graphs, analyzed and partitioned before submitted to workers. The
scheduler then creates and scatters operand actors who control task execution
on workers on other schedulers given consistent hashing. Then operands are
activated and executed in topological order. When all operands related to
terminating tensors are executed, the graph will be marked as finished and the
client can pull the result from workers, proxied by the scheduler. The whole
procedure can be seen in the graph below.

[image: ../_images/mars-exec-flow.svg]
Job Submission

Jobs are submitted into Mars via RESTful APIs. Users type tensor operations and
run a tensor by calling session.run(tensor), which builds a tensor graph
given the operations created by the user. This graph is sent to the web api and
a GraphActor is created given consistent hashing in the cluster to handle the
tensor graph. After that the web client begins querying the state of the graph
until termination.

In the GraphActor, we first convert the tensor graph into an operand graph via
tiling methods. This enables the graph to run in parallel. After that, several
analyzes are performed on the graph to obtain operand priorities and assign
workers for the operand, which can be seen in detail in graph preparation and scheduling policy section.
Then OperandActor is created for every operand to control detailed execution.
When an operand is in READY state, as described in operand states section, a worker will be selected and the operand is
submitted into the worker for execution.

Execution Control

When an operand is submitted to a worker, the OperandActor on the scheduler
listen to its callback. When the execution is successful, successors of that
operand will be scheduled. When the execution failed, the OperandActor will
retry several times before announcing the execution as fatal.

Job Cancellation

Users can cancel a running job via RESTful API. The request is written into
state storage first and then called in GraphActor. If the graph is under
preparation, it will stop immediately when the stop request is detected in
state storage. Otherwise every operand is scanned and the states will be set
as CANCELLING. When the operand is currently running, a stop request will
be sent into workers which results in ExecutionInterrupted exception in
workers. When this exception is received in OperandActor, the state of the
operand will be marked as CANCELLED.

 Graph Preparation

Graph Preparation

When a tensor graph is submitted into Mars scheduler, a graph comprises of
operands and chunks will be generated given chunk_size parameters passed in
data sources.

Graph Compose

After tiling a tensor graph into a chunk graph, we will combine adjacent nodes
to reduce graph size as well as to utilize acceleration libraries such as
numexpr. Currently Mars only merges operands that forms a single chain
without branches. For example, when executing code

import mars.tensor as mt
a = mt.random.rand(100, chunk_size=100)
b = mt.random.rand(100, chunk_size=100)
c = (a + b).sum()

Mars will compose operand ADD and SUM into one FUSE node. RAND operands are
excluded because they don’t form a line with ADD and SUM.

[image: ../_images/compose.svg]

Initial Worker Assignment

Assigning operands to workers are crucial to the performance of graph
execution. Random worker assignment will contribute to huge network cost and
imbalanced workload between different workers. Since the workers of non-initial
operands can be effectively decided given data distribution and cluster
idleness, we only assign workers for initial nodes in graph preparation stage.

Initial worker assignment should obey several principles. First, the number of
operands assigned to each worker should be balanced. This makes full use of the
cluster especially in the late stage of graph execution. Secondly, operand
assignment should minify the amount of network transfer in its descendants.
That is, locality need to be observed in the assignment process.

Note that these principles sometimes collides with each other. That is, a
network-minimal solution may be quite biased. We developed a heuristic
algorithm in practice that takes a balance between minimal network transfer and
worker load balance. The algorithm is described below:

	Select the first worker who does not have any operands;

	Start breadth-first search on the undirected graph produced from the operand
graph;

	When an initial operand is visited, we assign it to the worker we selected
in Step 1;

	Stop assignment when the number of operands visited is greater than the
average number of operands for every worker;

	Go to Step 1 when there are workers left.

 Scheduling Policy

Scheduling Policy

When an operand graph is being executed, proper selection of execution order
will reduce total amount of data stored in the cluster, thus reducing the
probability that chunks are spilled into disks. Proper selection of workers can
also reduce the amount of data needed to transfer in execution.

Operand Selection

Proper execution order can significantly reduce the number of objects stored in
the cluster. We show the example of tree reduction in the graph below, where
ovals represent operands and rectangles represent chunks. Red color means that
the operand is being executed, and blue color means that the operand is ready
for execution. Green color means that the chunk is stored, while the gray color
means that chunks or operands are freed. Assume that we have 2 workers, and
work load of all operands are the same. Both graphs show one operand selection
strategy that is executed after 5 time unit. The left graph show the scenario
when nodes are executed in hierarchical order, while the right show that the
graph is executed in depth-first order. The strategy on the left graph leaves 6
chunks stored in the cluster, while the right only 2.

[image: ../_images/exec-order-compare.svg]

Given that our goal is to reduce the amount of data stored in the cluster
during execution, we put a priority for operands when they are ready for
execution:

	The operand with greater depth shall be executed earlier;

	The operand required by deeper operands shall be executed earlier;

	The operand with smaller output size shall be executed first.

Worker Selection

The worker of initial operands are decided when the scheduler prepares an
operand graph. We choose the worker of descendant operands given the location
of input chunks. When there are multiple workers providing minimal network
transfer, a worker satisfying resource requirements are selected.

 Operand States

Operand States

Every operand in Mars is scheduled independently by an OperandActor. The
execution is designed as a state transition process. We assign a state handling
function for every state to control the execution procedure. Every operand is
at UNSCHEDULED state when the actor is initially initialized. When certain
conditions are met, the operand switches into another state and perform
corresponding actions. If an operand is recovered from KV store, its state when
scheduler crashes will be loaded and the state is resumed. The state transition
graph can be shown below:

[image: ../_images/operand-states.svg]

We illustrate the meaning of every state and actions Mars take when entering
these states.

	UNSCHEDUED: the operand is in this state when it is not ready to execute.

	READY: the operand is in this state when all input chunks are ready. When
this state is entered, the OperandActor submits the operand to all workers
selected in AssignerActor. If the operand is about to run in one of the
selected workers, it will respond to the scheduler and the scheduler suspends
the operand on other workers and start executing the operand on the
requesting worker.

	RUNNING: the operand is in this state when it is assigned to a worker or
already started execution. When this state is entered, the OperandActor
checks if it has been submitted to the worker. If not submitted, the operand
is built into an “executable dag” containing FetchChunks. Then a callback is
registered in the worker to handle execution finish.

	FINISHED: the operand is in this state when the operand finishes
execution. When this state is entered, a terminal operand will send a
notification to its GraphActor to decide if the whole graph finishes
execution. What’s more, the OperandActor looks for precedent and successor
chunks and notify them. When a predecessor receives the notification, it
checks if all its successors finishes execution. If so, the data of that
operand can be freed. When a successor receives the notification, it checks
if all of its predecessors are finished. If so, the operand itself can move
to READY.

	FREED: the operand is in this state when all data related to this operand
is freed.

	FATAL: the operand is in this state when itself or some predecessor
failed to execute. When this state is entered, the OperandActor try to pass
this state down to its successors.

	CANCELLING: the operand is in this state when it is being cancelled. If
the operand is previously running, a cancel request will be sent to the
worker.

	CANCELLED: the operand is in this state when it is cancelled and stops
running. When this state is entered, the OperandActor tries to switch its
descendants into CANCELLING.

 Execution in Worker

Execution in Worker

A Mars worker consists of multiple processes to reduce the impact of the
notorious global interpreter lock (GIL) in Python. Executions run in separate
processes. To reduce unnecessary memory copy and inter-process communication,
shared memory is used to store computation results.

When an operand is being executed in a worker, it will first allocate memory.
Then data from other workers or from files already spilled to disk are loaded.
After that all data required are in memory and calculation can start. When
calculation is done, the worker then put the result into shared memory cache.
These four states can be seen in the graph below.

[image: ../_images/worker-states.svg]

Execution Control

A Mars worker starts an ExecutionActor to control all the operands running
on the worker. It does not actually do calculation or data transfer itself, but
submit these actions to other actors.

OperandActors in schedulers submit an operand into workers through
execute_graph calls. Then a callback is registered via
add_finish_callback. This design allows finish message be sent to different
places, which is necessary for failover.

ExecutionActor uses mars.promise module to handle multiple operands
simultaneously. Execution steps are chained via then method of the
Promise class. When the final result is successfully stored, all registered
callbacks will be invoked. When exception raises in any chained promise, the
final exception handler registered with catch will try handling this
exception.

Operand Ordering

All operands in READY state are submitted into workers selected by the
scheduler. Therefore, the number of operands submitted to the worker is beyond
the capacity of the worker most of the time during execution, and the worker
need to sort these operands in order before picking some of the operands for
execution. This is done in TaskQueueActor in worker, where a priority queue is
maintained to store information of the operands. An allocator runs
periodically, trying to allocate resources for the operand at the head of the
queue till no free space left. The allocator is also triggered when a new
operand arrives, or an operand finishes execution.

Memory Management

Mars worker manages two different parts of memory. The first is private memory
in every worker process, handled by every worker process. The second is shared
memory between all worker processes, handled by plasma_store in Apache Arrow [https://arrow.apache.org/docs/python/plasma.html].

To avoid out-of-memory error in process memory, we introduce a worker-level
QuotaActor to allocate process memory. Before an operand starts execution, it
sends a memory batch request to the QuotaActor, asking for memory blocks for
its input and output chunks. When memory quota left can satisfy the request,
the QuotaActor accepts the request. Otherwise the request is queued. After the
memory block is released, the allocation is freed and QuotaActor can accept
other requests.

Shared memory is handled by plasma_store, which often takes of up to 50% of
total memory. As there is no risk of out-of-memory, this part of memory is
allocated directly without quota requests. When shared memory is exhausted,
Mars worker tries to spill unused chunks into disk.

Chunks spill into disks may be used by later operands, and loading data from
disk into shared memory can be costly in IO, especially when the shared memory
is exhausted, and we need to spill other chunks to hold the loaded chunk.
Therefore, when data sharing is not needed, for instance, the input chunk is
only used by a single operand, it can be loaded into private memory instead of
shared memory. This can significantly reduce execution time.

 Fault Tolerance

Fault Tolerance

Currently Mars supports two levels of fault tolerance: process-level and
worker-level. Scheduler-level support is not implemented now.

Process-level Fault Tolerance

Mars uses multiple processes in its worker. When a worker process fails, for
instance, gets killed because of out of memory, and the process is not Process
0 where control actors run, Mars worker will mark relevant tasks as failed,
start another process, restore actors on it and the retry mechanism will
restart the failed task.

Worker-level Fault Tolerance

Note

New in version 0.2.0a2

As Mars uses execution graphs to schedule tasks, when some workers fail,
scheduler will find lost chunks and work out affected operands. After that the
spotted operands are rescheduled.

Failure Notification and Processing

When a worker fails to respond, actors both in other workers and schedulers
will detect it and send a feedback to ResourceActor, where changes in worker
list is accepted and broadcast into all the sessions. When SessionActors accept
the message, they will collect keys of missing data and relay all collected
information to running GraphActors, where fail-over decisions are actually
made.

The failure notification procedure is illustrated in the graph below.

[image: ../_images/worker-failover-notification.svg]When accepting a fail-over call, a GraphActor will first try reassigning states
of affected operands, reassigning initial workers for initial operands, and
then send updates to corresponding OperandActors to rerun these operands.

Reassigning States

When some workers fail, data stored in these workers are lost. Therefore we
need to change the states of these operands in order to run them again. As is
stated in operand states, data generated by an operand
only exist when operands are in FINISHED state, we perform a two-pass
scanning procedure to calculate new assignments for operands:

	Scan all FINISHED operands whose data are lost and mark them and their
successors as affected;

	Scan the graph from bottom to top, starting from affected operands;

	For every affected operand, we scan its predecessors. If the data of the
predecessor is lost or in a state without data or generating data, for
instance, FREED or UNSCHEDULED, the predecessor will be marked as
affected;

	Mark current operand as READY when no predecessors are affected,
otherwise it will be marked as UNSCHEDULED;

	When there are no affected operands to be scanned, stop, otherwise go to
Step 2.

Reassigning Initial Workers

When workers fail, some of initial operands assigned in graph preparation step may not have workers to execute on. What’s more,
change in number of workers may lead to imbalance in worker assignments. We
solve this problem by applying an adaptive worker reassigning strategy. The
algorithm framework is similar with the original one except that we do not
visit initial operands which are executed, and the stop criterion of visiting
operands in Step 3 is now limited to the average number of operands per worker
minus the number of operands already executed or determined to run in the
candidate worker.

 Contributing to Mars

Contributing to Mars

Mars is an open-sourced project released under Apache License 2.0. We welcome
and thanks for your contributions. Here are some guidelines you may find useful
when you want to make some change of Mars.

General Guidelines

Mars hosts and maintains its code on Github [https://github.com/mars-project/mars]. We provide a generalized guide [https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst] for
opening issues and pull requests.

Setting Up a Development Environment

Unless you want to develop or debug Mars under Windows, it is strongly
recommended to develop Mars under MacOS or Linux, where you can test all
functions of Mars. The steps listed below are applicable on MacOS and Linux.

Install in Conda

It is recommended to develop Mars with conda. When you want ot install Mars for
development, use the following steps to create an environment and install Mars
inside it:

git clone https://github.com/mars-project/mars.git
cd mars
conda create -n mars-dev --file conda-spec.txt python=3.7
source activate mars-dev
conda install -c conda-forge pyarrow tiledb-py
pip install -e .

Change 3.7 into the version of Python you want to install, and mars-dev
into your preferred environment name.

Other Python Distributions

Mars has a dev option for installation. When you want to install Mars for
development, use the following steps:

pip install --upgrade setuptools pip
git clone https://github.com/mars-project/mars.git
cd mars
pip install -e ".[dev]"

If you are using a system-wide Python installation and you only want to install
Mars for you, you can add --user to the pip install commands.

Verification

After installing Mars, you can check if Mars is installed correctly by running

python -c "import mars; print(mars.__version__)"

If this command correctly outputs your Mars version, Mars is correctly
installed.

Rebuilding Cython Code

Mars uses Cython to accelerate part of its code. After you change Cython source
code, you need to compile them into binaries by executing the command below on
the root of Mars project:

python setup.py build_ext -i

Running Tests

It is recommended to use pytest to run Mars tests. A simple command below
will run all the tests of Mars:

pytest mars

If you want to generate a coverage report as well, you can run:

pytest --cov=mars --cov-report=html mars

Coverage report will be put into the directory htmlcov.

The command above does not contain coverage data for Cython files by default.
To obtain coverage data about Cython files, you can run

CYTHON_TRACE=1 python setup.py build_ext -i --force

before running the pytest command mentioned above. After report is generated,
it it recommended to remove all generated C files and binaries and rebuild
without CYTHON_TRACE, as this option will reduce the performance of Mars.

Building Documentations

Mars uses sphinx to build documents. You need to install necessary packages
with the command below to install these dependencies and build your documents
into HTML.

pip install -r docs/doc-requirements.txt
cd docs
make html

The built documents are in docs/build/html directory.

When you want to create translations of Mars documents, you may append -l
<locale> after the I18NSPHINXLANGS variable in Makefile. Currently
only simplified Chinese is supported. After that, run the command below to
generate portable files (*.po) for the documents, which are in
docs/source/locale/<locale>/LC_MESSAGES:

cd docs
make gettext

After that you can translate Mars documents into your language. Note that when
you run make gettext again, translations will be broken into a fixed-width
text. For Chinese translators, you need to install jieba to get this
effect.

When you finish translation, you can run

cd docs
change LANG into the language you want to build
make -e SPHINXOPTS="-D language='LANG'" html

to build the document in the language you just translated into.

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mars	

 	
 	
 mars.tensor	

 	
 	
 mars.tensor.fft	

 	
 	
 mars.tensor.random	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (mars.tensor.core.Tensor method)

 	(mars.tensor.random.RandomState method)

A

 	
 	absolute() (in module mars.tensor)

 	add() (in module mars.tensor)

 	all() (in module mars.tensor)

 	allclose() (in module mars.tensor)

 	amax() (in module mars.tensor)

 	amin() (in module mars.tensor)

 	angle() (in module mars.tensor)

 	any() (in module mars.tensor)

 	arange() (in module mars.tensor)

 	arccos() (in module mars.tensor)

 	arccosh() (in module mars.tensor)

 	arcsin() (in module mars.tensor)

 	arcsinh() (in module mars.tensor)

 	arctan() (in module mars.tensor)

 	
 	arctan2() (in module mars.tensor)

 	arctanh() (in module mars.tensor)

 	argmax() (in module mars.tensor)

 	argmin() (in module mars.tensor)

 	argwhere() (in module mars.tensor)

 	around() (in module mars.tensor)

 	array() (in module mars.tensor)

 	array_equal() (in module mars.tensor)

 	array_split() (in module mars.tensor)

 	asarray() (in module mars.tensor)

 	atleast_1d() (in module mars.tensor)

 	atleast_2d() (in module mars.tensor)

 	atleast_3d() (in module mars.tensor)

 	average() (in module mars.tensor)

B

 	
 	beta (in module mars.tensor.random)

 	binomial (in module mars.tensor.random)

 	bitwise_and() (in module mars.tensor)

 	bitwise_or() (in module mars.tensor)

 	
 	bitwise_xor() (in module mars.tensor)

 	broadcast_arrays() (in module mars.tensor)

 	broadcast_to() (in module mars.tensor)

 	bytes (in module mars.tensor.random)

C

 	
 	cbrt() (in module mars.tensor)

 	ceil() (in module mars.tensor)

 	chisquare (in module mars.tensor.random)

 	choice (in module mars.tensor.random)

 	cholesky() (in module mars.tensor.linalg)

 	clip() (in module mars.tensor)

 	column_stack() (in module mars.tensor)

 	concatenate() (in module mars.tensor)

 	conj() (in module mars.tensor)

 	
 	copysign() (in module mars.tensor)

 	copyto() (in module mars.tensor)

 	corrcoef() (in module mars.tensor)

 	cos() (in module mars.tensor)

 	cosh() (in module mars.tensor)

 	count_nonzero() (in module mars.tensor)

 	cov() (in module mars.tensor)

 	cumprod() (in module mars.tensor)

 	cumsum() (in module mars.tensor)

D

 	
 	deg2rad() (in module mars.tensor)

 	degrees() (in module mars.tensor)

 	diag() (in module mars.tensor)

 	diagflat() (in module mars.tensor)

 	diff() (in module mars.tensor)

 	
 	digitize() (in module mars.tensor)

 	dirichlet (in module mars.tensor.random)

 	divide() (in module mars.tensor)

 	dot() (in module mars.tensor)

 	dsplit() (in module mars.tensor)

 	dstack() (in module mars.tensor)

E

 	
 	ediff1d() (in module mars.tensor)

 	empty() (in module mars.tensor)

 	empty_like() (in module mars.tensor)

 	equal() (in module mars.tensor)

 	exp() (in module mars.tensor)

 	
 	exp2() (in module mars.tensor)

 	expand_dims() (in module mars.tensor)

 	expm1() (in module mars.tensor)

 	exponential (in module mars.tensor.random)

 	eye() (in module mars.tensor)

F

 	
 	f (in module mars.tensor.random)

 	fft() (in module mars.tensor.fft)

 	fft2() (in module mars.tensor.fft)

 	fftfreq() (in module mars.tensor.fft)

 	fftn() (in module mars.tensor.fft)

 	fftshift() (in module mars.tensor.fft)

 	fix() (in module mars.tensor)

 	flip() (in module mars.tensor)

 	fliplr() (in module mars.tensor)

 	
 	flipud() (in module mars.tensor)

 	float_power() (in module mars.tensor)

 	floor() (in module mars.tensor)

 	floor_divide() (in module mars.tensor)

 	fmax() (in module mars.tensor)

 	fmin() (in module mars.tensor)

 	fmod() (in module mars.tensor)

 	frexp() (in module mars.tensor)

 	full() (in module mars.tensor)

G

 	
 	gamma (in module mars.tensor.random)

 	geometric (in module mars.tensor.random)

 	
 	greater() (in module mars.tensor)

 	greater_equal() (in module mars.tensor)

 	gumbel (in module mars.tensor.random)

H

 	
 	hfft() (in module mars.tensor.fft)

 	hsplit() (in module mars.tensor)

 	
 	hstack() (in module mars.tensor)

 	hypergeometric (in module mars.tensor.random)

 	hypot() (in module mars.tensor)

I

 	
 	i0() (in module mars.tensor)

 	identity() (in module mars.tensor)

 	ifft() (in module mars.tensor.fft)

 	ifft2() (in module mars.tensor.fft)

 	ifftn() (in module mars.tensor.fft)

 	ifftshift() (in module mars.tensor.fft)

 	ihfft() (in module mars.tensor.fft)

 	imag() (in module mars.tensor)

 	indices() (in module mars.tensor)

 	inner() (in module mars.tensor)

 	
 	invert() (in module mars.tensor)

 	irfft() (in module mars.tensor.fft)

 	irfft2() (in module mars.tensor.fft)

 	irfftn() (in module mars.tensor.fft)

 	isclose() (in module mars.tensor)

 	iscomplex() (in module mars.tensor)

 	isfinite() (in module mars.tensor)

 	isin() (in module mars.tensor)

 	isinf() (in module mars.tensor)

 	isnan() (in module mars.tensor)

 	isreal() (in module mars.tensor)

L

 	
 	laplace (in module mars.tensor.random)

 	ldexp() (in module mars.tensor)

 	left_shift() (in module mars.tensor)

 	less() (in module mars.tensor)

 	less_equal() (in module mars.tensor)

 	linspace() (in module mars.tensor)

 	log() (in module mars.tensor)

 	log10() (in module mars.tensor)

 	log1p() (in module mars.tensor)

 	
 	log2() (in module mars.tensor)

 	logaddexp() (in module mars.tensor)

 	logaddexp2() (in module mars.tensor)

 	logical_and() (in module mars.tensor)

 	logical_not() (in module mars.tensor)

 	logical_or() (in module mars.tensor)

 	logical_xor() (in module mars.tensor)

 	lognormal (in module mars.tensor.random)

 	logseries (in module mars.tensor.random)

M

 	
 	mars.tensor (module), [1]

 	mars.tensor.fft (module)

 	mars.tensor.random (module)

 	matmul() (in module mars.tensor)

 	maximum() (in module mars.tensor)

 	mean() (in module mars.tensor)

 	meshgrid() (in module mars.tensor)

 	
 	mgrid (in module mars.tensor)

 	minimum() (in module mars.tensor)

 	mod() (in module mars.tensor)

 	modf() (in module mars.tensor)

 	moveaxis() (in module mars.tensor)

 	multinomial (in module mars.tensor.random)

 	multiply() (in module mars.tensor)

 	multivariate_normal (in module mars.tensor.random)

N

 	
 	nan_to_num() (in module mars.tensor)

 	nanargmax() (in module mars.tensor)

 	nanargmin() (in module mars.tensor)

 	nancumprod() (in module mars.tensor)

 	nancumsum() (in module mars.tensor)

 	nanmax() (in module mars.tensor)

 	nanmean() (in module mars.tensor)

 	nanmin() (in module mars.tensor)

 	nanprod() (in module mars.tensor)

 	nanstd() (in module mars.tensor)

 	
 	nansum() (in module mars.tensor)

 	nanvar() (in module mars.tensor)

 	negative() (in module mars.tensor)

 	negative_binomial (in module mars.tensor.random)

 	nextafter() (in module mars.tensor)

 	noncentral_chisquare (in module mars.tensor.random)

 	noncentral_f (in module mars.tensor.random)

 	norm() (in module mars.tensor.linalg)

 	normal (in module mars.tensor.random)

 	not_equal() (in module mars.tensor)

O

 	
 	ogrid (in module mars.tensor)

 	
 	ones() (in module mars.tensor)

 	ones_like() (in module mars.tensor)

P

 	
 	pareto (in module mars.tensor.random)

 	poisson (in module mars.tensor.random)

 	positive() (in module mars.tensor)

 	
 	power (in module mars.tensor.random)

 	power() (in module mars.tensor)

 	prod() (in module mars.tensor)

 	ptp() (in module mars.tensor)

Q

 	
 	qr() (in module mars.tensor.linalg)

R

 	
 	rad2deg() (in module mars.tensor)

 	radians() (in module mars.tensor)

 	rand (in module mars.tensor.random)

 	randint (in module mars.tensor.random)

 	randn (in module mars.tensor.random)

 	random (in module mars.tensor.random)

 	random_integers (in module mars.tensor.random)

 	random_sample (in module mars.tensor.random)

 	RandomState (class in mars.tensor.random)

 	ranf (in module mars.tensor.random)

 	ravel() (in module mars.tensor)

 	rayleigh (in module mars.tensor.random)

 	real() (in module mars.tensor)

 	
 	reciprocal() (in module mars.tensor)

 	remainder() (in module mars.tensor)

 	repeat() (in module mars.tensor)

 	reshape() (in module mars.tensor)

 	rfft() (in module mars.tensor.fft)

 	rfft2() (in module mars.tensor.fft)

 	rfftfreq() (in module mars.tensor.fft)

 	rfftn() (in module mars.tensor.fft)

 	right_shift() (in module mars.tensor)

 	rint() (in module mars.tensor)

 	roll() (in module mars.tensor)

 	rollaxis() (in module mars.tensor)

 	round_() (in module mars.tensor)

S

 	
 	sample (in module mars.tensor.random)

 	seed (in module mars.tensor.random)

 	sign() (in module mars.tensor)

 	signbit() (in module mars.tensor)

 	sin() (in module mars.tensor)

 	sinc() (in module mars.tensor)

 	sinh() (in module mars.tensor)

 	spacing() (in module mars.tensor)

 	split() (in module mars.tensor)

 	sqrt() (in module mars.tensor)

 	square() (in module mars.tensor)

 	
 	squeeze() (in module mars.tensor)

 	stack() (in module mars.tensor)

 	standard_cauchy (in module mars.tensor.random)

 	standard_exponential (in module mars.tensor.random)

 	standard_gamma (in module mars.tensor.random)

 	standard_normal (in module mars.tensor.random)

 	standard_t (in module mars.tensor.random)

 	std() (in module mars.tensor)

 	subtract() (in module mars.tensor)

 	sum() (in module mars.tensor)

 	svd() (in module mars.tensor.linalg)

 	swapaxes() (in module mars.tensor)

T

 	
 	T (mars.tensor.core.Tensor attribute)

 	tan() (in module mars.tensor)

 	tanh() (in module mars.tensor)

 	Tensor (class in mars.tensor.core)

 	tensor() (in module mars.tensor)

 	tensordot() (in module mars.tensor)

 	
 	tile() (in module mars.tensor)

 	transpose() (in module mars.tensor)

 	triangular (in module mars.tensor.random)

 	tril() (in module mars.tensor)

 	triu() (in module mars.tensor)

 	true_divide() (in module mars.tensor)

 	trunc() (in module mars.tensor)

U

 	
 	uniform (in module mars.tensor.random)

V

 	
 	var() (in module mars.tensor)

 	vdot() (in module mars.tensor)

 	
 	vonmises (in module mars.tensor.random)

 	vsplit() (in module mars.tensor)

 	vstack() (in module mars.tensor)

W

 	
 	wald (in module mars.tensor.random)

 	
 	weibull (in module mars.tensor.random)

 	where() (in module mars.tensor)

Z

 	
 	zeros() (in module mars.tensor)

 	
 	zeros_like() (in module mars.tensor)

 	zipf (in module mars.tensor.random)

 Mars tensor - distributed tensor with NumPy-like API

Mars tensor - distributed tensor with NumPy-like API

	Overview

	Create Mars tensor
	mars.tensor.tensor

	mars.tensor.array

	Create tensor on GPU

	Create sparse tensor

	Chunks

	Universal Functions (ufunc)
	Available ufuncs

	Routines
	Tensor Creation Routines

	Tensor Manipulation Routines

	Binary Operations

	Discrete Fourier Transform

	Indexing Routines

	Linear Algebra

	Logic Functions

	Mathematical Functions

	Random Sampling

	Set routines

	Sorting, Searching, and Counting

	Statistics

	Sparse tensor
	Functions to create sparse tensor

	Local Execution
	Session

	Execute a tensor

	Eager Mode

 mars.tensor.core.Tensor

mars.tensor.core.Tensor

	
class mars.tensor.core.Tensor(data)

	
	
__init__(data)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(data)

	Initialize self.

	all([axis, out, keepdims, combine_size])

	Test whether all array elements along a given axis evaluate to True.

	any([axis, out, keepdims, combine_size])

	Test whether any tensor element along a given axis evaluates to True.

	argmax([axis, out, combine_size])

	Returns the indices of the maximum values along an axis.

	argmin([axis, out, combine_size])

	Returns the indices of the minimum values along an axis.

	astype(dtype[, order, casting, copy])

	Copy of the tensor, cast to a specified type.

	Tensor.build_graph

	

	choose(choices[, out, mode])

	Construct a tensor from an index tensor and a set of tensors to choose from.

	Tensor.cls

	

	compress(condition[, axis])

	

	conj([out, where])

	Return the complex conjugate, element-wise.
