

Welcome to lnav’s documentation!

The Log File Navigator [http://lnav.org] (lnav) is an advanced log file
viewer for the console.

Contents:

	Introduction
	Dependencies

	Installation

	Viewing Logs

	User Interface

	Command Line Interface

	Log Formats
	Defining a New Format

	Modifying an Existing Format

	Scripts

	Installing Formats

	Format Order When Scanning a File

	Extracting Data
	Recognized Data Types

	Sessions

	Hotkey Reference
	Spatial Navigation

	Chronological Navigation

	Bookmarks

	Display

	Session

	Query

	Command Reference
	Filtering

	Bookmarks

	Navigation

	Time

	Display

	SQL

	Output

	Miscellaneous

	Configuration

	SQLite Extensions Reference
	Commands

	Environment

	Math

	String

	File Paths

	Networking

	JSON

	Time

	Internal State

	Collators

	SQLite Tables Reference
	environ

	lnav_views

	lnav_view_stack

	lnav_view_filters

	all_logs

	http_status_codes

	regexp_capture(<string>, <regex>)

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The Log File Navigator, lnav, is an enhanced log file viewer that
takes advantage of any semantic information that can be gleaned from
the files being viewed, such as timestamps and log levels. Using this
extra semantic information, lnav can do things like interleaving
messages from different files, generate histograms of messages over
time, and providing hotkeys for navigating through the file. It is
hoped that these features will allow the user to quickly and
efficiently zero in on problems.

Dependencies

When compiling from source, the following dependencies are required:

	NCurses [http://www.gnu.org/s/ncurses/]

	PCRE [http://www.pcre.org] – Versions greater than 8.20 give better
performance since the PCRE JIT will be leveraged.

	SQLite [http://www.sqlite.org]

	ZLib [http://wwww.zlib.net]

	Bzip2 [http://www.bzip.org]

	Readline [http://www.gnu.org/s/readline]

Installation

Check the downloads page [http://lnav.org/downloads] to see if there are
packages for your operating system. Compiling from source is just a matter of
doing:

$./configure
$ make
$ sudo make install

Viewing Logs

The arguments to lnav are the log files, directories, or URLs to be viewed.
For example, to view all of the CUPS logs on your system:

$ lnav /var/log/cups

The formats of the logs are determined automatically and indexed on-the-fly.
See Log Formats for a listing of the predefined formats and how to
define your own.

If no arguments are given, lnav will try to open the syslog file on your
system:

$ lnav

User Interface

The main part of the display shows the log messages from all files sorted by the
message time. Status bars at the top and bottom of the screen can given you an
idea of where you are in the logs. And, the last line is used for entering
commands. Navigation is controlled by a series of hotkeys, see Hotkey Reference
for more information.

[image: Screenshot showing syslog messages.]
Screenshot of lnav viewing syslog messages.

On color displays, the log messages will be highlighted as follows:

	Errors will be colored in red;

	warnings will be yellow;

	search hits are reverse video;

	various color highlights will be applied to: IP addresses, SQL keywords,
XML tags, file and line numbers in Java backtraces, and quoted strings;

	“identifiers” in the messages will be randomly assigned colors based on their
content (works best on “xterm-256color” terminals).

The right side of the display has a proportionally sized ‘scrollbar’ that
shows:

	your current position in the file;

	the locations of errors/warnings in the log files by using a red or yellow
coloring;

	the locations of search hits by using a tick-mark pointing to the left;

	the locations of bookmarks by using a tick-mark pointing to the right.

Above and below the main body are status lines that display:

	the current time;

	the name of the file the top line was pulled from;

	the log format for the top line;

	the current view;

	the line number for the top line in the display;

	the current search hit, the total number of hits, and the search term;

If the view supports filtering, there will be a status line showing the
following:

	the number of enabled filters and the total number of filters;

	the number of lines that are not displayed because of filtering.

To edit the filters, you can press TAB to change the focus from the main
view to the filter editor. The editor allows you to create, enable/disable,
and delete filters easily.

Finally, the last line on the display is where you can enter search
patterns and execute internal commands, such as converting a
unix-timestamp into a human-readable date. The command-line is by
the readline library, so the usual set of keyboard shortcuts can
be used.

The body of the display is also used to display other content, such
as: the help file, histograms of the log messages over time, and
SQL results. The views are organized into a stack so that any time
you activate a new view with a key press or command, the new view
is pushed onto the stack. Pressing the same key again will pop the
view off of the stack and return you to the previous view. Note
that you can always use ‘q’ to pop the top view off of the stack.

Command Line Interface

	-h

	Print these command-line options and exit.

	-H

	Start lnav and switch to the help view.

	-C

	Check the configuration for any errors and exit.

	-c

	Execute the given command. This option can be given multiple times.

	-f

	Execute the given command file. This option can be given multiple times.

	-I path

	Add a configuration directory.

	-i

	Install the format files in the .lnav/formats/ directory.
Individual files will be installed in the installed
directory and git repositories will be cloned with a directory
name based on their repository URI.

	-u

	Update formats installed from git repositories.

	-d file

	Write debug messages to the given file.

	-n

	Run without the curses UI (headless mode).

	-r

	Recursively load files from the given base directories.

	-t

	Prepend timestamps to the lines of data being read in on the standard
input.

	-w path

	Write the contents of the standard input to this file.

	-V

	Print the version of lnav

Log Formats

Log files loaded into lnav are parsed based on formats defined in
configuration files. Many
formats are already built in to the lnav binary and you can define your own
using a JSON file. When loading files, each format is checked to see if it can
parse the first few lines in the file. Once a match is found, that format will
be considered that files format and used to parse the remaining lines in the
file. If no match is found, the file is considered to be plain text and can
be viewed in the “text” view that is accessed with the t key.

The following log formats are built into lnav:

	Name

	Table Name

	Description

	Common Access Log

	access_log

	The default web access log format for servers like Apache.

	Amazon ALB log

	alb_log

	Log format for Amazon Application Load Balancers

	VMware vSphere Auto Deploy log format

	autodeploy_log

	The log format for the VMware Auto Deploy service

	Generic Block

	block_log

	A generic format for logs, like cron, that have a date at the start of a block.

	Candlepin log format

	candlepin_log

	Log format used by Candlepin registration system

	Yum choose_repo Log

	choose_repo_log

	The log format for the yum choose_repo tool.

	CUPS log format

	cups_log

	Log format used by the Common Unix Printing System

	Dpkg Log

	dpkg_log

	The debian dpkg log.

	Amazon ELB log

	elb_log

	Log format for Amazon Elastic Load Balancers

	engine log

	engine_log

	The log format for the engine.log files from RHEV/oVirt

	Common Error Log

	error_log

	The default web error log format for servers like Apache.

	Fsck_hfs Log

	fsck_hfs_log

	Log for the fsck_hfs tool on Mac OS X.

	Glog

	glog_log

	The google glog format.

	HAProxy HTTP Log Format

	haproxy_log

	The HAProxy log format

	Java log format

	java_log

	Log format used by log4j and output by most java programs

	journalctl JSON log format

	journald_json_log

	Logger format as created by systemd journalctl -o json

	Katello log format

	katello_log

	Log format used by katello and foreman as used in Satellite 6.

	OpenAM Log

	openam_log

	The OpenAM identity provider.

	OpenAM Debug Log

	openamdb_log

	Debug logs for the OpenAM identity provider.

	OpenStack log format

	openstack_log

	The log format for the OpenStack log files

	CUPS Page Log

	page_log

	The CUPS server log of printed pages.

	Papertrail Service

	papertrail_log

	Log format for the papertrail log management service

	SnapLogic Server Log

	snaplogic_log

	The SnapLogic server log format.

	SSSD log format

	sssd_log

	Log format used by the System Security Services Daemon

	Strace

	strace_log

	The strace output format.

	sudo

	sudo_log

	The sudo privilege management tool.

	Syslog

	syslog_log

	The system logger format found on most posix systems.

	TCF Log

	tcf_log

	Target Communication Framework log

	TCSH History

	tcsh_history

	The tcsh history file format.

	Uwsgi Log

	uwsgi_log

	The uwsgi log format.

	Vdsm Logs

	vdsm_log

	Vdsm log format

	VMKernel Logs

	vmk_log

	The VMKernel’s log format

	VMware Logs

	vmw_log

	One of the log formats used in VMware’s ESXi and vCenter software.

	RHN server XMLRPC log format

	xmlrpc_log

	Generated by Satellite’s XMLRPC component

The
Bro Network Security Monitor [https://www.bro.org/sphinx/script-reference/log-files.html]
TSV log format is also supported in versions
v0.8.3+. The Bro log format is self-describing, so lnav will read the
header to determine the shape of the file.

Defining a New Format

New log formats can be defined by placing JSON configuration files in
subdirectories of the ~/.lnav/formats/ directory. The directories and
files can be named anything you like, but the files must have the ‘.json’ suffix. A
sample file containing the builtin configuration will be written to this
directory when lnav starts up. You can consult that file when writing your
own formats or if you need to modify existing ones. Format directories can
also contain ‘.sql’ and ‘.lnav’ script files that can be used automate log file
analysis.

The contents of the format configuration should be a JSON object with a field
for each format defined by the file. Each field name should be the symbolic
name of the format. This value will also be used as the SQL table name for
the log. The value for each field should be another object with the following
fields:

	title

	The short and human-readable name for the format.

	description

	A longer description of the format.

	url

	A URL to the definition of the format.

	file-pattern

	A regular expression used to match log file paths. Typically,
every file format will be tried during the detection process. This field
can be used to limit which files a format is applied to in case there is
a potential for conflicts.

	regex

	This object contains sub-objects that describe the message formats
to match in a plain log file. Log files that contain JSON messages should
not specify this field.

	pattern

	The regular expression that should be used to match log messages.
The PCRE [http://www.pcre.org] library is used by lnav to do all
regular expression matching.

	module-format

	If true, this regex will only be used to parse message
bodies for formats that can act as containers, such as syslog. Default:
false.

	json

	True if each log line is JSON-encoded.

	line-format

	An array that specifies the text format for JSON-encoded
log messages. Log files that are JSON-encoded will have each message
converted from the raw JSON encoding into this format. Each element
is either an object that defines which fields should be inserted into
the final message string and or a string constant that should be
inserted. For example, the following configuration will tranform each
log message object into a string that contains the timestamp, followed
by a space, and then the message body:

[{ "field": "ts" }, " ", { "field": "msg" }]

	field

	The name of the message field that should be inserted at this
point in the message. The special “__timestamp__” field name can be
used to insert a human-readable timestamp. The “__level__” field can
be used to insert the level name as defined by lnav.

	min-width

	The minimum width for the field. If the value for the field
in a given log message is shorter, padding will be added as needed to
meet the minimum-width requirement. (v0.8.2+)

	max-width

	The maximum width for the field. If the value for the field
in a given log message is longer, the overflow algorithm will be applied
to try and shorten the field. (v0.8.2+)

	align

	Specifies the alignment for the field, either “left” or “right”.
If “left”, padding to meet the minimum-width will be added on the right.
If “right”, padding will be added on the left. (v0.8.2+)

	overflow

	The algorithm used to shorten a field that is longer than
“max-width”. The following algorithms are supported:

	abbrev

	Removes all but the first letter in dotted text. For example,
“com.example.foo” would be shortened to “c.e.foo”.

	truncate

	Truncates any text past the maximum width.

	dot-dot

	Cuts out the middle of the text and replaces it with two
dots (i.e. ‘..’).

(v0.8.2+)

	timestamp-format

	The timestamp format to use when displaying the time
for this log message. (v0.8.2+)

	default-value

	The default value to use if the field could not be found
in the current log message. The built-in default is “-“.

	text-transform

	Transform the text in the field. Supported options are:
none, uppercase, lowercase, capitalize

	timestamp-field

	The name of the field that contains the log message
timestamp. Defaults to “timestamp”.

	timestamp-format

	An array of timestamp formats using a subset of the
strftime conversion specification. The following conversions are
supported: %a, %b, %L, %M, %H, %I, %d, %e, %k, %l, %m, %p, %y, %Y, %S, %s,
%Z, %z. In addition, you can also use the following:

	%L

	Milliseconds as a decimal number (range 000 to 999).

	%f

	Microseconds as a decimal number (range 000000 to 999999).

	%N

	Nanoseconds as a decimal number (range 000000000 to 999999999).

	%i

	Milliseconds from the epoch.

	%6

	Microseconds from the epoch.

	timestamp-divisor

	For JSON logs with numeric timestamps, this value is used
to divide the timestamp by to get the number of seconds and fractional
seconds.

	ordered-by-time

	(v0.8.3+) Indicates that the order of messages in the file
is time-based. Files that are not naturally ordered by time will be sorted
in order to display them in the correct order. Note that this sorting can
incur a performance penalty when tailing logs.

	level-field

	The name of the regex capture group that contains the log
message level. Defaults to “level”.

	body-field

	The name of the field that contains the main body of the
message. Defaults to “body”.

	opid-field

	The name of the field that contains the “operation ID” of the
message. An “operation ID” establishes a thread of messages that might
correspond to a particular operation/request/transaction. The user can
press the ‘o’ or ‘Shift+O’ hotkeys to move forward/backward through the
list of messages that have the same operation ID. Note: For JSON-encoded
logs, the opid field can be a path (e.g. “foo/bar/opid”) if the field is
nested in an object and it MUST be included in the “line-format” for the
‘o’ hotkeys to work.

	module-field

	The name of the field that contains the module identifier
that distinguishes messages from one log source from another. This field
should be used if this message format can act as a container for other
types of log messages. For example, an Apache access log can be sent to
syslog instead of written to a file. In this case, lnav will parse
the syslog message and then separately parse the body of the message to
determine the “sub” format. This module identifier is used to help
lnav quickly identify the format to use when parsing message bodies.

	hide-extra

	A boolean for JSON logs that indicates whether fields not
present in the line-format should be displayed on their own lines.

	level

	A mapping of error levels to regular expressions. During scanning
the contents of the capture group specified by level-field will be
checked against each of these regexes. Once a match is found, the log
message level will set to the corresponding level. The available levels,
in order of severity, are: fatal, critical, error,
warning, stats, info, debug, debug2-5, trace.
For JSON logs with exact numeric levels, the number for the corresponding
level can be supplied. If the JSON log format uses numeric ranges instead
of exact numbers, you can supply a pattern and the number found in the log
will be converted to a string for pattern-matching.

	multiline

	If false, lnav will consider any log lines that do not
match one of the message patterns to be in error when checking files with
the ‘-C’ option. This flag will not affect normal viewing operation.
Default: true.

	value

	This object contains the definitions for the values captured by the
regexes.

	kind

	The type of data that was captured string, integer,
float, json, quoted.

	collate

	The name of the SQLite collation function for this value.
The standard SQLite collation functions can be used as well as the
ones defined by lnav, as described in Collators.

	identifier

	A boolean that indicates whether or not this field represents
an identifier and should be syntax colored.

	foreign-key

	A boolean that indicates that this field is a key and should
not be graphed. This should only need to be set for integer fields.

	hidden

	A boolean for log fields that indicates whether they should
be displayed. The behavior is slightly different for JSON logs and text
logs. For a JSON log, this property determines whether an extra line
will be added with the key/value pair. For text logs, this property
controls whether the value should be displayed by default or replaced
with an ellipsis.

	rewriter

	A command to rewrite this field when pretty-printing log
messages containing this value. The command must start with ‘:’, ‘;’,
or ‘|’ to signify whether it is a regular command, SQL query, or a script
to be executed. The other fields in the line are accessible in SQL by
using the ‘:’ prefix. The text value of this field will then be replaced
with the result of the command when pretty-printing. For example, the
HTTP access log format will rewrite the status code field to include the
textual version (e.g. 200 (OK)) using the following SQL query:

;SELECT :sc_status || ' (' || (SELECT message FROM http_status_codes WHERE status = :sc_status) || ') '

	sample

	A list of objects that contain sample log messages. All formats
must include at least one sample and it must be matched by one of the
included regexes. Each object must contain the following field:

	line

	The sample message.

	level

	The expected error level. An error will be raised if this level
does not match the level parsed by lnav for this sample message.

	highlights

	
	This object contains the definitions for patterns to be

	highlighted in a log message. Each entry should have a name and a
definition with the following fields:

	pattern

	The regular expression to match in the log message body.

	color

	The foreground color to use when highlighting the part of the
message that matched the pattern. If no color is specified, one will be
picked automatically. Colors can be specified using hexadecimal notation
by starting with a hash (e.g. #aabbcc) or using a color name as found
at http://jonasjacek.github.io/colors/.

	background-color

	The background color to use when highlighting the part
of the message that matched the pattern. If no background color is
specified, black will be used. The background color is only considered
if a foreground color is specified.

	underline

	If true, underline the part of the message that matched the
pattern.

	blink

	If true, blink the part of the message that matched the pattern.

Example format:

{
 "example_log" : {
 "title" : "Example Log Format",
 "description" : "Log format used in the documentation example.",
 "url" : "http://example.com/log-format.html",
 "regex" : {
 "basic" : {
 "pattern" : "^(?<timestamp>\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d{3}Z)>>(?<level>\\w+)>>(?<component>\\w+)>>(?<body>.*)$"
 }
 },
 "level-field" : "level",
 "level" : {
 "error" : "ERROR",
 "warning" : "WARNING"
 },
 "value" : {
 "component" : {
 "kind" : "string",
 "identifier" : true
 }
 },
 "sample" : [
 {
 "line" : "2011-04-01T15:14:34.203Z>>ERROR>>core>>Shit's on fire yo!"
 }
]
 }
}

Modifying an Existing Format

When loading log formats from files, lnav will overlay any new data over
previously loaded data. This feature allows you to override existing value or
append new ones to the format configurations. For example, you can separately
add a new regex to the example log format given above by creating another file
with the following contents:

{
 "example_log" : {
 "regex" : {
 "custom1" : {
 "pattern" : "^(?<timestamp>\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d{3}Z)<<(?<level>\\w+)--(?<component>\\w+)>>(?<body>.*)$"
 }
 },
 "sample" : [
 {
 "line" : "2011-04-01T15:14:34.203Z<<ERROR--core>>Shit's on fire yo!"
 }
]
 }
}

Scripts

Format directories may also contain ‘.sql’ and ‘.lnav’ files to help automate
log file analysis. The SQL files are executed on startup to create any helper
tables or views and the ‘.lnav’ script files can be executed using the pipe
hotkey (|). For example, lnav includes a “partition-by-boot” script that
partitions the log view based on boot messages from the Linux kernel. A script
can have a mix of SQL and lnav commands, as well as include other scripts.
The type of statement to execute is determined by the leading character on a
line: a semi-colon begins a SQL statement; a colon starts an lnav command;
and a pipe (|) denotes another script to be executed. Lines beginning with a
hash are treated as comments. Any arguments passed to a script can be
referenced using ‘$N’ where ‘N’ is the index of the argument. Remember that
you need to use the ‘:eval’ command (see Miscellaneous) when referencing
variables in most lnav commands. Scripts can provide help text to be
displayed during interactive usage by adding the following tags in a comment
header:

	@synopsis

	The synopsis should contain the name of the script and any
parameters to be passed. For example:

@synopsis: hello-world <name1> [<name2> ... <nameN>]

	@description

	A one-line description of what the script does. For example:

@description: Say hello to the given names.

Installing Formats

File formats are loaded from subdirectories in /etc/lnav/formats and
~/.lnav/formats/. You can manually create these subdirectories and
copy the format files into there. Or, you can pass the ‘-i’ option to lnav
to automatically install formats from the command-line. For example:

$ lnav -i myformat.json
info: installed: /home/example/.lnav/formats/installed/myformat_log.json

Format files installed using this method will be placed in the installed
subdirectory and named based on the first format name found in the file.

You can also install formats from git repositories by passing the repository’s
clone URL. A standard set of repositories is maintained at
(https://github.com/tstack/lnav-config) and can be installed by passing ‘extra’
on the command line, like so:

$ lnav -i extra

These repositories can be updated by running lnav with the ‘-u’ flag.

Format files can also be made executable by adding a shebang (#!) line to the
top of the file, like so:

#! /usr/bin/env lnav -i
{
 "myformat_log" : ...
}

Executing the format file should then install it automatically:

$ chmod ugo+rx myformat.json
$./myformat.json
info: installed: /home/example/.lnav/formats/installed/myformat_log.json

Format Order When Scanning a File

When lnav loads a file, it tries each log format against the first ~1000
lines of the file trying to find a match. When a match is found, that log
format will be locked in and used for the rest of the lines in that file.
Since there may be overlap between formats, lnav performs a test on
startup to determine which formats match each others sample lines. Using
this information it will create an ordering of the formats so that the more
specific formats are tried before the more generic ones. For example, a
format that matches certain syslog messages will match its own sample lines,
but not the ones in the syslog samples. On the other hand, the syslog format
will match its own samples and those in the more specific format. You can
see the order of the format by enabling debugging and checking the lnav
log file for the “Format order” message:

$ lnav -d /tmp/lnav.log

Extracting Data

Note: This feature is still in BETA, you should expect bugs and
incompatible changes in the future.

Log messages contain a good deal of useful data, but it’s not always easy to get
at. The log parser built into lnav is able to extract data as described by
Log Formats as well as discovering data in plain text messages. This data
can then be queried and processed using the SQLite front-end that is also
incorporated into lnav. As an example, the following Syslog message from
:cmd:`sudo` can be processed to extract several key/value pairs:

Jul 31 11:42:26 Example-MacBook-Pro.local sudo[87024]: testuser : TTY=ttys004 ; PWD=/Users/testuser/github/lbuild ; USER=root ; COMMAND=/usr/bin/make install

The data that can be extracted by the parser is viewable directly in lnav
by pressing the ‘p’ key. The results will be shown in an overlay like the
following:

Current Time: 2013-07-31T11:42:26.000 Original Time: 2013-07-31T11:42:26.000 Offset: +0.000
Known message fields:
├ log_hostname = Example-MacBook-Pro.local
├ log_procname = sudo
├ log_pid = 87024
Discovered message fields:
├ col_0 = testuser
├ TTY = ttys004
├ PWD = /Users/testuser/github/lbuild
├ USER = root
└ COMMAND = /usr/bin/make install

Notice that the parser has detected pairs of the form ‘<key>=<value>’. The data
parser will also look for pairs separated by a colon. If there are no clearly
demarcated pairs, then the parser will extract anything that looks like data
values and assign them keys of the form ‘col_N’. For example, two data values,
an IPv4 address and a symbol, will be extracted from the following log
messsage:

Apr 29 08:13:43 sample-centos5 avahi-daemon[2467]: Registering new address record for 10.1.10.62 on eth0.

Since there are no keys for the values in the message, the parser will assign
‘col_0’ for the IP address and ‘col_1’ for the symbol, as seen here:

Current Time: 2013-04-29T08:13:43.000 Original Time: 2013-04-29T08:13:43.000 Offset: +0.000
Known message fields:
├ log_hostname = sample-centos5
├ log_procname = avahi-daemon
├ log_pid = 2467
Discovered message fields:
├ col_0 = 10.1.10.62
└ col_1 = eth0

Now that you have an idea of how the parser works, you can begin to perform
queries on the data that is being extracted. The SQLite database engine is
embedded into lnav and its Virtual Table [http://www.sqlite.org/vtab.html] mechanism is used to provide a means to
process this log data. Each log format has its own table that can be used to
access all of the loaded messages that are in that format. For accessing log
message content that is more free-form, like the examples given here, the
logline table can be used. The logline table is recreated for each
query and is based on the format and pairs discovered in the log message at
the top of the display.

Queries can be performed by pressing the semi-colon (;) key in lnav. After
pressing the key, the overlay showing any known or discovered fields will be
displayed to give you an idea of what data is available. The query can be any
SQL query [http://sqlite.org/lang.html] supported by SQLite. To make
analysis easier, lnav includes many extra functions for processing strings,
paths, and IP addresses. See SQLite Extensions Reference for more information.

As an example, the simplest query to perform initially would be a “select all”,
like so:

select * from logline

When this query is run against the second example log message given above, the
following results are received:

log_line log_part log_time log_idle_msecs log_level log_hostname log_procname log_pid col_0 col_1

 292 p.0 2013-04-11T16:42:51.000 0 info localhost avahi-daemon 2480 fe80::a00:27ff:fe98:7f6e eth0
 293 p.0 2013-04-11T16:42:51.000 0 info localhost avahi-daemon 2480 10.0.2.15 eth0
 330 p.0 2013-04-11T16:47:02.000 0 info localhost avahi-daemon 2480 fe80::a00:27ff:fe98:7f6e eth0
 336 p.0 2013-04-11T16:47:02.000 0 info localhost avahi-daemon 2480 10.1.10.75 eth0
 343 p.0 2013-04-11T16:47:02.000 0 info localhost avahi-daemon 2480 10.1.10.75 eth0
 370 p.0 2013-04-11T16:59:39.000 0 info localhost avahi-daemon 2480 10.1.10.75 eth0
 377 p.0 2013-04-11T16:59:39.000 0 info localhost avahi-daemon 2480 10.1.10.75 eth0
 382 p.0 2013-04-11T16:59:41.000 0 info localhost avahi-daemon 2480 fe80::a00:27ff:fe98:7f6e eth0
 401 p.0 2013-04-11T17:20:45.000 0 info localhost avahi-daemon 4247 fe80::a00:27ff:fe98:7f6e eth0
 402 p.0 2013-04-11T17:20:45.000 0 info localhost avahi-daemon 4247 10.1.10.75 eth0

 735 p.0 2013-04-11T17:41:46.000 0 info sample-centos5 avahi-daemon 2465 fe80::a00:27ff:fe98:7f6e eth0
 736 p.0 2013-04-11T17:41:46.000 0 info sample-centos5 avahi-daemon 2465 10.1.10.75 eth0
 781 p.0 2013-04-12T03:32:30.000 0 info sample-centos5 avahi-daemon 2465 10.1.10.64 eth0
 788 p.0 2013-04-12T03:32:30.000 0 info sample-centos5 avahi-daemon 2465 10.1.10.64 eth0
 1166 p.0 2013-04-25T10:56:00.000 0 info sample-centos5 avahi-daemon 2467 fe80::a00:27ff:fe98:7f6e eth0
 1167 p.0 2013-04-25T10:56:00.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.111 eth0
 1246 p.0 2013-04-26T06:06:25.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.49 eth0
 1253 p.0 2013-04-26T06:06:25.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.49 eth0
 1454 p.0 2013-04-28T06:53:55.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.103 eth0
 1461 p.0 2013-04-28T06:53:55.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.103 eth0

 1497 p.0 2013-04-29T08:13:43.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.62 eth0
 1504 p.0 2013-04-29T08:13:43.000 0 info sample-centos5 avahi-daemon 2467 10.1.10.62 eth0

Note that lnav is not returning results for all messages that are in this
syslog file. Rather, it searches for messages that match the format for the
given line and returns only those messages in results. In this case, that
format is “Registering new address record for <IP> on <symbol>”, which
corresponds to the parts of the message that were not recognized as data.

More sophisticated queries can be done, of course. For example, to find out the
frequency of IP addresses mentioned in these messages, you can run:

SELECT col_0,count(*) FROM logline GROUP BY col_0

The results for this query are:

 col_0 count(*)

10.0.2.15 1
10.1.10.49 2
10.1.10.62 2
10.1.10.64 2
10.1.10.75 6
10.1.10.103 2
10.1.10.111 1
fe80::a00:27ff:fe98:7f6e 6

Since this type of query is fairly common, lnav includes a “summarize”
command that will compute the frequencies of identifiers as well as min, max,
average, median, and standard deviation for number columns. In this case, you
can run the following to compute the frequencies and return an ordered set of
results.

:summarize col_0

Recognized Data Types

When searching for data to extract from log messages, lnav looks for the
following set of patterns:

	Strings

	Single and double-quoted strings. Example: “The quick brown fox.”

	URLs

	URLs that contain the ‘://’ separator. Example: http://example.com

	Paths

	File system paths. Examples: /path/to/file, ./relative/path

	MAC Address

	Ethernet MAC addresses. Example: c4:2c:03:0e:e4:4a

	Hex Dumps

	A colon-separated string of hex numbers. Example: e8:06:88:ff

	Date/Time

	Date and time stamps of the form “YYYY-mm-DD” and “HH:MM:SS”.

	IP Addresses

	IPv4 and IPv6 addresses. Examples: 127.0.0.1, fe80::c62c:3ff:fe0e:e44a%en0

	UUID

	The common formatting for 128-bit UUIDs. Example:
0E305E39-F1E9-4DE4-B10B-5829E5DF54D0

	Version Numbers

	Dot-separated version numbers. Example: 3.7.17

	Numbers

	Numbers in base ten, hex, and octal formats. Examples: 1234, 0xbeef, 0777

	E-Mail Address

	Strings that look close to an e-mail address. Example: gary@example.com

	Constants

	Common constants in languages, like: true, false, null, None.

	Symbols

	Words that follow the common conventions for symbols in programming
languages. For example, containing all capital letters, or separated
by colons. Example: SOME_CONSTANT_VALUE, namespace::value

Sessions

Session information is stored automatically for the set of files that were
passed in on the command-line and reloaded the next time lnav is executed.
The information currently stored is:

	Position within the files being viewed.

	Active searches for each view.

	Any active log filters or highlights.

Bookmarks and log-time adjustments are stored separately on a per-file basis.
Note that the bookmarks are associated with files based on the content of the
first line of the file so that they are preserved even if the file has been
moved from its current location.

Session data is stored in the “~/.lnav” directory.

Hotkey Reference

This reference covers the keys used to control lnav. Consult the built-in
help [https://github.com/tstack/lnav/blob/master/src/help.txt] in lnav for
a more detailed explanation of each key.

Spatial Navigation

	Keypress

	
	
	Command

	 Space

	 PgDn

	
	Down a page

	 b

	 Backspace

	 PgUp

	Up a page

	 j

	 Return

	 ↓

	Down a line

	 k

	 ↑

	
	Up a line

	 h

	 ←

	
	Left half a page. In the log view, pressing left while at the start of
the message text will reveal the source file name for each line.
Pressing again will reveal the full path.

	 Shift + h

	 Shift + ←

	
	Left ten columns

	 l

	 →

	
	Right half a page

	 Shift + l

	 Shift + →

	
	Right ten columns

	 Home

	 g

	
	Top of the view

	 End

	 G

	
	Bottom of the view

	 e

	 Shift + e

	
	Next/previous error

	 w

	 Shift + w

	
	Next/previous warning

	 n

	 Shift + n

	
	Next/previous search hit

	 >

	 <

	
	Next/previous search hit (horizontal)

	 f

	 Shift + f

	
	Next/previous file

	 u

	 Shift + u

	
	Next/previous bookmark

	 o

	 Shift + o

	
	Forward/backward through log messages with a matching “opid” field

	 y

	 Shift + y

	
	Next/prevous SQL result

	 s

	 Shift + s

	
	Next/prevous slow down in the log message rate

	 {

	 }

	
	Previous/next location in history

Chronological Navigation

	Keypress

	
	Command

	 d

	 Shift + d

	Forward/backward 24 hours

	 1 - 6

	 Shift + 1 - 6

	Next/previous n’th ten minute of the hour

	 7

	 8

	Previous/next minute

	 0

	 Shift + 0

	Next/previous day

	 r

	 Shift + r

	Forward/backward by the relative time that was last used with the goto command.

Bookmarks

	Keypress

	Command

	 m

	Mark/unmark the top line

	 Shift + m

	Mark/unmark the range of lines from the last marked to the top

	 Shift + j

	Mark/unmark the next line after the previously marked

	 Shift + k

	Mark/unmark the previous line

	 c

	Copy marked lines to the clipboard

	 Shift + c

	Clear marked lines

Display

	Keypress

	Command

	 ?

	View/leave builtin help

	 q

	Return to the previous view/quit

	 Shift + q

	Return to the previous view/quit while matching the top times of the two views

	 a

	Restore the view that was previously popped with ‘q/Q’

	 Shift + a

	Restore the view that was previously popped with ‘q/Q’ and match the top times of the views

	 Shift + p

	Switch to/from the pretty-printed view of the displayed log or text files

	 Shift + t

	Display elapsed time between lines

	 t

	Switch to/from the text file view

	 i

	Switch to/from the histogram view

	 Shift + i

	Switch to/from the histogram view

	 v

	Switch to/from the SQL result view

	 Shift + v

	Switch to/from the SQL result view and move to the corresponding in the
log_line column

	 p

	Toggle the display of the log parser results

	 Tab

	Cycle through colums to graph in the SQL result view

	 Ctrl + l

	Switch to lo-fi mode. The displayed log lines will be dumped to the
terminal without any decorations so they can be copied easily.

	 Ctrl + w

	Toggle word-wrap.

	 Ctrl + p

	Show/hide the data preview panel that may be opened when entering
commands or SQL queries.

	 Ctrl + f

	Toggle the enabled/disabled state of all filters in the current view.

	 x

	Toggle the hiding of log message fields. The hidden fields will be
replaced with three bullets and highlighted in yellow.

	 =

	Pause/unpause loading of new file data.

Session

	Keypress

	Command

	 Ctrl + R

	Reset current session.

Query

	Keypress

	Command

	 /

	Search for lines matching a regular expression

	 ;

	Execute an SQL query

	 :

	Execute an internal command, see Command Reference for more information

	 |

	Execute an lnav script located in a format directory.

	 Ctrl +]

	Abort the prompt

Command Reference

This reference covers the commands used to control lnav. Consult the
built-in help [https://github.com/tstack/lnav/blob/master/src/help.txt] in
lnav for a more detailed explanation of each command.

Note that almost all commands support TAB-completion for their arguments, so
if you are in doubt as to what to type for an argument, you can double tap the
TAB key to get suggestions.

Filtering

The set of log messages that are displayed in the log view can be controlled
with the following commands:

	filter-in <regex> - Only display log lines that match a regex.

	filter-out <regex> - Do not display log lines that match a regex.

	disable-filter <regex> - Disable the given filter.

	enable-filter <regex> - Enable the given filter.

	delete-filter <regex> - Delete the filter.

	set-min-log-level <level> - Only display log lines with the given log level
or higher.

	hide-lines-before <abs-time|rel-time> - Hide lines before the given time.

	hide-lines-after <abs-time|rel-time> - Hide lines after the given time.

	show-lines-before-and-after - Show lines that were hidden by the “hide-lines” commands.

Bookmarks

	mark - Bookmark the top line in the view.

	partition-name <name> - Partition the log file around the top line in the
log view and assign the given name. The top line and all that follow, up to
the start of the next partition, will be included in the partition. The name
of the partition for a log line is visible in the top status bar to the right
of the time stamp. The partition name for a log line can be retrieved via
the log_part field in any log table.

	comment <text> - Attach a comment to the top line in the log view and
bookmark that line.

	clear-comment - Clear the comment attached to the top line in the view.

	tag <tag1> [<tag2> … [<tagN>]] - Attach one or more tags to a log line.
A ‘#’ will automatically be prepended to the tag name if it is not already there.

	untag <tag1> [<tag2> … [<tagN>]] - Detach one or more tags from a log line.

	delete-tags <tag1> [<tag2> … [<tagN>]] - Detach the given tags from all log lines.

Navigation

	goto <line#|N%|abs-time|relative-time> - Go to the given line number, N
percent into the file, the given timestamp in the log view, or by the
relative time (e.g. ‘a minute ago’).

	relative-goto <line#|N%> - Move the current view up or down by the given
amount.

	next-mark error|warning|search|user|file|partition - Move to the next
bookmark of the given type in the current view.

	prev-mark error|warning|search|user|file|partition - Move to the previous
bookmark of the given type in the current view.

	prev-location - The previous location in the history.

	next-location - The next location in the history.

Time

	adjust-log-time <date|relative-time> - Change the timestamps for a log file.

	unix-time <secs-or-date> - Convert a unix-timestamp in seconds to a
human-readable form or vice-versa.

	current-time - Print the current time in human-readable form and as
a unix-timestamp.

Display

	help - Display the built-in help text.

	disable-word-wrap - Disable word wrapping in the log and text file views.

	enable-word-wrap - Enable word wrapping in the log and text file views.

	hide-fields <field-name> [<field-name2> … <field-nameN>] - Hide large log
message fields by replacing them with an ellipsis. You can quickly switching
between showing and hiding hidden fields using the ‘x’ hotkey.

	show-fields <field-name> [<field-name2> … <field-nameN>] - Show previously
hidden log message fields.

	highlight <regex> - Colorize text that matches the given regex.

	clear-highlight <regex> - Clear a previous highlight.

	spectrogram <numeric-field> - Generate a spectrogram for a numeric log
message field or SQL result column. The spectrogram view displays the range
of possible values of the field on the horizontal axis and time on the
vertical axis. The horizontal axis is split into buckets where each bucket
counts how many log messages contained the field with a value in that range.
The buckets are colored based on the count in the bucket: green means low,
yellow means medium, and red means high. The exact ranges for the colors is
computed automatically and displayed in the middle of the top line of the
view. The minimum and maximum values for the field are displayed in the
top left and right sides of the view, respectively.

	switch-to-view <name> - Switch to the given view name (e.g. log, text, …)

	toggle-view <name> - Toggle the display of the given view (e.g. log, text, …)

	zoom-to <zoom-level> - Set the zoom level for the histogram view.

	redraw - Redraw the window to correct any corruption.

	alt-msg <msg> - Set the message to be displayed on the bottom-right of the
screen. This message is typically used for help text.

SQL

	create-logline-table <table-name> - Create an SQL table using the top line
of the log view as a template. See the Extracting Data section for more information.

	delete-logline-table <table-name> - Delete a table created by create-logline-table.

	create-search-table <table-name> [regex] - Create an SQL table that
extracts information from logs using the provided regular expression or the
last search that was done. Any captures in the expression will be used as
columns in the SQL table. If the capture is named, that name will be used as
the column name, otherwise the column name will be of the form ‘col_N’.

	delete-search-table <table-name> - Delete a table that was created with create-search-table.

Output

	append-to <file> - Append any bookmarked lines in the current view to the
given file.

	write-to <file> - Overwrite the given file with any bookmarked lines in
the current view. Use ‘-‘ to write the lines to the terminal and ‘/dev/clipboard’
to write to the system clipboard.

	write-raw-to <file> - Overwrite the given file with all the lines in the
current view. Use ‘-‘ to write the lines to the terminal and ‘/dev/clipboard’
to write to the system clipboard.

	write-csv-to <file> - Write SQL query results to the given file in CSV format.
Use ‘-‘ to write the lines to the terminal and ‘/dev/clipboard’ to write to
the system clipboard.

	write-json-to <file> - Write SQL query results to the given file in JSON
format. Use ‘-‘ to write the lines to the terminal and ‘/dev/clipboard’
to write to the system clipboard..

	pipe-to <shell-cmd> - Pipe the bookmarked lines in the current view to a
shell command and open the output in lnav.

	pipe-line-to <shell-cmd> - Pipe the top line in the current view to a shell
command and open the output in lnav.

	redirect-to [path] - If a path is given, all output from commands, like
“:echo” and when writing to stdout (e.g. :write-to -), will be sent to the
given file. If no path is specified, the current redirect will be cleared
and output will be captured as it was before the redirect was done.

Miscellaneous

	echo [-n] <msg> - Display the given message in the command prompt. Useful
for scripts to display messages to the user. The ‘-n’ option leaves out the
new line at the end of the message.

	eval <cmd> - Evaluate the given command or SQL query after performing
environment variable substitution. The argument to eval must start with a
colon, semi-colon, or pipe character to signify whether the argument is a
command, SQL query, or a script to be executed, respectively.

	quit - Quit lnav. Alternatively, ‘:q’ can be used as an alias for ‘quit’.

Configuration

	config <option> - Get the current value of a configuration option.

	config <option> <value> - Set the value of a configuration option.

	reset-config <option> - Reset a configuration option to the default.

	save-config - Save the current configuration to ~/.lnav/config.json.

The following options are available:

	/ui/clock-format - Specifies the date-time format of the clock in the
top-left corner of the UI. The format conversion specifiers are the same as
in strftime(3).

	/ui/dim-text - Reduce the brightness of text. This setting can be useful
when running in an xterm where the white color is very bright.

	/ui/default-colors - Use default terminal background and foreground colors
instead of black and white for all text coloring. This setting can be useful
when transparent background or alternate color theme terminal is used.

Note

The following commands can be disabled by setting the LNAVSECURE
environment variable before executing the lnav binary:

	open

	pipe-to

	pipe-line-to

	write-*-to

This makes it easier to run lnav in restricted environments without the risk
of privilege escalation.

SQLite Extensions Reference

To make it easier to analyze log data from within lnav, there are several
built-in extensions that provide extra functions and collators beyond those
provided by SQLite [http://www.sqlite.org/lang_corefunc.html]. The majority
of the functions are from the
extensions-functions.c [http://www.sqlite.org/contrib] file available from
the sqlite.org [http://sqlite.org] web site.

Tip: You can include a SQLite database file on the command-line and use
lnav’s interface to perform queries. The database will be attached with
a name based on the database file name.

Commands

A SQL command is an internal macro implemented by lnav.

	.schema - Open the schema view. This view contains a dump of the schema
for the internal tables and any tables in attached databases.

Environment

Environment variables can be accessed in queries using the usual syntax of
“$VAR_NAME”. For example, to read the value of the “USER” variable, you can
write:

;SELECT $USER;

Math

Basic mathematical functions:

	cos(n)

	sin(n)

	tan(n)

	cot(n)

	cosh(n)

	sinh(n)

	coth(n)

	acos(n)

	asin(n)

	atan(r1,r2)

	atan2(r1,r2)

	exp(n)

	log(n)

	log10(n)

	power(x,y)

	sign(n) - Return one of 3 possibilities +1,0 or -1 when the argument is
respectively positive, 0 or negative.

	sqrt(n)

	square(n)

	ceil(n)

	floor(n)

	pi()

	degrees - Convert radians to degrees

	radians - Convert degrees to radians

Aggregate functions:

	stddev

	variance

	mode

	median

	lower_quartile

	upper_quartile

String

Additional string comparison and manipulation functions:

	difference(s1,s2) - Computes the number of different characters between the
soundex value fo 2 strings.

	replicate(s,n) - Given a string (s) in the first argument and an integer (n)
in the second returns the string that constains s contatenated n times.

	proper(s) - Ensures that the words in the given string have their first
letter capitalized and the following letters are lower case.

	charindex(s1,s2), charindex(s1,s2,n) - Given 2 input strings (s1,s2) and an
integer (n) searches from the nth character for the string s1. Returns the
position where the match occured. Characters are counted from 1. 0 is
returned when no match occurs.

	leftstr(s,n) - Given a string (s) and an integer (n) returns the n leftmost
(UTF-8) characters if the string has a length<=n or is NULL this function is
NOP.

	rightstr(s,n) - Given a string (s) and an integer (n) returns the n rightmost
(UTF-8) characters if the string has a length<=n or is NULL this function is
NOP

	reverse(s) - Given a string returns the same string but with the characters
in reverse order.

	padl(s,n) - Given an input string (s) and an integer (n) adds spaces at the
beginning of (s) until it has a length of n characters. When s has a length
>=n it’s a NOP. padl(NULL) = NULL

	padr(s,n) - Given an input string (s) and an integer (n) appends spaces at
the end of s until it has a length of n characters. When s has a length >=n
it’s a NOP. padr(NULL) = NULL

	padc(s,n) - Given an input string (s) and an integer (n) appends spaces at
the end of s and adds spaces at the begining of s until it has a length of n
characters. Tries to add has many characters at the left as at the right.
When s has a length >=n it’s a NOP. padc(NULL) = NULL

	strfilter(s1,s2) - Given 2 string (s1,s2) returns the string s1 with the
characters NOT in s2 removed assumes strings are UTF-8 encoded.

	regexp(re,s) - Return 1 if the regular expression ‘re’ matches the given
string.

	regexp_replace(str, re, repl) - Replace the portions of the given string
that match the regular expression with the replacement string. NOTE:
The arguments for the string and the regular expression in this function are
reversed from the plain regexp() function. This is to be somewhat compatible
with functions in other database implementations.

	startswith(s1,prefix) - Given a string and prefix, return 1 if the string
starts with the given prefix.

	endswith(s1,suffix) - Given a string and suffix, return 1 if the string ends
with the given suffix.

	regexp_match(re,str) - Match and extract values from a string using a regular
expression. The “re” argument should be a PCRE with captures. If there is
a single capture, that captured value will be directly returned. If there
is more than one capture, a JSON object will be returned with field names
matching the named capture groups or ‘col_N’ where ‘N’ is the index of the
capture. If the expression does not match the string, NULL is returned.

	extract(str) - Parse and extract values from a string using the same
algorithm as the logline table (see Extracting Data). The discovered
data is returned as a JSON-object that you can do further processing on.

	spooky_hash(str1, …) - Compute the hash value for the given arguments using
the “spooky” hash algorithm.

	group_spooky_hash(str1, …) - An aggregate version of the “spooky_hash()”
function.

File Paths

File path manipulation functions:

	basename(s) - Return the file name part of a path.

	dirname(s) - Return the directory part of a path.

	joinpath(s1,s2,…) - Return the arguments joined together into a path.

Networking

Network information functions:

	gethostbyname - Convert a host name into an IP address. The host name could
not be resolved, the input value will be returned.

	gethostbyaddr - Convert an IPv4/IPv6 address into a host name. If the
reverse lookup fails, the input value will be returned.

JSON

JSON functions:

	jget(json, json_ptr) - Get the value from the JSON-encoded string in
first argument that is referred to by the
JSON-Pointer [https://tools.ietf.org/html/rfc6901] in the second.

	json_group_object(key0, value0, … keyN, valueN) - An aggregate function
that creates a JSON-encoded object from the key value pairs given as
arguments.

	json_group_array(value0, … valueN) - An aggregate function that creates
a JSON-encoded array from the values given as arguments.

Time

Time functions:

	timeslice(t, s) - Given a time stamp (t) and a time slice (s), return a
timestamp for the bucket of time that the timestamp falls in. For example,
with the timestamp “2015-03-01 11:02:00’ and slice ‘5min’ the returned value
will be ‘2015-03-01 11:00:00’. This function can be useful when trying to
group together log messages into buckets.

Internal State

The following functions can be used to access lnav’s internal state:

	log_top_line() - Return the line number at the top of the log view.

	log_top_datetime() - Return the timestamp of the line at the top of the log
view.

Collators

	naturalcase - Compare strings “naturally” so that number values in the string
are compared based on their numeric value and not their character values.
For example, “foo10” would be considered greater than “foo2”.

	naturalnocase - The same as naturalcase, but case-insensitive.

	ipaddress - Compare IPv4/IPv6 addresses.

SQLite Tables Reference

In addition to the tables generated for each log format, lnav includes
the following tables:

	environ

	lnav_views

	all_logs

	http_status_codes

These extra tables provide useful information and can let you manipulate
lnav’s internal state. You can get a dump of the entire database schema
by executing the ‘.schema’ SQL command, like so:

;.schema

environ

The environ table gives you access to the lnav process’ environment
variables. You can SELECT, INSERT, and UPDATE environment variables, like
so:

;SELECT * FROM environ WHERE name = 'SHELL'
 name value
SHELL /bin/tcsh

;UPDATE environ SET value = '/bin/sh' WHERE name = 'SHELL'

Environment variables can be used to store simple values or pass values
from lnav’s SQL environment to lnav’s commands. For example, the
“open” command will do variable substitution, so you can insert a variable
named “FILENAME” and then open it in lnav by referencing it with
“$FILENAME”:

;INSERT INTO environ VALUES ('FILENAME', '/path/to/file')
:open $FILENAME

lnav_views

The lnav_views table allows you to SELECT and UPDATE information related
to lnav’s “views” (e.g. log, text, …). The following columns are
available in this table:

	name

	The name of the view.

	top

	The line number at the top of the view. This value can be UPDATEd to
move the view to the given line.

	left

	The left-most column number to display. This value can be UPDATEd to
move the view left or right.

	height

	The number of lines that are displayed on the screen.

	inner_height

	The number of lines of content being displayed.

	top_time

	The timestamp of the top line in the view or NULL if the view is
not time-based. This value can be UPDATEd to move the view to the given
time.

	paused

	Indicates if the view is paused and will not load new data.

	search

	The search string for this view. This value can be UPDATEd to
initiate a text search in this view.

lnav_view_stack

The lnav_view_stack table allows you to SELECT and DELETE from the stack of
lnav “views” (e.g. log, text, …). The following columns are available in
this table:

	name

	The name of the view.

lnav_view_filters

The lnav_view_filters table allows you to manipulate the filters in the
lnav views. The following columns are available in this table:

	view_name

	The name of the view.

	enabled

	Indicates whether this filter is enabled or disabled.

	type

	The type of filter, either ‘in’ or ‘out’.

	pattern

	The regular expression to filter on.

all_logs

The all_logs table lets you query the format derived from the lnav
log message parser that is used to automatically extract data, see
Extracting Data for more details.

http_status_codes

The http_status_codes table is a handy reference that can be used to turn
HTTP status codes into human-readable messages.

regexp_capture(<string>, <regex>)

The regexp_capture() table-valued function applies the regular expression
to the given string and returns detailed results for the captured portions of
the string.

Index

Configuration

 _images/lnav-ui.png
[19/Mar/2014:14:37:17 +0000] "PUT /features.html HTTP/1.1" 200 422671 "-* *-*
[19/Mar/2014:14:37:18 40006] “GET /index.htul HTTP/1.1 200 316902 *-* »-*
server[121]: Received packet from 192.0.2.55
server[123]: Received packet from 192.0.2.55
server[123]: Handling request efcf643-ac89-4125-069d-ec3203047a19
40000] "7 /index.htal HITP/1.0° 200 871988 *-* *-*
0 40000] “GET /index.html HTTP/L.0" 200 400613 °-" *-*
[19/Mar/2014:14:37:21 +0000] "GET /obj/1235?foo=bar HTTP/1.0" 200 841360 "-"
worker[1455]: Handling request Oefcf43-achd-4125-060d-ec320347a1d
worker[¢]: Successfully started helper
[19/Mar/2014:14:37:22 +0000] "FUT findex.htl HITP/1.0° 200 944322 *-* *
123 worker[!]: Received packet from 192.0.2.55
server[123]: Handling request efcf643-ac89-4125-069d-ec3203047a19
server[124]: Received packet from 192.0.2.55
worker[5145¢1: Handling request

server[121]; Handling request Oed645Sc-Oedf-4623-b3bc-576SceBLEZSF

bob@oxample. con [19/Mar/2014:14:37:25 +0008] "CET /imoges/compass. jpg HTTP/1.8" 200 4509 *-* *-*
[19/Mar/2014:14:37:25 +0006] “GET /obj/12357foosbar HTTP/1.1" 200 420858 *-* *
Vfeatures. htal HTTP/1.1
worker[51456]: Successfully started helper
server[123]: Received packet fron 192.0.2.55

[19/Mar/2014:14 +0000] "GET /index html HTTP/L
9 worker[51456]; Reading fron device: /dev/hda
2.55 - bobGexample, con [19/Mar/2014:14:37:30 +0000] "GET /ob/1234 HITP/1,0" 200 763899 *-" "-*
[19/Mar/2014:14:37:30 +000] *GET /0bj/12367searchedemokstart=1 HTTP/1,0" 200 1014909 °-* *-*
server[124]; Reading fron device: /dev/hda
[19/Mar/2014:14:37:31 +9000] "GET /imoges/compass. jpg HITP/1.0" 200 6044 *-* *-*
server[121]; Received packet from 192.0.2.55
/dev/bhda

Press /N to move forward/backward through search results

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to lnav’s documentation!

 		
 Introduction

 		
 Dependencies

 		
 Installation

 		
 Viewing Logs

 		
 User Interface

 		
 Command Line Interface

 		
 Log Formats

 		
 Defining a New Format

 		
 Modifying an Existing Format

 		
 Scripts

 		
 Installing Formats

 		
 Format Order When Scanning a File

 		
 Extracting Data

 		
 Recognized Data Types

 		
 Sessions

 		
 Hotkey Reference

 		
 Spatial Navigation

 		
 Chronological Navigation

 		
 Bookmarks

 		
 Display

 		
 Session

 		
 Query

 		
 Command Reference

 		
 Filtering

 		
 Bookmarks

 		
 Navigation

 		
 Time

 		
 Display

 		
 SQL

 		
 Output

 		
 Miscellaneous

 		
 Configuration

 		
 SQLite Extensions Reference

 		
 Commands

 		
 Environment

 		
 Math

 		
 String

 		
 File Paths

 		
 Networking

 		
 JSON

 		
 Time

 		
 Internal State

 		
 Collators

 		
 SQLite Tables Reference

 		
 environ

 		
 lnav_views

 		
 lnav_view_stack

 		
 lnav_view_filters

 		
 all_logs

 		
 http_status_codes

 		
 regexp_capture(<string>, <regex>)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

