

Welcome to Lithos’s documentation!

Contents:

	Configuration Overview

	Master Configuration

	Sandbox Config

	Process Config

	Container Configuration

	Metrics

	Volumes

	Tips and Conventions

	Frequently Asked Questions

	Lithos Changes By Release

Indices and tables

	Index

Configuration Overview

Lithos has 4 configs:

	/etc/lithos/master.yaml – global configuration for whole
lithos daemon. Empty config should work most of the time.
Master Configuration

	/etc/lithos/sandboxes/<NAME>.yaml – the allowed paths and other system
limits for every sandbox. You may think of a sandbox as a single
application.
Sandbox Config

	/etc/lithos/processes/<NAME>.yaml – you may think of it as a list of
pairs (image_name, num_of_processes_to_run). It’s only a tiny bit
longer than that.
Process Config

	<IMAGE>/config/<NAME>.yaml – configuration of process to run. It’s
where all the needed to run process are. It’s stored inside the image (so
updated with new image), and limited by limits in sandbox config.
Container Configuration

It may look too much. But note that in some real-world deployment I have first
two configs contain 8 lines (5 unique settings). The third is simple.
And the fourth has essential info you need to run process in like in any other
supervisor.

Master Configuration

Master configuration file is the one that usually at
/etc/lithos/master.yaml and defines small subset of global configuration
parameters. Minimal configuration is an empty file but it must exist
anyway. Here is the reference of the parameters along with the default values:

	
sandboxes-dir

	The directory for per-application configuration files which contain limits
of what application might use. If path is relative it’s relative to
the directory where configuration file is. Default is ./sandboxes.

	
processes-dir

	The directory for per-application configuration files which contain name of
image directory, instance number, etc., to run. If path is relative it’s
relative to the directory where configuration file is. Default is
./processes.

	
runtime-dir

	The directory where pid file of master process is stored and also
the base directory for state-dir and mount-dir. Path must be
absolute. It’s expected to be stored on tmpfs. Default
/run/lithos.

	
state-dir

	The directory where to keep container’s state dirs. If path is relative
it’s relative to runtime-dir. Default state
(i.e. /run/lithos/state). Path should be on tmpfs.

	
mount-dir

	An empty directory to use for mounting. If path is relative it’s relative
to runtime-dir. Default mnt.

	
devfs-dir

	The directory where /dev filesystem for container exists. If it’s
not /dev (which is not recommended), you should create the directory
with lithos_mkdev script. Default /var/lib/lithos/dev.

	
cgroup-name

	The name of the root cgroup for all lithos processes. Specify null (or
any other form of YAMLy null) to turn cgroups off completely.

	
cgroup-controllers

	List of cgroup controllers to initialize for each container. Note: the
empty list is treated as default. Default is
[name, cpu, cpuacct, memory, blkio]. If you have some controllers
joined together like cpu,cpuacct it’s ok.

Use cgroup-name: null to turn cgroup tracking off (not empty list
here). And use cgroup-controllers: [name] to only use cgroups for
naming processes but not for resource control.

Note

turning off cgroups means that resource limits does not work
completely. lithos will not try to enforce them by polling or some
other means

	
default-log-dir

	(default /var/log/lithos) The directory where master and each of the
application logs are created (unless are overrided by sandbox config).

	
config-log-dir

	(default /var/log/lithos/config) The directory where configurations of
the processes are stored. These are used by lithos_clean to find out
when it’s safe to clean directories. You may also reconstruct
processes configuration at any point in time using this directory.

Changed in version 0.10.2: Parameter can be null:

config-log-dir: null

In this case no configuration logging is done. This is mainly useful if
you track configurations and versions by some other means.

Note

This is enabled by default for backwards-compatibility reasons.
We consider resetting this value to null by default
in lithos 1.0 as this parameter is not as useful as were expected.

	
stdio-log-dir

	(default /var/log/lithos/stderr) The directory where stderr of the
processes will be forwarded. One file per sandbox is created.

These files are created by lithos and file descriptor is passed to the
application as both the stdout and stderr. Lithos does not parse, copy or
otherwise proxy the data. The operating system does all the work. This also
means lithos can’t rotate or do any other magical things with the log.

This should be used only to tackle the critical errors. Application should
send log to a syslog or write some rotating log files on it’s own, because
there is no good tools to groups lines of the stderr into solid log messages
that include tracebacks and other fancy stuff.

Good utilities to manage the files:

	logrotate in copytruncate mode

	rsyslog with file input plugin

This can be overridden in process by stdout-stderr-file.

Note

The path is reopened on process restart.
If restart-process-only is true then it’s only reopened when
configuration changes. This is good to know if you remove or rename
the file by hand.

	
log-file

	(default master.log) Master log file. Relative paths are treated from
default-log-dir.

	
log-level

	(default warn) Level of logging. Can be overriden on the command line.

	
syslog-facility

	(no default) Enables logging to syslog (with specified facility) instead of
file.

	
syslog-name

	(default lithos) Application name for master process in syslog. The
child processes are prefixed by this value. For example lithos-django
(where django is a sandbox name).

Sandbox Config

This config resides in /etc/lithos/sandboxes/NAME.yaml (by default).
Where NAME is the name of a sandbox.

The configuration file contains security and resource limits for the container.
Including:

	A directory where image resides

	Set of directories that are mounted inside the container (i.e. all writable
directories for the container, the /tmp…)

	ulimit settings

	cgroup limits

Reference

	
config-file

	The path for the processes config. In most cases
should be left unset. Default is null which is results into
/etc/lithos/processes/NAME.yaml with all other settings being defaults.

	
image-dir

	Directory where application images are. Every subdir of the image-dir
may be mounted as a root file system in the container. Required.

	
image-dir-levels

	(default 1) A number of directory components required for image name
in image-dir

	
log-file

	The file name where to put supervisor log of the container. Default is
/var/log/lithos/SANDBOX_NAME.yaml.

	
log-level

	(default warn). The logging level of the supervisor.

	
readonly-paths

	The mapping of virtual_directory: host_system_directory of folders which
are visible for the container in read-only mode. (Note currently if you
have submounts in the source directory, thay may be available as writeable).
See Volumes for more details.

	
writable-paths

	The mapping of virtual_directory: host_system_directory of folders which
are visible for the container in writable mode.
See Volumes for more details.

	
allow-users

	List of ranges of user ids which can be used by container. For containers
without user namespaces, it’s just a limit of the user-id setting.

Example:

allow-users: [1, 99, 1000-2000]

For containers which have uid maps enabled in sandbox this is a list of
users available after uid mapping applied. For example, the following
maps uid 100000 as root in namespace (e.g. for file permissions),
but doesn’t allow to start process as root (even if it’s 100000 ouside):

uid-map: [{outside: 100000, inside: 0, count: 65536}]
allow-users: [1-65535]

For containers which do have uid maps enabled in container config,
it limits all the user ids available to the namespace (i.e. for the
outside setting of the uid map).

	
default-user

	(no default) A user id used in the container if no user-id is specified
in container config. By default user-id is required.

Note: default-user value must be contained in the allow-users range

	
allow-groups

	List of ranges of group ids for the container.
Works similarly to allow-users.

	
default-group

	(default 0) A group id used in the container if no group-id
is specified in container config.

Note: default-group value must be contained in the allow-users range

	
allow-tcp-ports

	List of ranges of allowed TCP ports for container. This is currently not
enforced in any way except:

	Ports < 1024 are restricted by OS for non-root (but may be allowed here)

	It restricts bind-port setting in container config

Note

if you have overlapping TCP port for different sandboxes, only
single file descriptor will be used for each port. The config for
opening port will be used arbitrary from single config amonst all users,
which have obvious security implications.

Warning

tcp-ports bind at port in host namespace, i.e. it
effectively discards bridged-network for that port this is both
the feature and might be a pitfall. So most of the time you should avoid
non-empty allow-tcp-ports if using bridged-network.

	
additional-hosts

	Mapping of hostname: ip for names that will be added to /etc/hosts
file. This is occasinally used for cheap but static service discovery.

	
uid-map, gid-map

	The list of mapping for uids(gids) in the user namespace of the container.
If they are not specified the user namespace is not used. This setting
allows to run processes with uid zero without the risk of being
the root on host system.

Here is a example of maps:

uid-map:
- {inside: 0, outside: 1000, count: 1}
- {inside: 1, outside: 1, count: 1}
gid-map:
- {inside: 0, outside: 100, count: 1}

Note

Currently you may have uid-map either in a sandbox or in a
container config, not both.

	
used-images-list

	(optional) A text file that is used by lithos_clean to keep images
alive. It’s not used by any other means except lithos_clean utility.

Each line of the file should contain image name relative to the
image_dir.

It’s expected that the list is kept up by some orchestration system or
by deployment scripts or by any other tool meaningful for ops team.

This setting is only useful if auto-clean is true (default)

	
auto-clean

	(default true) Clean images of this sandbox when running
lithos_clean. This is a subject of the following caveats:

	Lithos clean is not run by lithos automatically, you ought to run it
using cron tab

	If same image-dir is used for multiple sandboxes it will be cleaned
if at least one of them has non-falsy auto-clean.

	
resolv-conf

	(default /etc/resolv.conf) default place to copy resolv.conf from
for containers.

Note: Container itself can override it’s own resolv.conf file, but can’t
read original /etc/resolv.conf if this setting is changed.

	
hosts-file

	(default /etc/hosts) default place to copy hosts from
for containers.

Note: Container itself can override it’s own hosts file, but can’t
read original /etc/hosts if this setting is changed.

	
bridged-network

	(default is absent) a network bridge configuration for all the cotainers in
the bridge

Example:

bridged-network:
 bridge: br0
 network: 10.0.0.0/24
 default_gateway: 10.0.0.1
 after-setup-command: [/usr/bin/arping, -U, -c1, '@{container_ip}']

Note

when bridged network is active your Process Config should
contain a list of ip addresses one for each container.

Note

this setting does not affect tcp-ports. So usually you should
keep allow-tcp-ports setting empty when using bridged network.

Options:

	
after-setup-command

	Command to run after setting up container namespace but before running
actual container. The example shown above sends unsolicited arp packet
to notify router and other machines on the network that MAC address
corresponding to container’s IP is changed.

Command must have absolute path, and has almost empty environment, so
don’t assume PATH is there if you’re writing a script. Command runs
in container’s network namespace but with all other namespaces in host
system (in particular in host filesystem and with permissions of root
in host system)

Replacement variables that work in command-line:

	@{container_ip} – replaced with IP address of a container being
set up

Few examples:

	[/usr/bin/arping, -U, -c1, '@{container_ip}'] – default
in v0.17.x. This notifies other peers that MAC address for
this IP changed.

	[/usr/bin/arping, -c1, '10.0.0.1'] – other way to do that, that
often does the same as in (1) a side-effect
(where 10.0.0.1 is a default gateway)

	[/usr/bin/ping, -c1, '10.0.0.1'] – doing same as (2) but using
ICMP instead of ARP directly

Most of the time containers should work with empty
after-setup-command, but because container gets new MAC address each
time it starts, there might be a small delay (~ 5 sec) after container’s
start where packets going to that IP are lost (so it appears that host
is unavailable).

	
secrets-private-key

	(default is absent) Use the specified private key(s) to decode secrets
in container’s secret-environ setting.

The key in this file is openssh-compatible ed25519 private key
(RSA keys are not supported). File can contain multiple keys
(concatenated), if secret matches any of them it will be decoded.

To create a key use normal ssh-keygen and leave the password empty
(password-protected keys aren’t supported):

ssh-keygen -t ed25519 -t /etc/lithos/keys/secret.key

Note: the key must be owned by root with permissions of 0600 (default for
ssh-keygen).

	
secrets-namespaces

	(default is [“”]) allow only secrets with listed namespaces.
Useful only if secrets-private-key is set.

For example:

secrets-namespaces:
- project1.web
- project1.celery

The idea is you might want to use single secret private key for a whole
cluster. But diferent services having different “namespaces”. This means
you can use single public key for encyption and specify different
namespace for each service. With this setup user can’t just copy a
key from one service to another if that another service isn’t authorized
to read the namespace using secrets-namespaces.

To encrypt secret for a specific namespace use:

lithos_crypt encrypt -k key.pub -d "secret" -n "project1.web"

By default both lithos_crypt and secrets-namespaces specify
empty string as a namespace. This is good enough if you don’t have
multiple teams sharing the same cluster.

Currently namespaces are limited to a regexp ^[a-zA-Z0-9_.-]*$

See Encrypted Variables for more info.

Process Config

This config resides in /etc/lithos/processes/NAME.yaml (by default).
Where NAME is the name of a sandbox.

It mainly contains three things:

	image the process is run from

	config file name inside the image that specifies command-line and other
process execution parameters

	number instances of the process to run

For example:

django:
 image: django.v3.5.7
 config: /config/worker_process.yaml
 instances: 3

redis:
 image: redix.v1
 config: /config/redis.yaml
 instances: 1

This will start three python django worker processes and one redis.

Hint

Usually this config is generated by some tool like ansible [http://www.ansible.com/] or
confd [https://github.com/kelseyhightower/confd].

There is also a way to create ad-hoc commands. For example:

manage:
 kind: Command
 image: django.v3.5.7
 config: /config/manage_py.yaml

This will allow to start a manage.py command with:

$ lithos_cmd SANDBOX_NAME manage syncdb

This runs command in the same sandbox like the worker process itself but
the command is actually attached to current shell. The commands may be freely
mixed with Daemon items (which is default kind) in same config. The
only limitation is that names must not be duplicated

The Command is occasionally useful, but should be used with care. To start
a command you need root privileges on host system, so it’s only useful for
SysOp tasks or may be for cron tasks but not for normal operation of
application.

Options

	
instances

	Number of instances to run

	
image

	Identifier of the image to run container from

	
config

	Configuration file name (absolute name in container) to run

	
ip-addresses

	A list of ip addresses if bridged-network is enforced in sandbox.
Note the number of items in this list must match instances value.

	
variables

	A mapping of variable: value for variables that can be used in process
config.

	
extra-secrets-namespaces

	Additional secrets namespaces allowed for this specific project. In
addition to secrets-namespaces. See Encrypted Variables for
more info.

Variables

You can also add variables for specific config:

For example:

django:
 image: django.v3.5.7
 config: /config/worker_process.yaml
 variables:
 tcp_port: 10001
 instances: 3

Only variables that are declared in container config can be substituted. Extra variables are ignored. If
there is a declared variable but it’s not present in process config, it doesn’t
pass configuration check.

Container Configuration

Container configuration is a YAML file which is usually put into
/config/<service_name>.yaml into container image itself.

Note

Curently container configuration may be put into any folder inside
the image, but we may fix this folder later. The arbitrary path for
container configuration may be a security vulnerability.

The somewhat minimal configuration is looks like following:

kind: Daemon
user-id: 1
volumes:
 /tmp: !Tmpfs { size: 100m }
executable: /bin/sleep
arguments: [60]

Variables

Container can declare some things, that can be changed in specific
instantiation of the service, for example:

variables:
 tcp_port: !TcpPort
kind: Daemon
user-id: 1
volumes:
 /tmp: !Tmpfs { size: 100m }
executable: /bin/some_program
arguments:
- "--listen=localhost:@{tcp_port}"

The variables key declares variable names and types. Value for these
variables can be provided in variables in Process Config.

There are the following types of variables:

	TcpPort

	Allows a number between 1-65535 and ensures that the number matches
port range allowed in sandbox (see allow-tcp-ports)

Changed in version 0.17.4: Added activation parameter as a shortcut to support systemd
activation protocol. I.e. the following (showing two ports
for more comprehensive example):

variables:
 port1: !TcpPort { activation: systemd }
 port2: !TcpPort { activation: systemd }

Means to add something like this:

 variables:
 port1: !TcpPort
 port2: !TcpPort
 tcp-ports:
 "@{port1}":
 fd: 3
 "@{port2}":
 fd: 4
 environ:
 LISTEN_FDS: 1
 LISTEN_FDNAMES: "port1:port2"
 LISTEN_PID: "@{lithos:pid}"

This works for any number of sockets. And it requires that
``LISTEN_FDS`, ``LISTEN_FDNAMES``, ``LISTEN_PID`` were absent in the
``environ`` as written in the file. Also it doesn't allow fine-grained
control over parameters of the socket and file descriptor numbers.
Use full form if you need specific options.

	Choice

	Allows a value from a fixed set of choices
(example: !Choice ["high-priority", "low-priority"])

	Name

	Allows a value that matches regex ^[0-9a-zA-Z_-]+$. Useful for passing
names of things into a script without having a chance to keep value
unescaped when passing somewhere within a script or using it as a filename.

New in version 0.10.3.

	DottedName

	Allows arbitrary DNS-like name. It’s defined as dot-separated name with
only alphanumeric and underscores, where no component could start or end
with a dash and no consequent dots allowed.

New in version 0.17.4.

All entries of @{variable_name} are substituted in the following fields:

	arguments

	The values of environ (not in the keys yet)

	The key in the tcp-ports (i.e. port number)

The expansion in any other place does not work yet, but may be implemented
in the future. Only declared variables can be substituted. Trying to
substitute undeclared variables or non-existing built-in variable results
into configuration syntax error.

There are the number of builtin variables that start with lithos::

	lithos:name

	Name of the process, same as inserted in LITHOS_NAME environment
variable

	lithos:config_filename

	Full path of this configuration file as visible from within container

	lithos:pid

	Pid of the process as visible inside of the container. Note: this variable
can only be in environment and can only be full value of the variable.
I.e. PID: “@{lithos:pid}” is fine,
but PID: “pid is @{lithos:pid}” is not allowed. (In most cases
this variable is exaclty 2, this is expected but might not be always
true in some cases).

More built-in variables may be added in the future. Built-in variables
doesn’t have to be declared.

Reference

	
kind

	One of Daemon (default), Command or CommandOrDaemon.

The Daemon is long-running process that is monitored by supervisor.

The Command things are just one-off tasks, for example to initialize
local file system data, or to check health of daemon process. The
Command things are run by lithos_cmd utility

The CommandOrDaemon may be used in both ways, based on how it was
declared in Process Config. In the command
itself you can distinguish how it is run by /cmd. in LITHOS_NAME
or cgroup name or better you can pass
variable to a specific command and/or daemon.

New in version 0.10.3: ContainerOrDaemon mode

	
user-id

	The numeric user indentifier for the process. It must be one of the allowed
values in lithos configuration. Usually value of 0 is not allowed.

	
group-id

	The numeric group indentifier for the process. It must be one of the
allowed values in lithos configuration. Usually value of 0 is not
allowed.

	
memory-limit

	The memory limit for process and it’s children. This is enforced by
cgroups, so this needs memory cgroup to be enabled (otherwise its no-op).
See cgroup-controllers for more info. Default: nolimit.

You can use ki, Mi and Gi units for memory accounting.
See integer-units [http://rust-quire.readthedocs.io/en/latest/user.html#units].

Changed in version 0.14.0: Previously it only set memory.limit_in_bytes but now it also sets
memory.memsw.limit_in_bytes if the latter exists (otherwise skipping
silently). This helps to kill processes earlier instead of swapping out
to disk.

	
cpu-shares

	The number of CPU shares for the process. Default is 1024 which means
all processes get equal share. You may split them to different values
like 768 for one process and 256 for another one.

This is enforced by cgroups, so this needs cpu cgroup to be enabled
(otherwise its no-op). See cgroup-controllers for more info.

	
fileno-limit

	The limit on file descriptors for process. Default 1024.

	
restart-timeout

	The minimum time to wait between subsequent restarts of failed processes
in seconds. This is to ensure that it doesn’t boggles down CPU. Default
is 1 second. It’s enough so that lithos itself do not hang. But
it should be bigger for heavy-weight processes. Note: this is time between
restarts, i.e. if process were running more than this number of seconds
it will be restarted immediately.

	
kill-timeout

	(default 5 seconds) The time to wait for application to die. If it is
not dead by this number of seconds we kill it with KILL.

You should not rely on this timeout to be precise for multiple reasons:

	Unidentified children are killed with a default timeout (5 sec).
This includes children which are being killed when their configuration
is removed.

	When lithos is restarted (i.e. to reload a configuration) during
the timeout, the timeout is reset. I.e. the process may hang more than
this time.

	
executable

	The path to executable to run. Only absolute paths are allowed.

	
arguments

	The list of arguments for the command. Except argument zero.

	
environ

	The mapping of values that are set for process. You must set all needed
environment variables here. The only variable that is propagated by
default is TERM. Also few special LITHOS_ variables may be set.
This means you must set all the basic LANG, HOME and so on
explicitly. This is to ensure that your environment is always the same
regardless of where you run process.

	
secret-environ

	Similarlty to environ but contains encrypted environment variables.
For example:

secret-environ:
 DB_PASSWORD: v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc

Note: if environment variable is both in environ and secret-environ
which one overrides is not specified for now.

You can encrypt variables using lithos_crypt:

lithos_crypt encrypt -k key.pub -d "secret" -n "some.namespace"

You only need public key for encryption. So the idea is that public key
is published somewhere and anyone, even users having to access to
server/private key can add a secret.

The -n / --namespace parameter must match one of
the secrets-namespaces defined for project’s sandbox.

Usually there is only one private key for every deployment (cluster), and
a single namespace per project. But in some cases you might need single
lithos config for multiple destinations or just want to rotate private key
smoothly. So you can put secret(s) encoded for multiple keys and/or
namespaces:

secret-environ:
 DB_PASSWORD:
 - v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE
 - v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==
 - v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE

Note: technically you can encrypt different secrets here, we can’t enforce
that, but it’s very discouraged.

The underlying encyrption is curve25519xsalsa20poly1305 which is compatible
with libnacl and libsodium.

See Encrypted Variables for more info.

This option conflicts with secret-environ-file.

	
secret-environ-file

	Path to the file where to read secret environ from. Instead of including
secret-environ in the container config itself you can use a separate
file where data is contained. This is useful to keep single set of secrets
shared between multiple containers.

The target file is also yaml, but it containers just mapping of names of
the secrets to their values (or lists). For example:

PASSWD1: v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc
PASSWD2:
- v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE
- v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==

Absolute paths here interpreted relative to the container root and relative
paths are interpreted relative to the container config itself. Note: we
currently support reading file from container’s filesystem only, whether
reading from a volume works or not is unspecified at the moment.

This option conflicts with secret-environ.

	
workdir

	The working directory for target process. Default is /. Working
directory must be absolute.

	
resolv-conf

	
Parameters of the /etc/resolv.conf file to generate. Default
configuration is:

resolv-conf:
 mount: nil # which basically means "auto"
 copy-from-host: true

Which means resolv.conf from host where lithos is running is copied
to the “state” directory of the container. Then if /etc/resolv.conf
in container is a file (and not a symlink) resolv conf is mounted over
the /etc/resolv.conf.

More options are expected to be added later.

Changed in version 0.15.0: mount option added. Previously to make use of resolv.conf you
should symlink ln -s /state/resolv.conf /etc/resolv.conf in the
container’s image.

Another change is that copy-from-host copies file that is specified
in sandbox’s resolv.conf which default to /etc/resolv.conf but
may be different.

Parameters:

	copy-from-host

	(default true) Copy resolv.conf file from host machine.

Note: even if copy-from-host is true, additional-hosts
from sandbox config work, which may lead to duplicate or conflicting
entries if some names are specified in both places.

Changed in version v0.11.0: The parameter used to be false by default, because we were
thinking about better (perceived) isolation.

	mount

	(default nil, which means “auto”) Mount copied resolv.conf file
over /etc/resolf.conf.

nil enables mounting if /etc/resolv.conf is present
in the container and is a file (not a symlink) and also
copy-from-host is true

New in version 0.15.0.

	
hosts-file

	
Parameters of the /etc/hosts file to generate. Default
configuration is:

hosts-file:
 mount: nil # which basically means "auto"
 localhost: true
 public-hostname: true
 copy-from-host: false

Changed in version 0.15.0: mount option added. Previously to make use of resolv.conf you
should symlink ln -s /state/resolv.conf /etc/resolv.conf in the
container’s image.

Another change is that copy-from-host copies file that is specified
in sandbox’s resolv.conf which default to /etc/resolv.conf but
may be different.

Parameters:

	copy-from-host

	(default true) Copy hosts file from host machine.

Note: even if copy-from-host is true, additional-hosts
from sandbox config work, which may lead to duplicate or conflicting
entries if some names are specified in both places.

Changed in version v0.11.0: The parameter used to be false by default, because we were
thinking about better (perceived) isolation. And also because
hostname in Ubuntu doesn’t resolve to real IP of the host. But we
find those occassions where it matters to be quite rare in practice
and using hosts-file as well as resolv.conf from the host
system as the most expected and intuitive behavior.

	mount

	(default nil, which means “auto”) Mount produced hosts file over
/etc/hosts.

nil enables mounting if /etc/hosts is present in the container
and is a file (not a symlink).

Value of true fails if /etc/hosts is not a file. Value of
false leaves /etc/hosts intact.

New in version 0.15.0.

	localhost

	(default is true when copy-from-host is false)
A boolean which defines whether to add
127.0.0.1 localhost record to hosts

	public-hostname

	(default is true when copy-from-host is false)
Add to hosts file the result of gethostname system call
along with the ip address that name resolves into.

	
uid-map, gid-map

	The list of mapping for uids(gids) in the user namespace of the container.
If they are not specified the user namespace is not used. This setting
allows to run processes with uid zero without the risk of being
the root on host system.

Here is a example of maps:

uid-map:
- {inside: 0, outside: 1000, count: 1}
- {inside: 1, outside: 1, count: 1}
gid-map:
- {inside: 0, outside: 100, count: 1}

Note

Currently you may have uid-map either in a sandbox or in a
container config, not both.

	
stdout-stderr-file

	This redirects both stdout and stderr to a file. The path is opened inside
the container. So must reside on one of the mounted writeable
Volumes. Probably you want Persistent volume.
While it can be on Tmpfs or Statedir the applicability
of such thing is very limited.

Usually log is put into the directory specified by stdio-log-dir.

	
interactive

	(default false) Useful only for containers of kind Command. If
true lithos_cmd doesn’t clobber stdin and doesn’t redirect stdout and
stderr to a log file, effectively allowing command to be used for
interactive commands or as a part of pipeline.

Note

for certain use cases, like pipelines it might be better to use
fifo’s (see man mkfifo) and a Daemon instead of this one
because daemons may be restarted on death or for software upgrade,
while Command is not supervised by lithos.

New in version 0.6.3.

Changed in version ≥0.5: Commands were always interactive

	
restart-process-only

	(default false) If true when restarting process (i.e. in case
process died or was killed), lithos restarts just the failed process.
This means container will not be recreated, volumes will not be remounted,
tmpfs will not be cleaned and some daemon processes may leave running.

By default lithos_knot which is pid 1 in the container exits when
process dies. Which means all other processes will die on KILL signal,
and container will be removed and created again. It’s a little bit slower
but safer default. This leaves no hanging daemons, orphan files in state
dir and tmpfs garbage.

	
volumes

	The mapping of mountpoint to volume definition. See Volumes for more
info

	
tcp-ports

	Binds address and provides file descriptor to the child process. All the
children receive dup of the same file descriptor,
so may all do accept() simultaneously. The configuration looks like:

tcp-ports:
 7777:
 fd: 3
 host: 0.0.0.0
 listen-backlog: 128
 reuse-addr: true
 reuse-port: false

All the fields except fd are optional.

Programs may require to pass listening file descriptor number by some
means (usually environment). For example to run nginx with port bound
(so you don’t need to start it as root) you need:

tcp-ports:
 80:
 fd: 3
 set-non-block: true
environ:
 NGINX: "3;"

To run gunicorn you may want:

tcp-ports:
 80:
 fd: 3
environ:
 GUNICORN_FD: "3"

More examples are in Handing TCP Ports

Parameters:

	key

	TCP port number.

Warning

	The paramters (except fd) do not change after socket is
bound even if configuration change

	You can’t bind same port with different hostnames in a
single process (previously there was a global limit for the
single port for whole lithos master, currently this is limited
just because tcp-ports is a mapping)

Port parameter should be unique amongst all containers. But sharing
port works because it is useful if you are doing smooth software
upgrade (i.e. you have few old processes running and few new processes
running both sharing same port/file-descriptor). Running them on single
port is not the best practices for smooth software upgrade but that
topic if out of scope of this documentation.

	fd

	Required. File descriptor number

	host

	(default is 0.0.0.0 meaning all addresses) Host to bind to. It must
be IP address, hostname is not supported.

	listen-backlog

	(default 128) the value to pass to the listen() system call. The
value is capped by net.core.somaxconn

	reuse-addr

	(default true) Sets SO_REUSEADDR socket option

	reuse-port

	(default false) If set to true this changes behavior of the
lithos with respect of the socket. In default case lithos binds socket
as quick as possible and passes to each child on start. When this set
to true, lithos creates a separate socket and calls bind for each
process start. This has two consequences:

	Socket is not bound when no processes started (i.e. they are failing)

	Each process gets separate in-kernel queue of connections to accept

This should be set to true only on very high performant servers that
experience assymetric workload in default case.

	set-non-block

	(default false) Sets socket into non-blocking mode. This is usually
done by an application itself but some of them (especially ones, that
don’t expect socket to be created by an external utility, e.g. nginx)
don’t do it themselves.

	external

	(default false) If set to true listen on the port in the
external network (host network of the system not bridged network).
This is only effective if bridged-network is enabled
for container.

Changed in version 0.17.0: Previously we only allowed external ports to be declared in lithos
config. It was expected that container in bridged network can
listen port itself. But it turned out file descriptors are still
convenient for some use-cases even inside a bridge.

	
metadata

	(optional) Allows to add arbitrary metadata to lithos configuration file.
Lithos does not use and does not validate this data in any way (except that
it must be a valid YAML). The metadata can be used by other tools that
inspect lithos configs and extract data from it. In particular, we use
metadata for our deployment tools (to keep configuration files
more consolidated instead of keeping then in small fragments).

	
normal-exit-codes

	(optional) A list of exit codes which are considered normal for process
death. This currently only improves failures metric.
See Determining Failure.

Note: by default even 0 exit code is considered an error for daemons,
and for commands (lithos_cmd) 0 is considered successful.

This setting is intended for daemons which may voluntarily exit for some
reason (soft memory limit, version upgrade, configuration reload).

It’s not recommended to add 0 or 1 into the list, as some commands
threat them pretty arbitrarily. For example 0 is exit code of most
utilities running –help so this mistake will not be detected. And 1
is used for arbitrary crashes in scripting languages. So the good idea
is to define some specific code in range of 8..120 to define successful
exit.

Metrics

Lithos submits metrics via a cantal-compatible protocol [http://cantal.readthedocs.io/en/latest/mmap.html].

All metrics usually belong to lithos’s cgroup, so for example in graphite
you can find them under cantal.<cluster-name>.<hostname>.lithos.groups.*.
Or you cand find them without this prefix in
http://hostname:22682/local/process_metrics without a prefix.

In the following description we skip the common prefix and only show metric
names.

Metrics of lithos master process:

	master.restarts (counter) amount of restarts of a master process.
Usually restart equals to configuration reload via lithos_switch or any
other way.

	master.sandboxes (gauge) number of sandboxes configured

	master.containers (gauge) number of containers (processes) conigured

	master.queue (gauge) length of the internal queue, the queue consists of
processes to run and hanging processes to kill

Per-process metrics:

	processes.<sandbox_name>.<process_name>.started – (counter) number of
times process have been started

	processes.<sandbox_name>.<process_name>.deaths – (counter) number of
times process have exited for any reason

	processes.<sandbox_name>.<process_name>.failures – (counter) number of
times process have exited for failure reason, for whatever reason lithos
thinks it was failure. See Determining Failure

	processes.<sandbox_name>.<process_name>.running – (gauge) number of
procesess that are currently running (was started but not yet found to be
exited)

Global metrics for all sandboxes and containers:

	containers.started – (counter) same as for processes.* but for all
containers

	containers.deaths – (counter) see above

	containers.failures – (counter) see above

	containers.running – (gauge) see above

	containers.unknown – (gauge) number of child processes of lithos that
are found to be running but do not belong to any of the process groups known
to lithos (they are being killed, and they are probably from deleted configs)

Determining Failure

Currently there are two kinds of process death that are considered non-failures:

	Processes that had been sent SIGTERM signal to (with any exit status)
or ones dead on SIGTERM signal are considered non-failed.

	Processes exited with one of the exit codes specified in
normal-exit-codes

Volumes

Volumes in lithos are just some kind of mount-points. The mount points are not
created by lithos itself. So they must exist either in original image. Or
on respective volume (if mount point is inside a volume).

There are the following kinds of volumes:

	
Readonly

	Example: !Readonly "/path/to/dir"

A read-only bind mount for some dir. The directory is mounted with
ro,nosuid,noexec,nodev

	
Persistent

	Example: !Persistent { path: /path/to/dir, mkdir: false, mode: 0o700, user: 0, group: 0 }

A writeable bind mount. The directory is mounted with
rw,nosuid,noexec,nodev. If you need directory to be created set
mkdir to true. You also probably need to customize either the user
(to the one running command e.g. same as user-id of the container) or
the mode (to something like 0o1777, i.e. sticky writable by anyone).

	
Statedir

	Example: !Statedir { path: /, mode: 0o700, user: 0, group: 0 }

Mount subdir of the container’s own state directory. This directory is
used to store generated resolv.conf and hosts files as well as for
other kinds of small state which is dropped when container dies. If you
mount something other than / you should custimize mode or an owner
similarly to !Persistent volumes (except that you can’t create statedir
subdirectory by hand because statedir is created for each process at start)

	
Tmpfs

	Example: !Tmpfs { size: 100Mi, mode: 0o766 }

The tmpfs mount point. Currently only size and mode options
supported. Note that syntax of size and mode is generic syntax for
numbers for our configuration library, not the syntax supported by kernel.

Tips and Conventions

This documents describes how to prepare images to run by lithos. You don’t have
to obey all the rules. And you are free to create your own rules within the
organization. But hopefully this will help you a lot when you’re confused.

Contents:

	Handing TCP Ports

	Deploying Vagga Containers

	Storing Secrets

Handing TCP Ports

There are couple of reasons you want lithos to open tcp port on behalf
of your application:

	Running multiple instances of the application, each sharing the same port

	Smooth upgrade of you app, where some of processes are running old version
of software and some run new one

	Grow and shrink number of processes without any application code to support
that

	Using port < 1024 and not starting process as root

	Each process is in separate cgroup, so monitoring tools can have
fine-grained metrics over them

Note

While you could use SO_REUSE_PORT socket option for solving #1 it’s not
universally available option.

Forking inside the application doesn’t work as well as running each
process by lithos because in the former case your memory limits apply
to all the processes rather than being fine-grained.

Following sections describe how to configure various software stacks and
frameworks to use tcp-ports opened by lithos.

It’s possible to run any software that supports systemd socket activation [http://0pointer.de/blog/projects/socket-activation.html]
with tcp-ports of lithos. With the config similar to this:

environ:
 LISTEN_FDS: 1 # application receives single file descriptor
 # ... more env vars ...
tcp-ports:
 8080: # port number
 fd: 3 # SD_LISTEN_FDS_START, first fd number systemd passes
 host: 0.0.0.0
 listen-backlog: 128 # application may change this on its own
 reuse-addr: true
... other process settings ...

Python3 + Asyncio

For development purposes you probably have the code like this:

async def init(app):
 ...
 handler = app.make_handler()
 srv = await loop.create_server(handler, host, port)

To use tcp-ports you should check environment variable and pass socket
if that exists:

import os
import socket

async def init(app):
 ...
 handler = app.make_handler()
 if os.environ.get("LISTEN_FDS") == "1":
 srv = await loop.create_server(handler,
 sock=socket.fromfd(3, socket.AF_INET, socket.SOCK_STREAM))
 else:
 srv = await loop.create_server(handler, host, port)

This assumes you are configured environ and tcp-ports as
described above.

Python + Werkzeug (Flask)

Werkzeug supports the functionality out of the box, just put configure the
environment:

environ:
 WERKZEUG_SERVER_FD: 3
 # ... more env vars ...
tcp-ports:
 8080: # port number
 fd: 3 # this corresponds to WERKZEUG_SERVER_FD
 host: 0.0.0.0
 listen-backlog: 128 # default in werkzeug
 reuse-addr: true
... other process settings ...

Or you can pass fd=3 to werkzeug.serving.BaseWSGIServer.

Another hint: do not use processes != 1. Better use lithos’s
instances to control the number of processes.

Python + Twisted

Old code that looks like:

reactor.listenTCP(PORT, factory)

You need to change into something like this:

if os.environ.get("LISTEN_FD") == "1":
 import socket
 sock = socket.fromfd(3, socket.AF_INET, socket.SOCK_STREAM)
 sock.set_blocking(False)
 reactor.adoptStreamPort(sock.fileno(), AF_INET, factory)
 sock.close()
 os.close(3)
else:
 reactor.listenTCP(PORT, factory)

Golang + net/http

Previous code like this:

import "net/http"

srv := &http.Server{ .. }
if err := srv.ListenAndServe(); err != nil {
 log.Fatalf("Error listening")
}

You should wrap into something like this:

import "os"
import "net"
import "net/http"

srv := &http.Server{ .. }
if os.Getenv("LISTEN_FDS") == "1" {
 listener, err := net.FileListener(os.NewFile(3, "fd 3"))
 if err != nil {
 log.Fatalf("Can't open fd 3")
 }
 if err := srv.Serve(listener); err != nil {
 log.Fatalf("Error listening on fd 3")
 }
} else {
 if err := srv.ListenAndServe(); err != nil {
 log.Fatalf("Error listening")
 }
}

Node.js with Express Framework

Normal way to run express:

let port = 3000
app.listen(port, function() {
 console.log('server is listening on', this.address().port);
})

Turns into the following code:

let port = 3000;
if (process.env.LISTEN_FDS && parseInt(process.env.LISTEN_FDS, 10) === 1) {
 port = {fd:3};
}
app.listen(port, function() {
 console.log('server is listening on', this.address().port);
})

Deploying Vagga Containers

Vagga [http://vagga.readthedocs.io/en/latest/] is a common way to develop applications for later deployment using
lithos. Also vagga is a common way to prepare a container image for use with
lithos.

Usually vagga [http://vagga.readthedocs.io/en/latest/] does it’s best to make containers as close to production as
possible. Still vagga tries to make good trade-off to make it’s easier to
use for development, so there are few small quircks that you may or may not
notice when deploying.

Here is a boring list, later sections describe some things in more detail:

	Unsurprisingly /work directory is absent in production container.
Usually this means three things:

	Your sources must be copied/installed into container (e.g. using Copy [http://vagga.readthedocs.io/en/latest/build_steps.html?highlight=Copy#step-Copy])

	There is no current working directory, unless you specify it explicitly
current directory is root /

	You can’t write into working directory or /work/somewhere

	All directories are read-only by default. Basic consequences are:

	There is no writable /tmp unless you specify one. This also means
there is no default for temporary dir, you have to chose whether this
is an in-memory Tmpfs or on-disk Persistent.

	There is no /dev/shm by default. This is just another tmpfs
volume in every system nowadays, so just measure how much you need and
mount a Tmpfs. Be aware that each container even on same
machine get’s it’s own instance.

	We can’t even overwrite /etc/resolv.conf and /etc/hosts, see
below.

	There are few environment variables that vagga sets in container by default:

	TERM – is propagated from external environment. For daemons it
should never matter. For interactive commands it may matter.

	PATH – in vagga is set to hard-coded value. There is no default
value in lithos. If your program runs any binaries (and usually lots of
them do, even if you don’t expect), you want to set PATH.

	Various *_proxy variables are propagated. They are almost never
useful for daemons. But are written here for completeness.

	In vagga we don’t update /etc/resolv.conf and /etc/hosts, but in
lithos we have such mechanism. The mechanism is following:

	In container you make the symlinks
/etc/resolv.conf -> /state/resolv.conf,
/etc/hosts -> /state/hosts

	The /state directory is mounted as Statedir

	Lithos automatically puts resolv.conf and hosts into statedir
when container is created (respecting resolv-conf
and hosts-file)

	Then files can be updated by updating files
in /var/run/lithos/state/<sandbox>/<process>/

	Because by default neither vagga nor lithos have network isolation, some
things that are accessible in the dev system may not be accessible in the
server system. This includes both, services on localhost as well as
in abstract unix socket namespace. Known examples are:

	Dbus: for example if DBUS_SESSION_BUS_ADDRESS starts with
unix:abstract=

	Xorg: X Window System, the thing you configure with DISPLAY

	nscd: name service cache daemon (this thing may resolve DNS names even
if TCP/IP network is absent for your container)

	systemd-resolved: listens at 127.0.0.53:53 as well as on dbus

Storing Secrets

There are currently two ways to provide “secrets” for containers:

	Encrypted values inserted into environment variable

	Mount a directory from the host system

	Encrypted Variables

	Guide

	Ananomy of the Encrypted Key

	Security Notes

Encrypted Variables

Guide

Note: this guide covers both server setup and configuring specific containers.
Usually setup (steps 1-3) is done once. And adding keys to a container
(steps 4-5) is more regular job.

	Create a key private key on the server:

ssh-keygen -f /etc/lithos/keys/main.key -t ed25519 -P ""

You can create a shared key or a per-project key. Depending on your
convenience. Synchronize the key accross all the servers in the same cluster.
This key should never leave that set of servers.

	Add the reference to the key into your Sandbox Config
(e.g. /etc/lithos/sandboxes/myapp.yaml):

secrets-private-key: /etc/lithos/keys/main.key
secrets-namespaces: [myapp]

You can omit secrets-namespaces if you’re sole owner of this
server/cluster (it allows only empty string as a namespace). You can also
make per-process namespaces (extra-secrets-namespaces).

	Publish your public key /etc/lithos/keys/main.key.pub for your users.
(Cryptography guarantees that even if this key is shared publically, i.e.
commited into a git repo, or accessible over non-authorized web URL system
is safe)

	Your users may now fetch the public key and encrypt their secrets with
lithos_crypt (get static binary on releases page [https://github.com/tailhook/lithos/releases]):

$ lithos_crypt encrypt -k main.key.pub -n myapp -d the_secret
v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGMzk57R/HsBhxeqCdC7Ljyf8pszBBjIGD33f6lwBM7Q==

The important thing here is to encrypt with the right key and
the right namespace.

	Then put a secret into your Container Configuration:

executable: /usr/bin/python3
environ:
 DATABASE_URL: postgresql://myappuser@db.example.com/myappdb
secret-environ:
 DATABASE_PASSWORD: v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGMzk57R/HsBhxeqCdC7Ljyf8pszBBjIGD33f6lwBM7Q==

That’s it. To add a new password to the same or another container repeat
steps 4-5.

This scheme is specifically designed to be safe to store in a (public) git
repository by using secure encryption.

Ananomy of the Encrypted Key

As you might see there is a pattern in an encrypted key. Here is how it
looks like:

v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGM‥wBM7Q==
 ^-- encrypted "namespace:actual_secret"
 ^^^^^^^^-- short hash of the password itself
 ^^^^^^^^-- short hash of the secrets namespace
 ^^^^^^^^-- short hash of the public key used for encryption
^^-- encryption version

Note the following things:

	Only version v2 is supported (v1 was broken and dropped in 0.16.0)

	The short hash is base64-encoded 6-bytes length blake2b hash of the value.
You can check in using b2sum utility from recent version of coreutils:

$ echo -n "the_secret" | b2sum -l48 | xxd -r -p | base64
8MtOoWUX

(Note: we need xxd because b2sum outputs hexadecimal bytes, also
note -n in echo command, as it’s a common mistake, without the option
echo outputs newline at the end).

	The encrypted payload contains <namespace>: prefix. While we could
check just the hash. Prefix allows providing better error messages.

The underlying encyrption is curve25519xsalsa20poly1305 which is compatible
with libnacl and libsodium.

Let’s see how it might be helpful, here is the list of keys:

	1
2
3

	v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE
v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==
v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc

You can see that:

	All of them have same secret (3rd column)

	Second and third ones have same encryption key (1st column)

	First and third ones have the same namespace (2nd column)

This is useful for versioning and debugging problems. You can’t deduce the
actual password from this data anyway unless your password is very simple
(dictioanry attack) or you already know it.

Note: even if all three {encryption key, namespace, secret} match, the
last part of data (encrypted payload) will be different each time you encode
that same value. All of the outputs are equally right.

Security Notes

	Namespaces allow to divide security zones between many projects without
nightmare of generating, syncing and managing secret keys per project.

	Namespaces match exactly they aren’t prefixes or any other kind of pattern

	If you rely on lithos_switch to switch containers securely (with
untrusted Process Config), you need to use different private key
per project (as otherwise extra-secrets-namespaces can be used to steal
keys)

Frequently Asked Questions

How do I Start/Stop/Restart Processes Running By Lithos?

Short answer: You can’t.

Long answer: Lithos keep running all the processes that it’s configured to
run. So:

	To stop process: remove it from the config

	To start process: add it to the config. If it’s added, it will be restarted
indefinitely. Sometimes may want to fix restart-timeout

	To restart process: well, kill it (with whatever signal you want).

The ergonomic of these operations is intentionally not very pleasing. This is
because you are supposed to have higher-level tool to manage lithos. At least
you want to use ansible [http://ansible.com/], chef [http://chef.io/] or puppet [http://puppetlabs.com/].

Why /run/lithos/mnt is empty?

This is a mount point. It’s never mounted in host system namespace (well it’s
never visible in guest namespace too). The containerization works as follows:

	The mount namespace is unshared (which means no future mounts are visible
in the host system)

	The root filesystem image is mounted to /run/lithos/mnt

	Other things set up in root file system (/dev, /etc/hosts, whatever)

	Pivot root is done, which means that /run/lithos/mnt is now visible as
root dir, i.e. just plain / (you can think of it as good old chroot)

This all means that if you error like this:

[2015-11-17T10:29:40Z][ERROR] Fatal error: Can't mount pseudofs /run/lithos/mnt/dev/pts (newinstance, options: devpts): No such file or directory (os error 2)

Or like this:

[2015-10-19T15:04:48Z][ERROR] Fatal error: Can't mount bind /whereever/external/storage/is to /run/lithos/mnt/storage: No such file or directory (os error 2)

It means that lithos have failed on step #3. And that it failed to mount the
directory in the guest container file system (/dev/pts and /storage
respectively)

How to Organize Logging?

There is variety of ways. Here are some hints…

Syslog

You may accept logs by UDP. Since lithos has no network namespacing (yet).
The UDP syslog just works.

To setup syslog using unix sockets you may configure syslog daemon on the
host system to listen for the socket inside the container’s /dev.
For example, here is how to configure rsyslog [http://www.rsyslog.com/doc/v8-stable/configuration/modules/imuxsock.html] for default lithos config:

module(load="imuxsock") # needs to be done just once
input(type="imuxsock" Socket="/var/lib/lithos/dev/log")

Alternatively, (but not recommended) you may configure devfs-dir:

devfs-dir: /dev

Stdout/Stderr

It’s recommended to use syslog or any similar solutions for logs. But there
are still reasons to write logs to a file:

	You may want to log early start errors (when you have not yet initialized
the logging subsystem of the application)

	If you have single server and don’t want additional daemons

Starting with version v0.5.0 lithos has a per-sandbox log file which
contains all the stdout/stderr output of the processes. By default it’s in
/var/log/lithos/stderr/<sandbox_name>.log. See stdio-log-dir for
more info.

How to Update Configs?

The best way to update config of processes is to put it into a temporary
file and run lithos_switch (see lithos_switch --help for more info).
This is a main kind config you update multiple times a day.

In case you’ve already put config in place, or for master and sandbox
config, you should first run lithos_check to check that all configs are
valid. Then just send QUIT signal to the lithos_tree process. Usually
the following command-line is enough for manual operation:

pkill -QUIT lithos_tree

But if you for authomation it’s better to use lithos_switch.

Note

note

By sending QUIT signal we’re effectivaly emulate crash of the supervisor
daemon. It’s designed in a way that allows it survive crash and keep all
fresh child processes alive. After an in-place restart it checks
configuration of child processes, kills outdated ones and executes new
configs.

How to Run Commands in Container?

There are two common ways:

	If you have container already running use nsenter

	Prepare a special command for lithos_cmd

Running nsenter

This way only works if you have a running container. It’s hard to get work if
your process crashes too fast after start.

You must also have a working shell in container, we use /bin/sh
in examples.

You can use nsenter to join most namespaces, except user namespace.
For example, if you know pid, the following command would allow you to run
shell in container and investigate files:

nsenter -m -p --target 12345 /bin/sh

If you don’t know PID, you may easily discover it with lithos_ps or
automate it with pgrep:

nsenter -m -p \
 --target=$(pgrep -f 'lithos_knot --name sandbox-name/process-name.0') \
 /bin/sh

Warning

This method is very insecure. It runs command in original user
namespace with the host root user. While basic sandboxing (i.e. filesystem
root) is enabled by -m and -p, the program that you’re trying to
run (i.e. the shell itself) can still escape that sandbox.

Because we do mount namespaces and user namespaces in different stages of
container initialization there is currently no way to join both
user namespace and mount namespace. (You can join just user namespace
by running nsenter -U --target=1235 where 123 is the pid of the
process inside the container, not lithos_knot. But this is probably useless)

Running lithos_cmd

In some cases you may want to have a special container with a shell to run
with lithos_cmd. This is just a normal lithos container configuration
with kind: Command and interactive: true and shell being specified
as a command. So you run your shell.yaml with:

lithos_cmd sandbox-name shell

There are three important points about this method:

	If you’re trying to investigate problem with the daemon config you copy
daemon config into this interactive command. It’s your job to keep both
configs in sync. This config must also be exposed in processes config
just like any other.

	It will run another (although identical) container on each run. You will
not see processes running as daemons and other shells in ps or similar
commands.

	You must have shell in container to get use of it. Sometimes you just don’t
have it. But you may use any interactive interpreter, like python or
even non-interactive commands.

How to Find Files Mounted in Container?

Linux provides many great tools to introspect running container. Here
is short overview:

	/proc/<pid>/root is a directory where you can cd into and look
at files

	/proc/<pid>/mountinfo is a mapping between host system directories
and ones container

	And you can join container’s namespace

Example 1

Let’s try to explore some common tasks. First, let’s find container’s pid:

$ pgrep -f 'lithos_name --name sandbox-name/process-name.0'
12345

Now we can find out the OS release used to build container:

$ sudo cat /proc/12345/root/etc/alpine-release
3.4.6

Warning

There is a caveat. Symlinks that point to paths starting with
root are resolved differently that in container. So ensure that you’re
not accessing a symlink (and that any intermediate components is not
a symlink).

Example 2

Now, let’s find out which volume is mounted as /app/data inside the
container.

If you have quire recent findmnt it’s easy:

$ findmnt -N 12345 /app/data
TARGET SOURCE FSTYPE OPTIONS
/app/data /dev/mapper/Disk-main[/all-storages/myproject] ext4 rw,noatime,discard,data=ordered

Here we can see that /app/data in container is a LVM partition main
in group Disk with the path all-storages/myproject relative to
the root of the partition. You can find out where this volume is mounted on
host system by inspecting the output of mount or findmnt commands.

Manual way is to look at /proc/<pid>/mountinfo (stripped output):

$ cat /proc/12345/mountinfo
347 107 9:1 /all-images/sandbox-name/myproject.c17cb162 / ro,relatime - ext4 /dev/md1 rw,data=ordered
356 347 0:267 / /tmp rw,nosuid,nodev,relatime - tmpfs tmpfs rw,size=102400k
360 347 9:1 /all-storages/myproject /app/data rw,relatime - ext4 /dev/mapper/Disk-main rw,data=ordered

Here you can observe same info. Important parts are:

	Fifth column is the mountpoint (but be careful in complex cases there might
be multiple overlapping mount points);

	Fourth column is the path relative to the volume root;

	And, 9th column (next to the last) is the volume name.

Let’s find out where it is on host system:

$ mount | grep Disk-main
/dev/mapper/Disk-main on /srv type ext4 (rw,noatime,discard,data=ordered)

That’s it, now you can look at /srv/all-storages/myproject to find files
seen by an application.

Lithos Changes By Release

v0.18.4

	Bugfix: only send SIGTERM to the process once when upgrading or stopping it
(this prevents certain issues with the applications themselves)

	Bugfix: use don’t reset kill timeout on SIGQUIT of lithos_tree

	Bugfix: correctly wait for kill timeout for retired children (not in the
config any more)

v0.18.3

	Bugfix: it looks like that reading through /proc/ is inherently racy,
i.e. some process may be skipped. This commit fixes walk faster and traverse
directory twice. More elaborate fix will be implemented in future.

v0.18.2

	Feature: add secret-environ-file which can be used to offload secrets
to a separate (perhaps shared) file

v0.18.1

	Feature: add set-non-block option to tcp-ports

v0.18.0

	Breaking: we don’t run arping after container setup by default,
as it doesn’t work in certain environments [https://github.com/tailhook/lithos/issues/17].
Use after-setup-command instead.

v0.17.8

	Bugfix: fixes issue with bridged networking when host system
is alpine (#15 [https://github.com/tailhook/lithos/issues/15])

v0.17.7

	Bugfix: log name of the process when lithos_knot failed

	Bugfix: more robust parsing of process names by lithos_ps

	Feature: add @{lithos:pid} magic variable

v0.17.6

	Bugfix: systemd protocol support fixed: LISTEN_FDNAMES and LISTEN_PID

v0.17.5

	Feature: check variable substitution with lithos_check even in
--check-container (out of system) mode

v0.17.4

	Feature: Add DottedName variable type

	Feature: Add activation parameter to TcpPort variable

v0.17.3

	Bugfix: fix EADDRINUSE error when all children requiring file descriptor
where queued for restart (throttled), bug was due to duped socket lying in
scheduled command (where main socket is closed to notify peers there are
no listeners)

v0.17.2

	Bugfix: previously lithos_tree process after fork but before execing
lithos_knot could be recognized as undefined child and killed.
This race-condition sometimes led to closing sockets prematurely and being
unable to listen them again

v0.17.1

	Bugfix: passing sockets as FDs in non-bridged network was broken in v0.17.0

v0.17.0

	Breaking: add external flag to tcp-ports, which by default is
false (previous behavior was equal to external: true)

	Bugfix: lithos_cmd now returns exit code 0 if underlying command is
exited successfully (was broken in 0.15.5)

v0.16.0

	Breaking: remove v1 encryption for secrets (it was alive for a week)

	Feature: add secrets-namespaces and extra-secrets-namespaces
option to allow namespacing secrets on top of a single key

	Feature: add v2 key encryption scheme

v0.15.6

	Feature: add secret-environ and secrets-private-key` settings
which allow to pass to the application decrypted environment variables

	Bugfix: when bridged network is enabled we use arping to update ARP cache

v0.15.5

	Bugfix: add support for bridged-network and ip-addresses for lithos_cmd

	Bugfix: initialize looppack interface in container when bridged-network
is configured

	Feature: allow lithos_cmd without ip_addresses (only loopback is
initialized in this case)

	Bugfix: return error result from lithos_cmd if inner process failed

v0.15.4

	First release that stops support of ubuntu precise and
adds repository for ubuntu bionic

	Bugfix: passing TCP port as fd < 3 didn’t work before, now we allow fd: 0
and fail gracefully on 1, 2.

v0.15.3

	feature: Add default-user and default-group to simplify
container config

	bugfix: fix containers having symlinks at /etc/{resolv.conf, hosts}
(broken in v0.15.0)

v0.15.2

	bugfix: containers without bridged network work again

v0.15.1

	nothing changed, fixed tests only

v0.15.0

	feature: Add normal-exit-codes setting

	feature: Add resolv-conf and hosts-file to sandbox config

	feature: Add bridged-network option to sandbox config

	breaking: By default /etc/hosts and /etc/resolv.conf will be mounted
if they are proper mount points (can be opt out in container config)

v0.14.3

	Bugfix: when more than one variable is used lithos were restarting process
every time (because of unstable serialization of hashmap)

v0.14.2

	Bugfix: if auto-clean is different in several sandboxes looking at the
same image directory we skip cleaning the dir and print a warning

	Add a timestamp to lithos_clean output (in --delete-unused mode)

v0.14.1

	Bugfix: variable substitution was broken in v0.14.0

v0.14.0

	Sets memory.memsw.limit_in_bytes if that exists (usually requires
swapaccount=1 in kernel params).

	Adds a warning-level message on process startup

	Duplicates startup and death messages into stderr log, so you can corelate
them with application messages

v0.13.2

	Upgrades many dependencies, no significant changes or bugfixes

v0.13.1

	Adds auto-clean setting

v0.13.0

	/dev/pts/ptmx is created with ptmxmode=0666, which makes it suitable
for creating ptys by unprivileged users. We always used newinstance
option, so it should be safe enough. And it also matches how ptmx is
configured on most systems by default

v0.12.1

	Added image-dir-levels parameter which allows using images in
form of xx/yy/zz (for value of 3) instead of bare name

v0.12.0

	Fixed order of sandbox-name.process-name in metrics

	Dropped setting cantal-appname (never were useful, because cantal
actually uses cgroup name, and lithos master process actually has one)

v0.11.0

	Option cantal-appname added to a config

	If no CANTAL_PATH present in environment we set it to some default,
along with CANTAL_APPNAME=lithos unless cantal-appname is
overriden.

	Added default container environment LITHOS_CONFIG. It may be used to
log config name, read metadata and other purposes.

v0.10.7

	Cantal [https://cantal.readthedocs.io] metrics added

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	
 additional-hosts

 	Option

 	
 after-setup-command

 	Bridge Setup Option

 	
 allow-groups

 	Option

 	
 allow-tcp-ports

 	Option

 	
 	
 allow-users

 	Option

 	
 arguments

 	Option

 	
 auto-clean

 	Option

B

 	
 	
 Bridge Setup Option

 	after-setup-command

 	
 	
 bridged-network

 	Option

C

 	
 	
 cgroup-controllers

 	Option

 	
 cgroup-name

 	Option

 	
 config

 	Process Config Option

 	
 	
 config-file

 	Option

 	
 config-log-dir

 	Option

 	
 cpu-shares

 	Option

D

 	
 	
 default-group

 	Option

 	
 default-log-dir

 	Option

 	
 	
 default-user

 	Option

 	
 devfs-dir

 	Option

E

 	
 	
 environ

 	Option

 	
 executable

 	Option

 	
 	
 extra-secrets-namespaces

 	Process Config Option

F

 	
 	
 fileno-limit

 	Option

G

 	
 	
 group-id

 	Option

H

 	
 	
 hosts-file

 	Option, [1]

I

 	
 	
 image

 	Process Config Option

 	
 image-dir

 	Option

 	
 image-dir-levels

 	Option

 	
 	
 instances

 	Process Config Option

 	
 interactive

 	Option

 	
 ip-addresses

 	Process Config Option

K

 	
 	
 kill-timeout

 	Option

 	
 	
 kind

 	Option

L

 	
 	
 log-file

 	Option, [1]

 	
 	
 log-level

 	Option, [1]

M

 	
 	
 memory-limit

 	Option

 	
 metadata

 	Option

 	
 	
 mount-dir

 	Option

N

 	
 	
 normal-exit-codes

 	Option

O

 	
 	
 Option

 	additional-hosts

 	allow-groups

 	allow-tcp-ports

 	allow-users

 	arguments

 	auto-clean

 	bridged-network

 	cgroup-controllers

 	cgroup-name

 	config-file

 	config-log-dir

 	cpu-shares

 	default-group

 	default-log-dir

 	default-user

 	devfs-dir

 	environ

 	executable

 	fileno-limit

 	group-id

 	hosts-file, [1]

 	image-dir

 	image-dir-levels

 	interactive

 	kill-timeout

 	kind

 	log-file, [1]

 	log-level, [1]

 	memory-limit

 	metadata

 	mount-dir

 	normal-exit-codes

 	processes-dir

 	readonly-paths

 	resolv-conf, [1]

 	restart-process-only

 	restart-timeout

 	runtime-dir

 	sandboxes-dir

 	secret-environ

 	secret-environ-file

 	secrets-namespaces

 	secrets-private-key

 	state-dir

 	stdio-log-dir

 	stdout-stderr-file

 	syslog-facility

 	syslog-name

 	tcp-ports

 	uid-map,gid-map, [1]

 	used-images-list

 	user-id

 	volumes

 	workdir

 	writable-paths

P

 	
 	
 Persistent

 	Volume Type

 	
 Process Config Option

 	config

 	extra-secrets-namespaces

 	image

 	instances

 	ip-addresses

 	variables

 	
 	
 processes-dir

 	Option

R

 	
 	
 Readonly

 	Volume Type

 	
 readonly-paths

 	Option

 	
 resolv-conf

 	Option, [1]

 	
 	
 restart-process-only

 	Option

 	
 restart-timeout

 	Option

 	
 runtime-dir

 	Option

S

 	
 	
 sandboxes-dir

 	Option

 	
 secret-environ

 	Option

 	
 secret-environ-file

 	Option

 	
 secrets-namespaces

 	Option

 	
 secrets-private-key

 	Option

 	
 state-dir

 	Option

 	
 	
 Statedir

 	Volume Type

 	
 stdio-log-dir

 	Option

 	
 stdout-stderr-file

 	Option

 	
 syslog-facility

 	Option

 	
 syslog-name

 	Option

T

 	
 	
 tcp-ports

 	Option

 	
 	
 Tmpfs

 	Volume Type

U

 	
 	
 uid-map,gid-map

 	Option, [1]

 	
 used-images-list

 	Option

 	
 	
 user-id

 	Option

V

 	
 	
 variables

 	Process Config Option

 	
 Volume Type

 	Persistent

 	Readonly

 	Statedir

 	Tmpfs

 	
 	
 volumes

 	Option

W

 	
 	
 workdir

 	Option

 	
 	
 writable-paths

 	Option

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Lithos’s documentation!

 		
 Configuration Overview

 		
 Master Configuration

 		
 Sandbox Config

 		
 Reference

 		
 Process Config

 		
 Options

 		
 Variables

 		
 Container Configuration

 		
 Variables

 		
 Reference

 		
 Metrics

 		
 Determining Failure

 		
 Volumes

 		
 Tips and Conventions

 		
 Handing TCP Ports

 		
 Python3 + Asyncio

 		
 Python + Werkzeug (Flask)

 		
 Python + Twisted

 		
 Golang + net/http

 		
 Node.js with Express Framework

 		
 Deploying Vagga Containers

 		
 Storing Secrets

 		
 Encrypted Variables

 		
 Frequently Asked Questions

 		
 How do I Start/Stop/Restart Processes Running By Lithos?

 		
 Why /run/lithos/mnt is empty?

 		
 How to Organize Logging?

 		
 Syslog

 		
 Stdout/Stderr

 		
 How to Update Configs?

 		
 How to Run Commands in Container?

 		
 Running nsenter

 		
 Running lithos_cmd

 		
 How to Find Files Mounted in Container?

 		
 Example 1

 		
 Example 2

 		
 Lithos Changes By Release

 		
 v0.18.4

 		
 v0.18.3

 		
 v0.18.2

 		
 v0.18.1

 		
 v0.18.0

 		
 v0.17.8

 		
 v0.17.7

 		
 v0.17.6

 		
 v0.17.5

 		
 v0.17.4

 		
 v0.17.3

 		
 v0.17.2

 		
 v0.17.1

 		
 v0.17.0

 		
 v0.16.0

 		
 v0.15.6

 		
 v0.15.5

 		
 v0.15.4

 		
 v0.15.3

 		
 v0.15.2

 		
 v0.15.1

 		
 v0.15.0

 		
 v0.14.3

 		
 v0.14.2

 		
 v0.14.1

 		
 v0.14.0

 		
 v0.13.2

 		
 v0.13.1

 		
 v0.13.0

 		
 v0.12.1

 		
 v0.12.0

 		
 v0.11.0

 		
 v0.10.7

_static/up-pressed.png

_static/up.png

_static/plus.png

