

goodplay: Make your deployment play well.

goodplay enables you to test your deployments and distributed software
infrastructure by reusing your existing knowledge of Ansible [https://github.com/ansible/ansible].

This part of the documentation, which is mostly prose, begins with some
background information about goodplay, then focuses on step-by-step
instructions for digging deeper into what can be accomplished with goodplay.

	Introduction
	Features

	Versioning

	goodplay vs. Other Software

	License

	Quick Start
	Installing

	Defining Environment

	Writing Tests

	Running Tests

	Installation
	Installing Docker

	Installing goodplay

	Get the Code

	Frequently Asked Questions
	Is Docker required for running goodplay?

	When is a test marked as passed, skipped, or failed?

	Are test tasks free of side effects?

	My shell/command test always fails. Why?

All features provided by goodplay are documented in this section.
So if you’re trying to use a specific feature you should find all the details here.

	Defining Environment
	Single Docker Environment

	Multiple Docker Environments

	Writing Tests
	Ansible Terminology

	Writing Test Playbooks

	Writing Tests for Ansible Roles

	Auto-Installing Dependencies
	Hard Dependencies

	Soft Dependencies

	Command-Line Options
	--use-local-roles

	Debugging output

	Integrating with Third Parties
	GitLab CI

	Travis CI

	Jenkins CI

	pytest

In case you need some inspiration you should have a look at our real-world
examples that showcase how goodplay is used in the wild.

	What are you doing with goodplay?

If you want to contribute to the project, this part of the documentation is for
you.

	Contributor’s Guide

	Authors

History

0.12.0 (2018-11-19)

Major Changes

	add support for Ansible 2.6 and 2.7, drop support for Ansible 2.3 and 2.4

	add support for Python 3.7

Minor Changes

	fix docker-compose integration after method signature change in docker-compose==1.23.0

	update dependencies to newer versions

0.11.0 (2018-06-20)

Minor Changes

	update dependencies to newer versions

0.10.0 (2018-03-26)

Major Changes

	add support for Ansible 2.5, drop support for Ansible 2.2

	require pytest>=3.5.0 due to a change in their nodeid calculation

0.9.1 (2018-01-15)

Minor Changes

	report appropriate build error message when building from docker-compose

	fix warning “Module already imported so cannot be rewritten: goodplay”

0.9.0 (2017-12-25)

Minor Changes

	when using docker-compose.yml files in tests with referenced Dockerfiles,
a build is triggered before bringing up the containers (NOT attempting to
pull the latest base image as image might be only available locally)

0.8.1 (2017-12-19)

Minor Changes

	require docker-compose>=1.18.0 due to a method signature change

	when using docker-compose.yml files in tests with referenced Dockerfiles,
a build is triggered before bringing up the containers (always attempting
to pull the latest base image)

0.8.0 (2017-10-15)

Major Changes

	add support for Ansible 2.2, 2.3, and 2.4, drop support for Ansible 2.1

	add support for Docker 1.12 and greater, drop support for Docker 1.11 and below

	add support for Python 3.6, now effectively supporting Python 2.7 and 3.6

	update to pytest 3

	provide Docker image goodplay/goodplay

Minor Changes

	mention GitLab CI support in the docs

Internal Changes

	improve Python-Ansible combinations that are tested on Travis CI

0.7.0 (2016-06-18)

Major Changes

	support become_user with Docker’s native user management when running
privilege escalation task against Docker Compose environment thus sudo
is not required in a Docker container anymore; this may change in a future
version once Ansible supports su with Docker connection plugin

	drop support for ansible==2.0.x, now require ansible>=2.1.0

Bug Fixes

	fix issue with using local Ansible roles (--use-local-roles)

	fix wait_for test task that timeouts or otherwise fails resulting in
global fail

Internal Changes

	skip Docker-related tests when Docker is not available

	run Travis CI tests against latest two Docker minor versions,
each with latest patch version

	add tests for automatic check mode usage when using a custom module
that supports check mode

0.6.0 (2016-04-28)

Major Changes

	use Docker Compose for defining environments instead of reinventing the
wheel, thus bringing you all the latest and greatest features of
Docker Compose (e.g. running from Dockerfile, custom networks, custom
entrypoints, shared volumes, and more)

	support running any test playbook (not only Ansible role playbooks) against
multiple environments

	test tasks now run in check mode when supported by module

	remove goodplay_image and goodplay_platform support from inventory
files

	remove .goodplay.yml support as it has only been used for defining
platform-name-to-docker-image mapping which is now handled by Docker Compose

Minor Changes

	now depend on pytest>=2.9.1,<3

Other Improvements

	fresh goodplay logo

	do not display traceback for goodplay failures

0.5.0 (2016-03-20)

Major Changes

	goodplay now requires at least Docker 1.10.0

	docker: make use of user-defined networks to isolate test environments

	docker: hosts can now resolve each other thanks to Docker’s embedded DNS server

	support use of local Ansible roles (--use-local-roles) during test run

Bug Fixes

	add missing ansible_user inventory variable in tests as this is required
for latest Docker connection plugin in Ansible

	fix junitxml support for pytest>=2.9.1

Other Improvements

	ease test writing by introducing smart_create helper

	speed-up tests by using gather_facts: no where possible

	docs: compare goodplay to other software

	add gitter chat badge

	explicitly disable Ansible retry files

0.4.1 (2016-01-22)

Major Changes

	repository moved to new organization on GitHub: goodplay/goodplay

Bug Fixes

	fix host vars getting mixed due to Ansible caches being kept as module state

0.4.0 (2016-01-13)

Major Changes

	add support for testing against defined Docker environment

	make latest Ansible 2.0 release candidate install automatically

	massive documentation refactorings, now available under https://docs.goodplay.io/

	introduce command line interface: goodplay

	drop Ansible 1.9.x support to move things forward

Bug Fixes

	fix goodplay plugin missing when running Ansible

Internal Changes

	switch from traditional Code Climate to new Code Climate Platform

	disable use_develop in tox.ini to more closely match a real user’s environment

	refactor code to have sarge integrated at a single point

0.3.0 (2015-09-07)

Major Changes

	add support for Ansible role testing

	add support for auto-installing Ansible role dependencies (hard dependencies)

	add support for auto-installing soft dependencies

Bug Fixes

	fix test failing when previous non-test task has been changed

	fix failing non-test task after all completed test tasks not being reported as failure

Internal Changes

	use ansible-playbook subprocess for collecting tests as Ansible does
not provide an official Python API and Ansible internals are more likely
to be changed

	various code refactorings based on Code Climate recommendations

	switch to Travis CI for testing as it now supports Docker

0.2.0 (2015-08-24)

	initial implementation of Ansible v1 and v2 test collector and runner

0.1.0 (2015-07-22)

	first planning release on PyPI

Introduction

Writing good tests for your existing deployments or distributed software
infrastructure should be painless, and easily accomplishable without
involving any time-consuming and complex testing setup.
This is where goodplay comes into play.

goodplay instruments Ansible [https://docs.ansible.com/] — “a radically simple IT automation platform”
as it is advertized — and allows you to write your tests in the same simple
and probably already familiar language you would write an Ansible playbook [https://docs.ansible.com/playbooks.html].

Features

	define your test environments via Docker Compose [https://docs.docker.com/compose/] and
Ansible inventories [https://docs.ansible.com/ansible/intro_inventory.html]

	write your tests as Ansible 2.x playbook tasks [https://docs.ansible.com/playbooks.html]

	resolve and auto-install Ansible role dependencies prior to test run

	run your tests within Docker [https://www.docker.com/] container(s), an already existing test
environment, or on localhost

	built as a pytest [https://pytest.org/] plugin to have a solid test runner foundation,
plus you can run your goodplay tests together with your other tests

Versioning

goodplay will use Semantic Versioning [http://semver.org/] when reaching v1.0.0.
Until then, the minor version is used for backwards-incompatible changes.

goodplay vs. Other Software

In this section we compare goodplay to some of the other software options
that are available to partly solve what goodplay can accomplish for you.

Ansible

Ansible [https://docs.ansible.com/] itself comes bundled with some testing facilities mentioned in the
Ansible Testing Strategies [https://docs.ansible.com/ansible/test_strategies.html] documentation.
It makes a low-level assert module available which helps to verify that
some condition holds true, e.g. some output from a previous task which has
been stored in a variable contains an expected value.

Although it can be sometimes necessary to use something low-level as Ansible’s
assert, goodplay enables you to use high-level modules for describing
your test cases.

Besides the actual testing, goodplay takes care of setting up and tearing down
the test environment as well as collecting the test results – both being
something Ansible was not made for.

pytest-ansible

pytest-ansible [https://pypi.python.org/pypi/pytest-ansible] is as the name already implies a pytest [https://pytest.org/] plugin just like
goodplay.
But instead of being used for testing Ansible playbooks or roles, it provides
pytest fixtures that allow you to execute Ansible modules from your
Python-based tests.

serverspec

serverspec [http://serverspec.org] seems to be more targeted to assert hosts are in a defined
state.
In comparison to goodplay it allows you to run tests against single hosts
only and does not include test environment management.

License

goodplay is open source software released under the Apache License 2.0:

Copyright 2015-2018 Benjamin Schwarze

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Quick Start

Eager to get started? This page gives a good introduction in how to get
started with goodplay.

For our basic example we assume we want to test our existing Ansible playbook
that is responsible for installing a plain nginx web server on Ubuntu [http://www.ubuntu.com/]:

nginx_install.yml
- hosts: web
 tasks:
 - name: install nginx package
 apt:
 name: nginx
 state: latest
 update_cache: yes

Briefly summarized, when running the playbook via ansible-playbook,
Ansible will:

	Connect to host web.

	Update the cache of apt, which is Ubuntu’s default package manager.

	Install the latest nginx – one of the most used web servers – package
via apt.

At a first glance this looks fine but it is not clear if the following holds true:

	The nginx service is automatically started after the installation.

	The nginx service is started at boot time.

	The nginx service is running on port 80.

Let’s turn these assumptions into requirements which we are going to test
with goodplay.
But, first things first… we need to install goodplay.

Installing

Before installing goodplay make sure you have Docker installed, which is a
prerequisite for this quick start tutorial.
Check out the official Install Docker Engine [https://docs.docker.com/engine/installation/] guide.

Afterwards, to install goodplay with pip [https://pip.pypa.io], just run this in your terminal:

$ pip install goodplay

Please consult the Installation Guide for detailed information
and alternative installation options.

Defining Environment

Before writing the actual tests we need to define our test environment
which is created as Docker containers behind the scenes.
This is done via a Docker Compose file [https://docs.docker.com/compose/compose-file/] and an Ansible inventory [https://docs.ansible.com/ansible/intro_inventory.html] where
we define all hosts and groups required for the test run.

In our case we want to test our nginx installation on a single host with
Ubuntu Trusty:

tests/docker-compose.yml
version: "2"
services:
 web:
 image: "ubuntu-upstart:trusty"
 tty: True

tests/inventory
web ansible_user=root

In this example we define a host (in Docker Compose terminology this is a
service) with name web that runs the official Docker Ubuntu image [https://hub.docker.com/_/ubuntu-upstart/]
ubuntu-upstart:trusty.

	Feature: Defining Environment

Writing Tests

Now, let’s write some tests that ensure nginx is installed according to our
requirements:

tests/test_nginx_install.yml
- include: ../nginx_install.yml

- hosts: web
 tasks:
 - name: nginx service is running
 service:
 name: nginx
 state: started
 tags: test

 - name: nginx service is enabled
 service:
 name: nginx
 enabled: yes
 tags: test

 - name: nginx service is listening on port 80
 wait_for:
 port: 80
 timeout: 10
 tags: test

You may have noticed that all we have to do is use the same Ansible modules
we’re already used to.
In case you are new to all this playbook stuff, the official
Ansible playbook guide [https://docs.ansible.com/ansible/playbooks.html] will help you getting started.

Labeling a playbook’s task with a test tag makes goodplay recognize it
as a test task. A test task is meant to be successful (passes) when it
does not result in a change and does not fail.

	Feature: Writing Tests

Running Tests

Note

First-time run may take some more seconds or minutes (depending on your
internet connection) as the required Docker images need to be downloaded.

The following command will kick-off the test run:

$ goodplay -v
============================= test session starts ==============================
platform darwin -- Python 2.7.6, pytest-2.9.1, py-1.4.31, pluggy-0.3.1 -- /Users
/benjixx/.virtualenvs/goodplay/bin/python2.7
rootdir: /Users/benjixx/src/goodplay/examples/quickstart
plugins: goodplay-0.6.0
collected 3 items

tests/test_nginx_install.yml::nginx service is running PASSED
tests/test_nginx_install.yml::nginx service is enabled PASSED
tests/test_nginx_install.yml::nginx service is listening on port 80 PASSED

========================== 3 passed in 43.13 seconds ===========================

Installation

This part of the documentation covers the installation of goodplay.

Installing Docker

goodplay makes use of isolated containerized environments provided by Docker
for running your tests.

Note

If you only require your tests to be run on localhost or some other
test environment you manage on your own, you can skip Docker installation
and continue with the next section.

As goodplay uses Docker Compose [https://docs.docker.com/compose/] which enables you to use some great Docker
features like user-defined networks or embedded DNS server, we recommend to
run at least Docker version 1.10.0.
There are a lot of options when it comes to setting up a Docker host.

When running a Linux distribution with a recent kernel version, docker
is most likely supported natively.
In this case the installation process [https://docs.docker.com/linux/step_one/] will finish in a minute.

When running on Mac OS X, docker is not natively supported (yet).
Fortunately there is docker-machine available which lets you create
Docker hosts as virtual machine on your computer, on cloud providers,
or inside your own data center.
In this case Docker Toolbox [https://www.docker.com/docker-toolbox] helps you to setup everything you need.

Please make sure to read the official Install Docker Engine [https://docs.docker.com/engine/installation/] guide.

Installing goodplay

Installing latest released goodplay version is simple with pip [https://pip.pypa.io],
just run this in your terminal:

$ pip install goodplay

Alternatively you can install the latest goodplay development version:

$ pip install git+https://github.com/goodplay/goodplay.git#egg=goodplay

Get the Code

goodplay is actively developed on GitHub, where the code is
always available [https://github.com/goodplay/goodplay].

You can either clone the public repository:

$ git clone https://github.com/goodplay/goodplay.git

Download the tarball [https://github.com/goodplay/goodplay/archive/master.tar.gz]:

$ curl -OL https://github.com/goodplay/goodplay/archive/master.tar.gz

Or, download the zipball [https://github.com/goodplay/goodplay/archive/master.zip]:

$ curl -OL https://github.com/goodplay/goodplay/archive/master.zip

Once you have a copy of the source, you can install it into your
site-packages easily:

$ python setup.py install

Frequently Asked Questions

Is Docker required for running goodplay?

Although most people may use goodplay with Docker, it is absolutely fine to
run goodplay without Docker and instead run on localhost or against remote
hosts.
Just keep in mind that you need to take care on your own for setting up and
cleaning up your test environment in this case.

When is a test marked as passed, skipped, or failed?

An executed test always results in one of the following three test outcomes:
passed, skipped, and failed.
The following table shows the relation of Ansible task results of
non-test tasks and test tasks to the actual test result.

	task result

	non-test task

	test task

	ok

	n/a

	passed

	ok (changed)

	n/a

	failed

	failed

	global failed

	failed

	failed (ignore failed)

	n/a

	n/a

	skipped

	n/a

	skipped

	unreachable host

	global failed

	failed

	no hosts

	n/a

	n/a

These test results are collected for each host a task runs on.
At the end of a test task the results are combined to the final test outcome
according to the following rules in order:

	If the task has been failed on one or more hosts test outcome is
failed.

	If the task has been skipped on one or more hosts test outcome is
skipped.

	Otherwise result in passed.

Note

	In case of a global failed this results in a failure with all
subsequent tests being skipped.

	If all test tasks of a playbook are skipped this results in a failure.

Are test tasks free of side effects?

It depends. Test tasks are run in check mode (and thus without side effects)
when supported by a module. If check mode is not supported, a module is run
in normal mode which can result in side effects (depending on a module’s
functionality).

My shell/command test always fails. Why?

Since Ansible cannot know when a shell command has changed something, the shell/command task always sets changed to true.
This conflicts with goodplay’s assumption, that a task fails if it changed something.
To circumvent this, you need to tell Ansible that the shell command did not change using changed_when, for example:

- name: "check java version"
 shell: java -version 2>&1 | grep -q '1.8.0_122'
 changed_when: False
 tags: test

Defining Environment

Prior to writing tests it is important to define the environment the tests
are going to ran on, e.g. hostnames and platforms.
Throughout this documentation we will often refer to this as inventory.

goodplay borrows this term from Ansible which already provides
various ways to define inventories [https://docs.ansible.com/ansible/intro_inventory.html].
When doing a test run, goodplay reads an inventory during setup phase that
defines the hosts to be used for the test.
These can be hosts you have already available in your environment or Docker
containers you have defined via Docker Compose that are automatically created,
as we will see in a minute.

The usual and easiest way to define an inventory is to create a file
named inventory right beside the
test playbook:

inventory
web ansible_user=root
db ansible_user=root

This example defines two hosts – web and db.
The remote user that is used to connect to the host needs to be specified
via ansible_user inventory variable.

Single Docker Environment

If we would use the inventory example from the previous section together with
a test playbook it would not create any Docker containers yet, and thus Ansible
would not be able to connect to the hosts web and db.
There are multiple reasons this is not done automatically:

	goodplay can be used without Docker, e.g. tests can run against localhost
or otherwise managed test environment.

	Some hostnames defined in the inventory may be used only for configuration
purposes (not actually required for test run).

	Hosts may require different platforms, so these must be specified
explicitly.

The Docker container environment required for a test run is specified with
the help of Docker Compose [https://docs.docker.com/compose/] in a docker-compose.yml file right beside the
test playbook and inventory.

Note

Please note that Docker Compose uses the term service for what goodplay
uses the term host.

Let’s assume we want hosts web and db to run latest CentOS 7.
Therefor we create the following docker-compose.yml file:

docker-compose.yml
version: "2"
services:
 web:
 image: "centos:centos7"
 tty: True

 db:
 image: "centos:centos7"
 tty: True

When executing a test, goodplay …

	… recognizes the docker-compose.yml file right beside the test playbook
and inventory,

	… starts up the test environment,

	… connects the Ansible inventory with the instantiated Docker containers,

	… executes the test playbook,

	… and finally shuts down the test environment.

Multiple Docker Environments

Sometimes you want to run the same test playbook against multiple environments.
For example when you have an Ansible role that should support more than one
platform, you most likely want to test run it against each supported platform.

We could extend our previous example by not only testing against latest
CentOS 7, but also against Ubuntu Trusty:

docker-compose.centos.7.yml
version: "2"
services:
 web:
 image: "centos:centos7"
 tty: True

 db:
 image: "centos:centos7"
 tty: True

docker-compose.ubuntu.trusty.yml
version: "2"
services:
 web:
 image: "ubuntu-upstart:trusty"
 tty: True

 db:
 image: "ubuntu-upstart:trusty"
 tty: True

goodplay will recognize that there are multiple Docker Compose files, and will
run the test playbook against each of these environments.

Docker Compose allows you to work with Multiple Docker Compose files [https://docs.docker.com/compose/extends/].
goodplay takes this one step further by introducing conventions to
extending/overriding Docker Compose files.

goodplay sees your docker-compose.yml files as a hierarchy where as
docker-compose.yml is the parent of docker-compose.item1.yml which
is the parent of docker-compose.item1.item11.yml and so on and so forth.
When deciding which ones to use, goodplay only instantiates the leaves in
the hierarchy. Thus you could have intermediate Docker Compose files that
hold common configuration that can be refered to further down in the
hierarchy.

Additionally one can use the extension .override.yml instead of .yml
to make goodplay override (merge) the Docker Compose file from the same or
upper level.

Writing Tests

goodplay builds upon playbooks – Ansible [https://docs.ansible.com/]’s configuration, deployment, and
orchestration language.

Ansible Terminology

Quoting from Ansible’s documentation:

At a basic level, playbooks can be used to manage configurations of and
deployments to remote machines. At a more advanced level, they can
sequence multi-tier rollouts involving rolling updates, and can delegate
actions to other hosts, interacting with monitoring servers and load
balancers along the way.

A pseudo playbook – written as a YAML [https://en.wikipedia.org/wiki/YAML] file – may look like this:

playbook_name.yml
play #1
- hosts: host1:host2
 tasks:
 # play #1, task #1
 - name: first task name
 module1:
 arg1: value1
 arg2: value2

 # play #1, task #2
 - name: second task name
 module2:
 arg1: value1
 arg2: value2
 tags: specialtag

play #2
- hosts: host3
 tasks:
 # play #2, task #1
 - name: another task name
 module1:
 arg1: value1

Each playbook is composed of one or more plays.

Each play basically defines two things:

	on which hosts to run a particular set of tasks, and

	what tasks to run on each of these hosts.

A task refers to the invocation of a module which can be
e.g. something like creating a user, installing a package,
or starting a service.
Ansible already comes bundled with a large module library [https://docs.ansible.com/ansible/modules.html].

Writing Test Playbooks

After we have briefly introduced the basic terminology of the Ansible
language, it is now time to define what a test playbook looks like in the
goodplay context.

A test playbook is as the name implies a playbook with the following
contraints:

	The filename is prefixed with test_.

	The filename extension is .yml.

	Right beside the test playbook a file or directory named inventory
exists. See Defining Environment for details.

	If you want to test against Docker containers you may optionally put a
docker-compose.yml file right beside the test playbook.

	The test playbook contains or includes at least one task tagged with
test, also called test task.

	Within a test playbook all test task names must be unique.

Basic Example

An example test playbook that verifies that two hosts (host1 and host2
created as Docker containers, each one running centos:centos6 platform
image) are reachable:

docker-compose.yml
version: "2"
services:
 host1:
 image: "centos:centos6"
 tty: True

 host2:
 image: "centos:centos6"
 tty: True

inventory
host1 ansible_user=root
host2 ansible_user=root

test_ping_hosts.yml
- hosts: host1:host2
 tasks:
 - name: hosts are reachable
 ping:
 tags: test

The name of the single test task is hosts are reachable.
The test task only passes when the task runs successful on both hosts
i.e. both hosts are reachable.

Complex Example

A slightly more complicated example making use of more advanced Ansible
features, like defining host groups or registering variables and using
Ansible’s assert module:

install_myapp.yml
- hosts: myapp-hosts
 tasks:
 - name: install myapp
 debug:
 msg: "Do whatever is necessary to install the app"

tests/docker-compose.yml
version: "2"
services:
 host1:
 image: "centos:centos6"
 tty: True

 host2:
 image: "centos:centos6"
 tty: True

tests/inventory
[myapp-hosts]
host1 ansible_user=root
host2 ansible_user=root

tests/test_myapp.yml
- include: ../install_myapp.yml

- hosts: myapp-hosts
 tasks:
 - name: config file is only readable by owner
 file:
 path: /etc/myapp/myapp.conf
 mode: 0400
 state: file
 tags: test

 - name: fetch content of myapp.log
 command: cat /var/log/myapp.log
 register: myapp_log
 changed_when: False

 - name: myapp.log contains no errors
 assert:
 that: "'ERROR' not in myapp_log.stdout"
 tags: test

Writing Tests for Ansible Roles

To keep playbooks organized in a consistent manner and make them reusable,
Ansible provides the concept of Ansible Roles [https://docs.ansible.com/ansible/playbooks_roles.html#roles].
An Ansible role is defined as a directory (named after the role) with
subdirectories named by convention:

role/
 defaults/
 files/
 handlers/
 meta/
 tasks/
 templates/
 vars/

When writing tests for your role, goodplay expects another subdirectory
by convention:

role/
 ...
 tests/

By following this convention, goodplay takes care of making the Ansible
role available on the Ansible Roles Path [http://docs.ansible.com/ansible/intro_configuration.html#roles-path], so you can use them directly in
your test playbook.

Auto-Installing Dependencies

Ansible comes bundled with ansible-galaxy, a tool to install Ansible roles
either from central Ansible Galaxy [https://galaxy.ansible.com/], or e.g. from a version control system.

goodplay uses ansible-galaxy under the hood to auto-install dependencies
required by your test playbooks. Dependencies are distiguished into two
categories – hard dependencies and soft dependencies.

Warning

Installing Ansible roles that are maintained by a third-party from
Ansible Galaxy may come with its own security risks.
So please ensure you know what you’re doing and/or install your own roles
from your own version control system.

Hard Dependencies

When writing tests for an Ansible role (i.e. under a role’s tests
directory), goodplay ensures all dependent Ansible roles defined in the role’s
meta/main.yml file are automatically installed and made available in the
test context.

We refer to this as hard dependencies as these are expected to be required
for successfully using an Ansible role.

Soft Dependencies

Soft dependencies refer to dependent Ansible roles that are only required
for test execution, e.g. setting up a third party software component we
support to integrate with.

Soft dependencies need to be specified as requirements.yml files right
beside the test playbook that depends on them, and must follow the guidelines
outlined in the Ansible Galaxy Requirements File [https://docs.ansible.com/ansible/galaxy.html#advanced-control-over-role-requirements-files] documentation.

Command-Line Options

Additionally to the default py.test command-line options, goodplay
provides the following options for goodplay and py.test executables,
which can be seen by passing --help:

goodplay --help

--use-local-roles

By default goodplay creates a temporary directory for installing dependent
roles and ensures that has highest precedence when resolving Ansible roles.
This is done to ensure your test run doesn’t interfere with other roles in
your Ansible roles path [http://docs.ansible.com/ansible/intro_configuration.html#roles-path].

There might be cases where you want to disable this default behavior, and
give the configured Ansible roles path [http://docs.ansible.com/ansible/intro_configuration.html#roles-path] highest precedence, e.g.:

	When you’re developing multiple Ansible roles at once and you want to
test-run them together.

	When you cannot use Ansible Galaxy’s dependency resolution due to Ansible
roles being stored in a non-supported location, e.g. non-supported
version control system.

When running with --use-local-roles switch, please ensure you have either
ANSIBLE_ROLES_PATH environment variable set, or roles_path configured
in your ansible.cfg.

Debugging output

As mentioned in the beginning, goodplay supports py.test command-line options.
To see the details output of all Ansible tasks you can pass -v and -s to goodplay:

goodplay -v -s

Integrating with Third Parties

GitLab CI

GitLab CI [https://about.gitlab.com/gitlab-ci/] is part of GitLab. You can use it for free on GitLab.com [https://gitlab.com/].

.gitlab-ci.yml
image: goodplay/goodplay

services:
 - docker:dind

test:
 script:
 - goodplay -v -s

Travis CI

Travis CI [https://travis-ci.org/] is a continuous integration service that is available
to open source projects at no cost.

.travis.yml
sudo: required
dist: trusty

language: python
python: 2.7

services:
 - docker

before_install:
 # ensure apt-get cache is up-to-date
 - sudo apt-get -qq update

 # upgrade docker-engine to latest version
 - export DEBIAN_FRONTEND=noninteractive
 - sudo apt-get -qq -o Dpkg::Options::="--force-confnew" -y install docker-engine
 - docker version

install:
 - pip install goodplay

script:
 - goodplay -v

Jenkins CI

To run on Jenkins CI [https://jenkins-ci.org/] you have to configure the following in your build job:

	Under section Build choose Add build step > Execute shell with

pip install goodplay
goodplay -v --junit-xml=junit.xml

	Under section Post-build Actions choose
Add post-build action > Publish JUnit test result report and set
Test report XMLs to **/junit.xml.

pytest

goodplay is built as a pytest [https://pytest.org/] plugin which is enabled by default.
Thus when running your other tests via py.test command-line interface,
pytest also runs the goodplay tests right beside them.

Note

When running goodplay command-line interface only goodplay tests
are considered.

What are you doing with goodplay?

Note

This is reserved for your real-world examples.
Please feel free to add your project name and project link to the list.

	None yet. Why not be the first?

Contributor’s Guide

If you’re reading this you’re probably interested in contributing to
goodplay. First, we’d like to say: thank you! Open source projects
live-and-die based on the support they receive from others, and the fact that
you’re even considering supporting goodplay is very generous of you.

This document lays out guidelines and advice for contributing to goodplay.
If you’re thinking of contributing, start by reading this thoroughly and
getting a feel for how contributing to the project works.

The guide is split into sections based on the type of contribution you’re
thinking of making, with a section that covers general guidelines for all
contributors.

All Contributions

Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution until
it is perfectly polished and complete. It helps everyone involved for you to
seek feedback as early as you possibly can. Submitting an early, unfinished
version of your contribution for feedback in no way prejudices your chances of
getting that contribution accepted, and can save you from putting a lot of work
into a contribution that is not suitable for the project.

Contribution Suitability

The project maintainer has the last word on whether or not a contribution is
suitable for goodplay. All contributions will be considered, but from time
to time contributions will be rejected because they do not suit the project.

If your contribution is rejected, don’t despair! So long as you followed these
guidelines, you’ll have a much better chance of getting your next contribution
accepted.

Code Contributions

Steps

When contributing code, you’ll want to follow this checklist:

	Fork the repository on GitHub.

	Run the tests to confirm they all pass on your system. If they don’t, you’ll
need to investigate why they fail. If you’re unable to diagnose this
yourself, raise it as a bug report by following the guidelines in this
document: Bug Reports.

	Write tests that demonstrate your bug or feature. Ensure that they fail.

	Make your change.

	Run the entire test suite again, confirming that all tests pass including
the ones you just added.

	Send a GitHub Pull Request to the main repository’s master branch.
GitHub Pull Requests are the expected method of code collaboration on this
project.

Code Review

Contributions will not be merged until they’ve been code reviewed. You should
implement any code review feedback unless you strongly object to it. In the
event that you object to the code review feedback, you should make your case
clearly and calmly. If, after doing so, the feedback is judged to still apply,
you must either apply the feedback or withdraw your contribution.

Documentation Contributions

Documentation improvements are always welcome! The documentation files live in
the docs/ directory of the codebase. They’re written in
reStructuredText [http://docutils.sourceforge.net/rst.html], and use Sphinx [http://sphinx-doc.org/index.html] to generate the full suite of
documentation.

When contributing documentation, please attempt to follow the style of the
documentation files. This means a soft-limit of 79 characters wide in your text
files and a semi-formal prose style.

Bug Reports

Bug reports are hugely important! Before you raise one, though, please check
through the GitHub issues [https://github.com/goodplay/goodplay/issues], both open and closed, to confirm that the bug
hasn’t been reported before. Duplicate bug reports are a huge drain on the time
of other contributors, and should be avoided as much as possible.

Feature Requests

When you’re missing some feature, feel free to raise a feature request
through the GitHub issues [https://github.com/goodplay/goodplay/issues]. Please ensure beforehand that the same feature
request doesn’t exist yet.

Authors

Development Lead

	Benjamin Schwarze <benjamin.schwarze@mailboxd.de> (@benjixx [https://github.com/benjixx])

Contributors

	Eric Van Steenbergen <vs.eric@gmail.com>

	Sebastian May <me@bstr.eu>

Credits

Special thanks goes to the
requests [https://github.com/kennethreitz/requests] project which heavily
inspired our contribution guidelines.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 goodplay: Make your deployment play well.

 		
 Introduction

 		
 Features

 		
 Versioning

 		
 goodplay vs. Other Software

 		
 Ansible

 		
 pytest-ansible

 		
 serverspec

 		
 License

 		
 Quick Start

 		
 Installing

 		
 Defining Environment

 		
 Writing Tests

 		
 Running Tests

 		
 Installation

 		
 Installing Docker

 		
 Installing goodplay

 		
 Get the Code

 		
 Frequently Asked Questions

 		
 Is Docker required for running goodplay?

 		
 When is a test marked as passed, skipped, or failed?

 		
 Are test tasks free of side effects?

 		
 My shell/command test always fails. Why?

 		
 Defining Environment

 		
 Single Docker Environment

 		
 Multiple Docker Environments

 		
 Writing Tests

 		
 Ansible Terminology

 		
 Writing Test Playbooks

 		
 Basic Example

 		
 Complex Example

 		
 Writing Tests for Ansible Roles

 		
 Auto-Installing Dependencies

 		
 Hard Dependencies

 		
 Soft Dependencies

 		
 Command-Line Options

 		
 –use-local-roles

 		
 Debugging output

 		
 Integrating with Third Parties

 		
 GitLab CI

 		
 Travis CI

 		
 Jenkins CI

 		
 pytest

 		
 What are you doing with goodplay?

 		
 Contributor’s Guide

 		
 All Contributions

 		
 Get Early Feedback

 		
 Contribution Suitability

 		
 Code Contributions

 		
 Steps

 		
 Code Review

 		
 Documentation Contributions

 		
 Bug Reports

 		
 Feature Requests

 		
 Authors

 		
 Development Lead

 		
 Contributors

 		
 Credits

_static/comment-bright.png

_static/ajax-loader.gif

