

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Kombu Documentation

Contents:

	Getting Started
	About

	Features

	Transport Comparison

	Terminology

	Installation

	Getting Help

	Bug tracker

	Contributing

	License

	User Guide
	Introduction

	Connections and transports

	Producers

	Consumers

	Examples

	Simple Interface

	Connection and Producer Pools

	Serialization

	Frequently Asked Questions

	API Reference

	Change history

Indices and tables

	Index

	Module Index

	Search Page

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Getting Started

	Version

	4.5.0

	Web

	https://kombu.readthedocs.io/

	Download

	https://pypi.org/project/kombu/

	Source

	https://github.com/celery/kombu/

	Keywords

	messaging, amqp, rabbitmq, redis, mongodb, python, queue

About

Kombu is a messaging library for Python.

The aim of Kombu is to make messaging in Python as easy as possible by
providing an idiomatic high-level interface for the AMQ protocol, and also
provide proven and tested solutions to common messaging problems.

AMQP [https://amqp.org] is the Advanced Message Queuing Protocol, an open standard protocol
for message orientation, queuing, routing, reliability and security,
for which the RabbitMQ [https://www.rabbitmq.com/] messaging server is the most popular implementation.

Features

	Allows application authors to support several message server
solutions by using pluggable transports.

	AMQP transport using the py-amqp [https://pypi.org/project/amqp/], librabbitmq [https://pypi.org/project/librabbitmq/], or qpid-python [https://pypi.org/project/qpid-python/] libraries.

	High performance AMQP transport written in C - when using librabbitmq [https://pypi.org/project/librabbitmq/]

This is automatically enabled if librabbitmq is installed:

$ pip install librabbitmq

	Virtual transports makes it really easy to add support for non-AMQP
transports. There is already built-in support for Redis [https://redis.io/],
Amazon SQS [https://aws.amazon.com/sqs/], Azure Storage Queues [https://azure.microsoft.com/en-us/services/storage/queues/], Azure Service Bus [https://azure.microsoft.com/en-us/services/service-bus/],
ZooKeeper [https://zookeeper.apache.org/], SoftLayer MQ [http://www.softlayer.com/services/additional/message-queue] and Pyro [https://pyro4.readthedocs.io/].

	In-memory transport for unit testing.

	Supports automatic encoding, serialization and compression of message
payloads.

	Consistent exception handling across transports.

	The ability to ensure that an operation is performed by gracefully
handling connection and channel errors.

	Several annoyances with amqplib [http://barryp.org/software/py-amqplib/] has been fixed, like supporting
timeouts and the ability to wait for events on more than one channel.

	Projects already using carrot [https://pypi.org/project/carrot/] can easily be ported by using
a compatibility layer.

For an introduction to AMQP you should read the article Rabbits and warrens [http://web.archive.org/web/20160323134044/http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/],
and the Wikipedia article about AMQP [http://en.wikipedia.org/wiki/AMQP].

Transport Comparison

	Client

	Type

	Direct

	Topic

	Fanout

	Priority

	TTL

	amqp

	Native

	Yes

	Yes

	Yes

	Yes 3

	Yes 4

	qpid

	Native

	Yes

	Yes

	Yes

	No

	No

	redis

	Virtual

	Yes

	Yes

	Yes (PUB/SUB)

	Yes

	No

	mongodb

	Virtual

	Yes

	Yes

	Yes

	Yes

	Yes

	SQS

	Virtual

	Yes

	Yes 1

	Yes 2

	No

	No

	zookeeper

	Virtual

	Yes

	Yes 1

	No

	Yes

	No

	in-memory

	Virtual

	Yes

	Yes 1

	No

	No

	No

	SLMQ

	Virtual

	Yes

	Yes 1

	No

	No

	No

	Pyro

	Virtual

	Yes

	Yes 1

	No

	No

	No

	1(1,2,3,4,5)

	Declarations only kept in memory, so exchanges/queues
must be declared by all clients that needs them.

	2

	Fanout supported via storing routing tables in SimpleDB.
Disabled by default, but can be enabled by using the
supports_fanout transport option.

	3

	AMQP Message priority support depends on broker implementation.

	4

	AMQP Message/Queue TTL support depends on broker implementation.

Documentation

Kombu is using Sphinx, and the latest documentation can be found here:

https://kombu.readthedocs.io/

Quick overview

from kombu import Connection, Exchange, Queue

media_exchange = Exchange('media', 'direct', durable=True)
video_queue = Queue('video', exchange=media_exchange, routing_key='video')

def process_media(body, message):
 print body
 message.ack()

connections
with Connection('amqp://guest:guest@localhost//') as conn:

 # produce
 producer = conn.Producer(serializer='json')
 producer.publish({'name': '/tmp/lolcat1.avi', 'size': 1301013},
 exchange=media_exchange, routing_key='video',
 declare=[video_queue])

 # the declare above, makes sure the video queue is declared
 # so that the messages can be delivered.
 # It's a best practice in Kombu to have both publishers and
 # consumers declare the queue. You can also declare the
 # queue manually using:
 # video_queue(conn).declare()

 # consume
 with conn.Consumer(video_queue, callbacks=[process_media]) as consumer:
 # Process messages and handle events on all channels
 while True:
 conn.drain_events()

Consume from several queues on the same channel:
video_queue = Queue('video', exchange=media_exchange, key='video')
image_queue = Queue('image', exchange=media_exchange, key='image')

with connection.Consumer([video_queue, image_queue],
 callbacks=[process_media]) as consumer:
 while True:
 connection.drain_events()

Or handle channels manually:

with connection.channel() as channel:
 producer = Producer(channel, ...)
 consumer = Producer(channel)

All objects can be used outside of with statements too,
just remember to close the objects after use:

from kombu import Connection, Consumer, Producer

connection = Connection()
 # ...
connection.release()

consumer = Consumer(channel_or_connection, ...)
consumer.register_callback(my_callback)
consumer.consume()
 #
consumer.cancel()

Exchange and Queue are simply declarations that can be pickled
and used in configuration files etc.

They also support operations, but to do so they need to be bound
to a channel.

Binding exchanges and queues to a connection will make it use
that connections default channel.

>>> exchange = Exchange('tasks', 'direct')

>>> connection = Connection()
>>> bound_exchange = exchange(connection)
>>> bound_exchange.delete()

the original exchange is not affected, and stays unbound.
>>> exchange.delete()
raise NotBoundError: Can't call delete on Exchange not bound to
 a channel.

Terminology

There are some concepts you should be familiar with before starting:

	Producers

Producers sends messages to an exchange.

	Exchanges

Messages are sent to exchanges. Exchanges are named and can be
configured to use one of several routing algorithms. The exchange
routes the messages to consumers by matching the routing key in the
message with the routing key the consumer provides when binding to
the exchange.

	Consumers

Consumers declares a queue, binds it to a exchange and receives
messages from it.

	Queues

Queues receive messages sent to exchanges. The queues are declared
by consumers.

	Routing keys

Every message has a routing key. The interpretation of the routing
key depends on the exchange type. There are four default exchange
types defined by the AMQP standard, and vendors can define custom
types (so see your vendors manual for details).

These are the default exchange types defined by AMQP/0.8:

	Direct exchange

Matches if the routing key property of the message and
the routing_key attribute of the consumer are identical.

	Fan-out exchange

Always matches, even if the binding does not have a routing
key.

	Topic exchange

Matches the routing key property of the message by a primitive
pattern matching scheme. The message routing key then consists
of words separated by dots (“.”, like domain names), and
two special characters are available; star (“*”) and hash
(“#”). The star matches any word, and the hash matches
zero or more words. For example “*.stock.#” matches the
routing keys “usd.stock” and “eur.stock.db” but not
“stock.nasdaq”.

Installation

You can install Kombu either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install kombu

To install using easy_install,:

$ easy_install kombu

If you have downloaded a source tarball you can install it
by doing the following,:

$ python setup.py build
python setup.py install # as root

Getting Help

Mailing list

Join the carrot-users [http://groups.google.com/group/carrot-users/] mailing list.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at http://github.com/celery/kombu/issues/

Contributing

Development of Kombu happens at Github: http://github.com/celery/kombu

You are highly encouraged to participate in the development. If you don’t
like Github (for some reason) you’re welcome to send regular patches.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

User Guide

	Release

	4.6

	Date

	Jun 06, 2019

	Introduction
	What is messaging?

	Messaging Scenarios

	Reliability

	Connections and transports
	Basics

	URLs

	Keyword arguments

	AMQP Transports

	Transport Comparison

	Producers
	Basics

	Serialization

	Reference

	Consumers
	Basics

	Advanced Topics

	Reference

	Examples
	Hello World Example

	Task Queue Example

	Simple Interface
	Sending and receiving messages

	Connection and Producer Pools
	Default Pools

	The producer pool group

	Custom Pool Groups

	Serialization
	Serializers

	Sending raw data without Serialization

	Creating extensions using Setuptools entry-points

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Introduction

What is messaging?

In times long ago people didn’t have email.
They had the postal service, which with great courage would deliver mail
from hand to hand all over the globe. Soldiers deployed at wars far away could only
communicate with their families through the postal service, and
posting a letter would mean that the recipient wouldn’t actually
receive the letter until weeks or months, sometimes years later.

It’s hard to imagine this today when people are expected to be available
for phone calls every minute of the day.

So humans need to communicate with each other, this shouldn’t
be news to anyone, but why would applications?

One example is banks.
When you transfer money from one bank to another, your bank sends
a message to a central clearinghouse. The clearinghouse
then records and coordinates the transaction. Banks
need to send and receive millions and millions of
messages every day, and losing a single message would mean either losing
your money (bad) or the banks money (very bad)

Another example is the stock exchanges, which also have a need
for very high message throughputs and have strict reliability
requirements.

Email is a great way for people to communicate. It is much faster
than using the postal service, but still using email as a means for
programs to communicate would be like the soldier above, waiting
for signs of life from his girlfriend back home.

Messaging Scenarios

	Request/Reply

The request/reply pattern works like the postal service example.
A message is addressed to a single recipient, with a return address
printed on the back. The recipient may or may not reply to the
message by sending it back to the original sender.

Request-Reply is achieved using direct exchanges.

	Broadcast

In a broadcast scenario a message is sent to all parties.
This could be none, one or many recipients.

Broadcast is achieved using fanout exchanges.

	Publish/Subscribe

In a publish/subscribe scenario producers publish messages
to topics, and consumers subscribe to the topics they are
interested in.

If no consumers subscribe to the topic, then the message
will not be delivered to anyone. If several consumers
subscribe to the topic, then the message will be delivered
to all of them.

Pub-sub is achieved using topic exchanges.

Reliability

For some applications reliability is very important. Losing a message is
a critical situation that must never happen. For other applications
losing a message is fine, it can maybe recover in other ways,
or the message is resent anyway as periodic updates.

AMQP defines two built-in delivery modes:

	persistent

Messages are written to disk and survives a broker restart.

	transient

Messages may or may not be written to disk, as the broker sees fit
to optimize memory contents. The messages won’t survive a broker
restart.

Transient messaging is by far the fastest way to send and receive messages,
so having persistent messages comes with a price, but for some
applications this is a necessary cost.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Connections and transports

Basics

To send and receive messages you need a transport and a connection.
There are several transports to choose from (amqp, librabbitmq, redis, qpid, in-memory, etc.),
and you can even create your own. The default transport is amqp.

Create a connection using the default transport:

>>> from kombu import Connection
>>> connection = Connection('amqp://guest:guest@localhost:5672//')

The connection will not be established yet, as the connection is established
when needed. If you want to explicitly establish the connection
you have to call the connect()
method:

>>> connection.connect()

You can also check whether the connection is connected:

>>> connection.connected
True

Connections must always be closed after use:

>>> connection.close()

But best practice is to release the connection instead,
this will release the resource if the connection is associated
with a connection pool, or close the connection if not,
and makes it easier to do the transition to connection pools later:

>>> connection.release()

See also

Connection and Producer Pools

Of course, the connection can be used as a context, and you are
encouraged to do so as it makes it harder to forget releasing open
resources:

with Connection() as connection:
 # work with connection

URLs

Connection parameters can be provided as a URL in the format:

transport://userid:password@hostname:port/virtual_host

All of these are valid URLs:

Specifies using the amqp transport only, default values
are taken from the keyword arguments.
amqp://

Using Redis
redis://localhost:6379/

Using Redis over a Unix socket
redis+socket:///tmp/redis.sock

Using Qpid
qpid://localhost/

Using virtual host '/foo'
amqp://localhost//foo

Using virtual host 'foo'
amqp://localhost/foo

Using Pyro with name server running on 'localhost'
pyro://localhost/kombu.broker

The query part of the URL can also be used to set options, e.g.:

amqp://localhost/myvhost?ssl=1

See Keyword arguments for a list of supported options.

A connection without options will use the default connection settings,
which is using the localhost host, default port, user name guest,
password guest and virtual host “/”. A connection without arguments
is the same as:

>>> Connection('amqp://guest:guest@localhost:5672//')

The default port is transport specific, for AMQP this is 5672.

Other fields may also have different meaning depending on the transport
used. For example, the Redis transport uses the virtual_host argument as
the redis database number.

Keyword arguments

The Connection class supports additional
keyword arguments, these are:

	hostname

	Default host name if not provided in the URL.

	userid

	Default user name if not provided in the URL.

	password

	Default password if not provided in the URL.

	virtual_host

	Default virtual host if not provided in the URL.

	port

	Default port if not provided in the URL.

	transport

	Default transport if not provided in the URL.
Can be a string specifying the path to the class. (e.g.
kombu.transport.pyamqp:Transport), or one of the aliases:
pyamqp, librabbitmq, redis, qpid, memory, and so on.

	ssl

	Use SSL to connect to the server. Default is False.
Only supported by the amqp and qpid transports.

	insist

	Insist on connecting to a server.
No longer supported, relic from AMQP 0.8

	connect_timeout

	Timeout in seconds for connecting to the
server. May not be supported by the specified transport.

	transport_options

	A dict of additional connection arguments to
pass to alternate kombu channel implementations. Consult the transport
documentation for available options.

AMQP Transports

There are 4 transports available for AMQP use.

	pyamqp uses the pure Python library amqp, automatically
installed with Kombu.

	librabbitmq uses the high performance transport written in C.
This requires the librabbitmq Python package to be installed, which
automatically compiles the C library.

	amqp tries to use librabbitmq but falls back to pyamqp.

	qpid uses the pure Python library qpid.messaging, automatically
installed with Kombu. The Qpid library uses AMQP, but uses custom
extensions specifically supported by the Apache Qpid Broker.

For the highest performance, you should install the librabbitmq package.
To ensure librabbitmq is used, you can explicitly specify it in the
transport URL, or use amqp to have the fallback.

Transport Comparison

	Client

	Type

	Direct

	Topic

	Fanout

	Priority

	amqp

	Native

	Yes

	Yes

	Yes

	Yes 3

	qpid

	Native

	Yes

	Yes

	Yes

	No

	redis

	Virtual

	Yes

	Yes

	Yes (PUB/SUB)

	Yes

	SQS

	Virtual

	Yes

	Yes 1

	Yes 2

	No

	zookeeper

	Virtual

	Yes

	Yes 1

	No

	Yes

	in-memory

	Virtual

	Yes

	Yes 1

	No

	No

	SLMQ

	Virtual

	Yes

	Yes 1

	No

	No

	1(1,2,3,4)

	Declarations only kept in memory, so exchanges/queues
must be declared by all clients that needs them.

	2

	Fanout supported via storing routing tables in SimpleDB.
Disabled by default, but can be enabled by using the
supports_fanout transport option.

	3

	AMQP Message priority support depends on broker implementation.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Producers

Basics

You can create a producer using a Connection:

>>> producer = connection.Producer()

You can also instantiate Producer directly,
it takes a channel or a connection as an argument:

>>> with Connection('amqp://') as conn:
... with conn.channel() as channel:
... producer = Producer(channel)

Having a producer instance you can publish messages:

Mostly you will be getting a connection from a connection pool,
and this connection can be stale, or you could lose the connection
in the middle of sending the message. Using retries is a good
way to handle these intermittent failures:

>>> producer.publish({'hello': 'world', ..., retry=True})

In addition a retry policy can be specified, which is a dictionary
of parameters supported by the retry_over_time()
function

>>> producer.publish(
... {'hello': 'world'}, ...,
... retry=True,
... retry_policy={
... 'interval_start': 0, # First retry immediately,
... 'interval_step': 2, # then increase by 2s for every retry.
... 'interval_max': 30, # but don't exceed 30s between retries.
... 'max_retries': 30, # give up after 30 tries.
... },
...)

The declare argument lets you pass a list of entities that must be
declared before sending the message. This is especially important
when using the retry flag, since the broker may actually restart
during a retry in which case non-durable entities are removed.

Say you are writing a task queue, and the workers may have not started yet
so the queues aren’t declared. In this case you need to define both the
exchange, and the declare the queue so that the message is delivered to
the queue while the workers are offline:

>>> from kombu import Exchange, Queue
>>> task_queue = Queue('tasks', Exchange('tasks'), routing_key='tasks')

>>> producer.publish(
... {'hello': 'world'}, ...,
... retry=True,
... exchange=task_queue.exchange,
... routing_key=task_queue.routing_key,
... declare=[task_queue], # declares exchange, queue and binds.
...)

Bypassing routing by using the anon-exchange

You may deliver to a queue directly, bypassing the brokers routing
mechanisms, by using the “anon-exchange”: set the exchange parameter to the
empty string, and set the routing key to be the name of the queue:

>>> producer.publish(
... {'hello': 'world'},
... exchange='',
... routing_key=task_queue.name,
...)

Serialization

Json is the default serializer when a non-string object is passed
to publish, but you can also specify a different serializer:

>>> producer.publish({'hello': 'world'}, serializer='pickle')

See Serialization for more information.

Reference

	
class kombu.Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters

	
	channel (kombu.Connection, ChannelT) – Connection or channel.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default routing key.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default serializer. Default is “json”.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default compression method.
Default is no compression.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – Automatically declare the default exchange
at instantiation. Default is True.

	on_return (Callable) – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
auto_declare = True

	By default, if a defualt exchange is set,
that exchange will be declare when publishing a message.

	
compression = None

	Default compression method. Disabled by default.

	
declare()

	Declare the exchange.

Note

This happens automatically at instantiation when
the auto_declare flag is enabled.

	
exchange = None

	Default exchange

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare exchange if not already declared during this session.

	
on_return = None

	Basic return callback.

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=None, expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters

	
	body (Any) – Message body.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	delivery_mode (enum) – See delivery_mode.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority. A number between 0 and 9.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content type. Default is auto-detect.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content encoding. Default is auto-detect.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer to use. Default is auto-detect.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Compression method to use. Default is none.

	headers (Dict) – Mapping of arbitrary headers to pass along
with the message body.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override the exchange.
Note that this exchange must have been declared.

	declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message.
The entities will be declared using
maybe_declare().

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy (Dict) – Retry configuration, this is the keywords
supported by ensure().

	expiration (float [https://docs.python.org/dev/library/functions.html#float]) – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties (Any) – Additional message properties, see AMQP spec.

	
revive(channel)

	Revive the producer after connection loss.

	
routing_key = ''

	Default routing key.

	
serializer = None

	Default serializer to use. Default is JSON.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Consumers

Basics

The Consumer takes a connection (or channel) and a list of queues to
consume from. Several consumers can be mixed to consume from different
channels, as they all bind to the same connection, and drain_events will
drain events from all channels on that connection.

Note

Kombu since 3.0 will only accept json/binary or text messages by default,
to allow deserialization of other formats you have to specify them
in the accept argument (in addition to setting the right content type for your messages):

Consumer(conn, accept=['json', 'pickle', 'msgpack', 'yaml'])

Draining events from a single consumer:

with Consumer(connection, queues, accept=['json']):
 connection.drain_events(timeout=1)

Draining events from several consumers:

from kombu.utils.compat import nested

with connection.channel(), connection.channel() as (channel1, channel2):
 with nested(Consumer(channel1, queues1, accept=['json']),
 Consumer(channel2, queues2, accept=['json'])):
 connection.drain_events(timeout=1)

Or using ConsumerMixin:

from kombu.mixins import ConsumerMixin

class C(ConsumerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [
 Consumer(queues, callbacks=[self.on_message], accept=['json']),
]

 def on_message(self, body, message):
 print('RECEIVED MESSAGE: {0!r}'.format(body))
 message.ack()

C(connection).run()

and with multiple channels again:

from kombu import Consumer
from kombu.mixins import ConsumerMixin

class C(ConsumerMixin):
 channel2 = None

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, _, default_channel):
 self.channel2 = default_channel.connection.channel()
 return [Consumer(default_channel, queues1,
 callbacks=[self.on_message],
 accept=['json']),
 Consumer(self.channel2, queues2,
 callbacks=[self.on_special_message],
 accept=['json'])]

 def on_consumer_end(self, connection, default_channel):
 if self.channel2:
 self.channel2.close()

C(connection).run()

There’s also a ConsumerProducerMixin for consumers
that need to also publish messages on a separate connection (e.g. sending rpc
replies, streaming results):

from kombu import Producer, Queue
from kombu.mixins import ConsumerProducerMixin

rpc_queue = Queue('rpc_queue')

class Worker(ConsumerProducerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [Consumer(
 queues=[rpc_queue],
 on_message=self.on_request,
 accept={'application/json'},
 prefetch_count=1,
)]

 def on_request(self, message):
 n = message.payload['n']
 print(' [.] fib({0})'.format(n))
 result = fib(n)

 self.producer.publish(
 {'result': result},
 exchange='', routing_key=message.properties['reply_to'],
 correlation_id=message.properties['correlation_id'],
 serializer='json',
 retry=True,
)
 message.ack()

See also

examples/rpc-tut6/ in the Github repository.

Advanced Topics

RabbitMQ

Consumer Priorities

RabbitMQ defines a consumer priority extension to the amqp protocol,
that can be enabled by setting the x-priority argument to
basic.consume.

In kombu you can specify this argument on the Queue, like
this:

queue = Queue('name', Exchange('exchange_name', type='direct'),
 consumer_arguments={'x-priority': 10})

Read more about consumer priorities here:
https://www.rabbitmq.com/consumer-priority.html

Reference

	
class kombu.Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, prefetch_count=None, tag_prefix=None)

	Message consumer.

	Parameters

	
	channel (kombu.Connection, ChannelT) – see channel.

	queues (Sequence[kombu.Queue]) – see queues.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – see no_ack.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – see auto_declare

	callbacks (Sequence[Callable]) – see callbacks.

	on_message (Callable) – See on_message

	on_decode_error (Callable) – see on_decode_error.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – see prefetch_count.

	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
accept = None

	List of accepted content-types.

An exception will be raised if the consumer receives
a message with an untrusted content type.
By default all content-types are accepted, but not if
kombu.disable_untrusted_serializers() was called,
in which case only json is allowed.

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

Note

This will not start consuming from the queue,
for that you will have to call consume() after.

	
auto_declare = True

	By default all entities will be declared at instantiation, if you
want to handle this manually you can set this to False.

	
callbacks = None

	List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments:
(body, message), which is the decoded message body and
the Message instance.

	
cancel()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
channel = None

	The connection/channel to use for this consumer.

	
close()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_ack.

	
consuming_from(queue)

	Return True if currently consuming from queue’.

	
declare()

	Declare queues, exchanges and bindings.

Note

This is done automatically at instantiation
when auto_declare is set.

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
no_ack = None

	Flag for automatic message acknowledgment.
If enabled the messages are automatically acknowledged by the
broker. This can increase performance but means that you
have no control of when the message is removed.

Disabled by default.

	
on_decode_error = None

	Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message,
exc), which is the message that can’t be decoded and the exception
that occurred while trying to decode it.

	
on_message = None

	Optional function called whenever a message is received.

When defined this function will be called instead of the
receive() method, and callbacks will be disabled.

So this can be used as an alternative to callbacks when
you don’t want the body to be automatically decoded.
Note that the message will still be decompressed if the message
has the compression header set.

The signature of the callback must take a single argument,
which is the Message object.

Also note that the message.body attribute, which is the raw
contents of the message body, may in some cases be a read-only
buffer object.

	
prefetch_count = None

	Initial prefetch count

If set, the consumer will set the prefetch_count QoS value at startup.
Can also be changed using qos().

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no undo operation.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters

	
	prefetch_size (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in terms of
whole messages.

	apply_global (bool [https://docs.python.org/dev/library/functions.html#bool]) – Apply new settings globally on all channels.

	
queues

	A single Queue, or a list of queues to
consume from.

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters

	
	body (Any) – The decoded message body.

	message (Message) – The message instance.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
registered.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters

	requeue (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
register_callback(callback)

	Register a new callback to be called when a message is received.

Note

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance.

	
revive(channel)

	Revive consumer after connection loss.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Examples

Hello World Example

Below example uses
Simple Interface
to send helloworld message through
message broker (rabbitmq) and print received message

hello_publisher.py:

from __future__ import absolute_import, unicode_literals

import datetime

from kombu import Connection

with Connection('amqp://guest:guest@localhost:5672//') as conn:
 simple_queue = conn.SimpleQueue('simple_queue')
 message = 'helloworld, sent at {0}'.format(datetime.datetime.today())
 simple_queue.put(message)
 print('Sent: {0}'.format(message))
 simple_queue.close()

hello_consumer.py:

from __future__ import absolute_import, unicode_literals, print_function

from kombu import Connection # noqa

with Connection('amqp://guest:guest@localhost:5672//') as conn:
 simple_queue = conn.SimpleQueue('simple_queue')
 message = simple_queue.get(block=True, timeout=1)
 print('Received: {0}'.format(message.payload))
 message.ack()
 simple_queue.close()

Task Queue Example

Very simple task queue using pickle, with primitive support
for priorities using different queues.

queues.py:

from __future__ import absolute_import, unicode_literals

from kombu import Exchange, Queue

task_exchange = Exchange('tasks', type='direct')
task_queues = [Queue('hipri', task_exchange, routing_key='hipri'),
 Queue('midpri', task_exchange, routing_key='midpri'),
 Queue('lopri', task_exchange, routing_key='lopri')]

worker.py:

from __future__ import absolute_import, unicode_literals

from kombu.mixins import ConsumerMixin
from kombu.log import get_logger
from kombu.utils.functional import reprcall

from .queues import task_queues

logger = get_logger(__name__)

class Worker(ConsumerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [Consumer(queues=task_queues,
 accept=['pickle', 'json'],
 callbacks=[self.process_task])]

 def process_task(self, body, message):
 fun = body['fun']
 args = body['args']
 kwargs = body['kwargs']
 logger.info('Got task: %s', reprcall(fun.__name__, args, kwargs))
 try:
 fun(*args, **kwargs)
 except Exception as exc:
 logger.error('task raised exception: %r', exc)
 message.ack()

if __name__ == '__main__':
 from kombu import Connection
 from kombu.utils.debug import setup_logging
 # setup root logger
 setup_logging(loglevel='INFO', loggers=[''])

 with Connection('amqp://guest:guest@localhost:5672//') as conn:
 try:
 worker = Worker(conn)
 worker.run()
 except KeyboardInterrupt:
 print('bye bye')

tasks.py:

from __future__ import absolute_import, unicode_literals

def hello_task(who='world'):
 print('Hello {0}'.format(who))

client.py:

from __future__ import absolute_import, unicode_literals

from kombu.pools import producers

from .queues import task_exchange

priority_to_routing_key = {
 'high': 'hipri',
 'mid': 'midpri',
 'low': 'lopri',
}

def send_as_task(connection, fun, args=(), kwargs={}, priority='mid'):
 payload = {'fun': fun, 'args': args, 'kwargs': kwargs}
 routing_key = priority_to_routing_key[priority]

 with producers[connection].acquire(block=True) as producer:
 producer.publish(payload,
 serializer='pickle',
 compression='bzip2',
 exchange=task_exchange,
 declare=[task_exchange],
 routing_key=routing_key)

if __name__ == '__main__':
 from kombu import Connection
 from .tasks import hello_task

 connection = Connection('amqp://guest:guest@localhost:5672//')
 send_as_task(connection, fun=hello_task, args=('Kombu',), kwargs={},
 priority='high')

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Simple Interface

	Sending and receiving messages

kombu.simple is a simple interface to AMQP queueing.
It is only slightly different from the Queue class in the
Python Standard Library, which makes it excellent for users with basic
messaging needs.

Instead of defining exchanges and queues, the simple classes only requires
two arguments, a connection channel and a name. The name is used as the
queue, exchange and routing key. If the need arises, you can specify
a Queue as the name argument instead.

In addition, the Connection comes with
shortcuts to create simple queues using the current connection:

>>> queue = connection.SimpleQueue('myqueue')
>>> # ... do something with queue
>>> queue.close()

This is equivalent to:

>>> from kombu.simple import SimpleQueue, SimpleBuffer

>>> channel = connection.channel()
>>> queue = SimpleBuffer(channel)
>>> # ... do something with queue
>>> channel.close()
>>> queue.close()

Sending and receiving messages

The simple interface defines two classes; SimpleQueue,
and SimpleBuffer. The former is used for persistent
messages, and the latter is used for transient, buffer-like queues.
They both have the same interface, so you can use them interchangeably.

Here is an example using the SimpleQueue class
to produce and consume logging messages:

import socket
import datetime
from time import time
from kombu import Connection

class Logger(object):

 def __init__(self, connection, queue_name='log_queue',
 serializer='json', compression=None):
 self.queue = connection.SimpleQueue(queue_name)
 self.serializer = serializer
 self.compression = compression

 def log(self, message, level='INFO', context={}):
 self.queue.put({'message': message,
 'level': level,
 'context': context,
 'hostname': socket.gethostname(),
 'timestamp': time()},
 serializer=self.serializer,
 compression=self.compression)

 def process(self, callback, n=1, timeout=1):
 for i in xrange(n):
 log_message = self.queue.get(block=True, timeout=1)
 entry = log_message.payload # deserialized data.
 callback(entry)
 log_message.ack() # remove message from queue

 def close(self):
 self.queue.close()

if __name__ == '__main__':
 from contextlib import closing

 with Connection('amqp://guest:guest@localhost:5672//') as conn:
 with closing(Logger(conn)) as logger:

 # Send message
 logger.log('Error happened while encoding video',
 level='ERROR',
 context={'filename': 'cutekitten.mpg'})

 # Consume and process message

 # This is the callback called when a log message is
 # received.
 def dump_entry(entry):
 date = datetime.datetime.fromtimestamp(entry['timestamp'])
 print('[%s %s %s] %s %r' % (date,
 entry['hostname'],
 entry['level'],
 entry['message'],
 entry['context']))

 # Process a single message using the callback above.
 logger.process(dump_entry, n=1)

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Connection and Producer Pools

Default Pools

Kombu ships with two global pools: one connection pool,
and one producer pool.

These are convenient and the fact that they are global
may not be an issue as connections should often be limited
at the process level, rather than per thread/application
and so on, but if you need custom pools per thread
see Custom Pool Groups.

The connection pool group

The connection pools are available as kombu.pools.connections.
This is a pool group, which means you give it a connection instance,
and you get a pool instance back. We have one pool per connection
instance to support multiple connections in the same app.
All connection instances with the same connection parameters will
get the same pool:

>>> from kombu import Connection
>>> from kombu.pools import connections

>>> connections[Connection('redis://localhost:6379')]
<kombu.connection.ConnectionPool object at 0x101805650>
>>> connections[Connection('redis://localhost:6379')]
<kombu.connection.ConnectionPool object at 0x101805650>

Let’s acquire and release a connection:

from kombu import Connection
from kombu.pools import connections

connection = Connection('redis://localhost:6379')

with connections[connection].acquire(block=True) as conn:
 print('Got connection: {0!r}'.format(connection.as_uri()))

Note

The block=True here means that the acquire call will block
until a connection is available in the pool.
Note that this will block forever in case there is a deadlock
in your code where a connection is not released. There
is a timeout argument you can use to safeguard against this
(see kombu.connection.Resource.acquire()).

If blocking is disabled and there aren’t any connections
left in the pool an kombu.exceptions.ConnectionLimitExceeded
exception will be raised.

That’s about it. If you need to connect to multiple brokers
at once you can do that too:

from kombu import Connection
from kombu.pools import connections

c1 = Connection('amqp://')
c2 = Connection('redis://')

with connections[c1].acquire(block=True) as conn1:
 with connections[c2].acquire(block=True) as conn2:
 #

The producer pool group

This is a pool group just like the connections, except
that it manages Producer instances
used to publish messages.

Here is an example using the producer pool to publish a message
to the news exchange:

from kombu import Connection, Exchange
from kombu.pools import producers

The exchange we send our news articles to.
news_exchange = Exchange('news')

The article we want to send
article = {'title': 'No cellular coverage on the tube for 2012',
 'ingress': 'yadda yadda yadda'}

The broker where our exchange is.
connection = Connection('amqp://guest:guest@localhost:5672//')

with producers[connection].acquire(block=True) as producer:
 producer.publish(
 article,
 exchange=news_exchange,
 routing_key='domestic',
 declare=[news_exchange],
 serializer='json',
 compression='zlib')

Setting pool limits

By default every connection instance has a limit of 200 connections.
You can change this limit using kombu.pools.set_limit().
You are able to grow the pool at runtime, but you can’t shrink it,
so it is best to set the limit as early as possible after your application
starts:

>>> from kombu import pools
>>> pools.set_limit()

Resetting all pools

You can close all active connections and reset all pool groups by
using the kombu.pools.reset() function. Note that this
will not respect anything currently using these connections,
so will just drag the connections away from under their feet:
you should be very careful before you use this.

Kombu will reset the pools if the process is forked,
so that forked processes start with clean pool groups.

Custom Pool Groups

To maintain your own pool groups you should create your own
Connections and kombu.pools.Producers
instances:

from kombu import pools
from kombu import Connection

connections = pools.Connections(limit=100)
producers = pools.Producers(limit=connections.limit)

connection = Connection('amqp://guest:guest@localhost:5672//')

with connections[connection].acquire(block=True):
 # ...

If you want to use the global limit that can be set with
set_limit() you can use a special value as the limit
argument:

from kombu import pools

connections = pools.Connections(limit=pools.use_default_limit)

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Serialization

Serializers

By default every message is encoded using JSON [http://www.json.org/], so sending
Python data structures like dictionaries and lists works.
YAML [http://yaml.org/], msgpack [https://msgpack.org/] and Python’s built-in pickle module is also supported,
and if needed you can register any custom serialization scheme you
want to use.

By default Kombu will only load JSON messages, so if you want
to use other serialization format you must explicitly enable
them in your consumer by using the accept argument:

Consumer(conn, [queue], accept=['json', 'pickle', 'msgpack'])

The accept argument can also include MIME-types.

Each option has its advantages and disadvantages.

	json – JSON is supported in many programming languages, is now

	a standard part of Python (since 2.6), and is fairly fast to
decode using the modern Python libraries such as cjson or
simplejson.

The primary disadvantage to JSON is that it limits you to
the following data types: strings, Unicode, floats, boolean,
dictionaries, and lists. Decimals and dates are notably missing.

Also, binary data will be transferred using Base64 encoding, which
will cause the transferred data to be around 34% larger than an
encoding which supports native binary types.

However, if your data fits inside the above constraints and
you need cross-language support, the default setting of JSON
is probably your best choice.

	pickle – If you have no desire to support any language other than

	Python, then using the pickle encoding will gain you
the support of all built-in Python data types (except class instances),
smaller messages when sending binary files, and a slight speedup
over JSON processing.

Pickle and Security

The pickle format is very convenient as it can serialize
and deserialize almost any object, but this is also a concern
for security.

Carefully crafted pickle payloads can do almost anything
a regular Python program can do, so if you let your consumer
automatically decode pickled objects you must make sure
to limit access to the broker so that untrusted
parties do not have the ability to send messages!

By default Kombu uses pickle protocol 2, but this can be changed
using the PICKLE_PROTOCOL environment variable or by changing
the global kombu.serialization.pickle_protocol flag.

	yaml – YAML has many of the same characteristics as json,

	except that it natively supports more data types (including dates,
recursive references, etc.)

However, the Python libraries for YAML are a good bit slower
than the libraries for JSON.

If you need a more expressive set of data types and need to maintain
cross-language compatibility, then YAML may be a better fit
than the above.

To instruct Kombu to use an alternate serialization method,
use one of the following options.

	Set the serialization option on a per-producer basis:

>>> producer = Producer(channel,
... exchange=exchange,
... serializer='yaml')

	Set the serialization option per message:

>>> producer.publish(message, routing_key=rkey,
... serializer='pickle')

Note that a Consumer do not need the serialization method specified.
They can auto-detect the serialization method as the
content-type is sent as a message header.

Sending raw data without Serialization

In some cases, you don’t need your message data to be serialized. If you
pass in a plain string or Unicode object as your message and a custom content_type, then Kombu will
not waste cycles serializing/deserializing the data.

You can optionally specify a content_encoding
for the raw data:

>>> with open('~/my_picture.jpg', 'rb') as fh:
... producer.publish(fh.read(),
 content_type='image/jpeg',
 content_encoding='binary',
 routing_key=rkey)

The Message object returned by the Consumer class will have a
content_type and content_encoding attribute.

Creating extensions using Setuptools entry-points

A package can also register new serializers using Setuptools
entry-points.

The entry-point must provide the name of the serializer along
with the path to a tuple providing the rest of the args:
encoder_function, decoder_function, content_type, content_encoding.

An example entrypoint could be:

from setuptools import setup

setup(
 entry_points={
 'kombu.serializers': [
 'my_serializer = my_module.serializer:register_args'
]
 }
)

Then the module my_module.serializer would look like:

register_args = (my_encoder, my_decoder, 'application/x-mimetype', 'utf-8')

When this package is installed the new ‘my_serializer’ serializer will be
supported by Kombu.

Buffer Objects

The decoder function of custom serializer must support both strings
and Python’s old-style buffer objects.

Python pickle and json modules usually don’t do this via its loads
function, but you can easily add support by making a wrapper around the
load function that takes file objects instead of strings.

Here’s an example wrapping pickle.loads() [https://docs.python.org/dev/library/pickle.html#pickle.loads] in such a way:

import pickle
from io import BytesIO
from kombu import serialization

def loads(s):
 return pickle.load(BytesIO(s))

serialization.register(
 'my_pickle', pickle.dumps, loads,
 content_type='application/x-pickle2',
 content_encoding='binary',
)

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Frequently Asked Questions

Questions

Q: Message.reject doesn’t work?

Answer: Earlier versions of RabbitMQ did not implement basic.reject,
so make sure your version is recent enough to support it.

Q: Message.requeue doesn’t work?

Answer: See Message.reject doesn’t work?

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

API Reference

	Release

	4.6

	Date

	Jun 06, 2019

	Kombu - kombu

	Common Utilities - kombu.common

	Pattern matching registry - kombu.matcher

	Mixin Classes - kombu.mixins

	Simple Messaging API - kombu.simple

	Logical Clocks and Synchronization - kombu.clocks

	Carrot Compatibility - kombu.compat

	Pidbox - kombu.pidbox

	Exceptions - kombu.exceptions

	Logging - kombu.log

	Connection - kombu.connection

	Message Objects - kombu.message

	Message Compression - kombu.compression

	Connection/Producer Pools - kombu.pools

	Abstract Classes - kombu.abstract

	Resource Management - kombu.resource

	Event Loop - kombu.asynchronous

	Event Loop Implementation - kombu.asynchronous.hub

	Semaphores - kombu.asynchronous.semaphore

	Timer - kombu.asynchronous.timer

	Event Loop Debugging Utils - kombu.asynchronous.debug

	Async HTTP Client - kombu.asynchronous.http

	Async HTTP Client Interface - kombu.asynchronous.http.base

	Async pyCurl HTTP Client - kombu.asynchronous.http.curl

	Async Amazon AWS Client - kombu.asynchronous.aws

	Amazon AWS Connection - kombu.asynchronous.aws.connection

	Async Amazon SQS Client - kombu.asynchronous.aws.sqs

	SQS Connection - kombu.asynchronous.aws.sqs.connection

	SQS Messages - kombu.asynchronous.aws.sqs.message

	SQS Queues - kombu.asynchronous.aws.sqs.queue

	Built-in Transports - kombu.transport

	Azure Storage Queues Transport - kombu.transport.azurestoragequeues

	Azure Service Bus Transport - kombu.transport.azureservicebus

	Pure-python AMQP Transport - kombu.transport.pyamqp

	librabbitmq AMQP transport - kombu.transport.librabbitmq

	Apache QPid Transport - kombu.transport.qpid

	In-memory Transport - kombu.transport.memory

	Redis Transport - kombu.transport.redis

	MongoDB Transport - kombu.transport.mongodb

	Consul Transport - kombu.transport.consul

	Etcd Transport - kombu.transport.etcd

	Zookeeper Transport - kombu.transport.zookeeper

	File-system Transport - kombu.transport.filesystem

	SQLAlchemy Transport Model - kombu.transport.sqlalchemy

	SQLAlchemy Transport Model - kombu.transport.sqlalchemy.models

	Amazon SQS Transport - kombu.transport.SQS

	SLMQ Transport - kombu.transport.SLMQ

	Pyro Transport - kombu.transport.pyro

	Transport Base Class - kombu.transport.base

	Virtual Transport Base Class - kombu.transport.virtual

	Virtual AMQ Exchange Implementation - kombu.transport.virtual.exchange

	Message Serialization - kombu

	Generic RabbitMQ manager - kombu.utils.amq_manager

	Custom Collections - kombu.utils.collections

	Python Compatibility - kombu.utils.compat

	Debugging Utilities - kombu.utils.debug

	Div Utilities - kombu.utils.div

	String Encoding Utilities - kombu.utils.encoding

	Async I/O Selectors - kombu.utils.eventio

	Functional-style Utilities - kombu.utils.functional

	Module Importing Utilities - kombu.utils.imports

	JSON Utilities - kombu.utils.json

	Rate limiting - kombu.utils.limits

	Object/Property Utilities - kombu.utils.objects

	Consumer Scheduling - kombu.utils.scheduling

	Text utilitites - kombu.utils.text

	Time Utilities - kombu.utils.time

	URL Utilities - kombu.utils.url

	UUID Utilities - kombu.utils.uuid

	Python 2 to Python 3 utilities - kombu.five

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Kombu - kombu

	Connection

	Exchange

	Queue

	Message Producer

	Message Consumer

Messaging library for Python.

	
kombu.enable_insecure_serializers(choices=<object object>)

	Enable serializers that are considered to be unsafe.

Note

Will enable pickle, yaml and msgpack by default, but you
can also specify a list of serializers (by name or content type)
to enable.

	
kombu.disable_insecure_serializers(allowed=<object object>)

	Disable untrusted serializers.

Will disable all serializers except json
or you can specify a list of deserializers to allow.

Note

Producers will still be able to serialize data
in these formats, but consumers will not accept
incoming data using the untrusted content types.

Connection

	
class kombu.Connection(hostname='localhost', userid=None, password=None, virtual_host=None, port=None, insist=False, ssl=False, transport=None, connect_timeout=5, transport_options=None, login_method=None, uri_prefix=None, heartbeat=0, failover_strategy='round-robin', alternates=None, **kwargs)

	A connection to the broker.

Example

>>> Connection('amqp://guest:guest@localhost:5672//')
>>> Connection('amqp://foo;amqp://bar',
... failover_strategy='round-robin')
>>> Connection('redis://', transport_options={
... 'visibility_timeout': 3000,
... })

>>> import ssl
>>> Connection('amqp://', login_method='EXTERNAL', ssl={
... 'ca_certs': '/etc/pki/tls/certs/something.crt',
... 'keyfile': '/etc/something/system.key',
... 'certfile': '/etc/something/system.cert',
... 'cert_reqs': ssl.CERT_REQUIRED,
... })

Note

SSL currently only works with the py-amqp, and qpid
transports. For other transports you can use stunnel.

	Parameters

	URL (str [https://docs.python.org/dev/library/stdtypes.html#str], Sequence) – Broker URL, or a list of URLs.

	Keyword Arguments

	
	ssl (bool [https://docs.python.org/dev/library/functions.html#bool]) – Use SSL to connect to the server. Default is False.
May not be supported by the specified transport.

	transport (Transport) – Default transport if not specified in the URL.

	connect_timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout in seconds for connecting to the
server. May not be supported by the specified transport.

	transport_options (Dict) – A dict of additional connection arguments to
pass to alternate kombu channel implementations. Consult the
transport documentation for available options.

	heartbeat (float [https://docs.python.org/dev/library/functions.html#float]) – Heartbeat interval in int/float seconds.
Note that if heartbeats are enabled then the
heartbeat_check() method must be called regularly,
around once per second.

Note

The connection is established lazily when needed. If you need the
connection to be established, then force it by calling
connect():

>>> conn = Connection('amqp://')
>>> conn.connect()

and always remember to close the connection:

>>> conn.release()

These options have been replaced by the URL argument, but are still
supported for backwards compatibility:

	Keyword Arguments

	
	hostname – Host name/address.
NOTE: You cannot specify both the URL argument and use the hostname
keyword argument at the same time.

	userid – Default user name if not provided in the URL.

	password – Default password if not provided in the URL.

	virtual_host – Default virtual host if not provided in the URL.

	port – Default port if not provided in the URL.

Attributes

	
hostname = None

	

	
port = None

	

	
userid = None

	

	
password = None

	

	
virtual_host = '/'

	

	
ssl = None

	

	
login_method = None

	

	
failover_strategy = 'round-robin'

	Strategy used to select new hosts when reconnecting after connection
failure. One of “round-robin”, “shuffle” or any custom iterator
constantly yielding new URLs to try.

	
connect_timeout = 5

	

	
heartbeat = None

	Heartbeat value, currently only supported by the py-amqp transport.

	
default_channel

	Default channel.

Created upon access and closed when the connection is closed.

Note

Can be used for automatic channel handling when you only need one
channel, and also it is the channel implicitly used if
a connection is passed instead of a channel, to functions that
require a channel.

	
connected

	Return true if the connection has been established.

	
recoverable_connection_errors

	Recoverable connection errors.

List of connection related exceptions that can be recovered from,
but where the connection must be closed and re-established first.

	
recoverable_channel_errors

	Recoverable channel errors.

List of channel related exceptions that can be automatically
recovered from without re-establishing the connection.

	
connection_errors

	List of exceptions that may be raised by the connection.

	
channel_errors

	List of exceptions that may be raised by the channel.

	
transport

	

	
connection

	The underlying connection object.

Warning

This instance is transport specific, so do not
depend on the interface of this object.

	
uri_prefix = None

	

	
declared_entities = None

	The cache of declared entities is per connection,
in case the server loses data.

	
cycle = None

	Iterator returning the next broker URL to try in the event
of connection failure (initialized by failover_strategy).

	
host

	The host as a host name/port pair separated by colon.

	
manager

	AMQP Management API.

Experimental manager that can be used to manage/monitor the broker
instance.

Not available for all transports.

	
supports_heartbeats

	

	
is_evented

	

Methods

	
as_uri(include_password=False, mask='**', getfields=operator.itemgetter('port', 'userid', 'password', 'virtual_host', 'transport'))

	Convert connection parameters to URL form.

	
connect()

	Establish connection to server immediately.

	
channel()

	Create and return a new channel.

	
drain_events(**kwargs)

	Wait for a single event from the server.

	Parameters

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout in seconds before we give up.

	Raises

	socket.timeout [https://docs.python.org/dev/library/socket.html#socket.timeout] – if the timeout is exceeded.

	
release()

	Close the connection (if open).

	
autoretry(fun, channel=None, **ensure_options)

	Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if
it raises connection or channel related errors.
The return value will be a tuple of (retval, last_created_channel).

If a channel is not provided, then one will be automatically
acquired (remember to close it afterwards).

See also

ensure() for the full list of supported keyword arguments.

Example

>>> channel = connection.channel()
>>> try:
... ret, channel = connection.autoretry(
... publish_messages, channel)
... finally:
... channel.close()

	
ensure_connection(errback=None, max_retries=None, interval_start=2, interval_step=2, interval_max=30, callback=None, reraise_as_library_errors=True, timeout=None)

	Ensure we have a connection to the server.

If not retry establishing the connection with the settings
specified.

	Parameters

	
	errback (Callable) – Optional callback called each time the
connection can’t be established. Arguments provided are
the exception raised and the interval that will be
slept (exc, interval).

	max_retries (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of times to retry.
If this limit is exceeded the connection error
will be re-raised.

	interval_start (float [https://docs.python.org/dev/library/functions.html#float]) – The number of seconds we start
sleeping for.

	interval_step (float [https://docs.python.org/dev/library/functions.html#float]) – How many seconds added to the interval
for each retry.

	interval_max (float [https://docs.python.org/dev/library/functions.html#float]) – Maximum number of seconds to sleep between
each retry.

	callback (Callable) – Optional callback that is called for every
internal iteration (1 s).

	timeout (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum amount of time in seconds to spend
waiting for connection

	
ensure(obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1, interval_max=1, on_revive=None)

	Ensure operation completes.

Regardless of any channel/connection errors occurring.

Retries by establishing the connection, and reapplying
the function.

	Parameters

	
	obj – The object to ensure an action on.

	fun (Callable) – Method to apply.

	errback (Callable) – Optional callback called each time the
connection can’t be established. Arguments provided are
the exception raised and the interval that will
be slept (exc, interval).

	max_retries (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of times to retry.
If this limit is exceeded the connection error
will be re-raised.

	interval_start (float [https://docs.python.org/dev/library/functions.html#float]) – The number of seconds we start
sleeping for.

	interval_step (float [https://docs.python.org/dev/library/functions.html#float]) – How many seconds added to the interval
for each retry.

	interval_max (float [https://docs.python.org/dev/library/functions.html#float]) – Maximum number of seconds to sleep between
each retry.

	on_revive (Callable) – Optional callback called whenever
revival completes successfully

Examples

>>> from kombu import Connection, Producer
>>> conn = Connection('amqp://')
>>> producer = Producer(conn)

>>> def errback(exc, interval):
... logger.error('Error: %r', exc, exc_info=1)
... logger.info('Retry in %s seconds.', interval)

>>> publish = conn.ensure(producer, producer.publish,
... errback=errback, max_retries=3)
>>> publish({'hello': 'world'}, routing_key='dest')

	
revive(new_channel)

	Revive connection after connection re-established.

	
create_transport()

	

	
get_transport_cls()

	Get the currently used transport class.

	
clone(**kwargs)

	Create a copy of the connection with same settings.

	
info()

	Get connection info.

	
switch(url)

	Switch connection parameters to use a new URL.

Note

Does not reconnect!

	
maybe_switch_next()

	Switch to next URL given by the current failover strategy.

	
heartbeat_check(rate=2)

	Check heartbeats.

Allow the transport to perform any periodic tasks
required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then
this is a noop operation.

	Parameters

	rate (int [https://docs.python.org/dev/library/functions.html#int]) – Rate is how often the tick is called
compared to the actual heartbeat value. E.g. if
the heartbeat is set to 3 seconds, and the tick
is called every 3 / 2 seconds, then the rate is 2.
This value is currently unused by any transports.

	
maybe_close_channel(channel)

	Close given channel, but ignore connection and channel errors.

	
register_with_event_loop(loop)

	

	
close()

	Close the connection (if open).

	
_close()

	Really close connection, even if part of a connection pool.

	
completes_cycle(retries)

	Return true if the cycle is complete after number of retries.

	
get_manager(*args, **kwargs)

	

	
Producer(channel=None, *args, **kwargs)

	Create new kombu.Producer instance.

	
Consumer(queues=None, channel=None, *args, **kwargs)

	Create new kombu.Consumer instance.

	
Pool(limit=None, **kwargs)

	Pool of connections.

See also

ConnectionPool.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of active connections.
Default is no limit.

Example

>>> connection = Connection('amqp://')
>>> pool = connection.Pool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ConnectionLimitExceeded(self.limit)
 kombu.exceptions.ConnectionLimitExceeded: 2

	
ChannelPool(limit=None, **kwargs)

	Pool of channels.

See also

ChannelPool.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of active channels.
Default is no limit.

Example

>>> connection = Connection('amqp://')
>>> pool = connection.ChannelPool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ChannelLimitExceeded(self.limit)
 kombu.connection.ChannelLimitExceeded: 2

	
SimpleQueue(name, no_ack=None, queue_opts=None, queue_args=None, exchange_opts=None, channel=None, **kwargs)

	Simple persistent queue API.

Create new SimpleQueue, using a channel
from this connection.

If name is a string, a queue and exchange will be automatically
created using that name as the name of the queue and exchange,
also it will be used as the default routing key.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Queue) – Name of the queue/or a queue.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable acknowledgments. Default is false.

	queue_opts (Dict) – Additional keyword arguments passed to the
constructor of the automatically created Queue.

	queue_args (Dict) – Additional keyword arguments passed to the
constructor of the automatically created Queue
for setting implementation extensions (e.g., in RabbitMQ).

	exchange_opts (Dict) – Additional keyword arguments passed to the
constructor of the automatically created
Exchange.

	channel (ChannelT) – Custom channel to use. If not specified the
connection default channel is used.

	
SimpleBuffer(name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None, **kwargs)

	Simple ephemeral queue API.

Create new SimpleQueue using a channel
from this connection.

See also

Same as SimpleQueue(), but configured with buffering
semantics. The resulting queue and exchange will not be durable,
also auto delete is enabled. Messages will be transient (not
persistent), and acknowledgments are disabled (no_ack).

Exchange

Example creating an exchange declaration:

>>> news_exchange = Exchange('news', type='topic')

For now news_exchange is just a declaration, you can’t perform
actions on it. It just describes the name and options for the exchange.

The exchange can be bound or unbound. Bound means the exchange is
associated with a channel and operations can be performed on it.
To bind the exchange you call the exchange with the channel as argument:

>>> bound_exchange = news_exchange(channel)

Now you can perform operations like declare() or delete():

>>> # Declare exchange manually
>>> bound_exchange.declare()

>>> # Publish raw string message using low-level exchange API
>>> bound_exchange.publish(
... 'Cure for cancer found!',
... routing_key='news.science',
...)

>>> # Delete exchange.
>>> bound_exchange.delete()

	
class kombu.Exchange(name='', type='', channel=None, **kwargs)

	An Exchange declaration.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See name.

	type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See type.

	channel (kombu.Connection, ChannelT) – See channel.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – See durable.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – See auto_delete.

	delivery_mode (enum) – See delivery_mode.

	arguments (Dict) – See arguments.

	no_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_declare

	
name

	Name of the exchange.
Default is no name (the default exchange).

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
type

	This description of AMQP exchange types was shamelessly stolen
from the blog post `AMQP in 10 minutes: Part 4`_ by
Rajith Attapattu. Reading this article is recommended if you’re
new to amqp.

“AMQP defines four default exchange types (routing algorithms) that
covers most of the common messaging use cases. An AMQP broker can
also define additional exchange types, so see your broker
manual for more information about available exchange types.

	direct (default)

Direct match between the routing key in the message,
and the routing criteria used when a queue is bound to
this exchange.

	topic

Wildcard match between the routing key and the routing
pattern specified in the exchange/queue binding.
The routing key is treated as zero or more words delimited
by “.” and supports special wildcard characters. “*”
matches a single word and “#” matches zero or more words.

	fanout

Queues are bound to this exchange with no arguments. Hence
any message sent to this exchange will be forwarded to all
queues bound to this exchange.

	headers

Queues are bound to this exchange with a table of arguments
containing headers and values (optional). A special
argument named “x-match” determines the matching algorithm,
where “all” implies an AND (all pairs must match) and
“any” implies OR (at least one pair must match).

arguments is used to specify the arguments.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
channel

	The channel the exchange is bound to (if bound).

	Type

	ChannelT

	
durable

	Durable exchanges remain active when a server restarts.
Non-durable exchanges (transient exchanges) are purged when a
server restarts. Default is True.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
auto_delete

	If set, the exchange is deleted when all queues
have finished using it. Default is False.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
delivery_mode

	The default delivery mode used for messages.
The value is an integer, or alias string.

	1 or “transient”

The message is transient. Which means it is stored in
memory only, and is lost if the server dies or restarts.

	
	2 or “persistent” (default)

	The message is persistent. Which means the message is
stored both in-memory, and on disk, and therefore
preserved if the server dies or restarts.

The default value is 2 (persistent).

	Type

	enum

	
arguments

	Additional arguments to specify when the exchange
is declared.

	Type

	Dict

	
no_declare

	Never declare this exchange
(declare() does nothing).

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
maybe_bind(channel)

	Bind instance to channel if not already bound.

	
Message(body, delivery_mode=None, properties=None, **kwargs)

	Create message instance to be sent with publish().

	Parameters

	
	body (Any) – Message body.

	delivery_mode (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set custom delivery mode.
Defaults to delivery_mode.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority, 0 to broker configured
max priority, where higher is better.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either
a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library
properly sets content_type.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The character set in which this object
is encoded. Use “binary” if sending in raw binary objects.
Leave blank if using built-in serialization as our library
properly sets content_encoding.

	properties (Dict) – Message properties.

	headers (Dict) – Message headers.

	
PERSISTENT_DELIVERY_MODE = 2

	

	
TRANSIENT_DELIVERY_MODE = 1

	

	
attrs = (('name', None), ('type', None), ('arguments', None), ('durable', <class 'bool'>), ('passive', <class 'bool'>), ('auto_delete', <class 'bool'>), ('delivery_mode', <function Exchange.<lambda>>), ('no_declare', <class 'bool'>))

	

	
auto_delete = False

	

	
bind_to(exchange='', routing_key='', arguments=None, nowait=False, channel=None, **kwargs)

	Bind the exchange to another exchange.

	Parameters

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set the server will not respond, and the call
will not block waiting for a response.
Default is False.

	
binding(routing_key='', arguments=None, unbind_arguments=None)

	

	
can_cache_declaration

	bool(x) -> bool

Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.

	
declare(nowait=False, passive=None, channel=None)

	Declare the exchange.

Creates the exchange on the broker, unless passive is set
in which case it will only assert that the exchange exists.

	Argument:

	
	nowait (bool): If set the server will not respond, and a

	response will not be waited for. Default is False.

	
delete(if_unused=False, nowait=False)

	Delete the exchange declaration on server.

	Parameters

	
	if_unused (bool [https://docs.python.org/dev/library/functions.html#bool]) – Delete only if the exchange has no bindings.
Default is False.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set the server will not respond, and a
response will not be waited for. Default is False.

	
delivery_mode = None

	

	
durable = True

	

	
name = ''

	

	
no_declare = False

	

	
passive = False

	

	
publish(message, routing_key=None, mandatory=False, immediate=False, exchange=None)

	Publish message.

	Parameters

	
	message (Union[kombu.Message, str [https://docs.python.org/dev/library/stdtypes.html#str], bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]]) – Message to publish.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	
type = 'direct'

	

	
unbind_from(source='', routing_key='', nowait=False, arguments=None, channel=None)

	Delete previously created exchange binding from the server.

Queue

Example creating a queue using our exchange in the Exchange
example:

>>> science_news = Queue('science_news',
... exchange=news_exchange,
... routing_key='news.science')

For now science_news is just a declaration, you can’t perform
actions on it. It just describes the name and options for the queue.

The queue can be bound or unbound. Bound means the queue is
associated with a channel and operations can be performed on it.
To bind the queue you call the queue instance with the channel as
an argument:

>>> bound_science_news = science_news(channel)

Now you can perform operations like declare() or purge():

>>> bound_science_news.declare()
>>> bound_science_news.purge()
>>> bound_science_news.delete()

	
class kombu.Queue(name='', exchange=None, routing_key='', channel=None, bindings=None, on_declared=None, **kwargs)

	A Queue declaration.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See name.

	exchange (Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – See exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See routing_key.

	channel (kombu.Connection, ChannelT) – See channel.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – See durable.

	exclusive (bool [https://docs.python.org/dev/library/functions.html#bool]) – See exclusive.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – See auto_delete.

	queue_arguments (Dict) – See queue_arguments.

	binding_arguments (Dict) – See binding_arguments.

	consumer_arguments (Dict) – See consumer_arguments.

	no_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_declare.

	on_declared (Callable) – See on_declared.

	expires (float [https://docs.python.org/dev/library/functions.html#float]) – See expires.

	message_ttl (float [https://docs.python.org/dev/library/functions.html#float]) – See message_ttl.

	max_length (int [https://docs.python.org/dev/library/functions.html#int]) – See max_length.

	max_length_bytes (int [https://docs.python.org/dev/library/functions.html#int]) – See max_length_bytes.

	max_priority (int [https://docs.python.org/dev/library/functions.html#int]) – See max_priority.

	
name

	Name of the queue.
Default is no name (default queue destination).

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
exchange

	The Exchange the queue binds to.

	Type

	Exchange

	
routing_key

	The routing key (if any), also called binding key.

The interpretation of the routing key depends on
the Exchange.type.

	direct exchange

Matches if the routing key property of the message and
the routing_key attribute are identical.

	fanout exchange

Always matches, even if the binding does not have a key.

	topic exchange

Matches the routing key property of the message by a primitive
pattern matching scheme. The message routing key then consists
of words separated by dots (“.”, like domain names), and
two special characters are available; star (“*”) and hash
(“#”). The star matches any word, and the hash matches
zero or more words. For example “*.stock.#” matches the
routing keys “usd.stock” and “eur.stock.db” but not
“stock.nasdaq”.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
channel

	The channel the Queue is bound to (if bound).

	Type

	ChannelT

	
durable

	Durable queues remain active when a server restarts.
Non-durable queues (transient queues) are purged if/when
a server restarts.
Note that durable queues do not necessarily hold persistent
messages, although it does not make sense to send
persistent messages to a transient queue.

Default is True.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
exclusive

	Exclusive queues may only be consumed from by the
current connection. Setting the ‘exclusive’ flag
always implies ‘auto-delete’.

Default is False.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
auto_delete

	If set, the queue is deleted when all consumers
have finished using it. Last consumer can be canceled
either explicitly or because its channel is closed. If
there was no consumer ever on the queue, it won’t be
deleted.

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
expires

	Set the expiry time (in seconds) for when this
queue should expire.

The expiry time decides how long the queue can stay unused
before it’s automatically deleted.
Unused means the queue has no consumers, the queue has not been
redeclared, and Queue.get has not been invoked for a duration
of at least the expiration period.

See https://www.rabbitmq.com/ttl.html#queue-ttl

RabbitMQ extension: Only available when using RabbitMQ.

	Type

	float [https://docs.python.org/dev/library/functions.html#float]

	
message_ttl

	Message time to live in seconds.

This setting controls how long messages can stay in the queue
unconsumed. If the expiry time passes before a message consumer
has received the message, the message is deleted and no consumer
will see the message.

See https://www.rabbitmq.com/ttl.html#per-queue-message-ttl

RabbitMQ extension: Only available when using RabbitMQ.

	Type

	float [https://docs.python.org/dev/library/functions.html#float]

	
max_length

	Set the maximum number of messages that the
queue can hold.

If the number of messages in the queue size exceeds this limit,
new messages will be dropped (or dead-lettered if a dead letter
exchange is active).

See https://www.rabbitmq.com/maxlength.html

RabbitMQ extension: Only available when using RabbitMQ.

	Type

	int [https://docs.python.org/dev/library/functions.html#int]

	
max_length_bytes

	Set the max size (in bytes) for the total
of messages in the queue.

If the total size of all the messages in the queue exceeds this
limit, new messages will be dropped (or dead-lettered if a dead
letter exchange is active).

RabbitMQ extension: Only available when using RabbitMQ.

	Type

	int [https://docs.python.org/dev/library/functions.html#int]

	
max_priority

	Set the highest priority number for this queue.

For example if the value is 10, then messages can delivered to
this queue can have a priority value between 0 and 10,
where 10 is the highest priority.

RabbitMQ queues without a max priority set will ignore
the priority field in the message, so if you want priorities
you need to set the max priority field to declare the queue
as a priority queue.

RabbitMQ extension: Only available when using RabbitMQ.

	Type

	int [https://docs.python.org/dev/library/functions.html#int]

	
queue_arguments

	Additional arguments used when declaring
the queue. Can be used to to set the arguments value
for RabbitMQ/AMQP’s queue.declare.

	Type

	Dict

	
binding_arguments

	Additional arguments used when binding
the queue. Can be used to to set the arguments value
for RabbitMQ/AMQP’s queue.declare.

	Type

	Dict

	
consumer_arguments

	Additional arguments used when consuming
from this queue. Can be used to to set the arguments value
for RabbitMQ/AMQP’s basic.consume.

	Type

	Dict

	
alias

	Unused in Kombu, but applications can take advantage
of this, for example to give alternate names to queues with
automatically generated queue names.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
on_declared

	Optional callback to be applied when the
queue has been declared (the queue_declare operation is
complete). This must be a function with a signature that
accepts at least 3 positional arguments:
(name, messages, consumers).

	Type

	Callable

	
no_declare

	Never declare this queue, nor related
entities (declare() does nothing).

	Type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
maybe_bind(channel)

	Bind instance to channel if not already bound.

	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
as_dict(recurse=False)

	

	
attrs = (('name', None), ('exchange', None), ('routing_key', None), ('queue_arguments', None), ('binding_arguments', None), ('consumer_arguments', None), ('durable', <class 'bool'>), ('exclusive', <class 'bool'>), ('auto_delete', <class 'bool'>), ('no_ack', None), ('alias', None), ('bindings', <class 'list'>), ('no_declare', <class 'bool'>), ('expires', <class 'float'>), ('message_ttl', <class 'float'>), ('max_length', <class 'int'>), ('max_length_bytes', <class 'int'>), ('max_priority', <class 'int'>))

	

	
auto_delete = False

	

	
bind(channel)

	Create copy of the instance that is bound to a channel.

	
bind_to(exchange='', routing_key='', arguments=None, nowait=False, channel=None)

	

	
can_cache_declaration

	bool(x) -> bool

Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.

	
cancel(consumer_tag)

	Cancel a consumer by consumer tag.

	
consume(consumer_tag='', callback=None, no_ack=None, nowait=False)

	Start a queue consumer.

Consumers last as long as the channel they were created on, or
until the client cancels them.

	Parameters

	
	consumer_tag (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Unique identifier for the consumer.
The consumer tag is local to a connection, so two clients
can use the same consumer tags. If this field is empty
the server will generate a unique tag.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled the broker will automatically
ack messages.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Do not wait for a reply.

	callback (Callable) – callback called for each delivered message.

	
declare(nowait=False, channel=None)

	Declare queue and exchange then binds queue to exchange.

	
delete(if_unused=False, if_empty=False, nowait=False)

	Delete the queue.

	Parameters

	
	if_unused (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set, the server will only delete the queue
if it has no consumers. A channel error will be raised
if the queue has consumers.

	if_empty (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set, the server will only delete the queue if
it is empty. If it is not empty a channel error will be raised.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Do not wait for a reply.

	
durable = True

	

	
exchange = <unbound Exchange ''(direct)>

	

	
exclusive = False

	

	
classmethod from_dict(queue, **options)

	

	
get(no_ack=None, accept=None)

	Poll the server for a new message.

This method provides direct access to the messages in a
queue using a synchronous dialogue, designed for
specific types of applications where synchronous functionality
is more important than performance.

	Returns

	
	if a message was available,

	or None otherwise.

	Return type

	Message

	Parameters

	
	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – If enabled the broker will
automatically ack messages.

	accept (Set[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – Custom list of accepted content types.

	
name = ''

	

	
no_ack = False

	

	
purge(nowait=False)

	Remove all ready messages from the queue.

	
queue_bind(nowait=False, channel=None)

	Create the queue binding on the server.

	
queue_declare(nowait=False, passive=False, channel=None)

	Declare queue on the server.

	Parameters

	
	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – Do not wait for a reply.

	passive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If set, the server will not create the queue.
The client can use this to check whether a queue exists
without modifying the server state.

	
queue_unbind(arguments=None, nowait=False, channel=None)

	

	
routing_key = ''

	

	
unbind_from(exchange='', routing_key='', arguments=None, nowait=False, channel=None)

	Unbind queue by deleting the binding from the server.

	
when_bound()

	Callback called when the class is bound.

Message Producer

	
class kombu.Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters

	
	channel (kombu.Connection, ChannelT) – Connection or channel.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default routing key.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default serializer. Default is “json”.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default compression method.
Default is no compression.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – Automatically declare the default exchange
at instantiation. Default is True.

	on_return (Callable) – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
channel

	

	
exchange = None

	Default exchange

	
routing_key = ''

	Default routing key.

	
serializer = None

	Default serializer to use. Default is JSON.

	
compression = None

	Default compression method. Disabled by default.

	
auto_declare = True

	By default, if a defualt exchange is set,
that exchange will be declare when publishing a message.

	
on_return = None

	Basic return callback.

	
connection

	

	
declare()

	Declare the exchange.

Note

This happens automatically at instantiation when
the auto_declare flag is enabled.

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare exchange if not already declared during this session.

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=None, expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters

	
	body (Any) – Message body.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	delivery_mode (enum) – See delivery_mode.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority. A number between 0 and 9.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content type. Default is auto-detect.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content encoding. Default is auto-detect.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer to use. Default is auto-detect.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Compression method to use. Default is none.

	headers (Dict) – Mapping of arbitrary headers to pass along
with the message body.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override the exchange.
Note that this exchange must have been declared.

	declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message.
The entities will be declared using
maybe_declare().

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy (Dict) – Retry configuration, this is the keywords
supported by ensure().

	expiration (float [https://docs.python.org/dev/library/functions.html#float]) – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties (Any) – Additional message properties, see AMQP spec.

	
revive(channel)

	Revive the producer after connection loss.

Message Consumer

	
class kombu.Consumer(channel, queues=None, no_ack=None, auto_declare=None, callbacks=None, on_decode_error=None, on_message=None, accept=None, prefetch_count=None, tag_prefix=None)

	Message consumer.

	Parameters

	
	channel (kombu.Connection, ChannelT) – see channel.

	queues (Sequence[kombu.Queue]) – see queues.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – see no_ack.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – see auto_declare

	callbacks (Sequence[Callable]) – see callbacks.

	on_message (Callable) – See on_message

	on_decode_error (Callable) – see on_decode_error.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – see prefetch_count.

	
channel = None

	The connection/channel to use for this consumer.

	
queues

	A single Queue, or a list of queues to
consume from.

	
no_ack = None

	Flag for automatic message acknowledgment.
If enabled the messages are automatically acknowledged by the
broker. This can increase performance but means that you
have no control of when the message is removed.

Disabled by default.

	
auto_declare = True

	By default all entities will be declared at instantiation, if you
want to handle this manually you can set this to False.

	
callbacks = None

	List of callbacks called in order when a message is received.

The signature of the callbacks must take two arguments:
(body, message), which is the decoded message body and
the Message instance.

	
on_message = None

	Optional function called whenever a message is received.

When defined this function will be called instead of the
receive() method, and callbacks will be disabled.

So this can be used as an alternative to callbacks when
you don’t want the body to be automatically decoded.
Note that the message will still be decompressed if the message
has the compression header set.

The signature of the callback must take a single argument,
which is the Message object.

Also note that the message.body attribute, which is the raw
contents of the message body, may in some cases be a read-only
buffer object.

	
on_decode_error = None

	Callback called when a message can’t be decoded.

The signature of the callback must take two arguments: (message,
exc), which is the message that can’t be decoded and the exception
that occurred while trying to decode it.

	
connection

	

	
declare()

	Declare queues, exchanges and bindings.

Note

This is done automatically at instantiation
when auto_declare is set.

	
register_callback(callback)

	Register a new callback to be called when a message is received.

Note

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance.

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

Note

This will not start consuming from the queue,
for that you will have to call consume() after.

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_ack.

	
cancel()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
consuming_from(queue)

	Return True if currently consuming from queue’.

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no undo operation.

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters

	
	prefetch_size (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in terms of
whole messages.

	apply_global (bool [https://docs.python.org/dev/library/functions.html#bool]) – Apply new settings globally on all channels.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters

	requeue (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters

	
	body (Any) – The decoded message body.

	message (Message) – The message instance.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
registered.

	
revive(channel)

	Revive consumer after connection loss.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Common Utilities - kombu.common

Common Utilities.

	
class kombu.common.Broadcast(name=None, queue=None, unique=False, auto_delete=True, exchange=None, alias=None, **kwargs)

	Broadcast queue.

Convenience class used to define broadcast queues.

Every queue instance will have a unique name,
and both the queue and exchange is configured with auto deletion.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – This is used as the name of the exchange.

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – By default a unique id is used for the queue
name for every consumer. You can specify a custom
queue name here.

	unique (bool [https://docs.python.org/dev/library/functions.html#bool]) – Always create a unique queue
even if a queue name is supplied.

	**kwargs (Any) – See Queue for a list
of additional keyword arguments supported.

	
attrs = (('name', None), ('exchange', None), ('routing_key', None), ('queue_arguments', None), ('binding_arguments', None), ('consumer_arguments', None), ('durable', <class 'bool'>), ('exclusive', <class 'bool'>), ('auto_delete', <class 'bool'>), ('no_ack', None), ('alias', None), ('bindings', <class 'list'>), ('no_declare', <class 'bool'>), ('expires', <class 'float'>), ('message_ttl', <class 'float'>), ('max_length', <class 'int'>), ('max_length_bytes', <class 'int'>), ('max_priority', <class 'int'>), ('queue', None))

	

	
kombu.common.maybe_declare(entity, channel=None, retry=False, **retry_policy)

	Declare entity (cached).

	
kombu.common.uuid(_uuid=<function uuid4>)

	Generate unique id in UUID4 format.

See also

For now this is provided by uuid.uuid4() [https://docs.python.org/dev/library/uuid.html#uuid.uuid4].

	
kombu.common.itermessages(conn, channel, queue, limit=1, timeout=None, callbacks=None, **kwargs)

	Iterator over messages.

	
kombu.common.send_reply(exchange, req, msg, producer=None, retry=False, retry_policy=None, **props)

	Send reply for request.

	Parameters

	
	exchange (kombu.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Reply exchange

	req (Message) – Original request, a message with
a reply_to property.

	producer (kombu.Producer) – Producer instance

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – If true must retry according to
the reply_policy argument.

	retry_policy (Dict) – Retry settings.

	**props (Any) – Extra properties.

	
kombu.common.collect_replies(conn, channel, queue, *args, **kwargs)

	Generator collecting replies from queue.

	
kombu.common.insured(pool, fun, args, kwargs, errback=None, on_revive=None, **opts)

	Function wrapper to handle connection errors.

Ensures function performing broker commands completes
despite intermittent connection failures.

	
kombu.common.drain_consumer(consumer, limit=1, timeout=None, callbacks=None)

	Drain messages from consumer instance.

	
kombu.common.eventloop(conn, limit=None, timeout=None, ignore_timeouts=False)

	Best practice generator wrapper around Connection.drain_events.

Able to drain events forever, with a limit, and optionally ignoring
timeout errors (a timeout of 1 is often used in environments where
the socket can get “stuck”, and is a best practice for Kombu consumers).

eventloop is a generator.

Examples

>>> from kombu.common import eventloop

>>> def run(conn):
... it = eventloop(conn, timeout=1, ignore_timeouts=True)
... next(it) # one event consumed, or timed out.
...
... for _ in eventloop(conn, timeout=1, ignore_timeouts=True):
... pass # loop forever.

It also takes an optional limit parameter, and timeout errors
are propagated by default:

for _ in eventloop(connection, limit=1, timeout=1):
 pass

See also

itermessages(), which is an event loop bound to one or more
consumers, that yields any messages received.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Pattern matching registry - kombu.matcher

Pattern matching registry.

	
exception kombu.matcher.MatcherNotInstalled

	Matcher not installed/found.

	
class kombu.matcher.MatcherRegistry

	Pattern matching function registry.

	
exception MatcherNotInstalled

	Matcher not installed/found.

	
match(data, pattern, matcher=None, matcher_kwargs=None)

	Call the matcher.

	
matcher_pattern_first = ['pcre']

	

	
register(name, matcher)

	Add matcher by name to the registry.

	
unregister(name)

	Remove matcher by name from the registry.

	
kombu.matcher.match = <bound method MatcherRegistry.match of <kombu.matcher.MatcherRegistry object>>

	Register a new matching method.

	Parameters

	
	name – A convience name for the mathing method.

	matcher – A method that will be passed data and pattern.

	Type

	
	
kombu.matcher.register(name, matcher)

	

	
kombu.matcher.register = <bound method MatcherRegistry.register of <kombu.matcher.MatcherRegistry object>>

	Unregister registered matching method.

	Parameters

	name – Registered matching method name.

	Type

	
	
kombu.matcher.unregister(name)

	

	
kombu.matcher.register_glob()

	Register glob into default registry.

	
kombu.matcher.register_pcre()

	Register pcre into default registry.

	
kombu.matcher.registry = <kombu.matcher.MatcherRegistry object>

	
	
match(data, pattern, matcher=default_matcher,

	
matcher_kwargs=None):

	

Match data by pattern using matcher.

	Parameters

	
	data – The data that should be matched. Must be string.

	pattern – The pattern that should be applied. Must be string.

	Keyword Arguments

	
	matcher – An optional string representing the mathcing
method (for example, glob or pcre).

If None (default), then glob will be used.

	matcher_kwargs – Additional keyword arguments that will be passed
to the specified matcher.

	Returns

	True if data matches pattern,
False otherwise.

	Raises

	MatcherNotInstalled – If the matching method requested is not
available.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Mixin Classes - kombu.mixins

Mixins.

	
class kombu.mixins.ConsumerMixin

	Convenience mixin for implementing consumer programs.

It can be used outside of threads, with threads, or greenthreads
(eventlet/gevent) too.

The basic class would need a connection attribute
which must be a Connection instance,
and define a get_consumers() method that returns a list
of kombu.Consumer instances to use.
Supporting multiple consumers is important so that multiple
channels can be used for different QoS requirements.

Example

class Worker(ConsumerMixin):
 task_queue = Queue('tasks', Exchange('tasks'), 'tasks')

 def __init__(self, connection):
 self.connection = None

 def get_consumers(self, Consumer, channel):
 return [Consumer(queues=[self.task_queue],
 callbacks=[self.on_task])]

 def on_task(self, body, message):
 print('Got task: {0!r}'.format(body))
 message.ack()

	
* :meth:`extra_context`

	Optional extra context manager that will be entered
after the connection and consumers have been set up.

Takes arguments (connection, channel).

	
* :meth:`on_connection_error`

	Handler called if the connection is lost/ or
is unavailable.

Takes arguments (exc, interval), where interval
is the time in seconds when the connection will be retried.

The default handler will log the exception.

	
* :meth:`on_connection_revived`

	Handler called as soon as the connection is re-established
after connection failure.

Takes no arguments.

	
* :meth:`on_consume_ready`

	Handler called when the consumer is ready to accept
messages.

Takes arguments (connection, channel, consumers).
Also keyword arguments to consume are forwarded
to this handler.

	
* :meth:`on_consume_end`

	Handler called after the consumers are canceled.
Takes arguments (connection, channel).

	
* :meth:`on_iteration`

	Handler called for every iteration while draining
events.

Takes no arguments.

	
* :meth:`on_decode_error`

	Handler called if a consumer was unable to decode
the body of a message.

Takes arguments (message, exc) where message is the
original message object.

The default handler will log the error and
acknowledge the message, so if you override make
sure to call super, or perform these steps yourself.

	
Consumer()

	

	
channel_errors

	

	
connect_max_retries = None

	maximum number of retries trying to re-establish the connection,
if the connection is lost/unavailable.

	
connection_errors

	

	
consume(limit=None, timeout=None, safety_interval=1, **kwargs)

	

	
consumer_context(**kwargs)

	

	
create_connection()

	

	
establish_connection()

	

	
extra_context(connection, channel)

	

	
get_consumers(Consumer, channel)

	

	
maybe_conn_error(fun)

	Use kombu.common.ignore_errors() instead.

	
on_connection_error(exc, interval)

	

	
on_connection_revived()

	

	
on_consume_end(connection, channel)

	

	
on_consume_ready(connection, channel, consumers, **kwargs)

	

	
on_decode_error(message, exc)

	

	
on_iteration()

	

	
restart_limit

	

	
run(_tokens=1, **kwargs)

	

	
should_stop = False

	When this is set to true the consumer should stop consuming
and return, so that it can be joined if it is the implementation
of a thread.

	
class kombu.mixins.ConsumerProducerMixin

	Consumer and Producer mixin.

Version of ConsumerMixin having separate connection for also
publishing messages.

Example

class Worker(ConsumerProducerMixin):

 def __init__(self, connection):
 self.connection = connection

 def get_consumers(self, Consumer, channel):
 return [Consumer(queues=Queue('foo'),
 on_message=self.handle_message,
 accept='application/json',
 prefetch_count=10)]

 def handle_message(self, message):
 self.producer.publish(
 {'message': 'hello to you'},
 exchange='',
 routing_key=message.properties['reply_to'],
 correlation_id=message.properties['correlation_id'],
 retry=True,
)

	
on_consume_end(connection, channel)

	

	
producer

	

	
producer_connection

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Simple Messaging API - kombu.simple

Simple messaging interface.

	Persistent

	Buffer

Persistent

	
class kombu.simple.SimpleQueue(channel, name, no_ack=None, queue_opts=None, queue_args=None, exchange_opts=None, serializer=None, compression=None, **kwargs)

	Simple API for persistent queues.

	
channel

	Current channel

	
producer

	Producer used to publish messages.

	
consumer

	Consumer used to receive messages.

	
no_ack

	flag to enable/disable acknowledgments.

	
queue

	Queue to consume from (if consuming).

	
queue_opts

	
Additional options for the queue declaration.

	
exchange_opts

	Additional options for the exchange declaration.

	
get(block=True, timeout=None)

	

	
get_nowait()

	

	
put(message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)

	

	
clear()

	

	
__len__()

	len(self) -> self.qsize().

	
qsize()

	

	
close()

	

Buffer

	
class kombu.simple.SimpleBuffer(channel, name, no_ack=None, queue_opts=None, queue_args=None, exchange_opts=None, serializer=None, compression=None, **kwargs)

	Simple API for ephemeral queues.

	
channel

	Current channel

	
producer

	Producer used to publish messages.

	
consumer

	Consumer used to receive messages.

	
no_ack

	flag to enable/disable acknowledgments.

	
queue

	Queue to consume from (if consuming).

	
queue_opts

	
Additional options for the queue declaration.

	
exchange_opts

	Additional options for the exchange declaration.

	
get(block=True, timeout=None)

	

	
get_nowait()

	

	
put(message, serializer=None, headers=None, compression=None, routing_key=None, **kwargs)

	

	
clear()

	

	
__len__()

	len(self) -> self.qsize().

	
qsize()

	

	
close()

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Logical Clocks and Synchronization - kombu.clocks

Logical Clocks and Synchronization.

	
class kombu.clocks.LamportClock(initial_value=0, Lock=<built-in function allocate_lock>)

	Lamport’s logical clock.

From Wikipedia:

A Lamport logical clock is a monotonically incrementing software counter
maintained in each process. It follows some simple rules:

	A process increments its counter before each event in that process;

	When a process sends a message, it includes its counter value with
the message;

	On receiving a message, the receiver process sets its counter to be
greater than the maximum of its own value and the received value
before it considers the message received.

Conceptually, this logical clock can be thought of as a clock that only
has meaning in relation to messages moving between processes. When a
process receives a message, it resynchronizes its logical clock with
the sender.

See also

	Lamport timestamps [https://en.wikipedia.org/wiki/Lamport_timestamps]

	Lamports distributed mutex [https://bit.ly/p99ybE]

Usage

When sending a message use forward() to increment the clock,
when receiving a message use adjust() to sync with
the time stamp of the incoming message.

	
adjust(other)

	

	
forward()

	

	
sort_heap(h)

	Sort heap of events.

List of tuples containing at least two elements, representing
an event, where the first element is the event’s scalar clock value,
and the second element is the id of the process (usually
"hostname:pid"): sh([(clock, processid, ...?), (...)])

The list must already be sorted, which is why we refer to it as a
heap.

The tuple will not be unpacked, so more than two elements can be
present.

Will return the latest event.

	
value = 0

	The clocks current value.

	
class kombu.clocks.timetuple

	Tuple of event clock information.

Can be used as part of a heap to keep events ordered.

	Parameters

	
	clock (int [https://docs.python.org/dev/library/functions.html#int]) – Event clock value.

	timestamp (float [https://docs.python.org/dev/library/functions.html#float]) – Event UNIX timestamp value.

	id (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Event host id (e.g. hostname:pid).

	obj (Any) – Optional obj to associate with this event.

	
clock

	itemgetter(item, …) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand.
After f = itemgetter(2), the call f(r) returns r[2].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

	
id

	itemgetter(item, …) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand.
After f = itemgetter(2), the call f(r) returns r[2].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

	
obj

	itemgetter(item, …) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand.
After f = itemgetter(2), the call f(r) returns r[2].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

	
timestamp

	itemgetter(item, …) –> itemgetter object

Return a callable object that fetches the given item(s) from its operand.
After f = itemgetter(2), the call f(r) returns r[2].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Carrot Compatibility - kombu.compat

Carrot compatibility interface.

See https://pypi.org/project/carrot/ for documentation.

	Publisher

	Consumer

	ConsumerSet

Publisher

Replace with kombu.Producer.

	
class kombu.compat.Publisher(connection, exchange=None, routing_key=None, exchange_type=None, durable=None, auto_delete=None, channel=None, **kwargs)

	Carrot compatible producer.

	
auto_declare = True

	

	
auto_delete = False

	

	
backend

	

	
channel

	

	
close()

	

	
compression = None

	

	
connection

	

	
declare()

	Declare the exchange.

Note

This happens automatically at instantiation when
the auto_declare flag is enabled.

	
durable = True

	

	
exchange = ''

	

	
exchange_type = 'direct'

	

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare exchange if not already declared during this session.

	
on_return = None

	

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=None, expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters

	
	body (Any) – Message body.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	delivery_mode (enum) – See delivery_mode.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority. A number between 0 and 9.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content type. Default is auto-detect.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content encoding. Default is auto-detect.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer to use. Default is auto-detect.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Compression method to use. Default is none.

	headers (Dict) – Mapping of arbitrary headers to pass along
with the message body.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override the exchange.
Note that this exchange must have been declared.

	declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message.
The entities will be declared using
maybe_declare().

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy (Dict) – Retry configuration, this is the keywords
supported by ensure().

	expiration (float [https://docs.python.org/dev/library/functions.html#float]) – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties (Any) – Additional message properties, see AMQP spec.

	
release()

	

	
revive(channel)

	Revive the producer after connection loss.

	
routing_key = ''

	

	
send(*args, **kwargs)

	

	
serializer = None

	

Consumer

Replace with kombu.Consumer.

	
class kombu.compat.Consumer(connection, queue=None, exchange=None, routing_key=None, exchange_type=None, durable=None, exclusive=None, auto_delete=None, **kwargs)

	Carrot compatible consumer.

	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
accept = None

	

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

Note

This will not start consuming from the queue,
for that you will have to call consume() after.

	
auto_declare = True

	

	
auto_delete = False

	

	
callbacks = None

	

	
cancel()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
channel = None

	

	
close()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
connection

	

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_ack.

	
consuming_from(queue)

	Return True if currently consuming from queue’.

	
declare()

	Declare queues, exchanges and bindings.

Note

This is done automatically at instantiation
when auto_declare is set.

	
discard_all(filterfunc=None)

	

	
durable = True

	

	
exchange = ''

	

	
exchange_type = 'direct'

	

	
exclusive = False

	

	
fetch(no_ack=None, enable_callbacks=False)

	

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
iterconsume(limit=None, no_ack=None)

	

	
iterqueue(limit=None, infinite=False)

	

	
no_ack = None

	

	
on_decode_error = None

	

	
on_message = None

	

	
prefetch_count = None

	

	
process_next()

	

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no undo operation.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters

	
	prefetch_size (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in terms of
whole messages.

	apply_global (bool [https://docs.python.org/dev/library/functions.html#bool]) – Apply new settings globally on all channels.

	
queue = ''

	

	
queues

	

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters

	
	body (Any) – The decoded message body.

	message (Message) – The message instance.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
registered.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters

	requeue (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
register_callback(callback)

	Register a new callback to be called when a message is received.

Note

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance.

	
revive(channel)

	Revive consumer after connection loss.

	
routing_key = ''

	

	
wait(limit=None)

	

ConsumerSet

Replace with kombu.Consumer.

	
class kombu.compat.ConsumerSet(connection, from_dict=None, consumers=None, channel=None, **kwargs)

	
	
exception ContentDisallowed

	Consumer does not allow this content-type.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
accept = None

	

	
add_consumer(consumer)

	

	
add_consumer_from_dict(queue, **options)

	

	
add_queue(queue)

	Add a queue to the list of queues to consume from.

Note

This will not start consuming from the queue,
for that you will have to call consume() after.

	
auto_declare = True

	

	
callbacks = None

	

	
cancel()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
cancel_by_queue(queue)

	Cancel consumer by queue name.

	
channel = None

	

	
close()

	End all active queue consumers.

Note

This does not affect already delivered messages, but it does
mean the server will not send any more messages for this consumer.

	
connection

	

	
consume(no_ack=None)

	Start consuming messages.

Can be called multiple times, but note that while it
will consume from new queues added since the last call,
it will not cancel consuming from removed queues (
use cancel_by_queue()).

	Parameters

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – See no_ack.

	
consuming_from(queue)

	Return True if currently consuming from queue’.

	
declare()

	Declare queues, exchanges and bindings.

Note

This is done automatically at instantiation
when auto_declare is set.

	
discard_all()

	

	
flow(active)

	Enable/disable flow from peer.

This is a simple flow-control mechanism that a peer can use
to avoid overflowing its queues or otherwise finding itself
receiving more messages than it can process.

The peer that receives a request to stop sending content
will finish sending the current content (if any), and then wait
until flow is reactivated.

	
iterconsume(limit=None, no_ack=False)

	

	
no_ack = None

	

	
on_decode_error = None

	

	
on_message = None

	

	
prefetch_count = None

	

	
purge()

	Purge messages from all queues.

Warning

This will delete all ready messages, there is no undo operation.

	
qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Specify quality of service.

The client can request that messages should be sent in
advance so that when the client finishes processing a message,
the following message is already held locally, rather than needing
to be sent down the channel. Prefetching gives a performance
improvement.

The prefetch window is Ignored if the no_ack option is set.

	Parameters

	
	prefetch_size (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in octets.
The server will send a message in advance if it is equal to
or smaller in size than the available prefetch size (and
also falls within other prefetch limits). May be set to zero,
meaning “no specific limit”, although other prefetch limits
may still apply.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Specify the prefetch window in terms of
whole messages.

	apply_global (bool [https://docs.python.org/dev/library/functions.html#bool]) – Apply new settings globally on all channels.

	
queues

	

	
receive(body, message)

	Method called when a message is received.

This dispatches to the registered callbacks.

	Parameters

	
	body (Any) – The decoded message body.

	message (Message) – The message instance.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – If no consumer callbacks have been
registered.

	
recover(requeue=False)

	Redeliver unacknowledged messages.

Asks the broker to redeliver all unacknowledged messages
on the specified channel.

	Parameters

	requeue (bool [https://docs.python.org/dev/library/functions.html#bool]) – By default the messages will be redelivered
to the original recipient. With requeue set to true, the
server will attempt to requeue the message, potentially then
delivering it to an alternative subscriber.

	
register_callback(callback)

	Register a new callback to be called when a message is received.

Note

The signature of the callback needs to accept two arguments:
(body, message), which is the decoded message body
and the Message instance.

	
revive(channel)

	Revive consumer after connection loss.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Pidbox - kombu.pidbox

Generic process mailbox.

	Introduction

	Creating the applications Mailbox

	Example Node

	Example Client

	Mailbox

	Node

Introduction

Creating the applications Mailbox

>>> mailbox = pidbox.Mailbox('celerybeat', type='direct')

>>> @mailbox.handler
>>> def reload_schedule(state, **kwargs):
... state['beat'].reload_schedule()

>>> @mailbox.handler
>>> def connection_info(state, **kwargs):
... return {'connection': state['connection'].info()}

Example Node

>>> connection = kombu.Connection()
>>> state = {'beat': beat,
 'connection': connection}
>>> consumer = mailbox(connection).Node(hostname).listen()
>>> try:
... while True:
... connection.drain_events(timeout=1)
... finally:
... consumer.cancel()

Example Client

>>> mailbox.cast('reload_schedule') # cast is async.
>>> info = celerybeat.call('connection_info', timeout=1)

Mailbox

	
class kombu.pidbox.Mailbox(namespace, type='direct', connection=None, clock=None, accept=None, serializer=None, producer_pool=None, queue_ttl=None, queue_expires=None, reply_queue_ttl=None, reply_queue_expires=10.0)

	Process Mailbox.

	
namespace = None

	Name of application.

	
connection = None

	Connection (if bound).

	
type = 'direct'

	Exchange type (usually direct, or fanout for broadcast).

	
exchange = None

	mailbox exchange (init by constructor).

	
reply_exchange = None

	exchange to send replies to.

	
Node(hostname=None, state=None, channel=None, handlers=None)

	

	
call(destination, command, kwargs=None, timeout=None, callback=None, channel=None)

	

	
cast(destination, command, kwargs=None)

	

	
abcast(command, kwargs=None)

	

	
multi_call(command, kwargs=None, timeout=1, limit=None, callback=None, channel=None)

	

	
get_reply_queue()

	

	
get_queue(hostname)

	

Node

	
class kombu.pidbox.Node(hostname, state=None, channel=None, handlers=None, mailbox=None)

	Mailbox node.

	
hostname = None

	hostname of the node.

	
mailbox = None

	the Mailbox this is a node for.

	
handlers = None

	map of method name/handlers.

	
state = None

	current context (passed on to handlers)

	
channel = None

	current channel.

	
Consumer(channel=None, no_ack=True, accept=None, **options)

	

	
handler(fun)

	

	
listen(channel=None, callback=None)

	

	
dispatch(method, arguments=None, reply_to=None, ticket=None, **kwargs)

	

	
dispatch_from_message(body, message=None)

	

	
handle_call(method, arguments)

	

	
handle_cast(method, arguments)

	

	
handle(method, arguments=None)

	

	
handle_message(body, message=None)

	

	
reply(data, exchange, routing_key, ticket, **kwargs)

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Exceptions - kombu.exceptions

Exceptions.

	
exception kombu.exceptions.NotBoundError

	Trying to call channel dependent method on unbound entity.

	
exception kombu.exceptions.MessageStateError

	The message has already been acknowledged.

	
kombu.exceptions.TimeoutError

	alias of socket.timeout [https://docs.python.org/dev/library/socket.html#socket.timeout]

	
exception kombu.exceptions.LimitExceeded

	Limit exceeded.

	
exception kombu.exceptions.ConnectionLimitExceeded

	Maximum number of simultaneous connections exceeded.

	
exception kombu.exceptions.ChannelLimitExceeded

	Maximum number of simultaneous channels exceeded.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Logging - kombu.log

Logging Utilities.

	
class kombu.log.LogMixin

	Mixin that adds severity methods to any class.

	
annotate(text)

	

	
critical(*args, **kwargs)

	

	
debug(*args, **kwargs)

	

	
error(*args, **kwargs)

	

	
get_logger()

	

	
get_loglevel(level)

	

	
info(*args, **kwargs)

	

	
is_enabled_for(level)

	

	
log(severity, *args, **kwargs)

	

	
logger

	

	
logger_name

	

	
warn(*args, **kwargs)

	

	
kombu.log.get_loglevel(level)

	Get loglevel by name.

	
kombu.log.setup_logging(loglevel=None, logfile=None)

	Setup logging.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Connection - kombu.connection

Client (Connection).

	Connection

	Pools

Connection

	
class kombu.connection.Connection(hostname='localhost', userid=None, password=None, virtual_host=None, port=None, insist=False, ssl=False, transport=None, connect_timeout=5, transport_options=None, login_method=None, uri_prefix=None, heartbeat=0, failover_strategy='round-robin', alternates=None, **kwargs)

	A connection to the broker.

Example

>>> Connection('amqp://guest:guest@localhost:5672//')
>>> Connection('amqp://foo;amqp://bar',
... failover_strategy='round-robin')
>>> Connection('redis://', transport_options={
... 'visibility_timeout': 3000,
... })

>>> import ssl
>>> Connection('amqp://', login_method='EXTERNAL', ssl={
... 'ca_certs': '/etc/pki/tls/certs/something.crt',
... 'keyfile': '/etc/something/system.key',
... 'certfile': '/etc/something/system.cert',
... 'cert_reqs': ssl.CERT_REQUIRED,
... })

Note

SSL currently only works with the py-amqp, and qpid
transports. For other transports you can use stunnel.

	Parameters

	URL (str [https://docs.python.org/dev/library/stdtypes.html#str], Sequence) – Broker URL, or a list of URLs.

	Keyword Arguments

	
	ssl (bool [https://docs.python.org/dev/library/functions.html#bool]) – Use SSL to connect to the server. Default is False.
May not be supported by the specified transport.

	transport (Transport) – Default transport if not specified in the URL.

	connect_timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout in seconds for connecting to the
server. May not be supported by the specified transport.

	transport_options (Dict) – A dict of additional connection arguments to
pass to alternate kombu channel implementations. Consult the
transport documentation for available options.

	heartbeat (float [https://docs.python.org/dev/library/functions.html#float]) – Heartbeat interval in int/float seconds.
Note that if heartbeats are enabled then the
heartbeat_check() method must be called regularly,
around once per second.

Note

The connection is established lazily when needed. If you need the
connection to be established, then force it by calling
connect():

>>> conn = Connection('amqp://')
>>> conn.connect()

and always remember to close the connection:

>>> conn.release()

These options have been replaced by the URL argument, but are still
supported for backwards compatibility:

	Keyword Arguments

	
	hostname – Host name/address.
NOTE: You cannot specify both the URL argument and use the hostname
keyword argument at the same time.

	userid – Default user name if not provided in the URL.

	password – Default password if not provided in the URL.

	virtual_host – Default virtual host if not provided in the URL.

	port – Default port if not provided in the URL.

	
ChannelPool(limit=None, **kwargs)

	Pool of channels.

See also

ChannelPool.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of active channels.
Default is no limit.

Example

>>> connection = Connection('amqp://')
>>> pool = connection.ChannelPool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ChannelLimitExceeded(self.limit)
 kombu.connection.ChannelLimitExceeded: 2

	
Consumer(queues=None, channel=None, *args, **kwargs)

	Create new kombu.Consumer instance.

	
Pool(limit=None, **kwargs)

	Pool of connections.

See also

ConnectionPool.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of active connections.
Default is no limit.

Example

>>> connection = Connection('amqp://')
>>> pool = connection.Pool(2)
>>> c1 = pool.acquire()
>>> c2 = pool.acquire()
>>> c3 = pool.acquire()
>>> c1.release()
>>> c3 = pool.acquire()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "kombu/connection.py", line 354, in acquire
 raise ConnectionLimitExceeded(self.limit)
 kombu.exceptions.ConnectionLimitExceeded: 2

	
Producer(channel=None, *args, **kwargs)

	Create new kombu.Producer instance.

	
SimpleBuffer(name, no_ack=None, queue_opts=None, exchange_opts=None, channel=None, **kwargs)

	Simple ephemeral queue API.

Create new SimpleQueue using a channel
from this connection.

See also

Same as SimpleQueue(), but configured with buffering
semantics. The resulting queue and exchange will not be durable,
also auto delete is enabled. Messages will be transient (not
persistent), and acknowledgments are disabled (no_ack).

	
SimpleQueue(name, no_ack=None, queue_opts=None, queue_args=None, exchange_opts=None, channel=None, **kwargs)

	Simple persistent queue API.

Create new SimpleQueue, using a channel
from this connection.

If name is a string, a queue and exchange will be automatically
created using that name as the name of the queue and exchange,
also it will be used as the default routing key.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str], kombu.Queue) – Name of the queue/or a queue.

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – Disable acknowledgments. Default is false.

	queue_opts (Dict) – Additional keyword arguments passed to the
constructor of the automatically created Queue.

	queue_args (Dict) – Additional keyword arguments passed to the
constructor of the automatically created Queue
for setting implementation extensions (e.g., in RabbitMQ).

	exchange_opts (Dict) – Additional keyword arguments passed to the
constructor of the automatically created
Exchange.

	channel (ChannelT) – Custom channel to use. If not specified the
connection default channel is used.

	
as_uri(include_password=False, mask='**', getfields=operator.itemgetter('port', 'userid', 'password', 'virtual_host', 'transport'))

	Convert connection parameters to URL form.

	
autoretry(fun, channel=None, **ensure_options)

	Decorator for functions supporting a channel keyword argument.

The resulting callable will retry calling the function if
it raises connection or channel related errors.
The return value will be a tuple of (retval, last_created_channel).

If a channel is not provided, then one will be automatically
acquired (remember to close it afterwards).

See also

ensure() for the full list of supported keyword arguments.

Example

>>> channel = connection.channel()
>>> try:
... ret, channel = connection.autoretry(
... publish_messages, channel)
... finally:
... channel.close()

	
channel()

	Create and return a new channel.

	
channel_errors

	List of exceptions that may be raised by the channel.

	
clone(**kwargs)

	Create a copy of the connection with same settings.

	
close()

	Close the connection (if open).

	
collect(socket_timeout=None)

	

	
completes_cycle(retries)

	Return true if the cycle is complete after number of retries.

	
connect()

	Establish connection to server immediately.

	
connect_timeout = 5

	

	
connected

	Return true if the connection has been established.

	
connection

	The underlying connection object.

Warning

This instance is transport specific, so do not
depend on the interface of this object.

	
connection_errors

	List of exceptions that may be raised by the connection.

	
create_transport()

	

	
cycle = None

	Iterator returning the next broker URL to try in the event
of connection failure (initialized by failover_strategy).

	
declared_entities = None

	The cache of declared entities is per connection,
in case the server loses data.

	
default_channel

	Default channel.

Created upon access and closed when the connection is closed.

Note

Can be used for automatic channel handling when you only need one
channel, and also it is the channel implicitly used if
a connection is passed instead of a channel, to functions that
require a channel.

	
drain_events(**kwargs)

	Wait for a single event from the server.

	Parameters

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout in seconds before we give up.

	Raises

	socket.timeout [https://docs.python.org/dev/library/socket.html#socket.timeout] – if the timeout is exceeded.

	
ensure(obj, fun, errback=None, max_retries=None, interval_start=1, interval_step=1, interval_max=1, on_revive=None)

	Ensure operation completes.

Regardless of any channel/connection errors occurring.

Retries by establishing the connection, and reapplying
the function.

	Parameters

	
	obj – The object to ensure an action on.

	fun (Callable) – Method to apply.

	errback (Callable) – Optional callback called each time the
connection can’t be established. Arguments provided are
the exception raised and the interval that will
be slept (exc, interval).

	max_retries (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of times to retry.
If this limit is exceeded the connection error
will be re-raised.

	interval_start (float [https://docs.python.org/dev/library/functions.html#float]) – The number of seconds we start
sleeping for.

	interval_step (float [https://docs.python.org/dev/library/functions.html#float]) – How many seconds added to the interval
for each retry.

	interval_max (float [https://docs.python.org/dev/library/functions.html#float]) – Maximum number of seconds to sleep between
each retry.

	on_revive (Callable) – Optional callback called whenever
revival completes successfully

Examples

>>> from kombu import Connection, Producer
>>> conn = Connection('amqp://')
>>> producer = Producer(conn)

>>> def errback(exc, interval):
... logger.error('Error: %r', exc, exc_info=1)
... logger.info('Retry in %s seconds.', interval)

>>> publish = conn.ensure(producer, producer.publish,
... errback=errback, max_retries=3)
>>> publish({'hello': 'world'}, routing_key='dest')

	
ensure_connection(errback=None, max_retries=None, interval_start=2, interval_step=2, interval_max=30, callback=None, reraise_as_library_errors=True, timeout=None)

	Ensure we have a connection to the server.

If not retry establishing the connection with the settings
specified.

	Parameters

	
	errback (Callable) – Optional callback called each time the
connection can’t be established. Arguments provided are
the exception raised and the interval that will be
slept (exc, interval).

	max_retries (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of times to retry.
If this limit is exceeded the connection error
will be re-raised.

	interval_start (float [https://docs.python.org/dev/library/functions.html#float]) – The number of seconds we start
sleeping for.

	interval_step (float [https://docs.python.org/dev/library/functions.html#float]) – How many seconds added to the interval
for each retry.

	interval_max (float [https://docs.python.org/dev/library/functions.html#float]) – Maximum number of seconds to sleep between
each retry.

	callback (Callable) – Optional callback that is called for every
internal iteration (1 s).

	timeout (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum amount of time in seconds to spend
waiting for connection

	
failover_strategies = {'round-robin': <class 'itertools.cycle'>, 'shuffle': <function shufflecycle>}

	

	
failover_strategy = 'round-robin'

	Strategy used to select new hosts when reconnecting after connection
failure. One of “round-robin”, “shuffle” or any custom iterator
constantly yielding new URLs to try.

	
get_heartbeat_interval()

	

	
get_manager(*args, **kwargs)

	

	
get_transport_cls()

	Get the currently used transport class.

	
heartbeat = None

	Heartbeat value, currently only supported by the py-amqp transport.

	
heartbeat_check(rate=2)

	Check heartbeats.

Allow the transport to perform any periodic tasks
required to make heartbeats work. This should be called
approximately every second.

If the current transport does not support heartbeats then
this is a noop operation.

	Parameters

	rate (int [https://docs.python.org/dev/library/functions.html#int]) – Rate is how often the tick is called
compared to the actual heartbeat value. E.g. if
the heartbeat is set to 3 seconds, and the tick
is called every 3 / 2 seconds, then the rate is 2.
This value is currently unused by any transports.

	
host

	The host as a host name/port pair separated by colon.

	
hostname = None

	

	
info()

	Get connection info.

	
is_evented

	

	
login_method = None

	

	
manager

	AMQP Management API.

Experimental manager that can be used to manage/monitor the broker
instance.

Not available for all transports.

	
maybe_close_channel(channel)

	Close given channel, but ignore connection and channel errors.

	
maybe_switch_next()

	Switch to next URL given by the current failover strategy.

	
password = None

	

	
port = None

	

	
qos_semantics_matches_spec

	

	
recoverable_channel_errors

	Recoverable channel errors.

List of channel related exceptions that can be automatically
recovered from without re-establishing the connection.

	
recoverable_connection_errors

	Recoverable connection errors.

List of connection related exceptions that can be recovered from,
but where the connection must be closed and re-established first.

	
register_with_event_loop(loop)

	

	
release()

	Close the connection (if open).

	
resolve_aliases = {'librabbitmq': 'amqp', 'pyamqp': 'amqp'}

	

	
revive(new_channel)

	Revive connection after connection re-established.

	
ssl = None

	

	
supports_exchange_type(exchange_type)

	

	
supports_heartbeats

	

	
switch(url)

	Switch connection parameters to use a new URL.

Note

Does not reconnect!

	
transport

	

	
transport_options = None

	Additional transport specific options,
passed on to the transport instance.

	
uri_prefix = None

	

	
userid = None

	

	
virtual_host = '/'

	

Pools

See also

The shortcut methods Connection.Pool() and
Connection.ChannelPool() is the recommended way
to instantiate these classes.

	
class kombu.connection.ConnectionPool(connection, limit=None, **kwargs)

	Pool of connections.

	
LimitExceeded = <class 'kombu.exceptions.ConnectionLimitExceeded'>

	

	
acquire(block=False, timeout=None)

	Acquire resource.

	Parameters

	
	block (bool [https://docs.python.org/dev/library/functions.html#bool]) – If the limit is exceeded,
then block until there is an available item.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout to wait
if block is true. Default is None (forever).

	Raises

	LimitExceeded – if block is false and the limit has been exceeded.

	
release(resource)

	

	
force_close_all()

	Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork
(e.g. sockets/connections).

	
class kombu.connection.ChannelPool(connection, limit=None, **kwargs)

	Pool of channels.

	
LimitExceeded = <class 'kombu.exceptions.ChannelLimitExceeded'>

	

	
acquire(block=False, timeout=None)

	Acquire resource.

	Parameters

	
	block (bool [https://docs.python.org/dev/library/functions.html#bool]) – If the limit is exceeded,
then block until there is an available item.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout to wait
if block is true. Default is None (forever).

	Raises

	LimitExceeded – if block is false and the limit has been exceeded.

	
release(resource)

	

	
force_close_all()

	Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork
(e.g. sockets/connections).

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Message Objects - kombu.message

Message class.

	
class kombu.message.Message(body=None, delivery_tag=None, content_type=None, content_encoding=None, delivery_info=None, properties=None, headers=None, postencode=None, accept=None, channel=None, **kwargs)

	Base class for received messages.

	Keyword Arguments

	
	channel (ChannelT) – If message was received, this should be the
channel that the message was received on.

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message body.

	delivery_mode (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set custom delivery mode.
Defaults to delivery_mode.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority, 0 to broker configured
max priority, where higher is better.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either
a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library
properly sets content_type.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The character set in which this object
is encoded. Use “binary” if sending in raw binary objects.
Leave blank if using built-in serialization as our library
properly sets content_encoding.

	properties (Dict) – Message properties.

	headers (Dict) – Message headers.

	
exception MessageStateError

	The message has already been acknowledged.

	
accept

	

	
ack(multiple=False)

	Acknowledge this message as being processed.

This will remove the message from the queue.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
ack_log_error(logger, errors, multiple=False)

	

	
acknowledged

	Set to true if the message has been acknowledged.

	
body

	

	
channel

	

	
content_encoding

	

	
content_type

	

	
decode()

	Deserialize the message body.

Returning the original python structure sent by the publisher.

Note

The return value is memoized, use _decode to force
re-evaluation.

	
delivery_info

	

	
delivery_tag

	

	
errors = None

	

	
headers

	

	
payload

	The decoded message body.

	
properties

	

	
reject(requeue=False)

	Reject this message.

The message will be discarded by the server.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
reject_log_error(logger, errors, requeue=False)

	

	
requeue()

	Reject this message and put it back on the queue.

Warning

You must not use this method as a means of selecting messages
to process.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Message Compression - kombu.compression

Compression utilities.

	Encoding/decoding

	Registry

Encoding/decoding

	
kombu.compression.compress(body, content_type)

	Compress text.

	Parameters

	
	body (AnyStr) – The text to compress.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – mime-type of compression method to use.

	
kombu.compression.decompress(body, content_type)

	Decompress compressed text.

	Parameters

	
	body (AnyStr) – Previously compressed text to uncompress.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – mime-type of compression method used.

Registry

	
kombu.compression.encoders()

	Return a list of available compression methods.

	
kombu.compression.get_encoder(t)

	Get encoder by alias name.

	
kombu.compression.get_decoder(t)

	Get decoder by alias name.

	
kombu.compression.register(encoder, decoder, content_type, aliases=None)

	Register new compression method.

	Parameters

	
	encoder (Callable) – Function used to compress text.

	decoder (Callable) – Function used to decompress previously
compressed text.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The mime type this compression method
identifies as.

	aliases (Sequence[str [https://docs.python.org/dev/library/stdtypes.html#str]]) – A list of names to associate with
this compression method.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Connection/Producer Pools - kombu.pools

Public resource pools.

	
class kombu.pools.ProducerPool(connections, *args, **kwargs)

	Pool of kombu.Producer instances.

	
class Producer(channel, exchange=None, routing_key=None, serializer=None, auto_declare=None, compression=None, on_return=None)

	Message Producer.

	Parameters

	
	channel (kombu.Connection, ChannelT) – Connection or channel.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default exchange.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional default routing key.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default serializer. Default is “json”.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Default compression method.
Default is no compression.

	auto_declare (bool [https://docs.python.org/dev/library/functions.html#bool]) – Automatically declare the default exchange
at instantiation. Default is True.

	on_return (Callable) – Callback to call for undeliverable messages,
when the mandatory or immediate arguments to
publish() is used. This callback needs the following
signature: (exception, exchange, routing_key, message).
Note that the producer needs to drain events to use this feature.

	
auto_declare = True

	

	
channel

	

	
close()

	

	
compression = None

	

	
connection

	

	
declare()

	Declare the exchange.

Note

This happens automatically at instantiation when
the auto_declare flag is enabled.

	
exchange = None

	

	
maybe_declare(entity, retry=False, **retry_policy)

	Declare exchange if not already declared during this session.

	
on_return = None

	

	
publish(body, routing_key=None, delivery_mode=None, mandatory=False, immediate=False, priority=0, content_type=None, content_encoding=None, serializer=None, headers=None, compression=None, exchange=None, retry=False, retry_policy=None, declare=None, expiration=None, **properties)

	Publish message to the specified exchange.

	Parameters

	
	body (Any) – Message body.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message routing key.

	delivery_mode (enum) – See delivery_mode.

	mandatory (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	immediate (bool [https://docs.python.org/dev/library/functions.html#bool]) – Currently not supported.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority. A number between 0 and 9.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content type. Default is auto-detect.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Content encoding. Default is auto-detect.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Serializer to use. Default is auto-detect.

	compression (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Compression method to use. Default is none.

	headers (Dict) – Mapping of arbitrary headers to pass along
with the message body.

	exchange (kombu.entity.Exchange, str [https://docs.python.org/dev/library/stdtypes.html#str]) – Override the exchange.
Note that this exchange must have been declared.

	declare (Sequence[EntityT]) – Optional list of required entities
that must have been declared before publishing the message.
The entities will be declared using
maybe_declare().

	retry (bool [https://docs.python.org/dev/library/functions.html#bool]) – Retry publishing, or declaring entities if the
connection is lost.

	retry_policy (Dict) – Retry configuration, this is the keywords
supported by ensure().

	expiration (float [https://docs.python.org/dev/library/functions.html#float]) – A TTL in seconds can be specified per message.
Default is no expiration.

	**properties (Any) – Additional message properties, see AMQP spec.

	
release()

	

	
revive(channel)

	Revive the producer after connection loss.

	
routing_key = ''

	

	
serializer = None

	

	
close_after_fork = True

	

	
close_resource(resource)

	

	
create_producer()

	

	
new()

	

	
prepare(p)

	

	
release(resource)

	

	
setup()

	

	
class kombu.pools.PoolGroup(limit=None, close_after_fork=True)

	Collection of resource pools.

	
create(resource, limit)

	

	
kombu.pools.register_group(group)

	Register group (can be used as decorator).

	
kombu.pools.get_limit()

	Get current connection pool limit.

	
kombu.pools.set_limit(limit, force=False, reset_after=False, ignore_errors=False)

	Set new connection pool limit.

	
kombu.pools.reset(*args, **kwargs)

	Reset all pools by closing open resources.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Abstract Classes - kombu.abstract

Object utilities.

	
class kombu.abstract.MaybeChannelBound(*args, **kwargs)

	Mixin for classes that can be bound to an AMQP channel.

	
bind(channel)

	Create copy of the instance that is bound to a channel.

	
can_cache_declaration = False

	Defines whether maybe_declare can skip declaring this entity twice.

	
channel

	Current channel if the object is bound.

	
is_bound

	Flag set if the channel is bound.

	
maybe_bind(channel)

	Bind instance to channel if not already bound.

	
revive(channel)

	Revive channel after the connection has been re-established.

Used by ensure().

	
when_bound()

	Callback called when the class is bound.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Resource Management - kombu.resource

Generic resource pool implementation.

	
class kombu.resource.LifoQueue(maxsize=0)

	Last in first out version of Queue.

	
class kombu.resource.Resource(limit=None, preload=None, close_after_fork=None)

	Pool of resources.

	
exception LimitExceeded

	Limit exceeded.

	
acquire(block=False, timeout=None)

	Acquire resource.

	Parameters

	
	block (bool [https://docs.python.org/dev/library/functions.html#bool]) – If the limit is exceeded,
then block until there is an available item.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Timeout to wait
if block is true. Default is None (forever).

	Raises

	LimitExceeded – if block is false and the limit has been exceeded.

	
close_after_fork = False

	

	
close_resource(resource)

	

	
collect_resource(resource)

	

	
force_close_all()

	Close and remove all resources in the pool (also those in use).

Used to close resources from parent processes after fork
(e.g. sockets/connections).

	
limit

	

	
prepare(resource)

	

	
release(resource)

	

	
release_resource(resource)

	

	
replace(resource)

	Replace existing resource with a new instance.

This can be used in case of defective resources.

	
resize(limit, force=False, ignore_errors=False, reset=False)

	

	
setup()

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Event Loop - kombu.asynchronous

Event loop.

	
class kombu.asynchronous.Hub(timer=None)

	Event loop object.

	Parameters

	timer (kombu.asynchronous.Timer) – Specify custom timer instance.

	
ERR = 24

	Flag set on error, and the fd should be read from asap.

	
READ = 1

	Flag set if reading from an fd will not block.

	
WRITE = 4

	Flag set if writing to an fd will not block.

	
add(fd, callback, flags, args=(), consolidate=False)

	

	
add_reader(fds, callback, *args)

	

	
add_writer(fds, callback, *args)

	

	
call_at(when, callback, *args)

	

	
call_later(delay, callback, *args)

	

	
call_repeatedly(delay, callback, *args)

	

	
call_soon(callback, *args)

	

	
close(*args)

	

	
create_loop(generator=<class 'generator'>, sleep=<built-in function sleep>, min=<built-in function min>, next=<built-in function next>, Empty=<class '_queue.Empty'>, StopIteration=<class 'StopIteration'>, KeyError=<class 'KeyError'>, READ=1, WRITE=4, ERR=24)

	

	
fire_timers(min_delay=1, max_delay=10, max_timers=10, propagate=())

	

	
loop

	

	
on_callback_error(callback, exc)

	

	
on_close = None

	List of callbacks to be called when the loop is exiting,
applied with the hub instance as sole argument.

	
poller

	

	
remove(fd)

	

	
remove_reader(fd)

	

	
remove_writer(fd)

	

	
repr_active()

	

	
repr_events(events)

	

	
reset()

	

	
run_forever()

	

	
run_once()

	

	
scheduler

	

	
stop()

	

	
kombu.asynchronous.get_event_loop()

	Get current event loop object.

	
kombu.asynchronous.set_event_loop(loop)

	Set the current event loop object.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Event Loop Implementation - kombu.asynchronous.hub

Event loop implementation.

	
class kombu.asynchronous.hub.Hub(timer=None)

	Event loop object.

	Parameters

	timer (kombu.asynchronous.Timer) – Specify custom timer instance.

	
ERR = 24

	Flag set on error, and the fd should be read from asap.

	
READ = 1

	Flag set if reading from an fd will not block.

	
WRITE = 4

	Flag set if writing to an fd will not block.

	
add(fd, callback, flags, args=(), consolidate=False)

	

	
add_reader(fds, callback, *args)

	

	
add_writer(fds, callback, *args)

	

	
call_at(when, callback, *args)

	

	
call_later(delay, callback, *args)

	

	
call_repeatedly(delay, callback, *args)

	

	
call_soon(callback, *args)

	

	
close(*args)

	

	
create_loop(generator=<class 'generator'>, sleep=<built-in function sleep>, min=<built-in function min>, next=<built-in function next>, Empty=<class '_queue.Empty'>, StopIteration=<class 'StopIteration'>, KeyError=<class 'KeyError'>, READ=1, WRITE=4, ERR=24)

	

	
fire_timers(min_delay=1, max_delay=10, max_timers=10, propagate=())

	

	
loop

	

	
on_callback_error(callback, exc)

	

	
on_close = None

	List of callbacks to be called when the loop is exiting,
applied with the hub instance as sole argument.

	
poller

	

	
remove(fd)

	

	
remove_reader(fd)

	

	
remove_writer(fd)

	

	
repr_active()

	

	
repr_events(events)

	

	
reset()

	

	
run_forever()

	

	
run_once()

	

	
scheduler

	

	
stop()

	

	
kombu.asynchronous.hub.get_event_loop()

	Get current event loop object.

	
kombu.asynchronous.hub.set_event_loop(loop)

	Set the current event loop object.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Semaphores - kombu.asynchronous.semaphore

Semaphores and concurrency primitives.

	
class kombu.asynchronous.semaphore.DummyLock

	Pretending to be a lock.

	
class kombu.asynchronous.semaphore.LaxBoundedSemaphore(value)

	Asynchronous Bounded Semaphore.

Lax means that the value will stay within the specified
range even if released more times than it was acquired.

Example

>>> from future import print_statement as printf
^ ignore: just fooling stupid pyflakes

>>> x = LaxBoundedSemaphore(2)

>>> x.acquire(printf, 'HELLO 1')
HELLO 1

>>> x.acquire(printf, 'HELLO 2')
HELLO 2

>>> x.acquire(printf, 'HELLO 3')
>>> x._waiters # private, do not access directly
[print, ('HELLO 3',)]

>>> x.release()
HELLO 3

	
acquire(callback, *partial_args, **partial_kwargs)

	Acquire semaphore.

This will immediately apply callback if
the resource is available, otherwise the callback is suspended
until the semaphore is released.

	Parameters

	
	callback (Callable) – The callback to apply.

	*partial_args (Any) – partial arguments to callback.

	
clear()

	Reset the semaphore, which also wipes out any waiting callbacks.

	
grow(n=1)

	Change the size of the semaphore to accept more users.

	
release()

	Release semaphore.

Note

If there are any waiters this will apply the first waiter
that is waiting for the resource (FIFO order).

	
shrink(n=1)

	Change the size of the semaphore to accept less users.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Timer - kombu.asynchronous.timer

Timer scheduling Python callbacks.

	
class kombu.asynchronous.timer.Entry(fun, args=None, kwargs=None)

	Schedule Entry.

	
args

	

	
cancel()

	

	
canceled

	

	
cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
class kombu.asynchronous.timer.Timer(max_interval=None, on_error=None, **kwargs)

	Async timer implementation.

	
class Entry(fun, args=None, kwargs=None)

	Schedule Entry.

	
args

	

	
cancel()

	

	
canceled

	

	
cancelled

	

	
fun

	

	
kwargs

	

	
tref

	

	
apply_entry(entry)

	

	
call_after(secs, fun, args=(), kwargs=None, priority=0)

	

	
call_at(eta, fun, args=(), kwargs=None, priority=0)

	

	
call_repeatedly(secs, fun, args=(), kwargs=None, priority=0)

	

	
cancel(tref)

	

	
clear()

	

	
enter_after(secs, entry, priority=0, time=<built-in function monotonic>)

	

	
enter_at(entry, eta=None, priority=0, time=<built-in function monotonic>)

	Enter function into the scheduler.

	Parameters

	
	entry (Entry) – Item to enter.

	eta (datetime.datetime [https://docs.python.org/dev/library/datetime.html#datetime.datetime]) – Scheduled time.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Unused.

	
handle_error(exc_info)

	

	
on_error = None

	

	
queue

	Snapshot of underlying datastructure.

	
schedule

	

	
stop()

	

	
kombu.asynchronous.timer.to_timestamp(d, default_timezone=<UTC>, time=<built-in function monotonic>)

	Convert datetime to timestamp.

If d’ is already a timestamp, then that will be used.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Event Loop Debugging Utils - kombu.asynchronous.debug

Event-loop debugging tools.

	
kombu.asynchronous.debug.callback_for(h, fd, flag, *default)

	Return the callback used for hub+fd+flag.

	
kombu.asynchronous.debug.repr_active(h)

	Return description of active readers and writers.

	
kombu.asynchronous.debug.repr_events(h, events)

	Return description of events returned by poll.

	
kombu.asynchronous.debug.repr_flag(flag)

	Return description of event loop flag.

	
kombu.asynchronous.debug.repr_readers(h)

	Return description of pending readers.

	
kombu.asynchronous.debug.repr_writers(h)

	Return description of pending writers.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async HTTP Client - kombu.asynchronous.http

	
kombu.asynchronous.http.Client(hub=None, **kwargs)

	Create new HTTP client.

	
class kombu.asynchronous.http.Headers

	Represents a mapping of HTTP headers.

	
complete = False

	Set when all of the headers have been read.

	
class kombu.asynchronous.http.Response(request, code, headers=None, buffer=None, effective_url=None, error=None, status=None)

	HTTP Response.

	Parameters

	
	request (Request) – See request.

	code (int [https://docs.python.org/dev/library/functions.html#int]) – See code.

	headers (Headers) – See headers.

	buffer (bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]) – See buffer

	effective_url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See effective_url.

	status (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See status.

	
request

	object used to
get this response.

	Type

	Request

	
code

	HTTP response code (e.g. 200, 404, or 500).

	Type

	int [https://docs.python.org/dev/library/functions.html#int]

	
headers

	HTTP headers
for this response.

	Type

	Headers

	
buffer

	Socket read buffer.

	Type

	bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]

	
effective_url

	The destination url for this request after
following redirects.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
error

	Error instance if the request resulted in
a HTTP error code.

	Type

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception]

	
status

	Human equivalent of code,
e.g. OK, Not found, or ‘Internal Server Error’.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
body

	The full contents of the response body.

Note

Accessing this propery will evaluate the buffer
and subsequent accesses will be cached.

	
buffer

	

	
code

	

	
content

	

	
effective_url

	

	
error

	

	
headers

	

	
raise_for_error()

	Raise if the request resulted in an HTTP error code.

	Raises

	HttpError

	
request

	

	
status

	

	
status_code

	

	
class kombu.asynchronous.http.Request(url, method='GET', on_ready=None, on_timeout=None, on_stream=None, on_prepare=None, on_header=None, headers=None, **kwargs)

	A HTTP Request.

	Parameters

	
	url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The URL to request.

	method (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The HTTP method to use (defaults to GET).

	Keyword Arguments

	
	headers (Dict, Headers) – Optional headers for
this request

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional body for this request.

	connect_timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Connection timeout in float seconds
Default is 30.0.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in float seconds before the request times out
Default is 30.0.

	follow_redirects (bool [https://docs.python.org/dev/library/functions.html#bool]) – Specify if the client should follow redirects
Enabled by default.

	max_redirects (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of redirects (default 6).

	use_gzip (bool [https://docs.python.org/dev/library/functions.html#bool]) – Allow the server to use gzip compression.
Enabled by default.

	validate_cert (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set to true if the server certificate should be
verified when performing https:// requests.
Enabled by default.

	auth_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Username for HTTP authentication.

	auth_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Password for HTTP authentication.

	auth_mode (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Type of HTTP authentication (basic or digest).

	user_agent (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom user agent for this request.

	network_interace (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Network interface to use for this request.

	on_ready (Callable) – Callback to be called when the response has been
received. Must accept single response argument.

	on_stream (Callable) – Optional callback to be called every time body
content has been read from the socket. If specified then the
response body and buffer attributes will not be available.

	on_timeout (callable [https://docs.python.org/dev/library/functions.html#callable]) – Optional callback to be called if the request
times out.

	on_header (Callable) – Optional callback to be called for every header
line received from the server. The signature
is (headers, line) and note that if you want
response.headers to be populated then your callback needs to
also call client.on_header(headers, line).

	on_prepare (Callable) – Optional callback that is implementation
specific (e.g. curl client will pass the curl instance to
this callback).

	proxy_host (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional proxy host. Note that a proxy_port must
also be provided or a ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] will be raised.

	proxy_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional username to use when logging in
to the proxy.

	proxy_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional password to use when authenticating
with the proxy server.

	ca_certs (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom CA certificates file to use.

	client_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL key.

	client_cert (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL certificate.

	
auth_mode = None

	

	
auth_password = None

	

	
auth_username = None

	

	
body = None

	

	
ca_certs = None

	

	
client_cert = None

	

	
client_key = None

	

	
connect_timeout = 30.0

	

	
follow_redirects = True

	

	
headers

	

	
max_redirects = 6

	

	
method

	

	
network_interface = None

	

	
on_header

	

	
on_prepare

	

	
on_ready

	

	
on_stream

	

	
on_timeout

	

	
proxy_host = None

	

	
proxy_password = None

	

	
proxy_port = None

	

	
proxy_username = None

	

	
request_timeout = 30.0

	

	
then(callback, errback=None)

	

	
url

	

	
use_gzip = True

	

	
user_agent = None

	

	
validate_cert = True

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async HTTP Client Interface - kombu.asynchronous.http.base

Base async HTTP client implementation.

	
class kombu.asynchronous.http.base.Headers

	Represents a mapping of HTTP headers.

	
complete = False

	Set when all of the headers have been read.

	
class kombu.asynchronous.http.base.Response(request, code, headers=None, buffer=None, effective_url=None, error=None, status=None)

	HTTP Response.

	Parameters

	
	request (Request) – See request.

	code (int [https://docs.python.org/dev/library/functions.html#int]) – See code.

	headers (Headers) – See headers.

	buffer (bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]) – See buffer

	effective_url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See effective_url.

	status (str [https://docs.python.org/dev/library/stdtypes.html#str]) – See status.

	
request

	object used to
get this response.

	Type

	Request

	
code

	HTTP response code (e.g. 200, 404, or 500).

	Type

	int [https://docs.python.org/dev/library/functions.html#int]

	
headers

	HTTP headers
for this response.

	Type

	Headers

	
buffer

	Socket read buffer.

	Type

	bytes [https://docs.python.org/dev/library/stdtypes.html#bytes]

	
effective_url

	The destination url for this request after
following redirects.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
error

	Error instance if the request resulted in
a HTTP error code.

	Type

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception]

	
status

	Human equivalent of code,
e.g. OK, Not found, or ‘Internal Server Error’.

	Type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
body

	The full contents of the response body.

Note

Accessing this propery will evaluate the buffer
and subsequent accesses will be cached.

	
buffer

	

	
code

	

	
content

	

	
effective_url

	

	
error

	

	
headers

	

	
raise_for_error()

	Raise if the request resulted in an HTTP error code.

	Raises

	HttpError

	
request

	

	
status

	

	
status_code

	

	
class kombu.asynchronous.http.base.Request(url, method='GET', on_ready=None, on_timeout=None, on_stream=None, on_prepare=None, on_header=None, headers=None, **kwargs)

	A HTTP Request.

	Parameters

	
	url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The URL to request.

	method (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The HTTP method to use (defaults to GET).

	Keyword Arguments

	
	headers (Dict, Headers) – Optional headers for
this request

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional body for this request.

	connect_timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Connection timeout in float seconds
Default is 30.0.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in float seconds before the request times out
Default is 30.0.

	follow_redirects (bool [https://docs.python.org/dev/library/functions.html#bool]) – Specify if the client should follow redirects
Enabled by default.

	max_redirects (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of redirects (default 6).

	use_gzip (bool [https://docs.python.org/dev/library/functions.html#bool]) – Allow the server to use gzip compression.
Enabled by default.

	validate_cert (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set to true if the server certificate should be
verified when performing https:// requests.
Enabled by default.

	auth_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Username for HTTP authentication.

	auth_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Password for HTTP authentication.

	auth_mode (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Type of HTTP authentication (basic or digest).

	user_agent (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom user agent for this request.

	network_interace (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Network interface to use for this request.

	on_ready (Callable) – Callback to be called when the response has been
received. Must accept single response argument.

	on_stream (Callable) – Optional callback to be called every time body
content has been read from the socket. If specified then the
response body and buffer attributes will not be available.

	on_timeout (callable [https://docs.python.org/dev/library/functions.html#callable]) – Optional callback to be called if the request
times out.

	on_header (Callable) – Optional callback to be called for every header
line received from the server. The signature
is (headers, line) and note that if you want
response.headers to be populated then your callback needs to
also call client.on_header(headers, line).

	on_prepare (Callable) – Optional callback that is implementation
specific (e.g. curl client will pass the curl instance to
this callback).

	proxy_host (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional proxy host. Note that a proxy_port must
also be provided or a ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] will be raised.

	proxy_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional username to use when logging in
to the proxy.

	proxy_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional password to use when authenticating
with the proxy server.

	ca_certs (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom CA certificates file to use.

	client_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL key.

	client_cert (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL certificate.

	
auth_mode = None

	

	
auth_password = None

	

	
auth_username = None

	

	
body = None

	

	
ca_certs = None

	

	
client_cert = None

	

	
client_key = None

	

	
connect_timeout = 30.0

	

	
follow_redirects = True

	

	
headers

	

	
max_redirects = 6

	

	
method

	

	
network_interface = None

	

	
on_header

	

	
on_prepare

	

	
on_ready

	

	
on_stream

	

	
on_timeout

	

	
proxy_host = None

	

	
proxy_password = None

	

	
proxy_port = None

	

	
proxy_username = None

	

	
request_timeout = 30.0

	

	
then(callback, errback=None)

	

	
url

	

	
use_gzip = True

	

	
user_agent = None

	

	
validate_cert = True

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async pyCurl HTTP Client - kombu.asynchronous.http.curl

HTTP Client using pyCurl.

	
class kombu.asynchronous.http.curl.CurlClient(hub=None, max_clients=10)

	Curl HTTP Client.

	
Curl = None

	

	
add_request(request)

	

	
close()

	

	
on_readable(fd, _pycurl=None)

	

	
on_writable(fd, _pycurl=None)

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async Amazon AWS Client - kombu.asynchronous.aws

	
kombu.asynchronous.aws.connect_sqs(aws_access_key_id=None, aws_secret_access_key=None, **kwargs)

	Return async connection to Amazon SQS.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Amazon AWS Connection - kombu.asynchronous.aws.connection

Amazon AWS Connection.

	
class kombu.asynchronous.aws.connection.AsyncHTTPSConnection(strict=None, timeout=20.0, http_client=None)

	Async HTTP Connection.

	
class Request(url, method='GET', on_ready=None, on_timeout=None, on_stream=None, on_prepare=None, on_header=None, headers=None, **kwargs)

	A HTTP Request.

	Parameters

	
	url (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The URL to request.

	method (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The HTTP method to use (defaults to GET).

	Keyword Arguments

	
	headers (Dict, Headers) – Optional headers for
this request

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional body for this request.

	connect_timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Connection timeout in float seconds
Default is 30.0.

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – Time in float seconds before the request times out
Default is 30.0.

	follow_redirects (bool [https://docs.python.org/dev/library/functions.html#bool]) – Specify if the client should follow redirects
Enabled by default.

	max_redirects (int [https://docs.python.org/dev/library/functions.html#int]) – Maximum number of redirects (default 6).

	use_gzip (bool [https://docs.python.org/dev/library/functions.html#bool]) – Allow the server to use gzip compression.
Enabled by default.

	validate_cert (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set to true if the server certificate should be
verified when performing https:// requests.
Enabled by default.

	auth_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Username for HTTP authentication.

	auth_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Password for HTTP authentication.

	auth_mode (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Type of HTTP authentication (basic or digest).

	user_agent (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom user agent for this request.

	network_interace (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Network interface to use for this request.

	on_ready (Callable) – Callback to be called when the response has been
received. Must accept single response argument.

	on_stream (Callable) – Optional callback to be called every time body
content has been read from the socket. If specified then the
response body and buffer attributes will not be available.

	on_timeout (callable [https://docs.python.org/dev/library/functions.html#callable]) – Optional callback to be called if the request
times out.

	on_header (Callable) – Optional callback to be called for every header
line received from the server. The signature
is (headers, line) and note that if you want
response.headers to be populated then your callback needs to
also call client.on_header(headers, line).

	on_prepare (Callable) – Optional callback that is implementation
specific (e.g. curl client will pass the curl instance to
this callback).

	proxy_host (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional proxy host. Note that a proxy_port must
also be provided or a ValueError [https://docs.python.org/dev/library/exceptions.html#ValueError] will be raised.

	proxy_username (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional username to use when logging in
to the proxy.

	proxy_password (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional password to use when authenticating
with the proxy server.

	ca_certs (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Custom CA certificates file to use.

	client_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL key.

	client_cert (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Optional filename for client SSL certificate.

	
auth_mode = None

	

	
auth_password = None

	

	
auth_username = None

	

	
body = None

	

	
ca_certs = None

	

	
client_cert = None

	

	
client_key = None

	

	
connect_timeout = 30.0

	

	
follow_redirects = True

	

	
headers

	

	
max_redirects = 6

	

	
method

	

	
network_interface = None

	

	
on_header

	

	
on_prepare

	

	
on_ready

	

	
on_stream

	

	
on_timeout

	

	
proxy_host = None

	

	
proxy_password = None

	

	
proxy_port = None

	

	
proxy_username = None

	

	
request_timeout = 30.0

	

	
then(callback, errback=None)

	

	
url

	

	
use_gzip = True

	

	
user_agent = None

	

	
validate_cert = True

	

	
Response

	alias of AsyncHTTPResponse

	
body = None

	

	
close()

	

	
connect()

	

	
default_ports = {'http': 80, 'https': 443}

	

	
endheaders()

	

	
getrequest()

	

	
getresponse(callback=None)

	

	
method = 'GET'

	

	
path = '/'

	

	
putheader(header, value)

	

	
putrequest(method, path)

	

	
request(method, path, body=None, headers=None)

	

	
send(data)

	

	
set_debuglevel(level)

	

	
class kombu.asynchronous.aws.connection.AsyncConnection(sqs_connection, http_client=None, **kwargs)

	Async AWS Connection.

	
get_http_connection()

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async Amazon SQS Client - kombu.asynchronous.aws.sqs

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SQS Connection - kombu.asynchronous.aws.sqs.connection

Amazon SQS Connection.

	
class kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection(sqs_connection, debug=0, region=None, **kwargs)

	Async SQS Connection.

	
add_permission(queue, label, aws_account_id, action_name, callback=None)

	

	
change_message_visibility(queue, receipt_handle, visibility_timeout, callback=None)

	

	
change_message_visibility_batch(queue, messages, callback=None)

	

	
create_queue(queue_name, visibility_timeout=None, callback=None)

	

	
delete_message(queue, receipt_handle, callback=None)

	

	
delete_message_batch(queue, messages, callback=None)

	

	
delete_message_from_handle(queue, receipt_handle, callback=None)

	

	
delete_queue(queue, force_deletion=False, callback=None)

	

	
get_all_queues(prefix='', callback=None)

	

	
get_dead_letter_source_queues(queue, callback=None)

	

	
get_queue(queue_name, callback=None)

	

	
get_queue_attributes(queue, attribute='All', callback=None)

	

	
get_queue_url(queue)

	

	
lookup(queue_name, callback=None)

	

	
receive_message(queue, number_messages=1, visibility_timeout=None, attributes=None, wait_time_seconds=None, callback=None)

	

	
remove_permission(queue, label, callback=None)

	

	
send_message(queue, message_content, delay_seconds=None, callback=None)

	

	
send_message_batch(queue, messages, callback=None)

	

	
set_queue_attribute(queue, attribute, value, callback=None)

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SQS Messages - kombu.asynchronous.aws.sqs.message

Amazon SQS message implementation.

	
class kombu.asynchronous.aws.sqs.message.AsyncMessage(body=None, delivery_tag=None, content_type=None, content_encoding=None, delivery_info=None, properties=None, headers=None, postencode=None, accept=None, channel=None, **kwargs)

	Serialized message.

	
encode(value)

	Encode/decode the value using Base64 encoding.

	
class kombu.asynchronous.aws.sqs.message.AsyncRawMessage(body=None, delivery_tag=None, content_type=None, content_encoding=None, delivery_info=None, properties=None, headers=None, postencode=None, accept=None, channel=None, **kwargs)

	Raw Message.

	
class kombu.asynchronous.aws.sqs.message.BaseAsyncMessage(body=None, delivery_tag=None, content_type=None, content_encoding=None, delivery_info=None, properties=None, headers=None, postencode=None, accept=None, channel=None, **kwargs)

	Base class for messages received on async client.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SQS Queues - kombu.asynchronous.aws.sqs.queue

Amazon SQS queue implementation.

	
class kombu.asynchronous.aws.sqs.queue.AsyncQueue(connection=None, url=None, message_class=<class 'kombu.asynchronous.aws.sqs.message.AsyncMessage'>)

	Async SQS Queue.

	
add_permission(label, aws_account_id, action_name, callback=None)

	

	
change_message_visibility_batch(messages, callback=None)

	

	
clear(*args, **kwargs)

	

	
count(page_size=10, vtimeout=10, callback=None, _attr='ApproximateNumberOfMessages')

	

	
count_slow(*args, **kwargs)

	

	
delete(callback=None)

	

	
delete_message(message, callback=None)

	

	
delete_message_batch(messages, callback=None)

	

	
dump(*args, **kwargs)

	

	
get_attributes(attributes='All', callback=None)

	

	
get_messages(num_messages=1, visibility_timeout=None, attributes=None, wait_time_seconds=None, callback=None)

	

	
get_timeout(callback=None, _attr='VisibilityTimeout')

	

	
load(*args, **kwargs)

	

	
load_from_file(*args, **kwargs)

	

	
load_from_filename(*args, **kwargs)

	

	
load_from_s3(*args, **kwargs)

	

	
read(visibility_timeout=None, wait_time_seconds=None, callback=None)

	

	
remove_permission(label, callback=None)

	

	
save(*args, **kwargs)

	

	
save_to_file(*args, **kwargs)

	

	
save_to_filename(*args, **kwargs)

	

	
save_to_s3(*args, **kwargs)

	

	
set_attribute(attribute, value, callback=None)

	

	
set_timeout(visibility_timeout, callback=None)

	

	
write(message, delay_seconds=None, callback=None)

	

	
write_batch(messages, callback=None)

	

	
kombu.asynchronous.aws.sqs.queue.list_first(rs)

	Get the first item in a list, or None if list empty.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Built-in Transports - kombu.transport

Built-in transports.

	Data

	Functions

Data

	
kombu.transport.DEFAULT_TRANSPORT

	Default transport used when no transport specified.

	
kombu.transport.TRANSPORT_ALIASES

	Mapping of transport aliases/class names.

Functions

	
kombu.transport.get_transport_cls(transport=None)

	Get transport class by name.

The transport string is the full path to a transport class, e.g.:

"kombu.transport.pyamqp:Transport"

If the name does not include “.” (is not fully qualified),
the alias table will be consulted.

	
kombu.transport.resolve_transport(transport=None)

	Get transport by name.

	Parameters

	transport (Union[str [https://docs.python.org/dev/library/stdtypes.html#str], type [https://docs.python.org/dev/library/functions.html#type]]) – This can be either
an actual transport class, or the fully qualified
path to a transport class, or the alias of a transport.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Azure Storage Queues Transport - kombu.transport.azurestoragequeues

Azure Storage Queues transport.

The transport can be enabled by setting the CELERY_BROKER_URL to:

`
azurestoragequeues://:{Storage Account Access Key}@{Storage Account Name}
`

Note that if the access key for the storage account contains a slash, it will
have to be regenerated before it can be used in the connection URL.

More information about Azure Storage Queues:
https://azure.microsoft.com/en-us/services/storage/queues/

	Transport

	Channel

Transport

	
class kombu.transport.azurestoragequeues.Transport(client, **kwargs)

	Azure Storage Queues transport.

	
class Channel(*args, **kwargs)

	Azure Storage Queues channel.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
conninfo

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 45, 34: 45, 35: 45, 36: 45, 37: 45, 38: 45, 39: 45, 40: 45, 41: 45, 42: 45, 43: 45, 44: 45, 45: 45, 46: 45, 47: 45, 58: 45, 59: 45, 60: 45, 61: 45, 62: 45, 63: 45, 64: 45, 91: 45, 92: 45, 93: 45, 94: 45, 95: 45, 96: 45, 123: 45, 124: 45, 125: 45, 126: 45})

	Format AMQP queue name into a valid Azure Storage Queue name.

	
no_ack = True

	

	
queue_name_prefix

	

	
queue_service

	

	
transport_options

	

	
default_port = None

	

	
polling_interval = 1

	

Channel

	
class kombu.transport.azurestoragequeues.Channel(*args, **kwargs)

	Azure Storage Queues channel.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
conninfo

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 45, 34: 45, 35: 45, 36: 45, 37: 45, 38: 45, 39: 45, 40: 45, 41: 45, 42: 45, 43: 45, 44: 45, 45: 45, 46: 45, 47: 45, 58: 45, 59: 45, 60: 45, 61: 45, 62: 45, 63: 45, 64: 45, 91: 45, 92: 45, 93: 45, 94: 45, 95: 45, 96: 45, 123: 45, 124: 45, 125: 45, 126: 45})

	Format AMQP queue name into a valid Azure Storage Queue name.

	
no_ack = True

	

	
queue_name_prefix

	

	
queue_service

	

	
transport_options

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Azure Service Bus Transport - kombu.transport.azureservicebus

Azure Service Bus Message Queue transport.

The transport can be enabled by setting the CELERY_BROKER_URL to:

`
azureservicebus://{SAS policy name}:{SAS key}@{Service Bus Namespace}
`

Note that the Shared Access Policy used to connect to Azure Service Bus
requires Manage, Send and Listen claims since the broker will create new
queues and delete old queues as required.

Note that if the SAS key for the Service Bus account contains a slash, it will
have to be regenerated before it can be used in the connection URL.

More information about Azure Service Bus:
https://azure.microsoft.com/en-us/services/service-bus/

	Transport

	Channel

Transport

	
class kombu.transport.azureservicebus.Transport(client, **kwargs)

	Azure Service Bus transport.

	
class Channel(*args, **kwargs)

	Azure Service Bus channel.

	
conninfo

	

	
default_visibility_timeout = 1800

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 45: 95, 46: 95, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a valid ServiceBus queue name.

	
queue_name_prefix

	

	
queue_service

	

	
transport_options

	

	
visibility_timeout

	

	
default_port = None

	

	
polling_interval = 1

	

Channel

	
class kombu.transport.azureservicebus.Channel(*args, **kwargs)

	Azure Service Bus channel.

	
conninfo

	

	
default_visibility_timeout = 1800

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 45: 95, 46: 95, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a valid ServiceBus queue name.

	
queue_name_prefix

	

	
queue_service

	

	
transport_options

	

	
visibility_timeout

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Pure-python AMQP Transport - kombu.transport.pyamqp

Pure-Python amqp transport.

	Transport

	Connection

	Channel

	Message

Transport

	
class kombu.transport.pyamqp.Transport(client, default_port=None, default_ssl_port=None, **kwargs)

	AMQP Transport.

	
class Connection(host='localhost:5672', userid='guest', password='guest', login_method=None, login_response=None, authentication=(), virtual_host='/', locale='en_US', client_properties=None, ssl=False, connect_timeout=None, channel_max=None, frame_max=None, heartbeat=0, on_open=None, on_blocked=None, on_unblocked=None, confirm_publish=False, on_tune_ok=None, read_timeout=None, write_timeout=None, socket_settings=None, frame_handler=<function frame_handler>, frame_writer=<function frame_writer>, **kwargs)

	AMQP Connection.

	
class Channel(connection, channel_id=None, auto_decode=True, on_open=None)

	AMQP Channel.

	
class Message(msg, channel=None, **kwargs)

	AMQP Message.

	
message_to_python(raw_message)

	Convert encoded message body back to a Python value.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None, _Message=<class 'amqp.basic_message.Message'>)

	Prepare message so that it can be sent using this transport.

	
prepare_queue_arguments(arguments, **kwargs)

	

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>,)

	

	
close_connection(connection)

	Close the AMQP broker connection.

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
create_channel(connection)

	

	
default_connection_params

	

	
default_port = 5672

	

	
default_ssl_port = 5671

	

	
drain_events(connection, **kwargs)

	

	
driver_name = 'py-amqp'

	

	
driver_type = 'amqp'

	

	
driver_version()

	

	
establish_connection()

	Establish connection to the AMQP broker.

	
get_heartbeat_interval(connection)

	

	
get_manager(*args, **kwargs)

	

	
heartbeat_check(connection, rate=2)

	

	
implements = {'asynchronous': True, 'exchange_type': frozenset({'direct', 'headers', 'fanout', 'topic'}), 'heartbeats': True}

	

	
qos_semantics_matches_spec(connection)

	

	
recoverable_channel_errors = (<class 'amqp.exceptions.RecoverableChannelError'>,)

	

	
recoverable_connection_errors = (<class 'amqp.exceptions.RecoverableConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
register_with_event_loop(connection, loop)

	

	
verify_connection(connection)

	

Connection

	
class kombu.transport.pyamqp.Connection(host='localhost:5672', userid='guest', password='guest', login_method=None, login_response=None, authentication=(), virtual_host='/', locale='en_US', client_properties=None, ssl=False, connect_timeout=None, channel_max=None, frame_max=None, heartbeat=0, on_open=None, on_blocked=None, on_unblocked=None, confirm_publish=False, on_tune_ok=None, read_timeout=None, write_timeout=None, socket_settings=None, frame_handler=<function frame_handler>, frame_writer=<function frame_writer>, **kwargs)

	AMQP Connection.

	
class Channel(connection, channel_id=None, auto_decode=True, on_open=None)

	AMQP Channel.

	
Consumer(*args, **kwargs)

	

	
class Message(msg, channel=None, **kwargs)

	AMQP Message.

	
exception MessageStateError

	The message has already been acknowledged.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
accept

	

	
ack(multiple=False)

	Acknowledge this message as being processed.

This will remove the message from the queue.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
ack_log_error(logger, errors, multiple=False)

	

	
acknowledged

	Set to true if the message has been acknowledged.

	
body

	

	
channel

	

	
content_encoding

	

	
content_type

	

	
decode()

	Deserialize the message body.

Returning the original python structure sent by the publisher.

Note

The return value is memoized, use _decode to force
re-evaluation.

	
delivery_info

	

	
delivery_tag

	

	
errors = None

	

	
headers

	

	
payload

	The decoded message body.

	
properties

	

	
reject(requeue=False)

	Reject this message.

The message will be discarded by the server.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
reject_log_error(logger, errors, requeue=False)

	

	
requeue()

	Reject this message and put it back on the queue.

Warning

You must not use this method as a means of selecting messages
to process.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
Producer(*args, **kwargs)

	

	
after_reply_message_received(queue)

	Callback called after RPC reply received.

Notes

Reply queue semantics: can be used to delete the queue
after transient reply message received.

	
basic_ack(delivery_tag, multiple=False, argsig='Lb')

	Acknowledge one or more messages.

This method acknowledges one or more messages delivered via
the Deliver or Get-Ok methods. The client can ask to confirm
a single message or a set of messages up to and including a
specific message.

	Parameters

	
	delivery_tag – longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

	multiple – boolean

acknowledge multiple messages

If set to True, the delivery tag is treated as “up to
and including”, so that the client can acknowledge
multiple messages with a single method. If set to
False, the delivery tag refers to a single message.
If the multiple field is True, and the delivery tag
is zero, tells the server to acknowledge all
outstanding mesages.

RULE:

The server MUST validate that a non-zero delivery-
tag refers to an delivered message, and raise a
channel exception if this is not the case.

	
basic_cancel(consumer_tag, nowait=False, argsig='sb')

	End a queue consumer.

This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send
any more messages for that consumer. The client may receive
an abitrary number of messages in between sending the cancel
method and receiving the cancel-ok reply.

RULE:

If the queue no longer exists when the client sends a
cancel command, or the consumer has been cancelled for
other reasons, this command has no effect.

	Parameters

	
	consumer_tag – shortstr

consumer tag

Identifier for the consumer, valid within the current
connection.

RULE:

The consumer tag is valid only within the channel
from which the consumer was created. I.e. a client
MUST NOT create a consumer in one channel and then
use it in another.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
basic_consume(queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, callback=None, arguments=None, on_cancel=None, argsig='BssbbbbF')

	Start a queue consumer.

This method asks the server to start a “consumer”, which is a
transient request for messages from a specific queue.
Consumers last as long as the channel they were created on, or
until the client cancels them.

RULE:

The server SHOULD support at least 16 consumers per queue,
unless the queue was declared as private, and ideally,
impose no limit except as defined by available resources.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

	consumer_tag – shortstr

Specifies the identifier for the consumer. The
consumer tag is local to a connection, so two clients
can use the same consumer tags. If this field is empty
the server will generate a unique tag.

RULE:

The tag MUST NOT refer to an existing consumer. If
the client attempts to create two consumers with
the same non-empty tag the server MUST raise a
connection exception with reply code 530 (not
allowed).

	no_local – boolean

do not deliver own messages

If the no-local field is set the server will not send
messages to the client that published them.

	no_ack – boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

	exclusive – boolean

request exclusive access

Request exclusive consumer access, meaning only this
consumer can access the queue.

RULE:

If the server cannot grant exclusive access to the
queue when asked, - because there are other
consumers active - it MUST raise a channel
exception with return code 403 (access refused).

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	callback – Python callable

function/method called with each delivered message

For each message delivered by the broker, the
callable will be called with a Message object
as the single argument. If no callable is specified,
messages are quietly discarded, no_ack should probably
be set to True in that case.

	
basic_get(queue='', no_ack=False, argsig='Bsb')

	Direct access to a queue.

This method provides a direct access to the messages in a
queue using a synchronous dialogue that is designed for
specific types of application where synchronous functionality
is more important than performance.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to consume from. If
the queue name is null, refers to the current queue
for the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

	no_ack – boolean

no acknowledgment needed

If this field is set the server does not expect
acknowledgments for messages. That is, when a message
is delivered to the client the server automatically and
silently acknowledges it on behalf of the client. This
functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies
before it can deliver them to the application.

Non-blocking, returns a amqp.basic_message.Message object,
or None if queue is empty.

	
basic_publish(msg, exchange='', routing_key='', mandatory=False, immediate=False, timeout=None, argsig='Bssbb')

	Publish a message.

This method publishes a message to a specific exchange. The
message will be routed to queues as defined by the exchange
configuration and distributed to any active consumers when the
transaction, if any, is committed.

When channel is in confirm mode (when Connection parameter
confirm_publish is set to True), each message is confirmed. When
broker rejects published message (e.g. due internal broker
constrains), MessageNacked exception is raised.

	Parameters

	
	exchange – shortstr

Specifies the name of the exchange to publish to. The
exchange name can be empty, meaning the default
exchange. If the exchange name is specified, and that
exchange does not exist, the server will raise a
channel exception.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

RULE:

The exchange MAY refuse basic content in which
case it MUST raise a channel exception with reply
code 540 (not implemented).

	routing_key – shortstr

Message routing key

Specifies the routing key for the message. The
routing key is used for routing messages depending on
the exchange configuration.

	mandatory – boolean

indicate mandatory routing

This flag tells the server how to react if the message
cannot be routed to a queue. If this flag is True, the
server will return an unroutable message with a Return
method. If this flag is False, the server silently
drops the message.

RULE:

The server SHOULD implement the mandatory flag.

	immediate – boolean

request immediate delivery

This flag tells the server how to react if the message
cannot be routed to a queue consumer immediately. If
this flag is set, the server will return an
undeliverable message with a Return method. If this
flag is zero, the server will queue the message, but
with no guarantee that it will ever be consumed.

RULE:

The server SHOULD implement the immediate flag.

	
basic_publish_confirm(*args, **kwargs)

	

	
basic_qos(prefetch_size, prefetch_count, a_global, argsig='lBb')

	Specify quality of service.

This method requests a specific quality of service. The QoS
can be specified for the current channel or for all channels
on the connection. The particular properties and semantics of
a qos method always depend on the content class semantics.
Though the qos method could in principle apply to both peers,
it is currently meaningful only for the server.

	Parameters

	
	prefetch_size – long

prefetch window in octets

The client can request that messages be sent in
advance so that when the client finishes processing a
message, the following message is already held
locally, rather than needing to be sent down the
channel. Prefetching gives a performance improvement.
This field specifies the prefetch window size in
octets. The server will send a message in advance if
it is equal to or smaller in size than the available
prefetch size (and also falls into other prefetch
limits). May be set to zero, meaning “no specific
limit”, although other prefetch limits may still
apply. The prefetch-size is ignored if the no-ack
option is set.

RULE:

The server MUST ignore this setting when the
client is not processing any messages - i.e. the
prefetch size does not limit the transfer of
single messages to a client, only the sending in
advance of more messages while the client still
has one or more unacknowledged messages.

	prefetch_count – short

prefetch window in messages

Specifies a prefetch window in terms of whole
messages. This field may be used in combination with
the prefetch-size field; a message will only be sent
in advance if both prefetch windows (and those at the
channel and connection level) allow it. The prefetch-
count is ignored if the no-ack option is set.

RULE:

The server MAY send less data in advance than
allowed by the client’s specified prefetch windows
but it MUST NOT send more.

	a_global – boolean

apply to entire connection

By default the QoS settings apply to the current
channel only. If this field is set, they are applied
to the entire connection.

	
basic_recover(requeue=False)

	Redeliver unacknowledged messages.

This method asks the broker to redeliver all unacknowledged
messages on a specified channel. Zero or more messages may be
redelivered. This method is only allowed on non-transacted
channels.

RULE:

The server MUST set the redelivered flag on all messages
that are resent.

RULE:

The server MUST raise a channel exception if this is
called on a transacted channel.

	Parameters

	requeue – boolean

requeue the message

If this field is False, the message will be redelivered
to the original recipient. If this field is True, the
server will attempt to requeue the message,
potentially then delivering it to an alternative
subscriber.

	
basic_recover_async(requeue=False)

	

	
basic_reject(delivery_tag, requeue, argsig='Lb')

	Reject an incoming message.

This method allows a client to reject a message. It can be
used to interrupt and cancel large incoming messages, or
return untreatable messages to their original queue.

RULE:

The server SHOULD be capable of accepting and process the
Reject method while sending message content with a Deliver
or Get-Ok method. I.e. the server should read and process
incoming methods while sending output frames. To cancel a
partially-send content, the server sends a content body
frame of size 1 (i.e. with no data except the frame-end
octet).

RULE:

The server SHOULD interpret this method as meaning that
the client is unable to process the message at this time.

RULE:

A client MUST NOT use this method as a means of selecting
messages to process. A rejected message MAY be discarded
or dead-lettered, not necessarily passed to another
client.

	Parameters

	
	delivery_tag – longlong

server-assigned delivery tag

The server-assigned and channel-specific delivery tag

RULE:

The delivery tag is valid only within the channel
from which the message was received. I.e. a client
MUST NOT receive a message on one channel and then
acknowledge it on another.

RULE:

The server MUST NOT use a zero value for delivery
tags. Zero is reserved for client use, meaning “all
messages so far received”.

	requeue – boolean

requeue the message

If this field is False, the message will be discarded.
If this field is True, the server will attempt to
requeue the message.

RULE:

The server MUST NOT deliver the message to the
same client within the context of the current
channel. The recommended strategy is to attempt
to deliver the message to an alternative consumer,
and if that is not possible, to move the message
to a dead-letter queue. The server MAY use more
sophisticated tracking to hold the message on the
queue and redeliver it to the same client at a
later stage.

	
close(reply_code=0, reply_text='', method_sig=(0, 0), argsig='BsBB')

	Request a channel close.

This method indicates that the sender wants to close the
channel. This may be due to internal conditions (e.g. a forced
shut-down) or due to an error handling a specific method, i.e.
an exception. When a close is due to an exception, the sender
provides the class and method id of the method which caused
the exception.

RULE:

After sending this method any received method except
Channel.Close-OK MUST be discarded.

RULE:

The peer sending this method MAY use a counter or timeout
to detect failure of the other peer to respond correctly
with Channel.Close-OK..

	Parameters

	
	reply_code – short

The reply code. The AMQ reply codes are defined in AMQ
RFC 011.

	reply_text – shortstr

The localised reply text. This text can be logged as an
aid to resolving issues.

	class_id – short

failing method class

When the close is provoked by a method exception, this
is the class of the method.

	method_id – short

failing method ID

When the close is provoked by a method exception, this
is the ID of the method.

	
collect()

	Tear down this object.

Best called after we’ve agreed to close with the server.

	
confirm_select(nowait=False)

	Enable publisher confirms for this channel.

Note: This is an RabbitMQ extension.

Can now be used if the channel is in transactional mode.

	Parameters

	nowait – If set, the server will not respond to the method.
The client should not wait for a reply method. If the
server could not complete the method it will raise a channel
or connection exception.

	
dispatch_method(method_sig, payload, content)

	

	
exchange_bind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind an exchange to an exchange.

RULE:

A server MUST allow and ignore duplicate bindings - that
is, two or more bind methods for a specific exchanges,
with identical arguments - without treating these as an
error.

RULE:

A server MUST allow cycles of exchange bindings to be
created including allowing an exchange to be bound to
itself.

RULE:

A server MUST not deliver the same message more than once
to a destination exchange, even if the topology of
exchanges and bindings results in multiple (even infinite)
routes to that exchange.

	Parameters

	
	reserved-1 – short

	destination – shortstr

Specifies the name of the destination exchange to
bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent destination exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

	source – shortstr

Specifies the name of the source exchange to bind.

RULE:

A client MUST NOT be allowed to bind a non-
existent source exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

	routing-key – shortstr

Specifies the routing key for the binding. The routing
key is used for routing messages depending on the
exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation.

	no-wait – bit

	arguments – table

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
exchange_declare(exchange, type, passive=False, durable=False, auto_delete=True, nowait=False, arguments=None, argsig='BssbbbbbF')

	Declare exchange, create if needed.

This method creates an exchange if it does not already exist,
and if the exchange exists, verifies that it is of the correct
and expected class.

RULE:

The server SHOULD support a minimum of 16 exchanges per
virtual host and ideally, impose no limit except as
defined by available resources.

	Parameters

	
	exchange – shortstr

RULE:

Exchange names starting with “amq.” are reserved
for predeclared and standardised exchanges. If
the client attempts to create an exchange starting
with “amq.”, the server MUST raise a channel
exception with reply code 403 (access refused).

	type – shortstr

exchange type

Each exchange belongs to one of a set of exchange
types implemented by the server. The exchange types
define the functionality of the exchange - i.e. how
messages are routed through it. It is not valid or
meaningful to attempt to change the type of an
existing exchange.

RULE:

If the exchange already exists with a different
type, the server MUST raise a connection exception
with a reply code 507 (not allowed).

RULE:

If the server does not support the requested
exchange type it MUST raise a connection exception
with a reply code 503 (command invalid).

	passive – boolean

do not create exchange

If set, the server will not create the exchange. The
client can use this to check whether an exchange
exists without modifying the server state.

RULE:

If set, and the exchange does not already exist,
the server MUST raise a channel exception with
reply code 404 (not found).

	durable – boolean

request a durable exchange

If set when creating a new exchange, the exchange will
be marked as durable. Durable exchanges remain active
when a server restarts. Non-durable exchanges
(transient exchanges) are purged if/when a server
restarts.

RULE:

The server MUST support both durable and transient
exchanges.

RULE:

The server MUST ignore the durable field if the
exchange already exists.

	auto_delete – boolean

auto-delete when unused

If set, the exchange is deleted when all queues have
finished using it.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that an
exchange is not being used (or no longer used),
and the point when it deletes the exchange. At
the least it must allow a client to create an
exchange and then bind a queue to it, with a small
but non-zero delay between these two actions.

RULE:

The server MUST ignore the auto-delete field if
the exchange already exists.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	arguments – table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	
exchange_delete(exchange, if_unused=False, nowait=False, argsig='Bsbb')

	Delete an exchange.

This method deletes an exchange. When an exchange is deleted
all queue bindings on the exchange are cancelled.

	Parameters

	
	exchange – shortstr

RULE:

The exchange MUST exist. Attempting to delete a
non-existing exchange causes a channel exception.

	if_unused – boolean

delete only if unused

If set, the server will only delete the exchange if it
has no queue bindings. If the exchange has queue
bindings the server does not delete it but raises a
channel exception instead.

RULE:

If set, the server SHOULD delete the exchange but
only if it has no queue bindings.

RULE:

If set, the server SHOULD raise a channel
exception if the exchange is in use.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	
exchange_unbind(destination, source='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Unbind an exchange from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection
exception.

	Parameters

	
	reserved-1 – short

	destination – shortstr

Specifies the name of the destination exchange to
unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
that does not exist from an exchange.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

	source – shortstr

Specifies the name of the source exchange to unbind.

RULE:

The client MUST NOT attempt to unbind an exchange
from an exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to
mean the default exchange.

	routing-key – shortstr

Specifies the routing key of the binding to unbind.

	no-wait – bit

	arguments – table

Specifies the arguments of the binding to unbind.

	
flow(active)

	Enable/disable flow from peer.

This method asks the peer to pause or restart the flow of
content data. This is a simple flow-control mechanism that a
peer can use to avoid oveflowing its queues or otherwise
finding itself receiving more messages than it can process.
Note that this method is not intended for window control. The
peer that receives a request to stop sending content should
finish sending the current content, if any, and then wait
until it receives a Flow restart method.

RULE:

When a new channel is opened, it is active. Some
applications assume that channels are inactive until
started. To emulate this behaviour a client MAY open the
channel, then pause it.

RULE:

When sending content data in multiple frames, a peer
SHOULD monitor the channel for incoming methods and
respond to a Channel.Flow as rapidly as possible.

RULE:

A peer MAY use the Channel.Flow method to throttle
incoming content data for internal reasons, for example,
when exchangeing data over a slower connection.

RULE:

The peer that requests a Channel.Flow method MAY
disconnect and/or ban a peer that does not respect the
request.

	Parameters

	active – boolean

start/stop content frames

If True, the peer starts sending content frames. If
False, the peer stops sending content frames.

	
get_bindings()

	

	
message_to_python(raw_message)

	Convert encoded message body back to a Python value.

	
no_ack_consumers = None

	

	
open()

	Open a channel for use.

This method opens a virtual connection (a channel).

RULE:

This method MUST NOT be called when the channel is already
open.

	Parameters

	out_of_band – shortstr (DEPRECATED)

out-of-band settings

Configures out-of-band transfers on this channel. The
syntax and meaning of this field will be formally
defined at a later date.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None, _Message=<class 'amqp.basic_message.Message'>)

	Prepare message so that it can be sent using this transport.

	
prepare_queue_arguments(arguments, **kwargs)

	

	
queue_bind(queue, exchange='', routing_key='', nowait=False, arguments=None, argsig='BsssbF')

	Bind queue to an exchange.

This method binds a queue to an exchange. Until a queue is
bound it will not receive any messages. In a classic
messaging model, store-and-forward queues are bound to a dest
exchange and subscription queues are bound to a dest_wild
exchange.

RULE:

A server MUST allow ignore duplicate bindings - that is,
two or more bind methods for a specific queue, with
identical arguments - without treating these as an error.

RULE:

If a bind fails, the server MUST raise a connection
exception.

RULE:

The server MUST NOT allow a durable queue to bind to a
transient exchange. If the client attempts this the server
MUST raise a channel exception.

RULE:

Bindings for durable queues are automatically durable and
the server SHOULD restore such bindings after a server
restart.

RULE:

The server SHOULD support at least 4 bindings per queue,
and ideally, impose no limit except as defined by
available resources.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to bind. If the queue
name is empty, refers to the current queue for the
channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

If the queue does not exist the server MUST raise
a channel exception with reply code 404 (not
found).

	exchange – shortstr

The name of the exchange to bind to.

RULE:

If the exchange does not exist the server MUST
raise a channel exception with reply code 404 (not
found).

	routing_key – shortstr

message routing key

Specifies the routing key for the binding. The
routing key is used for routing messages depending on
the exchange configuration. Not all exchanges use a
routing key - refer to the specific exchange
documentation. If the routing key is empty and the
queue name is empty, the routing key will be the
current queue for the channel, which is the last
declared queue.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	arguments – table

arguments for binding

A set of arguments for the binding. The syntax and
semantics of these arguments depends on the exchange
class.

	
queue_declare(queue='', passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None, argsig='BsbbbbbF')

	Declare queue, create if needed.

This method creates or checks a queue. When creating a new
queue the client can specify various properties that control
the durability of the queue and its contents, and the level of
sharing for the queue.

RULE:

The server MUST create a default binding for a newly-
created queue to the default exchange, which is an
exchange of type ‘direct’.

RULE:

The server SHOULD support a minimum of 256 queues per
virtual host and ideally, impose no limit except as
defined by available resources.

	Parameters

	
	queue – shortstr

RULE:

The queue name MAY be empty, in which case the
server MUST create a new queue with a unique
generated name and return this to the client in
the Declare-Ok method.

RULE:

Queue names starting with “amq.” are reserved for
predeclared and standardised server queues. If
the queue name starts with “amq.” and the passive
option is False, the server MUST raise a connection
exception with reply code 403 (access refused).

	passive – boolean

do not create queue

If set, the server will not create the queue. The
client can use this to check whether a queue exists
without modifying the server state.

RULE:

If set, and the queue does not already exist, the
server MUST respond with a reply code 404 (not
found) and raise a channel exception.

	durable – boolean

request a durable queue

If set when creating a new queue, the queue will be
marked as durable. Durable queues remain active when
a server restarts. Non-durable queues (transient
queues) are purged if/when a server restarts. Note
that durable queues do not necessarily hold persistent
messages, although it does not make sense to send
persistent messages to a transient queue.

RULE:

The server MUST recreate the durable queue after a
restart.

RULE:

The server MUST support both durable and transient
queues.

RULE:

The server MUST ignore the durable field if the
queue already exists.

	exclusive – boolean

request an exclusive queue

Exclusive queues may only be consumed from by the
current connection. Setting the ‘exclusive’ flag
always implies ‘auto-delete’.

RULE:

The server MUST support both exclusive (private)
and non-exclusive (shared) queues.

RULE:

The server MUST raise a channel exception if
‘exclusive’ is specified and the queue already
exists and is owned by a different connection.

	auto_delete – boolean

auto-delete queue when unused

If set, the queue is deleted when all consumers have
finished using it. Last consumer can be cancelled
either explicitly or because its channel is closed. If
there was no consumer ever on the queue, it won’t be
deleted.

RULE:

The server SHOULD allow for a reasonable delay
between the point when it determines that a queue
is not being used (or no longer used), and the
point when it deletes the queue. At the least it
must allow a client to create a queue and then
create a consumer to read from it, with a small
but non-zero delay between these two actions. The
server should equally allow for clients that may
be disconnected prematurely, and wish to re-
consume from the same queue without losing
messages. We would recommend a configurable
timeout, with a suitable default value being one
minute.

RULE:

The server MUST ignore the auto-delete field if
the queue already exists.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

	arguments – table

arguments for declaration

A set of arguments for the declaration. The syntax and
semantics of these arguments depends on the server
implementation. This field is ignored if passive is
True.

	Returns a tuple containing 3 items:

	the name of the queue (essential for automatically-named queues),
message count and
consumer count

	
queue_delete(queue='', if_unused=False, if_empty=False, nowait=False, argsig='Bsbbb')

	Delete a queue.

This method deletes a queue. When a queue is deleted any
pending messages are sent to a dead-letter queue if this is
defined in the server configuration, and all consumers on the
queue are cancelled.

RULE:

The server SHOULD use a dead-letter queue to hold messages
that were pending on a deleted queue, and MAY provide
facilities for a system administrator to move these
messages back to an active queue.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to delete. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to delete a non-
existing queue causes a channel exception.

	if_unused – boolean

delete only if unused

If set, the server will only delete the queue if it
has no consumers. If the queue has consumers the
server does does not delete it but raises a channel
exception instead.

RULE:

The server MUST respect the if-unused flag when
deleting a queue.

	if_empty – boolean

delete only if empty

If set, the server will only delete the queue if it
has no messages. If the queue is not empty the server
raises a channel exception.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns the number of deleted messages.

	
queue_purge(queue='', nowait=False, argsig='Bsb')

	Purge a queue.

This method removes all messages from a queue. It does not
cancel consumers. Purged messages are deleted without any
formal “undo” mechanism.

RULE:

A call to purge MUST result in an empty queue.

RULE:

On transacted channels the server MUST not purge messages
that have already been sent to a client but not yet
acknowledged.

RULE:

The server MAY implement a purge queue or log that allows
system administrators to recover accidentally-purged
messages. The server SHOULD NOT keep purged messages in
the same storage spaces as the live messages since the
volumes of purged messages may get very large.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to purge. If the
queue name is empty, refers to the current queue for
the channel, which is the last declared queue.

RULE:

If the client did not previously declare a queue,
and the queue name in this method is empty, the
server MUST raise a connection exception with
reply code 530 (not allowed).

RULE:

The queue must exist. Attempting to purge a non-
existing queue causes a channel exception.

	nowait – boolean

do not send a reply method

If set, the server will not respond to the method. The
client should not wait for a reply method. If the
server could not complete the method it will raise a
channel or connection exception.

If nowait is False, returns a number of purged messages.

	
queue_unbind(queue, exchange, routing_key='', nowait=False, arguments=None, argsig='BsssF')

	Unbind a queue from an exchange.

This method unbinds a queue from an exchange.

RULE:

If a unbind fails, the server MUST raise a connection exception.

	Parameters

	
	queue – shortstr

Specifies the name of the queue to unbind.

RULE:

The client MUST either specify a queue name or have
previously declared a queue on the same channel

RULE:

The client MUST NOT attempt to unbind a queue that
does not exist.

	exchange – shortstr

The name of the exchange to unbind from.

RULE:

The client MUST NOT attempt to unbind a queue from an
exchange that does not exist.

RULE:

The server MUST accept a blank exchange name to mean
the default exchange.

	routing_key – shortstr

routing key of binding

Specifies the routing key of the binding to unbind.

	arguments – table

arguments of binding

Specifies the arguments of the binding to unbind.

	
send_method(sig, format=None, args=None, content=None, wait=None, callback=None, returns_tuple=False)

	

	
then(on_success, on_error=None)

	

	
tx_commit()

	Commit the current transaction.

This method commits all messages published and acknowledged in
the current transaction. A new transaction starts immediately
after a commit.

	
tx_rollback()

	Abandon the current transaction.

This method abandons all messages published and acknowledged
in the current transaction. A new transaction starts
immediately after a rollback.

	
tx_select()

	Select standard transaction mode.

This method sets the channel to use standard transactions.
The client must use this method at least once on a channel
before using the Commit or Rollback methods.

	
wait(method, callback=None, timeout=None, returns_tuple=False)

	

	
Transport(host, connect_timeout, ssl=False, read_timeout=None, write_timeout=None, socket_settings=None, **kwargs)

	

	
blocking_read(timeout=None)

	

	
bytes_recv = 0

	

	
bytes_sent = 0

	

	
channel(channel_id=None, callback=None)

	Create new channel.

Fetch a Channel object identified by the numeric channel_id, or
create that object if it doesn’t already exist.

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>,)

	

	
client_heartbeat = None

	

	
close(reply_code=0, reply_text='', method_sig=(0, 0), argsig='BsBB')

	Request a connection close.

This method indicates that the sender wants to close the
connection. This may be due to internal conditions (e.g. a
forced shut-down) or due to an error handling a specific
method, i.e. an exception. When a close is due to an
exception, the sender provides the class and method id of the
method which caused the exception.

RULE:

After sending this method any received method except the
Close-OK method MUST be discarded.

RULE:

The peer sending this method MAY use a counter or timeout
to detect failure of the other peer to respond correctly
with the Close-OK method.

RULE:

When a server receives the Close method from a client it
MUST delete all server-side resources associated with the
client’s context. A client CANNOT reconnect to a context
after sending or receiving a Close method.

	Parameters

	
	reply_code – short

The reply code. The AMQ reply codes are defined in AMQ
RFC 011.

	reply_text – shortstr

The localised reply text. This text can be logged as an
aid to resolving issues.

	class_id – short

failing method class

When the close is provoked by a method exception, this
is the class of the method.

	method_id – short

failing method ID

When the close is provoked by a method exception, this
is the ID of the method.

	
collect()

	

	
connect(callback=None)

	

	
connected

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
dispatch_method(method_sig, payload, content)

	

	
drain_events(timeout=None)

	

	
frame_writer

	

	
heartbeat = None

	

	
heartbeat_tick(rate=2)

	Send heartbeat packets if necessary.

	Raises

	ConnectionForvced – if none have been
received recently.

Note

This should be called frequently, on the order of
once per second.

	Keyword Arguments

	rate (int [https://docs.python.org/dev/library/functions.html#int]) – Previously used, but ignored now.

	
is_alive()

	

	
last_heartbeat_received = 0

	

	
last_heartbeat_sent = 0

	

	
library_properties = {'product': 'py-amqp', 'product_version': '2.5.0'}

	

	
negotiate_capabilities = {'authentication_failure_close': True, 'connection.blocked': True, 'consumer_cancel_notify': True}

	

	
on_inbound_frame

	

	
on_inbound_method(channel_id, method_sig, payload, content)

	

	
prev_recv = None

	

	
prev_sent = None

	

	
recoverable_channel_errors = (<class 'amqp.exceptions.RecoverableChannelError'>,)

	

	
recoverable_connection_errors = (<class 'amqp.exceptions.RecoverableConnectionError'>, <class 'OSError'>, <class 'OSError'>, <class 'OSError'>)

	

	
send_heartbeat()

	

	
send_method(sig, format=None, args=None, content=None, wait=None, callback=None, returns_tuple=False)

	

	
server_capabilities

	

	
server_heartbeat = None

	

	
sock

	

	
then(on_success, on_error=None)

	

	
transport

	

	
wait(method, callback=None, timeout=None, returns_tuple=False)

	

Channel

	
class kombu.transport.pyamqp.Channel(connection, channel_id=None, auto_decode=True, on_open=None)

	AMQP Channel.

	
class Message(msg, channel=None, **kwargs)

	AMQP Message.

	
message_to_python(raw_message)

	Convert encoded message body back to a Python value.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None, _Message=<class 'amqp.basic_message.Message'>)

	Prepare message so that it can be sent using this transport.

	
prepare_queue_arguments(arguments, **kwargs)

	

Message

	
class kombu.transport.pyamqp.Message(msg, channel=None, **kwargs)

	AMQP Message.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

librabbitmq AMQP transport - kombu.transport.librabbitmq

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Apache QPid Transport - kombu.transport.qpid

Qpid Transport.

Qpid [https://qpid.apache.org/] transport using qpid-python [https://pypi.org/project/qpid-python/] as the client and qpid-tools [https://pypi.org/project/qpid-tools/] for
broker management.

The use this transport you must install the necessary dependencies. These
dependencies are available via PyPI and can be installed using the pip
command:

$ pip install kombu[qpid]

or to install the requirements manually:

$ pip install qpid-tools qpid-python

Python 3 and PyPy Limitations

The Qpid transport does not support Python 3 or PyPy environments due
to underlying dependencies not being compatible. This version is
tested and works with with Python 2.7.

Authentication

This transport supports SASL authentication with the Qpid broker. Normally,
SASL mechanisms are negotiated from a client list and a server list of
possible mechanisms, but in practice, different SASL client libraries give
different behaviors. These different behaviors cause the expected SASL
mechanism to not be selected in many cases. As such, this transport restricts
the mechanism types based on Kombu’s configuration according to the following
table.

	Broker String

	SASL Mechanism

	qpid://hostname/

	ANONYMOUS

	qpid://username:password@hostname/

	PLAIN

	see instructions below

	EXTERNAL

The user can override the above SASL selection behaviors and specify the SASL
string using the login_method argument to the
Connection object. The string can be a single SASL mechanism
or a space separated list of SASL mechanisms. If you are using Celery with
Kombu, this can be accomplished by setting the BROKER_LOGIN_METHOD Celery
option.

Note

While using SSL, Qpid users may want to override the SASL mechanism to
use EXTERNAL. In that case, Qpid requires a username to be presented
that matches the CN of the SSL client certificate. Ensure that the
broker string contains the corresponding username. For example, if the
client certificate has CN=asdf and the client connects to example.com
on port 5671, the broker string should be:

qpid://asdf@example.com:5671/

Transport Options

The transport_options argument to the
Connection object are passed directly to the
qpid.messaging.endpoints.Connection as keyword arguments. These
options override and replace any other default or specified values. If using
Celery, this can be accomplished by setting the
BROKER_TRANSPORT_OPTIONS Celery option.

	Transport

	Connection

	Channel

	Message

Transport

	
class kombu.transport.qpid.Transport(*args, **kwargs)

	Kombu native transport for a Qpid broker.

Provide a native transport for Kombu that allows consumers and
producers to read and write messages to/from a broker. This Transport
is capable of supporting both synchronous and asynchronous reading.
All writes are synchronous through the Channel objects that
support this Transport.

Asynchronous reads are done using a call to drain_events(),
which synchronously reads messages that were fetched asynchronously, and
then handles them through calls to the callback handlers maintained on
the Connection object.

The Transport also provides methods to establish and close a connection
to the broker. This Transport establishes a factory-like pattern that
allows for singleton pattern to consolidate all Connections into a single
one.

The Transport can create Channel objects to communicate with the
broker with using the create_channel() method.

The Transport identifies recoverable connection errors and recoverable
channel errors according to the Kombu 3.0 interface. These exception are
listed as tuples and store in the Transport class attribute
recoverable_connection_errors and recoverable_channel_errors
respectively. Any exception raised that is not a member of one of these
tuples is considered non-recoverable. This allows Kombu support for
automatic retry of certain operations to function correctly.

For backwards compatibility to the pre Kombu 3.0 exception interface, the
recoverable errors are also listed as connection_errors and
channel_errors.

	
class Connection(**connection_options)

	Qpid Connection.

Encapsulate a connection object for the
Transport.

	Parameters

	
	host – The host that connections should connect to.

	port – The port that connection should connect to.

	username – The username that connections should connect with.
Optional.

	password – The password that connections should connect with.
Optional but requires a username.

	transport – The transport type that connections should use.
Either ‘tcp’, or ‘ssl’ are expected as values.

	timeout – the timeout used when a Connection connects
to the broker.

	sasl_mechanisms – The sasl authentication mechanism type to use.
refer to SASL documentation for an explanation of valid
values.

Note

qpid.messaging has an AuthenticationFailure exception type, but
instead raises a ConnectionError with a message that indicates an
authentication failure occurred in those situations.
ConnectionError is listed as a recoverable error type, so kombu
will attempt to retry if a ConnectionError is raised. Retrying
the operation without adjusting the credentials is not correct,
so this method specifically checks for a ConnectionError that
indicates an Authentication Failure occurred. In those
situations, the error type is mutated while preserving the
original message and raised so kombu will allow the exception to
not be considered recoverable.

A connection object is created by a
Transport during a call to
establish_connection(). The
Transport passes in
connection options as keywords that should be used for any connections
created. Each Transport creates exactly
one Connection.

A Connection object maintains a reference to a
Connection which can be accessed
through a bound getter method named get_qpid_connection() method.
Each Channel uses a the Connection for each
BrokerAgent, and the Transport maintains a session
for all senders and receivers.

The Connection object is also responsible for maintaining the
dictionary of references to callbacks that should be called when
messages are received. These callbacks are saved in _callbacks,
and keyed on the queue name associated with the received message. The
_callbacks are setup in Channel.basic_consume(), removed in
Channel.basic_cancel(), and called in
Transport.drain_events().

The following keys are expected to be passed in as keyword arguments
at a minimum:

All keyword arguments are collected into the connection_options dict
and passed directly through to
qpid.messaging.endpoints.Connection.establish().

	
class Channel(connection, transport)

	Supports broker configuration and messaging send and receive.

	Parameters

	
	connection (kombu.transport.qpid.Connection) – A Connection object that this Channel can
reference. Currently only used to access callbacks.

	transport (kombu.transport.qpid.Transport) – The Transport this Channel is associated with.

A channel object is designed to have method-parity with a Channel as
defined in AMQP 0-10 and earlier, which allows for the following broker
actions:

	exchange declare and delete

	queue declare and delete

	queue bind and unbind operations

	queue length and purge operations

	sending/receiving/rejecting messages

	structuring, encoding, and decoding messages

	supports synchronous and asynchronous reads

	reading state about the exchange, queues, and bindings

Channels are designed to all share a single TCP connection with a
broker, but provide a level of isolated communication with the broker
while benefiting from a shared TCP connection. The Channel is given
its Connection object by the
Transport that
instantiates the channel.

This channel inherits from StdChannel,
which makes this a ‘native’ channel versus a ‘virtual’ channel which
would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The
delivery_tag is generated for a message as they are prepared for
sending by basic_publish(). The delivery_tag is unique per
channel instance. The delivery_tag has no meaningful context in other
objects, and is only maintained in the memory of this object, and the
underlying QoS object that provides support.

Each channel object instantiates exactly one QoS object for
prefetch limiting, and asynchronous ACKing. The QoS object is
lazily instantiated through a property method qos(). The
QoS object is a supporting object that should not be accessed
directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get()
which uses _get() to perform the reading. These methods read
immediately and do not accept any form of timeout. basic_get()
reads synchronously and ACKs messages before returning them. ACKing is
done in all cases, because an application that reads messages using
qpid.messaging, but does not ACK them will experience a memory leak.
The no_ack argument to basic_get() does not affect ACKing
functionality.

Asynchronous reads on a queue are done by starting a consumer using
basic_consume(). Each call to basic_consume() will cause a
Receiver to be created on the
Session started by the :class:
Transport. The receiver will asynchronously read using
qpid.messaging, and prefetch messages before the call to
Transport.basic_drain() occurs. The prefetch_count value of the
QoS object is the capacity value of the new receiver. The new
receiver capacity must always be at least 1, otherwise none of the
receivers will appear to be ready for reading, and will never be read
from.

Each call to basic_consume() creates a consumer, which is given a
consumer tag that is identified by the caller of basic_consume().
Already started consumers can be cancelled using by their consumer_tag
using basic_cancel(). Cancellation of a consumer causes the
Receiver object to be closed.

Asynchronous message ACKing is supported through basic_ack(),
and is referenced by delivery_tag. The Channel object uses its
QoS object to perform the message ACKing.

	
class Message(payload, channel=None, **kwargs)

	Message object.

	
serializable()

	

	
class QoS(session, prefetch_count=1)

	A helper object for message prefetch and ACKing purposes.

	Keyword Arguments

	prefetch_count – Initial prefetch count, hard set to 1.

NOTE: prefetch_count is currently hard set to 1, and needs to be improved

This object is instantiated 1-for-1 with a
Channel instance. QoS allows
prefetch_count to be set to the number of outstanding messages
the corresponding Channel should be
allowed to prefetch. Setting prefetch_count to 0 disables
prefetch limits, and the object can hold an arbitrary number of messages.

Messages are added using append(), which are held until they are
ACKed asynchronously through a call to ack(). Messages that are
received, but not ACKed will not be delivered by the broker to another
consumer until an ACK is received, or the session is closed. Messages
are referred to using delivery_tag, which are unique per
Channel. Delivery tags are managed outside of this object and
are passed in with a message to append(). Un-ACKed messages can
be looked up from QoS using get() and can be rejected and
forgotten using reject().

	
ack(delivery_tag)

	Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be
forgotten by the broker.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – the delivery tag associated with the message
to be acknowledged.

	
append(message, delivery_tag)

	Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing,
rejecting, or getting later. Messages are saved into an
collections.OrderedDict [https://docs.python.org/dev/library/collections.html#collections.OrderedDict] by delivery_tag.

	Parameters

	
	message (qpid.messaging.Message) – A received message that has not yet been ACKed.

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – A UUID to refer to this message by
upon receipt.

	
can_consume()

	Return True if the Channel can consume more messages.

Used to ensure the client adheres to currently active prefetch
limits.

	Returns

	True, if this QoS object can accept more messages
without violating the prefetch_count. If prefetch_count is 0,
can_consume will always return True.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
can_consume_max_estimate()

	Return the remaining message capacity.

Returns an estimated number of outstanding messages that a
kombu.transport.qpid.Channel can accept without
exceeding prefetch_count. If prefetch_count is 0, then
this method returns 1.

	Returns

	The number of estimated messages that can be fetched
without violating the prefetch_count.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
get(delivery_tag)

	Get an un-ACKed message by delivery_tag.

If called with an invalid delivery_tag a KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] is raised.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be returned.

	Returns

	An un-ACKed message that is looked up by delivery_tag.

	Return type

	qpid.messaging.Message

	
reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated
with this QoS object is rejecting the message that was previously
delivered.

If requeue is False, then the message is not requeued for delivery
to another consumer. If requeue is True, then the message is
requeued for delivery to another consumer.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If True, the broker will be notified to requeue
the message. If False, the broker will be told to drop the
message entirely. In both cases, the message will be removed
from this object.

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can
only be ACKed using basic_ack() if they were acquired using
basic_consume(). This is the ACKing portion of the
asynchronous read behavior.

Internally, this method uses the QoS object, which stores
messages and is responsible for the ACKing.

	Parameters

	
	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be acknowledged.

	multiple (bool [https://docs.python.org/dev/library/functions.html#bool]) – not implemented. If set to True an AssertionError
is raised.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

Request the consumer stops reading messages from its queue. The
consumer is a Receiver, and it is
closed using close().

This method also cleans up all lingering references of the consumer.

	Parameters

	consumer_tag (an immutable object) – The tag which refers to the consumer to be
cancelled. Originally specified when the consumer was created
as a parameter to basic_consume().

	
basic_consume(queue, no_ack, callback, consumer_tag, **kwargs)

	Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type
Receiver using the
Session created and referenced by
the Transport that reads messages from a queue
specified by name until stopped by a call to basic_cancel().

Messages are available later through a synchronous call to
Transport.drain_events(), which will drain from the consumer
started by this method. Transport.drain_events() is
synchronous, but the receiving of messages over the network occurs
asynchronously, so it should still perform well.
Transport.drain_events() calls the callback provided here with
the Message of type self.Message.

Each consumer is referenced by a consumer_tag, which is provided by
the caller of this method.

This method sets up the callback onto the self.connection object in a
dict keyed by queue name. drain_events() is
responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be
saved for asynchronous ACKing later after the message has been
handled by the caller of drain_events(). Messages
can be ACKed after being received through a call to basic_ack().

If no_ack is True, The no_ack flag indicates that the receiver of
the message will not call basic_ack() later. Since the
message will not be ACKed later, it is ACKed immediately.

basic_consume() transforms the message object type prior to
calling the callback. Initially the message comes in as a
qpid.messaging.Message. This method unpacks the payload
of the qpid.messaging.Message and creates a new object of
type self.Message.

This method wraps the user delivered callback in a runtime-built
function which provides the type transformation from
qpid.messaging.Message to
Message, and adds the message to
the associated QoS object for asynchronous ACKing
if necessary.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to consume messages from

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, then messages will not be saved for ACKing
later, but will be ACKed immediately. If False, then messages
will be saved for ACKing later with a call to basic_ack().

	callback (a callable object) – a callable that will be called when messages
arrive on the queue.

	consumer_tag (an immutable object) – a tag to reference the created consumer by.
This consumer_tag is needed to cancel the consumer.

	
basic_get(queue, no_ack=False, **kwargs)

	Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get() to fetch the message. If
an Empty exception is raised by
_get(), this method silences it and returns None. If
_get() does return a message, that message is ACKed. The no_ack
parameter has no effect on ACKing behavior, and all messages are
ACKed in all cases. This method never adds fetched Messages to the
internal QoS object for asynchronous ACKing.

This method converts the object type of the method as it passes
through. Fetching from the broker, _get() returns a
qpid.messaging.Message, but this method takes the payload
of the qpid.messaging.Message and instantiates a
Message object with the payload
based on the class setting of self.Message.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The queue name to fetch a message from.

	Keyword Arguments

	no_ack – The no_ack parameter has no effect on the ACK
behavior of this method. Un-ACKed messages create a memory leak in
qpid.messaging, and need to be ACKed in all cases.

	Returns

	The received message.

	Return type

	Message

	
basic_publish(message, exchange, routing_key, **kwargs)

	Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a
routing key specified by routing_key. Prepares the message in the
following ways before sending:

	encodes the body using encode_body()

	
	wraps the body as a buffer object, so that

	qpid.messaging.endpoints.Sender uses a content type
that can support arbitrarily large messages.

	sets delivery_tag to a random uuid.UUID

	sets the exchange and routing_key info as delivery_info

Internally uses _put() to send the message synchronously. This
message is typically called by
kombu.messaging.Producer._publish as the final step in
message publication.

	Parameters

	
	message (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – A dict containing key value pairs with the message
data. A valid message dict can be generated using the
prepare_message() method.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to submit this message
onto.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The routing key to be used as the message is
submitted onto the exchange.

	
basic_qos(prefetch_count, *args)

	Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and
hold. The prefetch_value is also used as the capacity for any new
Receiver objects.

Currently, this value is hard coded to 1.

	Parameters

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Not used. This method is hard-coded to 1.

	
basic_reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not
yet acknowledged. Messages are referenced by their delivery_tag.

If requeue is False, the rejected message will be dropped by the
broker and not delivered to any other consumers. If requeue is
True, then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected the
message previously.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If False, the rejected message will be dropped by
the broker and not delivered to any other consumers. If True,
then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected
the message previously.

	
body_encoding = 'base64'

	

	
close()

	Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel() for each
known consumer_tag. It also closes the self._broker sessions. Closing
the sessions implicitly causes all outstanding, un-ACKed messages to
be considered undelivered by the broker.

	
codecs = {'base64': <kombu.transport.virtual.base.Base64 object>}

	

	
decode_body(body, encoding=None)

	Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, the decoded body is returned.
If encoding is not specified, the body is returned unchanged.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
encode_body(body, encoding=None)

	Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, return a tuple with the first
position being the encoded body, and the second position the
encoding used. If encoding is not specified, the body is passed
through unchanged.

	Return type

	tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]

	
exchange_declare(exchange='', type='direct', durable=False, **kwargs)

	Create a new exchange.

Create an exchange of a specific type, and optionally have the
exchange be durable. If an exchange of the requested name already
exists, no action is taken and no exceptions are raised. Durable
exchanges will survive a broker restart, non-durable exchanges will
not.

Exchanges provide behaviors based on their type. The expected
behaviors are those defined in the AMQP 0-10 and prior
specifications including ‘direct’, ‘topic’, and ‘fanout’
functionality.

	Keyword Arguments

	
	type – The exchange type. Valid values include ‘direct’,
‘topic’, and ‘fanout’.

	exchange – The name of the exchange to be created. If no
exchange is specified, then a blank string will be used as the
name.

	durable – True if the exchange should be durable, or False
otherwise.

	
exchange_delete(exchange_name, **kwargs)

	Delete an exchange specified by name.

	Parameters

	exchange_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to be deleted.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None)

	Prepare message data for sending.

This message is typically called by
kombu.messaging.Producer._publish() as a preparation step in
message publication.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body of the message

	Keyword Arguments

	
	priority – A number between 0 and 9 that sets the priority of
the message.

	content_type – The content_type the message body should be
treated as. If this is unset, the
qpid.messaging.endpoints.Sender object tries to
autodetect the content_type from the body.

	content_encoding – The content_encoding the message body is
encoded as.

	headers – Additional Message headers that should be set.
Passed in as a key-value pair.

	properties – Message properties to be set on the message.

	Returns

	Returns a dict object that encapsulates message
attributes. See parameters for more details on attributes that
can be set.

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
qos

	QoS manager for this channel.

Lazily instantiates an object of type QoS upon access to
the self.qos attribute.

	Returns

	An already existing, or newly created QoS object

	Return type

	QoS

	
queue_bind(queue, exchange, routing_key, **kwargs)

	Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name,
with a specific bind key. The queue and exchange must already
exist on the broker for the bind to complete successfully. Queues
may be bound to exchanges multiple times with different keys.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be bound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
bound to.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The bind key that the specified queue should
bind to the specified exchange with.

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None)

	Create a new queue specified by name.

If the queue already exists, no change is made to the queue,
and the return value returns information about the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The
client can use this to check whether a queue exists without
modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues
remain active when a server restarts. Non-durable queues (
transient queues) are purged if/when a server restarts. Note that
durable queues do not necessarily hold persistent messages,
although it does not make sense to send persistent messages to a
transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues
may only be consumed by the current connection. Setting the
‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers
have finished using it. The last consumer can be cancelled either
explicitly or because its channel is closed. If there was no
consumer ever on the queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol,
but this AMQP client implements 0-10 which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of
the queue. Arguments are passed as a dict or None. This field is
ignored if passive is True. Default is None.

This method returns a namedtuple with the name
‘queue_declare_ok_t’ and the queue name as ‘queue’, message count
on the queue as ‘message_count’, and the number of active consumers
as ‘consumer_count’. The named tuple values are ordered as queue,
message_count, and consumer_count respectively.

Due to Celery’s non-ACKing of events, a ring policy is set on any
queue that starts with the string ‘celeryev’ or ends with the string
‘pidbox’. These are celery event queues, and Celery does not ack
them, causing the messages to build-up. Eventually Qpid stops serving
messages unless the ‘ring’ policy is set, at which point the buffer
backing the queue becomes circular.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be created.

	passive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the sever will not create the queue.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be durable.

	exclusive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be exclusive.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue is deleted when all
consumers have finished using it.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – This parameter is unused since the 0-10
specification does not include it.

	arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict] or None [https://docs.python.org/dev/library/constants.html#None]) – A set of arguments for the declaration of the
queue.

	Returns

	A named tuple representing the declared queue as a named
tuple. The tuple values are ordered as queue, message count,
and the active consumer count.

	Return type

	namedtuple

	
queue_delete(queue, if_unused=False, if_empty=False, **kwargs)

	Delete a queue by name.

Delete a queue specified by name. Using the if_unused keyword
argument, the delete can only occur if there are 0 consumers bound
to it. Using the if_empty keyword argument, the delete can only
occur if there are 0 messages in the queue.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be deleted.

	Keyword Arguments

	
	if_unused – If True, delete only if the queue has 0
consumers. If False, delete a queue even with consumers bound
to it.

	if_empty – If True, only delete the queue if it is empty. If
False, delete the queue if it is empty or not.

	
queue_purge(queue, **kwargs)

	Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the
queue does not exist an exception is raised. The queue message
depth is first checked, and then the broker is asked to purge that
number of messages. The integer number of messages requested to be
purged is returned. The actual number of messages purged may be
different than the requested number of messages to purge.

Sometimes delivered messages are asked to be purged, but are not.
This case fails silently, which is the correct behavior when a
message that has been delivered to a different consumer, who has
not ACKed the message, and still has an active session with the
broker. Messages in that case are not safe for purging and will be
retained by the broker. The client is unable to change this
delivery behavior.

Internally, this method relies on _purge().

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue which should have all messages
removed.

	Returns

	The number of messages requested to be purged.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	Raises

	qpid.messaging.exceptions.NotFound if the queue
being purged cannot be found.

	
queue_unbind(queue, exchange, routing_key, **kwargs)

	Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by
name, that is already bound with a bind key. The queue and
exchange must already exist on the broker, and bound with the bind
key for the operation to complete successfully. Queues may be
bound to exchanges multiple times with different keys, thus the
bind key is a required field to unbind in an explicit way.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be unbound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
unbound from.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The existing bind key between the specified
queue and a specified exchange that should be unbound.

	
typeof(exchange, default='direct')

	Get the exchange type.

Lookup and return the exchange type for an exchange specified by
name. Exchange types are expected to be ‘direct’, ‘topic’,
and ‘fanout’, which correspond with exchange functionality as
specified in AMQP 0-10 and earlier. If the exchange cannot be
found, the default exchange type is returned.

	Parameters

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The exchange to have its type lookup up.

	Keyword Arguments

	default – The type of exchange to assume if the exchange does
not exist.

	Returns

	The exchange type either ‘direct’, ‘topic’, or ‘fanout’.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
close()

	Close the connection.

Closing the connection will close all associated session, senders, or
receivers used by the Connection.

	
close_channel(channel)

	Close a Channel.

Close a channel specified by a reference to the
Channel object.

	Parameters

	channel (Channel.) – Channel that should be closed.

	
get_qpid_connection()

	Return the existing connection (singleton).

	Returns

	The existing qpid.messaging.Connection

	Return type

	qpid.messaging.endpoints.Connection

	
channel_errors = (None,)

	

	
close_connection(connection)

	Close the Connection object.

	Parameters

	connection (kombu.transport.qpid.Connection) – The Connection that should be closed.

	
connection_errors = (None, <class 'OSError'>)

	

	
create_channel(connection)

	Create and return a Channel.

Creates a new channel, and appends the channel to the
list of channels known by the Connection. Once the new
channel is created, it is returned.

	Parameters

	connection (kombu.transport.qpid.Connection) – The connection that should support the new
Channel.

	Returns

	The new Channel that is made.

	Return type

	kombu.transport.qpid.Channel.

	
default_connection_params

	Return a dict with default connection parameters.

These connection parameters will be used whenever the creator of
Transport does not specify a required parameter.

	Returns

	A dict containing the default parameters.

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
drain_events(connection, timeout=0, **kwargs)

	Handle and call callbacks for all ready Transport messages.

Drains all events that are ready from all
Receiver that are asynchronously
fetching messages.

For each drained message, the message is called to the appropriate
callback. Callbacks are organized by queue name.

	Parameters

	connection (kombu.transport.qpid.Connection) – The Connection that
contains the callbacks, indexed by queue name, which will be called
by this method.

	Keyword Arguments

	timeout – The timeout that limits how long this method will
run for. The timeout could interrupt a blocking read that is
waiting for a new message, or cause this method to return before
all messages are drained. Defaults to 0.

	
driver_name = 'qpid'

	

	
driver_type = 'qpid'

	

	
establish_connection()

	Establish a Connection object.

Determines the correct options to use when creating any
connections needed by this Transport, and create a
Connection object which saves those values for
connections generated as they are needed. The options are a
mixture of what is passed in through the creator of the
Transport, and the defaults provided by
default_connection_params(). Options cover broker network
settings, timeout behaviors, authentication, and identity
verification settings.

This method also creates and stores a
Session using the
Connection created by this
method. The Session is stored on self.

	Returns

	The created Connection object is returned.

	Return type

	Connection

	
implements = {'asynchronous': True, 'exchange_type': frozenset({'direct', 'fanout', 'topic'}), 'heartbeats': False}

	

	
on_readable(connection, loop)

	Handle any messages associated with this Transport.

This method clears a single message from the externally monitored
file descriptor by issuing a read call to the self.r file descriptor
which removes a single ‘0’ character that was placed into the pipe
by the Qpid session message callback handler. Once a ‘0’ is read,
all available events are drained through a call to
drain_events().

The file descriptor self.r is modified to be non-blocking, ensuring
that an accidental call to this method when no more messages will
not cause indefinite blocking.

Nothing is expected to be returned from drain_events() because
drain_events() handles messages by calling callbacks that are
maintained on the Connection object.
When drain_events() returns, all associated messages have been
handled.

This method calls drain_events() which reads as many messages as are
available for this Transport, and then returns. It blocks in the
sense that reading and handling a large number of messages may take
time, but it does not block waiting for a new message to arrive. When
drain_events() is called a timeout is not specified, which
causes this behavior.

One interesting behavior of note is where multiple messages are
ready, and this method removes a single ‘0’ character from
self.r, but drain_events() may handle an arbitrary amount of
messages. In that case, extra ‘0’ characters may be left on self.r
to be read, where messages corresponding with those ‘0’ characters
have already been handled. The external epoll loop will incorrectly
think additional data is ready for reading, and will call
on_readable unnecessarily, once for each ‘0’ to be read. Additional
calls to on_readable() produce no negative side effects,
and will eventually clear out the symbols from the self.r file
descriptor. If new messages show up during this draining period,
they will also be properly handled.

	Parameters

	
	connection (kombu.transport.qpid.Connection) – The connection associated with the readable
events, which contains the callbacks that need to be called for
the readable objects.

	loop (kombu.asynchronous.Hub) – The asynchronous loop object that contains epoll like
functionality.

	
polling_interval = None

	

	
recoverable_channel_errors = (None,)

	

	
recoverable_connection_errors = (None, <class 'OSError'>)

	

	
register_with_event_loop(connection, loop)

	Register a file descriptor and callback with the loop.

Register the callback self.on_readable to be called when an
external epoll loop sees that the file descriptor registered is
ready for reading. The file descriptor is created by this Transport,
and is written to when a message is available.

Because supports_ev == True, Celery expects to call this method to
give the Transport an opportunity to register a read file descriptor
for external monitoring by celery using an Event I/O notification
mechanism such as epoll. A callback is also registered that is to
be called once the external epoll loop is ready to handle the epoll
event associated with messages that are ready to be handled for
this Transport.

The registration call is made exactly once per Transport after the
Transport is instantiated.

	Parameters

	
	connection (kombu.transport.qpid.Connection) – A reference to the connection associated with
this Transport.

	loop (kombu.asynchronous.hub.Hub) – A reference to the external loop.

	
verify_runtime_environment()

	Verify that the runtime environment is acceptable.

This method is called as part of __init__ and raises a RuntimeError
in Python3 or PyPI environments. This module is not compatible with
Python3 or PyPI. The RuntimeError identifies this to the user up
front along with suggesting Python 2.6+ be used instead.

This method also checks that the dependencies qpidtoollibs and
qpid.messaging are installed. If either one is not installed a
RuntimeError is raised.

	Raises

	RuntimeError if the runtime environment is not acceptable.

Connection

	
class kombu.transport.qpid.Connection(**connection_options)

	Qpid Connection.

Encapsulate a connection object for the
Transport.

	Parameters

	
	host – The host that connections should connect to.

	port – The port that connection should connect to.

	username – The username that connections should connect with.
Optional.

	password – The password that connections should connect with.
Optional but requires a username.

	transport – The transport type that connections should use.
Either ‘tcp’, or ‘ssl’ are expected as values.

	timeout – the timeout used when a Connection connects
to the broker.

	sasl_mechanisms – The sasl authentication mechanism type to use.
refer to SASL documentation for an explanation of valid
values.

Note

qpid.messaging has an AuthenticationFailure exception type, but
instead raises a ConnectionError with a message that indicates an
authentication failure occurred in those situations.
ConnectionError is listed as a recoverable error type, so kombu
will attempt to retry if a ConnectionError is raised. Retrying
the operation without adjusting the credentials is not correct,
so this method specifically checks for a ConnectionError that
indicates an Authentication Failure occurred. In those
situations, the error type is mutated while preserving the
original message and raised so kombu will allow the exception to
not be considered recoverable.

A connection object is created by a
Transport during a call to
establish_connection(). The
Transport passes in
connection options as keywords that should be used for any connections
created. Each Transport creates exactly
one Connection.

A Connection object maintains a reference to a
Connection which can be accessed
through a bound getter method named get_qpid_connection() method.
Each Channel uses a the Connection for each
BrokerAgent, and the Transport maintains a session
for all senders and receivers.

The Connection object is also responsible for maintaining the
dictionary of references to callbacks that should be called when
messages are received. These callbacks are saved in _callbacks,
and keyed on the queue name associated with the received message. The
_callbacks are setup in Channel.basic_consume(), removed in
Channel.basic_cancel(), and called in
Transport.drain_events().

The following keys are expected to be passed in as keyword arguments
at a minimum:

All keyword arguments are collected into the connection_options dict
and passed directly through to
qpid.messaging.endpoints.Connection.establish().

	
class Channel(connection, transport)

	Supports broker configuration and messaging send and receive.

	Parameters

	
	connection (kombu.transport.qpid.Connection) – A Connection object that this Channel can
reference. Currently only used to access callbacks.

	transport (kombu.transport.qpid.Transport) – The Transport this Channel is associated with.

A channel object is designed to have method-parity with a Channel as
defined in AMQP 0-10 and earlier, which allows for the following broker
actions:

	exchange declare and delete

	queue declare and delete

	queue bind and unbind operations

	queue length and purge operations

	sending/receiving/rejecting messages

	structuring, encoding, and decoding messages

	supports synchronous and asynchronous reads

	reading state about the exchange, queues, and bindings

Channels are designed to all share a single TCP connection with a
broker, but provide a level of isolated communication with the broker
while benefiting from a shared TCP connection. The Channel is given
its Connection object by the
Transport that
instantiates the channel.

This channel inherits from StdChannel,
which makes this a ‘native’ channel versus a ‘virtual’ channel which
would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The
delivery_tag is generated for a message as they are prepared for
sending by basic_publish(). The delivery_tag is unique per
channel instance. The delivery_tag has no meaningful context in other
objects, and is only maintained in the memory of this object, and the
underlying QoS object that provides support.

Each channel object instantiates exactly one QoS object for
prefetch limiting, and asynchronous ACKing. The QoS object is
lazily instantiated through a property method qos(). The
QoS object is a supporting object that should not be accessed
directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get()
which uses _get() to perform the reading. These methods read
immediately and do not accept any form of timeout. basic_get()
reads synchronously and ACKs messages before returning them. ACKing is
done in all cases, because an application that reads messages using
qpid.messaging, but does not ACK them will experience a memory leak.
The no_ack argument to basic_get() does not affect ACKing
functionality.

Asynchronous reads on a queue are done by starting a consumer using
basic_consume(). Each call to basic_consume() will cause a
Receiver to be created on the
Session started by the :class:
Transport. The receiver will asynchronously read using
qpid.messaging, and prefetch messages before the call to
Transport.basic_drain() occurs. The prefetch_count value of the
QoS object is the capacity value of the new receiver. The new
receiver capacity must always be at least 1, otherwise none of the
receivers will appear to be ready for reading, and will never be read
from.

Each call to basic_consume() creates a consumer, which is given a
consumer tag that is identified by the caller of basic_consume().
Already started consumers can be cancelled using by their consumer_tag
using basic_cancel(). Cancellation of a consumer causes the
Receiver object to be closed.

Asynchronous message ACKing is supported through basic_ack(),
and is referenced by delivery_tag. The Channel object uses its
QoS object to perform the message ACKing.

	
class Message(payload, channel=None, **kwargs)

	Message object.

	
serializable()

	

	
class QoS(session, prefetch_count=1)

	A helper object for message prefetch and ACKing purposes.

	Keyword Arguments

	prefetch_count – Initial prefetch count, hard set to 1.

NOTE: prefetch_count is currently hard set to 1, and needs to be improved

This object is instantiated 1-for-1 with a
Channel instance. QoS allows
prefetch_count to be set to the number of outstanding messages
the corresponding Channel should be
allowed to prefetch. Setting prefetch_count to 0 disables
prefetch limits, and the object can hold an arbitrary number of messages.

Messages are added using append(), which are held until they are
ACKed asynchronously through a call to ack(). Messages that are
received, but not ACKed will not be delivered by the broker to another
consumer until an ACK is received, or the session is closed. Messages
are referred to using delivery_tag, which are unique per
Channel. Delivery tags are managed outside of this object and
are passed in with a message to append(). Un-ACKed messages can
be looked up from QoS using get() and can be rejected and
forgotten using reject().

	
ack(delivery_tag)

	Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be
forgotten by the broker.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – the delivery tag associated with the message
to be acknowledged.

	
append(message, delivery_tag)

	Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing,
rejecting, or getting later. Messages are saved into an
collections.OrderedDict [https://docs.python.org/dev/library/collections.html#collections.OrderedDict] by delivery_tag.

	Parameters

	
	message (qpid.messaging.Message) – A received message that has not yet been ACKed.

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – A UUID to refer to this message by
upon receipt.

	
can_consume()

	Return True if the Channel can consume more messages.

Used to ensure the client adheres to currently active prefetch
limits.

	Returns

	True, if this QoS object can accept more messages
without violating the prefetch_count. If prefetch_count is 0,
can_consume will always return True.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
can_consume_max_estimate()

	Return the remaining message capacity.

Returns an estimated number of outstanding messages that a
kombu.transport.qpid.Channel can accept without
exceeding prefetch_count. If prefetch_count is 0, then
this method returns 1.

	Returns

	The number of estimated messages that can be fetched
without violating the prefetch_count.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
get(delivery_tag)

	Get an un-ACKed message by delivery_tag.

If called with an invalid delivery_tag a KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] is raised.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be returned.

	Returns

	An un-ACKed message that is looked up by delivery_tag.

	Return type

	qpid.messaging.Message

	
reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated
with this QoS object is rejecting the message that was previously
delivered.

If requeue is False, then the message is not requeued for delivery
to another consumer. If requeue is True, then the message is
requeued for delivery to another consumer.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If True, the broker will be notified to requeue
the message. If False, the broker will be told to drop the
message entirely. In both cases, the message will be removed
from this object.

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can
only be ACKed using basic_ack() if they were acquired using
basic_consume(). This is the ACKing portion of the
asynchronous read behavior.

Internally, this method uses the QoS object, which stores
messages and is responsible for the ACKing.

	Parameters

	
	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be acknowledged.

	multiple (bool [https://docs.python.org/dev/library/functions.html#bool]) – not implemented. If set to True an AssertionError
is raised.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

Request the consumer stops reading messages from its queue. The
consumer is a Receiver, and it is
closed using close().

This method also cleans up all lingering references of the consumer.

	Parameters

	consumer_tag (an immutable object) – The tag which refers to the consumer to be
cancelled. Originally specified when the consumer was created
as a parameter to basic_consume().

	
basic_consume(queue, no_ack, callback, consumer_tag, **kwargs)

	Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type
Receiver using the
Session created and referenced by
the Transport that reads messages from a queue
specified by name until stopped by a call to basic_cancel().

Messages are available later through a synchronous call to
Transport.drain_events(), which will drain from the consumer
started by this method. Transport.drain_events() is
synchronous, but the receiving of messages over the network occurs
asynchronously, so it should still perform well.
Transport.drain_events() calls the callback provided here with
the Message of type self.Message.

Each consumer is referenced by a consumer_tag, which is provided by
the caller of this method.

This method sets up the callback onto the self.connection object in a
dict keyed by queue name. drain_events() is
responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be
saved for asynchronous ACKing later after the message has been
handled by the caller of drain_events(). Messages
can be ACKed after being received through a call to basic_ack().

If no_ack is True, The no_ack flag indicates that the receiver of
the message will not call basic_ack() later. Since the
message will not be ACKed later, it is ACKed immediately.

basic_consume() transforms the message object type prior to
calling the callback. Initially the message comes in as a
qpid.messaging.Message. This method unpacks the payload
of the qpid.messaging.Message and creates a new object of
type self.Message.

This method wraps the user delivered callback in a runtime-built
function which provides the type transformation from
qpid.messaging.Message to
Message, and adds the message to
the associated QoS object for asynchronous ACKing
if necessary.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to consume messages from

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, then messages will not be saved for ACKing
later, but will be ACKed immediately. If False, then messages
will be saved for ACKing later with a call to basic_ack().

	callback (a callable object) – a callable that will be called when messages
arrive on the queue.

	consumer_tag (an immutable object) – a tag to reference the created consumer by.
This consumer_tag is needed to cancel the consumer.

	
basic_get(queue, no_ack=False, **kwargs)

	Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get() to fetch the message. If
an Empty exception is raised by
_get(), this method silences it and returns None. If
_get() does return a message, that message is ACKed. The no_ack
parameter has no effect on ACKing behavior, and all messages are
ACKed in all cases. This method never adds fetched Messages to the
internal QoS object for asynchronous ACKing.

This method converts the object type of the method as it passes
through. Fetching from the broker, _get() returns a
qpid.messaging.Message, but this method takes the payload
of the qpid.messaging.Message and instantiates a
Message object with the payload
based on the class setting of self.Message.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The queue name to fetch a message from.

	Keyword Arguments

	no_ack – The no_ack parameter has no effect on the ACK
behavior of this method. Un-ACKed messages create a memory leak in
qpid.messaging, and need to be ACKed in all cases.

	Returns

	The received message.

	Return type

	Message

	
basic_publish(message, exchange, routing_key, **kwargs)

	Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a
routing key specified by routing_key. Prepares the message in the
following ways before sending:

	encodes the body using encode_body()

	
	wraps the body as a buffer object, so that

	qpid.messaging.endpoints.Sender uses a content type
that can support arbitrarily large messages.

	sets delivery_tag to a random uuid.UUID

	sets the exchange and routing_key info as delivery_info

Internally uses _put() to send the message synchronously. This
message is typically called by
kombu.messaging.Producer._publish as the final step in
message publication.

	Parameters

	
	message (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – A dict containing key value pairs with the message
data. A valid message dict can be generated using the
prepare_message() method.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to submit this message
onto.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The routing key to be used as the message is
submitted onto the exchange.

	
basic_qos(prefetch_count, *args)

	Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and
hold. The prefetch_value is also used as the capacity for any new
Receiver objects.

Currently, this value is hard coded to 1.

	Parameters

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Not used. This method is hard-coded to 1.

	
basic_reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not
yet acknowledged. Messages are referenced by their delivery_tag.

If requeue is False, the rejected message will be dropped by the
broker and not delivered to any other consumers. If requeue is
True, then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected the
message previously.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If False, the rejected message will be dropped by
the broker and not delivered to any other consumers. If True,
then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected
the message previously.

	
body_encoding = 'base64'

	

	
close()

	Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel() for each
known consumer_tag. It also closes the self._broker sessions. Closing
the sessions implicitly causes all outstanding, un-ACKed messages to
be considered undelivered by the broker.

	
codecs = {'base64': <kombu.transport.virtual.base.Base64 object>}

	

	
decode_body(body, encoding=None)

	Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, the decoded body is returned.
If encoding is not specified, the body is returned unchanged.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
encode_body(body, encoding=None)

	Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, return a tuple with the first
position being the encoded body, and the second position the
encoding used. If encoding is not specified, the body is passed
through unchanged.

	Return type

	tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]

	
exchange_declare(exchange='', type='direct', durable=False, **kwargs)

	Create a new exchange.

Create an exchange of a specific type, and optionally have the
exchange be durable. If an exchange of the requested name already
exists, no action is taken and no exceptions are raised. Durable
exchanges will survive a broker restart, non-durable exchanges will
not.

Exchanges provide behaviors based on their type. The expected
behaviors are those defined in the AMQP 0-10 and prior
specifications including ‘direct’, ‘topic’, and ‘fanout’
functionality.

	Keyword Arguments

	
	type – The exchange type. Valid values include ‘direct’,
‘topic’, and ‘fanout’.

	exchange – The name of the exchange to be created. If no
exchange is specified, then a blank string will be used as the
name.

	durable – True if the exchange should be durable, or False
otherwise.

	
exchange_delete(exchange_name, **kwargs)

	Delete an exchange specified by name.

	Parameters

	exchange_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to be deleted.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None)

	Prepare message data for sending.

This message is typically called by
kombu.messaging.Producer._publish() as a preparation step in
message publication.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body of the message

	Keyword Arguments

	
	priority – A number between 0 and 9 that sets the priority of
the message.

	content_type – The content_type the message body should be
treated as. If this is unset, the
qpid.messaging.endpoints.Sender object tries to
autodetect the content_type from the body.

	content_encoding – The content_encoding the message body is
encoded as.

	headers – Additional Message headers that should be set.
Passed in as a key-value pair.

	properties – Message properties to be set on the message.

	Returns

	Returns a dict object that encapsulates message
attributes. See parameters for more details on attributes that
can be set.

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
qos

	QoS manager for this channel.

Lazily instantiates an object of type QoS upon access to
the self.qos attribute.

	Returns

	An already existing, or newly created QoS object

	Return type

	QoS

	
queue_bind(queue, exchange, routing_key, **kwargs)

	Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name,
with a specific bind key. The queue and exchange must already
exist on the broker for the bind to complete successfully. Queues
may be bound to exchanges multiple times with different keys.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be bound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
bound to.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The bind key that the specified queue should
bind to the specified exchange with.

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None)

	Create a new queue specified by name.

If the queue already exists, no change is made to the queue,
and the return value returns information about the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The
client can use this to check whether a queue exists without
modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues
remain active when a server restarts. Non-durable queues (
transient queues) are purged if/when a server restarts. Note that
durable queues do not necessarily hold persistent messages,
although it does not make sense to send persistent messages to a
transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues
may only be consumed by the current connection. Setting the
‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers
have finished using it. The last consumer can be cancelled either
explicitly or because its channel is closed. If there was no
consumer ever on the queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol,
but this AMQP client implements 0-10 which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of
the queue. Arguments are passed as a dict or None. This field is
ignored if passive is True. Default is None.

This method returns a namedtuple with the name
‘queue_declare_ok_t’ and the queue name as ‘queue’, message count
on the queue as ‘message_count’, and the number of active consumers
as ‘consumer_count’. The named tuple values are ordered as queue,
message_count, and consumer_count respectively.

Due to Celery’s non-ACKing of events, a ring policy is set on any
queue that starts with the string ‘celeryev’ or ends with the string
‘pidbox’. These are celery event queues, and Celery does not ack
them, causing the messages to build-up. Eventually Qpid stops serving
messages unless the ‘ring’ policy is set, at which point the buffer
backing the queue becomes circular.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be created.

	passive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the sever will not create the queue.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be durable.

	exclusive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be exclusive.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue is deleted when all
consumers have finished using it.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – This parameter is unused since the 0-10
specification does not include it.

	arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict] or None [https://docs.python.org/dev/library/constants.html#None]) – A set of arguments for the declaration of the
queue.

	Returns

	A named tuple representing the declared queue as a named
tuple. The tuple values are ordered as queue, message count,
and the active consumer count.

	Return type

	namedtuple

	
queue_delete(queue, if_unused=False, if_empty=False, **kwargs)

	Delete a queue by name.

Delete a queue specified by name. Using the if_unused keyword
argument, the delete can only occur if there are 0 consumers bound
to it. Using the if_empty keyword argument, the delete can only
occur if there are 0 messages in the queue.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be deleted.

	Keyword Arguments

	
	if_unused – If True, delete only if the queue has 0
consumers. If False, delete a queue even with consumers bound
to it.

	if_empty – If True, only delete the queue if it is empty. If
False, delete the queue if it is empty or not.

	
queue_purge(queue, **kwargs)

	Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the
queue does not exist an exception is raised. The queue message
depth is first checked, and then the broker is asked to purge that
number of messages. The integer number of messages requested to be
purged is returned. The actual number of messages purged may be
different than the requested number of messages to purge.

Sometimes delivered messages are asked to be purged, but are not.
This case fails silently, which is the correct behavior when a
message that has been delivered to a different consumer, who has
not ACKed the message, and still has an active session with the
broker. Messages in that case are not safe for purging and will be
retained by the broker. The client is unable to change this
delivery behavior.

Internally, this method relies on _purge().

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue which should have all messages
removed.

	Returns

	The number of messages requested to be purged.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	Raises

	qpid.messaging.exceptions.NotFound if the queue
being purged cannot be found.

	
queue_unbind(queue, exchange, routing_key, **kwargs)

	Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by
name, that is already bound with a bind key. The queue and
exchange must already exist on the broker, and bound with the bind
key for the operation to complete successfully. Queues may be
bound to exchanges multiple times with different keys, thus the
bind key is a required field to unbind in an explicit way.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be unbound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
unbound from.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The existing bind key between the specified
queue and a specified exchange that should be unbound.

	
typeof(exchange, default='direct')

	Get the exchange type.

Lookup and return the exchange type for an exchange specified by
name. Exchange types are expected to be ‘direct’, ‘topic’,
and ‘fanout’, which correspond with exchange functionality as
specified in AMQP 0-10 and earlier. If the exchange cannot be
found, the default exchange type is returned.

	Parameters

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The exchange to have its type lookup up.

	Keyword Arguments

	default – The type of exchange to assume if the exchange does
not exist.

	Returns

	The exchange type either ‘direct’, ‘topic’, or ‘fanout’.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
close()

	Close the connection.

Closing the connection will close all associated session, senders, or
receivers used by the Connection.

	
close_channel(channel)

	Close a Channel.

Close a channel specified by a reference to the
Channel object.

	Parameters

	channel (Channel.) – Channel that should be closed.

	
get_qpid_connection()

	Return the existing connection (singleton).

	Returns

	The existing qpid.messaging.Connection

	Return type

	qpid.messaging.endpoints.Connection

Channel

	
class kombu.transport.qpid.Channel(connection, transport)

	Supports broker configuration and messaging send and receive.

	Parameters

	
	connection (kombu.transport.qpid.Connection) – A Connection object that this Channel can
reference. Currently only used to access callbacks.

	transport (kombu.transport.qpid.Transport) – The Transport this Channel is associated with.

A channel object is designed to have method-parity with a Channel as
defined in AMQP 0-10 and earlier, which allows for the following broker
actions:

	exchange declare and delete

	queue declare and delete

	queue bind and unbind operations

	queue length and purge operations

	sending/receiving/rejecting messages

	structuring, encoding, and decoding messages

	supports synchronous and asynchronous reads

	reading state about the exchange, queues, and bindings

Channels are designed to all share a single TCP connection with a
broker, but provide a level of isolated communication with the broker
while benefiting from a shared TCP connection. The Channel is given
its Connection object by the
Transport that
instantiates the channel.

This channel inherits from StdChannel,
which makes this a ‘native’ channel versus a ‘virtual’ channel which
would inherit from kombu.transports.virtual.

Messages sent using this channel are assigned a delivery_tag. The
delivery_tag is generated for a message as they are prepared for
sending by basic_publish(). The delivery_tag is unique per
channel instance. The delivery_tag has no meaningful context in other
objects, and is only maintained in the memory of this object, and the
underlying QoS object that provides support.

Each channel object instantiates exactly one QoS object for
prefetch limiting, and asynchronous ACKing. The QoS object is
lazily instantiated through a property method qos(). The
QoS object is a supporting object that should not be accessed
directly except by the channel itself.

Synchronous reads on a queue are done using a call to basic_get()
which uses _get() to perform the reading. These methods read
immediately and do not accept any form of timeout. basic_get()
reads synchronously and ACKs messages before returning them. ACKing is
done in all cases, because an application that reads messages using
qpid.messaging, but does not ACK them will experience a memory leak.
The no_ack argument to basic_get() does not affect ACKing
functionality.

Asynchronous reads on a queue are done by starting a consumer using
basic_consume(). Each call to basic_consume() will cause a
Receiver to be created on the
Session started by the :class:
Transport. The receiver will asynchronously read using
qpid.messaging, and prefetch messages before the call to
Transport.basic_drain() occurs. The prefetch_count value of the
QoS object is the capacity value of the new receiver. The new
receiver capacity must always be at least 1, otherwise none of the
receivers will appear to be ready for reading, and will never be read
from.

Each call to basic_consume() creates a consumer, which is given a
consumer tag that is identified by the caller of basic_consume().
Already started consumers can be cancelled using by their consumer_tag
using basic_cancel(). Cancellation of a consumer causes the
Receiver object to be closed.

Asynchronous message ACKing is supported through basic_ack(),
and is referenced by delivery_tag. The Channel object uses its
QoS object to perform the message ACKing.

	
class Message(payload, channel=None, **kwargs)

	message class used.

	
serializable()

	

	
class QoS(session, prefetch_count=1)

	A class reference that will be instantiated using the qos property.

	
ack(delivery_tag)

	Acknowledge a message by delivery_tag.

Called asynchronously once the message has been handled and can be
forgotten by the broker.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – the delivery tag associated with the message
to be acknowledged.

	
append(message, delivery_tag)

	Append message to the list of un-ACKed messages.

Add a message, referenced by the delivery_tag, for ACKing,
rejecting, or getting later. Messages are saved into an
collections.OrderedDict [https://docs.python.org/dev/library/collections.html#collections.OrderedDict] by delivery_tag.

	Parameters

	
	message (qpid.messaging.Message) – A received message that has not yet been ACKed.

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – A UUID to refer to this message by
upon receipt.

	
can_consume()

	Return True if the Channel can consume more messages.

Used to ensure the client adheres to currently active prefetch
limits.

	Returns

	True, if this QoS object can accept more messages
without violating the prefetch_count. If prefetch_count is 0,
can_consume will always return True.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
can_consume_max_estimate()

	Return the remaining message capacity.

Returns an estimated number of outstanding messages that a
kombu.transport.qpid.Channel can accept without
exceeding prefetch_count. If prefetch_count is 0, then
this method returns 1.

	Returns

	The number of estimated messages that can be fetched
without violating the prefetch_count.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
get(delivery_tag)

	Get an un-ACKed message by delivery_tag.

If called with an invalid delivery_tag a KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] is raised.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be returned.

	Returns

	An un-ACKed message that is looked up by delivery_tag.

	Return type

	qpid.messaging.Message

	
reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Explicitly notify the broker that the channel associated
with this QoS object is rejecting the message that was previously
delivered.

If requeue is False, then the message is not requeued for delivery
to another consumer. If requeue is True, then the message is
requeued for delivery to another consumer.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If True, the broker will be notified to requeue
the message. If False, the broker will be told to drop the
message entirely. In both cases, the message will be removed
from this object.

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge a message by delivery_tag.

Acknowledges a message referenced by delivery_tag. Messages can
only be ACKed using basic_ack() if they were acquired using
basic_consume(). This is the ACKing portion of the
asynchronous read behavior.

Internally, this method uses the QoS object, which stores
messages and is responsible for the ACKing.

	Parameters

	
	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be acknowledged.

	multiple (bool [https://docs.python.org/dev/library/functions.html#bool]) – not implemented. If set to True an AssertionError
is raised.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

Request the consumer stops reading messages from its queue. The
consumer is a Receiver, and it is
closed using close().

This method also cleans up all lingering references of the consumer.

	Parameters

	consumer_tag (an immutable object) – The tag which refers to the consumer to be
cancelled. Originally specified when the consumer was created
as a parameter to basic_consume().

	
basic_consume(queue, no_ack, callback, consumer_tag, **kwargs)

	Start an asynchronous consumer that reads from a queue.

This method starts a consumer of type
Receiver using the
Session created and referenced by
the Transport that reads messages from a queue
specified by name until stopped by a call to basic_cancel().

Messages are available later through a synchronous call to
Transport.drain_events(), which will drain from the consumer
started by this method. Transport.drain_events() is
synchronous, but the receiving of messages over the network occurs
asynchronously, so it should still perform well.
Transport.drain_events() calls the callback provided here with
the Message of type self.Message.

Each consumer is referenced by a consumer_tag, which is provided by
the caller of this method.

This method sets up the callback onto the self.connection object in a
dict keyed by queue name. drain_events() is
responsible for calling that callback upon message receipt.

All messages that are received are added to the QoS object to be
saved for asynchronous ACKing later after the message has been
handled by the caller of drain_events(). Messages
can be ACKed after being received through a call to basic_ack().

If no_ack is True, The no_ack flag indicates that the receiver of
the message will not call basic_ack() later. Since the
message will not be ACKed later, it is ACKed immediately.

basic_consume() transforms the message object type prior to
calling the callback. Initially the message comes in as a
qpid.messaging.Message. This method unpacks the payload
of the qpid.messaging.Message and creates a new object of
type self.Message.

This method wraps the user delivered callback in a runtime-built
function which provides the type transformation from
qpid.messaging.Message to
Message, and adds the message to
the associated QoS object for asynchronous ACKing
if necessary.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to consume messages from

	no_ack (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, then messages will not be saved for ACKing
later, but will be ACKed immediately. If False, then messages
will be saved for ACKing later with a call to basic_ack().

	callback (a callable object) – a callable that will be called when messages
arrive on the queue.

	consumer_tag (an immutable object) – a tag to reference the created consumer by.
This consumer_tag is needed to cancel the consumer.

	
basic_get(queue, no_ack=False, **kwargs)

	Non-blocking single message get and ACK from a queue by name.

Internally this method uses _get() to fetch the message. If
an Empty exception is raised by
_get(), this method silences it and returns None. If
_get() does return a message, that message is ACKed. The no_ack
parameter has no effect on ACKing behavior, and all messages are
ACKed in all cases. This method never adds fetched Messages to the
internal QoS object for asynchronous ACKing.

This method converts the object type of the method as it passes
through. Fetching from the broker, _get() returns a
qpid.messaging.Message, but this method takes the payload
of the qpid.messaging.Message and instantiates a
Message object with the payload
based on the class setting of self.Message.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The queue name to fetch a message from.

	Keyword Arguments

	no_ack – The no_ack parameter has no effect on the ACK
behavior of this method. Un-ACKed messages create a memory leak in
qpid.messaging, and need to be ACKed in all cases.

	Returns

	The received message.

	Return type

	Message

	
basic_publish(message, exchange, routing_key, **kwargs)

	Publish message onto an exchange using a routing key.

Publish a message onto an exchange specified by name using a
routing key specified by routing_key. Prepares the message in the
following ways before sending:

	encodes the body using encode_body()

	
	wraps the body as a buffer object, so that

	qpid.messaging.endpoints.Sender uses a content type
that can support arbitrarily large messages.

	sets delivery_tag to a random uuid.UUID

	sets the exchange and routing_key info as delivery_info

Internally uses _put() to send the message synchronously. This
message is typically called by
kombu.messaging.Producer._publish as the final step in
message publication.

	Parameters

	
	message (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – A dict containing key value pairs with the message
data. A valid message dict can be generated using the
prepare_message() method.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to submit this message
onto.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The routing key to be used as the message is
submitted onto the exchange.

	
basic_qos(prefetch_count, *args)

	Change QoS settings for this Channel.

Set the number of un-acknowledged messages this Channel can fetch and
hold. The prefetch_value is also used as the capacity for any new
Receiver objects.

Currently, this value is hard coded to 1.

	Parameters

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Not used. This method is hard-coded to 1.

	
basic_reject(delivery_tag, requeue=False)

	Reject a message by delivery_tag.

Rejects a message that has been received by the Channel, but not
yet acknowledged. Messages are referenced by their delivery_tag.

If requeue is False, the rejected message will be dropped by the
broker and not delivered to any other consumers. If requeue is
True, then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected the
message previously.

	Parameters

	delivery_tag (uuid.UUID [https://docs.python.org/dev/library/uuid.html#uuid.UUID]) – The delivery tag associated with the message
to be rejected.

	Keyword Arguments

	requeue – If False, the rejected message will be dropped by
the broker and not delivered to any other consumers. If True,
then the rejected message will be requeued for delivery to
another consumer, potentially to the same consumer who rejected
the message previously.

	
body_encoding = 'base64'

	Default body encoding.
NOTE: transport_options['body_encoding'] will override this value.

	
close()

	Cancel all associated messages and close the Channel.

This cancels all consumers by calling basic_cancel() for each
known consumer_tag. It also closes the self._broker sessions. Closing
the sessions implicitly causes all outstanding, un-ACKed messages to
be considered undelivered by the broker.

	
codecs = {'base64': <kombu.transport.virtual.base.Base64 object>}

	Binary <-> ASCII codecs.

	
decode_body(body, encoding=None)

	Decode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, the decoded body is returned.
If encoding is not specified, the body is returned unchanged.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
encode_body(body, encoding=None)

	Encode a body using an optionally specified encoding.

The encoding can be specified by name, and is looked up in
self.codecs. self.codecs uses strings as its keys which specify
the name of the encoding, and then the value is an instantiated
object that can provide encoding/decoding of that type through
encode and decode methods.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body to be encoded.

	Keyword Arguments

	encoding – The encoding type to be used. Must be a supported
codec listed in self.codecs.

	Returns

	If encoding is specified, return a tuple with the first
position being the encoded body, and the second position the
encoding used. If encoding is not specified, the body is passed
through unchanged.

	Return type

	tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]

	
exchange_declare(exchange='', type='direct', durable=False, **kwargs)

	Create a new exchange.

Create an exchange of a specific type, and optionally have the
exchange be durable. If an exchange of the requested name already
exists, no action is taken and no exceptions are raised. Durable
exchanges will survive a broker restart, non-durable exchanges will
not.

Exchanges provide behaviors based on their type. The expected
behaviors are those defined in the AMQP 0-10 and prior
specifications including ‘direct’, ‘topic’, and ‘fanout’
functionality.

	Keyword Arguments

	
	type – The exchange type. Valid values include ‘direct’,
‘topic’, and ‘fanout’.

	exchange – The name of the exchange to be created. If no
exchange is specified, then a blank string will be used as the
name.

	durable – True if the exchange should be durable, or False
otherwise.

	
exchange_delete(exchange_name, **kwargs)

	Delete an exchange specified by name.

	Parameters

	exchange_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange to be deleted.

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None)

	Prepare message data for sending.

This message is typically called by
kombu.messaging.Producer._publish() as a preparation step in
message publication.

	Parameters

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The body of the message

	Keyword Arguments

	
	priority – A number between 0 and 9 that sets the priority of
the message.

	content_type – The content_type the message body should be
treated as. If this is unset, the
qpid.messaging.endpoints.Sender object tries to
autodetect the content_type from the body.

	content_encoding – The content_encoding the message body is
encoded as.

	headers – Additional Message headers that should be set.
Passed in as a key-value pair.

	properties – Message properties to be set on the message.

	Returns

	Returns a dict object that encapsulates message
attributes. See parameters for more details on attributes that
can be set.

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
qos

	QoS manager for this channel.

Lazily instantiates an object of type QoS upon access to
the self.qos attribute.

	Returns

	An already existing, or newly created QoS object

	Return type

	QoS

	
queue_bind(queue, exchange, routing_key, **kwargs)

	Bind a queue to an exchange with a bind key.

Bind a queue specified by name, to an exchange specified by name,
with a specific bind key. The queue and exchange must already
exist on the broker for the bind to complete successfully. Queues
may be bound to exchanges multiple times with different keys.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be bound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
bound to.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The bind key that the specified queue should
bind to the specified exchange with.

	
queue_declare(queue, passive=False, durable=False, exclusive=False, auto_delete=True, nowait=False, arguments=None)

	Create a new queue specified by name.

If the queue already exists, no change is made to the queue,
and the return value returns information about the existing queue.

The queue name is required and specified as the first argument.

If passive is True, the server will not create the queue. The
client can use this to check whether a queue exists without
modifying the server state. Default is False.

If durable is True, the queue will be durable. Durable queues
remain active when a server restarts. Non-durable queues (
transient queues) are purged if/when a server restarts. Note that
durable queues do not necessarily hold persistent messages,
although it does not make sense to send persistent messages to a
transient queue. Default is False.

If exclusive is True, the queue will be exclusive. Exclusive queues
may only be consumed by the current connection. Setting the
‘exclusive’ flag always implies ‘auto-delete’. Default is False.

If auto_delete is True, the queue is deleted when all consumers
have finished using it. The last consumer can be cancelled either
explicitly or because its channel is closed. If there was no
consumer ever on the queue, it won’t be deleted. Default is True.

The nowait parameter is unused. It was part of the 0-9-1 protocol,
but this AMQP client implements 0-10 which removed the nowait option.

The arguments parameter is a set of arguments for the declaration of
the queue. Arguments are passed as a dict or None. This field is
ignored if passive is True. Default is None.

This method returns a namedtuple with the name
‘queue_declare_ok_t’ and the queue name as ‘queue’, message count
on the queue as ‘message_count’, and the number of active consumers
as ‘consumer_count’. The named tuple values are ordered as queue,
message_count, and consumer_count respectively.

Due to Celery’s non-ACKing of events, a ring policy is set on any
queue that starts with the string ‘celeryev’ or ends with the string
‘pidbox’. These are celery event queues, and Celery does not ack
them, causing the messages to build-up. Eventually Qpid stops serving
messages unless the ‘ring’ policy is set, at which point the buffer
backing the queue becomes circular.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be created.

	passive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the sever will not create the queue.

	durable (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be durable.

	exclusive (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue will be exclusive.

	auto_delete (bool [https://docs.python.org/dev/library/functions.html#bool]) – If True, the queue is deleted when all
consumers have finished using it.

	nowait (bool [https://docs.python.org/dev/library/functions.html#bool]) – This parameter is unused since the 0-10
specification does not include it.

	arguments (dict [https://docs.python.org/dev/library/stdtypes.html#dict] or None [https://docs.python.org/dev/library/constants.html#None]) – A set of arguments for the declaration of the
queue.

	Returns

	A named tuple representing the declared queue as a named
tuple. The tuple values are ordered as queue, message count,
and the active consumer count.

	Return type

	namedtuple

	
queue_delete(queue, if_unused=False, if_empty=False, **kwargs)

	Delete a queue by name.

Delete a queue specified by name. Using the if_unused keyword
argument, the delete can only occur if there are 0 consumers bound
to it. Using the if_empty keyword argument, the delete can only
occur if there are 0 messages in the queue.

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be deleted.

	Keyword Arguments

	
	if_unused – If True, delete only if the queue has 0
consumers. If False, delete a queue even with consumers bound
to it.

	if_empty – If True, only delete the queue if it is empty. If
False, delete the queue if it is empty or not.

	
queue_purge(queue, **kwargs)

	Remove all undelivered messages from queue.

Purge all undelivered messages from a queue specified by name. If the
queue does not exist an exception is raised. The queue message
depth is first checked, and then the broker is asked to purge that
number of messages. The integer number of messages requested to be
purged is returned. The actual number of messages purged may be
different than the requested number of messages to purge.

Sometimes delivered messages are asked to be purged, but are not.
This case fails silently, which is the correct behavior when a
message that has been delivered to a different consumer, who has
not ACKed the message, and still has an active session with the
broker. Messages in that case are not safe for purging and will be
retained by the broker. The client is unable to change this
delivery behavior.

Internally, this method relies on _purge().

	Parameters

	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue which should have all messages
removed.

	Returns

	The number of messages requested to be purged.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	Raises

	qpid.messaging.exceptions.NotFound if the queue
being purged cannot be found.

	
queue_unbind(queue, exchange, routing_key, **kwargs)

	Unbind a queue from an exchange with a given bind key.

Unbind a queue specified by name, from an exchange specified by
name, that is already bound with a bind key. The queue and
exchange must already exist on the broker, and bound with the bind
key for the operation to complete successfully. Queues may be
bound to exchanges multiple times with different keys, thus the
bind key is a required field to unbind in an explicit way.

	Parameters

	
	queue (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the queue to be unbound.

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The name of the exchange that the queue should be
unbound from.

	routing_key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The existing bind key between the specified
queue and a specified exchange that should be unbound.

	
typeof(exchange, default='direct')

	Get the exchange type.

Lookup and return the exchange type for an exchange specified by
name. Exchange types are expected to be ‘direct’, ‘topic’,
and ‘fanout’, which correspond with exchange functionality as
specified in AMQP 0-10 and earlier. If the exchange cannot be
found, the default exchange type is returned.

	Parameters

	exchange (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The exchange to have its type lookup up.

	Keyword Arguments

	default – The type of exchange to assume if the exchange does
not exist.

	Returns

	The exchange type either ‘direct’, ‘topic’, or ‘fanout’.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

Message

	
class kombu.transport.qpid.Message(payload, channel=None, **kwargs)

	Message object.

	
serializable()

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

In-memory Transport - kombu.transport.memory

In-memory transport.

	Transport

	Channel

Transport

	
class kombu.transport.memory.Transport(client, **kwargs)

	In-memory Transport.

	
class Channel(connection, **kwargs)

	In-memory Channel.

	
after_reply_message_received(queue)

	Callback called after RPC reply received.

Notes

Reply queue semantics: can be used to delete the queue
after transient reply message received.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
do_restore = False

	

	
events = {}

	

	
queues = {}

	

	
supports_fanout = True

	

	
driver_name = 'memory'

	

	
driver_type = 'memory'

	

	
driver_version()

	

	
implements = {'asynchronous': False, 'exchange_type': frozenset({'direct', 'headers', 'fanout', 'topic'}), 'heartbeats': False}

	

	
state = <kombu.transport.virtual.base.BrokerState object>

	memory backend state is global.

Channel

	
class kombu.transport.memory.Channel(connection, **kwargs)

	In-memory Channel.

	
after_reply_message_received(queue)

	Callback called after RPC reply received.

Notes

Reply queue semantics: can be used to delete the queue
after transient reply message received.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
do_restore = False

	

	
events = {}

	

	
queues = {}

	

	
supports_fanout = True

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Redis Transport - kombu.transport.redis

Redis transport.

	Transport

	Channel

Transport

	
class kombu.transport.redis.Transport(*args, **kwargs)

	Redis Transport.

	
class Channel(*args, **kwargs)

	Redis Channel.

	
class QoS(*args, **kwargs)

	Redis Ack Emulation.

	
ack(delivery_tag)

	Acknowledge message and remove from transactional state.

	
append(message, delivery_tag)

	Append message to transactional state.

	
pipe_or_acquire(pipe=None, client=None)

	

	
reject(delivery_tag, requeue=False)

	Remove from transactional state and requeue message.

	
restore_at_shutdown = True

	

	
restore_by_tag(tag, client=None, leftmost=False)

	

	
restore_unacked(client=None)

	Restore all unacknowledged messages.

	
restore_visible(start=0, num=10, interval=10)

	Restore any pending unackwnowledged messages.

To be filled in for visibility_timeout style implementations.

Note

This is implementation optional, and currently only
used by the Redis transport.

	
unacked_index_key

	

	
unacked_key

	

	
unacked_mutex_expire

	

	
unacked_mutex_key

	

	
visibility_timeout

	

	
ack_emulation = True

	

	
active_queues

	Set of queues being consumed from (excluding fanout queues).

	
async_pool

	

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, *args, **kwargs)

	Consume from queue.

	
client

	Client used to publish messages, BRPOP etc.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
conn_or_acquire(client=None)

	

	
connection_class = None

	

	
fanout_patterns = True

	

	
fanout_prefix = True

	

	
from_transport_options = ('body_encoding', 'deadletter_queue', 'sep', 'ack_emulation', 'unacked_key', 'unacked_index_key', 'unacked_mutex_key', 'unacked_mutex_expire', 'visibility_timeout', 'unacked_restore_limit', 'fanout_prefix', 'fanout_patterns', 'socket_timeout', 'socket_connect_timeout', 'socket_keepalive', 'socket_keepalive_options', 'queue_order_strategy', 'max_connections', 'priority_steps')

	

	
get_table(exchange)

	Get table of bindings for exchange.

	
keyprefix_fanout = '/{db}.'

	

	
keyprefix_queue = '_kombu.binding.%s'

	

	
max_connections = 10

	

	
pool

	

	
priority(n)

	

	
priority_steps = [0, 3, 6, 9]

	

	
queue_order_strategy = 'round_robin'

	

	
sep = '\x06\x16'

	

	
socket_connect_timeout = None

	

	
socket_keepalive = None

	

	
socket_keepalive_options = None

	

	
socket_timeout = None

	

	
subclient

	Pub/Sub connection used to consume fanout queues.

	
supports_fanout = True

	

	
unacked_index_key = 'unacked_index'

	

	
unacked_key = 'unacked'

	

	
unacked_mutex_expire = 300

	

	
unacked_mutex_key = 'unacked_mutex'

	

	
unacked_restore_limit = None

	

	
visibility_timeout = 3600

	

	
default_port = 6379

	

	
driver_name = 'redis'

	

	
driver_type = 'redis'

	

	
driver_version()

	

	
implements = {'asynchronous': True, 'exchange_type': frozenset({'direct', 'fanout', 'topic'}), 'heartbeats': False}

	

	
on_readable(fileno)

	Handle AIO event for one of our file descriptors.

	
polling_interval = None

	

	
register_with_event_loop(connection, loop)

	

Channel

	
class kombu.transport.redis.Channel(*args, **kwargs)

	Redis Channel.

	
class QoS(*args, **kwargs)

	Redis Ack Emulation.

	
ack(delivery_tag)

	Acknowledge message and remove from transactional state.

	
append(message, delivery_tag)

	Append message to transactional state.

	
pipe_or_acquire(pipe=None, client=None)

	

	
reject(delivery_tag, requeue=False)

	Remove from transactional state and requeue message.

	
restore_at_shutdown = True

	

	
restore_by_tag(tag, client=None, leftmost=False)

	

	
restore_unacked(client=None)

	Restore all unacknowledged messages.

	
restore_visible(start=0, num=10, interval=10)

	Restore any pending unackwnowledged messages.

To be filled in for visibility_timeout style implementations.

Note

This is implementation optional, and currently only
used by the Redis transport.

	
unacked_index_key

	

	
unacked_key

	

	
unacked_mutex_expire

	

	
unacked_mutex_key

	

	
visibility_timeout

	

	
ack_emulation = True

	

	
active_queues

	Set of queues being consumed from (excluding fanout queues).

	
async_pool

	

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, *args, **kwargs)

	Consume from queue.

	
client

	Client used to publish messages, BRPOP etc.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
conn_or_acquire(client=None)

	

	
connection_class = None

	

	
fanout_patterns = True

	If enabled the fanout exchange will support patterns in routing
and binding keys (like a topic exchange but using PUB/SUB).

Enabled by default since Kombu 4.x.
Disable for backwards compatibility with Kombu 3.x.

	
fanout_prefix = True

	Transport option to disable fanout keyprefix.
Can also be string, in which case it changes the default
prefix (‘/{db}.’) into to something else. The prefix must
include a leading slash and a trailing dot.

Enabled by default since Kombu 4.x.
Disable for backwards compatibility with Kombu 3.x.

	
from_transport_options = ('body_encoding', 'deadletter_queue', 'sep', 'ack_emulation', 'unacked_key', 'unacked_index_key', 'unacked_mutex_key', 'unacked_mutex_expire', 'visibility_timeout', 'unacked_restore_limit', 'fanout_prefix', 'fanout_patterns', 'socket_timeout', 'socket_connect_timeout', 'socket_keepalive', 'socket_keepalive_options', 'queue_order_strategy', 'max_connections', 'priority_steps')

	

	
get_table(exchange)

	Get table of bindings for exchange.

	
keyprefix_fanout = '/{db}.'

	

	
keyprefix_queue = '_kombu.binding.%s'

	

	
max_connections = 10

	

	
pool

	

	
priority(n)

	

	
priority_steps = [0, 3, 6, 9]

	

	
queue_order_strategy = 'round_robin'

	Order in which we consume from queues.

Can be either string alias, or a cycle strategy class

	round_robin
(round_robin_cycle).

Make sure each queue has an equal opportunity to be consumed from.

	sorted
(sorted_cycle).

Consume from queues in alphabetical order.
If the first queue in the sorted list always contains messages,
then the rest of the queues will never be consumed from.

	priority
(priority_cycle).

Consume from queues in original order, so that if the first
queue always contains messages, the rest of the queues
in the list will never be consumed from.

The default is to consume from queues in round robin.

	
sep = '\x06\x16'

	

	
socket_connect_timeout = None

	

	
socket_keepalive = None

	

	
socket_keepalive_options = None

	

	
socket_timeout = None

	

	
subclient

	Pub/Sub connection used to consume fanout queues.

	
supports_fanout = True

	

	
unacked_index_key = 'unacked_index'

	

	
unacked_key = 'unacked'

	

	
unacked_mutex_expire = 300

	

	
unacked_mutex_key = 'unacked_mutex'

	

	
unacked_restore_limit = None

	

	
visibility_timeout = 3600

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

MongoDB Transport - kombu.transport.mongodb

MongoDB transport.

	copyright

	
	2010 - 2013 by Flavio Percoco Premoli.

	license

	BSD, see LICENSE for more details.

	Transport

	Channel

Transport

	
class kombu.transport.mongodb.Transport(client, **kwargs)

	MongoDB Transport.

	
class Channel(*vargs, **kwargs)

	MongoDB Channel.

	
broadcast

	

	
broadcast_collection = 'messages.broadcast'

	

	
calc_queue_size = True

	

	
capped_queue_size = 100000

	

	
client

	

	
connect_timeout = None

	

	
default_database = 'kombu_default'

	

	
default_hostname = '127.0.0.1'

	

	
default_port = 27017

	

	
from_transport_options = ('body_encoding', 'deadletter_queue', 'connect_timeout', 'ssl', 'ttl', 'capped_queue_size', 'default_hostname', 'default_port', 'default_database', 'messages_collection', 'routing_collection', 'broadcast_collection', 'queues_collection', 'calc_queue_size')

	

	
get_now()

	Return current time in UTC.

	
get_table(exchange)

	Get table of bindings for exchange.

	
messages

	

	
messages_collection = 'messages'

	

	
queue_delete(queue, **kwargs)

	Delete queue.

	
queues

	

	
queues_collection = 'messages.queues'

	

	
routing

	

	
routing_collection = 'messages.routing'

	

	
ssl = False

	

	
supports_fanout = True

	

	
ttl = False

	

	
can_parse_url = True

	

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>, <class 'pymongo.errors.ConnectionFailure'>, <class 'pymongo.errors.OperationFailure'>)

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, <class 'pymongo.errors.ConnectionFailure'>)

	

	
default_port = 27017

	

	
driver_name = 'pymongo'

	

	
driver_type = 'mongodb'

	

	
driver_version()

	

	
implements = {'asynchronous': False, 'exchange_type': frozenset({'direct', 'fanout', 'topic'}), 'heartbeats': False}

	

	
polling_interval = 1

	

Channel

	
class kombu.transport.mongodb.Channel(*vargs, **kwargs)

	MongoDB Channel.

	
broadcast

	

	
broadcast_collection = 'messages.broadcast'

	

	
calc_queue_size = True

	

	
capped_queue_size = 100000

	

	
client

	

	
connect_timeout = None

	

	
default_database = 'kombu_default'

	

	
default_hostname = '127.0.0.1'

	

	
default_port = 27017

	

	
from_transport_options = ('body_encoding', 'deadletter_queue', 'connect_timeout', 'ssl', 'ttl', 'capped_queue_size', 'default_hostname', 'default_port', 'default_database', 'messages_collection', 'routing_collection', 'broadcast_collection', 'queues_collection', 'calc_queue_size')

	

	
get_now()

	Return current time in UTC.

	
get_table(exchange)

	Get table of bindings for exchange.

	
messages

	

	
messages_collection = 'messages'

	

	
queue_delete(queue, **kwargs)

	Delete queue.

	
queues

	

	
queues_collection = 'messages.queues'

	

	
routing

	

	
routing_collection = 'messages.routing'

	

	
ssl = False

	

	
supports_fanout = True

	

	
ttl = False

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Consul Transport - kombu.transport.consul

Consul Transport.

It uses Consul.io’s Key/Value store to transport messages in Queues

It uses python-consul for talking to Consul’s HTTP API

	Transport

	Channel

Transport

	
class kombu.transport.consul.Transport(*args, **kwargs)

	Consul K/V storage Transport for Kombu.

	
class Channel(*args, **kwargs)

	Consul Channel class which talks to the Consul Key/Value store.

	
index = None

	

	
lock_name

	

	
prefix = 'kombu'

	

	
session_ttl = 30

	

	
timeout = '10s'

	

	
default_port = 8500

	

	
driver_name = 'consul'

	

	
driver_type = 'consul'

	

	
driver_version()

	

	
verify_connection(connection)

	

Channel

	
class kombu.transport.consul.Channel(*args, **kwargs)

	Consul Channel class which talks to the Consul Key/Value store.

	
index = None

	

	
lock_name

	

	
prefix = 'kombu'

	

	
session_ttl = 30

	

	
timeout = '10s'

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Etcd Transport - kombu.transport.etcd

Etcd Transport.

It uses Etcd as a store to transport messages in Queues

It uses python-etcd for talking to Etcd’s HTTP API

	Transport

	Channel

Transport

	
class kombu.transport.etcd.Transport(*args, **kwargs)

	Etcd storage Transport for Kombu.

	
class Channel(*args, **kwargs)

	Etcd Channel class which talks to the Etcd.

	
index = None

	

	
lock_ttl = 10

	

	
lock_value

	

	
prefix = 'kombu'

	

	
session_ttl = 30

	

	
timeout = 10

	

	
default_port = 2379

	

	
driver_name = 'python-etcd'

	

	
driver_type = 'etcd'

	

	
driver_version()

	Return the version of the etcd library.

Note

python-etcd has no __version__. This is a workaround.

	
implements = {'asynchronous': False, 'exchange_type': frozenset({'direct'}), 'heartbeats': False}

	

	
polling_interval = 3

	

	
verify_connection(connection)

	Verify the connection works.

Channel

	
class kombu.transport.etcd.Channel(*args, **kwargs)

	Etcd Channel class which talks to the Etcd.

	
index = None

	

	
lock_ttl = 10

	

	
lock_value

	

	
prefix = 'kombu'

	

	
session_ttl = 30

	

	
timeout = 10

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Zookeeper Transport - kombu.transport.zookeeper

Zookeeper transport.

	copyright

	
	2010 - 2013 by Mahendra M.

	license

	BSD, see LICENSE for more details.

Synopsis

Connects to a zookeeper node as <server>:<port>/<vhost>
The <vhost> becomes the base for all the other znodes. So we can use
it like a vhost.

This uses the built-in kazoo recipe for queues

References

	https://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_Queues

	https://kazoo.readthedocs.io/en/latest/api/recipe/queue.html

Limitations
This queue does not offer reliable consumption. An entry is removed from
the queue prior to being processed. So if an error occurs, the consumer
has to re-queue the item or it will be lost.

	Transport

	Channel

Transport

	
class kombu.transport.zookeeper.Transport(*args, **kwargs)

	Zookeeper Transport.

	
class Channel(connection, **kwargs)

	Zookeeper Channel.

	
client

	

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>,)

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>,)

	

	
default_port = 2181

	

	
driver_name = 'kazoo'

	

	
driver_type = 'zookeeper'

	

	
driver_version()

	

	
polling_interval = 1

	

Channel

	
class kombu.transport.zookeeper.Channel(connection, **kwargs)

	Zookeeper Channel.

	
client

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

File-system Transport - kombu.transport.filesystem

File-system Transport.

Transport using the file-system as the message store.

	Transport

	Channel

Transport

	
class kombu.transport.filesystem.Transport(client, **kwargs)

	Filesystem Transport.

	
class Channel(connection, **kwargs)

	Filesystem Channel.

	
data_folder_in

	

	
data_folder_out

	

	
processed_folder

	

	
store_processed

	

	
transport_options

	

	
default_port = 0

	

	
driver_name = 'filesystem'

	

	
driver_type = 'filesystem'

	

	
driver_version()

	

Channel

	
class kombu.transport.filesystem.Channel(connection, **kwargs)

	Filesystem Channel.

	
data_folder_in

	

	
data_folder_out

	

	
processed_folder

	

	
store_processed

	

	
transport_options

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SQLAlchemy Transport Model - kombu.transport.sqlalchemy

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SQLAlchemy Transport Model - kombu.transport.sqlalchemy.models

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Amazon SQS Transport - kombu.transport.SQS

Amazon SQS Transport.

Amazon SQS transport module for Kombu. This package implements an AMQP-like
interface on top of Amazons SQS service, with the goal of being optimized for
high performance and reliability.

The default settings for this module are focused now on high performance in
task queue situations where tasks are small, idempotent and run very fast.

	SQS Features supported by this transport:

	
	Long Polling:

	https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html

Long polling is enabled by setting the wait_time_seconds transport
option to a number > 1. Amazon supports up to 20 seconds. This is
enabled with 10 seconds by default.

	Batch API Actions:

	https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-batch-api.html

The default behavior of the SQS Channel.drain_events() method is to
request up to the ‘prefetch_count’ messages on every request to SQS.
These messages are stored locally in a deque object and passed back
to the Transport until the deque is empty, before triggering a new
API call to Amazon.

This behavior dramatically speeds up the rate that you can pull tasks
from SQS when you have short-running tasks (or a large number of workers).

When a Celery worker has multiple queues to monitor, it will pull down
up to ‘prefetch_count’ messages from queueA and work on them all before
moving on to queueB. If queueB is empty, it will wait up until
‘polling_interval’ expires before moving back and checking on queueA.

	Transport

	Channel

Transport

	
class kombu.transport.SQS.Transport(client, **kwargs)

	SQS Transport.

Additional queue attributes can be supplied to SQS during queue
creation by passing an sqs-creation-attributes key in
transport_options. sqs-creation-attributes must be a dict whose
key-value pairs correspond with Attributes in the
CreateQueue SQS API [https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html#API_CreateQueue_RequestParameters].

For example, to have SQS queues created with server-side encryption
enabled using the default Amazon Managed Customer Master Key, you
can set KmsMasterKeyId Attribute. When the queue is initially
created by Kombu, encryption will be enabled.

from kombu.transport.SQS import Transport

transport = Transport(
 ...,
 transport_options={
 'sqs-creation-attributes': {
 'KmsMasterKeyId': 'alias/aws/sqs',
 },
 }
)

	
class Channel(*args, **kwargs)

	SQS Channel.

	
asynsqs

	

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge message.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
canonical_queue_name(queue_name)

	

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
conninfo

	

	
default_region = 'us-east-1'

	

	
default_visibility_timeout = 1800

	

	
default_wait_time_seconds = 10

	

	
domain_format = 'kombu%(vhost)s'

	

	
drain_events(timeout=None, callback=None, **kwargs)

	Return a single payload message from one of our queues.

	Raises

	Queue.Empty – if no messages available.

	
endpoint_url

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 46: 45, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a legal SQS queue name.

	
is_secure

	

	
port

	

	
queue_name_prefix

	

	
region

	

	
regioninfo

	

	
sqs

	

	
supports_fanout

	

	
transport_options

	

	
visibility_timeout

	

	
wait_time_seconds

	

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>, <class 'kombu.asynchronous.aws.ext.BotoCoreError'>)

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, <class 'kombu.asynchronous.aws.ext.BotoCoreError'>, <class 'OSError'>)

	

	
default_connection_params

	

	
default_port = None

	

	
driver_name = 'sqs'

	

	
driver_type = 'sqs'

	

	
implements = {'asynchronous': True, 'exchange_type': frozenset({'direct'}), 'heartbeats': False}

	

	
polling_interval = 1

	

	
wait_time_seconds = 0

	

Channel

	
class kombu.transport.SQS.Channel(*args, **kwargs)

	SQS Channel.

	
asynsqs

	

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge message.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
canonical_queue_name(queue_name)

	

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
conninfo

	

	
default_region = 'us-east-1'

	

	
default_visibility_timeout = 1800

	

	
default_wait_time_seconds = 10

	

	
domain_format = 'kombu%(vhost)s'

	

	
drain_events(timeout=None, callback=None, **kwargs)

	Return a single payload message from one of our queues.

	Raises

	Queue.Empty – if no messages available.

	
endpoint_url

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 46: 45, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a legal SQS queue name.

	
is_secure

	

	
port

	

	
queue_name_prefix

	

	
region

	

	
regioninfo

	

	
sqs

	

	
supports_fanout

	

	
transport_options

	

	
visibility_timeout

	

	
wait_time_seconds

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

SLMQ Transport - kombu.transport.SLMQ

SoftLayer Message Queue transport.

	Transport

	Channel

Transport

	
class kombu.transport.SLMQ.Transport(client, **kwargs)

	SLMQ Transport.

	
class Channel(*args, **kwargs)

	SLMQ Channel.

	
basic_ack(delivery_tag)

	Acknowledge message.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
conninfo

	

	
default_visibility_timeout = 1800

	

	
delete_message(queue, message_id)

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 45: 95, 46: 95, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a valid SLQS queue name.

	
queue_name_prefix

	

	
slmq

	

	
transport_options

	

	
visibility_timeout

	

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>, None, <class 'OSError'>)

	

	
default_port = None

	

	
polling_interval = 1

	

Channel

	
class kombu.transport.SLMQ.Channel(*args, **kwargs)

	SLMQ Channel.

	
basic_ack(delivery_tag)

	Acknowledge message.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_consume(queue, no_ack, *args, **kwargs)

	Consume from queue.

	
conninfo

	

	
default_visibility_timeout = 1800

	

	
delete_message(queue, message_id)

	

	
domain_format = 'kombu%(vhost)s'

	

	
entity_name(name, table={33: 95, 34: 95, 35: 95, 36: 95, 37: 95, 38: 95, 39: 95, 40: 95, 41: 95, 42: 95, 43: 95, 44: 95, 45: 95, 46: 95, 47: 95, 58: 95, 59: 95, 60: 95, 61: 95, 62: 95, 63: 95, 64: 95, 91: 95, 92: 95, 93: 95, 94: 95, 96: 95, 123: 95, 124: 95, 125: 95, 126: 95})

	Format AMQP queue name into a valid SLQS queue name.

	
queue_name_prefix

	

	
slmq

	

	
transport_options

	

	
visibility_timeout

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Pyro Transport - kombu.transport.pyro

Pyro transport, and Kombu Broker daemon.

Requires the Pyro4 library to be installed.

To use the Pyro transport with Kombu, use an url of the form:
pyro://localhost/kombu.broker

The hostname is where the transport will be looking for a Pyro name server,
which is used in turn to locate the kombu.broker Pyro service.
This broker can be launched by simply executing this transport module directly,
with the command: python -m kombu.transport.pyro

	Transport

	Channel

	KombuBroker

Transport

	
class kombu.transport.pyro.Transport(client, **kwargs)

	Pyro Transport.

	
class Channel(connection, **kwargs)

	Pyro Channel.

	
after_reply_message_received(queue)

	Callback called after RPC reply received.

Notes

Reply queue semantics: can be used to delete the queue
after transient reply message received.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
queues()

	

	
shared_queues

	

	
default_port = 9090

	

	
driver_name = 'pyro'

	

	
driver_type = 'pyro'

	

	
driver_version()

	

	
shared_queues

	

	
state = <kombu.transport.virtual.base.BrokerState object>

	memory backend state is global.

Channel

	
class kombu.transport.pyro.Channel(connection, **kwargs)

	Pyro Channel.

	
after_reply_message_received(queue)

	Callback called after RPC reply received.

Notes

Reply queue semantics: can be used to delete the queue
after transient reply message received.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

	
queues()

	

	
shared_queues

	

KombuBroker

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Transport Base Class - kombu.transport.base

Base transport interface.

	Message

	Transport

Message

	
class kombu.transport.base.Message(body=None, delivery_tag=None, content_type=None, content_encoding=None, delivery_info=None, properties=None, headers=None, postencode=None, accept=None, channel=None, **kwargs)

	Base class for received messages.

	Keyword Arguments

	
	channel (ChannelT) – If message was received, this should be the
channel that the message was received on.

	body (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Message body.

	delivery_mode (bool [https://docs.python.org/dev/library/functions.html#bool]) – Set custom delivery mode.
Defaults to delivery_mode.

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – Message priority, 0 to broker configured
max priority, where higher is better.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The messages content_type. If content_type
is set, no serialization occurs as it is assumed this is either
a binary object, or you’ve done your own serialization.
Leave blank if using built-in serialization as our library
properly sets content_type.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The character set in which this object
is encoded. Use “binary” if sending in raw binary objects.
Leave blank if using built-in serialization as our library
properly sets content_encoding.

	properties (Dict) – Message properties.

	headers (Dict) – Message headers.

	
payload

	The decoded message body.

	
channel

	

	
delivery_tag

	

	
content_type

	

	
content_encoding

	

	
delivery_info

	

	
headers

	

	
properties

	

	
body

	

	
acknowledged

	Set to true if the message has been acknowledged.

	
ack(multiple=False)

	Acknowledge this message as being processed.

This will remove the message from the queue.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
reject(requeue=False)

	Reject this message.

The message will be discarded by the server.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
requeue()

	Reject this message and put it back on the queue.

Warning

You must not use this method as a means of selecting messages
to process.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
decode()

	Deserialize the message body.

Returning the original python structure sent by the publisher.

Note

The return value is memoized, use _decode to force
re-evaluation.

Transport

	
class kombu.transport.base.Transport(client, **kwargs)

	Base class for transports.

	
client = None

	The Connection owning this instance.

	
default_port = None

	Default port used when no port has been specified.

	
recoverable_connection_errors

	Optional list of connection related exceptions that can be
recovered from, but where the connection must be closed
and re-established first.

If not defined then all connection_errors and
channel_errors will be regarded as recoverable,
but needing to close the connection first.

	
recoverable_channel_errors

	Optional list of channel related exceptions that can be
automatically recovered from without re-establishing the
connection.

	
connection_errors = (<class 'amqp.exceptions.ConnectionError'>,)

	Tuple of errors that can happen due to connection failure.

	
channel_errors = (<class 'amqp.exceptions.ChannelError'>,)

	Tuple of errors that can happen due to channel/method failure.

	
establish_connection()

	

	
close_connection(connection)

	

	
create_channel(connection)

	

	
close_channel(connection)

	

	
drain_events(connection, **kwargs)

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Virtual Transport Base Class - kombu.transport.virtual

	Transports

	Channel

	Message

	Quality Of Service

	In-memory State

Transports

	
class kombu.transport.virtual.Transport(client, **kwargs)

	Virtual transport.

	Parameters

	client (kombu.Connection) – The client this is a transport for.

	
Channel = <class 'kombu.transport.virtual.base.Channel'>

	

	
Cycle = <class 'kombu.utils.scheduling.FairCycle'>

	

	
polling_interval = 1.0

	Time to sleep between unsuccessful polls.

	
default_port = None

	port number used when no port is specified.

	
state = <kombu.transport.virtual.base.BrokerState object>

	Global BrokerState containing declared exchanges and bindings.

	
cycle = None

	FairCycle instance
used to fairly drain events from channels (set by constructor).

	
establish_connection()

	

	
close_connection(connection)

	

	
create_channel(connection)

	

	
close_channel(channel)

	

	
drain_events(connection, timeout=None)

	

Channel

	
class kombu.transport.virtual.AbstractChannel

	Abstract channel interface.

This is an abstract class defining the channel methods
you’d usually want to implement in a virtual channel.

Note

Do not subclass directly, but rather inherit
from Channel.

	
class kombu.transport.virtual.Channel(connection, **kwargs)

	Virtual channel.

	Parameters

	connection (ConnectionT) – The transport instance this
channel is part of.

	
Message = <class 'kombu.transport.virtual.base.Message'>

	message class used.

	
state

	Broker state containing exchanges and bindings.

	
qos

	QoS manager for this channel.

	
do_restore = True

	flag to restore unacked messages when channel
goes out of scope.

	
exchange_types = {'direct': <class 'kombu.transport.virtual.exchange.DirectExchange'>, 'fanout': <class 'kombu.transport.virtual.exchange.FanoutExchange'>, 'topic': <class 'kombu.transport.virtual.exchange.TopicExchange'>}

	mapping of exchange types and corresponding classes.

	
exchange_declare(exchange=None, type='direct', durable=False, auto_delete=False, arguments=None, nowait=False, passive=False)

	Declare exchange.

	
exchange_delete(exchange, if_unused=False, nowait=False)

	Delete exchange and all its bindings.

	
queue_declare(queue=None, passive=False, **kwargs)

	Declare queue.

	
queue_delete(queue, if_unused=False, if_empty=False, **kwargs)

	Delete queue.

	
queue_bind(queue, exchange=None, routing_key='', arguments=None, **kwargs)

	Bind queue to exchange with routing key.

	
queue_purge(queue, **kwargs)

	Remove all ready messages from queue.

	
basic_publish(message, exchange, routing_key, **kwargs)

	Publish message.

	
basic_consume(queue, no_ack, callback, consumer_tag, **kwargs)

	Consume from queue.

	
basic_cancel(consumer_tag)

	Cancel consumer by consumer tag.

	
basic_get(queue, no_ack=False, **kwargs)

	Get message by direct access (synchronous).

	
basic_ack(delivery_tag, multiple=False)

	Acknowledge message.

	
basic_recover(requeue=False)

	Recover unacked messages.

	
basic_reject(delivery_tag, requeue=False)

	Reject message.

	
basic_qos(prefetch_size=0, prefetch_count=0, apply_global=False)

	Change QoS settings for this channel.

Note

Only prefetch_count is supported.

	
get_table(exchange)

	Get table of bindings for exchange.

	
typeof(exchange, default='direct')

	Get the exchange type instance for exchange.

	
drain_events(timeout=None, callback=None)

	

	
prepare_message(body, priority=None, content_type=None, content_encoding=None, headers=None, properties=None)

	Prepare message data.

	
message_to_python(raw_message)

	Convert raw message to Message instance.

	
flow(active=True)

	Enable/disable message flow.

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] – as flow
is not implemented by the base virtual implementation.

	
close()

	Close channel.

Cancel all consumers, and requeue unacked messages.

Message

	
class kombu.transport.virtual.Message(payload, channel=None, **kwargs)

	Message object.

	
exception MessageStateError

	The message has already been acknowledged.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
accept

	

	
ack(multiple=False)

	Acknowledge this message as being processed.

This will remove the message from the queue.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
ack_log_error(logger, errors, multiple=False)

	

	
acknowledged

	Set to true if the message has been acknowledged.

	
body

	

	
channel

	

	
content_encoding

	

	
content_type

	

	
decode()

	Deserialize the message body.

Returning the original python structure sent by the publisher.

Note

The return value is memoized, use _decode to force
re-evaluation.

	
delivery_info

	

	
delivery_tag

	

	
errors = None

	

	
headers

	

	
payload

	The decoded message body.

	
properties

	

	
reject(requeue=False)

	Reject this message.

The message will be discarded by the server.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
reject_log_error(logger, errors, requeue=False)

	

	
requeue()

	Reject this message and put it back on the queue.

Warning

You must not use this method as a means of selecting messages
to process.

	Raises

	MessageStateError – If the message has already been
acknowledged/requeued/rejected.

	
serializable()

	

Quality Of Service

	
class kombu.transport.virtual.QoS(channel, prefetch_count=0)

	Quality of Service guarantees.

Only supports prefetch_count at this point.

	Parameters

	
	channel (ChannelT) – Connection channel.

	prefetch_count (int [https://docs.python.org/dev/library/functions.html#int]) – Initial prefetch count (defaults to 0).

	
ack(delivery_tag)

	Acknowledge message and remove from transactional state.

	
append(message, delivery_tag)

	Append message to transactional state.

	
can_consume()

	Return true if the channel can be consumed from.

Used to ensure the client adhers to currently active
prefetch limits.

	
can_consume_max_estimate()

	Return the maximum number of messages allowed to be returned.

Returns an estimated number of messages that a consumer may be allowed
to consume at once from the broker. This is used for services where
bulk ‘get message’ calls are preferred to many individual ‘get message’
calls - like SQS.

	Returns

	greater than zero.

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
get(delivery_tag)

	

	
prefetch_count = 0

	current prefetch count value

	
reject(delivery_tag, requeue=False)

	Remove from transactional state and requeue message.

	
restore_at_shutdown = True

	If disabled, unacked messages won’t be restored at shutdown.

	
restore_unacked()

	Restore all unacknowledged messages.

	
restore_unacked_once(stderr=None)

	Restore all unacknowledged messages at shutdown/gc collect.

Note

Can only be called once for each instance, subsequent
calls will be ignored.

	
restore_visible(*args, **kwargs)

	Restore any pending unackwnowledged messages.

To be filled in for visibility_timeout style implementations.

Note

This is implementation optional, and currently only
used by the Redis transport.

In-memory State

	
class kombu.transport.virtual.BrokerState(exchanges=None)

	Broker state holds exchanges, queues and bindings.

	
binding_declare(queue, exchange, routing_key, arguments)

	

	
binding_delete(queue, exchange, routing_key)

	

	
bindings = None

	This is the actual bindings registry, used to store bindings and to
test ‘in’ relationships in constant time. It has the following
structure:

{
 (queue, exchange, routing_key): arguments,
 # ...,
}

	
clear()

	

	
exchanges = None

	Mapping of exchange name to
kombu.transport.virtual.exchange.ExchangeType

	
has_binding(queue, exchange, routing_key)

	

	
queue_bindings(queue)

	

	
queue_bindings_delete(queue)

	

	
queue_index = None

	The queue index is used to access directly (constant time)
all the bindings of a certain queue. It has the following structure:

{
 queue: {
 (queue, exchange, routing_key),
 # ...,
 },
 # ...,
}

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Virtual AMQ Exchange Implementation - kombu.transport.virtual.exchange

Virtual AMQ Exchange.

Implementations of the standard exchanges defined
by the AMQ protocol (excluding the headers exchange).

	Direct

	Topic

	Fanout

	Interface

Direct

	
class kombu.transport.virtual.exchange.DirectExchange(channel)

	Direct exchange.

The direct exchange routes based on exact routing keys.

	
deliver(message, exchange, routing_key, **kwargs)

	

	
lookup(table, exchange, routing_key, default)

	Lookup all queues matching routing_key in exchange.

	Returns

	queue name, or ‘default’ if no queues matched.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
type = 'direct'

	

Topic

	
class kombu.transport.virtual.exchange.TopicExchange(channel)

	Topic exchange.

The topic exchange routes messages based on words separated by
dots, using wildcard characters * (any single word), and #
(one or more words).

	
deliver(message, exchange, routing_key, **kwargs)

	

	
key_to_pattern(rkey)

	Get the corresponding regex for any routing key.

	
lookup(table, exchange, routing_key, default)

	Lookup all queues matching routing_key in exchange.

	Returns

	queue name, or ‘default’ if no queues matched.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
prepare_bind(queue, exchange, routing_key, arguments)

	Prepare queue-binding.

	Returns

	
	of (routing_key, regex, queue)

	to be stored for bindings to this exchange.

	Return type

	Tuple[str [https://docs.python.org/dev/library/stdtypes.html#str], Pattern, str [https://docs.python.org/dev/library/stdtypes.html#str]]

	
type = 'topic'

	

	
wildcards = {'#': '.*?', '*': '.*?[^\\.]'}

	map of wildcard to regex conversions

Fanout

	
class kombu.transport.virtual.exchange.FanoutExchange(channel)

	Fanout exchange.

The fanout exchange implements broadcast messaging by delivering
copies of all messages to all queues bound to the exchange.

To support fanout the virtual channel needs to store the table
as shared state. This requires that the Channel.supports_fanout
attribute is set to true, and the Channel._queue_bind and
Channel.get_table methods are implemented.

See also

the redis backend for an example implementation of these methods.

	
deliver(message, exchange, routing_key, **kwargs)

	

	
lookup(table, exchange, routing_key, default)

	Lookup all queues matching routing_key in exchange.

	Returns

	queue name, or ‘default’ if no queues matched.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
type = 'fanout'

	

Interface

	
class kombu.transport.virtual.exchange.ExchangeType(channel)

	Base class for exchanges.

Implements the specifics for an exchange type.

	Parameters

	channel (ChannelT) – AMQ Channel.

	
equivalent(prev, exchange, type, durable, auto_delete, arguments)

	Return true if prev and exchange is equivalent.

	
lookup(table, exchange, routing_key, default)

	Lookup all queues matching routing_key in exchange.

	Returns

	queue name, or ‘default’ if no queues matched.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
prepare_bind(queue, exchange, routing_key, arguments)

	Prepare queue-binding.

	Returns

	
	of (routing_key, regex, queue)

	to be stored for bindings to this exchange.

	Return type

	Tuple[str [https://docs.python.org/dev/library/stdtypes.html#str], Pattern, str [https://docs.python.org/dev/library/stdtypes.html#str]]

	
type = None

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Message Serialization - kombu

Serialization utilities.

	Overview

	Exceptions

	Serialization

	Registry

Overview

Centralized support for encoding/decoding of data structures.
Contains json, pickle, msgpack, and yaml serializers.

Optionally installs support for YAML if the PyYAML [https://pyyaml.org/] package
is installed.

Optionally installs support for msgpack [https://msgpack.org/] if the msgpack-python [https://pypi.org/project/msgpack-python/]
package is installed.

Exceptions

	
exception kombu.serialization.SerializerNotInstalled

	Support for the requested serialization type is not installed.

Serialization

	
kombu.serialization.dumps(data, serializer=None)

	Encode data.

Serialize a data structure into a string suitable for sending
as an AMQP message body.

	Parameters

	
	data (List, Dict, str [https://docs.python.org/dev/library/stdtypes.html#str]) – The message data to send.

	serializer (str [https://docs.python.org/dev/library/stdtypes.html#str]) – An optional string representing
the serialization method you want the data marshalled
into. (For example, json, raw, or pickle).

If None (default), then json will be used, unless
data is a str [https://docs.python.org/dev/library/stdtypes.html#str] or unicode object. In this
latter case, no serialization occurs as it would be
unnecessary.

Note that if serializer is specified, then that
serialization method will be used even if a str [https://docs.python.org/dev/library/stdtypes.html#str]
or unicode object is passed in.

	Returns

	A three-item tuple containing the
content type (e.g., application/json), content encoding, (e.g.,
utf-8) and a string containing the serialized data.

	Return type

	Tuple[str [https://docs.python.org/dev/library/stdtypes.html#str], str [https://docs.python.org/dev/library/stdtypes.html#str], str [https://docs.python.org/dev/library/stdtypes.html#str]]

	Raises

	SerializerNotInstalled – If the serialization method
requested is not available.

	
kombu.serialization.loads(data, content_type, content_encoding, accept=None, force=False, _trusted_content=frozenset({'application/text', 'application/data'}))

	Decode serialized data.

Deserialize a data stream as serialized using dumps
based on content_type.

	Parameters

	
	data (bytes [https://docs.python.org/dev/library/stdtypes.html#bytes], buffer, str [https://docs.python.org/dev/library/stdtypes.html#str]) – The message data to deserialize.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The content-type of the data.
(e.g., application/json).

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The content-encoding of the data.
(e.g., utf-8, binary, or us-ascii).

	accept (Set) – List of content-types to accept.

	Raises

	ContentDisallowed – If the content-type is not accepted.

	Returns

	The unserialized data.

	Return type

	Any

	
kombu.serialization.raw_encode(data)

	Special case serializer.

Registry

	
kombu.serialization.register(name, encoder, decoder, content_type, content_encoding='utf-8')

	Register a new encoder/decoder.

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – A convenience name for the serialization method.

	encoder (callable) – A method that will be passed a python data
structure and should return a string representing the
serialized data. If None, then only a decoder
will be registered. Encoding will not be possible.

	decoder (Callable) – A method that will be passed a string
representing serialized data and should return a python
data structure. If None, then only an encoder
will be registered. Decoding will not be possible.

	content_type (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The mime-type describing the serialized
structure.

	content_encoding (str [https://docs.python.org/dev/library/stdtypes.html#str]) – The content encoding (character set) that
the decoder method will be returning. Will usually be
utf-8, us-ascii, or binary.

	
kombu.serialization.unregister(name)

	Unregister registered encoder/decoder.

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Registered serialization method name.

	Raises

	SerializerNotInstalled – If a serializer by that name
cannot be found.

	
kombu.serialization.registry = <kombu.serialization.SerializerRegistry object>

	Global registry of serializers/deserializers.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Generic RabbitMQ manager - kombu.utils.amq_manager

AMQP Management API utilities.

	
kombu.utils.amq_manager.get_manager(client, hostname=None, port=None, userid=None, password=None)

	Get pyrabbit manager.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Custom Collections - kombu.utils.collections

Custom maps, sequences, etc.

	
class kombu.utils.collections.EqualityDict

	Dict using the eq operator for keying.

	
class kombu.utils.collections.HashedSeq(*seq)

	Hashed Sequence.

Type used for hash() to make sure the hash is not generated
multiple times.

	
hashvalue

	

	
kombu.utils.collections.eqhash(o)

	Call obj.__eqhash__.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Python Compatibility - kombu.utils.compat

Python Compatibility Utilities.

	
kombu.utils.compat.coro(gen)

	Decorator to mark generator as co-routine.

	
kombu.utils.compat.detect_environment()

	Detect the current environment: default, eventlet, or gevent.

	
kombu.utils.compat.entrypoints(namespace)

	Return setuptools entrypoints for namespace.

	
kombu.utils.compat.fileno(f)

	Get fileno from file-like object.

	
kombu.utils.compat.maybe_fileno(f)

	Get object fileno, or None if not defined.

	
kombu.utils.compat.nested(*managers)

	Nest context managers.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Debugging Utilities - kombu.utils.debug

Debugging support.

	
kombu.utils.debug.setup_logging(loglevel=10, loggers=None)

	Setup logging to stdout.

	
class kombu.utils.debug.Logwrapped(instance, logger=None, ident=None)

	Wrap all object methods, to log on call.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Div Utilities - kombu.utils.div

Div. Utilities.

	
kombu.utils.div.emergency_dump_state(state, open_file=<built-in function open>, dump=None, stderr=None)

	Dump message state to stdout or file.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

String Encoding Utilities - kombu.utils.encoding

Text encoding utilities.

Utilities to encode text, and to safely emit text from running
applications without crashing from the infamous
UnicodeDecodeError [https://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError] exception.

	
kombu.utils.encoding.bytes_to_str(s)

	Convert bytes to str.

	
kombu.utils.encoding.default_encode(obj)

	Encode using default encoding.

	
kombu.utils.encoding.default_encoding(file=None)

	Get default encoding.

	
kombu.utils.encoding.default_encoding_file = None

	safe_str takes encoding from this file by default.
set_default_encoding_file() can used to set the
default output file.

	
kombu.utils.encoding.ensure_bytes(s)

	Ensure s is bytes, not str.

	
kombu.utils.encoding.from_utf8(s, *args, **kwargs)

	Get str from utf-8 encoding.

	
kombu.utils.encoding.get_default_encoding_file()

	Get file used to get codec information.

	
kombu.utils.encoding.safe_repr(o, errors='replace')

	Safe form of repr, void of Unicode errors.

	
kombu.utils.encoding.safe_str(s, errors='replace')

	Safe form of str(), void of unicode errors.

	
kombu.utils.encoding.set_default_encoding_file(file)

	Set file used to get codec information.

	
kombu.utils.encoding.str_to_bytes(s)

	Convert str to bytes.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Async I/O Selectors - kombu.utils.eventio

Selector Utilities.

	
kombu.utils.eventio.poll(*args, **kwargs)

	Create new poller instance.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Functional-style Utilities - kombu.utils.functional

Functional Utilities.

	
class kombu.utils.functional.LRUCache(limit=None)

	LRU Cache implementation using a doubly linked list to track access.

	Parameters

	limit (int [https://docs.python.org/dev/library/functions.html#int]) – The maximum number of keys to keep in the cache.
When a new key is inserted and the limit has been exceeded,
the Least Recently Used key will be discarded from the
cache.

	
incr(key, delta=1)

	

	
items()

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()

	

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	

	
kombu.utils.functional.memoize(maxsize=None, keyfun=None, Cache=<class 'kombu.utils.functional.LRUCache'>)

	Decorator to cache function return value.

	
class kombu.utils.functional.lazy(fun, *args, **kwargs)

	Holds lazy evaluation.

Evaluated when called or if the evaluate() method is called.
The function is re-evaluated on every call.

	Overloaded operations that will evaluate the promise:

	__str__(), __repr__(), __cmp__().

	
evaluate()

	

	
kombu.utils.functional.maybe_evaluate(value)

	Evaluate value only if value is a lazy instance.

	
kombu.utils.functional.is_list(l, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>), iters=(<class 'collections.abc.Iterable'>,))

	Return true if the object is iterable.

Note

Returns false if object is a mapping or string.

	
kombu.utils.functional.maybe_list(l, scalars=(<class 'collections.abc.Mapping'>, <class 'str'>))

	Return list of one element if l is a scalar.

	
kombu.utils.functional.dictfilter(d=None, **kw)

	Remove all keys from dict d whose value is None.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Module Importing Utilities - kombu.utils.imports

Import related utilities.

	
kombu.utils.imports.symbol_by_name(name, aliases=None, imp=None, package=None, sep='.', default=None, **kwargs)

	Get symbol by qualified name.

The name should be the full dot-separated path to the class:

modulename.ClassName

Example:

celery.concurrency.processes.TaskPool
 ^- class name

or using ‘:’ to separate module and symbol:

celery.concurrency.processes:TaskPool

If aliases is provided, a dict containing short name/long name
mappings, the name is looked up in the aliases first.

Examples

>>> symbol_by_name('celery.concurrency.processes.TaskPool')
<class 'celery.concurrency.processes.TaskPool'>

>>> symbol_by_name('default', {
... 'default': 'celery.concurrency.processes.TaskPool'})
<class 'celery.concurrency.processes.TaskPool'>

Does not try to look up non-string names.
>>> from celery.concurrency.processes import TaskPool
>>> symbol_by_name(TaskPool) is TaskPool
True

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

JSON Utilities - kombu.utils.json

JSON Serialization Utilities.

	
class kombu.utils.json.DjangoPromise

	Dummy object.

	
class kombu.utils.json.JSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Kombu custom json encoder.

	
default(o, dates=(<class 'datetime.datetime'>, <class 'datetime.date'>), times=(<class 'datetime.time'>,), textual=(<class 'decimal.Decimal'>, <class 'uuid.UUID'>, <class 'kombu.utils.json.DjangoPromise'>), isinstance=<built-in function isinstance>, datetime=<class 'datetime.datetime'>, text_t=<class 'str'>)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
kombu.utils.json.dumps(s, _dumps=<function dumps>, cls=None, default_kwargs=None, **kwargs)

	Serialize object to json string.

	
kombu.utils.json.loads(s, _loads=<function loads>, decode_bytes=True)

	Deserialize json from string.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Rate limiting - kombu.utils.limits

Token bucket implementation for rate limiting.

	
class kombu.utils.limits.TokenBucket(fill_rate, capacity=1)

	Token Bucket Algorithm.

See also

https://en.wikipedia.org/wiki/Token_Bucket

Most of this code was stolen from an entry in the ASPN Python Cookbook:
https://code.activestate.com/recipes/511490/

Warning

Thread Safety: This implementation is not thread safe.
Access to a TokenBucket instance should occur within the critical
section of any multithreaded code.

	
add(item)

	

	
can_consume(tokens=1)

	Check if one or more tokens can be consumed.

	Returns

	
	true if the number of tokens can be consumed

	from the bucket. If they can be consumed, a call will also
consume the requested number of tokens from the bucket.
Calls will only consume tokens (the number requested)
or zero tokens – it will never consume a partial number
of tokens.

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
capacity = 1

	Maximum number of tokens in the bucket.

	
clear_pending()

	

	
expected_time(tokens=1)

	Return estimated time of token availability.

	Returns

	the time in seconds.

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

	
fill_rate = None

	The rate in tokens/second that the bucket will be refilled.

	
pop()

	

	
timestamp = None

	Timestamp of the last time a token was taken out of the bucket.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Object/Property Utilities - kombu.utils.objects

Object Utilities.

	
class kombu.utils.objects.cached_property(fget=None, fset=None, fdel=None, doc=None)

	Cached property descriptor.

Caches the return value of the get method on first call.

Examples

@cached_property
def connection(self):
 return Connection()

@connection.setter # Prepares stored value
def connection(self, value):
 if value is None:
 raise TypeError('Connection must be a connection')
 return value

@connection.deleter
def connection(self, value):
 # Additional action to do at del(self.attr)
 if value is not None:
 print('Connection {0!r} deleted'.format(value)

	
deleter(fdel)

	

	
setter(fset)

	

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Consumer Scheduling - kombu.utils.scheduling

Scheduling Utilities.

	
class kombu.utils.scheduling.FairCycle(fun, resources, predicate=<class 'Exception'>)

	Cycle between resources.

Consume from a set of resources, where each resource gets
an equal chance to be consumed from.

	Parameters

	
	fun (Callable) – Callback to call.

	resources (Sequence[Any]) – List of resources.

	predicate (type [https://docs.python.org/dev/library/functions.html#type]) – Exception predicate.

	
close()

	Close cycle.

	
get(callback, **kwargs)

	Get from next resource.

	
class kombu.utils.scheduling.priority_cycle(it=None)

	Cycle that repeats items in order.

	
rotate(last_used)

	Unused in this implementation.

	
class kombu.utils.scheduling.round_robin_cycle(it=None)

	Iterator that cycles between items in round-robin.

	
consume(n)

	Consume n items.

	
rotate(last_used)

	Move most recently used item to end of list.

	
update(it)

	Update items from iterable.

	
class kombu.utils.scheduling.sorted_cycle(it=None)

	Cycle in sorted order.

	
consume(n)

	Consume n items.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Text utilitites - kombu.utils.text

Text Utilities.

	
kombu.utils.text.escape_regex(p, white='')

	Escape string for use within a regular expression.

	
kombu.utils.text.fmatch_best(needle, haystack, min_ratio=0.6)

	Fuzzy match - Find best match (scalar).

	
kombu.utils.text.fmatch_iter(needle, haystack, min_ratio=0.6)

	Fuzzy match: iteratively.

	Yields

	Tuple – of ratio and key.

	
kombu.utils.text.version_string_as_tuple(s)

	Convert version string to version info tuple.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Time Utilities - kombu.utils.time

Time Utilities.

	
kombu.utils.time.maybe_s_to_ms(v)

	Convert seconds to milliseconds, but return None for None.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

URL Utilities - kombu.utils.url

URL Utilities.

	
kombu.utils.url.as_url(scheme, host=None, port=None, user=None, password=None, path=None, query=None, sanitize=False, mask='**')

	Generate URL from component parts.

	
kombu.utils.url.maybe_sanitize_url(url, mask='**')

	Sanitize url, or do nothing if url undefined.

	
kombu.utils.url.parse_url(url)

	Parse URL into mapping of components.

	
kombu.utils.url.safequote(string, *, safe='', encoding=None, errors=None)

	quote(‘abc def’) -> ‘abc%20def’

Each part of a URL, e.g. the path info, the query, etc., has a
different set of reserved characters that must be quoted.

RFC 3986 Uniform Resource Identifiers (URI): Generic Syntax lists
the following reserved characters.

	reserved = “;” | “/” | “?” | “:” | “@” | “&” | “=” | “+” |

	“$” | “,” | “~”

Each of these characters is reserved in some component of a URL,
but not necessarily in all of them.

Python 3.7 updates from using RFC 2396 to RFC 3986 to quote URL strings.
Now, “~” is included in the set of reserved characters.

By default, the quote function is intended for quoting the path
section of a URL. Thus, it will not encode ‘/’. This character
is reserved, but in typical usage the quote function is being
called on a path where the existing slash characters are used as
reserved characters.

string and safe may be either str or bytes objects. encoding and errors
must not be specified if string is a bytes object.

The optional encoding and errors parameters specify how to deal with
non-ASCII characters, as accepted by the str.encode method.
By default, encoding=’utf-8’ (characters are encoded with UTF-8), and
errors=’strict’ (unsupported characters raise a UnicodeEncodeError).

	
kombu.utils.url.sanitize_url(url, mask='**')

	Return copy of URL with password removed.

	
kombu.utils.url.url_to_parts(url)

	Parse URL into urlparts tuple of components.

	
class kombu.utils.url.urlparts(scheme, hostname, port, username, password, path, query)

	
	
hostname

	Alias for field number 1

	
password

	Alias for field number 4

	
path

	Alias for field number 5

	
port

	Alias for field number 2

	
query

	Alias for field number 6

	
scheme

	Alias for field number 0

	
username

	Alias for field number 3

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

UUID Utilities - kombu.utils.uuid

UUID utilities.

	
kombu.utils.uuid.uuid(_uuid=<function uuid4>)

	Generate unique id in UUID4 format.

See also

For now this is provided by uuid.uuid4() [https://docs.python.org/dev/library/uuid.html#uuid.uuid4].

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Python 2 to Python 3 utilities - kombu.five

Python 2/3 compatibility.

Compatibility implementations of features
only available in newer Python versions.

	
class kombu.five.Counter(**kwds)

	Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.

>>> c = Counter('abcdeabcdabcaba') # count elements from a string

>>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts
15

>>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b'
0

>>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9

>>> c.clear() # empty the counter
>>> c
Counter()

Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared:

>>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]

	
copy()

	Return a shallow copy.

	
elements()

	Iterator over elements repeating each as many times as its count.

>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']

Knuth’s example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
… product *= factor # and multiply them
>>> product
1836

Note, if an element’s count has been set to zero or is a negative
number, elements() will ignore it.

	
classmethod fromkeys(iterable, v=None)

	Create a new dictionary with keys from iterable and values set to value.

	
most_common(n=None)

	List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts.

>>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)]

	
subtract(**kwds)

	Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts.

Source can be an iterable, a dictionary, or another Counter instance.

>>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
0
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1

	
update(**kwds)

	Like dict.update() but add counts instead of replacing them.

Source can be an iterable, a dictionary, or another Counter instance.

>>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4

	
kombu.five.reload(module)

	Reload the module and return it.

The module must have been successfully imported before.

	
class kombu.five.UserList(initlist=None)

	A more or less complete user-defined wrapper around list objects.

	
append(item)

	S.append(value) – append value to the end of the sequence

	
clear() → None -- remove all items from S

	

	
copy()

	

	
count(value) → integer -- return number of occurrences of value

	

	
extend(other)

	S.extend(iterable) – extend sequence by appending elements from the iterable

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
insert(i, item)

	S.insert(index, value) – insert value before index

	
pop([index]) → item -- remove and return item at index (default last).

	Raise IndexError if list is empty or index is out of range.

	
remove(item)

	S.remove(value) – remove first occurrence of value.
Raise ValueError if the value is not present.

	
reverse()

	S.reverse() – reverse IN PLACE

	
sort(*args, **kwds)

	

	
class kombu.five.UserDict(**kwargs)

	
	
copy()

	

	
classmethod fromkeys(iterable, value=None)

	

	
class kombu.five.Callable

	

	
class kombu.five.Iterable

	

	
class kombu.five.Mapping

	
	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
values() → an object providing a view on D's values

	

	
class kombu.five.Queue(maxsize=0)

	Create a queue object with a given maximum size.

If maxsize is <= 0, the queue size is infinite.

	
empty()

	Return True if the queue is empty, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used.

To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.

	
full()

	Return True if the queue is full, False otherwise (not reliable!).

This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.

	
get(block=True, timeout=None)

	Remove and return an item from the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until an item is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Empty exception if no item was available within that time.
Otherwise (‘block’ is false), return an item if one is immediately
available, else raise the Empty exception (‘timeout’ is ignored
in that case).

	
get_nowait()

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
join()

	Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.

	
put(item, block=True, timeout=None)

	Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default),
block if necessary until a free slot is available. If ‘timeout’ is
a non-negative number, it blocks at most ‘timeout’ seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (‘block’ is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception (‘timeout’
is ignored in that case).

	
put_nowait(item)

	Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.

	
qsize()

	Return the approximate size of the queue (not reliable!).

	
task_done()

	Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.

If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
exception kombu.five.Empty

	Exception raised by Queue.get(block=0)/get_nowait().

	
exception kombu.five.Full

	Exception raised by Queue.put(block=0)/put_nowait().

	
class kombu.five.LifoQueue(maxsize=0)

	Variant of Queue that retrieves most recently added entries first.

	
class kombu.five.array(typecode[, initializer]) → array

	Return a new array whose items are restricted by typecode, and
initialized from the optional initializer value, which must be a list,
string or iterable over elements of the appropriate type.

Arrays represent basic values and behave very much like lists, except
the type of objects stored in them is constrained. The type is specified
at object creation time by using a type code, which is a single character.
The following type codes are defined:

Type code C Type Minimum size in bytes
‘b’ signed integer 1
‘B’ unsigned integer 1
‘u’ Unicode character 2 (see note)
‘h’ signed integer 2
‘H’ unsigned integer 2
‘i’ signed integer 2
‘I’ unsigned integer 2
‘l’ signed integer 4
‘L’ unsigned integer 4
‘q’ signed integer 8 (see note)
‘Q’ unsigned integer 8 (see note)
‘f’ floating point 4
‘d’ floating point 8

NOTE: The ‘u’ typecode corresponds to Python’s unicode character. On
narrow builds this is 2-bytes on wide builds this is 4-bytes.

NOTE: The ‘q’ and ‘Q’ type codes are only available if the platform
C compiler used to build Python supports ‘long long’, or, on Windows,
‘__int64’.

Methods:

append() – append a new item to the end of the array
buffer_info() – return information giving the current memory info
byteswap() – byteswap all the items of the array
count() – return number of occurrences of an object
extend() – extend array by appending multiple elements from an iterable
fromfile() – read items from a file object
fromlist() – append items from the list
frombytes() – append items from the string
index() – return index of first occurrence of an object
insert() – insert a new item into the array at a provided position
pop() – remove and return item (default last)
remove() – remove first occurrence of an object
reverse() – reverse the order of the items in the array
tofile() – write all items to a file object
tolist() – return the array converted to an ordinary list
tobytes() – return the array converted to a string

Attributes:

typecode – the typecode character used to create the array
itemsize – the length in bytes of one array item

	
append()

	Append new value v to the end of the array.

	
buffer_info()

	Return a tuple (address, length) giving the current memory address and the length in items of the buffer used to hold array’s contents.

The length should be multiplied by the itemsize attribute to calculate
the buffer length in bytes.

	
byteswap()

	Byteswap all items of the array.

If the items in the array are not 1, 2, 4, or 8 bytes in size, RuntimeError is
raised.

	
count()

	Return number of occurrences of v in the array.

	
extend()

	Append items to the end of the array.

	
frombytes()

	Appends items from the string, interpreting it as an array of machine values, as if it had been read from a file using the fromfile() method).

	
fromfile()

	Read n objects from the file object f and append them to the end of the array.

	
fromlist()

	Append items to array from list.

	
fromstring()

	Appends items from the string, interpreting it as an array of machine values, as if it had been read from a file using the fromfile() method).

This method is deprecated. Use frombytes instead.

	
fromunicode()

	Extends this array with data from the unicode string ustr.

The array must be a unicode type array; otherwise a ValueError is raised.
Use array.frombytes(ustr.encode(…)) to append Unicode data to an array of
some other type.

	
index()

	Return index of first occurrence of v in the array.

	
insert()

	Insert a new item v into the array before position i.

	
itemsize

	the size, in bytes, of one array item

	
pop()

	Return the i-th element and delete it from the array.

i defaults to -1.

	
remove()

	Remove the first occurrence of v in the array.

	
reverse()

	Reverse the order of the items in the array.

	
tobytes()

	Convert the array to an array of machine values and return the bytes representation.

	
tofile()

	Write all items (as machine values) to the file object f.

	
tolist()

	Convert array to an ordinary list with the same items.

	
tostring()

	Convert the array to an array of machine values and return the bytes representation.

This method is deprecated. Use tobytes instead.

	
tounicode()

	Extends this array with data from the unicode string ustr.

Convert the array to a unicode string. The array must be a unicode type array;
otherwise a ValueError is raised. Use array.tobytes().decode() to obtain a
unicode string from an array of some other type.

	
typecode

	the typecode character used to create the array

	
class kombu.five.zip_longest

	zip_longest(iter1 [,iter2 […]], [fillvalue=None]) –> zip_longest object

Return a zip_longest object whose .__next__() method returns a tuple where
the i-th element comes from the i-th iterable argument. The .__next__()
method continues until the longest iterable in the argument sequence
is exhausted and then it raises StopIteration. When the shorter iterables
are exhausted, the fillvalue is substituted in their place. The fillvalue
defaults to None or can be specified by a keyword argument.

	
class kombu.five.map

	map(func, *iterables) –> map object

Make an iterator that computes the function using arguments from
each of the iterables. Stops when the shortest iterable is exhausted.

	
class kombu.five.zip

	zip(iter1 [,iter2 […]]) –> zip object

Return a zip object whose .__next__() method returns a tuple where
the i-th element comes from the i-th iterable argument. The .__next__()
method continues until the shortest iterable in the argument sequence
is exhausted and then it raises StopIteration.

	
kombu.five.string

	alias of builtins.str

	
kombu.five.string_t

	alias of builtins.str

	
kombu.five.bytes_t

	alias of builtins.bytes

	
kombu.five.bytes_if_py2(s)

	Convert str to bytes if running under Python 2.

	
kombu.five.long_t

	alias of builtins.int

	
kombu.five.text_t

	alias of builtins.str

	
kombu.five.module_name_t

	alias of builtins.str

	
class kombu.five.range(stop) → range object

	range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, …, j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).

	
count(value) → integer -- return number of occurrences of value

	

	
index(value[, start[, stop]]) → integer -- return index of value.

	Raise ValueError if the value is not present.

	
start

	

	
step

	

	
stop

	

	
kombu.five.items(d)

	Get dict items iterator.

	
kombu.five.keys(d)

	Get dict keys iterator.

	
kombu.five.values(d)

	Get dict values iterator.

	
kombu.five.nextfun(it)

	Get iterator next method.

	
kombu.five.reraise(tp, value, tb=None)

	Reraise exception.

	
class kombu.five.WhateverIO(v=None, *a, **kw)

	StringIO that takes bytes or str.

	
write(data)

	Write string to file.

Returns the number of characters written, which is always equal to
the length of the string.

	
kombu.five.with_metaclass(Type, skip_attrs=None)

	Class decorator to set metaclass.

Works with both Python 2 and Python 3 and it does not add
an extra class in the lookup order like six.with_metaclass does
(that is – it copies the original class instead of using inheritance).

	
class kombu.five.StringIO

	Text I/O implementation using an in-memory buffer.

The initial_value argument sets the value of object. The newline
argument is like the one of TextIOWrapper’s constructor.

	
close()

	Close the IO object.

Attempting any further operation after the object is closed
will raise a ValueError.

This method has no effect if the file is already closed.

	
closed

	

	
getvalue()

	Retrieve the entire contents of the object.

	
line_buffering

	

	
newlines

	Line endings translated so far.

Only line endings translated during reading are considered.

Subclasses should override.

	
read()

	Read at most size characters, returned as a string.

If the argument is negative or omitted, read until EOF
is reached. Return an empty string at EOF.

	
readable()

	Returns True if the IO object can be read.

	
readline()

	Read until newline or EOF.

Returns an empty string if EOF is hit immediately.

	
seek()

	Change stream position.

	Seek to character offset pos relative to position indicated by whence:

	0 Start of stream (the default). pos should be >= 0;
1 Current position - pos must be 0;
2 End of stream - pos must be 0.

Returns the new absolute position.

	
seekable()

	Returns True if the IO object can be seeked.

	
tell()

	Tell the current file position.

	
truncate()

	Truncate size to pos.

The pos argument defaults to the current file position, as
returned by tell(). The current file position is unchanged.
Returns the new absolute position.

	
writable()

	Returns True if the IO object can be written.

	
write()

	Write string to file.

Returns the number of characters written, which is always equal to
the length of the string.

	
kombu.five.getfullargspec(func)

	Get the names and default values of a callable object’s parameters.

A tuple of seven things is returned:
(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations).
‘args’ is a list of the parameter names.
‘varargs’ and ‘varkw’ are the names of the * and ** parameters or None.
‘defaults’ is an n-tuple of the default values of the last n parameters.
‘kwonlyargs’ is a list of keyword-only parameter names.
‘kwonlydefaults’ is a dictionary mapping names from kwonlyargs to defaults.
‘annotations’ is a dictionary mapping parameter names to annotations.

	Notable differences from inspect.signature():

	
	the “self” parameter is always reported, even for bound methods

	wrapper chains defined by __wrapped__ not unwrapped automatically

	
kombu.five.format_d(i)

	Format number.

	
kombu.five.monotonic() → float

	Monotonic clock, cannot go backward.

	
class kombu.five.buffer_t

	Python 3 does not have a buffer type.

	
kombu.five.python_2_unicode_compatible(cls)

	Class decorator to ensure class is compatible with Python 2.

 This document is for Kombu's development version, which can be
 significantly different from previous releases. Get the stable docs here:

 4.5.

Change history

4.6.1

	release-date

	2019-06-06 10:30 A.M UTC+6:00

	release-by

	Asif Saif Uddin

	Fix some newly introduced bug in kombu 4.6

4.6.0

	release-date

	2019-05-30 15:30 P.M UTC+6:00

	release-by

	Asif Saif Uddin

	

4.5.0

	release-date

	2019-03-3 18:30 P.M UTC+3:00

	release-by

	Omer Katz

	The Redis transport now supports a custom separator for keys.

Previously when storing a key in Redis which represents a queue
we used the hardcored value \x06\x16 separator to store
different attributes of the queue in the queue’s name.

The separator is now configurable using the sep
transport option:

with Connection('redis://', transport_options={
 'sep': ':',
 }):
 # ...
 pass

Contributed by Joris Beckers

	When the SQS server returns a timeout we ignore it and keep trying
instead of raising an error.

This will prevent Celery from raising an error and hanging.

Contributed by Erwin Rossen

	Properly declare async support for the Qpid transport.

If you are using this transport we strongly urge you to upgrade.

Contributed by Rohan McGovern

	Revert celery/kombu#906 [https://github.com/celery/kombu/pull/906] and
introduce unique broadcast queue names as an optional keyword argument.

If you want each broadcast queue to have a unique name specify unique=True:

>>> from kombu.common import Broadcast
>>> q = Broadcast(queue='foo', unique=True)
>>> q.name
'foo.7ee1ac20-cda3-4966-aaf8-e7a3bb548688'
>>> q = Broadcast(queue='foo')
>>> q.name
'foo'

	Codebase improvements and fixes by:

	Omer Katz

4.4.0

	release-date

	2019-03-3 9:00 P.M UTC+2:00

	release-by

	Omer Katz

	Restore bz2 import checks in compression module.

The checks were removed in celery/kombu#938 [https://github.com/celery/kombu/pull/938] due to assumption that it only affected Jython.
However, bz2 support can be missing in Pythons built without bz2 support.

Contributed by Patrick Woods

	Fix regression that occurred in 4.3.0
when parsing Redis Sentinel master URI containing password.

Contributed by Peter Lithammer

	Handle the case when only one Redis Sentinel node is provided.

Contributed by Peter Lithammer

	Support SSL URL parameters correctly for rediss://` URIs.

Contributed by Paul Bailey

	Revert celery/kombu#954 [https://github.com/celery/kombu/pull/954].
Instead bump the required redis-py dependency to 3.2.0
to include this fix andymccurdy/redis-py@4e1e748 [https://github.com/andymccurdy/redis-py/commit/4e1e74809235edc19e03edb79c97c80a3e4e9eca].

Contributed by Peter Lithammer

	Added support for broadcasting using a regular expression pattern
or a glob pattern to multiple Pidboxes.

Contributed by Jason Held

4.3.0

	release-date

	2019-01-14 7:00 P.M UTC+2:00

	release-by

	Omer Katz

	Added Python 3.7 support.

Contributed by Omer Katz, Mads Jensen and Asif Saif Uddin

	Avoid caching queues which are declared with a TTL.

Queues that are declared with a TTL are now also be excluded from the
in-memory cache in case they expire between publishes on the same channel.

Contributed by Matt Yule-Bennett

	Added an index to the Message table for the SQLAlchemy transport.

The index allows to effectively sorting the table by the message’s timestamp.

Note

We do not provide migrations for this model yet.
You will need to add the index manually if you are already
using the SQLAlchemy transport.

The syntax may vary between databases.
Please refer to your database’s documentation for instructions.

Contributed by Mikhail Shcherbinin

	Added a timeout that limits the amount of time we retry
to reconnect to a transport.

Contributed by :github_user:`tothegump`

	:class:celery.asynchronous.hub.Hub is now reentrant.

This allows calling celery.bin.celery.main() to revive a worker in
the same process after rescuing from shutdown (:class:SystemExit).

Contributed by Alan Justino da Silva

	Queues now accept string exchange names as arguments as documented.

Tests were added to avoid further regressions.

Contributed by Antonio Gutierrez

	Specifying names for broadcast queues now work as expected.

Previously, named broadcast queues did not create multiple queues per worker.
They incorrectly declared the named queue which resulted in one queue per
fanout exchange, thus missing the entire point of a fanout exchange.
The behavior is now matched to unnamed broadcast queues.

Contributed by Kuan Hsuan-Tso

	When initializing the Redis transport in conjunction with gevent
restore all unacknowledged messages to queue.

Contributed by Gal Cohen

	Allow :class:kombu.simple.SimpleQueue to pass queue_arguments to Queue object.

This allows :class:kombu.simple.SimpleQueue to connect to RabbitMQ queues with
custom arguments like ‘x-queue-mode’=’lazy’.

Contributed by C Blue Neeh

	Add support for ‘rediss’ scheme for secure Redis connections.

The rediss scheme defaults to the least secure form, as
there is no suitable default location for ca_certs. The recommendation
would still be to follow the documentation and specify broker_use_ssl if
coming from celery.

Contributed by Daniel Blair

	Added the Azure Storage Queues transport.

The transport is implemented on top of Azure Storage
Queues. This offers a simple but scalable and low-cost PaaS
transport for Celery users in Azure. The transport is intended to be
used in conjunction with the Azure Block Blob Storage backend.

Contributed by Clemens Wolff, :github_user:`@ankurokok`,
Denis Kisselev, Evandro de Paula, Martin Peck
and :github_user:`@michaelperel`

	Added the Azure Service Bus transport.

The transport is implemented on top of Azure Service Bus and
offers PaaS support for more demanding Celery workloads in Azure.
The transport is intended to be used in conjunction with the Azure
CosmosDB backend.

Contributed by Clemens Wolff, :github_user:`@ankurokok`,
Denis Kisselev, Evandro de Paula, Martin Peck
and :github_user:`@michaelperel`

	Drop remaining mentions of Jython support completely.

Contributed by Asif Saif Uddin and Mads Jensen

	When publishing messages to the Pidbox, retry if an error occurs.

Contributed by Asif Saif Uddin

	Fix infinite loop in :method:kombu.asynchronous.hub.Hub.create_loop.

Previous attempt to fix the problem (PR kombu/760) did not consider
an edge case. It is now fixed.

Contributed by Vsevolod Strukchinsky

	Worker shutdown no longer duplicates messages when using the SQS broker.

Contributed by Mintu Kumar Sah

	When using the SQS broker, prefer boto’s default region before our hardcoded default.

Contributed by Victor Villas

	Fixed closing of shared redis sockets which previously caused Celery to hang.

Contributed by Alexey Popravka

	the Pyro [http://pythonhosted.org/Pyro] transport (kombu.transport.pyro) now works with
recent Pyro versions. Also added a Pyro Kombu Broker that this transport
needs for its queues.

Contributed by Irmen de Jong

	Handle non-base64-encoded SQS messages.

Fix contributed by Tim Li, Asif Saif Uddin and Omer Katz.

	Move the handling of Sentinel failures to the redis library itself.

Previously, Redis Sentinel worked only if the first node’s sentinel
service in the URI was up. A server outage would have caused downtime.

Contributed by Brian Price

	When using Celery and the pickle serializer with binary data as part of the
payload, UnicodeDecodeError would be raised as the content was not utf-8.
We now replace on errors.

Contributed by Jian Dai

	Allow setting :method:boto3.sqs.create_queue Attributes via transport_options.

Contributed by Hunter Fernandes

	Fixed infinite loop when entity.channel is replaced by revive() on connection
drop.

Contributed by Tzach Yarimi

	Added optional support for Brotli compression.

Contributed by Omer Katz

	When using the SQS broker, FIFO queues with names that ended with the ‘f’ letter
were incorrectly parsed. This is now fixed.

Contributed by Alex Vishnya and Ilya Konstantinov

	Added optional support for LZMA compression.

Contributed by Omer Katz

	Added optional support for ZStandard compression.

Contributed by Omer Katz

	Require py-amqp 2.4.0 as the minimum version.

Contributed by Asif Saif Uddin

	The value of DISABLE_TRACEBACKS environment variable is now respected on debug, info
and warning logger level.

Contributed by Ludovic Rivallain

	As documented in kombu/#741 and eventlet/eventlet#415
there is a mismatch between the monkey-patched eventlet queue
and the interface Kombu is expecting.
This causes Celery to crash when the broker_pool_limit
configuration option is set
eventlet/eventlet#415 suggests that the mutex can be a noop.
This is now the case.

Contributed by Josh Morrow

	Codebase improvements and fixes by:

	Omer Katz

	Mads Jensen

	Asif Saif Uddin

	Lars Rinn

	Documentation improvements by:

	Jon Dufresne

	Fay Cheng

	Asif Saif Uddin

	Kyle Verhoog

	Noah Hall

	:github_user:`brabiega`

4.2.2-post1

	release-date

	2019-01-01 04:00 P.M IST

	release-by

	Omer Katz

Note

The previous release contained code from master.
It is now deleted from PyPi.
Please use this release instead.

	No changes since previous release.

4.2.2

	release-date

	2018-12-06 04:30 P.M IST

	release-by

	Omer Katz

	Support both Redis client version 2.x and version 3.x.

Contributed by Ash Berlin-Taylor and Jeppe Fihl-Pearson

4.2.1

	release-date

	2018-05-21 09:00 A.M IST

	release-by

	Omer Katz

Note

The 4.2.0 release contained remains of the async module by accident.
This is now fixed.

	Handle librabbitmq fileno raising a ValueError when socket is not connected.

Contributed by Bryan Shelton

4.2.0

	release-date

	2018-05-21 09:00 A.M IST

	release-by

	Omer Katz

	Now passing max_retries, interval_start, interval_step,
interval_max parameters from broker transport_options to
ensure_connection() when returning
default_connection() (Issue #765).

Contributed by Anthony Lukach.

	Qpid: messages are now durable by default

Contributed by David Davis

	Kombu now requires version 2.10.4 or greater of the redis library,
in line with Celery

Contributed by Colin Jeanne

	Fixed ImportError in some environments with outdated simplejson

Contributed by Aaron Morris

	MongoDB: fixed failure on MongoDB versions with an “-rc” tag

Contributed by dust8

	Ensure periodic polling frequency does not exceed timeout in
virtual transport

Contributed by Arcadiy Ivanov

	Fixed string handling when using python-future module

Contributed by **John Koehl”

	Replaced “async” with “asynchronous” in preparation for Python 3.7

Contributed by Thomas Achtemichuk

	Allow removing pool size limit when in use

Contributed by Alex Hill

	Codebase improvements and fixes by:

	j2gg0s

	Jon Dufresne

	Jonas Lergell

	Mads Jensen

	Nicolas Delaby

	Omer Katz

	Documentation improvements by:

	Felix Yan

	Harry Moreno

	Mads Jensen

	Omer Katz

	Radha Krishna. S.

	Wojciech Matyśkiewicz

4.1.0

	release-date

	2017-07-17 04:45 P.M MST

	release-by

	Anthony Lukach

	SQS: Added support for long-polling on all supported queries. Fixed bug
causing error on parsing responses with no retrieved messages from SQS.

Contributed by Anthony Lukach.

	Async hub: Fixed potential infinite loop while performing todo tasks
(Issue celery/celery#3712).

	Qpid: Fixed bug where messages could have duplicate delivery_tag
(Issue #563).

Contributed by bmbouter.

	MongoDB: Fixed problem with using readPreference option at pymongo 3.x.

Contributed by Mikhail Elovskikh.

	Re-added support for :pypi:SQLAlchemy

Contributed by Amin Ghadersohi.

	SQS: Fixed bug where hostname would default to localhost if not specified
in settings.

Contributed by Anthony Lukach.

	Redis: Added support for reading password from transport URL (Issue #677).

Contributed by George Psarakis.

	RabbitMQ: Ensured safer encoding of queue arguments.

Contributed by Robert Kopaczewski.

	Added fallback to :func:uuid.uuid5 in :func:generate_oid if
:func:uuid.uuid3 fails.

Contributed by Bill Nottingham.

	Fixed race condition and innacurrate timeouts for
:class:kombu.simple.SimpleBase (Issue #720).

Contributed by c-nichols.

	Zookeeper: Fixed last chroot character trimming

Contributed by Dima Kurguzov.

	RabbitMQ: Fixed bug causing an exception when attempting to close an
already-closed connection (Issue #690).

Contributed by eavictor.

	Removed deprecated use of StopIteration in generators and invalid regex
escape sequence.

Contributed by Jon Dufresne.

	Added Python 3.6 to CI testing.

Contributed by Jon Dufresne.

	SQS: Allowed endpoint URL to be specified in the boto3 connection.

Contributed by georgepsarakis.

	SQS: Added support for Python 3.4.

Contributed by Anthony Lukach.

	SQS: kombu[sqs] now depends on boto3 [https://pypi.python.org/pypi/boto3/] (no longer using
boto) [https://pypi.python.org/pypi/boto)/].

	Adds support for Python 3.4+

	Adds support for FIFO queues (Issue #678) and (Issue celery/celery#3690)

	Avoids issues around a broken endpoints file (Issue celery/celery#3672)

Contributed by Mischa Spiegelmock and Jerry Seutter.

	Zookeeper: Added support for delaying task with Python 3.

Contributed by Dima Kurguzov.

	SQS: Fixed bug where kombu.transport.SQS.drain_events() did not support
callback argument (Issue #694).

Contributed by Michael Montgomery.

	Fixed bug around modifying dictionary size while iterating over it
(Issue #675).

Contributed by Felix Yan.

	etcd: Added handling for EtcdException exception rather than
EtcdError.

Contributed by Stephen Milner.

	Documentation improvements by:

	Mads Jensen

	Matias Insaurralde

	Omer Katz

	Dmitry Dygalo

	Christopher Hoskin

4.0.2

	release-date

	2016-12-15 03:31 P.M PST

	release-by

	Ask Solem

	Now depends on amqp 2.1.4

This new version takes advantage of TCP Keepalive settings on Linux,
making it better at detecting closed connections, also in failover
conditions.

	Redis: Priority was reversed so, e.g. priority 0 became priority 9.

4.0.1

	release-date

	2016-12-07 06:00 P.M PST

	release-by

	Ask Solem

	Now depends on amqp 2.1.3

This new version takes advantage of the new TCP_USER_TIMEOUT socket option
on Linux.

	Producer: Fixed performance degradation when default exchange specified
(Issue #651).

	QPid: Switch to using getattr in qpid.Transport.__del__ (Issue #658)

Contributed by Patrick Creech.

	QPid: Now uses monotonic time for timeouts.

	MongoDB: Fixed compatibility with Python 3 (Issue #661).

	Consumer: __exit__ now skips cancelling consumer if connection-related
error raised (Issue #670).

	MongoDB: Removes use of natural sort (Issue #638).

Contributed by Anton Chaporgin.

	Fixed wrong keyword argument channel error (Issue #652).

Contributed by Toomore Chiang.

	Safe argument to urllib.quote must be bytes on Python 2.x (Issue #645).

	Documentation improvements by:

	Carlos Edo

	Cemre Mengu

4.0

	release-date

	2016-10-28 16:45 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 2.0.

The new py-amqp version have been refactored for better performance,
using modern Python socket conventions, and API consistency.

	No longer depends on anyjson.

Kombu will now only choose between simplejson [https://pypi.python.org/pypi/simplejson/] and the built-in
json [https://docs.python.org/dev/library/json.html#module-json].

Using the latest version of simplejson is recommended:

$ pip install -U simplejson

	Removed transports that are no longer supported in this version:

	Django ORM transport

	SQLAlchemy ORM transport

	Beanstalk transport

	ZeroMQ transport

	amqplib transport (use pyamqp).

	API Changes

	Signature of kombu.Message now takes body as first argment.

It used to be Message(channel, body=body, **kw), but now it’s
Message(body, channel=channel, **kw).

This is unlikey to affect you, as the Kombu API does not have
users instantiate messages manually.

	New SQS transport

Donated by NextDoor, with additional contributions from mdk.

Note

kombu[sqs] now depends on pycurl [https://pypi.python.org/pypi/pycurl/].

	New Consul transport.

Contributed by Wido den Hollander.

	New etcd transport.

Contributed by Stephen Milner.

	New Qpid transport.

It was introduced as an experimental transport in Kombu 3.0, but is now
mature enough to be fully supported.

Created and maintained by Brian Bouterse.

	Redis: Priority 0 is now lowest, 9 is highest.
(backward incompatible)

This to match how priorities in AMQP works.

Fix contributed by Alex Koshelev.

	Redis: Support for Sentinel

You can point the connection to a list of sentinel URLs like:

sentinel://0.0.0.0:26379;sentinel://0.0.0.0:26380/...

where each sentinel is separated by a ;. Multiple sentinels are handled
by kombu.Connection constructor, and placed in the alternative
list of servers to connect to in case of connection failure.

Contributed by Sergey Azovskov, and Lorenzo Mancini

	RabbitMQ Queue Extensions

New arguments have been added to kombu.Queue that lets
you directly and conveniently configure the RabbitMQ queue extensions.

	Queue(expires=20.0)

Set queue expiry time in float seconds.

See kombu.Queue.expires.

	Queue(message_ttl=30.0)

Set queue message time-to-live float seconds.

See kombu.Queue.message_ttl.

	Queue(max_length=1000)

Set queue max length (number of messages) as int.

See kombu.Queue.max_length.

	Queue(max_length_bytes=1000)

Set queue max length (message size total in bytes) as int.

See kombu.Queue.max_length_bytes.

	Queue(max_priority=10)

Declare queue to be a priority queue that routes messages
based on the priority field of the message.

See kombu.Queue.max_priority.

	RabbitMQ: Message.ack now supports the multiple argument.

If multiple is set to True, then all messages received before
the message being acked will also be acknowledged.

	amqps:// can now be specified to require SSL (Issue #610).

	Consumer.cancel_by_queue is now constant time.

	Connection.ensure* now raises kombu.exceptions.OperationalError.

Things that can be retried are now reraised as
kombu.exceptions.OperationalError.

	Redis: Fixed SSL support.

Contributed by Robert Kolba.

	New Queue.consumer_arguments can be used for the ability to
set consumer priority via x-priority.

See https://www.rabbitmq.com/consumer-priority.html

Example:

Queue(
 'qname',
 exchange=Exchange('exchange'),
 routing_key='qname',
 consumer_arguments={'x-priority': 3},
)

	Queue/Exchange: no_declare option added (also enabled for
internal amq. exchanges) (Issue #565).

	JSON serializer now calls obj.__json__ for unsupported types.

This means you can now define a __json__ method for custom
types that can be reduced down to a built-in json type.

Example:

class Person:
 first_name = None
 last_name = None
 address = None

 def __json__(self):
 return {
 'first_name': self.first_name,
 'last_name': self.last_name,
 'address': self.address,
 }

	JSON serializer now handles datetimes, Django promise, UUID and Decimal.

	Beanstalk: Priority 0 is now lowest, 9 is highest.
(backward incompatible)

This to match how priorities in AMQP works.

Fix contributed by Alex Koshelev.

	Redis: now supports SSL using the ssl argument to
Connection.

	Redis: Fanout exchanges are no longer visible between vhosts,
and fanout messages can be filtered by patterns.
(backward incompatible)

It was possible to enable this mode previously using the
fanout_prefix, and fanout_patterns
transport options, but now these are enabled by default.

If you want to mix and match producers/consumers running different
versions you need to configure your kombu 3.x clients to also enable
these options:

>>> Connection(transport_options={
 'fanout_prefix': True,
 'fanout_patterns': True,
})

	Pidbox: Mailbox new arguments: TTL and expiry.

Mailbox now supports new arguments for controlling
message TTLs and queue expiry, both for the mailbox
queue and for reply queues.

	queue_expires (float/int seconds).

	queue_ttl (float/int seconds).

	reply_queue_expires (float/int seconds).

	reply_queue_ttl (float/int seconds).

All take seconds in int/float.

Contributed by Alan Justino.

	Exchange.delivery_mode now defaults to None, and the default
is instead set by Producer.publish.

	Consumer now supports a new prefetch_count argument,
which if provided will force the consumer to set an initial prefetch count
just before starting.

	Virtual transports now stores priority as a property, not in
delivery_info, to be compatible with AMQP.

	reply_to argument to Producer.publish can now be
Queue instance.

	Connection: There’s now a new method
Connection.supports_exchange_type(type) that can be used to check if the
current transport supports a specific exchange type.

	SQS: Consumers can now read json messages not sent by Kombu.

Contributed by Juan Carlos Ferrer.

	SQS: Will now log the access key used when authentication fails.

Contributed by Hank John.

	Added new kombu.mixins.ConsumerProducerMixin for consumers that
will also publish messages on a separate connection.

	Messages: Now have a more descriptive repr.

Contributed by Joshua Harlow.

	Async: HTTP client based on curl.

	Async: Now uses poll instead of select where available.

	MongoDB: Now supports priorities

Contributed by Alex Koshelev.

	Virtual transports now supports multiple queue bindings.

Contributed by Federico Ficarelli.

	Virtual transports now supports the anon exchange.

If when publishing a message, the exchange argument is set to ‘’ (empty
string), the routing_key will be regarded as the destination queue.

This will bypass the routing table compeltely, and just deliver the
message to the queue name specified in the routing key.

	Zookeeper: Transport now uses the built-in suport in kazoo to handle
failover when using a list of server names.

Contributed by Joshua Harlow.

	ConsumerMixin.run now passes keyword arguments to .consume.

Deprecations and removals

	The deprecated method Consumer.add_queue_from_dict has been removed.

Use instead:

consumer.add_queue(Queue.from_dict(queue_name, **options))

	The deprecated function kombu.serialization.encode has been removed.

Use kombu.serialization.dumps() instead.

	The deprecated function kombu.serialization.decode has been removed.

Use kombu.serialization.loads() instead.

	Removed module kombu.syn

detect_environment has been moved to kombu.utils.compat

3.0.37

	release-date

	2016-10-06 05:00 P.M PDT

	release-by

	Ask Solem

	Connection: Return value of .info() was no longer JSON serializable,
leading to “itertools.cycle object not JSON serializable”
errors (Issue #635).

3.0.36

	release-date

	2016-09-30 03:06 P.M PDT

	release-by

	Ask Solem

	Connection: Fixed bug when cloning connection with alternate urls.

Fix contributed by Emmanuel Cazenave.

	Redis: Fixed problem with unix socket connections.

https://github.com/celery/celery/issues/2903

Fix contributed by Raphael Michel.

	Redis: Fixed compatibility with older redis-py versions (Issue #576).

	Broadcast now retains queue name when being copied/pickled (Issue #578).

3.0.35

	release-date

	2016-03-22 11:22 P.M PST

	release-by

	Ask Solem

	msgpack: msgpack support now requires msgpack-python > 0.4.7.

	Redis: TimeoutError was no longer handled as a recoverable error.

	Redis: Adds the ability to set more Redis connection options
using Connection(transport_options={...}).

	socket_connect_timeout

	socket_keepalive (requires redis-py > 2.10)

	socket_keepalive_options (requires redis-py > 2.10)

	msgpack: Fixes support for binary/unicode data

3.0.34

	release-date

	2016-03-03 05:30 P.M PST

	release-by

	Ask Solem

	Qpid: Adds async error handling.

Contributed by Brian Bouterse.

	Qpid: Delivery tag is now a UUID4 (Issue #563).

Fix contributed by Brian Bouterse.

	Redis: Connection.as_uri() returned malformed URLs when the
redis+socket scheme was ised (Issue celery/celery#2995).

	msgpack: Use binary encoding instead of utf-8 (Issue #570).

3.0.33

	release-date

	2016-01-08 06:36 P.M PST

	release-by

	Ask Solem

	Now depends on amqp 1.4.9.

	Redis: Fixed problem with auxilliary connections causing the main
consumer connection to be closed (Issue #550).

	Qpid: No longer uses threads to operate, to ensure compatibility with
all environments (Issue #531).

3.0.32

	release-date

	2015-12-16 02:29 P.M PST

	release-by

	Ask Solem

	Redis: Fixed bug introduced in 3.0.31 where the redis transport always
connects to localhost, regardless of host setting.

3.0.31

	release-date

	2015-12-16 12:00 P.M PST

	release-by

	Ask Solem

	Redis: Fixed bug introduced in 3.0.30 where socket was prematurely
disconnected.

	Hub: Removed debug logging message: “Deregistered fd…” (Issue #549).

3.0.30

	release-date

	2015-12-07 12:28 A.M PST

	release-by

	Ask Solem

	Fixes compatiblity with uuid in Python 2.7.11 and 3.5.1.

Fix contributed by Kai Groner.

	Redis transport: Attempt at fixing problem with hanging consumer
after disconnected from server.

	
	Event loop:

	Attempt at fixing issue with 100% CPU when using the Redis transport,

	Database transport: Fixed oracle compatiblity.

An “ORA-00907: missing right parenthesis” error could manifest when using
an Oracle database with the database transport.

Fix contributed by Deepak N.

	Documentation fixes

Contributed by Tommaso Barbugli.

3.0.29

	release-date

	2015-10-26 11:10 A.M PDT

	release-by

	Ask Solem

	Fixed serialization issue for bindings.as_dict() (Issue #453).

Fix contributed by Sergey Tikhonov.

	Json serializer wrongly treated bytes as ascii, not utf-8
(Issue #532).

	MongoDB: Now supports pymongo 3.x.

Contributed by Len Buckens.

	SQS: Tests passing on Python 3.

Fix contributed by Felix Yan

3.0.28

	release-date

	2015-10-12 12:00 PM PDT

	release-by

	Ask Solem

Django transport migrations.

If you’re using Django 1.8 and have already created the
kombu_transport_django tables, you have to run a fake initial migration:

$ python manage.py migrate kombu_transport_django --fake-initial

	No longer compatible with South by default.

To keep using kombu.transport.django with South migrations
you now need to configure a new location for the kombu migrations:

SOUTH_MIGRATION_MODULES = {
 'kombu_transport_django':
 'kombu.transport.django.south_migrations',
}

	Keep old South migrations in kombu.transport.django.south_migrations.

	Now works with Redis < 2.10 again.

3.0.27

	release-date

	2015-10-09 3:10 PM PDT

	release-by

	Ask Solem

	Now depends on amqp 1.4.7.

	Fixed libSystem import error on some macOS 10.11 (El Capitan) installations.

Fix contributed by Eric Wang.

	Now compatible with Django 1.9.

	Django: Adds migrations for the database transport.

	Redis: Now depends on py-redis 2.10.0 or later (Issue #468).

	QPid: Can now connect as localhost (Issue #519).

Fix contributed by Brian Bouterse.

	QPid: Adds support for login_method (Issue #502, Issue #499).

Contributed by Brian Bouterse.

	QPid: Now reads SASL mechanism from broker string (Issue #498).

Fix contributed by Brian Bouterse.

	QPid: Monitor thread now properly terminated on session close (Issue #485).

Fix contributed by Brian Bouterse.

	QPid: Fixed file descriptor leak (Issue #476).

Fix contributed by Jeff Ortel

	Docs: Fixed wrong order for entrypoint arguments (Issue #473).

	ConsumerMixin: Connection error logs now include traceback (Issue #480).

	BaseTransport now raises RecoverableConnectionError when disconnected
(Issue #507).

	Consumer: Adds tag_prefix option to modify how consumer tags are
generated (Issue #509).

3.0.26

	release-date

	2015-04-22 06:00 P.M UTC

	release-by

	Ask Solem

	Fixed compatibility with py-redis versions before 2.10.3 (Issue #470).

3.0.25

	release-date

	2015-04-21 02:00 P.M UTC

	release-by

	Ask Solem

	pyamqp/librabbitmq now uses 5671 as default port when SSL is enabled
(Issue #459).

	Redis: Now supports passwords in redis+socket://:pass@host:port URLs
(Issue #460).

	Producer.publish now defines the expiration property in support
of the RabbitMQ per-message TTL extension [https://www.rabbitmq.com/ttl.html].

Contributed by Anastasis Andronidis.

	Connection transport attribute now set correctly for all transports.

Contributed by Alex Koshelev.

	qpid: Fixed bug where the connectionw as not being closed properly.

Contributed by Brian Bouterse.

	bindings is now JSON serializable (Issue #453).

Contributed by Sergey Tikhonov.

	Fixed typo in error when yaml is not installed (said msgpack).

Contributed by Joshua Harlow.

	Redis: Now properly handles redis.exceptions.TimeoutError
raised by redis [https://redis-py.readthedocs.io/en/latest/index.html#module-redis].

Contributed by markow.

	qpid: Adds additional string to check for when connecting to qpid.

When we connect to qpid, we need to ensure that we skip to the next SASL
mechanism if the current mechanism fails. Otherwise, we will keep retrying the
connection with a non-working mech.

Contributed by Chris Duryee.

	qpid: Handle NotFound exceptions.

Contributed by Brian Bouterse.

	Queue.__repr__ now makes sure return value is not unicode
(Issue #440).

	qpid: Queue.purge incorrectly raised AttributeErrror if the
does not exist (Issue #439).

Contributed by Brian Bouterse.

	Linux: Now ignores permission errors on epoll unregister.

3.0.24

	release-date

	2014-11-17 11:00 P.M UTC

	release-by

	Ask Solem

	The Qpid [http://qpid.apache.org/] broker is supported for Python 2.x
environments. The Qpid transport includes full SSL support within Kombu. See
the kombu.transport.qpid docs for more info.

Contributed by Brian Bouterse and Chris Duryee through support from Red Hat.

	Dependencies: extra[librabbitmq] now requires librabbitmq 1.6.0

	Docstrings for TokenBucket did not match
implementation.

Fix contributed by Jesse Dhillon.

	oid_from() accidentally called uuid.getnode() but
did not use the return value.

Fix contributed by Alexander Todorov.

	Redis: Now ignores errors when cosing the underlying connection.

	Redis: Restoring messages will now use a single connection.

	kombu.five.monotonic: Can now be imported even if ctypes is not
available for some reason (e.g. App Engine)

	Documentation: Improved example to use the declare argument to
Producer (Issue #423).

	Django: Fixed app_label for older Django versions (< 1.7).
(Issue #414).

3.0.23

	release-date

	2014-09-14 10:45 P.M UTC

	release-by

	Ask Solem

	Django: Fixed bug in the Django 1.7 compatibility improvements related
to autocommit handling.

Contributed by Radek Czajka.

	Django: The Django transport models would not be created on syncdb
after app label rename (Issue #406).

3.0.22

	release-date

	2014-09-04 03:00 P.M UTC

	release-by

	Ask Solem

	kombu.async: Min. delay between waiting for timer was always increased to
one second.

	Fixed bug in itermessages where message is received after the with
statement exits the block.

Fixed by Rumyana Neykova

	
	Connection.autoretry: Now works with functions missing wrapped attributes

	(__module__, __name__, __doc__). Fixes #392.

Contributed by johtso.

	Django: Now sets custom app label for kombu.transport.django to work
with recent changes in Django 1.7.

	SimpleQueue removed messages from the wrong end of buffer (Issue #380).

	Tests: Now using unittest.mock if available (Issue #381).

3.0.21

	release-date

	2014-07-07 02:00 P.M UTC

	release-by

	Ask Solem

	Fixed remaining bug in maybe_declare for auto_delete exchanges.

Fix contributed by Roger Hu.

	MongoDB: Creating a channel now properly evaluates a connection (Issue #363).

Fix contributed by Len Buckens.

3.0.20

	release-date

	2014-06-24 02:30 P.M UTC

	release-by

	Ask Solem

	Reverts change in 3.0.17 where maybe_declare caches the declaration
of auto_delete queues and exchanges.

Fix contributed by Roger Hu.

	Redis: Fixed race condition when using gevent and the channel is closed.

Fix contributed by Andrew Rodionoff.

3.0.19

	release-date

	2014-06-09 03:10 P.M UTC

	release-by

	Ask Solem

	The wheel distribution did not support Python 2.6 by failing to list
the extra dependencies required.

	Durable and auto_delete queues/exchanges can be be cached using
maybe_declare.

3.0.18

	release-date

	2014-06-02 06:00 P.M UTC

	release-by

	Ask Solem

	A typo introduced in 3.0.17 caused kombu.async.hub to crash (Issue #360).

3.0.17

	release-date

	2014-06-02 05:00 P.M UTC

	release-by

	Ask Solem

	kombu[librabbitmq] now depends on librabbitmq 1.5.2.

	Async: Event loop now selectively removes file descriptors for the mode
it failed in, and keeps others (e.g read vs write).

Fix contributed by Roger Hu.

	CouchDB: Now works without userid set.

Fix contributed by Latitia M. Haskins.

	SQLAlchemy: Now supports recovery from connection errors.

Contributed by Felix Schwarz.

	Redis: Restore at shutdown now works when ack emulation is disabled.

	kombu.common.eventloop() accidentally swallowed socket errors.

	Adds kombu.utils.url.sanitize_url()

3.0.16

	release-date

	2014-05-06 01:00 P.M UTC

	release-by

	Ask Solem

	kombu[librabbitmq] now depends on librabbitmq 1.5.1.

	Redis: Fixes TypeError problem in unregister (Issue #342).

Fix contributed by Tobias Schottdorf.

	Tests: Some unit tests accidentally required the redis-py library.

Fix contributed by Randy Barlow.

	librabbitmq: Would crash when using an older version of librabbitmq,
now emits warning instead.

3.0.15

	release-date

	2014-04-15 09:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.4.5.

	RabbitMQ 3.3 changes QoS semantics (Issue #339).

See the RabbitMQ release notes here:
http://www.rabbitmq.com/blog/2014/04/02/breaking-things-with-rabbitmq-3-3/

A new connection property has been added that can be used to detect
whether the remote server is using this new QoS behavior:

>>> Connection('amqp://').qos_behavior_matches_spec
False

so if your application depends on the old semantics you can
use this to set the apply_global flag appropriately:

def update_prefetch_count(channel, new_value):
 channel.basic_qos(
 0, new_value,
 not channel.connection.client.qos_behavior_matches_spec,
)

	Users of librabbitmq is encouraged to upgrade to librabbitmq 1.5.0.

The kombu[librabbitmq] extra has been updated to depend on this
version.

	Pools: Now takes transport options into account when comparing connections
(Issue #333).

	MongoDB: Fixes Python 3 compatibility.

	Async: select: Ignore socket errors when attempting to unregister handles
from the loop.

	Pidbox: Can now be configured to use a serializer other than json,
but specifying a serializer argument to Mailbox.

Contributed by Dmitry Malinovsky.

	Message decompression now works with Python 3.

Fix contributed by Adam Gaca.

3.0.14

	release-date

	2014-03-19 07:00 P.M UTC

	release-by

	Ask Solem

	MongoDB: Now endures a connection failover (Issue #123).

Fix contributed by Alex Koshelev.

	MongoDB: Fixed KeyError when a replica set member is removed.

Also fixes celery#971 and celery/#898.

Fix contributed by Alex Koshelev.

	MongoDB: Fixed MongoDB broadcast cursor re-initialization bug.

Fix contributed by Alex Koshelev.

	Async: Fixed bug in lax semaphore implementation where in
some usage patterns the limit was not honored correctly.

Fix contributed by Ionel Cristian Mărieș.

	Redis: Fixed problem with fanout when using Python 3 (Issue #324).

	Redis: Fixed AttributeError from attempting to close a non-existing
connection (Issue #320).

3.0.13

	release-date

	2014-03-03 04:00 P.M UTC

	release-by

	Ask Solem

	Redis: Fixed serious race condition that could lead to data loss.

The delivery tags were accidentally set to be an incremental number
local to the channel, but the delivery tags need to be globally
unique so that a message can not overwrite an older message
in the backup store.

This change is not backwards incompatible and you are encouraged
to update all your system using a previous version as soon as possible.

	Now depends on amqp 1.4.4.

	Pidbox: Now makes sure message encoding errors are handled by default,
so that a custom error handler does not need to be specified.

	Redis: The fanout exchange can now use AMQP patterns to route and filter
messages.

This change is backwards incompatible and must be enabled with
the fanout_patterns transport option:

>>> conn = kombu.Connection('redis://', transport_options={
... 'fanout_patterns': True,
... })

When enabled the exchange will work like an amqp topic exchange
if the binding key is a pattern.

This is planned to be default behavior in the future.

	Redis: Fixed cycle no such attribute error.

3.0.12

	release-date

	2014-02-09 03:50 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.4.3.

	Fixes Python 3.4 logging incompatibility (Issue #311).

	Redis: Now properly handles unknown pub/sub messages.

Fix contributed by Sam Stavinoha.

	amqplib: Fixed bug where more bytes were requested from the socket
than necessary.

Fix contributed by Ionel Cristian Mărieș.

3.0.11

	release-date

	2014-02-03 05:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.4.2.

	Now always trusts messages of type application/data and application/text
or which have an unspecified content type (Issue #306).

	Compression errors are now handled as decode errors and will trigger
the Consumer.on_decode_error callback if specified.

	New kombu.Connection.get_heartbeat_interval() method that can be
used to access the negotiated heartbeat value.

	
	kombu.common.oid_for no longer uses the MAC address of the host, but

	instead uses a process-wide UUID4 as a node id.

This avoids a call to uuid.getnode() at module scope.

	Hub.add: Now normalizes registered fileno.

Contributed by Ionel Cristian Mărieș.

	SQS: Fixed bug where the prefetch count limit was not respected.

3.0.10

	release-date

	2014-01-17 05:40 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.4.1.

	maybe_declare now raises a “recoverable connection error” if
the channel is disconnected instead of a ChannelError so that
the operation can be retried.

	Redis: Consumer.cancel() is now thread safe.

This fixes an issue when using gevent/eventlet and a
message is handled after the consumer is canceled resulting
in a “message for queue without consumers” error.

	Retry operations would not always respect the interval_start
value when calculating the time to sleep for (Issue #303).

Fix contributed by Antoine Legrand.

	Timer: Fixed “unhashable type” error on Python 3.

	Hub: Do not attempt to unregister operations on an already closed
poller instance.

3.0.9

	release-date

	2014-01-13 05:30 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.4.0.

	Redis: Basic cancel for fanout based queues now sends a corresponding
UNSUBSCRIBE command to the server.

This fixes an issue with pidbox where reply messages could be received
after the consumer was canceled, giving the "message to queue without
consumers" error.

	MongoDB: Improved connection string and options handling
(Issue #266 + Issue #120).

Contributed by Alex Koshelev.

	SQS: Limit the number of messages when receiving in batch to 10.

This is a hard limit enforced by Amazon so the sqs transport
must not exceeed this value.

Fix contributed by Eric Reynolds.

	ConsumerMixin: consume now checks heartbeat every time the
socket times out.

Contributed by Dustin J. Mitchell.

	Retry Policy: A max retries of 0 did not retry forever.

Fix contributed by Antoine Legrand.

	Simple: If passing a Queue object the simple utils will now take
default routing key from that queue.

Contributed by Fernando Jorge Mota.

	repr(producer) no longer evaluates the underlying channnel.

	Redis: The map of Redis error classes are now exposed at the module level
using the kombu.transport.redis.get_redis_error_classes() function.

	Async: Hub.close now sets .poller to None.

3.0.8

	release-date

	2013-12-16 05:00 P.M UTC

	release-by

	Ask Solem

	Serializer: loads and dumps now wraps exceptions raised into
DecodeError and
kombu.exceptions.EncodeError respectively.

Contributed by Ionel Cristian Maries

	Redis: Would attempt to read from the wrong connection if a select/epoll/kqueue
exception event happened.

Fix contributed by Michael Nelson.

	Redis: Disabling ack emulation now works properly.

Fix contributed by Michael Nelson.

	Redis: IOError [https://docs.python.org/dev/library/exceptions.html#IOError] and OSError [https://docs.python.org/dev/library/exceptions.html#OSError] are now treated as recoverable
connection errors.

	SQS: Improved performance by reading messages in bulk.

Contributed by Matt Wise.

	Connection Pool: Attempting to acquire from a closed pool will now
raise RuntimeError [https://docs.python.org/dev/library/exceptions.html#RuntimeError].

3.0.7

	release-date

	2013-12-02 04:00 P.M UTC

	release-by

	Ask Solem

	Fixes Python 2.6 compatibility.

	Redis: Fixes ‘bad file descriptor’ issue.

3.0.6

	release-date

	2013-11-21 04:50 P.M UTC

	release-by

	Ask Solem

	Timer: No longer attempts to hash keyword arguments (Issue #275).

	Async: Did not account for the long type for file descriptors.

Fix contributed by Fabrice Rabaute.

	PyPy: kqueue support was broken.

	Redis: Bad pub/sub payloads no longer crashes the consumer.

	Redis: Unix socket URLs can now specify a virtual host by including
it as a query parameter.

Example URL specifying a virtual host using database number 3:

redis+socket:///tmp/redis.sock?virtual_host=3

	kombu.VERSION is now a named tuple.

3.0.5

	release-date

	2013-11-15 11:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.3.3.

	Redis: Fixed Python 3 compatibility problem (Issue #270).

	MongoDB: Fixed problem with URL parsing when authentication used.

Fix contributed by dongweiming.

	pyamqp: Fixed small issue when publishing the message and
the property dictionary was set to None.

Fix contributed by Victor Garcia.

	Fixed problem in repr(LaxBoundedSemaphore).

Fix contributed by Antoine Legrand.

	Tests now passing on Python 3.3.

3.0.4

	release-date

	2013-11-08 01:00 P.M UTC

	release-by

	Ask Solem

	common.QoS: decrement_eventually now makes sure the value
does not go below 1 if a prefetch count is enabled.

3.0.3

	release-date

	2013-11-04 03:00 P.M UTC

	release-by

	Ask Solem

	SQS: Properly reverted patch that caused delays between messages.

Contributed by James Saryerwinnie

	select: Clear all registerd fds on poller.cloe

	Eventloop: unregister if EBADF raised.

3.0.2

	release-date

	2013-10-29 02:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp version 1.3.2.

	select: Fixed problem where unregister did not properly remove
the fd.

3.0.1

	release-date

	2013-10-24 04:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp version 1.3.1.

	Redis: New option fanout_keyprefix

This transport option is recommended for all users as it ensures
that broadcast (fanout) messages sent is only seen by the current
virtual host:

Connection('redis://', transport_options={'fanout_keyprefix': True})

However, enabling this means that you cannot send or receive messages
from older Kombu versions so make sure all of your participants
are upgraded and have the transport option enabled.

This will be the default behavior in Kombu 4.0.

	Distribution: Removed file requirements/py25.txt.

	MongoDB: Now disables auto_start_request.

	MongoDB: Enables use_greenlets if eventlet/gevent used.

	Pidbox: Fixes problem where expires header was None,
which is a value not supported by the amq protocol.

	ConsumerMixin: New consumer_context method for starting
the consumer without draining events.

3.0.0

	release-date

	2013-10-14 04:00 P.M BST

	release-by

	Ask Solem

	Now depends on amqp version 1.3.

	No longer supports Python 2.5

The minimum Python version supported is now Python 2.6.0 for Python 2,
and Python 3.3 for Python 3.

	Dual codebase supporting both Python 2 and 3.

No longer using 2to3, making it easier to maintain support for
both versions.

	pickle, yaml and msgpack deserialization is now disabled by default.

This means that Kombu will by default refuse to handle any content type other
than json.

Pickle is known to be a security concern as it will happily
load any object that is embedded in a pickle payload, and payloads
can be crafted to do almost anything you want. The default
serializer in Kombu is json but it also supports a number
of other serialization formats that it will evaluate if received:
including pickle.

It was always assumed that users were educated about the security
implications of pickle, but in hindsight we don’t think users
should be expected to secure their services if we have the ability to
be secure by default.

By disabling any content type that the user did not explicitly
want enabled we ensure that the user must be conscious when they
add pickle as a serialization format to support.

The other built-in serializers (yaml and msgpack) are also disabled
even though they aren’t considered insecure 1 at this point.
Instead they’re disabled so that if a security flaw is found in one of these
libraries in the future, you will only be affected if you have
explicitly enabled them.

To have your consumer accept formats other than json you have to
explicitly add the wanted formats to a white-list of accepted
content types:

>>> c = Consumer(conn, accept=['json', 'pickle', 'msgpack'])

or when using synchronous access:

>>> msg = queue.get(accept=['json', 'pickle', 'msgpack'])

The accept argument was first supported for consumers in version
2.5.10, and first supported by Queue.get in version 2.5.15
so to stay compatible with previous versions you can enable
the previous behavior:

>>> from kombu import enable_insecure_serializers
>>> enable_insecure_serializers()

But note that this has global effect, so be very careful should you use it.

Footnotes

	1

	The PyYAML library has a yaml.load() function with some of the
same security implications as pickle, but Kombu uses the
yaml.safe_load() function which is not known to be affected.

	kombu.async: Experimental event loop implementation.

This code was previously in Celery but was moved here
to make it easier for async transport implementations.

The API is meant to match the Tulip API which will be included
in Python 3.4 as the asyncio module. It’s not a complete
implementation obviously, but the goal is that it will be easy
to change to it once that is possible.

	Utility function kombu.common.ipublish has been removed.

Use Producer(..., retry=True) instead.

	Utility function kombu.common.isend_reply has been removed

Use send_reply(..., retry=True) instead.

	kombu.common.entry_to_queue and kombu.messaging.entry_to_queue
has been removed.

Use Queue.from_dict(name, **options) instead.

	Redis: Messages are now restored at the end of the list.

Contributed by Mark Lavin.

	
	StdConnectionError and StdChannelError is removed

	and amqp.ConnectionError and amqp.ChannelError is used
instead.

	Message object implementation has moved to kombu.message.Message.

	Serailization: Renamed functions encode/decode to
dumps() and loads().

For backward compatibility the old names are still available as aliases.

	The kombu.log.anon_logger function has been removed.

Use get_logger() instead.

	queue_declare now returns namedtuple with queue, message_count,
and consumer_count fields.

	LamportClock: Can now set lock class

	kombu.utils.clock: Utilities for ordering events added.

	SimpleQueue now allows you to override
the exchange type used.

Contributed by Vince Gonzales.

	Zookeeper transport updated to support new changes in the kazoo
library.

Contributed by Mahendra M.

	
	pyamqp/librabbitmq: Transport options are now forwarded as keyword arguments

	to the underlying connection (Issue #214).

	Transports may now distinguish between recoverable and irrecoverable
connection and channel errors.

	kombu.utils.Finalize has been removed: Use
multiprocessing.util.Finalize instead.

	Memory transport now supports the fanout exchange type.

Contributed by Davanum Srinivas.

	Experimental new Pyro [http://pythonhosted.org/Pyro] transport (kombu.transport.pyro).

Contributed by Tommie McAfee.

	Experimental new SoftLayer MQ [http://www.softlayer.com/services/additional/message-queue] transport (kombu.transport.SLMQ).

Contributed by Kevin McDonald

	Eventio: Kqueue breaks in subtle ways so select is now used instead.

	SQLAlchemy transport: Can now specify table names using the
queue_tablename and message_tablename transport options.

Contributed by Ryan Petrello.

	Redis transport: Now supports using local UNIX sockets to communicate with the

	Redis server (Issue #1283)

To connect using a UNIX socket you have to use the redis+socket
URL-prefix: redis+socket:///tmp/redis.sock.

This functionality was merged from the celery-redis-unixsocket [https://github.com/piquadrat/celery-redis-unixsocket] project.
Contributed by Maxime Rouyrre.

ZeroMQ transport: drain_events now supports timeout.

Contributed by Jesper Thomschütz.

2.5.16

	release-date

	2013-10-04 03:30 P.M BST

	release-by

	Ask Solem

	Python 3: Fixed problem with dependencies not being installed.

2.5.15

	release-date

	2013-10-04 03:30 P.M BST

	release-by

	Ask Solem

	Declaration cache: Now only keeps hash of declaration
so that it does not keep a reference to the channel.

	Declaration cache: Now respects entity.can_cache_declaration
attribute.

	Fixes Python 2.5 compatibility.

	Fixes tests after python-msgpack changes.

	Queue.get: Now supports accept argument.

2.5.14

	release-date

	2013-08-23 05:00 P.M BST

	release-by

	Ask Solem

	safe_str did not work properly resulting in
UnicodeDecodeError [https://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError] (Issue #248).

2.5.13

	release-date

	2013-08-16 04:00 P.M BST

	release-by

	Ask Solem

	Now depends on amqp 1.0.13

	Fixed typo in Django functional tests.

	safe_str now returns Unicode in Python 2.x

Fix contributed by Germán M. Bravo.

	amqp: Transport options are now merged with arguments
supplied to the connection.

	Tests no longer depends on distribute, which was deprecated
and merged back into setuptools.

Fix contributed by Sascha Peilicke.

	ConsumerMixin now also restarts on channel related errors.

Fix contributed by Corentin Ardeois.

2.5.12

	release-date

	2013-06-28 03:30 P.M BST

	release-by

	Ask Solem

	Redis: Ignore errors about keys missing in the round-robin cycle.

	Fixed test suite errors on Python 3.

	Fixed msgpack test failures.

2.5.11

	release-date

	2013-06-25 02:30 P.M BST

	release-by

	Ask Solem

	Now depends on amqp 1.0.12 (Py3 compatibility issues).

	MongoDB: Removed cause of a “database name in URI is being ignored”
warning.

Fix by Flavio Percoco Premoli

	Adds passive option to Exchange.

Setting this flag means that the exchange will not be declared by kombu,
but that it must exist already (or an exception will be raised).

Contributed by Rafal Malinowski

	Connection.info() now gives the current hostname and not the list of
available hostnames.

Fix contributed by John Shuping.

	pyamqp: Transport options are now forwarded as kwargs to amqp.Connection.

	librabbitmq: Transport options are now forwarded as kwargs to
librabbitmq.Connection.

	librabbitmq: Now raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError] if SSL is enabled.

The librabbitmq library does not support ssl,
but you can use stunnel or change to the pyamqp:// transport
instead.

Fix contributed by Dan LaMotte.

	librabbitmq: Fixed a cyclic reference at connection close.

	eventio: select implementation now removes bad file descriptors.

	eventio: Fixed Py3 compatibility problems.

	Functional tests added for py-amqp and librabbitmq transports.

	Resource.force_close_all no longer uses a mutex.

	Pidbox: Now ignores IconsistencyError when sending replies,
as this error simply means that the client may no longer be alive.

	Adds new Connection.collect method,
that can be used to clean up after connections without I/O.

	queue_bind is no longer called for queues bound to
the “default exchange” (Issue #209).

Contributed by Jonathan Halcrow.

	The max_retries setting for retries was not respected correctly (off by one).

2.5.10

	release-date

	2013-04-11 06:10 P.M BST

	release-by

	Ask Solem

Note about upcoming changes for Kombu 3.0

Kombu 3 consumers will no longer accept pickle/yaml or msgpack
by default, and you will have to explicitly enable untrusted deserializers
either globally using kombu.enable_insecure_serializers(), or
using the accept argument to Consumer.

Changes

	New utility function to disable/enable untrusted serializers.

	kombu.disable_insecure_serializers()

	kombu.enable_insecure_serializers().

	Consumer: accept can now be used to specify a whitelist
of content types to accept.

If the accept whitelist is set and a message is received
with a content type that is not in the whitelist then a
ContentDisallowed exception
is raised. Note that this error can be handled by the already
existing on_decode_error callback

Examples:

Consumer(accept=['application/json'])
Consumer(accept=['pickle', 'json'])

	Now depends on amqp 1.0.11

	pidbox: Mailbox now supports the accept argument.

	Redis: More friendly error for when keys are missing.

	Connection URLs: The parser did not work well when there were
multiple ‘+’ tokens.

2.5.9

	release-date

	2013-04-08 05:07 P.M BST

	release-by

	Ask Solem

	Pidbox: Now warns if there are multiple nodes consuming from
the same pidbox.

	Adds Queue.on_declared

A callback to be called when the queue is declared,
with signature (name, messages, consumers).

	Now uses fuzzy matching to suggest alternatives to typos in transport
names.

	SQS: Adds new transport option queue_prefix.

Contributed by j0hnsmith.

	pyamqp: No longer overrides verify_connection.

	SQS: Now specifies the driver_type and driver_name
attributes.

Fix contributed by Mher Movsisyan.

	Fixed bug with kombu.utils.retry_over_time when no errback
specified.

2.5.8

	release-date

	2013-03-21 04:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.0.10 which fixes a Python 3 compatibility error.

	Redis: Fixed a possible race condition (Issue #171).

	Redis: Ack emulation/visibility_timeout can now be disabled
using a transport option.

Ack emulation adds quite a lot of overhead to ensure data is safe
even in the event of an unclean shutdown. If data loss do not worry
you there is now an ack_emulation transport option you can use
to disable it:

Connection('redis://', transport_options={'ack_emulation': False})

	SQS: Fixed boto [https://boto.readthedocs.io/en/latest/ref/boto.html#module-boto] v2.7 compatibility (Issue #207).

	Exchange: Should not try to re-declare default exchange ("")
(Issue #209).

	SQS: Long polling is now disabled by default as it was not
implemented correctly, resulting in long delays between receiving
messages (Issue #202).

	Fixed Python 2.6 incompatibility depending on exc.errno
being available.

Fix contributed by Ephemera.

2.5.7

	release-date

	2013-03-08 01:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.0.9

	Redis: A regression in 2.5.6 caused the redis transport to
ignore options set in transport_options.

	Redis: New socket_timeout transport option.

	Redis: InconsistencyError is now regarded as a recoverable error.

	Resource pools: Will no longer attempt to release resource
that was never acquired.

	MongoDB: Now supports the ssl option.

Contributed by Sebastian Pawlus.

2.5.6

	release-date

	2013-02-08 01:00 P.M UTC

	release-by

	Ask Solem

	Now depends on amqp 1.0.8 which works around a bug found on some
Python 2.5 installations where 2**32 overflows to 0.

2.5.5

	release-date

	2013-02-07 05:00 P.M UTC

	release-by

	Ask Solem

SQS: Now supports long polling (Issue #176).

The polling interval default has been changed to 0 and a new
transport option (wait_time_seconds) has been added.
This parameter specifies how long to wait for a message from
SQS, and defaults to 20 seconds, which is the maximum
value currently allowed by Amazon SQS.

Contributed by James Saryerwinnie.

	SQS: Now removes unpickleable fields before restoring messages.

	Consumer.__exit__ now ignores exceptions occurring while
canceling the consumer.

	Virtual: Routing keys can now consist of characters also used
in regular expressions (e.g. parens) (Issue #194).

	Virtual: Fixed compression header when restoring messages.

Fix contributed by Alex Koshelev.

	Virtual: ack/reject/requeue now works while using basic_get.

	Virtual: Message.reject is now supported by virtual transports
(requeue depends on individual transport support).

	Fixed typo in hack used for static analyzers.

Fix contributed by Basil Mironenko.

2.5.4

	release-date

	2012-12-10 12:35 P.M UTC

	release-by

	Ask Solem

	Fixed problem with connection clone and multiple URLs (Issue #182).

Fix contributed by Dane Guempel.

	zeromq: Now compatible with libzmq 3.2.x.

Fix contributed by Andrey Antukh.

	Fixed Python 3 installation problem (Issue #187).

2.5.3

	release-date

	2012-11-29 12:35 P.M UTC

	release-by

	Ask Solem

	Pidbox: Fixed compatibility with Python 2.6

2.5.2

	release-date

	2012-11-29 12:35 P.M UTC

	release-by

	Ask Solem

2.5.2

	release-date

	2012-11-29 12:35 P.M UTC

	release-by

	Ask Solem

	[Redis] Fixed connection leak and added a new ‘max_connections’ transport
option.

2.5.1

	release-date

	2012-11-28 12:45 P.M UTC

	release-by

	Ask Solem

	Fixed bug where return value of Queue.as_dict could not be serialized with
JSON (Issue #177).

2.5.0

	release-date

	2012-11-27 04:00 P.M UTC

	release-by

	Ask Solem

	py-amqp [https://amqp.readthedocs.io/] is now the new default transport, replacing amqplib.

The new py-amqp [https://amqp.readthedocs.io/] library is a fork of amqplib started with the
following goals:

	Uses AMQP 0.9.1 instead of 0.8

	Support for heartbeats (Issue #79 + Issue #131)

	Automatically revives channels on channel errors.

	
	Support for all RabbitMQ extensions

	
	Consumer Cancel Notifications (Issue #131)

	Publisher Confirms (Issue #131).

	Exchange-to-exchange bindings: exchange_bind / exchange_unbind.

	API compatible with librabbitmq so that it can be used
as a pure-python replacement in environments where rabbitmq-c cannot
be compiled. librabbitmq will be updated to support all the same
features as py-amqp.

	Support for using multiple connection URL’s for failover.

The first argument to Connection can now be a list of
connection URLs:

Connection(['amqp://foo', 'amqp://bar'])

or it can be a single string argument with several URLs separated by
semicolon:

Connection('amqp://foo;amqp://bar')

There is also a new keyword argument failover_strategy that defines
how ensure_connection()/
ensure()/kombu.Connection.autoretry() will
reconnect in the event of connection failures.

The default reconnection strategy is round-robin, which will simply
cycle through the list forever, and there’s also a shuffle strategy
that will select random hosts from the list. Custom strategies can also
be used, in that case the argument must be a generator yielding the URL
to connect to.

Example:

Connection('amqp://foo;amqp://bar')

	Now supports PyDev, PyCharm, pylint and other static code analysis tools.

	Queue now supports multiple bindings.

You can now have multiple bindings in the same queue by having
the second argument be a list:

from kombu import binding, Queue

Queue('name', [
 binding(Exchange('E1'), routing_key='foo'),
 binding(Exchange('E1'), routing_key='bar'),
 binding(Exchange('E2'), routing_key='baz'),
])

To enable this, helper methods have been added:

	bind_to()

	unbind_from()

Contributed by Rumyana Neykova.

	Custom serializers can now be registered using Setuptools entry-points.

See Creating extensions using Setuptools entry-points.

	New kombu.common.QoS class used as a thread-safe way to manage
changes to a consumer or channels prefetch_count.

This was previously an internal class used in Celery now moved to
the kombu.common module.

	Consumer now supports a on_message callback that can be used to process
raw messages (not decoded).

Other callbacks specified using the callbacks argument, and
the receive method will be not be called when a on message callback
is present.

	New utility kombu.common.ignore_errors() ignores connection and
channel errors.

Must only be used for cleanup actions at shutdown or on connection loss.

	Support for exchange-to-exchange bindings.

The Exchange entity gained bind_to
and unbind_from methods:

e1 = Exchange('A')(connection)
e2 = Exchange('B')(connection)

e2.bind_to(e1, routing_key='rkey', arguments=None)
e2.unbind_from(e1, routing_key='rkey', arguments=None)

This is currently only supported by the pyamqp transport.

Contributed by Rumyana Neykova.

2.4.10

	release-date

	2012-11-22 06:00 P.M UTC

	release-by

	Ask Solem

	The previous versions connection pool changes broke Redis support so that
it would always connect to localhost (default setting) no matter what
connection parameters were provided (Issue #176).

2.4.9

	release-date

	2012-11-21 03:00 P.M UTC

	release-by

	Ask Solem

	Redis: Fixed race condition that could occur while trying to restore
messages (Issue #171).

Fix contributed by Ollie Walsh.

	Redis: Each channel is now using a specific connection pool instance,
which is disconnected on connection failure.

	ProducerPool: Fixed possible dead-lock in the acquire method.

	ProducerPool: force_close_all no longer tries to call the non-existent
Producer._close.

	librabbitmq: Now implements transport.verify_connection so that
connection pools will not give back connections that are no longer working.

	New and better repr() for Queue and Exchange objects.

	Python 3: Fixed problem with running the unit test suite.

	Python 3: Fixed problem with JSON codec.

2.4.8

	release-date

	2012-11-02 05:00 P.M UTC

	release-by

	Ask Solem

	Redis: Improved fair queue cycle implementation (Issue #166).

Contributed by Kevin McCarthy.

	Redis: Unacked message restore limit is now unlimited by default.

Also, the limit can now be configured using the unacked_restore_limit
transport option:

Connection('redis://', transport_options={
 'unacked_restore_limit': 100,
})

A limit of 100 means that the consumer will restore at most 100
messages at each pass.

	Redis: Now uses a mutex to ensure only one consumer restores messages at a
time.

The mutex expires after 5 minutes by default, but can be configured
using the unacked_mutex_expire transport option.

	LamportClock.adjust now returns the new clock value.

	Heartbeats can now be specified in URLs.

Fix contributed by Mher Movsisyan.

	Kombu can now be used with PyDev, PyCharm and other static analysis tools.

	Fixes problem with msgpack on Python 3 (Issue #162).

Fix contributed by Jasper Bryant-Greene

	amqplib: Fixed bug with timeouts when SSL is used in non-blocking mode.

Fix contributed by Mher Movsisyan

2.4.7

	release-date

	2012-09-18 03:00 P.M BST

	release-by

	Ask Solem

	Virtual: Unknown exchanges now default to ‘direct’ when sending a message.

	MongoDB: Fixed memory leak when merging keys stored in the db (Issue #159)

Fix contributed by Michael Korbakov.

	MongoDB: Better index for MongoDB transport (Issue #158).

This improvement will create a new compund index for queue and _id in order
to be able to use both indexed fields for getting a new message (using
queue field) and sorting by _id. It’ll be necessary to manually delete
the old index from the collection.

Improvement contributed by rmihael

2.4.6

	release-date

	2012-09-12 03:00 P.M BST

	release-by

	Ask Solem

	Adds additional compatibility dependencies:

	Python <= 2.6:

	importlib

	ordereddict

	Python <= 2.5

	simplejson

2.4.5

	release-date

	2012-08-30 03:36 P.M BST

	release-by

	Ask Solem

	Last version broke installtion on PyPy and Jython due
to test requirements clean-up.

2.4.4

	release-date

	2012-08-29 04:00 P.M BST

	release-by

	Ask Solem

	amqplib: Fixed a bug with asynchronously reading large messages.

	pyamqp: Now requires amqp 0.9.3

	Cleaned up test requirements.

2.4.3

	release-date

	2012-08-25 10:30 P.M BST

	release-by

	Ask Solem

	Fixed problem with amqp transport alias (Issue #154).

2.4.2

	release-date

	2012-08-24 05:00 P.M BST

	release-by

	Ask Solem

	Having an empty transport name broke in 2.4.1.

2.4.1

	release-date

	2012-08-24 04:00 P.M BST

	release-by

	Ask Solem

	Redis: Fixed race condition that could cause the consumer to crash (Issue #151)

Often leading to the error message "could not convert string to float"

	Connection retry could cause an inifite loop (Issue #145).

	The amqp alias is now resolved at runtime, so that eventlet detection
works even if patching was done later.

2.4.0

	release-date

	2012-08-17 08:00 P.M BST

	release-by

	Ask Solem

	New experimental ZeroMQ <kombu.transport.zmq transport.

Contributed by John Watson.

	Redis: Ack timed-out messages were not restored when using the eventloop.

	Now uses pickle protocol 2 by default to be cross-compatible with Python 3.

The protocol can also now be changed using the PICKLE_PROTOCOL
environment variable.

	Adds Transport.supports_ev attribute.

	Pika: Queue purge was not working properly.

Fix contributed by Steeve Morin.

	Pika backend was no longer working since Kombu 2.3

Fix contributed by Steeve Morin.

2.3.2

	release-date

	2012-08-01 06:00 P.M BST

	release-by

	Ask Solem

	Fixes problem with deserialization in Python 3.

2.3.1

	release-date

	2012-08-01 04:00 P.M BST

	release-by

	Ask Solem

	librabbitmq: Can now handle messages that does not have a
content_encoding/content_type set (Issue #149).

Fix contributed by C Anthony Risinger.

	Beanstalk: Now uses localhost by default if the URL does not contain a host.

2.3.0

	release-date

	2012-07-24 03:50 P.M BST

	release-by

	Ask Solem

	New pyamqp:// transport!

The new py-amqp [https://amqp.readthedocs.io/] library is a fork of amqplib started with the
following goals:

	Uses AMQP 0.9.1 instead of 0.8

	Should support all RabbitMQ extensions

	API compatible with librabbitmq so that it can be used
as a pure-python replacement in environments where rabbitmq-c cannot
be compiled.

If you start using use py-amqp instead of amqplib you can enjoy many
advantages including:

	Heartbeat support (Issue #79 + Issue #131)

	Consumer Cancel Notifications (Issue #131)

	Publisher Confirms

amqplib has not been updated in a long while, so maintaining our own fork
ensures that we can quickly roll out new features and fixes without
resorting to monkey patching.

To use the py-amqp transport you must install the amqp library:

$ pip install amqp

and change the connection URL to use the correct transport:

>>> conn = Connection('pyamqp://guest:guest@localhost//')

The pyamqp:// transport will be the default fallback transport
in Kombu version 3.0, when librabbitmq is not installed,
and librabbitmq will also be updated to support the same features.

	Connection now supports heartbeat argument.

If enabled you must make sure to manually maintain heartbeats
by calling the Connection.heartbeat_check at twice the rate
of the specified heartbeat interval.

E.g. if you have Connection(heartbeat=10),
then you must call Connection.heartbeat_check() every 5 seconds.

if the server has not sent heartbeats at a suitable rate then
the heartbeat check method must raise an error that is listed
in Connection.connection_errors.

The attribute Connection.supports_heartbeats has been added
for the ability to inspect if a transport supports heartbeats
or not.

Calling heartbeat_check on a transport that does
not support heartbeats results in a noop operation.

	SQS: Fixed bug with invalid characters in queue names.

Fix contributed by Zach Smith.

	utils.reprcall: Fixed typo where kwargs argument was an empty tuple by
default, and not an empty dict.

2.2.6

	release-date

	2012-07-10 05:00 P.M BST

	release-by

	Ask Solem

	Adds kombu.messaging.entry_to_queue for compat with previous versions.

2.2.5

	release-date

	2012-07-10 05:00 P.M BST

	release-by

	Ask Solem

	Pidbox: Now sets queue expire at 10 seconds for reply queues.

	EventIO: Now ignores ValueError raised by epoll unregister.

	MongoDB: Fixes Issue #142

Fix by Flavio Percoco Premoli

2.2.4

	release-date

	2012-07-05 04:00 P.M BST

	release-by

	Ask Solem

	Support for msgpack-python 0.2.0 (Issue #143)

The latest msgpack version no longer supports Python 2.5, so if you’re
still using that you need to depend on an earlier msgpack-python version.

Fix contributed by Sebastian Insua

	maybe_declare() no longer caches entities with the
auto_delete flag set.

	New experimental filesystem transport.

Contributed by Bobby Beever.

	Virtual Transports: Now support anonymous queues and exchanges.

2.2.3

	release-date

	2012-06-24 05:00 P.M BST

	release-by

	Ask Solem

	BrokerConnection now renamed to Connection.

The name Connection has been an alias for a very long time,
but now the rename is official in the documentation as well.

The Connection alias has been available since version 1.1.3,
and BrokerConnection will still work and is not deprecated.

	Connection.clone() now works for the sqlalchemy transport.

	kombu.common.eventloop(), kombu.utils.uuid(),
and kombu.utils.url.parse_url() can now be
imported from the kombu module directly.

	Pidbox transport callback after_reply_message_received now happens
in a finally block.

	Trying to use the librabbitmq:// transport will now show the right
name in the ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError] if librabbitmq is not installed.

The librabbitmq falls back to the older pylibrabbitmq name for
compatibility reasons and would therefore show No module named
pylibrabbitmq instead of librabbitmq.

2.2.2

	release-date

	2012-06-22 02:30 P.M BST

	release-by

	Ask Solem

	Now depends on anyjson 0.3.3

	Json serializer: Now passes buffer objects directly,
since this is supported in the latest anyjson version.

	Fixes blocking epoll call if timeout was set to 0.

Fix contributed by John Watson.

	setup.py now takes requirements from the requirements/ directory.

	The distribution directory contrib/ is now renamed to extra/

2.2.1

	release-date

	2012-06-21 01:00 P.M BST

	release-by

	Ask Solem

	SQS: Default visibility timeout is now 30 minutes.

Since we have ack emulation the visibility timeout is
only in effect if the consumer is abrubtly terminated.

	retry argument to Producer.publish now works properly,
when the declare argument is specified.

	Json serializer: didn’t handle buffer objects (Issue #135).

Fix contributed by Jens Hoffrichter.

	Virtual: Now supports passive argument to exchange_declare.

	Exchange & Queue can now be bound to connections (which will use the default
channel):

>>> exchange = Exchange('name')
>>> bound_exchange = exchange(connection)
>>> bound_exchange.declare()

	SimpleQueue & SimpleBuffer can now be bound to connections (which
will use the default channel).

	Connection.manager.get_bindings now works for librabbitmq and pika.

	Adds new transport info attributes:

	Transport.driver_type

Type of underlying driver, e.g. “amqp”, “redis”, “sql”.

	Transport.driver_name

Name of library used e.g. “amqplib”, “redis”, “pymongo”.

	Transport.driver_version()

Version of underlying library.

2.2.0

	release-date

	2012-06-07 03:10 P.M BST

	release-by

	Ask Solem

Important Notes

	The canonical source code repository has been moved to

http://github.com/celery/kombu

	Pidbox: Exchanges used by pidbox are no longer auto_delete.

Auto delete has been described as a misfeature,
and therefore we have disabled it.

For RabbitMQ users old exchanges used by pidbox must be removed,
these are named mailbox_name.pidbox,
and reply.mailbox_name.pidbox.

The following command can be used to clean up these exchanges:

$ VHOST=/ URL=amqp:// python -c'import sys,kombu;[kombu.Connection(
 sys.argv[-1]).channel().exchange_delete(x)
 for x in sys.argv[1:-1]]' \
 $(sudo rabbitmqctl -q list_exchanges -p "$VHOST" \
 | grep \.pidbox | awk '{print $1}') "$URL"

The VHOST variable must be set to the target RabbitMQ virtual host,
and the URL must be the AMQP URL to the server.

	The amqp transport alias will now use librabbitmq
if installed.

py-librabbitmq [https://github.com/celery/librabbitmq] is a fast AMQP client for Python
using the librabbitmq C library.

It can be installed by:

$ pip install librabbitmq

It will not be used if the process is monkey patched by eventlet/gevent.

News

	Redis: Ack emulation improvements.

Reducing the possibility of data loss.

Acks are now implemented by storing a copy of the message when the message
is consumed. The copy is not removed until the consumer acknowledges
or rejects it.

This means that unacknowledged messages will be redelivered either
when the connection is closed, or when the visibility timeout is exceeded.

	Visibility timeout

This is a timeout for acks, so that if the consumer
does not ack the message within this time limit, the message
is redelivered to another consumer.

The timeout is set to one hour by default, but
can be changed by configuring a transport option:

>>> Connection('redis://', transport_options={
... 'visibility_timeout': 1800, # 30 minutes
... })

NOTE: Messages that have not been acked will be redelivered
if the visibility timeout is exceeded, for Celery users
this means that ETA/countdown tasks that are scheduled to execute
with a time that exceeds the visibility timeout will be executed
twice (or more). If you plan on using long ETA/countdowns you
should tweak the visibility timeout accordingly:

BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 18000} # 5 hours

Setting a long timeout means that it will take a long time
for messages to be redelivered in the event of a power failure,
but if so happens you could temporarily set the visibility timeout lower
to flush out messages when you start up the systems again.

	Experimental Apache ZooKeeper [http://zookeeper.apache.org/] transport

More information is in the module reference:
kombu.transport.zookeeper.

Contributed by Mahendra M.

	Redis: Priority support.

The message’s priority field is now respected by the Redis
transport by having multiple lists for each named queue.
The queues are then consumed by in order of priority.

The priority field is a number in the range of 0 - 9, where
0 is the default and highest priority.

The priority range is collapsed into four steps by default, since it is
unlikely that nine steps will yield more benefit than using four steps.
The number of steps can be configured by setting the priority_steps
transport option, which must be a list of numbers in sorted order:

>>> x = Connection('redis://', transport_options={
... 'priority_steps': [0, 2, 4, 6, 8, 9],
... })

Priorities implemented in this way is not as reliable as
priorities on the server side, which is why
nickname the feature “quasi-priorities”;
Using routing is still the suggested way of ensuring
quality of service, as client implemented priorities
fall short in a number of ways, e.g. if the worker
is busy with long running tasks, has prefetched many messages,
or the queues are congested.

Still, it is possible that using priorities in combination
with routing can be more beneficial than using routing
or priorities alone. Experimentation and monitoring
should be used to prove this.

Contributed by Germán M. Bravo.

	Redis: Now cycles queues so that consuming is fair.

This ensures that a very busy queue won’t block messages
from other queues, and ensures that all queues have
an equal chance of being consumed from.

This used to be the case before, but the behavior was
accidentally changed while switching to using blocking pop.

	Redis: Auto delete queues that are bound to fanout exchanges
is now deleted at channel.close.

	amqplib: Refactored the drain_events implementation.

	Pidbox: Now uses connection.default_channel.

	Pickle serialization: Can now decode buffer objects.

	Exchange/Queue declarations can now be cached even if
the entity is non-durable.

This is possible because the list of cached declarations
are now kept with the connection, so that the entities
will be redeclared if the connection is lost.

	Kombu source code now only uses one-level of explicit relative imports.

Fixes

	eventio: Now ignores ENOENT raised by epoll.register, and
EEXIST from epoll.unregister.

	eventio: kqueue now ignores KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] on unregister.

	Redis: Message.reject now supports the requeue argument.

	Redis: Remove superfluous pipeline call.

Fix contributed by Thomas Johansson.

	Redis: Now sets redelivered header for redelivered messages.

	Now always makes sure references to sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info] is removed.

	Virtual: The compression header is now removed before restoring messages.

	More tests for the SQLAlchemy backend.

Contributed by Franck Cuny.

	Url parsing did not handle MongoDB URLs properly.

Fix contributed by Flavio Percoco Premoli.

	Beanstalk: Ignore default tube when reserving.

Fix contributed by Zhao Xiaohong.

Nonblocking consume support

librabbitmq, amqplib and redis transports can now be used
non-blocking.

The interface is very manual, and only consuming messages
is non-blocking so far.

The API should not be regarded as stable or final
in any way. It is used by Celery which has very limited
needs at this point. Hopefully we can introduce a proper
callback-based API later.

	Transport.eventmap

Is a map of fd -> callback(fileno, event)
to register in an eventloop.

	Transport.on_poll_start()

Is called before every call to poll.
The poller must support register(fd, callback)
and unregister(fd) methods.

	Transport.on_poll_start(poller)

Called when the hub is initialized.
The poller argument must support the same
interface as kombu.utils.eventio.poll.

	Connection.ensure_connection now takes a callback
argument which is called for every loop while
the connection is down.

	Adds connection.drain_nowait

This is a non-blocking alternative to drain_events,
but only supported by amqplib/librabbitmq.

	drain_events now sets connection.more_to_read if
there is more data to read.

This is to support eventloops where other things
must be handled between draining events.

2.1.8

	release-date

	2012-05-06 03:06 P.M BST

	release-by

	Ask Solem

	Bound Exchange/Queue’s are now pickleable.

	Consumer/Producer can now be instantiated without a channel,
and only later bound using .revive(channel).

	ProducerPool now takes Producer argument.

	fxrange() now counts forever if the
stop argument is set to None.
(fxrange is like xrange but for decimals).

	Auto delete support for virtual transports were incomplete
and could lead to problems so it was removed.

	Cached declarations (maybe_declare())
are now bound to the underlying connection, so that
entities are redeclared if the connection is lost.

This also means that previously uncacheable entities
(e.g. non-durable) can now be cached.

	compat ConsumerSet: can now specify channel.

2.1.7

	release-date

	2012-04-27 06:00 P.M BST

	release-by

	Ask Solem

	compat consumerset now accepts optional channel argument.

2.1.6

	release-date

	2012-04-23 01:30 P.M BST

	release-by

	Ask Solem

	SQLAlchemy transport was not working correctly after URL parser change.

	maybe_declare now stores cached declarations per underlying connection
instead of globally, in the rare case that data disappears from the
broker after connection loss.

	Django: Added South migrations.

Contributed by Joseph Crosland.

2.1.5

	release-date

	2012-04-13 03:30 P.M BST

	release-by

	Ask Solem

	The url parser removed more than the first leading slash (Issue #121).

	SQLAlchemy: Can now specify url using + separator

Example:

Connection('sqla+mysql://localhost/db')

	Better support for anonymous queues (Issue #116).

Contributed by Michael Barrett.

	Connection.as_uri now quotes url parts (Issue #117).

	Beanstalk: Can now set message TTR as a message property.

Contributed by Andrii Kostenko

2.1.4

	release-date

	2012-04-03 04:00 P.M GMT

	release-by

	Ask Solem

	MongoDB: URL parsing are now delegated to the pymongo library
(Fixes Issue #103 and Issue #87).

Fix contributed by Flavio Percoco Premoli and James Sullivan

	SQS: A bug caused SimpleDB to be used even if sdb persistence
was not enabled (Issue #108).

Fix contributed by Anand Kumria.

	Django: Transaction was committed in the wrong place, causing
data cleanup to fail (Issue #115).

Fix contributed by Daisuke Fujiwara.

	MongoDB: Now supports replica set URLs.

Contributed by Flavio Percoco Premoli.

	Redis: Now raises a channel error if a queue key that is currently
being consumed from disappears.

Fix contributed by Stephan Jaekel.

	All transport ‘channel_errors’ lists now includes
kombu.exception.StdChannelError.

	All kombu exceptions now inherit from a common
KombuError.

2.1.3

	release-date

	2012-03-20 03:00 P.M GMT

	release-by

	Ask Solem

	Fixes Jython compatibility issues.

	Fixes Python 2.5 compatibility issues.

2.1.2

	release-date

	2012-03-01 01:00 P.M GMT

	release-by

	Ask Solem

	amqplib: Last version broke SSL support.

2.1.1

	release-date

	2012-02-24 02:00 P.M GMT

	release-by

	Ask Solem

	Connection URLs now supports encoded characters.

	Fixed a case where connection pool could not recover from connection loss.

Fix contributed by Florian Munz.

	We now patch amqplib’s __del__ method to skip trying to close the socket
if it is not connected, as this resulted in an annoying warning.

	Compression can now be used with binary message payloads.

Fix contributed by Steeve Morin.

2.1.0

	release-date

	2012-02-04 10:38 P.M GMT

	release-by

	Ask Solem

	MongoDB: Now supports fanout (broadcast) (Issue #98).

Contributed by Scott Lyons.

	amqplib: Now detects broken connections by using MSG_PEEK.

	pylibrabbitmq: Now supports basic_get (Issue #97).

	gevent: Now always uses the select polling backend.

	pika transport: Now works with pika 0.9.5 and 0.9.6dev.

The old pika transport (supporting 0.5.x) is now available
as alias oldpika.

(Note terribly latency has been experienced with the new pika
versions, so this is still an experimental transport).

	Virtual transports: can now set polling interval via the
transport options (Issue #96).

Example:

>>> Connection('sqs://', transport_options={
... 'polling_interval': 5.0})

The default interval is transport specific, but usually
1.0s (or 5.0s for the Django database transport, which
can also be set using the KOMBU_POLLING_INTERVAL setting).

	Adds convenience function: kombu.common.eventloop().

2.0.0

	release-date

	2012-01-15 06:34 P.M GMT

	release-by

	Ask Solem

Important Notes

Python Compatibility

	No longer supports Python 2.4.

Users of Python 2.4 can still use the 1.x series.

The 1.x series has entered bugfix-only maintenance mode, and will
stay that way as long as there is demand, and a willingness to
maintain it.

New Transports

	django-kombu is now part of Kombu core.

The Django message transport uses the Django ORM to store messages.

It uses polling, with a default polling interval of 5 seconds.
The polling interval can be increased or decreased by configuring the
KOMBU_POLLING_INTERVAL Django setting, which is the polling
interval in seconds as an int or a float. Note that shorter polling
intervals can cause extreme strain on the database: if responsiveness
is needed you shall consider switching to a non-polling transport.

To use it you must use transport alias "django",
or as a URL:

django://

and then add kombu.transport.django to INSTALLED_APPS, and
run manage.py syncdb to create the necessary database tables.

Upgrading

If you have previously used django-kombu, then the entry
in INSTALLED_APPS must be changed from djkombu
to kombu.transport.django:

INSTALLED_APPS = (
 # …,
 'kombu.transport.django',
)

If you have previously used django-kombu, then there is no need
to recreate the tables, as the old tables will be fully compatible
with the new version.

	kombu-sqlalchemy is now part of Kombu core.

This change requires no code changes given that the
sqlalchemy transport alias is used.

News

	kombu.mixins.ConsumerMixin is a mixin class that lets you
easily write consumer programs and threads.

See Examples and Consumers.

	SQS Transport: Added support for SQS queue prefixes (Issue #84).

The queue prefix can be set using the transport option
queue_name_prefix:

BrokerTransport('SQS://', transport_options={
 'queue_name_prefix': 'myapp'})

Contributed by Nitzan Miron.

	Producer.publish now supports automatic retry.

Retry is enabled by the reply argument, and retry options
set by the retry_policy argument:

exchange = Exchange('foo')
producer.publish(message, exchange=exchange, retry=True,
 declare=[exchange], retry_policy={
 'interval_start': 1.0})

See ensure()
for a list of supported retry policy options.

	Producer.publish now supports a declare keyword argument.

This is a list of entities (Exchange, or Queue)
that should be declared before the message is published.

Fixes

	Redis transport: Timeout was multiplied by 1000 seconds when using
select for event I/O (Issue #86).

1.5.1

	release-date

	2011-11-30 01:00 P.M GMT

	release-by

	Ask Solem

	Fixes issue with kombu.compat introduced in 1.5.0 (Issue #83).

	Adds the ability to disable content_types in the serializer registry.

Any message with a content type that is disabled will be refused.
One example would be to disable the Pickle serializer:

>>> from kombu.serialization import registry
by name
>>> registry.disable('pickle')
or by mime-type.
>>> registry.disable('application/x-python-serialize')

1.5.0

	release-date

	2011-11-27 06:00 P.M GMT

	release-by

	Ask Solem

	kombu.pools: Fixed a bug resulting in resources not being properly released.

This was caused by the use of __hash__ to distinguish them.

	Virtual transports: Dead-letter queue is now disabled by default.

The dead-letter queue was enabled by default to help application
authors, but now that Kombu is stable it should be removed.
There are after all many cases where messages should just be dropped
when there are no queues to buffer them, and keeping them without
supporting automatic cleanup is rather considered a resource leak
than a feature.

If wanted the dead-letter queue can still be enabled, by using
the deadletter_queue transport option:

>>> x = Connection('redis://',
... transport_options={'deadletter_queue': 'ae.undeliver'})

In addition, an UndeliverableWarning is now emitted when
the dead-letter queue is enabled and a message ends up there.

Contributed by Ionel Maries Cristian.

	MongoDB transport now supports Replicasets (Issue #81).

Contributed by Ivan Metzlar.

	The Connection.ensure methods now accepts a max_retries value
of 0.

A value of 0 now means do not retry, which is distinct from None
which means retry indefinitely.

Contributed by Dan McGee.

	SQS Transport: Now has a lowercase sqs alias, so that it can be
used with broker URLs (Issue #82).

Fix contributed by Hong Minhee

	SQS Transport: Fixes KeyError on message acknowledgments (Issue #73).

The SQS transport now uses UUID’s for delivery tags, rather than
a counter.

Fix contributed by Brian Bernstein.

	SQS Transport: Unicode related fixes (Issue #82).

Fix contributed by Hong Minhee.

	Redis version check could crash because of improper handling of types
(Issue #63).

	Fixed error with Resource.force_close_all when resources
were not yet properly initialized (Issue #78).

1.4.3

	release-date

	2011-10-27 10:00 P.M BST

	release-by

	Ask Solem

	Fixes bug in ProducerPool where too many resources would be acquired.

1.4.2

	release-date

	2011-10-26 05:00 P.M BST

	release-by

	Ask Solem

	Eventio: Polling should ignore errno.EINTR

	SQS: str.encode did only start accepting kwargs after Py2.7.

	simple_task_queue example didn’t run correctly (Issue #72).

Fix contributed by Stefan Eletzhofer.

	Empty messages would not raise an exception not able to be handled
by on_decode_error (Issue #72)

Fix contributed by Christophe Chauvet.

	CouchDB: Properly authenticate if user/password set (Issue #70)

Fix contributed by Rafael Duran Castaneda

	Connection.Consumer had the wrong signature.

Fix contributed by Pavel Skvazh

1.4.1

	release-date

	2011-09-26 04:00 P.M BST

	release-by

	Ask Solem

	1.4.0 broke the producer pool, resulting in new connections being
established for every acquire.

1.4.0

	release-date

	2011-09-22 05:00 P.M BST

	release-by

	Ask Solem

	Adds module kombu.mixins.

This module contains a ConsumerMixin class
that can be used to easily implement a message consumer
thread that consumes messages from one or more
kombu.Consumer instances.

	New example: Task Queue Example

Using the ConsumerMixin, default channels and
the global connection pool to demonstrate new Kombu features.

	MongoDB transport did not work with MongoDB >= 2.0 (Issue #66)

Fix contributed by James Turk.

	Redis-py version check did not account for beta identifiers
in version string.

Fix contributed by David Ziegler.

	Producer and Consumer now accepts a connection instance as the
first argument.

The connections default channel will then be used.

In addition shortcut methods has been added to Connection:

>>> connection.Producer(exchange)
>>> connection.Consumer(queues=..., callbacks=...)

	Connection has aquired a connected attribute that
can be used to check if the connection instance has established
a connection.

	ConnectionPool.acquire_channel now returns the connections
default channel rather than establising a new channel that
must be manually handled.

	Added kombu.common.maybe_declare

maybe_declare(entity) declares an entity if it has
not previously been declared in the same process.

	kombu.compat.entry_to_queue() has been moved to kombu.common

	New module kombu.clocks now contains an implementation
of Lamports logical clock.

1.3.5

	release-date

	2011-09-16 06:00 P.M BST

	release-by

	Ask Solem

	Python 3: AMQP_PROTOCOL_HEADER must be bytes, not str.

1.3.4

	release-date

	2011-09-16 06:00 P.M BST

	release-by

	Ask Solem

	Fixes syntax error in pools.reset

1.3.3

	release-date

	2011-09-15 02:00 P.M BST

	release-by

	Ask Solem

	pools.reset did not support after forker arguments.

1.3.2

	release-date

	2011-09-10 01:00 P.M BST

	release-by

	Mher Movsisyan

	Broke Python 2.5 compatibility by importing parse_qsl from urlparse

	Connection.default_channel is now closed when connection is revived
after connection failures.

	Pika: Channel now supports the connection.client attribute
as required by the simple interface.

	pools.set_limit now raises an exception if the limit is lower
than the previous limit.

	pools.set_limit no longer resets the pools.

1.3.1

	release-date

	2011-10-07 03:00 P.M BST

	release-by

	Ask Solem

	Last release broke after fork for pool reinitialization.

	Producer/Consumer now has a connection attribute,
giving access to the Connection of the
instance.

	Pika: Channels now have access to the underlying
Connection instance using channel.connection.client.

This was previously required by the Simple classes and is now
also required by Consumer and Producer.

	Connection.default_channel is now closed at object revival.

	Adds kombu.clocks.LamportClock.

	compat.entry_to_queue has been moved to new module kombu.common.

1.3.0

	release-date

	2011-10-05 01:00 P.M BST

	release-by

	Ask Solem

	Broker connection info can be now be specified using URLs

The broker hostname can now be given as a URL instead, of the format:

transport://user:password@hostname:port/virtual_host

for example the default broker is expressed as:

>>> Connection('amqp://guest:guest@localhost:5672//')

Transport defaults to amqp, and is not required.
user, password, port and virtual_host is also not mandatory and
will default to the corresponding transports default.

Note

Note that the path component (virtual_host) always starts with a
forward-slash. This is necessary to distinguish between the virtual
host ‘’ (empty) and ‘/’, which are both acceptable virtual host names.

A virtual host of ‘/’ becomes:

.. code-block:: text

amqp://guest:guest@localhost:5672//

and a virtual host of ‘’ (empty) becomes:

amqp://guest:guest@localhost:5672/

So the leading slash in the path component is always required.

	Now comes with default global connection and producer pools.

The acquire a connection using the connection parameters
from a Connection:

>>> from kombu import Connection, connections
>>> connection = Connection('amqp://guest:guest@localhost//')
>>> with connections[connection].acquire(block=True):
... # do something with connection

To acquire a producer using the connection parameters
from a Connection:

>>> from kombu import Connection, producers
>>> connection = Connection('amqp://guest:guest@localhost//')
>>> with producers[connection].acquire(block=True):
... producer.publish({'hello': 'world'}, exchange='hello')

Acquiring a producer will in turn also acquire a connection
from the associated pool in connections, so you the number
of producers is bound the same limit as number of connections.

The default limit of 100 connections per connection instance
can be changed by doing:

>>> from kombu import pools
>>> pools.set_limit(10)

The pool can also be forcefully closed by doing:

>>> from kombu import pools
>>> pool.reset()

	SQS Transport: Persistence using SimpleDB is now disabled by default,
after reports of unstable SimpleDB connections leading to errors.

	Producer can now be used as a context manager.

	Producer.__exit__ now properly calls release instead of close.

The previous behavior would lead to a memory leak when using
the kombu.pools.ProducerPool

	Now silences all exceptions from import ctypes to match behaviour
of the standard Python uuid module, and avoid passing on MemoryError
exceptions on SELinux-enabled systems (Issue #52 + Issue #53)

	amqp is now an alias to the amqplib transport.

	kombu.syn.detect_environment now returns ‘default’, ‘eventlet’, or
‘gevent’ depending on what monkey patches have been installed.

	Serialization registry has new attribute type_to_name so it is
possible to lookup serializater name by content type.

	Exchange argument to Producer.publish can now be an Exchange
instance.

	compat.Publisher now supports the channel keyword argument.

	Acking a message on some transports could lead to KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] being
raised (Issue #57).

	Connection pool: Connections are no long instantiated when the pool is
created, but instantiated as needed instead.

	Tests now pass on PyPy.

	Connection.as_uri now includes the password if the keyword argument
include_password is set.

	Virtual transports now comes with a default default_connection_params
attribute.

1.2.1

	release-date

	2011-07-29 12:52 P.M BST

	release-by

	Ask Solem

	Now depends on amqplib >= 1.0.0.

	Redis: Now automatically deletes auto_delete queues at basic_cancel.

	serialization.unregister added so it is possible to remove unwanted
seralizers.

	Fixes MemoryError while importing ctypes on SELinux (Issue #52).

	Connection.autoretry is a version of ensure that works
with arbitrary functions (i.e. it does not need an associated object
that implements the revive method.

Example usage:

channel = connection.channel()
try:
 ret, channel = connection.autoretry(send_messages, channel=channel)
finally:
 channel.close()

	ConnectionPool.acquire no longer force establishes the connection.

The connection will be established as needed.

	Connection.ensure now supports an on_revive callback
that is applied whenever the connection is re-established.

	Consumer.consuming_from(queue) returns True if the Consumer is
consuming from queue.

	Consumer.cancel_by_queue did not remove the queue from queues.

	compat.ConsumerSet.add_queue_from_dict now automatically declared
the queue if auto_declare set.

1.2.0

	release-date

	2011-07-15 12:00 P.M BST

	release-by

	Ask Solem

	Virtual: Fixes cyclic reference in Channel.close (Issue #49).

	Producer.publish: Can now set additional properties using keyword
arguments (Issue #48).

	Adds Queue.no_ack option to control the no_ack option for individual queues.

	Recent versions broke pylibrabbitmq support.

	SimpleQueue and SimpleBuffer can now be used as contexts.

	Test requirements specifies PyYAML==3.09 as 3.10 dropped Python 2.4 support

	Now properly reports default values in Connection.info/.as_uri

1.1.6

	release-date

	2011-06-13 04:00 P.M BST

	release-by

	Ask Solem

	Redis: Fixes issue introduced in 1.1.4, where a redis connection
failure could leave consumer hanging forever.

	SQS: Now supports fanout messaging by using SimpleDB to store routing
tables.

This can be disabled by setting the supports_fanout transport option:

>>> Connection(transport='SQS',
... transport_options={'supports_fanout': False})

	SQS: Now properly deletes a message when a message is acked.

	SQS: Can now set the Amazon AWS region, by using the region
transport option.

	amqplib: Now uses localhost as default hostname instead of raising an
error.

1.1.5

	release-date

	2011-06-07 06:00 P.M BST

	release-by

	Ask Solem

	Fixes compatibility with redis-py 2.4.4.

1.1.4

	release-date

	2011-06-07 04:00 P.M BST

	release-by

	Ask Solem

	Redis transport: Now requires redis-py version 2.4.4 or later.

	New Amazon SQS transport added.

Usage:

>>> conn = Connection(transport='SQS',
... userid=aws_access_key_id,
... password=aws_secret_access_key)

The environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY are also supported.

	librabbitmq transport: Fixes default credentials support.

	amqplib transport: Now supports login_method for SSL auth.

Connection now supports the login_method
keyword argument.

Default login_method is AMQPLAIN.

1.1.3

	release-date

	2011-04-21 04:00 P.M CEST

	release-by

	Ask Solem

	Redis: Consuming from multiple connections now works with Eventlet.

	Redis: Can now perform channel operations while the channel is in
BRPOP/LISTEN mode (Issue #35).

Also the async BRPOP now times out after 1 second, this means that
canceling consuming from a queue/starting consuming from additional queues
has a latency of up to one second (BRPOP does not support subsecond
timeouts).

	Virtual: Allow channel objects to be closed multiple times without error.

	amqplib: AttributeError has been added to the list of known
connection related errors (Connection.connection_errors).

	amqplib: Now converts SSLError timeout errors to
socket.timeout [https://docs.python.org/dev/library/socket.html#socket.timeout] (http://bugs.python.org/issue10272)

	Ensures cyclic references are destroyed when the connection is closed.

1.1.2

	release-date

	2011-04-06 04:00 P.M CEST

	release-by

	Ask Solem

	Redis: Fixes serious issue where messages could be lost.

The issue could happen if the message exceeded a certain number
of kilobytes in size.

It is recommended that all users of the Redis transport should
upgrade to this version, even if not currently experiencing any
issues.

1.1.1

	release-date

	2011-04-05 03:51 P.M CEST

	release-by

	Ask Solem

	1.1.0 started using Queue.LifoQueue which is only available
in Python 2.6+ (Issue #33). We now ship with our own LifoQueue.

1.1.0

	release-date

	2011-04-05 01:05 P.M CEST

	release-by

	Ask Solem

Important Notes

	Virtual transports: Message body is now base64 encoded by default
(Issue #27).

This should solve problems sending binary data with virtual
transports.

Message compatibility is handled by adding a body_encoding
property, so messages sent by older versions is compatible
with this release. However – If you are accessing the messages
directly not using Kombu, then you have to respect
the body_encoding property.

If you need to disable base64 encoding then you can do so
via the transport options:

Connection(transport='...',
 transport_options={'body_encoding': None})

For transport authors:

You don’t have to change anything in your custom transports,
as this is handled automatically by the base class.

If you want to use a different encoder you can do so by adding
a key to Channel.codecs. Default encoding is specified
by the Channel.body_encoding attribute.

A new codec must provide two methods: encode(data) and
decode(data).

	ConnectionPool/ChannelPool/Resource: Setting limit=None (or 0)
now disables pool semantics, and will establish and close
the resource whenever acquired or released.

	ConnectionPool/ChannelPool/Resource: Is now using a LIFO queue
instead of the previous FIFO behavior.

This means that the last resource released will be the one
acquired next. I.e. if only a single thread is using the pool
this means only a single connection will ever be used.

	Connection: Cloned connections did not inherit transport_options
(__copy__).

	contrib/requirements is now located in the top directory
of the distribution.

	MongoDB: Now supports authentication using the userid and password
arguments to Connection (Issue #30).

	Connection: Default autentication credentials are now delegated to
the individual transports.

This means that the userid and password arguments to
Connection is no longer guest/guest by default.

The amqplib and pika transports will still have the default
credentials.

	Consumer.__exit__() did not have the correct signature (Issue #32).

	Channel objects now have a channel_id attribute.

	
	MongoDB: Version sniffing broke with development versions of

	mongod (Issue #29).

	
	New environment variable KOMBU_LOG_CONNECTION will now emit debug

	log messages for connection related actions.

KOMBU_LOG_DEBUG will also enable KOMBU_LOG_CONNECTION.

1.0.7

	release-date

	2011-03-28 05:45 P.M CEST

	release-by

	Ask Solem

	Now depends on anyjson 0.3.1

cjson is no longer a recommended json implementation, and anyjson
will now emit a deprecation warning if used.

	Please note that the Pika backend only works with version 0.5.2.

The latest version (0.9.x) drastically changed API, and it is not
compatible yet.

	on_decode_error is now called for exceptions in message_to_python
(Issue #24).

	Redis: did not respect QoS settings.

	Redis: Creating a connection now ensures the connection is established.

This means Connection.ensure_connection works properly with
Redis.

	consumer_tag argument to Queue.consume can’t be None
(Issue #21).

A None value is now automatically converted to empty string.
An empty string will make the server generate a unique tag.

	Connection now supports a transport_options argument.

This can be used to pass additional arguments to transports.

	Pika: drain_events raised socket.timeout [https://docs.python.org/dev/library/socket.html#socket.timeout] even if no timeout
set (Issue #8).

1.0.6

	release-date

	2011-03-22 04:00 P.M CET

	release-by

	Ask Solem

	The delivery_mode aliases (persistent/transient) were not automatically
converted to integer, and would cause a crash if using the amqplib
transport.

	Redis: The redis-py InvalidData exception suddenly changed name to
DataError.

	The KOMBU_LOG_DEBUG environment variable can now be set to log all
channel method calls.

Support for the following environment variables have been added:

	KOMBU_LOG_CHANNEL will wrap channels in an object that
logs every method call.

	KOMBU_LOG_DEBUG both enables channel logging and configures the
root logger to emit messages to standard error.

Example Usage:

$ KOMBU_LOG_DEBUG=1 python
>>> from kombu import Connection
>>> conn = Connection()
>>> channel = conn.channel()
Start from server, version: 8.0, properties:
 {u'product': 'RabbitMQ',.............. }
Open OK! known_hosts []
using channel_id: 1
Channel open
>>> channel.queue_declare('myq', passive=True)
[Kombu channel:1] queue_declare('myq', passive=True)
(u'myq', 0, 1)

1.0.5

	release-date

	2011-03-17 04:00 P.M CET

	release-by

	Ask Solem

	Fixed memory leak when creating virtual channels. All virtual transports
affected (redis, mongodb, memory, django, sqlalchemy, couchdb, beanstalk).

	Virtual Transports: Fixed potential race condition when acking messages.

If you have been affected by this, the error would show itself as an
exception raised by the OrderedDict implementation. (object no longer
exists).

	MongoDB transport requires the findandmodify command only available in
MongoDB 1.3+, so now raises an exception if connected to an incompatible
server version.

	Virtual Transports: basic.cancel should not try to remove unknown
consumer tag.

1.0.4

	release-date

	2011-02-28 04:00 P.M CET

	release-by

	Ask Solem

	Added Transport.polling_interval

Used by django-kombu to increase the time to sleep between SELECTs when
there are no messages in the queue.

Users of django-kombu should upgrade to django-kombu v0.9.2.

1.0.3

	release-date

	2011-02-12 04:00 P.M CET

	release-by

	Ask Solem

	ConnectionPool: Re-connect if amqplib connection closed

	Adds Queue.as_dict + Exchange.as_dict.

	Copyright headers updated to include 2011.

1.0.2

	release-date

	2011-01-31 10:45 P.M CET

	release-by

	Ask Solem

	amqplib: Message properties were not set properly.

	Ghettoq backend names are now automatically translated to the new names.

1.0.1

	release-date

	2011-01-28 12:00 P.M CET

	release-by

	Ask Solem

	Redis: Now works with Linux (epoll)

1.0.0

	release-date

	2011-01-27 12:00 P.M CET

	release-by

	Ask Solem

	Initial release

0.1.0

	release-date

	2010-07-22 04:20 P.M CET

	release-by

	Ask Solem

	Initial fork of carrot

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 kombu	

 	
 	
 kombu.abstract	

 	
 	
 kombu.asynchronous	

 	
 	
 kombu.asynchronous.aws	

 	
 	
 kombu.asynchronous.aws.connection	

 	
 	
 kombu.asynchronous.aws.sqs	

 	
 	
 kombu.asynchronous.aws.sqs.connection	

 	
 	
 kombu.asynchronous.aws.sqs.message	

 	
 	
 kombu.asynchronous.aws.sqs.queue	

 	
 	
 kombu.asynchronous.debug	

 	
 	
 kombu.asynchronous.http	

 	
 	
 kombu.asynchronous.http.base	

 	
 	
 kombu.asynchronous.http.curl	

 	
 	
 kombu.asynchronous.hub	

 	
 	
 kombu.asynchronous.semaphore	

 	
 	
 kombu.asynchronous.timer	

 	
 	
 kombu.clocks	

 	
 	
 kombu.common	

 	
 	
 kombu.compat	

 	
 	
 kombu.compression	

 	
 	
 kombu.connection	

 	
 	
 kombu.exceptions	

 	
 	
 kombu.five	

 	
 	
 kombu.log	

 	
 	
 kombu.matcher	

 	
 	
 kombu.message	

 	
 	
 kombu.mixins	

 	
 	
 kombu.pidbox	

 	
 	
 kombu.pools	

 	
 	
 kombu.resource	

 	
 	
 kombu.serialization	

 	
 	
 kombu.simple	

 	
 	
 kombu.transport	

 	
 	
 kombu.transport.azureservicebus	

 	
 	
 kombu.transport.azurestoragequeues	

 	
 	
 kombu.transport.base	

 	
 	
 kombu.transport.consul	

 	
 	
 kombu.transport.etcd	

 	
 	
 kombu.transport.filesystem	

 	
 	
 kombu.transport.memory	

 	
 	
 kombu.transport.mongodb	

 	
 	
 kombu.transport.pyamqp	

 	
 	
 kombu.transport.pyro	

 	
 	
 kombu.transport.qpid	

 	
 	
 kombu.transport.redis	

 	
 	
 kombu.transport.SLMQ	

 	
 	
 kombu.transport.SQS	

 	
 	
 kombu.transport.virtual	

 	
 	
 kombu.transport.virtual.exchange	

 	
 	
 kombu.transport.zookeeper	

 	
 	
 kombu.utils.amq_manager	

 	
 	
 kombu.utils.collections	

 	
 	
 kombu.utils.compat	

 	
 	
 kombu.utils.debug	

 	
 	
 kombu.utils.div	

 	
 	
 kombu.utils.encoding	

 	
 	
 kombu.utils.eventio	

 	
 	
 kombu.utils.functional	

 	
 	
 kombu.utils.imports	

 	
 	
 kombu.utils.json	

 	
 	
 kombu.utils.limits	

 	
 	
 kombu.utils.objects	

 	
 	
 kombu.utils.scheduling	

 	
 	
 kombu.utils.text	

 	
 	
 kombu.utils.time	

 	
 	
 kombu.utils.url	

 	
 	
 kombu.utils.uuid	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__len__() (kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	
 	_close() (kombu.Connection method)

A

 	
 	abcast() (kombu.pidbox.Mailbox method)

 	AbstractChannel (class in kombu.transport.virtual)

 	accept (kombu.compat.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.message.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	ack() (kombu.message.Message method)

 	(kombu.transport.base.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	(kombu.transport.virtual.Message method)

 	(kombu.transport.virtual.QoS method)

 	ack_emulation (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	ack_log_error() (kombu.message.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.virtual.Message method)

 	acknowledged (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	acquire() (kombu.asynchronous.semaphore.LaxBoundedSemaphore method)

 	(kombu.connection.ChannelPool method)

 	(kombu.connection.ConnectionPool method)

 	(kombu.resource.Resource method)

 	active_queues (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	add() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.utils.limits.TokenBucket method)

 	add_consumer() (kombu.compat.ConsumerSet method)

 	add_consumer_from_dict() (kombu.compat.ConsumerSet method)

 	add_permission() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	add_queue() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	add_reader() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	add_request() (kombu.asynchronous.http.curl.CurlClient method)

 	add_writer() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	adjust() (kombu.clocks.LamportClock method)

 	after_reply_message_received() (kombu.transport.memory.Channel method)

 	(kombu.transport.memory.Transport.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.pyro.Channel method)

 	(kombu.transport.pyro.Transport.Channel method)

 	alias (kombu.Queue attribute)

 	annotate() (kombu.log.LogMixin method)

 	append() (kombu.five.array method)

 	(kombu.five.UserList method)

 	(kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	
 	apply_entry() (kombu.asynchronous.timer.Timer method)

 	args (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

 	(kombu.compat.Consumer.ContentDisallowed attribute)

 	(kombu.compat.ConsumerSet.ContentDisallowed attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message.MessageStateError attribute)

 	(kombu.transport.virtual.Message.MessageStateError attribute)

 	arguments (kombu.Exchange attribute)

 	array (class in kombu.five)

 	as_dict() (kombu.Queue method)

 	as_uri() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	as_url() (in module kombu.utils.url)

 	async_pool (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	AsyncConnection (class in kombu.asynchronous.aws.connection)

 	AsyncHTTPSConnection (class in kombu.asynchronous.aws.connection)

 	AsyncHTTPSConnection.Request (class in kombu.asynchronous.aws.connection)

 	AsyncMessage (class in kombu.asynchronous.aws.sqs.message)

 	AsyncQueue (class in kombu.asynchronous.aws.sqs.queue)

 	AsyncRawMessage (class in kombu.asynchronous.aws.sqs.message)

 	AsyncSQSConnection (class in kombu.asynchronous.aws.sqs.connection)

 	asynsqs (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	attrs (kombu.common.Broadcast attribute)

 	(kombu.Exchange attribute)

 	(kombu.Queue attribute)

 	auth_mode (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	auth_password (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	auth_username (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	auto_declare (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.Producer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.compat.Publisher attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	auto_delete (kombu.compat.Consumer attribute)

 	(kombu.Exchange attribute), [1]

 	(kombu.Queue attribute), [1]

 	(kombu.compat.Publisher attribute)

 	autoretry() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

B

 	
 	backend (kombu.compat.Publisher attribute)

 	BaseAsyncMessage (class in kombu.asynchronous.aws.sqs.message)

 	basic_ack() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.SLMQ.Channel method)

 	(kombu.transport.SLMQ.Transport.Channel method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_cancel() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.SLMQ.Channel method)

 	(kombu.transport.SLMQ.Transport.Channel method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_consume() (kombu.transport.azurestoragequeues.Channel method)

 	(kombu.transport.SLMQ.Channel method)

 	(kombu.transport.SLMQ.Transport.Channel method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.azurestoragequeues.Transport.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_get() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_publish() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_publish_confirm() (kombu.transport.pyamqp.Connection.Channel method)

 	basic_qos() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	
 	basic_recover() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	basic_recover_async() (kombu.transport.pyamqp.Connection.Channel method)

 	basic_reject() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	bind() (kombu.abstract.MaybeChannelBound method)

 	(kombu.Queue method)

 	bind_to() (kombu.Exchange method)

 	(kombu.Queue method)

 	binding() (kombu.Exchange method)

 	binding_arguments (kombu.Queue attribute)

 	binding_declare() (kombu.transport.virtual.BrokerState method)

 	binding_delete() (kombu.transport.virtual.BrokerState method)

 	bindings (kombu.transport.virtual.BrokerState attribute)

 	blocking_read() (kombu.transport.pyamqp.Connection method)

 	body (kombu.asynchronous.aws.connection.AsyncHTTPSConnection attribute)

 	(kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.Response attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	(kombu.asynchronous.http.base.Response attribute)

 	(kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	body_encoding (kombu.transport.qpid.Channel attribute)

 	(kombu.transport.qpid.Connection.Channel attribute)

 	(kombu.transport.qpid.Transport.Connection.Channel attribute)

 	Broadcast (class in kombu.common)

 	broadcast (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	broadcast_collection (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	BrokerState (class in kombu.transport.virtual)

 	buffer (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	buffer_info() (kombu.five.array method)

 	buffer_t (class in kombu.five)

 	bytes_if_py2() (in module kombu.five)

 	bytes_recv (kombu.transport.pyamqp.Connection attribute)

 	bytes_sent (kombu.transport.pyamqp.Connection attribute)

 	bytes_t (in module kombu.five)

 	bytes_to_str() (in module kombu.utils.encoding)

 	byteswap() (kombu.five.array method)

C

 	
 	ca_certs (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	cached_property (class in kombu.utils.objects)

 	calc_queue_size (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	call() (kombu.pidbox.Mailbox method)

 	call_after() (kombu.asynchronous.timer.Timer method)

 	call_at() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.asynchronous.timer.Timer method)

 	call_later() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	call_repeatedly() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.asynchronous.timer.Timer method)

 	call_soon() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	Callable (class in kombu.five)

 	callback_for() (in module kombu.asynchronous.debug)

 	callbacks (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	can_cache_declaration (kombu.abstract.MaybeChannelBound attribute)

 	(kombu.Exchange attribute)

 	(kombu.Queue attribute)

 	can_consume() (kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	(kombu.utils.limits.TokenBucket method)

 	can_consume_max_estimate() (kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	can_parse_url (kombu.transport.mongodb.Transport attribute)

 	cancel() (kombu.asynchronous.timer.Entry method)

 	(kombu.Consumer method)

 	(kombu.Queue method)

 	(kombu.asynchronous.timer.Timer method)

 	(kombu.asynchronous.timer.Timer.Entry method)

 	(kombu.compat.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	cancel_by_queue() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	canceled (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

 	cancelled (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

 	canonical_queue_name() (kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	capacity (kombu.utils.limits.TokenBucket attribute)

 	capped_queue_size (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	cast() (kombu.pidbox.Mailbox method)

 	change_message_visibility() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	change_message_visibility_batch() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	Channel (class in kombu.transport.azureservicebus)

 	(class in kombu.transport.SLMQ)

 	(class in kombu.transport.SQS)

 	(class in kombu.transport.azurestoragequeues)

 	(class in kombu.transport.consul)

 	(class in kombu.transport.etcd)

 	(class in kombu.transport.filesystem)

 	(class in kombu.transport.memory)

 	(class in kombu.transport.mongodb)

 	(class in kombu.transport.pyamqp)

 	(class in kombu.transport.pyro)

 	(class in kombu.transport.qpid)

 	(class in kombu.transport.redis)

 	(class in kombu.transport.virtual)

 	(class in kombu.transport.zookeeper)

 	channel (kombu.abstract.MaybeChannelBound attribute)

 	(kombu.Consumer attribute)

 	(kombu.Exchange attribute)

 	(kombu.Producer attribute)

 	(kombu.Queue attribute)

 	(kombu.compat.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.compat.Publisher attribute)

 	(kombu.message.Message attribute)

 	(kombu.pidbox.Node attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	(kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	Channel (kombu.transport.virtual.Transport attribute)

 	channel() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Connection method)

 	Channel.Message (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Channel.QoS (class in kombu.transport.qpid)

 	(class in kombu.transport.redis)

 	channel_errors (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.mixins.ConsumerMixin attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.base.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	ChannelLimitExceeded

 	ChannelPool (class in kombu.connection)

 	ChannelPool() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	clear() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.asynchronous.semaphore.LaxBoundedSemaphore method)

 	(kombu.asynchronous.timer.Timer method)

 	(kombu.five.UserList method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	(kombu.transport.virtual.BrokerState method)

 	clear_pending() (kombu.utils.limits.TokenBucket method)

 	client (kombu.transport.base.Transport attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	(kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.zookeeper.Channel attribute)

 	(kombu.transport.zookeeper.Transport.Channel attribute)

 	Client() (in module kombu.asynchronous.http)

 	client_cert (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	client_heartbeat (kombu.transport.pyamqp.Connection attribute)

 	client_key (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	clock (kombu.clocks.timetuple attribute)

 	clone() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	close() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	(kombu.Connection method)

 	(kombu.asynchronous.Hub method)

 	(kombu.asynchronous.http.curl.CurlClient method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.compat.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	(kombu.compat.Publisher method)

 	(kombu.connection.Connection method)

 	(kombu.five.StringIO method)

 	(kombu.pools.ProducerPool.Producer method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.memory.Channel method)

 	(kombu.transport.memory.Transport.Channel method)

 	(kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.pyro.Channel method)

 	(kombu.transport.pyro.Transport.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	(kombu.transport.virtual.Channel method)

 	(kombu.utils.scheduling.FairCycle method)

 	
 	close_after_fork (kombu.pools.ProducerPool attribute)

 	(kombu.resource.Resource attribute)

 	close_channel() (kombu.transport.base.Transport method)

 	(kombu.transport.qpid.Connection method)

 	(kombu.transport.qpid.Transport.Connection method)

 	(kombu.transport.virtual.Transport method)

 	close_connection() (kombu.transport.base.Transport method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.virtual.Transport method)

 	close_resource() (kombu.pools.ProducerPool method)

 	(kombu.resource.Resource method)

 	closed (kombu.five.StringIO attribute)

 	code (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	codecs (kombu.transport.qpid.Channel attribute)

 	(kombu.transport.qpid.Connection.Channel attribute)

 	(kombu.transport.qpid.Transport.Connection.Channel attribute)

 	collect() (kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	collect_replies() (in module kombu.common)

 	collect_resource() (kombu.resource.Resource method)

 	complete (kombu.asynchronous.http.base.Headers attribute)

 	(kombu.asynchronous.http.Headers attribute)

 	completes_cycle() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	compress() (in module kombu.compression)

 	compression (kombu.compat.Publisher attribute)

 	(kombu.Producer attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	confirm_select() (kombu.transport.pyamqp.Connection.Channel method)

 	conn_or_acquire() (kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	connect() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	(kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Connection method)

 	connect_max_retries (kombu.mixins.ConsumerMixin attribute)

 	connect_sqs() (in module kombu.asynchronous.aws)

 	connect_timeout (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.Connection attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	connected (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	Connection (class in kombu)

 	(class in kombu.connection)

 	(class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	connection (kombu.compat.Consumer attribute)

 	(kombu.Connection attribute)

 	(kombu.Consumer attribute)

 	(kombu.Producer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.compat.Publisher attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.pidbox.Mailbox attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	Connection.Channel (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Connection.Channel.Message (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Connection.Channel.Message.MessageStateError

 	Connection.Channel.QoS (class in kombu.transport.qpid)

 	connection_class (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	connection_errors (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.mixins.ConsumerMixin attribute)

 	(kombu.transport.SLMQ.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.base.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	ConnectionLimitExceeded

 	ConnectionPool (class in kombu.connection)

 	conninfo (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	consume() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.Queue method)

 	(kombu.compat.ConsumerSet method)

 	(kombu.mixins.ConsumerMixin method)

 	(kombu.utils.scheduling.round_robin_cycle method)

 	(kombu.utils.scheduling.sorted_cycle method)

 	Consumer (class in kombu)

 	(class in kombu.compat)

 	consumer (kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	Consumer() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.mixins.ConsumerMixin method)

 	(kombu.pidbox.Node method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	Consumer.ContentDisallowed

 	consumer_arguments (kombu.Queue attribute)

 	consumer_context() (kombu.mixins.ConsumerMixin method)

 	ConsumerMixin (class in kombu.mixins)

 	ConsumerProducerMixin (class in kombu.mixins)

 	ConsumerSet (class in kombu.compat)

 	ConsumerSet.ContentDisallowed

 	consuming_from() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	content (kombu.asynchronous.http.base.Response attribute)

 	(kombu.asynchronous.http.Response attribute)

 	content_encoding (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	content_type (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	copy() (kombu.five.Counter method)

 	(kombu.five.UserDict method)

 	(kombu.five.UserList method)

 	coro() (in module kombu.utils.compat)

 	count() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.five.UserList method)

 	(kombu.five.array method)

 	(kombu.five.range method)

 	count_slow() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	Counter (class in kombu.five)

 	create() (kombu.pools.PoolGroup method)

 	create_channel() (kombu.transport.base.Transport method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.virtual.Transport method)

 	create_connection() (kombu.mixins.ConsumerMixin method)

 	create_loop() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	create_producer() (kombu.pools.ProducerPool method)

 	create_queue() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	create_transport() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	critical() (kombu.log.LogMixin method)

 	Curl (kombu.asynchronous.http.curl.CurlClient attribute)

 	CurlClient (class in kombu.asynchronous.http.curl)

 	cycle (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	Cycle (kombu.transport.virtual.Transport attribute)

 	cycle (kombu.transport.virtual.Transport attribute)

D

 	
 	data_folder_in (kombu.transport.filesystem.Channel attribute)

 	(kombu.transport.filesystem.Transport.Channel attribute)

 	data_folder_out (kombu.transport.filesystem.Channel attribute)

 	(kombu.transport.filesystem.Transport.Channel attribute)

 	debug() (kombu.log.LogMixin method)

 	declare() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.Exchange method)

 	(kombu.Producer method)

 	(kombu.Queue method)

 	(kombu.compat.ConsumerSet method)

 	(kombu.compat.Publisher method)

 	(kombu.pools.ProducerPool.Producer method)

 	declared_entities (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	decode() (kombu.message.Message method)

 	(kombu.transport.base.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.virtual.Message method)

 	decode_body() (kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	decompress() (in module kombu.compression)

 	default() (kombu.utils.json.JSONEncoder method)

 	default_channel (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	default_connection_params (kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	default_database (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	default_encode() (in module kombu.utils.encoding)

 	default_encoding() (in module kombu.utils.encoding)

 	default_encoding_file (in module kombu.utils.encoding)

 	default_hostname (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	default_port (kombu.transport.azureservicebus.Transport attribute)

 	(kombu.transport.SLMQ.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.azurestoragequeues.Transport attribute)

 	(kombu.transport.base.Transport attribute)

 	(kombu.transport.consul.Transport attribute)

 	(kombu.transport.etcd.Transport attribute)

 	(kombu.transport.filesystem.Transport attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.pyro.Transport attribute)

 	(kombu.transport.redis.Transport attribute)

 	(kombu.transport.virtual.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	default_ports (kombu.asynchronous.aws.connection.AsyncHTTPSConnection attribute)

 	default_region (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	default_ssl_port (kombu.transport.pyamqp.Transport attribute)

 	DEFAULT_TRANSPORT (in module kombu.transport)

 	default_visibility_timeout (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	default_wait_time_seconds (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	delete() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.Exchange method)

 	(kombu.Queue method)

 	delete_message() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.transport.SLMQ.Channel method)

 	(kombu.transport.SLMQ.Transport.Channel method)

 	delete_message_batch() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	delete_message_from_handle() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	delete_queue() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	deleter() (kombu.utils.objects.cached_property method)

 	deliver() (kombu.transport.virtual.exchange.DirectExchange method)

 	(kombu.transport.virtual.exchange.FanoutExchange method)

 	(kombu.transport.virtual.exchange.TopicExchange method)

 	
 	delivery_info (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	delivery_mode (kombu.Exchange attribute), [1]

 	delivery_tag (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	detect_environment() (in module kombu.utils.compat)

 	dictfilter() (in module kombu.utils.functional)

 	DirectExchange (class in kombu.transport.virtual.exchange)

 	disable_insecure_serializers() (in module kombu)

 	discard_all() (kombu.compat.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	dispatch() (kombu.pidbox.Node method)

 	dispatch_from_message() (kombu.pidbox.Node method)

 	dispatch_method() (kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	DjangoPromise (class in kombu.utils.json)

 	do_restore (kombu.transport.memory.Channel attribute)

 	(kombu.transport.memory.Transport.Channel attribute)

 	(kombu.transport.virtual.Channel attribute)

 	domain_format (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	drain_consumer() (in module kombu.common)

 	drain_events() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.base.Transport method)

 	(kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.virtual.Channel method)

 	(kombu.transport.virtual.Transport method)

 	driver_name (kombu.transport.consul.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.etcd.Transport attribute)

 	(kombu.transport.filesystem.Transport attribute)

 	(kombu.transport.memory.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.pyro.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.redis.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	driver_type (kombu.transport.consul.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.etcd.Transport attribute)

 	(kombu.transport.filesystem.Transport attribute)

 	(kombu.transport.memory.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.pyro.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.redis.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	driver_version() (kombu.transport.consul.Transport method)

 	(kombu.transport.etcd.Transport method)

 	(kombu.transport.filesystem.Transport method)

 	(kombu.transport.memory.Transport method)

 	(kombu.transport.mongodb.Transport method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.pyro.Transport method)

 	(kombu.transport.redis.Transport method)

 	(kombu.transport.zookeeper.Transport method)

 	DummyLock (class in kombu.asynchronous.semaphore)

 	dump() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	dumps() (in module kombu.serialization)

 	(in module kombu.utils.json)

 	durable (kombu.compat.Consumer attribute)

 	(kombu.Exchange attribute), [1]

 	(kombu.Queue attribute), [1]

 	(kombu.compat.Publisher attribute)

E

 	
 	effective_url (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	elements() (kombu.five.Counter method)

 	emergency_dump_state() (in module kombu.utils.div)

 	Empty

 	empty() (kombu.five.Queue method)

 	enable_insecure_serializers() (in module kombu)

 	encode() (kombu.asynchronous.aws.sqs.message.AsyncMessage method)

 	encode_body() (kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	encoders() (in module kombu.compression)

 	endheaders() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	endpoint_url (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	ensure() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	ensure_bytes() (in module kombu.utils.encoding)

 	ensure_connection() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	enter_after() (kombu.asynchronous.timer.Timer method)

 	enter_at() (kombu.asynchronous.timer.Timer method)

 	entity_name() (kombu.transport.azureservicebus.Channel method)

 	(kombu.transport.SLMQ.Channel method)

 	(kombu.transport.SLMQ.Transport.Channel method)

 	(kombu.transport.SQS.Channel method)

 	(kombu.transport.SQS.Transport.Channel method)

 	(kombu.transport.azureservicebus.Transport.Channel method)

 	(kombu.transport.azurestoragequeues.Channel method)

 	(kombu.transport.azurestoragequeues.Transport.Channel method)

 	Entry (class in kombu.asynchronous.timer)

 	entrypoints() (in module kombu.utils.compat)

 	
 environment variable

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

 	KOMBU_LOG_CHANNEL

 	KOMBU_LOG_CONNECTION, [1]

 	KOMBU_LOG_DEBUG, [1], [2]

 	PICKLE_PROTOCOL, [1]

 	URL

 	VHOST

 	eqhash() (in module kombu.utils.collections)

 	EqualityDict (class in kombu.utils.collections)

 	equivalent() (kombu.transport.virtual.exchange.ExchangeType method)

 	ERR (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	error (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	
 	error() (kombu.log.LogMixin method)

 	errors (kombu.message.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	escape_regex() (in module kombu.utils.text)

 	establish_connection() (kombu.mixins.ConsumerMixin method)

 	(kombu.transport.base.Transport method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.virtual.Transport method)

 	evaluate() (kombu.utils.functional.lazy method)

 	eventloop() (in module kombu.common)

 	events (kombu.transport.memory.Channel attribute)

 	(kombu.transport.memory.Transport.Channel attribute)

 	Exchange (class in kombu)

 	exchange (kombu.compat.Consumer attribute)

 	(kombu.Producer attribute)

 	(kombu.Queue attribute), [1]

 	(kombu.compat.Publisher attribute)

 	(kombu.pidbox.Mailbox attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	exchange_bind() (kombu.transport.pyamqp.Connection.Channel method)

 	exchange_declare() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	exchange_delete() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	exchange_opts (kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	exchange_type (kombu.compat.Consumer attribute)

 	(kombu.compat.Publisher attribute)

 	exchange_types (kombu.transport.virtual.Channel attribute)

 	exchange_unbind() (kombu.transport.pyamqp.Connection.Channel method)

 	exchanges (kombu.transport.virtual.BrokerState attribute)

 	ExchangeType (class in kombu.transport.virtual.exchange)

 	exclusive (kombu.compat.Consumer attribute)

 	(kombu.Queue attribute), [1]

 	expected_time() (kombu.utils.limits.TokenBucket method)

 	expires (kombu.Queue attribute)

 	extend() (kombu.five.array method)

 	(kombu.five.UserList method)

 	extra_context() (kombu.mixins.ConsumerMixin method)

F

 	
 	failover_strategies (kombu.connection.Connection attribute)

 	failover_strategy (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	FairCycle (class in kombu.utils.scheduling)

 	fanout_patterns (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	fanout_prefix (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	FanoutExchange (class in kombu.transport.virtual.exchange)

 	fetch() (kombu.compat.Consumer method)

 	fileno() (in module kombu.utils.compat)

 	fill_rate (kombu.utils.limits.TokenBucket attribute)

 	fire_timers() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	flow() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	fmatch_best() (in module kombu.utils.text)

 	fmatch_iter() (in module kombu.utils.text)

 	follow_redirects (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	
 	force_close_all() (kombu.connection.ChannelPool method)

 	(kombu.connection.ConnectionPool method)

 	(kombu.resource.Resource method)

 	format_d() (in module kombu.five)

 	forward() (kombu.clocks.LamportClock method)

 	frame_writer (kombu.transport.pyamqp.Connection attribute)

 	from_dict() (kombu.Queue class method)

 	from_transport_options (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	(kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	from_utf8() (in module kombu.utils.encoding)

 	frombytes() (kombu.five.array method)

 	fromfile() (kombu.five.array method)

 	fromkeys() (kombu.five.Counter class method)

 	(kombu.five.UserDict class method)

 	fromlist() (kombu.five.array method)

 	fromstring() (kombu.five.array method)

 	fromunicode() (kombu.five.array method)

 	Full

 	full() (kombu.five.Queue method)

 	fun (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

G

 	
 	get() (kombu.five.Mapping method)

 	(kombu.Queue method)

 	(kombu.five.Queue method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	(kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	(kombu.utils.scheduling.FairCycle method)

 	get_all_queues() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	get_attributes() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	get_bindings() (kombu.transport.pyamqp.Connection.Channel method)

 	get_consumers() (kombu.mixins.ConsumerMixin method)

 	get_dead_letter_source_queues() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	get_decoder() (in module kombu.compression)

 	get_default_encoding_file() (in module kombu.utils.encoding)

 	get_encoder() (in module kombu.compression)

 	get_event_loop() (in module kombu.asynchronous)

 	(in module kombu.asynchronous.hub)

 	get_heartbeat_interval() (kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Transport method)

 	get_http_connection() (kombu.asynchronous.aws.connection.AsyncConnection method)

 	get_limit() (in module kombu.pools)

 	get_logger() (kombu.log.LogMixin method)

 	get_loglevel() (in module kombu.log)

 	(kombu.log.LogMixin method)

 	get_manager() (in module kombu.utils.amq_manager)

 	(kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Transport method)

 	
 	get_messages() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	get_now() (kombu.transport.mongodb.Channel method)

 	(kombu.transport.mongodb.Transport.Channel method)

 	get_nowait() (kombu.five.Queue method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	get_qpid_connection() (kombu.transport.qpid.Connection method)

 	(kombu.transport.qpid.Transport.Connection method)

 	get_queue() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.pidbox.Mailbox method)

 	get_queue_attributes() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	get_queue_url() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	get_reply_queue() (kombu.pidbox.Mailbox method)

 	get_table() (kombu.transport.mongodb.Channel method)

 	(kombu.transport.mongodb.Transport.Channel method)

 	(kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	(kombu.transport.virtual.Channel method)

 	get_timeout() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	get_transport_cls() (in module kombu.transport)

 	(kombu.Connection method)

 	(kombu.connection.Connection method)

 	getfullargspec() (in module kombu.five)

 	getrequest() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	getresponse() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	getvalue() (kombu.five.StringIO method)

 	grow() (kombu.asynchronous.semaphore.LaxBoundedSemaphore method)

H

 	
 	handle() (kombu.pidbox.Node method)

 	handle_call() (kombu.pidbox.Node method)

 	handle_cast() (kombu.pidbox.Node method)

 	handle_error() (kombu.asynchronous.timer.Timer method)

 	handle_message() (kombu.pidbox.Node method)

 	handler() (kombu.pidbox.Node method)

 	handlers (kombu.pidbox.Node attribute)

 	has_binding() (kombu.transport.virtual.BrokerState method)

 	HashedSeq (class in kombu.utils.collections)

 	hashvalue (kombu.utils.collections.HashedSeq attribute)

 	Headers (class in kombu.asynchronous.http)

 	(class in kombu.asynchronous.http.base)

 	headers (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.Response attribute), [1]

 	(kombu.asynchronous.http.base.Request attribute)

 	(kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	
 	heartbeat (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	heartbeat_check() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Transport method)

 	heartbeat_tick() (kombu.transport.pyamqp.Connection method)

 	host (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	hostname (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.pidbox.Node attribute)

 	(kombu.utils.url.urlparts attribute)

 	Hub (class in kombu.asynchronous)

 	(class in kombu.asynchronous.hub)

I

 	
 	id (kombu.clocks.timetuple attribute)

 	implements (kombu.transport.etcd.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.memory.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.redis.Transport attribute)

 	incr() (kombu.utils.functional.LRUCache method)

 	index (kombu.transport.consul.Channel attribute)

 	(kombu.transport.consul.Transport.Channel attribute)

 	(kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	index() (kombu.five.array method)

 	(kombu.five.UserList method)

 	(kombu.five.range method)

 	info() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.log.LogMixin method)

 	insert() (kombu.five.array method)

 	(kombu.five.UserList method)

 	
 	insured() (in module kombu.common)

 	is_alive() (kombu.transport.pyamqp.Connection method)

 	is_bound (kombu.abstract.MaybeChannelBound attribute)

 	is_enabled_for() (kombu.log.LogMixin method)

 	is_evented (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	is_list() (in module kombu.utils.functional)

 	is_secure (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	items() (in module kombu.five)

 	(kombu.five.Mapping method)

 	(kombu.utils.functional.LRUCache method)

 	itemsize (kombu.five.array attribute)

 	Iterable (class in kombu.five)

 	iterconsume() (kombu.compat.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	iteritems() (kombu.utils.functional.LRUCache method)

 	iterkeys() (kombu.utils.functional.LRUCache method)

 	itermessages() (in module kombu.common)

 	iterqueue() (kombu.compat.Consumer method)

 	itervalues() (kombu.utils.functional.LRUCache method)

J

 	
 	join() (kombu.five.Queue method)

 	
 	JSONEncoder (class in kombu.utils.json)

K

 	
 	key_to_pattern() (kombu.transport.virtual.exchange.TopicExchange method)

 	keyprefix_fanout (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	keyprefix_queue (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	keys() (in module kombu.five)

 	(kombu.five.Mapping method)

 	(kombu.utils.functional.LRUCache method)

 	kombu (module)

 	kombu.abstract (module)

 	kombu.asynchronous (module)

 	kombu.asynchronous.aws (module)

 	kombu.asynchronous.aws.connection (module)

 	kombu.asynchronous.aws.sqs (module)

 	kombu.asynchronous.aws.sqs.connection (module)

 	kombu.asynchronous.aws.sqs.message (module)

 	kombu.asynchronous.aws.sqs.queue (module)

 	kombu.asynchronous.debug (module)

 	kombu.asynchronous.http (module)

 	kombu.asynchronous.http.base (module)

 	kombu.asynchronous.http.curl (module)

 	kombu.asynchronous.hub (module)

 	kombu.asynchronous.semaphore (module)

 	kombu.asynchronous.timer (module)

 	kombu.clocks (module)

 	kombu.common (module)

 	kombu.compat (module)

 	kombu.compression (module)

 	kombu.connection (module)

 	kombu.exceptions (module)

 	kombu.five (module)

 	kombu.log (module)

 	kombu.matcher (module)

 	kombu.message (module)

 	kombu.mixins (module)

 	kombu.pidbox (module)

 	kombu.pools (module)

 	kombu.resource (module)

 	kombu.serialization (module)

 	kombu.simple (module)

 	
 	kombu.transport (module)

 	kombu.transport.azureservicebus (module)

 	kombu.transport.azurestoragequeues (module)

 	kombu.transport.base (module)

 	kombu.transport.consul (module)

 	kombu.transport.etcd (module)

 	kombu.transport.filesystem (module)

 	kombu.transport.memory (module)

 	kombu.transport.mongodb (module)

 	kombu.transport.pyamqp (module)

 	kombu.transport.pyro (module)

 	kombu.transport.qpid (module)

 	kombu.transport.redis (module)

 	kombu.transport.SLMQ (module)

 	kombu.transport.SQS (module)

 	kombu.transport.virtual (module)

 	kombu.transport.virtual.exchange (module)

 	kombu.transport.zookeeper (module)

 	kombu.utils.amq_manager (module)

 	kombu.utils.collections (module)

 	kombu.utils.compat (module)

 	kombu.utils.debug (module)

 	kombu.utils.div (module)

 	kombu.utils.encoding (module)

 	kombu.utils.eventio (module)

 	kombu.utils.functional (module)

 	kombu.utils.imports (module)

 	kombu.utils.json (module)

 	kombu.utils.limits (module)

 	kombu.utils.objects (module)

 	kombu.utils.scheduling (module)

 	kombu.utils.text (module)

 	kombu.utils.time (module)

 	kombu.utils.url (module)

 	kombu.utils.uuid (module)

 	KOMBU_LOG_CHANNEL

 	KOMBU_LOG_CONNECTION, [1]

 	KOMBU_LOG_DEBUG, [1], [2]

 	kwargs (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

L

 	
 	LamportClock (class in kombu.clocks)

 	last_heartbeat_received (kombu.transport.pyamqp.Connection attribute)

 	last_heartbeat_sent (kombu.transport.pyamqp.Connection attribute)

 	LaxBoundedSemaphore (class in kombu.asynchronous.semaphore)

 	lazy (class in kombu.utils.functional)

 	library_properties (kombu.transport.pyamqp.Connection attribute)

 	LifoQueue (class in kombu.five)

 	(class in kombu.resource)

 	limit (kombu.resource.Resource attribute)

 	LimitExceeded

 	(kombu.connection.ChannelPool attribute)

 	(kombu.connection.ConnectionPool attribute)

 	line_buffering (kombu.five.StringIO attribute)

 	list_first() (in module kombu.asynchronous.aws.sqs.queue)

 	listen() (kombu.pidbox.Node method)

 	load() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	load_from_file() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	load_from_filename() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	load_from_s3() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	loads() (in module kombu.serialization)

 	(in module kombu.utils.json)

 	
 	lock_name (kombu.transport.consul.Channel attribute)

 	(kombu.transport.consul.Transport.Channel attribute)

 	lock_ttl (kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	lock_value (kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	log() (kombu.log.LogMixin method)

 	logger (kombu.log.LogMixin attribute)

 	logger_name (kombu.log.LogMixin attribute)

 	login_method (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	LogMixin (class in kombu.log)

 	Logwrapped (class in kombu.utils.debug)

 	long_t (in module kombu.five)

 	lookup() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.transport.virtual.exchange.DirectExchange method)

 	(kombu.transport.virtual.exchange.ExchangeType method)

 	(kombu.transport.virtual.exchange.FanoutExchange method)

 	(kombu.transport.virtual.exchange.TopicExchange method)

 	loop (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	LRUCache (class in kombu.utils.functional)

M

 	
 	Mailbox (class in kombu.pidbox)

 	mailbox (kombu.pidbox.Node attribute)

 	manager (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	map (class in kombu.five)

 	Mapping (class in kombu.five)

 	match (in module kombu.matcher)

 	match() (kombu.matcher.MatcherRegistry method)

 	matcher_pattern_first (kombu.matcher.MatcherRegistry attribute)

 	MatcherNotInstalled

 	MatcherRegistry (class in kombu.matcher)

 	MatcherRegistry.MatcherNotInstalled

 	max_connections (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	max_length (kombu.Queue attribute)

 	max_length_bytes (kombu.Queue attribute)

 	max_priority (kombu.Queue attribute)

 	max_redirects (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	maybe_bind() (kombu.abstract.MaybeChannelBound method)

 	(kombu.Exchange method)

 	(kombu.Queue method)

 	maybe_close_channel() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	maybe_conn_error() (kombu.mixins.ConsumerMixin method)

 	maybe_declare() (in module kombu.common)

 	(kombu.Producer method)

 	(kombu.compat.Publisher method)

 	(kombu.pools.ProducerPool.Producer method)

 	maybe_evaluate() (in module kombu.utils.functional)

 	maybe_fileno() (in module kombu.utils.compat)

 	
 	maybe_list() (in module kombu.utils.functional)

 	maybe_s_to_ms() (in module kombu.utils.time)

 	maybe_sanitize_url() (in module kombu.utils.url)

 	maybe_switch_next() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	MaybeChannelBound (class in kombu.abstract)

 	memoize() (in module kombu.utils.functional)

 	Message (class in kombu.message)

 	(class in kombu.transport.base)

 	(class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	(class in kombu.transport.virtual)

 	(kombu.transport.virtual.Channel attribute)

 	Message() (kombu.Exchange method)

 	Message.MessageStateError, [1]

 	message_to_python() (kombu.transport.pyamqp.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.pyamqp.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	message_ttl (kombu.Queue attribute)

 	messages (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	messages_collection (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	MessageStateError

 	method (kombu.asynchronous.aws.connection.AsyncHTTPSConnection attribute)

 	(kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	module_name_t (in module kombu.five)

 	monotonic() (in module kombu.five)

 	most_common() (kombu.five.Counter method)

 	multi_call() (kombu.pidbox.Mailbox method)

N

 	
 	name (kombu.Exchange attribute), [1]

 	(kombu.Queue attribute), [1]

 	namespace (kombu.pidbox.Mailbox attribute)

 	negotiate_capabilities (kombu.transport.pyamqp.Connection attribute)

 	nested() (in module kombu.utils.compat)

 	network_interface (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	new() (kombu.pools.ProducerPool method)

 	newlines (kombu.five.StringIO attribute)

 	nextfun() (in module kombu.five)

 	no_ack (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.Queue attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	
 	no_ack_consumers (kombu.transport.pyamqp.Connection.Channel attribute)

 	no_declare (kombu.Exchange attribute), [1]

 	(kombu.Queue attribute)

 	Node (class in kombu.pidbox)

 	Node() (kombu.pidbox.Mailbox method)

 	NotBoundError

O

 	
 	obj (kombu.clocks.timetuple attribute)

 	on_callback_error() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	on_close (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	on_connection_error() (kombu.mixins.ConsumerMixin method)

 	on_connection_revived() (kombu.mixins.ConsumerMixin method)

 	on_consume_end() (kombu.mixins.ConsumerMixin method)

 	(kombu.mixins.ConsumerProducerMixin method)

 	on_consume_ready() (kombu.mixins.ConsumerMixin method)

 	on_declared (kombu.Queue attribute)

 	on_decode_error (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	on_decode_error() (kombu.mixins.ConsumerMixin method)

 	on_error (kombu.asynchronous.timer.Timer attribute)

 	on_header (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	on_inbound_frame (kombu.transport.pyamqp.Connection attribute)

 	on_inbound_method() (kombu.transport.pyamqp.Connection method)

 	on_iteration() (kombu.mixins.ConsumerMixin method)

 	
 	on_message (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	on_prepare (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	on_readable() (kombu.asynchronous.http.curl.CurlClient method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.redis.Transport method)

 	on_ready (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	on_return (kombu.compat.Publisher attribute)

 	(kombu.Producer attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	on_stream (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	on_timeout (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	on_writable() (kombu.asynchronous.http.curl.CurlClient method)

 	open() (kombu.transport.pyamqp.Connection.Channel method)

P

 	
 	parse_url() (in module kombu.utils.url)

 	passive (kombu.Exchange attribute)

 	password (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.utils.url.urlparts attribute)

 	path (kombu.asynchronous.aws.connection.AsyncHTTPSConnection attribute)

 	(kombu.utils.url.urlparts attribute)

 	payload (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	PERSISTENT_DELIVERY_MODE (kombu.Exchange attribute)

 	PICKLE_PROTOCOL, [1]

 	pipe_or_acquire() (kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	poll() (in module kombu.utils.eventio)

 	poller (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	polling_interval (kombu.transport.azureservicebus.Transport attribute)

 	(kombu.transport.SLMQ.Transport attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.azurestoragequeues.Transport attribute)

 	(kombu.transport.etcd.Transport attribute)

 	(kombu.transport.mongodb.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	(kombu.transport.redis.Transport attribute)

 	(kombu.transport.virtual.Transport attribute)

 	(kombu.transport.zookeeper.Transport attribute)

 	pool (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	Pool() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	PoolGroup (class in kombu.pools)

 	pop() (kombu.five.array method)

 	(kombu.five.UserList method)

 	(kombu.utils.limits.TokenBucket method)

 	popitem() (kombu.utils.functional.LRUCache method)

 	port (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.utils.url.urlparts attribute)

 	prefetch_count (kombu.compat.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.transport.virtual.QoS attribute)

 	prefix (kombu.transport.consul.Channel attribute)

 	(kombu.transport.consul.Transport.Channel attribute)

 	(kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	prepare() (kombu.pools.ProducerPool method)

 	(kombu.resource.Resource method)

 	prepare_bind() (kombu.transport.virtual.exchange.ExchangeType method)

 	(kombu.transport.virtual.exchange.TopicExchange method)

 	prepare_message() (kombu.transport.pyamqp.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.pyamqp.Transport.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	
 	prepare_queue_arguments() (kombu.transport.pyamqp.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.pyamqp.Transport.Connection.Channel method)

 	prev_recv (kombu.transport.pyamqp.Connection attribute)

 	prev_sent (kombu.transport.pyamqp.Connection attribute)

 	priority() (kombu.transport.redis.Channel method)

 	(kombu.transport.redis.Transport.Channel method)

 	priority_cycle (class in kombu.utils.scheduling)

 	priority_steps (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	process_next() (kombu.compat.Consumer method)

 	processed_folder (kombu.transport.filesystem.Channel attribute)

 	(kombu.transport.filesystem.Transport.Channel attribute)

 	Producer (class in kombu)

 	producer (kombu.mixins.ConsumerProducerMixin attribute)

 	(kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	Producer() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	producer_connection (kombu.mixins.ConsumerProducerMixin attribute)

 	ProducerPool (class in kombu.pools)

 	ProducerPool.Producer (class in kombu.pools)

 	properties (kombu.message.Message attribute)

 	(kombu.transport.base.Message attribute)

 	(kombu.transport.pyamqp.Connection.Channel.Message attribute)

 	(kombu.transport.virtual.Message attribute)

 	proxy_host (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	proxy_password (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	proxy_port (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	proxy_username (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	publish() (kombu.compat.Publisher method)

 	(kombu.Exchange method)

 	(kombu.Producer method)

 	(kombu.pools.ProducerPool.Producer method)

 	Publisher (class in kombu.compat)

 	purge() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.Queue method)

 	(kombu.compat.ConsumerSet method)

 	put() (kombu.five.Queue method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	put_nowait() (kombu.five.Queue method)

 	putheader() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	putrequest() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	python_2_unicode_compatible() (in module kombu.five)

Q

 	
 	QoS (class in kombu.transport.virtual)

 	qos (kombu.transport.qpid.Channel attribute)

 	(kombu.transport.qpid.Connection.Channel attribute)

 	(kombu.transport.qpid.Transport.Connection.Channel attribute)

 	(kombu.transport.virtual.Channel attribute)

 	qos() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	qos_semantics_matches_spec (kombu.connection.Connection attribute)

 	qos_semantics_matches_spec() (kombu.transport.pyamqp.Transport method)

 	qsize() (kombu.five.Queue method)

 	(kombu.simple.SimpleBuffer method)

 	(kombu.simple.SimpleQueue method)

 	query (kombu.utils.url.urlparts attribute)

 	Queue (class in kombu)

 	(class in kombu.five)

 	queue (kombu.asynchronous.timer.Timer attribute)

 	(kombu.compat.Consumer attribute)

 	(kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	Queue.ContentDisallowed

 	queue_arguments (kombu.Queue attribute)

 	queue_bind() (kombu.Queue method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	queue_bindings() (kombu.transport.virtual.BrokerState method)

 	queue_bindings_delete() (kombu.transport.virtual.BrokerState method)

 	queue_declare() (kombu.Queue method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	queue_delete() (kombu.transport.mongodb.Channel method)

 	(kombu.transport.mongodb.Transport.Channel method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	
 	queue_index (kombu.transport.virtual.BrokerState attribute)

 	queue_name_prefix (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	queue_opts (kombu.simple.SimpleBuffer attribute)

 	(kombu.simple.SimpleQueue attribute)

 	queue_order_strategy (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	queue_purge() (kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

 	queue_service (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	queue_unbind() (kombu.Queue method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	(kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	queues (kombu.compat.Consumer attribute)

 	(kombu.Consumer attribute)

 	(kombu.compat.ConsumerSet attribute)

 	(kombu.transport.memory.Channel attribute)

 	(kombu.transport.memory.Transport.Channel attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	queues() (kombu.transport.pyro.Channel method)

 	(kombu.transport.pyro.Transport.Channel method)

 	queues_collection (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

R

 	
 	raise_for_error() (kombu.asynchronous.http.base.Response method)

 	(kombu.asynchronous.http.Response method)

 	range (class in kombu.five)

 	raw_encode() (in module kombu.serialization)

 	READ (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	read() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.five.StringIO method)

 	readable() (kombu.five.StringIO method)

 	readline() (kombu.five.StringIO method)

 	receive() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	receive_message() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	recover() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	recoverable_channel_errors (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.base.Transport attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	recoverable_connection_errors (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.base.Transport attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	(kombu.transport.pyamqp.Transport attribute)

 	(kombu.transport.qpid.Transport attribute)

 	region (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	regioninfo (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	register (in module kombu.matcher)

 	register() (in module kombu.compression)

 	(in module kombu.matcher)

 	(in module kombu.serialization)

 	(kombu.matcher.MatcherRegistry method)

 	register_callback() (kombu.compat.Consumer method)

 	(kombu.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	register_glob() (in module kombu.matcher)

 	register_group() (in module kombu.pools)

 	register_pcre() (in module kombu.matcher)

 	register_with_event_loop() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	(kombu.transport.pyamqp.Transport method)

 	(kombu.transport.qpid.Transport method)

 	(kombu.transport.redis.Transport method)

 	registry (in module kombu.matcher)

 	(in module kombu.serialization)

 	reject() (kombu.message.Message method)

 	(kombu.transport.base.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.qpid.Channel.QoS method)

 	(kombu.transport.qpid.Connection.Channel.QoS method)

 	(kombu.transport.qpid.Transport.Connection.Channel.QoS method)

 	(kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	(kombu.transport.virtual.Message method)

 	(kombu.transport.virtual.QoS method)

 	reject_log_error() (kombu.message.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.virtual.Message method)

 	release() (kombu.asynchronous.semaphore.LaxBoundedSemaphore method)

 	(kombu.Connection method)

 	(kombu.compat.Publisher method)

 	(kombu.connection.ChannelPool method)

 	(kombu.connection.Connection method)

 	(kombu.connection.ConnectionPool method)

 	(kombu.pools.ProducerPool method)

 	(kombu.pools.ProducerPool.Producer method)

 	(kombu.resource.Resource method)

 	release_resource() (kombu.resource.Resource method)

 	reload() (in module kombu.five)

 	remove() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.five.UserList method)

 	(kombu.five.array method)

 	remove_permission() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	(kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	
 	remove_reader() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	remove_writer() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	replace() (kombu.resource.Resource method)

 	reply() (kombu.pidbox.Node method)

 	reply_exchange (kombu.pidbox.Mailbox attribute)

 	repr_active() (in module kombu.asynchronous.debug)

 	(kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	repr_events() (in module kombu.asynchronous.debug)

 	(kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	repr_flag() (in module kombu.asynchronous.debug)

 	repr_readers() (in module kombu.asynchronous.debug)

 	repr_writers() (in module kombu.asynchronous.debug)

 	Request (class in kombu.asynchronous.http)

 	(class in kombu.asynchronous.http.base)

 	request (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	request() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	request_timeout (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	requeue() (kombu.message.Message method)

 	(kombu.transport.base.Message method)

 	(kombu.transport.pyamqp.Connection.Channel.Message method)

 	(kombu.transport.virtual.Message method)

 	reraise() (in module kombu.five)

 	reset() (in module kombu.pools)

 	(kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	resize() (kombu.resource.Resource method)

 	resolve_aliases (kombu.connection.Connection attribute)

 	resolve_transport() (in module kombu.transport)

 	Resource (class in kombu.resource)

 	Resource.LimitExceeded

 	Response (class in kombu.asynchronous.http)

 	(class in kombu.asynchronous.http.base)

 	(kombu.asynchronous.aws.connection.AsyncHTTPSConnection attribute)

 	restart_limit (kombu.mixins.ConsumerMixin attribute)

 	restore_at_shutdown (kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

 	(kombu.transport.virtual.QoS attribute)

 	restore_by_tag() (kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	restore_unacked() (kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	restore_unacked_once() (kombu.transport.virtual.QoS method)

 	restore_visible() (kombu.transport.redis.Channel.QoS method)

 	(kombu.transport.redis.Transport.Channel.QoS method)

 	(kombu.transport.virtual.QoS method)

 	reverse() (kombu.five.array method)

 	(kombu.five.UserList method)

 	revive() (kombu.abstract.MaybeChannelBound method)

 	(kombu.Connection method)

 	(kombu.Consumer method)

 	(kombu.Producer method)

 	(kombu.compat.Consumer method)

 	(kombu.compat.ConsumerSet method)

 	(kombu.compat.Publisher method)

 	(kombu.connection.Connection method)

 	(kombu.pools.ProducerPool.Producer method)

 	rotate() (kombu.utils.scheduling.priority_cycle method)

 	(kombu.utils.scheduling.round_robin_cycle method)

 	round_robin_cycle (class in kombu.utils.scheduling)

 	routing (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	routing_collection (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	routing_key (kombu.compat.Consumer attribute)

 	(kombu.Producer attribute)

 	(kombu.Queue attribute), [1]

 	(kombu.compat.Publisher attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	run() (kombu.mixins.ConsumerMixin method)

 	run_forever() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	run_once() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

S

 	
 	safe_repr() (in module kombu.utils.encoding)

 	safe_str() (in module kombu.utils.encoding)

 	safequote() (in module kombu.utils.url)

 	sanitize_url() (in module kombu.utils.url)

 	save() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	save_to_file() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	save_to_filename() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	save_to_s3() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	schedule (kombu.asynchronous.timer.Timer attribute)

 	scheduler (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	scheme (kombu.utils.url.urlparts attribute)

 	seek() (kombu.five.StringIO method)

 	seekable() (kombu.five.StringIO method)

 	send() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	(kombu.compat.Publisher method)

 	send_heartbeat() (kombu.transport.pyamqp.Connection method)

 	send_message() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	send_message_batch() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	send_method() (kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	send_reply() (in module kombu.common)

 	sep (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	serializable() (kombu.transport.qpid.Channel.Message method)

 	(kombu.transport.qpid.Connection.Channel.Message method)

 	(kombu.transport.qpid.Message method)

 	(kombu.transport.qpid.Transport.Connection.Channel.Message method)

 	(kombu.transport.virtual.Message method)

 	serializer (kombu.compat.Publisher attribute)

 	(kombu.Producer attribute)

 	(kombu.pools.ProducerPool.Producer attribute)

 	SerializerNotInstalled

 	server_capabilities (kombu.transport.pyamqp.Connection attribute)

 	server_heartbeat (kombu.transport.pyamqp.Connection attribute)

 	session_ttl (kombu.transport.consul.Channel attribute)

 	(kombu.transport.consul.Transport.Channel attribute)

 	(kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	set_attribute() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	set_debuglevel() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection method)

 	set_default_encoding_file() (in module kombu.utils.encoding)

 	set_event_loop() (in module kombu.asynchronous)

 	(in module kombu.asynchronous.hub)

 	set_limit() (in module kombu.pools)

 	set_queue_attribute() (kombu.asynchronous.aws.sqs.connection.AsyncSQSConnection method)

 	set_timeout() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	setter() (kombu.utils.objects.cached_property method)

 	setup() (kombu.pools.ProducerPool method)

 	(kombu.resource.Resource method)

 	setup_logging() (in module kombu.log)

 	(in module kombu.utils.debug)

 	shared_queues (kombu.transport.pyro.Channel attribute)

 	(kombu.transport.pyro.Transport attribute)

 	(kombu.transport.pyro.Transport.Channel attribute)

 	should_stop (kombu.mixins.ConsumerMixin attribute)

 	shrink() (kombu.asynchronous.semaphore.LaxBoundedSemaphore method)

 	SimpleBuffer (class in kombu.simple)

 	SimpleBuffer() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	
 	SimpleQueue (class in kombu.simple)

 	SimpleQueue() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	slmq (kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	sock (kombu.transport.pyamqp.Connection attribute)

 	socket_connect_timeout (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	socket_keepalive (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	socket_keepalive_options (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	socket_timeout (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	sort() (kombu.five.UserList method)

 	sort_heap() (kombu.clocks.LamportClock method)

 	sorted_cycle (class in kombu.utils.scheduling)

 	sqs (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	ssl (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	start (kombu.five.range attribute)

 	state (kombu.pidbox.Node attribute)

 	(kombu.transport.memory.Transport attribute)

 	(kombu.transport.pyro.Transport attribute)

 	(kombu.transport.virtual.Channel attribute)

 	(kombu.transport.virtual.Transport attribute)

 	status (kombu.asynchronous.http.base.Response attribute), [1]

 	(kombu.asynchronous.http.Response attribute), [1]

 	status_code (kombu.asynchronous.http.base.Response attribute)

 	(kombu.asynchronous.http.Response attribute)

 	step (kombu.five.range attribute)

 	stop (kombu.five.range attribute)

 	stop() (kombu.asynchronous.Hub method)

 	(kombu.asynchronous.hub.Hub method)

 	(kombu.asynchronous.timer.Timer method)

 	store_processed (kombu.transport.filesystem.Channel attribute)

 	(kombu.transport.filesystem.Transport.Channel attribute)

 	str_to_bytes() (in module kombu.utils.encoding)

 	string (in module kombu.five)

 	string_t (in module kombu.five)

 	StringIO (class in kombu.five)

 	subclient (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	subtract() (kombu.five.Counter method)

 	supports_exchange_type() (kombu.connection.Connection method)

 	supports_fanout (kombu.transport.memory.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.memory.Transport.Channel attribute)

 	(kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	(kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	supports_heartbeats (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	switch() (kombu.Connection method)

 	(kombu.connection.Connection method)

 	symbol_by_name() (in module kombu.utils.imports)

T

 	
 	task_done() (kombu.five.Queue method)

 	tell() (kombu.five.StringIO method)

 	text_t (in module kombu.five)

 	then() (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request method)

 	(kombu.asynchronous.http.Request method)

 	(kombu.asynchronous.http.base.Request method)

 	(kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	timeout (kombu.transport.consul.Channel attribute)

 	(kombu.transport.consul.Transport.Channel attribute)

 	(kombu.transport.etcd.Channel attribute)

 	(kombu.transport.etcd.Transport.Channel attribute)

 	TimeoutError (in module kombu.exceptions)

 	Timer (class in kombu.asynchronous.timer)

 	Timer.Entry (class in kombu.asynchronous.timer)

 	timestamp (kombu.clocks.timetuple attribute)

 	(kombu.utils.limits.TokenBucket attribute)

 	timetuple (class in kombu.clocks)

 	to_timestamp() (in module kombu.asynchronous.timer)

 	tobytes() (kombu.five.array method)

 	tofile() (kombu.five.array method)

 	TokenBucket (class in kombu.utils.limits)

 	tolist() (kombu.five.array method)

 	TopicExchange (class in kombu.transport.virtual.exchange)

 	tostring() (kombu.five.array method)

 	tounicode() (kombu.five.array method)

 	TRANSIENT_DELIVERY_MODE (kombu.Exchange attribute)

 	Transport (class in kombu.transport.azureservicebus)

 	(class in kombu.transport.SLMQ)

 	(class in kombu.transport.SQS)

 	(class in kombu.transport.azurestoragequeues)

 	(class in kombu.transport.base)

 	(class in kombu.transport.consul)

 	(class in kombu.transport.etcd)

 	(class in kombu.transport.filesystem)

 	(class in kombu.transport.memory)

 	(class in kombu.transport.mongodb)

 	(class in kombu.transport.pyamqp)

 	(class in kombu.transport.pyro)

 	(class in kombu.transport.qpid)

 	(class in kombu.transport.redis)

 	(class in kombu.transport.virtual)

 	(class in kombu.transport.zookeeper)

 	transport (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	(kombu.transport.pyamqp.Connection attribute)

 	Transport() (kombu.transport.pyamqp.Connection method)

 	Transport.Channel (class in kombu.transport.azureservicebus)

 	(class in kombu.transport.SLMQ)

 	(class in kombu.transport.SQS)

 	(class in kombu.transport.azurestoragequeues)

 	(class in kombu.transport.consul)

 	(class in kombu.transport.etcd)

 	(class in kombu.transport.filesystem)

 	(class in kombu.transport.memory)

 	(class in kombu.transport.mongodb)

 	(class in kombu.transport.pyro)

 	(class in kombu.transport.redis)

 	(class in kombu.transport.zookeeper)

 	
 	Transport.Channel.QoS (class in kombu.transport.redis)

 	Transport.Connection (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Transport.Connection.Channel (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Transport.Connection.Channel.Message (class in kombu.transport.pyamqp)

 	(class in kombu.transport.qpid)

 	Transport.Connection.Channel.QoS (class in kombu.transport.qpid)

 	TRANSPORT_ALIASES (in module kombu.transport)

 	transport_options (kombu.connection.Connection attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.azurestoragequeues.Channel attribute)

 	(kombu.transport.azurestoragequeues.Transport.Channel attribute)

 	(kombu.transport.filesystem.Channel attribute)

 	(kombu.transport.filesystem.Transport.Channel attribute)

 	tref (kombu.asynchronous.timer.Entry attribute)

 	(kombu.asynchronous.timer.Timer.Entry attribute)

 	truncate() (kombu.five.StringIO method)

 	ttl (kombu.transport.mongodb.Channel attribute)

 	(kombu.transport.mongodb.Transport.Channel attribute)

 	tx_commit() (kombu.transport.pyamqp.Connection.Channel method)

 	tx_rollback() (kombu.transport.pyamqp.Connection.Channel method)

 	tx_select() (kombu.transport.pyamqp.Connection.Channel method)

 	type (kombu.Exchange attribute), [1]

 	(kombu.pidbox.Mailbox attribute)

 	(kombu.transport.virtual.exchange.DirectExchange attribute)

 	(kombu.transport.virtual.exchange.ExchangeType attribute)

 	(kombu.transport.virtual.exchange.FanoutExchange attribute)

 	(kombu.transport.virtual.exchange.TopicExchange attribute)

 	typecode (kombu.five.array attribute)

 	typeof() (kombu.transport.qpid.Channel method)

 	(kombu.transport.qpid.Connection.Channel method)

 	(kombu.transport.qpid.Transport.Connection.Channel method)

 	(kombu.transport.virtual.Channel method)

U

 	
 	unacked_index_key (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

 	unacked_key (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

 	unacked_mutex_expire (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

 	unacked_mutex_key (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

 	unacked_restore_limit (kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	unbind_from() (kombu.Exchange method)

 	(kombu.Queue method)

 	unregister() (in module kombu.matcher)

 	(in module kombu.serialization)

 	(kombu.matcher.MatcherRegistry method)

 	
 	update() (kombu.five.Counter method)

 	(kombu.utils.functional.LRUCache method)

 	(kombu.utils.scheduling.round_robin_cycle method)

 	uri_prefix (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	URL

 	url (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	url_to_parts() (in module kombu.utils.url)

 	urlparts (class in kombu.utils.url)

 	use_gzip (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	user_agent (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	UserDict (class in kombu.five)

 	userid (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	UserList (class in kombu.five)

 	username (kombu.utils.url.urlparts attribute)

 	uuid() (in module kombu.common)

 	(in module kombu.utils.uuid)

V

 	
 	validate_cert (kombu.asynchronous.aws.connection.AsyncHTTPSConnection.Request attribute)

 	(kombu.asynchronous.http.Request attribute)

 	(kombu.asynchronous.http.base.Request attribute)

 	value (kombu.clocks.LamportClock attribute)

 	values() (in module kombu.five)

 	(kombu.five.Mapping method)

 	(kombu.utils.functional.LRUCache method)

 	verify_connection() (kombu.transport.consul.Transport method)

 	(kombu.transport.etcd.Transport method)

 	(kombu.transport.pyamqp.Transport method)

 	verify_runtime_environment() (kombu.transport.qpid.Transport method)

 	version_string_as_tuple() (in module kombu.utils.text)

 	
 	VHOST

 	virtual_host (kombu.Connection attribute)

 	(kombu.connection.Connection attribute)

 	visibility_timeout (kombu.transport.azureservicebus.Channel attribute)

 	(kombu.transport.SLMQ.Channel attribute)

 	(kombu.transport.SLMQ.Transport.Channel attribute)

 	(kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	(kombu.transport.azureservicebus.Transport.Channel attribute)

 	(kombu.transport.redis.Channel attribute)

 	(kombu.transport.redis.Channel.QoS attribute)

 	(kombu.transport.redis.Transport.Channel attribute)

 	(kombu.transport.redis.Transport.Channel.QoS attribute)

W

 	
 	wait() (kombu.compat.Consumer method)

 	(kombu.transport.pyamqp.Connection method)

 	(kombu.transport.pyamqp.Connection.Channel method)

 	wait_time_seconds (kombu.transport.SQS.Channel attribute)

 	(kombu.transport.SQS.Transport attribute)

 	(kombu.transport.SQS.Transport.Channel attribute)

 	warn() (kombu.log.LogMixin method)

 	WhateverIO (class in kombu.five)

 	when_bound() (kombu.abstract.MaybeChannelBound method)

 	(kombu.Queue method)

 	wildcards (kombu.transport.virtual.exchange.TopicExchange attribute)

 	
 	with_metaclass() (in module kombu.five)

 	with_traceback() (kombu.compat.Consumer.ContentDisallowed method)

 	(kombu.compat.ConsumerSet.ContentDisallowed method)

 	(kombu.transport.pyamqp.Connection.Channel.Message.MessageStateError method)

 	(kombu.transport.virtual.Message.MessageStateError method)

 	writable() (kombu.five.StringIO method)

 	WRITE (kombu.asynchronous.Hub attribute)

 	(kombu.asynchronous.hub.Hub attribute)

 	write() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

 	(kombu.five.StringIO method)

 	(kombu.five.WhateverIO method)

 	write_batch() (kombu.asynchronous.aws.sqs.queue.AsyncQueue method)

Z

 	
 	zip (class in kombu.five)

 	
 	zip_longest (class in kombu.five)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/kombusmall.jpg

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Kombu Documentation

 		
 Getting Started

 		
 About

 		
 Features

 		
 Transport Comparison

 		
 Documentation

 		
 Quick overview

 		
 Terminology

 		
 Installation

 		
 Getting Help

 		
 Mailing list

 		
 Bug tracker

 		
 Contributing

 		
 License

 		
 User Guide

 		
 Introduction

 		
 What is messaging?

 		
 Messaging Scenarios

 		
 Reliability

 		
 Connections and transports

 		
 Basics

 		
 URLs

 		
 Keyword arguments

 		
 AMQP Transports

 		
 Transport Comparison

 		
 Producers

 		
 Basics

 		
 Serialization

 		
 Reference

 		
 Consumers

 		
 Basics

 		
 Advanced Topics

 		
 Reference

 		
 Examples

 		
 Hello World Example

 		
 Task Queue Example

 		
 Simple Interface

 		
 Sending and receiving messages

 		
 Connection and Producer Pools

 		
 Default Pools

 		
 The producer pool group

 		
 Custom Pool Groups

 		
 Serialization

 		
 Serializers

 		
 Sending raw data without Serialization

 		
 Creating extensions using Setuptools entry-points

 		
 Frequently Asked Questions

 		
 Questions

 		
 Q: Message.reject doesn’t work?

 		
 Q: Message.requeue doesn’t work?

 		
 API Reference

 		
 Kombu - kombu

 		
 Connection

 		
 Exchange

 		
 Queue

 		
 Message Producer

 		
 Message Consumer

 		
 Common Utilities - kombu.common

 		
 Pattern matching registry - kombu.matcher

 		
 Mixin Classes - kombu.mixins

 		
 Simple Messaging API - kombu.simple

 		
 Persistent

 		
 Buffer

 		
 Logical Clocks and Synchronization - kombu.clocks

 		
 Carrot Compatibility - kombu.compat

 		
 Publisher

 		
 Consumer

 		
 ConsumerSet

 		
 Pidbox - kombu.pidbox

 		
 Introduction

 		
 Mailbox

 		
 Node

 		
 Exceptions - kombu.exceptions

 		
 Logging - kombu.log

 		
 Connection - kombu.connection

 		
 Connection

 		
 Pools

 		
 Message Objects - kombu.message

 		
 Message Compression - kombu.compression

 		
 Encoding/decoding

 		
 Registry

 		
 Connection/Producer Pools - kombu.pools

 		
 Abstract Classes - kombu.abstract

 		
 Resource Management - kombu.resource

 		
 Event Loop - kombu.asynchronous

 		
 Event Loop Implementation - kombu.asynchronous.hub

 		
 Semaphores - kombu.asynchronous.semaphore

 		
 Timer - kombu.asynchronous.timer

 		
 Event Loop Debugging Utils - kombu.asynchronous.debug

 		
 Async HTTP Client - kombu.asynchronous.http

 		
 Async HTTP Client Interface - kombu.asynchronous.http.base

 		
 Async pyCurl HTTP Client - kombu.asynchronous.http.curl

 		
 Async Amazon AWS Client - kombu.asynchronous.aws

 		
 Amazon AWS Connection - kombu.asynchronous.aws.connection

 		
 Async Amazon SQS Client - kombu.asynchronous.aws.sqs

 		
 SQS Connection - kombu.asynchronous.aws.sqs.connection

 		
 SQS Messages - kombu.asynchronous.aws.sqs.message

 		
 SQS Queues - kombu.asynchronous.aws.sqs.queue

 		
 Built-in Transports - kombu.transport

 		
 Data

 		
 Functions

 		
 Azure Storage Queues Transport - kombu.transport.azurestoragequeues

 		
 Transport

 		
 Channel

 		
 Azure Service Bus Transport - kombu.transport.azureservicebus

 		
 Transport

 		
 Channel

 		
 Pure-python AMQP Transport - kombu.transport.pyamqp

 		
 Transport

 		
 Connection

 		
 Channel

 		
 Message

 		
 librabbitmq AMQP transport - kombu.transport.librabbitmq

 		
 Apache QPid Transport - kombu.transport.qpid

 		
 Authentication

 		
 Transport Options

 		
 In-memory Transport - kombu.transport.memory

 		
 Transport

 		
 Channel

 		
 Redis Transport - kombu.transport.redis

 		
 Transport

 		
 Channel

 		
 MongoDB Transport - kombu.transport.mongodb

 		
 Transport

 		
 Channel

 		
 Consul Transport - kombu.transport.consul

 		
 Transport

 		
 Channel

 		
 Etcd Transport - kombu.transport.etcd

 		
 Transport

 		
 Channel

 		
 Zookeeper Transport - kombu.transport.zookeeper

 		
 Transport

 		
 Channel

 		
 File-system Transport - kombu.transport.filesystem

 		
 Transport

 		
 Channel

 		
 SQLAlchemy Transport Model - kombu.transport.sqlalchemy

 		
 SQLAlchemy Transport Model - kombu.transport.sqlalchemy.models

 		
 Amazon SQS Transport - kombu.transport.SQS

 		
 Transport

 		
 Channel

 		
 SLMQ Transport - kombu.transport.SLMQ

 		
 Transport

 		
 Channel

 		
 Pyro Transport - kombu.transport.pyro

 		
 Transport

 		
 Channel

 		
 KombuBroker

 		
 Transport Base Class - kombu.transport.base

 		
 Message

 		
 Transport

 		
 Virtual Transport Base Class - kombu.transport.virtual

 		
 Transports

 		
 Channel

 		
 Message

 		
 Quality Of Service

 		
 In-memory State

 		
 Virtual AMQ Exchange Implementation - kombu.transport.virtual.exchange

 		
 Direct

 		
 Topic

 		
 Fanout

 		
 Interface

 		
 Message Serialization - kombu

 		
 Overview

 		
 Exceptions

 		
 Serialization

 		
 Registry

 		
 Generic RabbitMQ manager - kombu.utils.amq_manager

 		
 Custom Collections - kombu.utils.collections

 		
 Python Compatibility - kombu.utils.compat

 		
 Debugging Utilities - kombu.utils.debug

 		
 Div Utilities - kombu.utils.div

 		
 String Encoding Utilities - kombu.utils.encoding

 		
 Async I/O Selectors - kombu.utils.eventio

 		
 Functional-style Utilities - kombu.utils.functional

 		
 Module Importing Utilities - kombu.utils.imports

 		
 JSON Utilities - kombu.utils.json

 		
 Rate limiting - kombu.utils.limits

 		
 Object/Property Utilities - kombu.utils.objects

 		
 Consumer Scheduling - kombu.utils.scheduling

 		
 Text utilitites - kombu.utils.text

 		
 Time Utilities - kombu.utils.time

 		
 URL Utilities - kombu.utils.url

 		
 UUID Utilities - kombu.utils.uuid

 		
 Python 2 to Python 3 utilities - kombu.five

 		
 Change history

 		
 4.6.1

 		
 4.6.0

 		
 4.5.0

 		
 4.4.0

 		
 4.3.0

 		
 4.2.2-post1

 		
 4.2.2

 		
 4.2.1

 		
 4.2.0

 		
 4.1.0

 		
 4.0.2

 		
 4.0.1

 		
 4.0

 		
 Deprecations and removals

 		
 3.0.37

 		
 3.0.36

 		
 3.0.35

 		
 3.0.34

 		
 3.0.33

 		
 3.0.32

 		
 3.0.31

 		
 3.0.30

 		
 3.0.29

 		
 3.0.28

 		
 3.0.27

 		
 3.0.26

 		
 3.0.25

 		
 3.0.24

 		
 3.0.23

 		
 3.0.22

 		
 3.0.21

 		
 3.0.20

 		
 3.0.19

 		
 3.0.18

 		
 3.0.17

 		
 3.0.16

 		
 3.0.15

 		
 3.0.14

 		
 3.0.13

 		
 3.0.12

 		
 3.0.11

 		
 3.0.10

 		
 3.0.9

 		
 3.0.8

 		
 3.0.7

 		
 3.0.6

 		
 3.0.5

 		
 3.0.4

 		
 3.0.3

 		
 3.0.2

 		
 3.0.1

 		
 3.0.0

 		
 2.5.16

 		
 2.5.15

 		
 2.5.14

 		
 2.5.13

 		
 2.5.12

 		
 2.5.11

 		
 2.5.10

 		
 Note about upcoming changes for Kombu 3.0

 		
 Changes

 		
 2.5.9

 		
 2.5.8

 		
 2.5.7

 		
 2.5.6

 		
 2.5.5

 		
 2.5.4

 		
 2.5.3

 		
 2.5.2

 		
 2.5.2

 		
 2.5.1

 		
 2.5.0

 		
 2.4.10

 		
 2.4.9

 		
 2.4.8

 		
 2.4.7

 		
 2.4.6

 		
 2.4.5

 		
 2.4.4

 		
 2.4.3

 		
 2.4.2

 		
 2.4.1

 		
 2.4.0

 		
 2.3.2

 		
 2.3.1

 		
 2.3.0

 		
 2.2.6

 		
 2.2.5

 		
 2.2.4

 		
 2.2.3

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0

 		
 Important Notes

 		
 News

 		
 Fixes

 		
 Nonblocking consume support

 		
 2.1.8

 		
 2.1.7

 		
 2.1.6

 		
 2.1.5

 		
 2.1.4

 		
 2.1.3

 		
 2.1.2

 		
 2.1.1

 		
 2.1.0

 		
 2.0.0

 		
 Important Notes

 		
 News

 		
 Fixes

 		
 1.5.1

 		
 1.5.0

 		
 1.4.3

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.5

 		
 1.3.4

 		
 1.3.3

 		
 1.3.2

 		
 1.3.1

 		
 1.3.0

 		
 1.2.1

 		
 1.2.0

 		
 1.1.6

 		
 1.1.5

 		
 1.1.4

 		
 1.1.3

 		
 1.1.2

 		
 1.1.1

 		
 1.1.0

 		
 Important Notes

 		
 1.0.7

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

 		
 0.1.0

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

