

HubbleStack

HubbleStack (Hubble for short) is a modular, open-source, security & compliance
auditing framework which is built in python, using SaltStack as a library.
Hubble provides on-demand profile-based auditing, real-time security event
notifications, alerting and reporting. It also reports the security information
to Splunk, Logstash, or other endpoints. HubbleStack is a free and open source
project made possible by Adobe.

Table of Contents:

	Getting Started with HubbleStack
	Installation

	Basic Usage

	Auditing (Nova)
	Module Documentation

	Usage

	Configuration

	Insights and Data Gathering (Nebula)
	Module Documentation

	Usage

	topfiles

	File Integrity Monitoring/FIM (Linux) (Pulsar)
	Module Documentation

	Usage

	Configuration

	File Integrity Monitoring/FIM (Windows) (Pulsar)
	Module Documentation

	Usage

	Module Documentation
	Nova (hubble.py)

	Nebula (nebula_osquery.py)

	Pulsar (Linux) (pulsar.py)

	Pulsar (Windows) (win_pulsar.py)

Indices and Tables:

	Index

	Module Index

	Search Page

Getting Started with HubbleStack

Installation

Installation Using Released Packages (Recommended)

Various pre-built packages targeting several popular operating systems can be
found under Releases [https://github.com/hubblestack/hubble/releases].

Alternative Installations and Packaging

Building Hubble packages through Dockerfile

Dockerfile aims to build the Hubble v2 packages easier. Dockerfiles for the
distribution you want to build can be found at the path /pkg. For example,
dockerfile for centos6 distribution is at the path /pkg/centos6/

To build an image:

docker build -t <image_name>

To run the container (which will output the package file in your current
directory):

docker run -it --rm -v `pwd`:/data <image_name>

Installing using setup.py

sudo yum install git python-setuptools -y
git clone https://github.com/hubblestack/hubble
cd hubble
sudo python setup.py install

If there are errors installing, it may mean that your setuptools is out of
date. Try this:

easy_install pip
pip install -U setuptools

setup.py installs a hubble “binary” into /usr/bin/.

A config template has been placed in /etc/hubble/hubble. Modify it to your
specifications and needs. You can do hubble -h to see the available runtime
options.

The first two commands you should run to make sure things are set up correctly
are hubble --version and hubble test.ping.

Basic Usage

Hubble runs as a standalone agent on each server you wish to monitor. To get
started, install Hubble using one of the above installation options. Once
Hubble is installed, check that everything is working correctly:

	Run hubble test.ping. This should return true.

	Run hubble hubble.audit. You should see the results of the default audit
profiles run against the box

Quickstart via Docker container

Get up and running with any supported distribution by installing net-tools in a
running docker container. docker run -it {distro:tag} sh the desired
agent, then use the appropriate package manager to install net-tools:

To run centos:7 container:

docker run -it centos:7 sh

To install net-tools:

yum install net-tools

Follow instructions above in Installation Using Released Packages (Recommended).

Auditing (Nova)

Hubble supports success/fail auditing via a number of included modules. The
codename for the audit piece of hubble is “Nova”.

Module Documentation

Nova (hubble.py)

Usage

There are two primary entry points for the Nova module:

hubble.audit

audits the agent using the YAML profile(s) you provide as comma-separated
arguments.

hubble.audit takes a number of optional arguments. The first is a
comma-separated list of paths. These paths can be files or directories
within the hubblestack_nova_profiles directory, with the .yaml
suffix removed. For information on the other arguments, please see
Nova (hubble.py).

If hubble.audit is run without targeting any audit configs or
directories, it will instead run hubble.top with no arguments.

hubble.audit will return a list of audits which were successful, and a
list of audits which failed.

hubble.top

audits the agent using the top.nova configuration. By default, the
top.nova should be located in the fileserver at
salt://hubblestack_nova_profiles/top.nova, but a different path can be
defined.

Here are some example calls for hubble.audit:

Run the cve scanner and the CIS profile:
hubble hubble.audit cve.scan-v2,cis.centos-7-level-1-scored-v1
Run hubble.top with the default topfile (top.nova)
hubble hubble.top
Run all yaml configs and tags under salt://hubblestack_nova_profiles/foo/ and salt://hubblestack_nova_profiles/bar, but only run audits with tags starting with "CIS"
hubble hubble.audit foo,bar tags='CIS*'

Configuration

For Nova module, configurations can be done via Nova topfiles. Nova topfiles
look very similar to saltstack topfiles, except the top-level key is always
nova, as nova doesn’t have environments.

hubblestack_data/hubblestack_nova_profiles/top.nova:

nova:
 '*':
 - cve.scan-v2
 - network.ssh
 - network.smtp
 'web*':
 - cis.centos-7-level-1-scored-v1
 - cis.centos-7-level-2-scored-v1
 'G@os_family:debian':
 - network.ssh
 - cis.debian-7-level-1-scored: 'CIS*'

Additionally, all nova topfile matches are compound matches, so you never need
to define a match type like you do in saltstack topfiles. Each list item is a
string representing the dot-separated location of a yaml file which will be run
with hubble.audit. You can also specify a tag glob to use as a filter for
just that yaml file, using a colon after the yaml file (turning it into a
dictionary). See the last two lines in the yaml above for examples.

Examples:

hubble hubble.top
hubble hubble.top foo/bar/top.nova
hubble hubble.top foo/bar.nova verbose=True

In some cases, your organization may want to skip certain audit checks for
certain hosts. This is supported via compensating control configuration.

You can skip a check globally by adding a control: <reason> key to the
check itself. This key should be added at the same level as description and
trigger pieces of a check. In this case, the check will never run, and will
output under the Controlled results key.

Nova also supports separate control profiles, for more fine-grained control
using topfiles. You can use a separate YAML top-level key called control.
Generally, you’ll put this top-level key inside of a separate YAML file and
only include it in the top-data for the hosts for which it is relevant.

For these separate control configs, the audits will always run, whether they
are controlled or not. However, controlled audits which fail will be converted
from Failure to Controlled in a post-processing operation.

The control config syntax is as follows:

hubblestack_data/hubblestack_nova_profiles/example_control/example.yaml:

control:
 - CIS-2.1.4: This is the reason we control the check
 - some_other_tag:
 reason: This is the reason we control the check
 - a_third_tag_with_no_reason

Note that providing a reason for the control is optional. Any of the three
formats shown in the yaml list above will work.

Once you have your compensating control config, just target the yaml to the
hosts you want to control using your topfile. In this case, all the audits will
still run, but if any of the controlled checks fail, they will be removed from
Failure and added to Controlled, and will be treated as a Success for the
purposes of compliance percentage. To use the above control, you would add the
following to your top.nova file:

nova:
 '*':
 - example_control.example

Insights and Data Gathering (Nebula)

Hubble can gather incredible amounts of raw data from your hosts for later
analysis. The codename for the insights piece of hubble is Nebula. It primarily
uses osquery [https://osquery.io] which allows you to query your system as
if it were a database.

Module Documentation

Nebula (nebula_osquery.py)

Usage

Nebula queries are formatted into query groups which allow you to schedule
sets of queries to run at different cadences. The names of these groups are
arbitrary, but the queries provided in hubblestack_data [https://github.com/hubblestack/hubblestack_data/blob/develop/hubblestack_nebula_v2/hubblestack_nebula_queries.yaml] are grouped by
timing:

fifteen_min:
 running_procs:
 query: SELECT t.unix_time AS query_time, p.name AS process, p.pid AS process_id, p.pgroup AS process_group, p.cmdline, p.cwd, p.on_disk, p.resident_size AS mem_used, p.user_time, p.system_time, (SELECT strftime('%s','now')-ut.total_seconds+p.start_time FROM uptime AS ut) AS process_start_time, p.parent, pp.name AS parent_name, g.groupname AS 'group', g.gid AS group_id, u.username AS user, u.uid AS user_id, eu.username AS effective_username, eg.groupname AS effective_groupname, p.path, h.md5 AS md5, h.sha1 AS sha1, h.sha256 AS sha256, '__JSONIFY__'||(SELECT json_group_array(json_object('fd',pof.fd, 'path',pof.path)) FROM process_open_files AS pof WHERE pof.pid=p.pid GROUP BY pof.pid) AS open_files, '__JSONIFY__'||(SELECT json_group_array(json_object('variable_name',pe.key, 'value',pe.value)) FROM process_envs AS pe WHERE pe.pid=p.pid GROUP BY pe.pid) AS environment FROM processes AS p LEFT JOIN processes AS pp ON p.parent=pp.pid LEFT JOIN users AS u ON p.uid=u.uid LEFT JOIN users AS eu ON p.euid=eu.uid LEFT JOIN groups AS g ON p.gid=g.gid LEFT JOIN groups AS eg ON p.gid=eg.gid LEFT JOIN hash AS h ON p.path=h.path LEFT JOIN time AS t WHERE p.parent IS NOT 2 AND (process NOTNULL OR p.parent NOTNULL);
 established_outbound:
 query: SELECT t.unix_time AS query_time, CASE pos.family WHEN 2 THEN 'ipv4' WHEN 10 THEN 'ipv6' ELSE pos.family END AS family, h.md5 AS md5, h.sha1 AS sha1, h.sha256 AS sha256, h.directory AS directory, ltrim(pos.local_address, ':f') AS src_connection_ip, pos.local_port AS src_connection_port, pos.remote_port AS dest_connection_port, ltrim(pos.remote_address, ':f') AS dest_connection_ip, p.name AS name, p.pid AS pid, p.parent AS parent_pid, pp.name AS parent_process, p.path AS file_path, f.size AS file_size, p.cmdline AS cmdline, u.uid AS uid, u.username AS username, CASE pos.protocol WHEN 6 THEN 'tcp' WHEN 17 THEN 'udp' ELSE pos.protocol END AS transport FROM process_open_sockets AS pos JOIN processes AS p ON p.pid=pos.pid LEFT JOIN processes AS pp ON p.parent=pp.pid LEFT JOIN users AS u ON p.uid=u.uid LEFT JOIN time AS t LEFT JOIN hash AS h ON h.path=p.path LEFT JOIN file AS f ON f.path=p.path WHERE NOT pos.remote_address='' AND NOT pos.remote_address='::' AND NOT pos.remote_address='0.0.0.0' AND NOT pos.remote_address='127.0.0.1' AND (pos.local_port,pos.protocol) NOT IN (SELECT lp.port, lp.protocol FROM listening_ports AS lp);
hour:
 crontab:
 query: SELECT t.unix_time AS query_time, c.event, c.minute, c.hour, c.day_of_month, c.month, c.day_of_week, c.command, c.path AS cron_file FROM crontab AS c JOIN time AS t;
 login_history:
 query: SELECT t.unix_time AS query_time, l.username AS user, l.tty, l.pid, l.type AS utmp_type, CASE l.type WHEN 1 THEN 'RUN_LVL' WHEN 2 THEN 'BOOT_TIME' WHEN 3 THEN 'NEW_TIME' WHEN 4 THEN 'OLD_TIME' WHEN 5 THEN 'INIT_PROCESS' WHEN 6 THEN 'LOGIN_PROCESS' WHEN 7 THEN 'USER_PROCESS' WHEN 8 THEN 'DEAD_PROCESS' ELSE l.type END AS utmp_type_name, l.host AS src, l.time FROM last AS l LEFT JOIN time AS t WHERE l.time > strftime('%s','now') - 3600;
 docker_running_containers:
 query: SELECT t.unix_time AS query_time, dc.id AS container_id, dc.name AS container_name, dc.image AS image_name, di.created AS image_created_time, di.size_bytes AS image_size, di.tags AS image_tags, dc.image_id AS image_id, dc.command AS container_command, dc.created AS container_start_time, dc.state AS container_state, dc.status AS status, '__JSONIFY__'||(SELECT json_group_array(json_object('key',dcl.key, 'value',dcl.value)) FROM docker_container_labels AS dcl WHERE dcl.id=dc.id GROUP BY dcl.id) AS container_labels, '__JSONIFY__'||(SELECT json_group_array(json_object('mount_type',dcm.type, 'mount_name',dcm.name, 'mount_host_path',dcm.source, 'mount_container_path',dcm.destination, 'mount_driver',dcm.driver, 'mount_mode',dcm.mode, 'mount_rw',dcm.rw, 'mount_progpagation',dcm.propagation)) FROM docker_container_mounts AS dcm WHERE dcm.id=dc.id GROUP BY dcm.id) AS container_mounts, '__JSONIFY__'||(SELECT json_group_array(json_object('port_type',dcport.type, 'port',dcport.port, 'host_ip',dcport.host_ip, 'host_port',dcport.host_port)) FROM docker_container_ports AS dcport WHERE dcport.id=dc.id GROUP BY dcport.id) AS container_ports, '__JSONIFY__'||(SELECT json_group_array(json_object('network_name',dcnet.name, 'network_id',dcnet.network_id, 'endpoint_id',dcnet.endpoint_id, 'gateway',dcnet.gateway, 'container_ip',dcnet.ip_address, 'container_ip_prefix_len',dcnet.ip_prefix_len, 'ipv6_gateway',dcnet.ipv6_gateway, 'container_ipv6_address',dcnet.ipv6_address, 'container_ipv6_prefix_len',dcnet.ipv6_prefix_len, 'container_mac_address',dcnet.mac_address)) FROM docker_container_networks AS dcnet WHERE dcnet.id=dc.id GROUP BY dcnet.id) AS container_networks FROM docker_containers AS dc JOIN docker_images AS di ON di.id=dc.image_id LEFT JOIN time AS t;
day:
 rpm_packages:
 query: SELECT t.unix_time AS query_time, rpm.name, rpm.version, rpm.release, rpm.source AS package_source, rpm.size, rpm.sha1, rpm.arch FROM rpm_packages AS rpm JOIN time AS t;
 os_info:
 query: SELECT t.unix_time AS query_time, os.* FROM os_version AS os LEFT JOIN time AS t;
 interface_addresses:
 query: SELECT t.unix_time AS query_time, ia.interface, ia.address, id.mac FROM interface_addresses AS ia JOIN interface_details AS id ON ia.interface=id.interface LEFT JOIN time AS t WHERE NOT ia.interface='lo';

Nebula query data is very verbose, and is really meant to be sent to a central
aggregation location such as splunk or logstash for further processing.
However, if you would like to run the queries manually you can call the nebula
execution module:

hubble nebula.queries day
hubble nebula.queries hour verbose=True

topfiles

Nebula supports organizing query groups across files, and combining/targeting
them via a top.nebula file (similar to topfiles in SaltStack):

nebula:
 - '*':
 - hubblestack_nebula_queries
 - 'G@splunk_index:some_team':
 - some_team

Each entry under nebula is a SaltStack style compound match [https://docs.saltstack.com/en/latest/topics/targeting/compound.html] that
describes which hosts should receive the list of queries. All queries are
merged, and conflicts go to the last-defined file.

The files referenced are relative to salt://hubblestack_nebula_v2/ and
leave off the .yaml extension.

You can also specify an alternate top.nebula file.

For more details, see the module documentation: Nebula (nebula_osquery.py)

File Integrity Monitoring/FIM (Linux) (Pulsar)

Pulsar is designed to monitor for file system events, acting as a real-time
File Integrity Monitoring (FIM) agent. Pulsar uses python-inotify to watch for
these events and report them to your destination of choice.

Module Documentation

Pulsar (Linux) (pulsar.py)

Usage

Once Pulsar is configured there isn’t anything you need to do to interact with
it. It simply runs quietly in the background and sends you alerts.

Note

Running pulsar outside of hubble’s scheduler will never return results.
This is because the first time you run pulsar it will set up the watches in
inotify, but no events will have been generated. Only subsequent runs under
the same process can receive events.

Configuration

The list of files and directories that pulsar watches is defined in
salt://hubblestack_pulsar/hubblestack_pulsar_config.yaml:

/lib: { recurse: True, auto_add: True }
/bin: { recurse: True, auto_add: True }
/sbin: { recurse: True, auto_add: True }
/boot: { recurse: True, auto_add: True }
/lib64: { recurse: True, auto_add: True }
/usr/lib: { recurse: True, auto_add: True }
/usr/bin: { recurse: True, auto_add: True }
/usr/sbin: { recurse: True, auto_add: True }
/usr/lib64: { recurse: True, auto_add: True }
/usr/libexec: { recurse: True, auto_add: True }
/usr/local/etc: { recurse: True, auto_add: True }
/usr/local/bin: { recurse: True, auto_add: True }
/usr/local/lib: { recurse: True, auto_add: True }
/usr/local/sbin: { recurse: True, auto_add: True }
/usr/local/libexec: { recurse: True, auto_add: True }
/opt/bin: { recurse: True, auto_add: True }
/opt/osquery: { recurse: True, auto_add: True }
/opt/hubble: { recurse: True, auto_add: True }
/etc:
 exclude:
 - /etc/passwd.lock
 - /etc/shadow.lock
 - /etc/gshadow.lock
 - /etc/group.lock
 - /etc/passwd+
 - /etc/passwd-
 - /etc/shadow+
 - /etc/shadow-
 - /etc/group+
 - /etc/group-
 - /etc/gshadow+
 - /etc/gshadow-
 - /etc/cas/timestamp
 - /etc/resolv.conf.tmp
 - /etc/pki/nssdb/key4.db-journal
 - /etc/pki/nssdb/cert9.db-journal
 - /etc/salt/gpgkeys/random_seed
 - /etc/blkid/blkid.tab.old
 - \/etc\/blkid\/blkid\.tab\-\w{6}$:
 regex: True
 - \/etc\/passwd\.\d*$:
 regex: True
 - \/etc\/group\.\d*$:
 regex: True
 - \/etc\/shadow\.\d*$:
 regex: True
 - \/etc\/gshadow\.\d*$:
 regex: True
 recurse: True
 auto_add: True
return: splunk_pulsar_return
checksum: sha256
stats: True
batch: True

Note some of the available options: you can recurse through directories,
auto_add new files and directories as they are created, or exclude based on
glob or regex patterns.

topfiles

Pulsar supports organizing query groups across files, and combining/targeting
them via a top.pulsar file (similar to topfiles in SaltStack):

pulsar:
 '*':
 - hubblestack_pulsar_config

Each entry under pulsar is a SaltStack style compound match [https://docs.saltstack.com/en/latest/topics/targeting/compound.html] that
describes which hosts should receive the list of queries. All queries are
merged, and conflicts go to the last-defined file.

The files referenced are relative to salt://hubblestack_pulsar/ and
leave off the .yaml extension.

You can also specify an alternate top.pulsar file.

For more details, see the module documentation: Pulsar (Linux) (pulsar.py)

File Integrity Monitoring/FIM (Windows) (Pulsar)

Pulsar for Windows is designed to monitor for file system events, acting as a
real-time File Integrity Monitoring (FIM) agent. On Windows systems, pulsar
uses ntfs journaling watch for these events and report them to your destination
of choice.

Module Documentation

Pulsar (Windows) (win_pulsar.py)

Usage

Once Pulsar is configured there isn’t anything you need to do to interact with
it. It simply runs quietly in the background and sends you alerts.

Note

Running pulsar outside of hubble’s scheduler will never return results.
This is because the first time you run pulsar it will set up the watches in
inotify, but no events will have been generated. Only subsequent runs under
the same process can receive events.

Module Documentation

	Nova (hubble.py)

	Nebula (nebula_osquery.py)

	Pulsar (Linux) (pulsar.py)

	Pulsar (Windows) (win_pulsar.py)

Nova (hubble.py)

Loader and primary interface for nova modules

See README for documentation

	Configuration:

	
	hubblestack:nova:module_dir

	hubblestack:nova:profile_dir

	hubblestack:nova:saltenv

	hubblestack:nova:autoload

	hubblestack:nova:autosync

	
hubblestack.extmods.modules.hubble.audit(configs=None, tags='*', verbose=None, show_success=None, show_compliance=None, show_profile=None, called_from_top=None, debug=None, labels=None, **kwargs)

	Primary entry point for audit calls.

	configs

	List (comma-separated or python list) of yaml configs/directories to
search for audit data. Directories are dot-separated, much in the same
way as Salt states. For individual config names, leave the .yaml
extension off. If a given path resolves to a python file, it will be
treated as a single config. Otherwise it will be treated as a
directory. All configs found in a recursive search of the specified
directories will be included in the audit.

If configs is not provided, this function will call hubble.top
instead.

	tags

	Glob pattern string for tags to include in the audit. This way you can
give a directory, and tell the system to only run the CIS*-tagged
audits, for example.

	verbose

	Whether to show additional information about audits, including
description, remediation instructions, etc. The data returned depends
on the audit module. Defaults to False. Configurable via
hubblestack:nova:verbose in minion config/pillar.

	show_success

	Whether to show successful audits in addition to failed audits.
Defaults to True. Configurable via hubblestack:nova:show_success in
minion config/pillar.

	show_compliance

	Whether to show compliance as a percentage (successful checks divided
by total checks). Defaults to True. Configurable via
hubblestack:nova:show_compliance in minion config/pillar.

	show_profile

	DEPRECATED

	called_from_top

	Ignore this argument. It is used for distinguishing between user-calls
of this function and calls from hubble.top.

	debug

	Whether to log additional information to help debug nova. Defaults to
False. Configurable via hubblestack:nova:debug in minion
config/pillar.

	labels

	Tests with matching labels are executed. If multiple labels are passed,
then tests which have all those labels are executed.

	**kwargs

	Any parameters & values that are not explicitly defined will be passed
directly through to the Nova module(s).

CLI Examples:

salt '*' hubble.audit foo
salt '*' hubble.audit foo,bar tags='CIS*'
salt '*' hubble.audit foo,bar.baz verbose=True

	
hubblestack.extmods.modules.hubble.top(topfile='top.nova', verbose=None, show_success=None, show_compliance=None, show_profile=None, debug=None, labels=None)

	Compile and run all yaml data from the specified nova topfile.

Nova topfiles look very similar to saltstack topfiles, except the top-level
key is always nova, as nova doesn’t have a concept of environments.

nova:
 '*':
 - cve_scan
 - cis_gen
 'web*':
 - firewall
 - cis-centos-7-l2-scored
 - cis-centos-7-apache24-l1-scored
 'G@os_family:debian':
 - netstat
 - cis-debian-7-l2-scored: 'CIS*'
 - cis-debian-7-mysql57-l1-scored: 'CIS 2.1.2'

Additionally, all nova topfile matches are compound matches, so you never
need to define a match type like you do in saltstack topfiles.

Each list item is a string representing the dot-separated location of a
yaml file which will be run with hubble.audit. You can also specify a
tag glob to use as a filter for just that yaml file, using a colon
after the yaml file (turning it into a dictionary). See the last two lines
in the yaml above for examples.

Arguments:

	topfile

	The path of the topfile, relative to your hubblestack_nova_profiles
directory.

	verbose

	Whether to show additional information about audits, including
description, remediation instructions, etc. The data returned depends
on the audit module. Defaults to False. Configurable via
hubblestack:nova:verbose in minion config/pillar.

	show_success

	Whether to show successful audits in addition to failed audits.
Defaults to True. Configurable via hubblestack:nova:show_success in
minion config/pillar.

	show_compliance

	Whether to show compliance as a percentage (successful checks divided
by total checks). Defaults to True. Configurable via
hubblestack:nova:show_compliance in minion config/pillar.

	show_profile

	DEPRECATED

	debug

	Whether to log additional information to help debug nova. Defaults to
False. Configurable via hubblestack:nova:debug in minion
config/pillar.

CLI Examples:

salt '*' hubble.top
salt '*' hubble.top foo/bar/top.nova
salt '*' hubble.top foo/bar.nova verbose=True

Nebula (nebula_osquery.py)

osquery wrapper for HubbleStack Nebula

Designed to run sets of osquery queries defined in pillar. These sets will have
a unique identifier, and be targeted by identifier. Usually, this identifier
will be a frequency. (‘15 minutes’, ‘1 day’, etc). Identifiers are
case-insensitive.

You can then use the scheduler of your choice to run sets os queries at
whatever frequency you choose.

Sample pillar data:

	nebula_osquery:

	
	hour:

	
	crontab: query: select c.*,t.iso_8601 as _time from crontab as c join time as t;

	query_name: suid_binaries
query: select sb.*, t.iso_8601 as _time from suid_bin as sb join time as t;

	day:

	
	query_name: rpm_packages
query: select rpm.*, t.iso_8601 from rpm_packages as rpm join time as t;

	
hubblestack.extmods.modules.nebula_osquery.queries(query_group, query_file=None, verbose=False, report_version_with_day=True, topfile_for_mask=None, mask_passwords=False)

	Run the set of queries represented by query_group from the
configuration in the file query_file

	query_group

	Group of queries to run

	query_file

	salt:// file which will be parsed for osquery queries

	verbose

	Defaults to False. If set to True, more information (such as the query
which was run) will be included in the result.

	topfile_for_mask

	This is the location of the top file from which the masking information
will be extracted.

	mask_passwords

	Defaults to False. If set to True, passwords mentioned in the
return object are masked.

CLI Examples:

salt '*' nebula.queries day
salt '*' nebula.queries hour verbose=True
salt '*' nebula.queries hour pillar_key=sec_osqueries

Pulsar (Linux) (pulsar.py)

Watch files and translate the changes into salt events

	depends

	
	pyinotify Python module >= 0.9.5

	Caution

	Using generic mask options like open, access, ignored, and
closed_nowrite with reactors can easily cause the reactor
to loop on itself. To mitigate this behavior, consider
setting the disable_during_state_run flag to True in
the beacon configuration.

	
hubblestack.extmods.modules.pulsar.process(configfile='salt://hubblestack_pulsar/hubblestack_pulsar_config.yaml', verbose=False)

	Watch the configured files

Example pillar config

beacons:
 pulsar:
 paths:
 - /var/cache/salt/minion/files/base/hubblestack_pulsar/hubblestack_pulsar_config.yaml
 refresh_interval: 300
 verbose: False

Example yaml config on fileserver (targeted by pillar)

/path/to/file/or/dir:
 mask:
 - open
 - create
 - close_write
 recurse: True
 auto_add: True
 exclude:
 - /path/to/file/or/dir/exclude1
 - /path/to/file/or/dir/exclude2
 - /path/to/file/or/dir/regex[\d]*$:
 regex: True
return:
 splunk:
 batch: True
 slack:
 batch: False # overrides the global setting
checksum: sha256
stats: True
batch: True
contents_size: 20480
checksum_size: 104857600

Note that if batch: True, the configured returner must support receiving
a list of events, rather than single one-off events.

The mask list can contain the following events (the default mask is create,
delete, and modify):

	access - File accessed

	attrib - File metadata changed

	close_nowrite - Unwritable file closed

	close_write - Writable file closed

	create - File created in watched directory

	delete - File deleted from watched directory

	delete_self - Watched file or directory deleted

	modify - File modified

	moved_from - File moved out of watched directory

	moved_to - File moved into watched directory

	move_self - Watched file moved

	open - File opened

The mask can also contain the following options:

	dont_follow - Don’t dereference symbolic links

	excl_unlink - Omit events for children after they have been unlinked

	oneshot - Remove watch after one event

	onlydir - Operate only if name is directory

	recurse:

	Recursively watch directories under the named directory

	auto_add:

	Python inotify option, meaning: automatically start watching new
directories that are created in a watched directory

	watch_new_files:

	when a new file is created in a watched dir, add a watch on the file
(implied by watch_files below)

	watch_files:

	add explicit watches on all files (except excluded) under the named directory

	exclude:

	Exclude directories or files from triggering events in the watched directory.
Can use regex if regex is set to True

	contents:

	Retrieve the contents of changed files based on checksums (which must be enabled)

If pillar/grains/minion config key hubblestack:pulsar:maintenance is set to
True, then changes will be discarded.

	
hubblestack.extmods.modules.pulsar.top(topfile='salt://hubblestack_pulsar/top.pulsar', verbose=False)

	Execute pulsar using a top.pulsar file to decide which configs to use for
this host.

The topfile should be formatted like this:

pulsar:
 '<salt compound match identifying host(s)>':
 - list.of.paths
 - using.dots.as.directory.separators

Paths in the topfile should be relative to salt://hubblestack_pulsar, and
the .yaml should not be included.

Pulsar (Windows) (win_pulsar.py)

This will setup your computer to enable auditing for specified folders inputted into a yaml file. It will
then scan the ntfs journal for changes to those folders and report when it finds one.

	
hubblestack.extmods.modules.win_pulsar.process(configfile='salt://hubblestack_pulsar/hubblestack_pulsar_win_config.yaml', verbose=False)

	Watch the configured files

Example yaml config on fileserver (targeted by configfile option)

C:\Users: {}
C:\Windows:
 mask:
 - 'File Create'
 - 'File Delete'
 - 'Security Change'
 exclude:
 - C:\Windows\System32*
C: emp: {}
return: splunk_pulsar_return
batch: True

Note that if ‘batch: True’, the configured returner must support receiving a list of events, rather than single one-off events

the mask list can contain the following events (the default mask is create, delete, and modify):

	Basic Info Change A user has either changed file or directory attributes, or one or more time stamps

	Close The file or directory is closed

	Compression Change The compression state of the file or directory is changed from or to compressed

	Data Extend The file or directory is extended (added to)

	Data Overwrite The data in the file or directory is overwritten

	Data Truncation The file or directory is truncated

	
	EA Change A user made a change to the extended attributes of a file or directory (These NTFS

	file system attributes are not accessible to Windows-based applications)

	Encryption Change The file or directory is encrypted or decrypted

	File Create The file or directory is created for the first time

	File Delete The file or directory is deleted

	Hard Link Change An NTFS file system hard link is added to or removed from the file or directory

	
	Indexable Change A user changes the FILE_ATTRIBUTE_NOT_CONTENT_INDEXED attribute (changes the file

	or directory from one where content can be indexed to one where content cannot
be indexed, or vice versa)

	
	Integrity Change A user changed the state of the FILE_ATTRIBUTE_INTEGRITY_STREAM attribute for the given

	stream (On the ReFS file system, integrity streams maintain a checksum of all
data for that stream, so that the contents of the file can be validated during
read or write operations)

	Named Data Extend The one or more named data streams for a file are extended (added to)

	Named Data Overwrite The data in one or more named data streams for a file is overwritten

	Named Data truncation The one or more named data streams for a file is truncated

	Object ID Change The object identifier of a file or directory is changed

	
	Rename New Name A file or directory is renamed, and the file name in the USN_RECORD_V2 structure is the

	new name

	
	Rename Old Name The file or directory is renamed, and the file name in the USN_RECORD_V2 structure is

	the previous name

	
	Reparse Point Change The reparse point that is contained in a file or directory is changed, or a reparse

	point is added to or deleted from a file or directory

	Security Change A change is made in the access rights to a file or directory

	Stream Change A named stream is added to or removed from a file, or a named stream is renamed

	Transacted Change The given stream is modified through a TxF transaction

	exclude:

	Exclude directories or files from triggering events in the watched directory. Note that the directory excludes shoud
not have a trailing slash

	Returns

	

	
hubblestack.extmods.modules.win_pulsar.top(topfile='salt://hubblestack_pulsar/win_top.pulsar', verbose=False)

	Execute pulsar using a top.pulsar file to decide which configs to use for
this host.

The topfile should be formatted like this:

pulsar:
 '<salt compound match identifying host(s)>':
 - list.of.paths
 - using.dots.as.directory.separators

Paths in the topfile should be relative to salt://hubblestack_pulsar, and
the .yaml should not be included.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hubblestack	

 	
 	
 hubblestack.extmods.modules.hubble	

 	
 	
 hubblestack.extmods.modules.nebula_osquery	

 	
 	
 hubblestack.extmods.modules.pulsar	

 	
 	
 hubblestack.extmods.modules.win_pulsar	

Index

 A
 | H
 | P
 | Q
 | T

A

 	
 	audit() (in module hubblestack.extmods.modules.hubble)

H

 	
 	hubblestack.extmods.modules.hubble (module)

 	hubblestack.extmods.modules.nebula_osquery (module)

 	
 	hubblestack.extmods.modules.pulsar (module)

 	hubblestack.extmods.modules.win_pulsar (module)

P

 	
 	process() (in module hubblestack.extmods.modules.pulsar)

 	(in module hubblestack.extmods.modules.win_pulsar)

Q

 	
 	queries() (in module hubblestack.extmods.modules.nebula_osquery)

T

 	
 	top() (in module hubblestack.extmods.modules.hubble)

 	(in module hubblestack.extmods.modules.pulsar)

 	(in module hubblestack.extmods.modules.win_pulsar)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 HubbleStack

 		
 Getting Started with HubbleStack

 		
 Installation

 		
 Installation Using Released Packages (Recommended)

 		
 Alternative Installations and Packaging

 		
 Basic Usage

 		
 Quickstart via Docker container

 		
 Auditing (Nova)

 		
 Module Documentation

 		
 Usage

 		
 Configuration

 		
 Insights and Data Gathering (Nebula)

 		
 Module Documentation

 		
 Usage

 		
 topfiles

 		
 File Integrity Monitoring/FIM (Linux) (Pulsar)

 		
 Module Documentation

 		
 Usage

 		
 Configuration

 		
 topfiles

 		
 File Integrity Monitoring/FIM (Windows) (Pulsar)

 		
 Module Documentation

 		
 Usage

 		
 Module Documentation

 		
 Nova (hubble.py)

 		
 Nebula (nebula_osquery.py)

 		
 Pulsar (Linux) (pulsar.py)

 		
 Pulsar (Windows) (win_pulsar.py)

_static/ajax-loader.gif

