

Jeepney 0.4.1

Jeepney is a pure Python interface to D-Bus, a protocol for interprocess
communication on desktop Linux (mostly).

The core of Jeepney is I/O free [https://sans-io.readthedocs.io/], and the
jeepney.integrate package contains bindings for different event loops to
handle I/O. Jeepney tries to be non-magical, so you may have to write a bit
more code than with other interfaces such as dbus-python [https://pypi.python.org/pypi/dbus-python]
or pydbus [https://github.com/LEW21/pydbus].

Jeepney doesn’t rely on libdbus or other compiled libraries, so it’s easy
to install with Python tools like pip. To use it, the DBus daemon needs to
be running on your computer; this is a standard part of most modern Linux
desktops.

Contents:

	Connecting to DBus and sending messages
	Message generators and proxies

	Limitations

	Making and parsing messages
	Making messages

	Generating D-Bus wrappers

	Release notes
	0.4.1

	0.4

See also

	D-Feet [https://wiki.gnome.org/Apps/DFeet]

	App for exploring available D-Bus services on your machine.

	D-Bus Specification [https://dbus.freedesktop.org/doc/dbus-specification.html]

	Technical details about the D-Bus protocol.

Indices and tables

	Index

	Module Index

	Search Page

Connecting to DBus and sending messages

So far, Jeepney can be used with three different I/O systems:

	Blocking (synchronous) I/O

	asyncio [https://docs.python.org/3/library/asyncio.html]

	Tornado [http://www.tornadoweb.org/en/stable/]

For each of these, there is a module in jeepney.integrate which exposes
a function called connect_and_authenticate. This establishes a DBus
connection and returns an object you can use to send and receive messages.
Exactly what it returns may vary, though.

Here’s an example of sending a desktop notification, using blocking I/O:

from jeepney import DBusAddress, new_method_call
from jeepney.integrate.blocking import connect_and_authenticate

notifications = DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

connection = connect_and_authenticate(bus='SESSION')

Construct a new D-Bus message. new_method_call takes the address, the
method name, the signature string, and a tuple of arguments.
msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',
 ('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
))

Send the message and wait for the reply
reply = connection.send_and_get_reply(msg)
print('Notification ID:', reply[0])

And here is the same thing using asyncio:

import asyncio

from jeepney import DBusAddress, new_method_call
from jeepney.integrate.asyncio import connect_and_authenticate

notifications = DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

async def send_notification():
 (transport, protocol) = await connect_and_authenticate(bus='SESSION')

 msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',
 ('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
))
 # Send the message and await the reply
 reply = await protocol.send_message(msg)
 print('Notification ID:', reply[0])

loop = asyncio.get_event_loop()
loop.run_until_complete(send_notification())

Message generators and proxies

If you’re calling a number of different methods, you can make a message
generator class containing their definitions. Jeepney includes a tool to
generate these classes automatically—see Generating D-Bus wrappers.

Message generators define how to construct messages. Proxies are wrappers
around message generators which send a message and get the reply back.

Let’s rewrite the example above to use a message generator and a proxy:

import asyncio

from jeepney import MessageGenerator, new_method_call
from jeepney.integrate.asyncio import connect_and_authenticate, Proxy

---- Message generator, created by jeepney.bindgen ----
class Notifications(MessageGenerator):
 interface = 'org.freedesktop.Notifications'

 def __init__(self, object_path='/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications'):
 super().__init__(object_path=object_path, bus_name=bus_name)

 def Notify(self, arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_7):
 return new_method_call(self, 'Notify', 'susssasa{sv}i',
 (arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_7))

 def CloseNotification(self, arg_0):
 return new_method_call(self, 'CloseNotification', 'u',
 (arg_0,))

 def GetCapabilities(self):
 return new_method_call(self, 'GetCapabilities')

 def GetServerInformation(self):
 return new_method_call(self, 'GetServerInformation')
---- End auto generated code ----

async def send_notification():
 (transport, protocol) = await connect_and_authenticate(bus='SESSION')
 proxy = Proxy(Notifications(), protocol)

 resp = await proxy.Notify('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
)
 print('Notification ID:', resp[0])

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(send_notification())

This is more code for the simple use case here, but in a larger application
collecting the message definitions together like this could make it clearer.

Limitations

Some lesser-used parts of the D-Bus spec are not implemented:

	Jeepney only connects to Unix domain sockets.
This is how D-Bus is normally exposed,
but the specification allows for other transports, such as TCP sockets,
which Jeepney does not support.

	Only the ‘external’ auth method is used.
The specification recommends this mechanism where it’s available,
and it’s the obvious thing to use with Unix domain sockets.

	Sending and receiving Unix file descriptors is not supported.

Any of these limitations may be lifted in the future,
if there’s a need and we can find a clean way to do so.
If you want to remove a limitation, be prepared to get involved. :-)

Making and parsing messages

The core of Jeepney is code to build, serialise and deserialise DBus messages.

	
class jeepney.Message(header, body)

	Object representing a DBus message.

It’s not normally necessary to construct this directly: use higher level
functions and methods instead.

	
serialise()

	Convert this message to bytes.

	
class jeepney.Parser

	Parse DBus messages from a stream of incoming data.

	
feed(data)

	Feed the parser newly read data.

Returns a list of messages completed by the new data.

Making messages

	
class jeepney.DBusAddress(object_path, bus_name=None, interface=None)

	This identifies the object and interface a message is for.

e.g. messages to display desktop notifications would have this address:

DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

	
jeepney.new_method_call(remote_obj, method, signature=None, body=())

	Construct a new method call message

	Parameters

	
	remote_obj (DBusAddress) – The object to call a method on

	method (str) – The name of the method to call

	signature (str) – The DBus signature of the body data

	body (tuple) – Body data (i.e. method parameters)

	
jeepney.new_method_return(parent_msg, signature=None, body=())

	Construct a new response message

	Parameters

	
	parent_msg (Message) – The method call this is a reply to

	signature (str) – The DBus signature of the body data

	body (tuple) – Body data

	
jeepney.new_error(parent_msg, error_name, signature=None, body=())

	Construct a new error response message

	Parameters

	
	parent_msg (Message) – The method call this is a reply to

	signature (str) – The DBus signature of the body data

	body (tuple) – Body data

	
jeepney.new_signal(emitter, signal, signature=None, body=())

	Construct a new signal message

	Parameters

	
	emitter (DBusAddress) – The object sending the signal

	signal (str) – The name of the signal

	signature (str) – The DBus signature of the body data

	body (tuple) – Body data

See also

Message generators and proxies

Signatures

DBus is strongly typed, and every message has a signature describing the body
data. These are strings using characters such as i for a signed 32-bit
integer. See the DBus specification [https://dbus.freedesktop.org/doc/dbus-specification.html#type-system]
for the full list.

Jeepney does not try to guess or discover the signature when you build a
message: your code must explicitly specify a signature for every message.
However, Jeepney can help you write this code: see Generating D-Bus wrappers.

In most cases, DBus types have an obvious corresponding type in Python. However,
a few types require further explanation:

	DBus ARRAY are Python lists, except for arrays of DICT_ENTRY, which are
dicts.

	DBus STRUCT are Python tuples.

	DBus VARIANT are 2-tuples (signature, data). E.g. to put a string into
a variant field, you would pass the data ("s", "my string").

	Jeepney does not (yet) support sending or receiving file descriptors.

Generating D-Bus wrappers

D-Bus includes a mechanism to introspect remote objects and discover the methods
they define. Jeepney can use this to generate classes defining the messages to
send. Use it like this:

python3 -m jeepney.bindgen --name org.freedesktop.Notifications \
 --path /org/freedesktop/Notifications

This command will produce the code used in the previous page (see
Message generators and proxies).

You specify name—which D-Bus service you’re talking to—and path—an
object in that service. Jeepney will generate a wrapper for each interface that
object has, except for some standard ones like the introspection interface
itself.

Release notes

0.4.1

	Avoid using asyncio.Future for the blocking integration.

	Set the ‘destination’ field on method return and error messages to the
‘sender’ from the parent message.

Thanks to Oscar Caballero and Thomas Grainger for contributing to this release.

0.4

	Authentication failures now raise a new AuthenticationError
subclass of ValueError, so that they can be caught specifically.

	Fixed logic error when authentication is rejected.

	Use effective user ID for authentication instead of real user ID.
In typical use cases these are the same, but where they differ, effective
uid seems to be the relevant one.

	The 64 MiB size limit for an array is now checked when serialising it.

	New function jeepney.auth.make_auth_anonymous() to prepare an anonymous
authentication message. This is not used by the wrappers in Jeepney at the
moment, but may be useful for third party code in some situations.

	New examples for subscribing to D-Bus signals, with blocking I/O and with
asyncio.

	Various improvements to documentation.

Thanks to Jane Soko and Gitlab user xiretza for contributing to this release.

 Python Module Index

 j

 		 	

 		
 j	

 	
 	
 jeepney	

Index

 D
 | F
 | J
 | M
 | N
 | P
 | S

D

 	
 	DBusAddress (class in jeepney)

F

 	
 	feed() (jeepney.Parser method)

J

 	
 	jeepney (module)

M

 	
 	Message (class in jeepney)

N

 	
 	new_error() (in module jeepney)

 	new_method_call() (in module jeepney)

 	
 	new_method_return() (in module jeepney)

 	new_signal() (in module jeepney)

P

 	
 	Parser (class in jeepney)

S

 	
 	serialise() (jeepney.Message method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Jeepney 0.4.1

 		
 Connecting to DBus and sending messages

 		
 Message generators and proxies

 		
 Limitations

 		
 Making and parsing messages

 		
 Making messages

 		
 Signatures

 		
 Generating D-Bus wrappers

 		
 Release notes

 		
 0.4.1

 		
 0.4

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

