

huey

[image: _images/huey2-logo.png]
a lightweight alternative.

huey is:

	a task queue (2019-04-01: version 2.0 released)

	written in python (2.7+, 3.4+)

	clean and simple API

	redis, sqlite, or in-memory storage

	example code [https://github.com/coleifer/huey/tree/master/examples/].

huey supports:

	multi-process, multi-thread or greenlet task execution models

	schedule tasks to execute at a given time, or after a given delay

	schedule recurring tasks, like a crontab

	automatically retry tasks that fail

	task prioritization

	task result storage

	task locking

	task pipelines and chains

[image: _images/2EpRs.jpg]

At a glance

task() and periodic_task() decorators turn
functions into tasks executed by the consumer:

from huey import RedisHuey, crontab

huey = RedisHuey('my-app', host='redis.myapp.com')

@huey.task()
def add_numbers(a, b):
 return a + b

@huey.task(retries=2, retry_delay=60)
def flaky_task(url):
 # This task might fail, in which case it will be retried up to 2 times
 # with a delay of 60s between retries.
 return this_might_fail(url)

@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
 sync_all_data()

Calling a task-decorated function will enqueue the function call for
execution by the consumer. A special result handle is returned immediately,
which can be used to fetch the result once the task is finished:

>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>

>>> res()
3

Tasks can be scheduled to run in the future:

>>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s.
>>> res(blocking=True) # Will block until task finishes, in ~10s.
5

For much more, check out the Guide or take a look at the example code [https://github.com/coleifer/huey/tree/master/examples/].

Running the consumer

Run the consumer with four worker processes:

$ huey_consumer.py my_app.huey -k process -w 4

To run the consumer with a single worker thread (default):

$ huey_consumer.py my_app.huey

If your work-loads are mostly IO-bound, you can run the consumer with threads
or greenlets instead. Because greenlets are so lightweight, you can run quite a
few of them efficiently:

$ huey_consumer.py my_app.huey -k greenlet -w 32

For more information, see the Consuming Tasks document.

Table of contents

	Installing
	Using git

	Guide
	Scheduling tasks

	Periodic tasks

	Retrying tasks that fail

	Task priority

	Canceling or pausing tasks

	Canceling or pausing periodic tasks

	Task pipelines

	Locking tasks

	Signals

	Immediate mode

	Tips and tricks

	Reading more

	Consuming Tasks
	Options for the consumer

	Worker types

	Consumer shutdown

	Consumer restart

	Consumer Internals

	Signals

	Understanding how tasks are imported
	Suggested organization of code

	Managing shared resources
	Startup hooks

	Pre and post execute hooks

	Signals
	Examples

	Huey’s API
	Huey types

	Huey object

	Result

	Serializer

	Exceptions

	Storage

	Huey Extensions
	Mini-Huey

	Django

	Troubleshooting and Common Pitfalls

	Changes in 2.0
	Summary

	Details

Huey is named in honor of my cat

[image: _images/p1473037658.76.jpg]

Indices and tables

	Index

	Module Index

	Search Page

Installing

huey can be installed from PyPI using pip [http://www.pip-installer.org/en/latest/index.html].

$ pip install huey

huey has no dependencies outside the standard library, but redis-py [https://github.com/andymccurdy/redis-py]
is required to utilize Redis for your task storage:

$ pip install redis

If your tasks are IO-bound rather than CPU-bound, you might consider using the
greenlet worker type. To use the greenlet workers, you need to
install gevent:

pip install gevent

Using git

If you want to run the very latest, you can clone the source
repo [https://github.com/coleifer/huey] and install the library:

$ git clone https://github.com/coleifer/huey.git
$ cd huey
$ python setup.py install

You can run the tests using the test-runner:

$ python setup.py test

The source code is available online at https://github.com/coleifer/huey

Guide

The purpose of this document is to present Huey using simple examples that
cover the most common usage of the library. Detailed documentation can be found
in the API documentation.

Example task() that adds two numbers:

demo.py
from huey import SqliteHuey

huey = SqliteHuey(filename='/tmp/demo.db')

@huey.task()
def add(a, b):
 return a + b

To test, run the consumer, specifying the import path to the huey object:

$ huey_consumer.py demo.huey

In a Python shell, we can call our add task:

>>> from demo import add
>>> r = add(1, 2)
>>> r()
3

Note

If you try to resolve the result (r) before the task has been executed,
then r() will return None. You can avoid this by instructing the
result to block until the task has finished and a result is ready:

>>> r = add(1, 2)
>>> r(blocking=True, timeout=5) # Wait up to 5 seconds for result.
3

What happens when we call a task function?

	When the add() function is called, a message representing the call is
placed in a queue.

	The function returns immediately without actually running, and returns a
Result handle, which can be used to retrieve the result once the
task has been executed by the consumer.

	The consumer process sees that a message has arrived, and a worker will call
the add() function and place the return value into the result store.

	We can use the Result handle to read the return value from the
result store.

For more information, see the task() decorator documentation.

Scheduling tasks

Tasks can be scheduled to execute at a certain time, or after a delay.

In the following example, we will schedule a call to add() to run in 10
seconds, and then will block until the result becomes available:

>>> r = add.schedule((3, 4), delay=10)
>>> r(blocking=True) # Will block for ~10 seconds before returning.
7

If we wished to schedule the task to run at a particular time, we can use the
eta parameter instead. The following example will run after a 10 second
delay:

>>> eta = datetime.datetime.now() + datetime.timedelta(seconds=10)
>>> r = add.schedule((4, 5), eta=eta)
>>> r(blocking=True) # Will block for ~10 seconds.
9

What happens when we schedule a task?

	When we call schedule(), a message is placed on the
queue instructing the consumer to call the add() function in 10 seconds.

	The function returns immediately, and returns a Result handle.

	The consumer process sees that a message has arrived, and will notice that
the message is not yet ready to be executed, but should be run in ~10s.

	The consumer adds the message to a schedule.

	In ~10 seconds, the scheduler will pick-up the message and place it back
into the queue for execution.

	A worker will dequeue the message, execute the add() function, and place
the return value in the result store.

	The Result handle from step 2 will now be able to read the
return value from the task.

For more details, see the schedule() API documentation.

Periodic tasks

Huey provides crontab-like functionality that enables functions to be executed
automatically on a given schedule.

In the following example, we will declare a periodic_task() that
executes every 3 minutes and prints a message on consumer process stdout:

from huey import SqliteHuey
from huey import crontab

huey = SqliteHuey(filename='/tmp/demo.db')

@huey.task()
def add(a, b):
 return a + b

@huey.periodic_task(crontab(minute='*/3'))
def every_three_minutes():
 print('This task runs every three minutes')

Once a minute, the scheduler will check to see if any of the periodic tasks
should be called. If so, the task will be enqueued for execution.

Note

Because periodic tasks are called independent of any user interaction, they
do not accept any arguments.

Similarly, the return-value for periodic tasks is discarded, rather than
being put into the result store. This is because there is not an obvious
way for an application to obtain a Result handle to access the
result of a given periodic task execution.

The crontab() function accepts the following arguments:

	minute

	hour

	day

	month

	day_of_week (0=Sunday, 6=Saturday)

Acceptable inputs:

	* - always true, e.g. if hour='*', then the rule matches any hour.

	/n - every n interval, e.g. minute='/15' means every 15 minutes.

	m-n - run every time m..n inclusive.

	m,n - run on m and n.

Multiple rules can be expressed by separating the individual rules with a
comma, for example:

Runs every 10 minutes between 9a and 11a, and 4p-6p.
crontab(minute='*/10', hour='9-11,16-18')

For more information see the following API documentation:

	periodic_task()

	crontab()

Retrying tasks that fail

Sometimes we may have a task that we anticipate might fail from time to time,
in which case we should retry it. Huey supports automatically retrying tasks a
given number of times, optionally with a delay between attempts.

Here we’ll declare a task that fails approximately half of the time. To
configure this task to be automatically retried, use the retries parameter
of the task() decorator:

import random

@huey.task(retries=2) # Retry the task up to 2 times.
def flaky_task():
 if random.randint(0, 1) == 0:
 raise Exception('failing!')
 return 'OK'

What happens when we call this task?

	Message is placed on the queue and a Result handle is returned
to the caller.

	Consumer picks up the message and attempts to run the task, but the call to
random.randint() happens to return 0, raising an Exception.

	The consumer puts the error into the result store and the exception is
logged. If the caller resolves the Result now, a
TaskException will be raised which contains information about
the exception that occurred in our task.

	The consumer notices that the task can be retried 2 times, so it decrements
the retry count and re-enqueues it for execution.

	The consumer picks up the message again and runs the task. This time, the
task succeeds! The new return value is placed into the result store (“OK”).

	We can reset our Result handle by calling
reset() and then re-resolve it. The result handle will now
give us the new value, “OK”.

Should the task fail on the first invocation, it will be retried up-to two
times. Note that it will be retried immediately after it returns.

To specify a delay between retry attempts, we can add a retry_delay
argument. The task will be retried up-to two times, with a delay of 10 seconds
between attempts:

@huey.task(retries=2, retry_delay=10)
def flaky_task():
 # ...

Note

Retries and retry delay arguments can also be specified for periodic tasks.

It is also possible to explicitly retry a task from within the task, by raising
a RetryTask exception. When this exception is used, the task will
be retried regardless of whether it was declared with retries. Similarly,
the task’s remaining retries (if they were declared) will not be affected by
raising RetryTask.

For more information, see the following API documentation:

	task() and periodic_task()

	Result

Task priority

Note

Priority support for Redis requires Redis 5.0 or newer. To use task
priorities with Redis, use the PriorityRedisHuey instead of
RedisHuey.

Task prioritization is fully supported by SqliteHuey and the
in-memory storage layer used when Immediate mode is enabled.

Huey tasks can be given a priority, allowing you to ensure that your most
important tasks do not get delayed when the workers are busy.

Priorities can be assigned to a task function, in which case all invocations of
the task will default to the given priority. Additionally, individual task
invocations can be assigned a priority on a one-off basis.

Note

When no priority is given, the task will default to a priority of 0.

To see how this works, lets define a task that has a priority (10):

@huey.task(priority=10)
def send_email(to, subj, body):
 return mailer.send(to, 'webmaster@myapp.com', subj, body)

When we invoke this task, it will be processed before any other pending tasks
whose priority is less than 10. So we could imagine our queue looking something
like this:

	process_payment - priority = 50

	check_spam - priority = 1

	make_thumbnail - priority = 0 (default)

Invoke the send_email() task:

send_email('new_user@foo.com', 'Welcome', 'blah blah')

Now the queue of pending tasks would be:

	process_payment - priority = 50

	send_email - priority = 10

	check_spam - priority = 1

	make_thumbnail - priority = 0

We can override the default priority by passing priority= as a keyword
argument to the task function:

send_email('boss@mycompany.com', 'Important!', 'etc', priority=90)

Now the queue of pending tasks would be:

	send_email (to boss) - priority = 90

	process_payment - priority = 50

	send_email - priority = 10

	check_spam - priority = 1

	make_thumbnail - priority = 0

Task priority only affects the ordering of tasks as they are pulled from the
queue of pending tasks. If there are periods of time where your workers are not
able to keep up with the influx of tasks, Huey’s priority feature can
ensure that your most important tasks do not get delayed.

Task-specific priority overrides can also be specified when scheduling a task
to run in the future:

Uses priority=10, since that was the default we used when
declaring the send_email task:
send_email.schedule(('foo@bar.com', 'subj', 'msg'), delay=60)

Override, specifying priority=50 for this task.
send_email.schedule(('bar@foo.com', 'subj', 'msg'), delay=60, priority=50)

Lastly, we can specify priority on periodic_task:

@huey.periodic_task(crontab(minute='0', hour='*/3'), priority=10)
def some_periodic_task():
 # ...

For more information:

	PriorityRedisHuey - Huey implementation that adds support for
task priorities with the Redis storage layer. Requires Redis 5.0 or newer.

	SqliteHuey and the in-memory storage used when immediate-mode is
enabled have full support for task priorities.

	task() and periodic_task()

Canceling or pausing tasks

Huey tasks can be cancelled dynamically at runtime. This applies to regular
tasks, tasks scheduled to execute in the future, and periodic tasks.

Any task can be canceled (“revoked”), provided the task has not started
executing yet. Similarly, a revoked task can be restored, provided it has not
already been processed and discarded by the consumer.

Using the Result.revoke() and Result.restore() methods:

Schedule a task to execute in 60 seconds.
res = add.schedule((1, 2), delay=60)

Provided the 60s has not elapsed, the task can be canceled
by calling the `revoke()` method on the result object.
res.revoke()

We can check to see if the task is revoked.
res.is_revoked() # -> True

Similarly, we can restore the task, provided the 60s has
not elapsed (at which point it would have been read and
discarded by the consumer).
res.restore()

To revoke all instances of a given task, use the
revoke() and restore() methods on
the task function itself:

Prevent all instances of the add() task from running.
add.revoke()

We can check to see that all instances of the add() task
are revoked:
add.is_revoked() # -> True

We can enqueue an instance of the add task, and then check
to verify that it is revoked:
res = add(1, 2)
res.is_revoked() # -> True

To re-enable a task, we'll use the restore() method on
the task function:
add.restore()

Is the add() task enabled again?
add.is_revoked() # -> False

Huey provides APIs to revoke / restore on both individual instances of a task,
as well as all instances of the task. For more information, see the following
API docs:

	Result.revoke() and Result.restore() for revoking
individual instances of a task.

	Result.is_revoked() for checking the status of a task instance.

	TaskWrapper.revoke() and TaskWrapper.restore() for revoking
all instances of a task.

	TaskWrapper.is_revoked() for checking the status of the task
function itself.

Canceling or pausing periodic tasks

The revoke() and restore() methods support some additional options
which may be especially useful for periodic_task().

The revoke() method accepts two optional parameters:

	revoke_once - boolean flag, if set then only the next occurrence of the
task will be revoked, after which it will be restored automatically.

	revoke_until - datetime, which specifies the time at which the task
should be automatically restored.

For example, suppose we have a task that sends email notifications, but our
mail server goes down and won’t be fixed for a while. We can revoke the task
for a couple of hours, after which time it will start executing again:

@huey.periodic_task(crontab(minute='0', hour='*'))
def send_notification_emails():
 # ... code to send emails ...

Here is how we might revoke the task for the next 3 hours:

>>> now = datetime.datetime.now()
>>> eta = now + datetime.timedelta(hours=3)
>>> send_notification_emails.revoke(revoke_until=eta)

Alternatively, we could use revoke_once=True to just skip the next
execution of the task:

>>> send_notification_emails.revoke(revoke_once=True)

At any time, the task can be restored using the usual
restore() method, and it’s status can be checked using
the is_revoked() method.

Task pipelines

Huey supports pipelines (or chains) of one or more tasks that should be
executed sequentially.

To get started, let’s review the usual way we execute tasks:

@huey.task()
def add(a, b):
 return a + b

result = add(1, 2)

An equivalent, but more verbose, way is to use the s()
method to create a Task instance and then enqueue it explicitly:

Create a task representing the execution of add(1, 2).
task = add.s(1, 2)

Enqueue the task instance, which returns a Result handle.
result = huey.enqueue(task)

So the following are equivalent:

result = add(1, 2)

And:
result = huey.enqueue(add.s(1, 2))

The TaskWrapper.s() method is used to create a Task
instance (which represents the execution of the given function). The
Task is what gets serialized and sent to the consumer.

To create a pipeline, we will use the TaskWrapper.s() method to create
a Task instance. We can then chain additional tasks using the
Task.then() method:

add_task = add.s(1, 2) # Create Task to represent add(1, 2) invocation.

Add additional tasks to pipeline by calling add_task.then().
pipeline = (add_task
 .then(add, 3) # Call add() with previous result (1+2) and 3.
 .then(add, 4) # Previous result ((1+2)+3) and 4.
 .then(add, 5)) # Etc.

When a pipeline is enqueued, a ResultGroup is returned (which is
comprised of individual Result instances).
result_group = huey.enqueue(pipeline)

Print results of above pipeline.
print(result_group.get(blocking=True))
[3, 6, 10, 15]

Alternatively, we could have iterated over the result group:
for result in result_group:
 print(result.get(blocking=True))
3
6
10
15

When enqueueing a task pipeline, the return value will be a
ResultGroup, which encapsulates the Result objects for
the individual tasks. ResultGroup can be iterated over or you can
use the ResultGroup.get() method to get all the task return values as
a list.

Note that the return value from the parent task is passed to the next task in
the pipeline, and so on.

If the value returned by the parent function is a tuple, then the tuple
will be used to extend the *args for the next task. Likewise, if the
parent function returns a dict, then the dict will be used to update the
**kwargs for the next task.

Example of chaining fibonacci calculations:

@huey.task()
def fib(a, b=1):
 a, b = a + b, a
 return (a, b) # returns tuple, which is passed as *args

pipe = (fib.s(1)
 .then(fib)
 .then(fib)
 .then(fib))
results = huey.enqueue(pipe)

print(results(True)) # Resolve results, blocking until all are finished.
[(2, 1), (3, 2), (5, 3), (8, 5)]

For more information, see the following API docs:

	TaskWrapper.s()

	Task.then()

	ResultGroup and Result

Locking tasks

Task locking can be accomplished using the Huey.lock_task() method,
which can be used as a context-manager or decorator.

This lock prevents multiple invocations of a task from running concurrently.

If a second invocation occurs and the lock cannot be acquired, then a special
TaskLockedException is raised and the task will not be executed.
If the task is configured to be retried, then it will be retried normally.

Examples:

@huey.periodic_task(crontab(minute='*/5'))
@huey.lock_task('reports-lock') # Goes *after* the task decorator.
def generate_report():
 # If a report takes longer than 5 minutes to generate, we do
 # not want to kick off another until the previous invocation
 # has finished.
 run_report()

@huey.periodic_task(crontab(minute='0'))
def backup():
 # Generate backup of code
 do_code_backup()

 # Generate database backup. Since this may take longer than an
 # hour, we want to ensure that it is not run concurrently.
 with huey.lock_task('db-backup'):
 do_db_backup()

See Huey.lock_task() for API documentation.

Signals

The Consumer sends signals as it processes tasks.
The Huey.signal() method can be used to attach a callback to one or
more signals, which will be invoked synchronously by the consumer when the
signal is sent.

For a simple example, we can add a signal handler that simply prints the signal
name and the ID of the related task.

@huey.signal()
def print_signal_args(signal, task, exc=None):
 if signal == SIGNAL_ERROR:
 print('%s - %s - exception: %s' % (signal, task.id, exc))
 else:
 print('%s - %s' % (signal, task.id))

The signal() method is used to decorate the signal-handling
function. It accepts an optional list of signals. If none are provided, as in
our example, then the handler will be called for any signal.

The callback function (print_signal_args) accepts two required arguments,
which are present on every signal: signal and task. Additionally, our
handler accepts an optional third argument exc which is only included with
SIGNAL_ERROR. SIGNAL_ERROR is only sent when a task raises an uncaught
exception during execution.

Warning

Signal handlers are executed synchronously by the consumer, so it is
typically a bad idea to introduce any slow operations into a signal
handler.

For a complete list of Huey’s signals and their meaning, see the Signals
document, and the Huey.signal() API documentation.

Immediate mode

Note

Immediate mode replaces the always eager mode available prior to the
release of Huey 2. It offers many improvements over always eager mode,
which are described in the Changes in 2.0 document.

Huey can be run in a special mode called immediate mode, which is very useful
during testing and development. In immediate mode, Huey will execute task
functions immediately rather than enqueueing them, while still preserving the
APIs and behaviors one would expect when running a dedicated consumer process.

Immediate mode can be enabled in two ways:

huey = RedisHuey('my-app', immediate=True)

Or at any time, via the "immediate" attribute:
huey = RedisHuey('my-app')
huey.immediate = True

To disable immediate mode:

huey.immediate = False

By default, enabling immediate mode will switch your Huey instance to using
in-memory storage. This is to prevent accidentally reading or writing to live
storage while doing development or testing. If you prefer to use immediate mode
with live storage, you can specify immediate_use_memory=False when creating
your Huey instance:

huey = RedisHuey('my-app', immediate_use_memory=False)

You can try out immediate mode quite easily in the Python shell. In the
following example, everything happens within the interpreter – no separate
consumer process is needed. In fact, because immediate mode switches to an
in-memory storage when enabled, we don’t even have to be running a Redis
server:

>>> from huey import RedisHuey
>>> huey = RedisHuey()
>>> huey.immediate = True

>>> @huey.task()
... def add(a, b):
... return a + b
...

>>> result = add(1, 2)
>>> result()
3

>>> add.revoke(revoke_once=True) # We can revoke tasks.
>>> result = add(2, 3)
>>> result() is None
True

>>> add(3, 4)() # No longer revoked, was restored automatically.
7

What happens if we try to schedule a task for execution in the future, while
using immediate mode?

>>> result = add.schedule((4, 5), delay=60)
>>> result() is None # No result.
True

As you can see, the task was not executed. So what happened to it? The answer
is that the task was added to the in-memory storage layer’s schedule. We can
check this by calling Huey.scheduled():

>>> huey.scheduled()
[__main__.add: 8873...bcbd @2019-03-27 02:50:06]

Since immediate mode is fully synchronous, there is not a separate thread
monitoring the schedule. The schedule can still be read or written to, but
scheduled tasks will not automatically be executed.

Tips and tricks

To call a task-decorated function in its original form, you can use
call_local():

@huey.task()
def add(a, b):
 return a + b

Call the add() function in "un-decorated" form, skipping all
the huey stuff:
add.call_local(3, 4) # Returns 7.

It’s also worth mentioning that python decorators are just syntactical sugar
for wrapping a function with another function. Thus, the following two examples
are equivalent:

@huey.task()
def add(a, b):
 return a + b

Equivalent to:
def _add(a, b):
 return a + b

add = huey.task()(_add)

Task functions can be applied multiple times to a list (or iterable) of
parameters using the map() method:

>>> @huey.task()
... def add(a, b):
... return a + b
...

>>> params = [(i, i ** 2) for i in range(10)]
>>> result_group = add.map(params)
>>> result_group.get(blocking=True)
[0, 2, 6, 12, 20, 30, 42, 56, 72, 90]

The Huey result-store can be used directly if you need a convenient way to
cache arbitrary key/value data:

@huey.task()
def calculate_something():
 # By default, the result store treats get() like a pop(), so in
 # order to preserve the data so it can be read again, we specify
 # the second argument, peek=True.
 prev_results = huey.get('calculate-something.result', peek=True)
 if prev_results is None:
 # No previous results found, start from the beginning.
 data = start_from_beginning()
 else:
 # Only calculate what has changed since last time.
 data = just_what_changed(prev_results)

 # We can store the updated data back in the result store.
 huey.put('calculate-something.result', data)
 return data

See Huey.get() and Huey.put() for additional details.

Dynamic periodic tasks

To create periodic tasks dynamically we need to register them so that they are
added to the in-memory schedule managed by the consumer’s scheduler thread.
Since this registry is in-memory, any dynamically defined tasks must be
registered within the process that will ultimately schedule them: the consumer.

Warning

The following example will not work with the process worker-type
option, since there is currently no way to interact with the scheduler
process. When threads or greenlets are used, the worker threads share the
same in-memory schedule as the scheduler thread, allowing modification to
take place.

Example:

def dynamic_ptask(message):
 print('dynamically-created periodic task: "%s"' % message)

@huey.task()
def schedule_message(message, cron_minutes, cron_hours='*'):
 # Create a new function that represents the application
 # of the "dynamic_ptask" with the provided message.
 def wrapper():
 dynamic_ptask(message)

 # The schedule that was specified for this task.
 schedule = crontab(cron_minutes, cron_hours)

 # Need to provide a unique name for the task. There are any number of
 # ways you can do this -- based on the arguments, etc. -- but for our
 # example we'll just use the time at which it was declared.
 task_name = 'dynamic_ptask_%s' % int(time.time())

 huey.periodic_task(schedule, name=task_name)(wrapper)

Assuming the consumer is running, we can now set up as many instances as we
like of the “dynamic ptask” function:

>>> from demo import schedule_message
>>> schedule_message('I run every 5 minutes', '*/5')
<Result: task ...>
>>> schedule_message('I run between 0-15 and 30-45', '0-15,30-45')
<Result: task ...>

When the consumer executes the “schedule_message” tasks, our new periodic task
will be registered and added to the schedule.

Reading more

That sums up the basic usage patterns of huey. Below are links for details on
other aspects of the APIs:

	Huey - responsible for coordinating executable tasks and queue
backends

	Huey.task() - decorator to indicate an executable task.

	Result - handle for interacting with a task.

	Huey.periodic_task() - decorator to indicate a task that executes at
periodic intervals.

	crontab() - define what intervals to execute a periodic command.

	For information about managing shared resources like database connections,
refer to the shared resources document.

Also check out the notes on running the consumer.

Consuming Tasks

To run the consumer, simply point it at the “import path” to your application’s
Huey instance. For example, here is how I run it on my blog:

huey_consumer.py blog.main.huey --logfile=../logs/huey.log

The concept of the “import path” has been the source of a few questions, but
it is quite simple. It is simply the dotted-path you might use if you were
to try and import the “huey” object in the interactive interpreter:

>>> from blog.main import huey

You may run into trouble though when “blog” is not on your python-path. To
work around this:

	Manually specify your pythonpath: PYTHONPATH=/some/dir/:$PYTHONPATH huey_consumer.py blog.main.huey.

	Run huey_consumer.py from the directory your config module is in. I use
supervisord to manage my huey process, so I set the directory to the
root of my site.

	Create a wrapper and hack sys.path.

Warning

If you plan to use supervisord [http://supervisord.org/] to manage your
consumer process, be sure that you are running the consumer directly and
without any intermediary shell scripts. Shell script wrappers interfere
with supervisor’s ability to terminate and restart the consumer Python
process. For discussion see GitHub issue 88 [https://github.com/coleifer/huey/issues/88].

Options for the consumer

The following table lists the options available for the consumer as well as
their default values.

	-l, --logfile

	Path to file used for logging. When a file is specified, by default Huey
the logfile will grow indefinitely, so you may wish to configure a tool
like logrotate.

Alternatively, you can attach your own handler to huey.consumer.

The default loglevel is INFO.

	-v, --verbose

	Verbose logging (loglevel=DEBUG). If no logfile is specified and
verbose is set, then the consumer will log to the console.

Note: due to conflicts, when using Django this option is renamed to
use -V, --huey-verbose.

	-q, --quiet

	Minimal logging, only errors and their tracebacks will be logged.

	-S, --simple

	Use a simple log format consisting only of the time H:M:S and log message.

	-w, --workers

	Number of worker threads/processes/greenlets, the default is 1 but
most applications will want to increase this number for greater throughput.
Even if you have a small workload, you will typically want to increase this
number to at least 2 just in case one worker gets tied up on a slow task.
If you have a CPU-intensive workload, you may want to increase the number
of workers to the number of CPU cores (or 2x CPU cores). Lastly, if you are
using the greenlet worker type, you can easily run tens or hundreds of
workers as they are extremely lightweight.

	-k, --worker-type

	Choose the worker type, thread, process or greenlet. The
default is thread.

Depending on your workload, one worker type may perform better than the
others:

	CPU heavy loads: use “process”. Python’s global interpreter lock prevents
multiple threads from running simultaneously, so to leverage multiple CPU
cores (and reduce thread contention) run each worker as a separate
process.

	IO heavy loads: use “greenlet”. For example, tasks that crawl websites or
which spend a lot of time waiting to read/write to a socket, will get a
huge boost from using the greenlet worker model. Because greenlets are so
cheap in terms of memory, you can easily run a large number of workers.

	Anything else: use “thread”. You get the benefits of pre-emptive
multi-tasking without the overhead of multiple processes. A safe choice
and the default.

See the Worker types section for additional information.

	-n, --no-periodic

	Indicate that this consumer process should not enqueue periodic tasks.
If you do not plan on using the periodic task feature, feel free to use
this option to save a few CPU cycles.

	-d, --delay

	When using a “polling”-type queue backend, this is the number of seconds to
wait when polling the backend. Default is 0.1 seconds. For example, when
the consumer starts up it will begin polling every 0.1 seconds. If no tasks
are found in the queue, it will multiply the current delay (0.1) by the
backoff parameter. When a task is received, the polling interval will reset
back to this value.

	-m, --max-delay

	The maximum amount of time to wait between polling, if using weighted
backoff. Default is 10 seconds. If your huey consumer doesn’t see a lot of
action, you can increase this number to reduce CPU usage.

	-b, --backoff

	The amount to back-off when polling for results. Must be greater than
one. Default is 1.15. This parameter controls the rate at which the
interval increases after successive attempts return no tasks. Here is how
the defaults, 0.1 initial and 1.15 backoff, look:

[image: _images/p1472257818.22.png]

	-c, --health-check-interval

	This parameter specifies how often huey should check on the status of the
workers, restarting any that died for some reason. I personally run a dozen
or so huey consumers at any given time and have never encountered an issue
with the workers, but I suppose anything’s possible and better safe than
sorry.

	-C, --disable-health-check

	This option disables the worker health checks. Until version 1.3.0,
huey had no concept of a “worker health check” because in my experience the
workers simply always stayed up and responsive. But if you are using huey
for critical tasks, you may want the insurance of having additional
monitoring to make sure your workers stay up and running. At any rate, I
feel comfortable saying that it’s perfectly fine to use this option and
disable worker health checks.

	-s, --scheduler-interval

	The frequency with which the scheduler should run. By default this will run
every second, but you can increase the interval to as much as 60 seconds.

Examples

Running the consumer with 8 threads and a logfile for errors:

huey_consumer.py my.app.huey -l /var/log/app.huey.log -w 8 -q

Using multi-processing to run 4 worker processes.

huey_consumer.py my.app.huey -w 4 -k process

Running single-threaded with periodict task support disabled. Additionally,
logging records are written to stdout.

huey_consumer.py my.app.huey -v -n

Using greenlets to run 50 workers, with no health checking and a scheduler
granularity of 60 seconds.

huey_consumer.py my.app.huey -w 50 -k greenlet -C -s 60

Worker types

The consumer consists of a main process, a scheduler, and one or more workers.
These individual components all run concurrently, and Huey supports three
different mechanisms to achieve this concurrency.

	thread, the default - uses OS threads. Due to Python’s global interpreter
lock, only one thread can be running at a time, but this is actually less of
a limitation than it might sound. The Python runtime can intelligently switch
the running thread when an I/O occurs or when a thread is idle. If the worker
is CPU-bound, the runtime will pre-emptively switch threads after a given
number of operations, ensuring each thread gets a chance to make progress.
Threads provide a good balance of performance and memory efficiency.

	process - runs the scheduler and worker(s) in their own process. The main
benefit over threads is the absence of the global interpreter lock, which
allows CPU-bound workers to execute in parallel. Since each process maintains
its own copy of the code in memory, it is likely that processes will require
more memory than threads or greenlets. Processes are a good choice for tasks
that perform CPU-intensive work.

	greenlet - runs the scheduler and worker(s) in greenlets. Requires gevent [https://gevent.org/],
a cooperative multi-tasking library. When a task performs an operation that
would be blocking (read or write on a socket), the file descriptor is added
to an event loop managed by gevent, and the scheduler will switch tasks.
Since gevent uses cooperative multi-tasking, a task that is CPU-bound will
not yield control to the gevent scheduler, limiting concurrency. For this
reason, gevent is a good choice for tasks that perform lots of socket I/O,
but may give worse performance for tasks that are CPU-bound (e.g., parsing
large files, manipulating images, generating reports, etc).

When in doubt, the default setting (thread) is a safe choice.

Using gevent

Gevent works by monkey-patching various Python modules, such as socket,
ssl, time, etc. In order for your application to be able to switch
tasks reliably, you should apply the monkey-patch at the very beginning of
your code – before anything else gets loaded.

Suppose we have defined an entrypoint for our application named
main.py, which imports our Huey instance, our tasks, and
the other essential parts of our application (the WSGI app, database
connection, etc).

We would place the monkey-patch at the top of main.py, before all the
other imports:

main.py
from gevent import monkey; monkey.patch_all() # Apply monkey-patch.

from .app import wsgi_app # Import our WSGI app.
from .db import database # Database connection.
from .queue import huey # Huey instance for our app.
from .tasks import * # Import all tasks, so they are discoverable.

To run the consumer:

$ huey_consumer.py main.huey -k greenlet -w 16

You should have a good understanding of how gevent works, its strengths and
limitations, before using the greenlet worker type.

Consumer shutdown

The huey consumer supports graceful shutdown via SIGINT. When the consumer
process receives SIGINT, workers are allowed to finish up whatever task
they are currently executing before the process exits.

Alternatively, you can shutdown the consumer using SIGTERM and any running
tasks will be interrupted, ensuring the process exits quickly.

Consumer restart

To cleanly restart the consumer, including all workers, send the SIGHUP
signal. When the consumer receives the hang-up signal, any tasks being executed
will be allowed to finish before the restart occurs.

Note

If you are using Python 2.7 and either the thread or greenlet worker model,
it is strongly recommended that you use a process manager (such as systemd
or supervisor) to handle running and restarting the consumer. The reason
has to do with the potential of Python 2.7, when mixed with thread/greenlet
workers, to leak file descriptors. For more information, check out
issue 374 [https://github.com/coleifer/huey/issues/374] and
PEP 446 [https://www.python.org/dev/peps/pep-0446/].

Consumer Internals

This section will attempt to explain what happens when you call a
task-decorated function in your application. To do this, we will go into
the implementation of the consumer. The code for the consumer [https://github.com/coleifer/huey/blob/master/huey/consumer.py]
itself is actually quite short (couple hundred lines), and I encourage you to
check it out.

The consumer is composed of three components: a master process, the scheduler,
and the worker(s). Depending on the worker type chosen, the scheduler and
workers will be run in their threads, processes or greenlets.

These three components coordinate the receipt, scheduling, and execution of
your tasks, respectively.

	You call a function – huey has decorated it, which triggers a message being
put into the queue (e.g a Redis list). At this point your application
returns immediately, returning a Result object.

	In the consumer process, the worker(s) will be listening for new messages
and one of the workers will receive your message indicating which task to
run, when to run it, and with what parameters.

	The worker looks at the message and checks to see if it can be run (i.e.,
was this message “revoked”? Is it scheduled to actually run later?). If it
is revoked, the message is thrown out. If it is scheduled to run later, it
gets added to the schedule. Otherwise, it is executed.

	The worker executes the task. If the task finishes, any results are stored
in the result store. If the task fails, the consumer checks to see if the
task can be retried. Then, if the task is to be retried, the consumer checks
to see if the task is configured to wait a number of seconds between
retries. Depending on the configuration, huey will either re-enqueue the
task for execution, or tell the scheduler when to re-enqueue it based on the
delay.

While all the above is going on with the Worker(s), the Scheduler is looking at
its schedule to see if any tasks are ready to be executed. If a task is ready
to run, it is enqueued and will be processed by the next available worker.

If you are using the Periodic Task feature (cron), then every minute, the
scheduler will check through the various periodic tasks to see if any should
be run. If so, these tasks are enqueued.

Warning

SIGINT is used to perform a graceful shutdown.

When the consumer is shutdown using SIGTERM, any workers still
involved in the execution of a task will be interrupted mid-task.

Signals

The consumer will emit certain Signals as it executes tasks. User code
can register signal handlers to respond to these events. For more information,
see the Signals document.

Understanding how tasks are imported

Behind-the-scenes when you decorate a function with task() or
periodic_task(), the function registers itself with an in-memory
registry. When a task function is called, a reference is put into the queue,
along with the arguments the function was called with, etc. The message is then
read by the consumer, and the task function is looked-up in the consumer’s
registry. Because of the way this works, it is strongly recommended
that all decorated functions be imported when the consumer starts up.

Note

If a task is not recognized, the consumer will raise a
HueyException.

The consumer is executed with a single required parameter – the import path to
a Huey object. It will import the Huey instance along with
anything else in the module – thus you must be sure imports of your tasks
occur with the import of the Huey object.

Suggested organization of code

Generally, I structure things like this, which makes it very easy to avoid
circular imports.

	config.py, the module containing the Huey object.

config.py
from huey import RedisHuey

huey = RedisHuey('testing')

	tasks.py, the module containing any decorated functions. Imports the
huey object from the config.py module:

tasks.py
from config import huey

@huey.task()
def add(a, b):
 return a + b

	main.py / app.py, the “main” module. Imports both the config.py
module and the tasks.py module.

main.py
from config import huey # import the "huey" object.
from tasks import add # import any tasks / decorated functions

if __name__ == '__main__':
 result = add(1, 2)
 print('1 + 2 = %s' % result.get(blocking=True))

To run the consumer, point it at main.huey, in this way, both the huey
instance and the task functions are imported in a centralized location.

$ huey_consumer.py main.huey

Managing shared resources

Tasks may need to make use of shared resources from the application, such as a
database connection or an API client.

The simplest approach is to manage the resource explicitly. For example, Peewee
database connections can be used as a context manager, so if we need to run
some queries inside a task, we might write:

database = peewee.PostgresqlDatabase('my_app')
huey = RedisHuey()

@huey.task()
def check_comment_spam(comment_id):
 # Open DB connection at start of task, close upon exit.
 with database:
 comment = Comment.get(Comment.id == comment_id)

 if akismet.is_spam(comment.body):
 comment.is_spam = True
 comment.save()

Another option would be to write a decorator that acquires the shared resource
before calling the task function, and then closes it after the task has
finished. To make this a little simpler, Huey provides a special helper
Huey.context_task() decorator that accepts an object implementing the
context-manager API, and automatically wraps the task within the given context:

Same as previous example, except we can omit the "with db" block.
@huey.context_task(db)
def check_comment_spam(comment_id):
 comment = Comment.get(Comment.id == comment_id)

 if akismet.is_spam(comment.body):
 comment.is_spam = True
 comment.save()

Startup hooks

The Huey.on_startup() decorator is used to register a callback that is
executed once when each worker starts running. This hook provides a convenient
way to initialize shared resources or perform other initializations which
should happen within the context of the worker thread or process.

As an example, suppose many of our tasks will be executing queries against a
Postgres database. Rather than opening and closing a connection for every task,
we will instead open a connection when each worker starts. This connection may
then be used by any tasks that are executed by that consumer:

import peewee

db = PostgresqlDatabase('my_app')

@huey.on_startup()
def open_db_connection():
 # If for some reason the db connection appears to already be open,
 # close it first.
 if not db.is_closed():
 db.close()
 db.connect()

@huey.task()
def run_query(n):
 db.execute_sql('select pg_sleep(%s)', (n,))
 return n

Note

The above code works correctly because peewee [https://github.com/coleifer/peewee]
stores connection state in a threadlocal. This is important if we are
running the workers in threads (huey’s default). Every thread will be
sharing the same PostgresqlDatabase instance, but since the connection
state is thread-local, each worker thread will see only its own connection.

Pre and post execute hooks

In addition to the on_startup() hook, Huey also provides
decorators for registering pre- and post-execute hooks:

	Huey.pre_execute() - called right before a task is executed. The
handler function should accept one argument: the task that will be executed.
Pre-execute hooks have an additional feature: they can raise a special
CancelExecution exception to instruct the consumer that the task
should not be run.

	Huey.post_execute() - called after task has finished. The handler
function should accept three arguments: the task that was executed, the
return value, and the exception (if one occurred, otherwise is None).

Example:

from huey import CancelExecution

@huey.pre_execute()
def pre_execute_hook(task):
 # Pre-execute hooks are passed the task that is about to be run.

 # This pre-execute task will cancel the execution of every task if the
 # current day is Sunday.
 if datetime.datetime.now().weekday() == 6:
 raise CancelExecution('No tasks on sunday!')

@huey.post_execute()
def post_execute_hook(task, task_value, exc):
 # Post-execute hooks are passed the task, the return value (if the task
 # succeeded), and the exception (if one occurred).
 if exc is not None:
 print('Task "%s" failed with error: %s!' % (task.id, exc))

Note

Printing the error message is redundant, as the huey logger already logs
any unhandled exceptions raised by a task, along with a traceback. These
are just examples.

Signals

The consumer will send various signals as it processes tasks. Callbacks can be
registered as signal handlers, and will be called synchronously by the consumer
process.

The following signals are implemented by Huey:

	SIGNAL_CANCELED: task was canceled due to a pre-execute hook raising
a CancelExecution exception.

	SIGNAL_COMPLETE: task has been executed successfully.

	SIGNAL_ERROR: task failed due to an unhandled exception.

	SIGNAL_EXECUTING: task is about to be executed.

	SIGNAL_LOCKED: failed to acquire lock, aborting task.

	SIGNAL_RETRYING: task failed, but will be retried.

	SIGNAL_REVOKED: task is revoked and will not be executed.

	SIGNAL_SCHEDULED: task is not yet ready to run and has been added to the
schedule for future execution.

When a signal handler is called, it will be called with the following
arguments:

	signal: the signal name, e.g. 'executing'.

	task: the Task instance.

The following signals will include additional arguments:

	SIGNAL_ERROR: includes a third argument exc, which is the
Exception that was raised while executing the task.

To register a signal handler, use the Huey.signal() method:

@huey.signal()
def all_signal_handler(signal, task, exc=None):
 # This handler will be called for every signal.
 print('%s - %s' % (signal, task.id))

@huey.signal(SIGNAL_ERROR, SIGNAL_LOCKED, SIGNAL_CANCELED, SIGNAL_REVOKED)
def task_not_executed_handler(signal, task, exc=None):
 # This handler will be called for the 4 signals listed, which
 # correspond to error conditions.
 print('[%s] %s - not executed' % (signal, task.id))

@huey.signal(SIGNAL_COMPLETE)
def task_success(signal, task):
 # This handle will be called for each task that completes successfully.
 pass

Signal handlers can be unregistered using Huey.disconnect_signal().

Disconnect the "task_success" signal handler.
huey.disconnect_signal(task_success)

Disconnect the "task_not_executed_handler", but just from
handling SIGNAL_LOCKED.
huey.disconnect_signal(task_not_executed_handler, SIGNAL_LOCKED)

Examples

We’ll use the following tasks to illustrate how signals may be sent:

@huey.task()
def add(a, b):
 return a + b

@huey.task(retries=2, retry_delay=10)
def flaky_task():
 if random.randint(0, 1) == 0:
 raise ValueError('uh-oh')
 return 'OK'

Here is a simple example of a task execution we would expect to succeed:

>>> result = add(1, 2)
>>> result.get(blocking=True)

The consumer would send the following signals:

	SIGNAL_EXECUTING - the task has been dequeued and will be executed.

	SIGNAL_COMPLETE - the task has finished successfully.

Here is an example of scheduling a task for execution after a short delay:

>>> result = add.schedule((2, 3), delay=10)
>>> result(True) # same as result.get(blocking=True)

The following signals would be sent:

	SIGNAL_SCHEDULED - the task is not yet ready to run, so it has been added
to the schedule.

	After 10 seconds, the consumer will run the task and send
the SIGNAL_EXECUTING signal.

	SIGNAL_COMPLETE.

Here is an example that may fail, in which case it will be retried
automatically with a delay of 10 seconds.

>>> result = flaky_task()
>>> try:
... result.get(blocking=True)
... except TaskException:
... result.reset()
... result.get(blocking=True) # Try again if first time fails.
...

Assuming the task failed the first time and succeeded the second time, we would
see the following signals being sent:

	SIGNAL_EXECUTING - the task is being executed.

	SIGNAL_ERROR - the task raised an unhandled exception.

	SIGNAL_RETRYING - the task will be retried.

	SIGNAL_SCHEDULED - the task has been added to the schedule for execution
in ~10 seconds.

	SIGNAL_EXECUTING - second try running task.

	SIGNAL_COMPLETE - task succeeded.

What happens if we revoke the add() task and then attempt to execute it:

>>> add.revoke()
>>> res = add(1, 2)

The following signal will be sent:

	SIGNAL_REVOKED - this is sent before the task enters the “executing”
state. When a task is revoked, no other signals will be sent.

Performance considerations

Signal handlers are executed synchronously by the consumer as it processes
tasks. It is important to use care when implementing signal handlers, as one
slow signal handler can impact the overall responsiveness of the consumer.

For example, if you implement a signal handler that posts some data to REST
API, everything might work fine until the REST API goes down or stops being
responsive – which will cause the signal handler to block, which then prevents
the consumer from moving on to the next task.

Another consideration is the management of shared resources
that may be used by signal handlers, such as database connections or open file
handles. Signal handlers are called by the consumer workers, which (depending
on how you are running the consumer) may be separate processes, threads or
greenlets. As a result, care should be taken to ensure proper initialization
and cleanup of any resources you plan to use in signal handlers.

Huey’s API

Most end-users will interact with the API using the two decorators:

	Huey.task()

	Huey.periodic_task()

The API documentation will follow the structure of the huey api.py module.

Huey types

	
class RedisHuey

	Huey that utilizes redis [https://redis.io/] for queue and result
storage. Requires redis-py [https://github.com/andymccurdy/redis-py].

Commonly-used keyword arguments for storage configuration:

	Parameters

	
	blocking (bool) – Use blocking-pop when reading from the queue (as
opposed to polling). Default is true.

	connection_pool – a redis-py ConnectionPool instance.

	url – url for Redis connection.

	host – hostname of the Redis server.

	port – port number.

	password – password for Redis.

	db (int) – Redis database to use (typically 0-15, default is 0).

The redis-py documentation [https://redis-py.readthedocs.io/en/latest/]
contains the complete list of arguments supported by the Redis client.

Note

RedisHuey does not support task priorities. If you wish to use task
priorities with Redis, use PriorityRedisHuey.

RedisHuey uses a Redis LIST to store the queue of pending tasks. Redis
lists are a natural fit, as they offer O(1) append and pop from either end
of the list. Redis also provides blocking-pop commands which allow the
consumer to react to a new message as soon as it is available without
resorting to polling.

See also

RedisStorage

	
class PriorityRedisHuey

	Huey that utilizes redis [https://redis.io/] for queue and result
storage. Requires redis-py [https://github.com/andymccurdy/redis-py].
Accepts the same arguments as RedisHuey.

PriorityRedisHuey supports task priorities, and requires
Redis 5.0 or newer.

PriorityRedisHuey uses a Redis SORTED SET to store the queue of pending
tasks. Sorted sets consist of a unique value and a numeric score. In
addition to being sorted by numeric score, Redis also orders the items
within the set lexicographically. Huey takes advantage of these two
characteristics to implement the priority queue. Redis 5.0 added a new
command, ZPOPMIN, which pops the lowest-scoring item from the sorted set
(and BZPOPMIN, the blocking variety).

	
class RedisExpireHuey

	Identical to RedisHuey except for the way task result values
are stored. RedisHuey keeps all task results in a Redis hash, and whenever
a task result is read (via the result handle), it is also removed from the
result hash. This is done to prevent the task result storage from growing
without bound. Additionally, using a Redis hash for all results helps avoid
cluttering up the Redis keyspace and utilizes less RAM for storing the keys
themselves.

RedisExpireHuey uses a different approach: task results are stored in
ordinary Redis keys with a special prefix. Result keys are then given a
time-to-live, and will be expired automatically by the Redis server. This
removes the necessity to remove results from the result store after they
are read once.

Commonly-used keyword arguments for storage configuration:

	Parameters

	
	expire_time (int) – Expire time in seconds, default is 86400 (1 day).

	blocking (bool) – Use blocking-pop when reading from the queue (as
opposed to polling). Default is true.

	connection_pool – a redis-py ConnectionPool instance.

	url – url for Redis connection.

	host – hostname of the Redis server.

	port – port number.

	password – password for Redis.

	db (int) – Redis database to use (typically 0-15, default is 0).

	
class SqliteHuey

	Huey that utilizes sqlite3 for queue and result storage. Only requirement
is the standard library sqlite3 module.

Commonly-used keyword arguments:

	Parameters

	
	filename (str) – filename for database, defaults to ‘huey.db’.

	cache_mb (int) – megabytes of memory to allow for sqlite page-cache.

	fsync (bool) – use durable writes. Slower but more resilient to
corruption in the event of sudden power loss. Defaults to false.

SqliteHuey fully supports task priorities.

See also

SqliteStorage

	
class MemoryHuey

	Huey that uses in-memory storage. Only should be used when testing or when
using immediate mode. MemoryHuey fully supports task priorities.

Huey object

	
class Huey(name='huey', results=True, store_none=False, utc=True, immediate=False, serializer=None, compression=False, use_zlib=False, immediate_use_memory=True, storage_kwargs)

	
	Parameters

	
	name (str) – the name of the task queue, e.g. your application’s name.

	results (bool) – whether to store task results.

	store_none (bool) – whether to store None in the result store.

	utc (bool) – use UTC internally, convert naive datetimes from local
time to UTC (if local time is other than UTC).

	immediate (bool) – useful for debugging; causes tasks to be executed
synchronously in the application.

	serializer (Serializer) – serializer implementation for tasks and
result data. The default implementation uses pickle.

	compression (bool) – compress tasks and result data.

	use_zlib (bool) – use zlib for compression instead of gzip.

	immediate_use_memory (bool) – automatically switch to a local in-memory
storage backend whenever immediate-mode is enabled.

	storage_kwargs – arbitrary keyword arguments that will be passed to
the storage backend for additional configuration.

Huey executes tasks by exposing function decorators that cause the function
call to be enqueued for execution by the consumer.

Typically your application will only need one Huey instance, but you can
have as many as you like – the only caveat is that one consumer process
must be executed for each Huey instance.

Example usage:

demo.py
from huey import RedisHuey

Create a huey instance.
huey = RedisHuey('my-app')

@huey.task()
def add_numbers(a, b):
 return a + b

@huey.periodic_task(crontab(minute='0', hour='2'))
def nightly_report():
 generate_nightly_report()

To run the consumer with 4 worker threads:

$ huey_consumer.py demo.huey -w 4

To add two numbers, the “huey” way:

>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res(blocking=True) # Blocks until result is available.
3

To test huey without using a consumer, you can use “immediate” mode.
Immediate mode follows all the same code paths as Huey does when running
the consumer process, but does so synchronously within the application.

>>> from demo import add_numbers, huey
>>> huey.immediate = True # Tasks executed immediately.
>>> res = add_numbers(2, 3)
>>> res()
5

	
immediate

	The immediate property is used to enable and disable immediate mode.
When immediate mode is enabled, task-decorated functions are executed
synchronously by the caller, making it very useful for development and
testing. Calling a task function still returns a Result
handle, but the task itself is executed immediately.

By default, when immediate mode is enabled, Huey will switch to using
in-memory storage. This is to help prevent accidentally writing to a
live Redis server while testing. To disable this functionality, specify
immediate_use_memory=False when initializing Huey.

Enabling immediate mode:

huey = RedisHuey()

Enable immediate mode. Tasks now executed synchronously.
Additionally, huey will now use in-memory storage.
huey.immediate = True

Disable immediate mode. Tasks will now be enqueued in a Redis
queue.
huey.immediate = False

Immediate mode can also be specified when your Huey instance is
created:

huey = RedisHuey(immediate=True)

	
task(retries=0, retry_delay=0, priority=None, context=False, name=None, **kwargs)

	
	Parameters

	
	retries (int) – number of times to retry the function if an
unhandled exception occurs when it is executed.

	retry_delay (int) – number of seconds to wait between retries.

	priority (int) – priority assigned to task, higher numbers are
processed first by the consumer when there is a backlog.

	context (bool) – when the task is executed, include the
Task instance as a keyword argument.

	name (str) – name for this task. If not provided, Huey will default
to using the module name plus function name.

	kwargs – arbitrary key/value arguments that are passed to the
TaskWrapper instance.

	Returns

	a TaskWrapper that wraps the decorated function
and exposes a number of APIs for enqueueing the task.

Function decorator that marks the decorated function for processing by
the consumer. Calls to the decorated function will do the following:

	Serialize the function call into a Message suitable for
storing in the queue.

	Enqueue the message for execution by the consumer.

	Return a Result handle, which can be used to check the
result of the task function, revoke the task (assuming it hasn’t
started yet), reschedule the task, and more.

Note

Huey can be configured to execute the function immediately by
instantiating Huey with immediate=True – this is useful for
running in debug mode or when you do not wish to run the consumer.

For more information, see the immediate mode
section of the guide.

The task() decorator returns a TaskWrapper, which
implements special methods for enqueueing the decorated function. These
methods are used to schedule() the task to run in
the future, chain tasks to form a pipeline, and more.

Example:

from huey import RedisHuey

huey = RedisHuey()

@huey.task()
def add(a, b):
 return a + b

Whenever the add() function is called, the actual execution will
occur when the consumer dequeues the message.

>>> res = add(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>
>>> res()
3

To further illustrate this point:

@huey.task()
def slow(n):
 time.sleep(n)
 return n

Calling the slow() task will return immediately. We can, however,
block until the task finishes by waiting for the result:

>>> res = slow(10) # Returns immediately.
>>> res(blocking=True) # Block until task finishes, ~10s.
10

Note

The return value of any calls to the decorated function depends on
whether the Huey instance is configured to store the
results of tasks (results=True is the default). When the result
store is disabled, calling a task-decorated function will return
None instead of a result handle.

In some cases, it may be useful to receive the Task
instance itself as an argument.

@huey.task(context=True) # Include task as an argument.
def print_a_task_id(message, task=None):
 print('%s: %s' % (message, task.id))

print_a_task_id('hello')
print_a_task_id('goodbye')

This would cause the consumer would print something like:

hello: e724a743-e63e-4400-ac07-78a2fa242b41
goodbye: 606f36fc-da0d-4069-b46c-c0d4ccff1df6

Note

When using other decorators on task functions, make sure that you
understand when they will be evaluated. In the following example
the decorator a will be evaluated in the calling process, while
b will be evaluated in the worker process.

@a
@huey.task()
@b
def task():
 pass

For more information, see TaskWrapper, Task,
and Result.

	
periodic_task(validate_datetime, retries=0, retry_delay=0, priority=None, context=False, name=None, **kwargs)

	
	Parameters

	
	validate_datetime (function) – function which accepts a
datetime instance and returns whether the task should be
executed at the given time.

	retries (int) – number of times to retry the function if an
unhandled exception occurs when it is executed.

	retry_delay (int) – number of seconds to wait in-between retries.

	priority (int) – priority assigned to task, higher numbers are
processed first by the consumer when there is a backlog.

	context (bool) – when the task is executed, include the
Task instance as a parameter.

	name (str) – name for this task. If not provided, Huey will default
to using the module name plus function name.

	kwargs – arbitrary key/value arguments that are passed to the
TaskWrapper instance.

	Returns

	a TaskWrapper that wraps the decorated function
and exposes a number of APIs for enqueueing the task.

The periodic_task() decorator marks a function for automatic
execution by the consumer at a specific interval, like cron.

The validate_datetime parameter is a function which accepts a
datetime object and returns a boolean value whether or not the
decorated function should execute at that time or not. The consumer
will send a datetime to the function once per minute, giving it the
same granularity as the cron.

For simplicity, there is a special function crontab(), which
can be used to quickly specify intervals at which a function should
execute. It is described below.

Here is an example of how you might use the periodic_task decorator
and the crontab`() helper. The following task will be executed
every three hours, on the hour:

from huey import crontab
from huey import RedisHuey

huey = RedisHuey()

@huey.periodic_task(crontab(minute='0', hour='*/3'))
def update_feeds():
 for feed in my_list_of_feeds:
 fetch_feed_data(feed)

Note

Because functions decorated with periodic_task are meant to be
executed at intervals in isolation, they should not take any
required parameters nor should they be expected to return a
meaningful value.

Like task(), the periodic task decorator adds helpers
to the decorated function. These helpers allow you to
revoke() and restore() the
periodic task, enabling you to pause it or prevent its execution. For
more information, see TaskWrapper.

Note

The result (return value) of a periodic task is not stored in the
result store. This is primarily due to the fact that there is not
an obvious way one would read such results, since the invocation of
the periodic task happens inside the consumer scheduler. As such,
there is no task result handle which the user could use to read the
result. To store the results of periodic tasks, you will need to
use your own storage or use the storage APIs directly:

@huey.periodic_task(crontab(minute='*/10'))
def my_task():
 # do some work...
 do_something()

 # Manually store some data in the result store.
 huey.put('my-task', some_data_to_store)

More info:

	Huey.put()

	Huey.get()

	
context_task(obj, retries=0, retry_delay=0, context=False, name=None, **kwargs)

	
	Parameters

	
	obj – object that implements the context-manager APIs.

	as_argument (bool) – pass the context-manager object into the
decorated task as the first argument.

	retries (int) – number of times to retry the function if an
unhandled exception occurs when it is executed.

	retry_delay (int) – number of seconds to wait in-between retries.

	context (bool) – when the task is executed, include the
Task instance as a parameter.

	name (str) – name for this task. If not provided, Huey will default
to using the module name plus function name.

	kwargs – arbitrary key/value arguments that are passed to the
TaskWrapper instance.

	Returns

	a TaskWrapper that wraps the decorated function
and exposes a number of APIs for enqueueing the task.

This is an extended implementation of the Huey.task()
decorator, which wraps the decorated task in a with obj: block.
Roughly equivalent to:

db = PostgresqlDatabase(...)

@huey.task()
def without_context_task(n):
 with db:
 do_something(n)

@huey.context_task(db)
def with_context_task(n):
 return do_something(n)

	
pre_execute(name=None)

	
	Parameters

	name – (optional) name for the hook.

	Returns

	a decorator used to wrap the actual pre-execute function.

Decorator for registering a pre-execute hook. The callback will be
executed before the execution of every task. Execution of the task can
be cancelled by raising a CancelExecution exception.
Uncaught exceptions will be logged but will not cause the task itself
to be cancelled.

The callback function should accept a single task instance, the return
value is ignored.

Hooks are executed in the order in which they are registered.

Usage:

@huey.pre_execute()
def my_pre_execute_hook(task):
 if datetime.datetime.now().weekday() == 6:
 raise CancelExecution('Sunday -- no work will be done.')

	
unregister_pre_execute(name_or_fn)

	
	Parameters

	name_or_fn – the name given to the pre-execute hook, or the
function object itself.

	Returns

	boolean

Unregister the specified pre-execute hook.

	
post_execute(name=None)

	
	Parameters

	name – (optional) name for the hook.

	Returns

	a decorator used to wrap the actual post-execute function.

Register a post-execute hook. The callback will be executed after the
execution of every task. Uncaught exceptions will be logged but will
have no other effect on the overall operation of the consumer.

The callback function should accept:

	a Task instance

	the return value from the execution of the task (which may be None)

	any exception that was raised during the execution of the task (which
will be None for tasks that executed normally).

The return value of the callback itself is ignored.

Hooks are executed in the order in which they are registered.

Usage:

@huey.post_execute()
def my_post_execute_hook(task, task_value, exc):
 do_something()

	
unregister_post_execute(name_or_fn)

	
	Parameters

	name_or_fn – the name given to the post-execute hook, or the
function object itself.

	Returns

	boolean

Unregister the specified post-execute hook.

	
on_startup(name=None)

	
	Parameters

	name – (optional) name for the hook.

	Returns

	a decorator used to wrap the actual on-startup function.

Register a startup hook. The callback will be executed whenever a
worker comes online. Uncaught exceptions will be logged but will
have no other effect on the overall operation of the worker.

The callback function must not accept any parameters.

This API is provided to simplify setting up shared resources that, for
whatever reason, should not be created as import-time side-effects. For
example, your tasks need to write data into a Postgres database. If you
create the connection at import-time, before the worker processes are
spawned, you’ll likely run into errors when attempting to use the
connection from the child (worker) processes. To avoid this problem,
you can register a startup hook which executes once when the worker
starts up.

Usage:

db_connection = None

@huey.on_startup()
def setup_db_connection():
 global db_connection
 db_connection = psycopg2.connect(database='my_db')

@huey.task()
def write_data(rows):
 cursor = db_connection.cursor()
 # ...

	
unregister_on_startup(name_or_fn)

	
	Parameters

	name_or_fn – the name given to the on-startup hook, or the
function object itself.

	Returns

	boolean

Unregister the specified on-startup hook.

	
signal(*signals)

	
	Parameters

	signals – zero or more signals to handle.

	Returns

	a decorator used to wrap the actual signal handler.

Attach a signal handler callback, which will be executed when the
specified signals are sent by the consumer. If no signals are listed,
then the handler will be bound to all signals. The list of signals
and additional information can be found in the Signals
documentation.

Example:

from huey.signals import SIGNAL_ERROR, SIGNAL_LOCKED

@huey.signal(SIGNAL_ERROR, SIGNAL_LOCKED)
def task_not_run_handler(signal, task, exc=None):
 # Do something in response to the "ERROR" or "LOCEKD" signals.
 # Note that the "ERROR" signal includes a third parameter,
 # which is the unhandled exception that was raised by the task.
 # Since this parameter is not sent with the "LOCKED" signal, we
 # provide a default of ``exc=None``.
 pass

	
disconnect_signal(receiver, *signals)

	
	Parameters

	
	receiver – the signal handling function to disconnect.

	signals – zero or more signals to stop handling.

Disconnect the signal handler from the provided signals. If no signals
are provided, then the handler is disconnected from any signals it may
have been connected to.

	
enqueue(task)

	
	Parameters

	task (Task) – task instance to enqueue.

	Returns

	Result handle for the given task.

Enqueue the given task. When the result store is enabled (default), the
return value will be a Result handle which provides access
to the result of the task execution (as well as other things).

If the task specifies another task to run on completion (see
Task.then()), the return value will be a
ResultGroup, which encapsulates a list of individual
Result instances for the given pipeline.

Note

Unless you are executing a pipeline of tasks, it should not
be necessary to use the enqueue() method directly.
Calling (or scheduling) a task-decorated function will
automatically enqueue a task for execution.

When you create a task pipeline, however, it is necessary to
enqueue the pipeline once it has been set up.

	
revoke(task, revoke_until=None, revoke_once=False)

	
See also

Use Result.revoke() instead.

	
revoke_by_id(task_id, revoke_until=None, revoke_once=False)

	
	Parameters

	
	task_id (str) – task instance id.

	revoke_until (datetime) – optional expiration date for revocation.

	revoke_once (bool) – revoke once and then re-enable.

Revoke a Task instance using the task id.

	
revoke_all(task_class, revoke_until=None, revoke_once=False)

	
See also

Use TaskWrapper.revoke() instead.

	
restore(task)

	
See also

Use Result.restore() instead.

	
restore_by_id(task_id)

	
	Parameters

	task_id (str) – task instance id.

	Returns

	boolean indicating success.

Restore a Task instance using the task id. Returns boolean
indicating if the revocation was successfully removed.

	
restore_all(task_class)

	
See also

Use TaskWrapper.restore() instead.

	
is_revoked(task, timestamp=None)

	
See also

For task instances, use Result.is_revoked().

For task functions, use TaskWrapper.is_revoked().

	
result(task_id, blocking=False, timeout=None, backoff=1.15, max_delay=1.0, revoke_on_timeout=False, preserve=False)

	
	Parameters

	
	task_id – the task’s unique identifier.

	blocking (bool) – whether to block while waiting for task result

	timeout – number of seconds to block (if blocking=True)

	backoff – amount to backoff delay each iteration of loop

	max_delay – maximum amount of time to wait between iterations when
attempting to fetch result.

	revoke_on_timeout (bool) – if a timeout occurs, revoke the task,
thereby preventing it from running if it is has not started yet.

	preserve (bool) – when set to True, this parameter ensures that
the task result will be preserved after having been successfully
retrieved. Ordinarily, Huey will discard results after they have
been read, to prevent the result store from growing without bounds.

Attempts to retrieve the return value of a task. By default, result()
will simply check for the value, returning None if it is not ready
yet. If you want to wait for the result, specify blocking=True.
This will loop, backing off up to the provided max_delay, until the
value is ready or the timeout is reached. If the timeout is
reached before the result is ready, a HueyException will be
raised.

See also

Result - the result() method is simply a
wrapper that creates a Result object and calls its
get() method.

Note

If the task failed with an exception, then a
TaskException that wraps the original exception will be
raised.

Warning

By default the result store will delete a task’s return
value after the value has been successfully read (by a successful
call to the result() or Result.get()
methods). If you intend to access the task result multiple times,
you must specify preserve=True when calling these methods.

	
lock_task(lock_name)

	
	Parameters

	lock_name (str) – Name to use for the lock.

	Returns

	TaskLock instance, which can be used as a
decorator or context-manager.

Utilize the Storage key/value APIs to implement simple locking.

This lock is designed to be used to prevent multiple invocations of a
task from running concurrently. Can be used as either a context-manager
or as a task decorator. If using as a decorator, place it directly
above the function declaration.

If a second invocation occurs and the lock cannot be acquired, then a
TaskLockedException is raised, which is handled by the
consumer. The task will not be executed and a SIGNAL_LOCKED will be
sent. If the task is configured to be retried, then it will be retried
normally.

Examples:

@huey.periodic_task(crontab(minute='*/5'))
@huey.lock_task('reports-lock') # Goes *after* the task decorator.
def generate_report():
 # If a report takes longer than 5 minutes to generate, we do
 # not want to kick off another until the previous invocation
 # has finished.
 run_report()

@huey.periodic_task(crontab(minute='0'))
def backup():
 # Generate backup of code
 do_code_backup()

 # Generate database backup. Since this may take longer than an
 # hour, we want to ensure that it is not run concurrently.
 with huey.lock_task('db-backup'):
 do_db_backup()

	
put(key, value)

	
	Parameters

	
	key – key for data

	value – arbitrary data to store in result store.

Store a value in the result-store under the given key.

	
get(key, peek=False)

	
	Parameters

	
	key – key to read

	peek (bool) – non-destructive read

Read a value from the result-store at the given key. By default reads
are destructive. To preserve the value for additional reads, specify
peek=True.

	
pending(limit=None)

	
	Parameters

	limit (int) – optionally limit the number of tasks returned.

	Returns

	a list of Task instances waiting to be run.

	
scheduled(limit=None)

	
	Parameters

	limit (int) – optionally limit the number of tasks returned.

	Returns

	a list of Task instances that are scheduled to
execute at some time in the future.

	
all_results()

	
	Returns

	a dict of task-id to the serialized result data for all
key/value pairs in the result store.

	
__len__()

	Return the number of items currently in the queue.

	
class TaskWrapper(huey, func, retries=None, retry_delay=None, context=False, name=None, task_base=None, **settings)

	
	Parameters

	
	huey (Huey) – A huey instance.

	func – User function.

	retries (int) – Upon failure, number of times to retry the task.

	retry_delay (int) – Number of seconds to wait before retrying after a
failure/exception.

	context (bool) – when the task is executed, include the
Task instance as a parameter.

	name (str) – Name for task (will be determined based on task module and
function name if not provided).

	task_base – Base-class for task, defaults to Task.

	settings – Arbitrary settings to pass to the task class constructor.

Wrapper around a user-defined function that converts function calls into
tasks executed by the consumer. The wrapper, which decorates the function,
replaces the function in the scope with a TaskWrapper instance.

The wrapper class, when called, will enqueue the requested function call
for execution by the consumer.

Note

You should not need to create TaskWrapper instances
directly. The Huey.task() and Huey.periodic_task()
decorators will create the appropriate TaskWrapper automatically.

	
schedule(args=None, kwargs=None, eta=None, delay=None)

	
	Parameters

	
	args (tuple) – arguments for decorated function.

	kwargs (dict) – keyword arguments for decorated function.

	eta (datetime) – the time at which the function should be executed.

	delay (int) – number of seconds to wait before executing function.

	Returns

	a Result handle for the task.

Use the schedule method to schedule the execution of the queue task
for a given time in the future:

import datetime

one_hour = datetime.datetime.now() + datetime.timedelta(hours=1)

Schedule the task to be run in an hour. It will be called with
three arguments.
res = check_feeds.schedule(args=(url1, url2, url3), eta=one_hour)

Equivalent, but uses delay rather than eta.
res = check_feeds.schedule(args=(url1, url2, url3), delay=3600)

	
revoke(revoke_until=None, revoke_once=False)

	
	Parameters

	
	revoke_until (datetime) – Automatically restore the task after the
given datetime.

	revoke_once (bool) – Revoke the next execution of the task and then
automatically restore.

Revoking a task will prevent any instance of the given task from
executing. When no parameters are provided the function will not
execute again until TaskWrapper.restore() is called.

This function can be called multiple times, but each call will
supercede any restrictions from the previous revocation.

Skip the next execution
send_emails.revoke(revoke_once=True)

Prevent any invocation from executing.
send_emails.revoke()

Prevent any invocation for 24 hours.
tomorrow = datetime.datetime.now() + datetime.timedelta(days=1)
send_emails.revoke(revoke_until=tomorrow)

	
is_revoked(timestamp=None)

	
	Parameters

	timestamp (datetime) – If provided, checks whether task is revoked
with respect to the given timestamp.

	Returns

	bool indicating whether task is revoked.

Check whether the given task is revoked.

	
restore()

	
	Returns

	bool indicating whether a previous revocation rule was found
and removed successfully.

Removes a previous task revocation, if one was configured.

	
call_local()

	Call the @task-decorated function, bypassing all Huey-specific
logic. In other words, call_local() provides access to the
underlying user-defined function.

>>> add.call_local(1, 2)
3

	
s(*args, **kwargs)

	
	Parameters

	
	args – Arguments for task function.

	kwargs – Keyword arguments for task function.

	priority (int) – assign priority override to task, higher numbers
are processed first by the consumer when there is a backlog.

	Returns

	a Task instance representing the execution of the
task function with the given arguments.

Create a Task instance representing the invocation of the
task function with the given arguments and keyword-arguments.

Note

The returned task instance is not enqueued automatically.

To illustrate the distinction, when you call a task()-decorated
function, behind-the-scenes, Huey is doing something like this:

@huey.task()
def add(a, b):
 return a + b

result = add(1, 2)

Is equivalent to:
task = add.s(1, 2)
result = huey.enqueue(task)

Typically, one will only use the TaskWrapper.s() helper when
creating task execution pipelines.

For example:

add_task = add.s(1, 2) # Represent task invocation.
pipeline = (add_task
 .then(add, 3) # Call add() with previous result and 3.
 .then(add, 4) # etc...
 .then(add, 5))

results = huey.enqueue(pipeline)

Print results of above pipeline.
print(results.get(blocking=True))

[3, 6, 10, 15]

	
map(it)

	
	Parameters

	it – a list, tuple or generic iterable that contains the
arguments for a number of individual task executions.

	Returns

	a ResultGroup encapsulating the individual
Result handlers for the task executions.

Note

The iterable should be a list of argument tuples which will be
passed to the task function.

Example:

@huey.task()
def add(a, b):
 return a + b

rg = add.map([(i, i * i) for i in range(10)])

Resolve all results.
rg.get(blocking=True)

[0, 2, 6, 12, 20, 30, 42, 56, 72, 90]

	
class Task(args=None, kwargs=None, id=None, eta=None, retries=None, retry_delay=None, on_complete=None, on_error=None)

	
	Parameters

	
	args (tuple) – arguments for the function call.

	kwargs (dict) – keyword arguments for the function call.

	id (str) – unique id, defaults to a UUID if not provided.

	eta (datetime) – time at which task should be executed.

	retries (int) – automatic retry attempts.

	retry_delay (int) – seconds to wait before retrying a failed task.

	priority (int) – priority assigned to task, higher numbers are
processed first by the consumer when there is a backlog.

	on_complete (Task) – Task to execute upon completion of this task.

	on_error (Task) – Task to execute upon failure / error.

The Task class represents the execution of a function. Instances of the
task are serialized and enqueued for execution by the consumer, which
deserializes and executes the task function.

Note

You should not need to create instances of Task directly,
but instead use either the Huey.task() decorator or
the TaskWrapper.s() method.

Here’s a refresher on how tasks work:

@huey.task()
def add(a, b):
 return a + b

ret = add(1, 2)
print(ret.get(blocking=True)) # "3".

The above two lines are equivalent to:
task_instance = add.s(1, 2) # Create a Task instance.
ret = huey.enqueue(task_instance) # Enqueue the queue task.
print(ret.get(blocking=True)) # "3".

	
then(task, *args, **kwargs)

	
	Parameters

	
	task (TaskWrapper) – A task()-decorated function.

	args – Arguments to pass to the task.

	kwargs – Keyword arguments to pass to the task.

	Returns

	The parent task.

The then() method is used to create task pipelines. A
pipeline is a lot like a unix pipe, such that the return value from the
parent task is then passed (along with any parameters specified by
args and kwargs) to the child task.

Here’s an example of chaining some addition operations:

add_task = add.s(1, 2) # Represent task invocation.
pipeline = (add_task
 .then(add, 3) # Call add() with previous result and 3.
 .then(add, 4) # etc...
 .then(add, 5))

result_group = huey.enqueue(pipeline)

print(result_group.get(blocking=True))

[3, 6, 10, 15]

If the value returned by the parent function is a tuple, then the
tuple will be used to update the *args for the child function.
Likewise, if the parent function returns a dict, then the dict will
be used to update the **kwargs for the child function.

Example of chaining fibonacci calculations:

@huey.task()
def fib(a, b=1):
 a, b = a + b, a
 return (a, b) # returns tuple, which is passed as *args

pipe = (fib.s(1)
 .then(fib)
 .then(fib))
result_group = huey.enqueue(pipe)

print(result_group.get(blocking=True))
[(2, 1), (3, 2), (5, 3)]

	
error(task, *args, **kwargs)

	
	Parameters

	
	task (TaskWrapper) – A task()-decorated function.

	args – Arguments to pass to the task.

	kwargs – Keyword arguments to pass to the task.

	Returns

	The parent task.

The error() method is similar to the
then() method, which is used to construct a task
pipeline, except the error() task will only be called in the event
of an unhandled exception in the parent task.

	
crontab(month='*', day='*', day_of_week='*', hour='*', minute='*')

	Convert a “crontab”-style set of parameters into a test function that will
return True when a given datetime matches the parameters set forth in
the crontab.

Day-of-week uses 0=Sunday and 6=Saturday.

Acceptable inputs:

	“*” = every distinct value

	“*/n” = run every “n” times, i.e. hours=’*/4’ == 0, 4, 8, 12, 16, 20

	“m-n” = run every time m..n

	“m,n” = run on m and n

	Return type

	a test function that takes a datetime and returns a boolean

Note

It is currently not possible to run periodic tasks with an interval
less than once per minute. If you need to run tasks more frequently,
you can create a periodic task that runs once per minute, and from that
task, schedule any number of sub-tasks to run after the desired delays.

Result

	
class Result(huey, task)

	Although you will probably never instantiate an Result object yourself,
they are returned whenever you execute a task-decorated function, or
schedule a task for execution. The Result object talks to the result
store and is responsible for fetching results from tasks.

Once the consumer finishes executing a task, the return value is placed in
the result store, allowing the original caller to retrieve it.

Getting results from tasks is very simple:

>>> @huey.task()
... def add(a, b):
... return a + b
...

>>> res = add(1, 2)
>>> res # what is "res" ?
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>

>>> res() # Fetch the result of this task.
3

What happens when data isn’t available yet? Let’s assume the next call
takes about a minute to calculate:

>>> res = add(100, 200) # Imagine this is very slow.
>>> res.get() # Data is not ready, so None is returned.

>>> res() is None # We can omit ".get", it works the same way.
True

>>> res(blocking=True, timeout=5) # Block for up to 5 seconds
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/charles/tmp/huey/src/huey/huey/queue.py", line 46, in get
 raise HueyException
huey.exceptions.HueyException

>>> res(blocking=True) # No timeout, will block until it gets data.
300

If the task failed with an exception, then a TaskException will
be raised when reading the result value:

>>> @huey.task()
... def fails():
... raise Exception('I failed')

>>> res = fails()
>>> res() # raises a TaskException!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/charles/tmp/huey/src/huey/huey/api.py", line 684, in get
 raise TaskException(result.metadata)
huey.exceptions.TaskException: Exception('I failed',)

	
id

	Returns the unique id of the corresponding task.

	
get(blocking=False, timeout=None, backoff=1.15, max_delay=1.0, revoke_on_timeout=False, preserve=False)

	
	Parameters

	
	blocking (bool) – whether to block while waiting for task result

	timeout – number of seconds to block (if blocking=True)

	backoff – amount to backoff delay each iteration of loop

	max_delay – maximum amount of time to wait between iterations when
attempting to fetch result.

	revoke_on_timeout (bool) – if a timeout occurs, revoke the task,
thereby preventing it from running if it is has not started yet.

Attempt to retrieve the return value of a task. By default,
get() will simply check for the value, returning
None if it is not ready yet. If you want to wait for a value, you
can specify blocking=True. This will loop, backing off up to the
provided max_delay, until the value is ready or the timeout is
reached. If the timeout is reached before the result is ready, a
HueyException exception will be raised.

Note

Instead of calling .get(), you can simply call the
Result object directly. Both methods accept the same
arguments.

	
__call__(**kwargs)

	Identical to the get() method, provided as a shortcut.

	
revoke(revoke_once=True)

	
	Parameters

	revoke_once (bool) – revoke only once.

Revoke the given task. Unless it is in the process of executing, the
task will be discarded without being executed.

one_hour = datetime.datetime.now() + datetime.timedelta(hours=1)

Run this command in an hour
res = add.schedule((1, 2), eta=one_hour)

I changed my mind, do not run it after all.
res.revoke()

	
restore()

	Restore the given task instance. Unless the task instance has already
been dequeued and discarded, it will be restored and run as scheduled.

Warning

If the task class itself has been revoked, via a call to
TaskWrapper.revoke(), then this method has no effect.

	
is_revoked()

	Return a boolean value indicating whether this particular task instance
or the task class itself has been revoked.

See also

TaskWrapper.is_revoked().

	
reschedule(eta=None, delay=None)

	
	Parameters

	
	eta (datetime) – execute function at the given time.

	delay (int) – execute function after specified delay in seconds.

	Returns

	Result handle for the new task.

Reschedule the given task. The original task instance will be revoked,
but no checks are made to verify that it hasn’t already been
executed.

If neither an eta nor a delay is specified, the task will be
run as soon as it is received by a worker.

	
reset()

	Reset the cached result and allow re-fetching a new result for the
given task (i.e. after a task error and subsequent retry).

	
class ResultGroup

	A ResultGroup will be returned when you enqueue a task pipeline or if
you use the TaskWrapper.map() method. It is a simple wrapper
around a number of individual Result() instances, and provides a
convenience API for fetching the results in bulk.

	
get(**kwargs)

	Call get() on each individual Result()
instance in the group and returns a list of return values. Any keyword
arguments are passed along.

Serializer

	
class Serializer(compression=False, compression_level=6, use_zlib=False)

	
	Parameters

	
	compression (bool) – use gzip compression

	compression_level (int) – 0 for least, 9 for most.

	use_zlib (bool) – use zlib for compression instead of gzip.

The Serializer class implements a simple interface that can be extended to
provide your own serialization format. The default implementation uses
pickle.

To override, the following methods should be implemented. Compression is
handled transparently elsewhere in the API.

	
_serialize(data)

	
	Parameters

	data – arbitrary Python object to serialize.

	Rtype bytes

	

	
_deserialize(data)

	
	Parameters

	data (bytes) – serialized data.

	Returns

	the deserialized object.

Exceptions

	
class HueyException

	General exception class.

	
class ConfigurationError

	Raised when Huey encounters a configuration problem.

	
class TaskLockdException

	Raised by the consumer when a task lock cannot be acquired.

	
class CancelExecution

	Should be raised by user code within a pre_execute() hook to
signal to the consumer that the task shall be cancelled.

	
class RetryTask

	Raised by user code from within a task() function to force a
retry. When this exception is raised, the task will be retried irrespective
of whether it is configured with automatic retries.

	
class TaskException

	General exception raised by Result handles when reading the
result of a task that failed due to an error.

Storage

Huey comes with several built-in storage implementations:

	
class RedisStorage(name='huey', blocking=True, read_timeout=1, connection_pool=None, url=None, client_name=None, **connection_params)

	
	Parameters

	
	blocking (bool) – Use blocking-pop when reading from the queue (as
opposed to polling). Default is true.

	read_timeout – Timeout to use when performing a blocking pop, default
is 1 second.

	connection_pool – a redis-py ConnectionPool instance.

	url – url for Redis connection.

	client_name – name used to identify Redis clients used by Huey.

Additional keyword arguments will be passed directly to the Redis client
constructor. See the redis-py documentation [https://redis-py.readthedocs.io/en/latest/]
for the complete list of arguments supported by the Redis client.

	
class RedisExpireStorage(name='huey', expire_time=86400, blocking=True, read_timeout=1, connection_pool=None, url=None, client_name=None, **connection_params)

	
	Parameters

	expire_time (int) – TTL for results of individual tasks.

Subclass of RedisStorage that implements the result store APIs
using normal Redis keys with a TTL, so that unread results will
automatically be cleaned-up. RedisStorage uses a HASH for the
result store, which has the benefit of keeping the Redis keyspace orderly,
but which comes with the downside that unread task results can build up
over time. This storage implementation trades keyspace sprawl for automatic
clean-up.

	
class PriorityRedisStorage(name='huey', blocking=True, read_timeout=1, connection_pool=None, url=None, client_name=None, **connection_params)

	
	Parameters

	
	blocking (bool) – Use blocking-zpopmin when reading from the queue (as
opposed to polling). Default is true.

	read_timeout – Timeout to use when performing a blocking pop, default
is 1 second.

	connection_pool – a redis-py ConnectionPool instance.

	url – url for Redis connection.

	client_name – name used to identify Redis clients used by Huey.

Redis storage that uses a different data-structure for the task queue in
order to support task priorities.

Additional keyword arguments will be passed directly to the Redis client
constructor. See the redis-py documentation [https://redis-py.readthedocs.io/en/latest/]
for the complete list of arguments supported by the Redis client.

Warning

This storage engine requires Redis 5.0 or newer.

	
class PriorityRedisExpireStorage(name='huey', expire_time=86400, ...)

	
	Parameters

	expire_time (int) – TTL for results of individual tasks.

Combination of PriorityRedisStorage, which supports task
priorities, and RedisExpireStorage, which stores task results
as top-level Redis keys in order set a TTL so that unread results are
automatically cleaned-up.

	
class SqliteStorage(filename='huey.db', name='huey', cache_mb=8, fsync=False, **kwargs)

	
	Parameters

	
	filename (str) – sqlite database filename.

	cache_mb (int) – sqlite page-cache size in megabytes.

	fsync (bool) – if enabled, all writes to the Sqlite database will be
synchonized. This provides greater safety from database corruption in
the event of sudden power-loss.

	kwargs – Additional keyword arguments passed to the sqlite3
connection constructor.

	
class FileStorageMethods(name, path, levels=2, **storage_kwargs)

	
	Parameters

	
	name (str) – (unused by the file storage API)

	path (str) – directory path used to store task results. Will be created
if it does not exist.

	levels (int) – number of levels in cache-file directory structure to
ensure a given directory does not contain an unmanageable number of
files.

	storage_kwargs – Additional keyword arguments for the parent storage.

Unlike the other storage implementations described, the
FileStorageMethods class is intended to be used as a mixin
alongside another storage engine. This class implements the result store
APIs (put, peek, pop), which are used for task result storage among other
things.

Example of using Redis for the queue and the file-system for the result
store:

from huey import Huey
from huey.storage import FileStorageMethods, RedisStorage

Use the file-system for result storage, Redis for everything else.
class RedisFileStorage(FileStorageMethods, RedisStorage):
 pass

huey = Huey(
 'my-app',
 storage_class=RedisFileStorage,
 path='/var/lib/my-app/huey-results/', # File storage params.
 levels=2,
 url='redis://localhost:6379/15', # Redis storage params.
 client_name='my-app-huey')

	
class MemoryStorage

	In-memory storage engine for use when testing or developing. Designed for
use with immediate mode.

	
class BlackHoleStorage

	Storage class that discards all data written to it, and thus always appears
to be empty. Intended for testing only.

	
class BaseStorage(name='huey', **storage_kwargs)

	
	
enqueue(data, priority=None)

	

	
dequeue()

	

	
queue_size()

	

	
enqueued_items(limit=None)

	

	
flush_queue()

	

	
add_to_schedule(data, timestamp)

	

	
read_schedule(timestamp)

	

	
schedule_size()

	

	
scheduled_items(limit=None)

	

	
flush_schedule()

	

	
put_data(key, value)

	

	
peek_data(key)

	

	
pop_data(key)

	

	
put_if_empty(key, value)

	

	
has_data_for_key(key)

	

	
result_store_size()

	

	
result_items()

	

	
flush_results()

	

Huey Extensions

The huey.contrib package contains modules that provide extra functionality
beyond the core APIs.

Mini-Huey

MiniHuey provides a very lightweight huey-like API that may be
useful for certain applications. The MiniHuey consumer runs inside a
greenlet in your main application process. This means there is no separate
consumer process to manage, nor is there any persistence for the
enqueued/scheduled tasks; whenever a task is enqueued or is scheduled to run, a
new greenlet is spawned to execute the task.

MiniHuey may be useful if:

	Your application is a WSGI application.

	Your tasks do stuff like check for spam, send email, make requests to
web-based APIs, query a database server.

	You do not need automatic retries, persistence for your message queue,
dynamic task revocation.

	You wish to keep things nice and simple and don’t want the overhead of
additional process(es) to manage.

MiniHuey may be a bad choice if:

	Your application is incompatible with gevent (e.g. uses asyncio).

	Your tasks do stuff like process large files, crunch numbers, parse large XML
or JSON documents, or other CPU or disk-intensive work.

	You need a persistent store for messages and results, so the consumer can be
restarted without losing any unprocessed messages.

If you are not sure, then you should probably not use MiniHuey. Use the
regular Huey instead.

Usage and task declaration:

	
class MiniHuey([name='huey'[, interval=1[, pool_size=None]]])

	
	Parameters

	
	name (str) – Name given to this huey instance.

	interval (int) – How frequently to check for scheduled tasks (seconds).

	pool_size (int) – Limit number of concurrent tasks to given size.

	
task([validate_func=None])

	Task decorator similar to Huey.task() or Huey.periodic_task().
For tasks that should be scheduled automatically at regular intervals,
simply provide a suitable crontab() definition.

The decorated task will gain a schedule() method which can be used
like the TaskWrapper.schedule() method.

Examples task declarations:

from huey import crontab
from huey.contrib.mini import MiniHuey

huey = MiniHuey()

@huey.task()
def fetch_url(url):
 return urlopen(url).read()

@huey.task(crontab(minute='0', hour='4'))
def run_backup():
 pass

Example usage. Running tasks and getting results work about the same as
regular Huey:

Executes the task asynchronously in a new greenlet.
result = fetch_url('https://google.com/')

Wait for the task to finish.
html = result.get()

Scheduling a task for execution:

Fetch in ~30s.
result = fetch_url.schedule(('https://google.com',), delay=30)

Wait until result is ready, takes ~30s.
html = result.get()

	
start()

	Start the scheduler in a new green thread. The scheduler is needed if
you plan to schedule tasks for execution using the schedule()
method, or if you want to run periodic tasks.

Typically this method should be called when your application starts up.
For example, a WSGI application might do something like:

Always apply gevent monkey-patch before anything else!
from gevent import monkey; monkey.patch_all()

from my_app import app # flask/bottle/whatever WSGI app.
from my_app import mini_huey

Start the scheduler. Returns immediately.
mini_huey.start()

Run the WSGI server.
from gevent.pywsgi import WSGIServer
WSGIServer(('127.0.0.1', 8000), app).serve_forever()

	
stop()

	Stop the scheduler.

Note

There is not a separate decorator for periodic, or crontab, tasks. Just
use MiniHuey.task() and pass in a validation function. A
validation function can be generated using the crontab() function.

Note

Tasks enqueued for immediate execution will be run regardless of whether
the scheduler is running. You only need to start the scheduler if you plan
to schedule tasks in the future or run periodic tasks.

Django

Huey comes with special integration for use with the Django framework. The
integration provides:

	Configuration of huey via the Django settings module.

	Running the consumer as a Django management command.

	Auto-discovery of tasks.py modules to simplify task importing.

	Properly manage database connections.

Supported Django versions are the officially supported at https://www.djangoproject.com/download/#supported-versions

Setting things up

To use huey with Django, the first step is to add an entry to your project’s
settings.INSTALLED_APPS:

settings.py
...
INSTALLED_APPS = (
 # ...
 'huey.contrib.djhuey', # Add this to the list.
 # ...
)

The above is the bare minimum needed to start using huey’s Django integration.
If you like, though, you can also configure both Huey and the consumer using
the settings module.

Note

Huey settings are optional. If not provided, Huey will default to using
Redis running on localhost:6379 (standard setup).

Configuration is kept in settings.HUEY, which can be either a dictionary or
a Huey instance. Here is an example that shows all of the supported
options with their default values:

settings.py
HUEY = {
 'huey_class': 'huey.RedisHuey', # Huey implementation to use.
 'name': settings.DATABASES['default']['NAME'], # Use db name for huey.
 'results': True, # Store return values of tasks.
 'store_none': False, # If a task returns None, do not save to results.
 'immediate': settings.DEBUG, # If DEBUG=True, run synchronously.
 'utc': True, # Use UTC for all times internally.
 'blocking': True, # Perform blocking pop rather than poll Redis.
 'connection': {
 'host': 'localhost',
 'port': 6379,
 'db': 0,
 'connection_pool': None, # Definitely you should use pooling!
 # ... tons of other options, see redis-py for details.

 # huey-specific connection parameters.
 'read_timeout': 1, # If not polling (blocking pop), use timeout.
 'url': None, # Allow Redis config via a DSN.
 },
 'consumer': {
 'workers': 1,
 'worker_type': 'thread',
 'initial_delay': 0.1, # Smallest polling interval, same as -d.
 'backoff': 1.15, # Exponential backoff using this rate, -b.
 'max_delay': 10.0, # Max possible polling interval, -m.
 'scheduler_interval': 1, # Check schedule every second, -s.
 'periodic': True, # Enable crontab feature.
 'check_worker_health': True, # Enable worker health checks.
 'health_check_interval': 1, # Check worker health every second.
 },
}

The following huey_class implementations are provided out-of-the-box:

	huey.RedisHuey - default.

	huey.PriorityRedisHuey - uses Redis but adds support for Task priority.
Requires redis server 5.0 or newer.

	huey.SqliteHuey - uses Sqlite, full support for task priorities.

Alternatively, you can simply set settings.HUEY to a Huey
instance and do your configuration directly. In the example below, I’ve also
shown how you can create a connection pool:

settings.py -- alternative configuration method
from huey import RedisHuey
from redis import ConnectionPool

pool = ConnectionPool(host='my.redis.host', port=6379, max_connections=20)
HUEY = RedisHuey('my-app', connection_pool=pool)

Running the Consumer

To run the consumer, use the run_huey management command. This command
will automatically import any modules in your INSTALLED_APPS named
tasks.py. The consumer can be configured using both the django settings
module and/or by specifying options from the command-line.

Note

Options specified on the command line take precedence over those specified
in the settings module.

To start the consumer, you simply run:

$./manage.py run_huey

In addition to the HUEY.consumer setting dictionary, the management command
supports all the same options as the standalone consumer. These options are
listed and described in the Options for the consumer
section.

For quick reference, the most important command-line options are briefly
listed here.

	-w, --workers

	Number of worker threads/processes/greenlets. Default is 1, but most
applications should use at least 2.

	-k, --worker-type

	Worker type, must be “thread”, “process” or “greenlet”. The default is
thread, which provides good all-around performance. For CPU-intensive
workloads, process is likely to be more performant. The greenlet worker
type is suited for IO-heavy workloads. When using greenlet you can
specify tens or hundreds of workers since they are extremely lightweight
compared to threads/processes. See note below on using gevent/greenlet.

	-A, --disable-autload

	Disable automatic loading of tasks modules.

Note

Due to a conflict with Django’s base option list, the “verbose” option is
set using -V or --huey-verbose. When enabled, huey logs at the
DEBUG level.

For more information, read the Options for the consumer section.

Using gevent

When using worker type greenlet, it’s necessary to apply a monkey-patch
before any libraries or system modules are imported. Gevent monkey-patches
things like socket to provide non-blocking I/O, and if those modules are
loaded before the patch is applied, then the resulting code will execute
synchronously.

Unfortunately, because of Django’s design, the only way to reliably apply this
patch is to create a custom bootstrap script that mimics the functionality of
manage.py. Here is the patched manage.py code:

#!/usr/bin/env python
import os
import sys

Apply monkey-patch if we are running the huey consumer.
if 'run_huey' in sys.argv:
 from gevent import monkey
 monkey.patch_all()

if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "conf")
 from django.core.management import execute_from_command_line
 execute_from_command_line(sys.argv)

How to create tasks

The task() and periodic_task() decorators can be
imported from the huey.contrib.djhuey module. Here is how you might define
two tasks:

from huey import crontab
from huey.contrib.djhuey import periodic_task, task

@task()
def count_beans(number):
 print('-- counted %s beans --' % number)
 return 'Counted %s beans' % number

@periodic_task(crontab(minute='*/5'))
def every_five_mins():
 print('Every five minutes this will be printed by the consumer')

The huey.contrib.djhuey module exposes a number of additional helpers:

	lock_task()

	enqueue()

	restore(), restore_all(), restore_by_id()

	revoke(), revoke_all(), revoke_by_id()

	is_revoked()

	on_startup()

	pre_execute()

	post_execute()

	signal() and disconnect_signal()

Tasks that execute queries

If you plan on executing queries inside your task, it is a good idea to close
the connection once your task finishes. To make this easier, huey provides a
special decorator to use in place of task and periodic_task which will
automatically close the connection for you.

from huey import crontab
from huey.contrib.djhuey import db_periodic_task, db_task

@db_task()
def do_some_queries():
 # This task executes queries. Once the task finishes, the connection
 # will be closed.

@db_periodic_task(crontab(minute='*/5'))
def every_five_mins():
 # This is a periodic task that executes queries.

DEBUG and Synchronous Execution

When settings.DEBUG = True, tasks will be executed synchronously just
like regular function calls. The purpose of this is to avoid running both Redis
and an additional consumer process while developing or running tests. If you
prefer to use a live storage engine when DEBUG is enabled, you can specify
immediate_use_memory=False - which still runs Huey in immediate mode, but
using a live storage API. To completely disable immediate mode when DEBUG
is set, specify immediate=False in your settings.

settings.py
HUEY = {
 'name': 'my-app',

 # To run Huey in "immediate" mode with a live storage API, specify
 # immediate_use_memory=False.
 'immediate_use_memory': False,

 # OR:
 # To run Huey in "live" mode regardless of whether DEBUG is enabled,
 # specify immediate=False.
 'immediate': False,
}

Configuration Examples

This section contains example HUEY configurations.

Redis running locally with four worker threads.
HUEY = {
 'name': 'my-app',
 'consumer': {'workers': 4, 'worker_type': 'thread'},
}

Redis on network host with 64 worker greenlets and connection pool
supporting up to 100 connections.
from redis import ConnectionPool

pool = ConnectionPool(
 host='192.168.1.123',
 port=6379,
 max_connections=100)

HUEY = {
 'name': 'my-app',
 'connection': {'connection_pool': pool},
 'consumer': {'workers': 64, 'worker_type': 'greenlet'},
}

It is also possible to specify the connection using a Redis URL, making it easy
to configure this setting using a single environment variable:

HUEY = {
 'name': 'my-app',
 'url': os.environ.get('REDIS_URL', 'redis://localhost:6379/?db=1')
}

Alternatively, you can just assign a Huey instance to the HUEY setting:

from huey import RedisHuey

HUEY = RedisHuey('my-app')

Troubleshooting and Common Pitfalls

This document outlines some of the common pitfalls you may encounter when
getting set up with huey. It is arranged in a problem/solution format.

	Tasks not running

	First step is to increase logging verbosity by running the consumer with
--verbose. You can also specify a logfile using the --logfile
option.

Check for any exceptions. The most common cause of tasks not running is
that they are not being loaded, in which case you will
see HueyException “XXX not found in TaskRegistry” errors.

	“HueyException: XXX not found in TaskRegistry” in log file

	Exception occurs when a task is called by a task producer, but is not
imported by the consumer. To fix this, ensure that by loading the
Huey object, you also import any decorated functions as well.

For more information on how tasks are imported, see the import documentation.

	“Error importing XXX” when starting consumer

	This error message occurs when the module containing the configuration
specified cannot be loaded (not on the pythonpath, mistyped, etc). One
quick way to check is to open up a python shell and try to import the
configuration.

Example syntax: huey_consumer.py main_module.huey

	Tasks not returning results

	Ensure that you have not accidentally specified results=False when
instantiating your Huey object.

	Scheduled tasks are not being run at the correct time

	Check the time on the server the consumer is running on - if different from
the producer this may cause problems. Huey uses UTC internally by default,
and naive datetimes will be converted from local time to UTC (if local time
happens to not be UTC).

	Cronjobs are not being run

	The consumer and scheduler run in UTC by default.

	Greenlet workers seem stuck

	If you wish to use the Greenlet worker type, you need to be sure to
monkeypatch in your application’s entrypoint. At the top of your main
module, you can add the following code: from gevent import monkey; monkey.patch_all().
Furthermore, if your tasks are CPU-bound, gevent can appear to lock up
because it only supports cooperative multi-tasking (as opposed to
pre-emptive multi-tasking when using threads). For Django, it is necessary
to apply the patch inside the manage.py script. See the Django docs
section for the code.

	Testing projects using Huey

	Use immediate=True:

test_mode = os.environ.get('TEST_MODE')

When immediate=True, Huey will default to using an in-memory
storage layer.
huey = RedisHuey(immediate=test_mode)

Alternatively, you can set the `immediate` attribute:
huey.immediate = True if test_mode else False

Changes in 2.0

The 2.0 release of Huey is mostly API-compatible with previous versions, but
there are a number of things that have been altered or improved in this
release.

Warning

The serialization format for tasks has changed. An attempt has been made to
provide backward compatibility when reading messages enqueued by an older
version of Huey, but this is not guaranteed to work.

Summary

The always_eager mode has been renamed Immediate mode. As the new name
implies, tasks are run immediately instead of being enqueued. Immediate mode is
designed to be used during testing and development. When immediate mode is
enabled, Huey switches to using in-memory storage by default, so as to avoid
accidental writes to a live storage. Immediate mode improves greatly on
always_eager mode, as it no longer requires special-casing and follows the
same code-paths used when Huey is in live mode. See Immediate mode for more
details.

Previously, the Huey consumer accepted options to run in UTC or local-time.
Various APIs, particularly around scheduling and task revocation, needed to be
compatible with however the consumer was configured, and it could easily get
confusing. As of 2.0, UTC-vs-localtime is specified when instantiating Huey,
and all conversion happens internally, hopefully making things easier to think
about – that is, you don’t have to think about it.

The events APIs have been removed and replaced by a Signals system.
Signal handlers are executed synchronously by the worker(s) as they run, so
it’s a bit different, but hopefully a lot easier to actually utilize, as the
events API required a dedicated listener thread if you were to make any use of
it (since it used a pub/sub approach). Events could be built on-top of the
signals, but currently I have no plans for this.

Errors are no longer stored in a separate list. Should a task fail due to an
unhandled exception, the exception will be placed in the result store, and can
be introspected using the task’s Result handle.

Huey now supports Task priority. To use priorities with Redis, you need to be
running Redis 5.0 or newer, and should use PriorityRedisHuey. The
original RedisHuey continues to support older versions of Redis.
SqliteHuey and the in-memory storage used for dev/testing provide
full support for task priorities.

Details

Changes when initializing Huey:

	result_store parameter has been renamed to results.

	events parameter is removed. Events have been replaced by Signals.

	store_errors parameter is removed. Huey no longer maintains a separate
list of recent errors. Unhandled errors that occur when running a task are
stored in the result store. Also the max_errors parameter of the Redis
storage engine is removed.

	global_registry parameter is removed. Tasks are no longer registered to a
global registry - tasks are registered to the Huey instance with which they
are decorated.

	always_eager has been renamed immediate.

New initialization arguments:

	Boolean utc parameter (defaults to true). This setting is used to control
how Huey interprets datetimes internally. Previously, this logic was spread
across a number of APIs and a consumer flag.

	Serializer parameter accepts an (optional) object implementing the
Serializer interface. Defaults to using pickle.

	Accepts option to use gzip compression when serializing data.

Other changes to Huey:

	Immediate mode can be enabled or disabled at runtime by setting the
immediate property.

	Event emitter has been replaced by Signals, so all event-related APIs
have been removed.

	Special classes of exceptions for the various storage operations have been
removed. For more information see Exceptions.

	The Huey.errors() method is gone. Errors are no longer tracked
separately.

Changes to the task() and periodic_task()
decorators:

	Previously these decorators accepted two optional keyword arguments,
retries_as_argument and include_task. Since the remaining retries are
stored as an attribute on the task itself, the first is redundant. In 2.0
these are replaced by a new keyword argument context, which, if True,
will pass the task instance to the decorated function as a keyword argument.

	Enqueueing a task pipeline will now return a ResultGroup instead
of a list of individual Result instances.

Changes to the Result handle (previous called
TaskResultWrapper):

	The task_id property is renamed to id.

	Task instances that are revoked via Result.revoke() will default to
using revoke_once=True.

	The reschedule() method no longer requires a delay or eta.
Leaving both empty will reschedule the task immediately.

Changes to crontab():

	The order of arguments has been changed to match the order used on linux
crontab. The order is now minute, hour, day, month, day of week.

Miscellaneous:

	Huey no longer uses a global registry for task functions. Task functions are
only visible to the huey instance they are decorated by.

	RedisHuey defaults to using a blocking pop on the queue, which should
improve latency and reduce chatter. To go back to the old polling default,
specify blocking=False when creating your huey instance.

	SqliteHuey no longer has any third-party dependencies and has been moved
into the main huey module.

	The MiniHuey contrib module has been renamed to
huey.contrib.mini.

	The SimpleStorage contrib module has been removed.

Django-specific:

	The backend_class setting has been renamed to huey_class (used to
specify import-path to Huey implementation, e.g. huey.RedisHuey).

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__call__() (Result method)

 	__len__() (Huey method)

 	
 	_deserialize() (Serializer method)

 	_serialize() (Serializer method)

A

 	
 	add_to_schedule() (BaseStorage method)

 	
 	all_results() (Huey method)

B

 	
 	BaseStorage (built-in class)

 	
 	BlackHoleStorage (built-in class)

C

 	
 	call_local() (TaskWrapper method)

 	CancelExecution (built-in class)

 	
 	ConfigurationError (built-in class)

 	context_task() (Huey method)

 	crontab() (built-in function)

D

 	
 	dequeue() (BaseStorage method)

 	
 	disconnect_signal() (Huey method)

E

 	
 	enqueue() (BaseStorage method)

 	(Huey method)

 	
 	enqueued_items() (BaseStorage method)

 	error() (Task method)

F

 	
 	FileStorageMethods (built-in class)

 	flush_queue() (BaseStorage method)

 	
 	flush_results() (BaseStorage method)

 	flush_schedule() (BaseStorage method)

G

 	
 	get() (Huey method)

 	(Result method)

 	(ResultGroup method)

H

 	
 	has_data_for_key() (BaseStorage method)

 	
 	Huey (built-in class)

 	HueyException (built-in class)

I

 	
 	id (Result attribute)

 	immediate (Huey attribute)

 	
 	is_revoked() (Huey method)

 	(Result method)

 	(TaskWrapper method)

L

 	
 	lock_task() (Huey method)

M

 	
 	map() (TaskWrapper method)

 	MemoryHuey (built-in class)

 	
 	MemoryStorage (built-in class)

 	MiniHuey (built-in class), [1]

O

 	
 	on_startup() (Huey method)

P

 	
 	peek_data() (BaseStorage method)

 	pending() (Huey method)

 	periodic_task() (Huey method)

 	pop_data() (BaseStorage method)

 	post_execute() (Huey method)

 	pre_execute() (Huey method)

 	
 	PriorityRedisExpireStorage (built-in class)

 	PriorityRedisHuey (built-in class)

 	PriorityRedisStorage (built-in class)

 	put() (Huey method)

 	put_data() (BaseStorage method)

 	put_if_empty() (BaseStorage method)

Q

 	
 	queue_size() (BaseStorage method)

R

 	
 	read_schedule() (BaseStorage method)

 	RedisExpireHuey (built-in class)

 	RedisExpireStorage (built-in class)

 	RedisHuey (built-in class)

 	RedisStorage (built-in class)

 	reschedule() (Result method)

 	reset() (Result method)

 	restore() (Huey method)

 	(Result method)

 	(TaskWrapper method)

 	restore_all() (Huey method)

 	
 	restore_by_id() (Huey method)

 	Result (built-in class)

 	result() (Huey method)

 	result_items() (BaseStorage method)

 	result_store_size() (BaseStorage method)

 	ResultGroup (built-in class)

 	RetryTask (built-in class)

 	revoke() (Huey method)

 	(Result method)

 	(TaskWrapper method)

 	revoke_all() (Huey method)

 	revoke_by_id() (Huey method)

S

 	
 	s() (TaskWrapper method)

 	schedule() (TaskWrapper method)

 	schedule_size() (BaseStorage method)

 	scheduled() (Huey method)

 	scheduled_items() (BaseStorage method)

 	
 	Serializer (built-in class)

 	signal() (Huey method)

 	SqliteHuey (built-in class)

 	SqliteStorage (built-in class)

 	start() (MiniHuey method), [1]

 	stop() (MiniHuey method), [1]

T

 	
 	Task (built-in class)

 	task() (Huey method)

 	(MiniHuey method), [1]

 	
 	TaskException (built-in class)

 	TaskLockdException (built-in class)

 	TaskWrapper (built-in class)

 	then() (Task method)

U

 	
 	unregister_on_startup() (Huey method)

 	
 	unregister_post_execute() (Huey method)

 	unregister_pre_execute() (Huey method)

Django

Huey comes with special integration for use with the Django framework. The
integration provides:

	Configuration of huey via the Django settings module.

	Running the consumer as a Django management command.

	Auto-discovery of tasks.py modules to simplify task importing.

	Properly manage database connections.

Supported Django versions are the officially supported at https://www.djangoproject.com/download/#supported-versions

Setting things up

To use huey with Django, the first step is to add an entry to your project’s
settings.INSTALLED_APPS:

settings.py
...
INSTALLED_APPS = (
 # ...
 'huey.contrib.djhuey', # Add this to the list.
 # ...
)

The above is the bare minimum needed to start using huey’s Django integration.
If you like, though, you can also configure both Huey and the consumer using
the settings module.

Note

Huey settings are optional. If not provided, Huey will default to using
Redis running on localhost:6379 (standard setup).

Configuration is kept in settings.HUEY, which can be either a dictionary or
a Huey instance. Here is an example that shows all of the supported
options with their default values:

settings.py
HUEY = {
 'huey_class': 'huey.RedisHuey', # Huey implementation to use.
 'name': settings.DATABASES['default']['NAME'], # Use db name for huey.
 'results': True, # Store return values of tasks.
 'store_none': False, # If a task returns None, do not save to results.
 'immediate': settings.DEBUG, # If DEBUG=True, run synchronously.
 'utc': True, # Use UTC for all times internally.
 'blocking': True, # Perform blocking pop rather than poll Redis.
 'connection': {
 'host': 'localhost',
 'port': 6379,
 'db': 0,
 'connection_pool': None, # Definitely you should use pooling!
 # ... tons of other options, see redis-py for details.

 # huey-specific connection parameters.
 'read_timeout': 1, # If not polling (blocking pop), use timeout.
 'url': None, # Allow Redis config via a DSN.
 },
 'consumer': {
 'workers': 1,
 'worker_type': 'thread',
 'initial_delay': 0.1, # Smallest polling interval, same as -d.
 'backoff': 1.15, # Exponential backoff using this rate, -b.
 'max_delay': 10.0, # Max possible polling interval, -m.
 'scheduler_interval': 1, # Check schedule every second, -s.
 'periodic': True, # Enable crontab feature.
 'check_worker_health': True, # Enable worker health checks.
 'health_check_interval': 1, # Check worker health every second.
 },
}

The following huey_class implementations are provided out-of-the-box:

	huey.RedisHuey - default.

	huey.PriorityRedisHuey - uses Redis but adds support for Task priority.
Requires redis server 5.0 or newer.

	huey.SqliteHuey - uses Sqlite, full support for task priorities.

Alternatively, you can simply set settings.HUEY to a Huey
instance and do your configuration directly. In the example below, I’ve also
shown how you can create a connection pool:

settings.py -- alternative configuration method
from huey import RedisHuey
from redis import ConnectionPool

pool = ConnectionPool(host='my.redis.host', port=6379, max_connections=20)
HUEY = RedisHuey('my-app', connection_pool=pool)

Running the Consumer

To run the consumer, use the run_huey management command. This command
will automatically import any modules in your INSTALLED_APPS named
tasks.py. The consumer can be configured using both the django settings
module and/or by specifying options from the command-line.

Note

Options specified on the command line take precedence over those specified
in the settings module.

To start the consumer, you simply run:

$./manage.py run_huey

In addition to the HUEY.consumer setting dictionary, the management command
supports all the same options as the standalone consumer. These options are
listed and described in the Options for the consumer
section.

For quick reference, the most important command-line options are briefly
listed here.

	-w, --workers

	Number of worker threads/processes/greenlets. Default is 1, but most
applications should use at least 2.

	-k, --worker-type

	Worker type, must be “thread”, “process” or “greenlet”. The default is
thread, which provides good all-around performance. For CPU-intensive
workloads, process is likely to be more performant. The greenlet worker
type is suited for IO-heavy workloads. When using greenlet you can
specify tens or hundreds of workers since they are extremely lightweight
compared to threads/processes. See note below on using gevent/greenlet.

	-A, --disable-autload

	Disable automatic loading of tasks modules.

Note

Due to a conflict with Django’s base option list, the “verbose” option is
set using -V or --huey-verbose. When enabled, huey logs at the
DEBUG level.

For more information, read the Options for the consumer section.

Using gevent

When using worker type greenlet, it’s necessary to apply a monkey-patch
before any libraries or system modules are imported. Gevent monkey-patches
things like socket to provide non-blocking I/O, and if those modules are
loaded before the patch is applied, then the resulting code will execute
synchronously.

Unfortunately, because of Django’s design, the only way to reliably apply this
patch is to create a custom bootstrap script that mimics the functionality of
manage.py. Here is the patched manage.py code:

#!/usr/bin/env python
import os
import sys

Apply monkey-patch if we are running the huey consumer.
if 'run_huey' in sys.argv:
 from gevent import monkey
 monkey.patch_all()

if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "conf")
 from django.core.management import execute_from_command_line
 execute_from_command_line(sys.argv)

How to create tasks

The task() and periodic_task() decorators can be
imported from the huey.contrib.djhuey module. Here is how you might define
two tasks:

from huey import crontab
from huey.contrib.djhuey import periodic_task, task

@task()
def count_beans(number):
 print('-- counted %s beans --' % number)
 return 'Counted %s beans' % number

@periodic_task(crontab(minute='*/5'))
def every_five_mins():
 print('Every five minutes this will be printed by the consumer')

The huey.contrib.djhuey module exposes a number of additional helpers:

	lock_task()

	enqueue()

	restore(), restore_all(), restore_by_id()

	revoke(), revoke_all(), revoke_by_id()

	is_revoked()

	on_startup()

	pre_execute()

	post_execute()

	signal() and disconnect_signal()

Tasks that execute queries

If you plan on executing queries inside your task, it is a good idea to close
the connection once your task finishes. To make this easier, huey provides a
special decorator to use in place of task and periodic_task which will
automatically close the connection for you.

from huey import crontab
from huey.contrib.djhuey import db_periodic_task, db_task

@db_task()
def do_some_queries():
 # This task executes queries. Once the task finishes, the connection
 # will be closed.

@db_periodic_task(crontab(minute='*/5'))
def every_five_mins():
 # This is a periodic task that executes queries.

DEBUG and Synchronous Execution

When settings.DEBUG = True, tasks will be executed synchronously just
like regular function calls. The purpose of this is to avoid running both Redis
and an additional consumer process while developing or running tests. If you
prefer to use a live storage engine when DEBUG is enabled, you can specify
immediate_use_memory=False - which still runs Huey in immediate mode, but
using a live storage API. To completely disable immediate mode when DEBUG
is set, specify immediate=False in your settings.

settings.py
HUEY = {
 'name': 'my-app',

 # To run Huey in "immediate" mode with a live storage API, specify
 # immediate_use_memory=False.
 'immediate_use_memory': False,

 # OR:
 # To run Huey in "live" mode regardless of whether DEBUG is enabled,
 # specify immediate=False.
 'immediate': False,
}

Configuration Examples

This section contains example HUEY configurations.

Redis running locally with four worker threads.
HUEY = {
 'name': 'my-app',
 'consumer': {'workers': 4, 'worker_type': 'thread'},
}

Redis on network host with 64 worker greenlets and connection pool
supporting up to 100 connections.
from redis import ConnectionPool

pool = ConnectionPool(
 host='192.168.1.123',
 port=6379,
 max_connections=100)

HUEY = {
 'name': 'my-app',
 'connection': {'connection_pool': pool},
 'consumer': {'workers': 64, 'worker_type': 'greenlet'},
}

It is also possible to specify the connection using a Redis URL, making it easy
to configure this setting using a single environment variable:

HUEY = {
 'name': 'my-app',
 'url': os.environ.get('REDIS_URL', 'redis://localhost:6379/?db=1')
}

Alternatively, you can just assign a Huey instance to the HUEY setting:

from huey import RedisHuey

HUEY = RedisHuey('my-app')

Mini-Huey

MiniHuey provides a very lightweight huey-like API that may be
useful for certain applications. The MiniHuey consumer runs inside a
greenlet in your main application process. This means there is no separate
consumer process to manage, nor is there any persistence for the
enqueued/scheduled tasks; whenever a task is enqueued or is scheduled to run, a
new greenlet is spawned to execute the task.

MiniHuey may be useful if:

	Your application is a WSGI application.

	Your tasks do stuff like check for spam, send email, make requests to
web-based APIs, query a database server.

	You do not need automatic retries, persistence for your message queue,
dynamic task revocation.

	You wish to keep things nice and simple and don’t want the overhead of
additional process(es) to manage.

MiniHuey may be a bad choice if:

	Your application is incompatible with gevent (e.g. uses asyncio).

	Your tasks do stuff like process large files, crunch numbers, parse large XML
or JSON documents, or other CPU or disk-intensive work.

	You need a persistent store for messages and results, so the consumer can be
restarted without losing any unprocessed messages.

If you are not sure, then you should probably not use MiniHuey. Use the
regular Huey instead.

Usage and task declaration:

	
class MiniHuey([name='huey'[, interval=1[, pool_size=None]]])

	
	Parameters

	
	name (str) – Name given to this huey instance.

	interval (int) – How frequently to check for scheduled tasks (seconds).

	pool_size (int) – Limit number of concurrent tasks to given size.

	
task([validate_func=None])

	Task decorator similar to Huey.task() or Huey.periodic_task().
For tasks that should be scheduled automatically at regular intervals,
simply provide a suitable crontab() definition.

The decorated task will gain a schedule() method which can be used
like the TaskWrapper.schedule() method.

Examples task declarations:

from huey import crontab
from huey.contrib.mini import MiniHuey

huey = MiniHuey()

@huey.task()
def fetch_url(url):
 return urlopen(url).read()

@huey.task(crontab(minute='0', hour='4'))
def run_backup():
 pass

Example usage. Running tasks and getting results work about the same as
regular Huey:

Executes the task asynchronously in a new greenlet.
result = fetch_url('https://google.com/')

Wait for the task to finish.
html = result.get()

Scheduling a task for execution:

Fetch in ~30s.
result = fetch_url.schedule(('https://google.com',), delay=30)

Wait until result is ready, takes ~30s.
html = result.get()

	
start()

	Start the scheduler in a new green thread. The scheduler is needed if
you plan to schedule tasks for execution using the schedule()
method, or if you want to run periodic tasks.

Typically this method should be called when your application starts up.
For example, a WSGI application might do something like:

Always apply gevent monkey-patch before anything else!
from gevent import monkey; monkey.patch_all()

from my_app import app # flask/bottle/whatever WSGI app.
from my_app import mini_huey

Start the scheduler. Returns immediately.
mini_huey.start()

Run the WSGI server.
from gevent.pywsgi import WSGIServer
WSGIServer(('127.0.0.1', 8000), app).serve_forever()

	
stop()

	Stop the scheduler.

Note

There is not a separate decorator for periodic, or crontab, tasks. Just
use MiniHuey.task() and pass in a validation function. A
validation function can be generated using the crontab() function.

Note

Tasks enqueued for immediate execution will be run regardless of whether
the scheduler is running. You only need to start the scheduler if you plan
to schedule tasks in the future or run periodic tasks.

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/p1472257818.22.png
15 20 25 30

0

_images/p1473037658.76.jpg

_images/2EpRs.jpg

_images/huey2-logo.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 huey

 		
 Installing

 		
 Using git

 		
 Guide

 		
 Scheduling tasks

 		
 Periodic tasks

 		
 Retrying tasks that fail

 		
 Task priority

 		
 Canceling or pausing tasks

 		
 Canceling or pausing periodic tasks

 		
 Task pipelines

 		
 Locking tasks

 		
 Signals

 		
 Immediate mode

 		
 Tips and tricks

 		
 Dynamic periodic tasks

 		
 Reading more

 		
 Consuming Tasks

 		
 Options for the consumer

 		
 Examples

 		
 Worker types

 		
 Using gevent

 		
 Consumer shutdown

 		
 Consumer restart

 		
 Consumer Internals

 		
 Signals

 		
 Understanding how tasks are imported

 		
 Suggested organization of code

 		
 Managing shared resources

 		
 Startup hooks

 		
 Pre and post execute hooks

 		
 Signals

 		
 Examples

 		
 Performance considerations

 		
 Huey’s API

 		
 Huey types

 		
 Huey object

 		
 Result

 		
 Serializer

 		
 Exceptions

 		
 Storage

 		
 Huey Extensions

 		
 Mini-Huey

 		
 Django

 		
 Setting things up

 		
 Running the Consumer

 		
 Using gevent

 		
 How to create tasks

 		
 Tasks that execute queries

 		
 DEBUG and Synchronous Execution

 		
 Configuration Examples

 		
 Troubleshooting and Common Pitfalls

 		
 Changes in 2.0

 		
 Summary

 		
 Details

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/huey.jpg

_static/logo.jpg
huey

a little task queue

_static/file.png

_static/minus.png

