

Welcome to Gallium’s documentation!

Contents:

	Introduction
	What is Gallium?

	Debugging
	Debug Variables

	Remote Debugger

	TGSI
	Basics

	Instruction Set

	Explanation of symbols used

	Other tokens

	Texture Sampling and Texture Formats

	Screen
	Flags and enumerations

	Methods

	Thread safety

	Resources and derived objects
	Transfers

	Resource targets

	Surfaces

	Sampler views

	Formats in gallium
	References

	Context
	Methods

	Using several contexts

	CSO
	Blend

	Depth, Stencil, & Alpha

	Rasterizer

	Sampler

	Shader

	Vertex Elements

	Distribution
	Drivers

	State Trackers

	Auxiliary

	Drivers
	Freedreno

	OpenSWR

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Introduction

What is Gallium?

Gallium is essentially an API for writing graphics drivers in a largely
device-agnostic fashion. It provides several objects which encapsulate the
core services of graphics hardware in a straightforward manner.

Debugging

Debugging utilities in gallium.

Debug Variables

All drivers respond to a set of common debug environment variables, as well as
some driver-specific variables. Set them as normal environment variables for
the platform or operating system you are running. For example, for Linux this
can be done by typing “export var=value” into a console and then running the
program from that console.

Common

	
GALLIUM_PRINT_OPTIONS Type: bool Default: false

	

This option controls if the debug variables should be printed to stderr. This
is probably the most useful variable, since it allows you to find which
variables a driver uses.

	
GALLIUM_RBUG Type: bool Default: false

	

Controls if the Remote Debugger should be used.

	
GALLIUM_TRACE Type: string Default: ""

	

If set, this variable will cause the Trace output to be written to the
specified file. Paths may be relative or absolute; relative paths are relative
to the working directory. For example, setting it to “trace.xml” will cause
the trace to be written to a file of the same name in the working directory.

	
GALLIUM_DUMP_CPU Type: bool Default: false

	

Dump information about the current CPU that the driver is running on.

	
TGSI_PRINT_SANITY Type: bool Default: false

	

Gallium has a built-in shader sanity checker. This option controls whether
the shader sanity checker prints its warnings and errors to stderr.

	
DRAW_USE_LLVM Type: bool Default: false

	

Whether the Draw module will attempt to use LLVM for vertex and geometry shaders.

State tracker-specific

	
ST_DEBUG Type: flags Default: 0x0

	

Debug Flags for the GL state tracker.

Driver-specific

	
I915_DEBUG Type: flags Default: 0x0

	

Debug Flags for the i915 driver.

	
I915_NO_HW Type: bool Default: false

	

Stop the i915 driver from submitting commands to the hardware.

	
I915_DUMP_CMD Type: bool Default: false

	

Dump all commands going to the hardware.

	
LP_DEBUG Type: flags Default: 0x0

	

Debug Flags for the llvmpipe driver.

	
LP_NUM_THREADS Type: int Default: number of CPUs

	

Number of threads that the llvmpipe driver should use.

	
FD_MESA_DEBUG Type: flags Default: 0x0

	

Debug Flags for the freedreno driver.

Flags

The variables of type “flags” all take a string with comma-separated flags to
enable different debugging for different parts of the drivers or state
tracker. If set to “help”, the driver will print a list of flags which the
variable accepts. Order does not matter.

Remote Debugger

The remote debugger, commonly known as rbug, allows for runtime inspections of
Context, Screen, Resources and derived objects and Shader objects; and
pausing and stepping of Draw calls. Is used with rbug-gui which is
hosted outside of the main mesa repository. rbug is can be used over a network
connection, so the debugger does not need to be on the same machine.

TGSI

TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
for describing shaders. Since Gallium is inherently shaderful, shaders are
an important part of the API. TGSI is the only intermediate representation
used by all drivers.

Basics

All TGSI instructions, known as opcodes, operate on arbitrary-precision
floating-point four-component vectors. An opcode may have up to one
destination register, known as dst, and between zero and three source
registers, called src0 through src2, or simply src if there is only
one.

Some instructions, like I2F, permit re-interpretation of vector
components as integers. Other instructions permit using registers as
two-component vectors with double precision; see Double ISA.

When an instruction has a scalar result, the result is usually copied into
each of the components of dst. When this happens, the result is said to be
replicated to dst. RCP is one such instruction.

Modifiers

TGSI supports modifiers on inputs (as well as saturate and precise modifier
on instructions).

For arithmetic instruction having a precise modifier certain optimizations
which may alter the result are disallowed. Example: add(mul(a,b),c) can’t be
optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
MAD instruction.

For inputs which have a floating point type, both absolute value and
negation modifiers are supported (with absolute value being applied
first). The only source of TGSI_OPCODE_MOV and the second and third
sources of TGSI_OPCODE_UCMP are considered to have float type for
applying modifiers.

For inputs which have signed or unsigned type only the negate modifier is
supported.

Instruction Set

Core ISA

These opcodes are guaranteed to be available regardless of the driver being
used.

	
ARL (Address Register Load)

	

[image: dst.x = (int) \lfloor src.x\rfloor dst.y = (int) \lfloor src.y\rfloor dst.z = (int) \lfloor src.z\rfloor dst.w = (int) \lfloor src.w\rfloor]

	
MOV (Move)

	

[image: dst.x = src.x dst.y = src.y dst.z = src.z dst.w = src.w]

	
LIT (Light Coefficients)

	

[image: dst.x &= 1 \\ dst.y &= max(src.x, 0) \\ dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\ dst.w &= 1]

	
RCP (Reciprocal)

	

This instruction replicates its result.

[image: dst = \frac{1}{src.x}]

	
RSQ (Reciprocal Square Root)

	

This instruction replicates its result. The results are undefined for src <= 0.

[image: dst = \frac{1}{\sqrt{src.x}}]

	
SQRT (Square Root)

	

This instruction replicates its result. The results are undefined for src < 0.

[image: dst = {\sqrt{src.x}}]

	
EXP (Approximate Exponential Base 2)

	

[image: dst.x &= 2^{\lfloor src.x\rfloor} \\ dst.y &= src.x - \lfloor src.x\rfloor \\ dst.z &= 2^{src.x} \\ dst.w &= 1]

	
LOG (Approximate Logarithm Base 2)

	

[image: dst.x &= \lfloor\log_2{|src.x|}\rfloor \\ dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\ dst.z &= \log_2{|src.x|} \\ dst.w &= 1]

	
MUL (Multiply)

	

[image: dst.x = src0.x \times src1.x dst.y = src0.y \times src1.y dst.z = src0.z \times src1.z dst.w = src0.w \times src1.w]

	
ADD (Add)

	

[image: dst.x = src0.x + src1.x dst.y = src0.y + src1.y dst.z = src0.z + src1.z dst.w = src0.w + src1.w]

	
DP3 (3-component Dot Product)

	

This instruction replicates its result.

[image: dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z]

	
DP4 (4-component Dot Product)

	

This instruction replicates its result.

[image: dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w]

	
DST (Distance Vector)

	

[image: dst.x &= 1\\ dst.y &= src0.y \times src1.y\\ dst.z &= src0.z\\ dst.w &= src1.w]

	
MIN (Minimum)

	

[image: dst.x = min(src0.x, src1.x) dst.y = min(src0.y, src1.y) dst.z = min(src0.z, src1.z) dst.w = min(src0.w, src1.w)]

	
MAX (Maximum)

	

[image: dst.x = max(src0.x, src1.x) dst.y = max(src0.y, src1.y) dst.z = max(src0.z, src1.z) dst.w = max(src0.w, src1.w)]

	
SLT (Set On Less Than)

	

[image: dst.x = (src0.x < src1.x) ? 1.0F : 0.0F dst.y = (src0.y < src1.y) ? 1.0F : 0.0F dst.z = (src0.z < src1.z) ? 1.0F : 0.0F dst.w = (src0.w < src1.w) ? 1.0F : 0.0F]

	
SGE (Set On Greater Equal Than)

	

[image: dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F]

	
MAD (Multiply And Add)

	

Perform a * b + c. The implementation is free to decide whether there is an
intermediate rounding step or not.

[image: dst.x = src0.x \times src1.x + src2.x dst.y = src0.y \times src1.y + src2.y dst.z = src0.z \times src1.z + src2.z dst.w = src0.w \times src1.w + src2.w]

	
LRP (Linear Interpolate)

	

[image: dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w]

	
FMA (Fused Multiply-Add)

	

Perform a * b + c with no intermediate rounding step.

[image: dst.x = src0.x \times src1.x + src2.x dst.y = src0.y \times src1.y + src2.y dst.z = src0.z \times src1.z + src2.z dst.w = src0.w \times src1.w + src2.w]

	
FRC (Fraction)

	

[image: dst.x = src.x - \lfloor src.x\rfloor dst.y = src.y - \lfloor src.y\rfloor dst.z = src.z - \lfloor src.z\rfloor dst.w = src.w - \lfloor src.w\rfloor]

	
FLR (Floor)

	

[image: dst.x = \lfloor src.x\rfloor dst.y = \lfloor src.y\rfloor dst.z = \lfloor src.z\rfloor dst.w = \lfloor src.w\rfloor]

	
ROUND (Round)

	

[image: dst.x = round(src.x) dst.y = round(src.y) dst.z = round(src.z) dst.w = round(src.w)]

	
EX2 (Exponential Base 2)

	

This instruction replicates its result.

[image: dst = 2^{src.x}]

	
LG2 (Logarithm Base 2)

	

This instruction replicates its result.

[image: dst = \log_2{src.x}]

	
POW (Power)

	

This instruction replicates its result.

[image: dst = src0.x^{src1.x}]

	
LDEXP (Multiply Number by Integral Power of 2)

	

src1 is an integer.

[image: dst.x = src0.x * 2^{src1.x} dst.y = src0.y * 2^{src1.y} dst.z = src0.z * 2^{src1.z} dst.w = src0.w * 2^{src1.w}]

	
COS (Cosine)

	

This instruction replicates its result.

[image: dst = \cos{src.x}]

	
DDX, DDX_FINE (Derivative Relative To X)

	

The fine variant is only used when PIPE_CAP_TGSI_FS_FINE_DERIVATIVE is
advertised. When it is, the fine version guarantees one derivative per row
while DDX is allowed to be the same for the entire 2x2 quad.

[image: dst.x = partialx(src.x) dst.y = partialx(src.y) dst.z = partialx(src.z) dst.w = partialx(src.w)]

	
DDY, DDY_FINE (Derivative Relative To Y)

	

The fine variant is only used when PIPE_CAP_TGSI_FS_FINE_DERIVATIVE is
advertised. When it is, the fine version guarantees one derivative per column
while DDY is allowed to be the same for the entire 2x2 quad.

[image: dst.x = partialy(src.x) dst.y = partialy(src.y) dst.z = partialy(src.z) dst.w = partialy(src.w)]

	
PK2H (Pack Two 16-bit Floats)

	

This instruction replicates its result.

[image: dst = f32_to_f16(src.x) | f32_to_f16(src.y) << 16]

	
PK2US (Pack Two Unsigned 16-bit Scalars)

	

This instruction replicates its result.

[image: dst = f32_to_unorm16(src.x) | f32_to_unorm16(src.y) << 16]

	
PK4B (Pack Four Signed 8-bit Scalars)

	

This instruction replicates its result.

[image: dst = f32_to_snorm8(src.x) | (f32_to_snorm8(src.y) << 8) | (f32_to_snorm8(src.z) << 16) | (f32_to_snorm8(src.w) << 24)]

	
PK4UB (Pack Four Unsigned 8-bit Scalars)

	

This instruction replicates its result.

[image: dst = f32_to_unorm8(src.x) | (f32_to_unorm8(src.y) << 8) | (f32_to_unorm8(src.z) << 16) | (f32_to_unorm8(src.w) << 24)]

	
SEQ (Set On Equal)

	

[image: dst.x = (src0.x == src1.x) ? 1.0F : 0.0F dst.y = (src0.y == src1.y) ? 1.0F : 0.0F dst.z = (src0.z == src1.z) ? 1.0F : 0.0F dst.w = (src0.w == src1.w) ? 1.0F : 0.0F]

	
SGT (Set On Greater Than)

	

[image: dst.x = (src0.x > src1.x) ? 1.0F : 0.0F dst.y = (src0.y > src1.y) ? 1.0F : 0.0F dst.z = (src0.z > src1.z) ? 1.0F : 0.0F dst.w = (src0.w > src1.w) ? 1.0F : 0.0F]

	
SIN (Sine)

	

This instruction replicates its result.

[image: dst = \sin{src.x}]

	
SLE (Set On Less Equal Than)

	

[image: dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F]

	
SNE (Set On Not Equal)

	

[image: dst.x = (src0.x != src1.x) ? 1.0F : 0.0F dst.y = (src0.y != src1.y) ? 1.0F : 0.0F dst.z = (src0.z != src1.z) ? 1.0F : 0.0F dst.w = (src0.w != src1.w) ? 1.0F : 0.0F]

	
TEX (Texture Lookup)

	for array textures src0.y contains the slice for 1D,
and src0.z contain the slice for 2D.

for shadow textures with no arrays (and not cube map),
src0.z contains the reference value.

for shadow textures with arrays, src0.z contains
the reference value for 1D arrays, and src0.w contains
the reference value for 2D arrays and cube maps.

for cube map array shadow textures, the reference value
cannot be passed in src0.w, and TEX2 must be used instead.

[image: coord = src0 shadow_ref = src0.z or src0.w (optional) unit = src1 dst = texture_sample(unit, coord, shadow_ref)]

	
TEX2 (Texture Lookup (for shadow cube map arrays only))

	this is the same as TEX, but uses another reg to encode the
reference value.

[image: coord = src0 shadow_ref = src1.x unit = src2 dst = texture_sample(unit, coord, shadow_ref)]

	
TXD (Texture Lookup with Derivatives)

	

[image: coord = src0 ddx = src1 ddy = src2 unit = src3 dst = texture_sample_deriv(unit, coord, ddx, ddy)]

	
TXP (Projective Texture Lookup)

	

[image: coord.x = src0.x / src0.w coord.y = src0.y / src0.w coord.z = src0.z / src0.w coord.w = src0.w unit = src1 dst = texture_sample(unit, coord)]

	
UP2H (Unpack Two 16-Bit Floats)

	

[image: dst.x = f16_to_f32(src0.x \& 0xffff) dst.y = f16_to_f32(src0.x >> 16) dst.z = f16_to_f32(src0.x \& 0xffff) dst.w = f16_to_f32(src0.x >> 16)]

Note

Considered for removal.

	
UP2US (Unpack Two Unsigned 16-Bit Scalars)

	TBD

Note

Considered for removal.

	
UP4B (Unpack Four Signed 8-Bit Values)

	TBD

Note

Considered for removal.

	
UP4UB (Unpack Four Unsigned 8-Bit Scalars)

	TBD

Note

Considered for removal.

	
ARR (Address Register Load With Round)

	

[image: dst.x = (int) round(src.x) dst.y = (int) round(src.y) dst.z = (int) round(src.z) dst.w = (int) round(src.w)]

	
SSG (Set Sign)

	

[image: dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0]

	
CMP (Compare)

	

[image: dst.x = (src0.x < 0) ? src1.x : src2.x dst.y = (src0.y < 0) ? src1.y : src2.y dst.z = (src0.z < 0) ? src1.z : src2.z dst.w = (src0.w < 0) ? src1.w : src2.w]

	
KILL_IF (Conditional Discard)

	Conditional discard. Allowed in fragment shaders only.

[image: if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0) discard endif]

	
KILL (Discard)

	Unconditional discard. Allowed in fragment shaders only.

	
TXB (Texture Lookup With Bias)

	for cube map array textures and shadow cube maps, the bias value
cannot be passed in src0.w, and TXB2 must be used instead.

if the target is a shadow texture, the reference value is always
in src.z (this prevents shadow 3d and shadow 2d arrays from
using this instruction, but this is not needed).

[image: coord.x = src0.x coord.y = src0.y coord.z = src0.z coord.w = none bias = src0.w unit = src1 dst = texture_sample(unit, coord, bias)]

	
TXB2 (Texture Lookup With Bias (some cube maps only))

	this is the same as TXB, but uses another reg to encode the
lod bias value for cube map arrays and shadow cube maps.
Presumably shadow 2d arrays and shadow 3d targets could use
this encoding too, but this is not legal.

shadow cube map arrays are neither possible nor required.

[image: coord = src0 bias = src1.x unit = src2 dst = texture_sample(unit, coord, bias)]

	
DIV (Divide)

	

[image: dst.x = \frac{src0.x}{src1.x} dst.y = \frac{src0.y}{src1.y} dst.z = \frac{src0.z}{src1.z} dst.w = \frac{src0.w}{src1.w}]

	
DP2 (2-component Dot Product)

	

This instruction replicates its result.

[image: dst = src0.x \times src1.x + src0.y \times src1.y]

	
TEX_LZ (Texture Lookup With LOD = 0)

	This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
There is no way to override those two in shaders.

[image: coord.x = src0.x coord.y = src0.y coord.z = src0.z coord.w = none lod = 0 unit = src1 dst = texture_sample(unit, coord, lod)]

	
TXL (Texture Lookup With explicit LOD)

	for cube map array textures, the explicit lod value
cannot be passed in src0.w, and TXL2 must be used instead.

if the target is a shadow texture, the reference value is always
in src.z (this prevents shadow 3d / 2d array / cube targets from
using this instruction, but this is not needed).

[image: coord.x = src0.x coord.y = src0.y coord.z = src0.z coord.w = none lod = src0.w unit = src1 dst = texture_sample(unit, coord, lod)]

	
TXL2 (Texture Lookup With explicit LOD (for cube map arrays only))

	this is the same as TXL, but uses another reg to encode the
explicit lod value.
Presumably shadow 3d / 2d array / cube targets could use
this encoding too, but this is not legal.

shadow cube map arrays are neither possible nor required.

[image: coord = src0 lod = src1.x unit = src2 dst = texture_sample(unit, coord, lod)]

Compute ISA

These opcodes are primarily provided for special-use computational shaders.
Support for these opcodes indicated by a special pipe capability bit (TBD).

XXX doesn’t look like most of the opcodes really belong here.

	
CEIL (Ceiling)

	

[image: dst.x = \lceil src.x\rceil dst.y = \lceil src.y\rceil dst.z = \lceil src.z\rceil dst.w = \lceil src.w\rceil]

	
TRUNC (Truncate)

	

[image: dst.x = trunc(src.x) dst.y = trunc(src.y) dst.z = trunc(src.z) dst.w = trunc(src.w)]

	
MOD (Modulus)

	

[image: dst.x = src0.x \bmod src1.x dst.y = src0.y \bmod src1.y dst.z = src0.z \bmod src1.z dst.w = src0.w \bmod src1.w]

	
UARL (Integer Address Register Load)

	Moves the contents of the source register, assumed to be an integer, into the
destination register, which is assumed to be an address (ADDR) register.

	
TXF (Texel Fetch)

	As per NV_gpu_shader4, extract a single texel from a specified texture
image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
SHADOW. src 0 is a
four-component signed integer vector used to identify the single texel
accessed. 3 components + level. If the texture is multisampled, then
the fourth component indicates the sample, not the mipmap level.
Just like texture instructions, an optional
offset vector is provided, which is subject to various driver restrictions
(regarding range, source of offsets). This instruction ignores the sampler
state.

TXF(uint_vec coord, int_vec offset).

	
TXQ (Texture Size Query)

	As per NV_gpu_program4, retrieve the dimensions of the texture depending on
the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
depth), 1D array (width, layers), 2D array (width, height, layers).
Also return the number of accessible levels (last_level - first_level + 1)
in W.

For components which don’t return a resource dimension, their value
is undefined.

[image: lod = src0.x dst.x = texture_width(unit, lod) dst.y = texture_height(unit, lod) dst.z = texture_depth(unit, lod) dst.w = texture_levels(unit)]

	
TXQS (Texture Samples Query)

	This retrieves the number of samples in the texture, and stores it
into the x component as an unsigned integer. The other components are
undefined. If the texture is not multisampled, this function returns
(1, undef, undef, undef).

[image: dst.x = texture_samples(unit)]

	
TG4 (Texture Gather)

	As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
filtering operation and packs them into a single register. Only works with
2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
addressing modes of the sampler and the top level of any mip pyramid are
used. Set W to zero. It behaves like the TEX instruction, but a filtered
sample is not generated. The four samples that contribute to filtering are
placed into xyzw in clockwise order, starting with the (u,v) texture
coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
where the magnitude of the deltas are half a texel.

PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
depth compares, single component selection, and a non-constant offset. It
doesn’t allow support for the GL independent offset to get i0,j0. This would
require another CAP is hw can do it natively. For now we lower that before
TGSI.

[image: coord = src0 component = src1 dst = texture_gather4 (unit, coord, component)]

(with SM5 - cube array shadow)

[image: coord = src0 compare = src1 dst = texture_gather (uint, coord, compare)]

	
LODQ (level of detail query)

	Compute the LOD information that the texture pipe would use to access the
texture. The Y component contains the computed LOD lambda_prime. The X
component contains the LOD that will be accessed, based on min/max lod’s
and mipmap filters.

[image: coord = src0 dst.xy = lodq(uint, coord);]

	
CLOCK (retrieve the current shader time)

	Invoking this instruction multiple times in the same shader should
cause monotonically increasing values to be returned. The values
are implicitly 64-bit, so if fewer than 64 bits of precision are
available, to provide expected wraparound semantics, the value
should be shifted up so that the most significant bit of the time
is the most significant bit of the 64-bit value.

[image: dst.xy = clock()]

Integer ISA

These opcodes are used for integer operations.
Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)

	
I2F (Signed Integer To Float)

	Rounding is unspecified (round to nearest even suggested).

[image: dst.x = (float) src.x dst.y = (float) src.y dst.z = (float) src.z dst.w = (float) src.w]

	
U2F (Unsigned Integer To Float)

	Rounding is unspecified (round to nearest even suggested).

[image: dst.x = (float) src.x dst.y = (float) src.y dst.z = (float) src.z dst.w = (float) src.w]

	
F2I (Float to Signed Integer)

	Rounding is towards zero (truncate).
Values outside signed range (including NaNs) produce undefined results.

[image: dst.x = (int) src.x dst.y = (int) src.y dst.z = (int) src.z dst.w = (int) src.w]

	
F2U (Float to Unsigned Integer)

	Rounding is towards zero (truncate).
Values outside unsigned range (including NaNs) produce undefined results.

[image: dst.x = (unsigned) src.x dst.y = (unsigned) src.y dst.z = (unsigned) src.z dst.w = (unsigned) src.w]

	
UADD (Integer Add)

	This instruction works the same for signed and unsigned integers.
The low 32bit of the result is returned.

[image: dst.x = src0.x + src1.x dst.y = src0.y + src1.y dst.z = src0.z + src1.z dst.w = src0.w + src1.w]

	
UMAD (Integer Multiply And Add)

	This instruction works the same for signed and unsigned integers.
The multiplication returns the low 32bit (as does the result itself).

[image: dst.x = src0.x \times src1.x + src2.x dst.y = src0.y \times src1.y + src2.y dst.z = src0.z \times src1.z + src2.z dst.w = src0.w \times src1.w + src2.w]

	
UMUL (Integer Multiply)

	This instruction works the same for signed and unsigned integers.
The low 32bit of the result is returned.

[image: dst.x = src0.x \times src1.x dst.y = src0.y \times src1.y dst.z = src0.z \times src1.z dst.w = src0.w \times src1.w]

	
IMUL_HI (Signed Integer Multiply High Bits)

	The high 32bits of the multiplication of 2 signed integers are returned.

[image: dst.x = (src0.x \times src1.x) >> 32 dst.y = (src0.y \times src1.y) >> 32 dst.z = (src0.z \times src1.z) >> 32 dst.w = (src0.w \times src1.w) >> 32]

	
UMUL_HI (Unsigned Integer Multiply High Bits)

	The high 32bits of the multiplication of 2 unsigned integers are returned.

[image: dst.x = (src0.x \times src1.x) >> 32 dst.y = (src0.y \times src1.y) >> 32 dst.z = (src0.z \times src1.z) >> 32 dst.w = (src0.w \times src1.w) >> 32]

	
IDIV (Signed Integer Division)

	TBD: behavior for division by zero.

[image: dst.x = \frac{src0.x}{src1.x} dst.y = \frac{src0.y}{src1.y} dst.z = \frac{src0.z}{src1.z} dst.w = \frac{src0.w}{src1.w}]

	
UDIV (Unsigned Integer Division)

	For division by zero, 0xffffffff is returned.

[image: dst.x = \frac{src0.x}{src1.x} dst.y = \frac{src0.y}{src1.y} dst.z = \frac{src0.z}{src1.z} dst.w = \frac{src0.w}{src1.w}]

	
UMOD (Unsigned Integer Remainder)

	If second arg is zero, 0xffffffff is returned.

[image: dst.x = src0.x \bmod src1.x dst.y = src0.y \bmod src1.y dst.z = src0.z \bmod src1.z dst.w = src0.w \bmod src1.w]

	
NOT (Bitwise Not)

	

[image: dst.x = \sim src.x dst.y = \sim src.y dst.z = \sim src.z dst.w = \sim src.w]

	
AND (Bitwise And)

	

[image: dst.x = src0.x \& src1.x dst.y = src0.y \& src1.y dst.z = src0.z \& src1.z dst.w = src0.w \& src1.w]

	
OR (Bitwise Or)

	

[image: dst.x = src0.x | src1.x dst.y = src0.y | src1.y dst.z = src0.z | src1.z dst.w = src0.w | src1.w]

	
XOR (Bitwise Xor)

	

[image: dst.x = src0.x \oplus src1.x dst.y = src0.y \oplus src1.y dst.z = src0.z \oplus src1.z dst.w = src0.w \oplus src1.w]

	
IMAX (Maximum of Signed Integers)

	

[image: dst.x = max(src0.x, src1.x) dst.y = max(src0.y, src1.y) dst.z = max(src0.z, src1.z) dst.w = max(src0.w, src1.w)]

	
UMAX (Maximum of Unsigned Integers)

	

[image: dst.x = max(src0.x, src1.x) dst.y = max(src0.y, src1.y) dst.z = max(src0.z, src1.z) dst.w = max(src0.w, src1.w)]

	
IMIN (Minimum of Signed Integers)

	

[image: dst.x = min(src0.x, src1.x) dst.y = min(src0.y, src1.y) dst.z = min(src0.z, src1.z) dst.w = min(src0.w, src1.w)]

	
UMIN (Minimum of Unsigned Integers)

	

[image: dst.x = min(src0.x, src1.x) dst.y = min(src0.y, src1.y) dst.z = min(src0.z, src1.z) dst.w = min(src0.w, src1.w)]

	
SHL (Shift Left)

	The shift count is masked with 0x1f before the shift is applied.

[image: dst.x = src0.x << (0x1f \& src1.x) dst.y = src0.y << (0x1f \& src1.y) dst.z = src0.z << (0x1f \& src1.z) dst.w = src0.w << (0x1f \& src1.w)]

	
ISHR (Arithmetic Shift Right (of Signed Integer))

	The shift count is masked with 0x1f before the shift is applied.

[image: dst.x = src0.x >> (0x1f \& src1.x) dst.y = src0.y >> (0x1f \& src1.y) dst.z = src0.z >> (0x1f \& src1.z) dst.w = src0.w >> (0x1f \& src1.w)]

	
USHR (Logical Shift Right)

	The shift count is masked with 0x1f before the shift is applied.

[image: dst.x = src0.x >> (unsigned) (0x1f \& src1.x) dst.y = src0.y >> (unsigned) (0x1f \& src1.y) dst.z = src0.z >> (unsigned) (0x1f \& src1.z) dst.w = src0.w >> (unsigned) (0x1f \& src1.w)]

	
UCMP (Integer Conditional Move)

	

[image: dst.x = src0.x ? src1.x : src2.x dst.y = src0.y ? src1.y : src2.y dst.z = src0.z ? src1.z : src2.z dst.w = src0.w ? src1.w : src2.w]

	
ISSG (Integer Set Sign)

	

[image: dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0]

	
FSLT (Float Set On Less Than (ordered))

	Same comparison as SLT but returns integer instead of 1.0/0.0 float

[image: dst.x = (src0.x < src1.x) ? \sim 0 : 0 dst.y = (src0.y < src1.y) ? \sim 0 : 0 dst.z = (src0.z < src1.z) ? \sim 0 : 0 dst.w = (src0.w < src1.w) ? \sim 0 : 0]

	
ISLT (Signed Integer Set On Less Than)

	

[image: dst.x = (src0.x < src1.x) ? \sim 0 : 0 dst.y = (src0.y < src1.y) ? \sim 0 : 0 dst.z = (src0.z < src1.z) ? \sim 0 : 0 dst.w = (src0.w < src1.w) ? \sim 0 : 0]

	
USLT (Unsigned Integer Set On Less Than)

	

[image: dst.x = (src0.x < src1.x) ? \sim 0 : 0 dst.y = (src0.y < src1.y) ? \sim 0 : 0 dst.z = (src0.z < src1.z) ? \sim 0 : 0 dst.w = (src0.w < src1.w) ? \sim 0 : 0]

	
FSGE (Float Set On Greater Equal Than (ordered))

	Same comparison as SGE but returns integer instead of 1.0/0.0 float

[image: dst.x = (src0.x >= src1.x) ? \sim 0 : 0 dst.y = (src0.y >= src1.y) ? \sim 0 : 0 dst.z = (src0.z >= src1.z) ? \sim 0 : 0 dst.w = (src0.w >= src1.w) ? \sim 0 : 0]

	
ISGE (Signed Integer Set On Greater Equal Than)

	

[image: dst.x = (src0.x >= src1.x) ? \sim 0 : 0 dst.y = (src0.y >= src1.y) ? \sim 0 : 0 dst.z = (src0.z >= src1.z) ? \sim 0 : 0 dst.w = (src0.w >= src1.w) ? \sim 0 : 0]

	
USGE (Unsigned Integer Set On Greater Equal Than)

	

[image: dst.x = (src0.x >= src1.x) ? \sim 0 : 0 dst.y = (src0.y >= src1.y) ? \sim 0 : 0 dst.z = (src0.z >= src1.z) ? \sim 0 : 0 dst.w = (src0.w >= src1.w) ? \sim 0 : 0]

	
FSEQ (Float Set On Equal (ordered))

	Same comparison as SEQ but returns integer instead of 1.0/0.0 float

[image: dst.x = (src0.x == src1.x) ? \sim 0 : 0 dst.y = (src0.y == src1.y) ? \sim 0 : 0 dst.z = (src0.z == src1.z) ? \sim 0 : 0 dst.w = (src0.w == src1.w) ? \sim 0 : 0]

	
USEQ (Integer Set On Equal)

	

[image: dst.x = (src0.x == src1.x) ? \sim 0 : 0 dst.y = (src0.y == src1.y) ? \sim 0 : 0 dst.z = (src0.z == src1.z) ? \sim 0 : 0 dst.w = (src0.w == src1.w) ? \sim 0 : 0]

	
FSNE (Float Set On Not Equal (unordered))

	Same comparison as SNE but returns integer instead of 1.0/0.0 float

[image: dst.x = (src0.x != src1.x) ? \sim 0 : 0 dst.y = (src0.y != src1.y) ? \sim 0 : 0 dst.z = (src0.z != src1.z) ? \sim 0 : 0 dst.w = (src0.w != src1.w) ? \sim 0 : 0]

	
USNE (Integer Set On Not Equal)

	

[image: dst.x = (src0.x != src1.x) ? \sim 0 : 0 dst.y = (src0.y != src1.y) ? \sim 0 : 0 dst.z = (src0.z != src1.z) ? \sim 0 : 0 dst.w = (src0.w != src1.w) ? \sim 0 : 0]

	
INEG (Integer Negate)

	Two’s complement.

[image: dst.x = -src.x dst.y = -src.y dst.z = -src.z dst.w = -src.w]

	
IABS (Integer Absolute Value)

	

[image: dst.x = |src.x| dst.y = |src.y| dst.z = |src.z| dst.w = |src.w|]

Bitwise ISA

These opcodes are used for bit-level manipulation of integers.

	
IBFE (Signed Bitfield Extract)

	Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
sign-extends them if the high bit of the extracted window is set.

Pseudocode:

def ibfe(value, offset, bits):
 if offset < 0 or bits < 0 or offset + bits > 32:
 return undefined
 if bits == 0: return 0
 # Note: >> sign-extends
 return (value << (32 - offset - bits)) >> (32 - bits)

	
UBFE (Unsigned Bitfield Extract)

	Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
any sign-extension.

Pseudocode:

def ubfe(value, offset, bits):
 if offset < 0 or bits < 0 or offset + bits > 32:
 return undefined
 if bits == 0: return 0
 # Note: >> does not sign-extend
 return (value << (32 - offset - bits)) >> (32 - bits)

	
BFI (Bitfield Insert)

	Like GLSL bitfieldInsert. Replaces a bit region of ‘base’ with the low bits
of ‘insert’.

Pseudocode:

def bfi(base, insert, offset, bits):
 if offset < 0 or bits < 0 or offset + bits > 32:
 return undefined
 # << defined such that mask == ~0 when bits == 32, offset == 0
 mask = ((1 << bits) - 1) << offset
 return ((insert << offset) & mask) | (base & ~mask)

	
BREV (Bitfield Reverse)

	See SM5 instruction BFREV. Reverses the bits of the argument.

	
POPC (Population Count)

	See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.

	
LSB (Index of lowest set bit)

	See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
bit of the argument. Returns -1 if none are set.

	
IMSB (Index of highest non-sign bit)

	See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
highest 1 bit for positive numbers). Returns -1 if all bits are the same
(i.e. for inputs 0 and -1).

	
UMSB (Index of highest set bit)

	See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
set bit of the argument. Returns -1 if none are set.

Geometry ISA

These opcodes are only supported in geometry shaders; they have no meaning
in any other type of shader.

	
EMIT (Emit)

	Generate a new vertex for the current primitive into the specified vertex
stream using the values in the output registers.

	
ENDPRIM (End Primitive)

	Complete the current primitive in the specified vertex stream (consisting of
the emitted vertices), and start a new one.

GLSL ISA

These opcodes are part of GLSL’s opcode set. Support for these
opcodes is determined by a special capability bit, GLSL.
Some require glsl version 1.30 (UIF/SWITCH/CASE/DEFAULT/ENDSWITCH).

	
CAL (Subroutine Call)

	push(pc)
pc = target

	
RET (Subroutine Call Return)

	pc = pop()

	
CONT (Continue)

	Unconditionally moves the point of execution to the instruction after the
last bgnloop. The instruction must appear within a bgnloop/endloop.

Note

Support for CONT is determined by a special capability bit,
TGSI_CONT_SUPPORTED. See Screen for more information.

	
BGNLOOP (Begin a Loop)

	Start a loop. Must have a matching endloop.

	
BGNSUB (Begin Subroutine)

	Starts definition of a subroutine. Must have a matching endsub.

	
ENDLOOP (End a Loop)

	End a loop started with bgnloop.

	
ENDSUB (End Subroutine)

	Ends definition of a subroutine.

	
NOP (No Operation)

	Do nothing.

	
BRK (Break)

	Unconditionally moves the point of execution to the instruction after the
next endloop or endswitch. The instruction must appear within a loop/endloop
or switch/endswitch.

	
IF (Float If)

	Start an IF … ELSE .. ENDIF block. Condition evaluates to true if

src0.x != 0.0

where src0.x is interpreted as a floating point register.

	
UIF (Bitwise If)

	Start an UIF … ELSE .. ENDIF block. Condition evaluates to true if

src0.x != 0

where src0.x is interpreted as an integer register.

	
ELSE (Else)

	Starts an else block, after an IF or UIF statement.

	
ENDIF (End If)

	Ends an IF or UIF block.

	
SWITCH (Switch)

	Starts a C-style switch expression. The switch consists of one or multiple
CASE statements, and at most one DEFAULT statement. Execution of a statement
ends when a BRK is hit, but just like in C falling through to other cases
without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
just as last statement, and fallthrough is allowed into/from it.
CASE src arguments are evaluated at bit level against the SWITCH src argument.

Example:

SWITCH src[0].x
CASE src[0].x
(some instructions here)
(optional BRK here)
DEFAULT
(some instructions here)
(optional BRK here)
CASE src[0].x
(some instructions here)
(optional BRK here)
ENDSWITCH

	
CASE (Switch case)

	This represents a switch case label. The src arg must be an integer immediate.

	
DEFAULT (Switch default)

	This represents the default case in the switch, which is taken if no other
case matches.

	
ENDSWITCH (End of switch)

	Ends a switch expression.

Interpolation ISA

The interpolation instructions allow an input to be interpolated in a
different way than its declaration. This corresponds to the GLSL 4.00
interpolateAt* functions. The first argument of each of these must come from
TGSI_FILE_INPUT.

	
INTERP_CENTROID (Interpolate at the centroid)

	Interpolates the varying specified by src0 at the centroid

	
INTERP_SAMPLE (Interpolate at the specified sample)

	Interpolates the varying specified by src0 at the sample id specified by
src1.x (interpreted as an integer)

	
INTERP_OFFSET (Interpolate at the specified offset)

	Interpolates the varying specified by src0 at the offset src1.xy from the
pixel center (interpreted as floats)

Double ISA

The double-precision opcodes reinterpret four-component vectors into
two-component vectors with doubled precision in each component.

	
DABS (Absolute)

	

[image: dst.xy = |src0.xy| dst.zw = |src0.zw|]

	
DADD (Add)

	

[image: dst.xy = src0.xy + src1.xy dst.zw = src0.zw + src1.zw]

	
DSEQ (Set on Equal)

	

[image: dst.x = src0.xy == src1.xy ? \sim 0 : 0 dst.z = src0.zw == src1.zw ? \sim 0 : 0]

	
DSNE (Set on Not Equal)

	

[image: dst.x = src0.xy != src1.xy ? \sim 0 : 0 dst.z = src0.zw != src1.zw ? \sim 0 : 0]

	
DSLT (Set on Less than)

	

[image: dst.x = src0.xy < src1.xy ? \sim 0 : 0 dst.z = src0.zw < src1.zw ? \sim 0 : 0]

	
DSGE (Set on Greater equal)

	

[image: dst.x = src0.xy >= src1.xy ? \sim 0 : 0 dst.z = src0.zw >= src1.zw ? \sim 0 : 0]

	
DFRAC (Fraction)

	

[image: dst.xy = src.xy - \lfloor src.xy\rfloor dst.zw = src.zw - \lfloor src.zw\rfloor]

	
DTRUNC (Truncate)

	

[image: dst.xy = trunc(src.xy) dst.zw = trunc(src.zw)]

	
DCEIL (Ceiling)

	

[image: dst.xy = \lceil src.xy\rceil dst.zw = \lceil src.zw\rceil]

	
DFLR (Floor)

	

[image: dst.xy = \lfloor src.xy\rfloor dst.zw = \lfloor src.zw\rfloor]

	
DROUND (Fraction)

	

[image: dst.xy = round(src.xy) dst.zw = round(src.zw)]

	
DSSG (Set Sign)

	

[image: dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0]

	
DFRACEXP (Convert Number to Fractional and Integral Components)

	

Like the frexp() routine in many math libraries, this opcode stores the
exponent of its source to dst0, and the significand to dst1, such that
[image: dst1 \times 2^{dst0} = src] . The results are replicated across
channels.

[image: dst0.xy = dst.zw = frac(src.xy) dst1 = frac(src.xy)]

	
DLDEXP (Multiply Number by Integral Power of 2)

	

This opcode is the inverse of DFRACEXP. The second
source is an integer.

[image: dst.xy = src0.xy \times 2^{src1.x} dst.zw = src0.zw \times 2^{src1.z}]

	
DMIN (Minimum)

	

[image: dst.xy = min(src0.xy, src1.xy) dst.zw = min(src0.zw, src1.zw)]

	
DMAX (Maximum)

	

[image: dst.xy = max(src0.xy, src1.xy) dst.zw = max(src0.zw, src1.zw)]

	
DMUL (Multiply)

	

[image: dst.xy = src0.xy \times src1.xy dst.zw = src0.zw \times src1.zw]

	
DMAD (Multiply And Add)

	

[image: dst.xy = src0.xy \times src1.xy + src2.xy dst.zw = src0.zw \times src1.zw + src2.zw]

	
DFMA (Fused Multiply-Add)

	

Perform a * b + c with no intermediate rounding step.

[image: dst.xy = src0.xy \times src1.xy + src2.xy dst.zw = src0.zw \times src1.zw + src2.zw]

	
DDIV (Divide)

	

[image: dst.xy = \frac{src0.xy}{src1.xy} dst.zw = \frac{src0.zw}{src1.zw}]

	
DRCP (Reciprocal)

	

[image: dst.xy = \frac{1}{src.xy} dst.zw = \frac{1}{src.zw}]

	
DSQRT (Square Root)

	

[image: dst.xy = \sqrt{src.xy} dst.zw = \sqrt{src.zw}]

	
DRSQ (Reciprocal Square Root)

	

[image: dst.xy = \frac{1}{\sqrt{src.xy}} dst.zw = \frac{1}{\sqrt{src.zw}}]

	
F2D (Float to Double)

	

[image: dst.xy = double(src0.x) dst.zw = double(src0.y)]

	
D2F (Double to Float)

	

[image: dst.x = float(src0.xy) dst.y = float(src0.zw)]

	
I2D (Int to Double)

	

[image: dst.xy = double(src0.x) dst.zw = double(src0.y)]

	
D2I (Double to Int)

	

[image: dst.x = int(src0.xy) dst.y = int(src0.zw)]

	
U2D (Unsigned Int to Double)

	

[image: dst.xy = double(src0.x) dst.zw = double(src0.y)]

	
D2U (Double to Unsigned Int)

	

[image: dst.x = unsigned(src0.xy) dst.y = unsigned(src0.zw)]

64-bit Integer ISA

The 64-bit integer opcodes reinterpret four-component vectors into
two-component vectors with 64-bits in each component.

	
I64ABS (64-bit Integer Absolute Value)

	

[image: dst.xy = |src0.xy| dst.zw = |src0.zw|]

	
I64NEG (64-bit Integer Negate)

	Two’s complement.

[image: dst.xy = -src.xy dst.zw = -src.zw]

	
I64SSG (64-bit Integer Set Sign)

	

[image: dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0]

	
U64ADD (64-bit Integer Add)

	

[image: dst.xy = src0.xy + src1.xy dst.zw = src0.zw + src1.zw]

	
U64MUL (64-bit Integer Multiply)

	

[image: dst.xy = src0.xy * src1.xy dst.zw = src0.zw * src1.zw]

	
U64SEQ (64-bit Integer Set on Equal)

	

[image: dst.x = src0.xy == src1.xy ? \sim 0 : 0 dst.z = src0.zw == src1.zw ? \sim 0 : 0]

	
U64SNE (64-bit Integer Set on Not Equal)

	

[image: dst.x = src0.xy != src1.xy ? \sim 0 : 0 dst.z = src0.zw != src1.zw ? \sim 0 : 0]

	
U64SLT (64-bit Unsigned Integer Set on Less Than)

	

[image: dst.x = src0.xy < src1.xy ? \sim 0 : 0 dst.z = src0.zw < src1.zw ? \sim 0 : 0]

	
U64SGE (64-bit Unsigned Integer Set on Greater Equal)

	

[image: dst.x = src0.xy >= src1.xy ? \sim 0 : 0 dst.z = src0.zw >= src1.zw ? \sim 0 : 0]

	
I64SLT (64-bit Signed Integer Set on Less Than)

	

[image: dst.x = src0.xy < src1.xy ? \sim 0 : 0 dst.z = src0.zw < src1.zw ? \sim 0 : 0]

	
I64SGE (64-bit Signed Integer Set on Greater Equal)

	

[image: dst.x = src0.xy >= src1.xy ? \sim 0 : 0 dst.z = src0.zw >= src1.zw ? \sim 0 : 0]

	
I64MIN (Minimum of 64-bit Signed Integers)

	

[image: dst.xy = min(src0.xy, src1.xy) dst.zw = min(src0.zw, src1.zw)]

	
U64MIN (Minimum of 64-bit Unsigned Integers)

	

[image: dst.xy = min(src0.xy, src1.xy) dst.zw = min(src0.zw, src1.zw)]

	
I64MAX (Maximum of 64-bit Signed Integers)

	

[image: dst.xy = max(src0.xy, src1.xy) dst.zw = max(src0.zw, src1.zw)]

	
U64MAX (Maximum of 64-bit Unsigned Integers)

	

[image: dst.xy = max(src0.xy, src1.xy) dst.zw = max(src0.zw, src1.zw)]

	
U64SHL (Shift Left 64-bit Unsigned Integer)

	The shift count is masked with 0x3f before the shift is applied.

[image: dst.xy = src0.xy << (0x3f \& src1.x) dst.zw = src0.zw << (0x3f \& src1.y)]

	
I64SHR (Arithmetic Shift Right (of 64-bit Signed Integer))

	The shift count is masked with 0x3f before the shift is applied.

[image: dst.xy = src0.xy >> (0x3f \& src1.x) dst.zw = src0.zw >> (0x3f \& src1.y)]

	
U64SHR (Logical Shift Right (of 64-bit Unsigned Integer))

	The shift count is masked with 0x3f before the shift is applied.

[image: dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x) dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)]

	
I64DIV (64-bit Signed Integer Division)

	

[image: dst.xy = \frac{src0.xy}{src1.xy} dst.zw = \frac{src0.zw}{src1.zw}]

	
U64DIV (64-bit Unsigned Integer Division)

	

[image: dst.xy = \frac{src0.xy}{src1.xy} dst.zw = \frac{src0.zw}{src1.zw}]

	
U64MOD (64-bit Unsigned Integer Remainder)

	

[image: dst.xy = src0.xy \bmod src1.xy dst.zw = src0.zw \bmod src1.zw]

	
I64MOD (64-bit Signed Integer Remainder)

	

[image: dst.xy = src0.xy \bmod src1.xy dst.zw = src0.zw \bmod src1.zw]

	
F2U64 (Float to 64-bit Unsigned Int)

	

[image: dst.xy = (uint64_t) src0.x dst.zw = (uint64_t) src0.y]

	
F2I64 (Float to 64-bit Int)

	

[image: dst.xy = (int64_t) src0.x dst.zw = (int64_t) src0.y]

	
U2I64 (Unsigned Integer to 64-bit Integer)

	This is a zero extension.

[image: dst.xy = (int64_t) src0.x dst.zw = (int64_t) src0.y]

	
I2I64 (Signed Integer to 64-bit Integer)

	This is a sign extension.

[image: dst.xy = (int64_t) src0.x dst.zw = (int64_t) src0.y]

	
D2U64 (Double to 64-bit Unsigned Int)

	

[image: dst.xy = (uint64_t) src0.xy dst.zw = (uint64_t) src0.zw]

	
D2I64 (Double to 64-bit Int)

	

[image: dst.xy = (int64_t) src0.xy dst.zw = (int64_t) src0.zw]

	
U642F (64-bit unsigned integer to float)

	

[image: dst.x = (float) src0.xy dst.y = (float) src0.zw]

	
I642F (64-bit Int to Float)

	

[image: dst.x = (float) src0.xy dst.y = (float) src0.zw]

	
U642D (64-bit unsigned integer to double)

	

[image: dst.xy = (double) src0.xy dst.zw = (double) src0.zw]

	
I642D (64-bit Int to double)

	

[image: dst.xy = (double) src0.xy dst.zw = (double) src0.zw]

Resource Sampling Opcodes

Those opcodes follow very closely semantics of the respective Direct3D
instructions. If in doubt double check Direct3D documentation.
Note that the swizzle on SVIEW (src1) determines texel swizzling
after lookup.

	
SAMPLE

	Using provided address, sample data from the specified texture using the
filtering mode identified by the given sampler. The source data may come from
any resource type other than buffers.

Syntax: SAMPLE dst, address, sampler_view, sampler

Example: SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]

	
SAMPLE_I

	Simplified alternative to the SAMPLE instruction. Using the provided
integer address, SAMPLE_I fetches data from the specified sampler view
without any filtering. The source data may come from any resource type
other than CUBE.

Syntax: SAMPLE_I dst, address, sampler_view

Example: SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]

The ‘address’ is specified as unsigned integers. If the ‘address’ is out of
range [0…(# texels - 1)] the result of the fetch is always 0 in all
components. As such the instruction doesn’t honor address wrap modes, in
cases where that behavior is desirable ‘SAMPLE’ instruction should be used.
address.w always provides an unsigned integer mipmap level. If the value is
out of the range then the instruction always returns 0 in all components.
address.yz are ignored for buffers and 1d textures. address.z is ignored
for 1d texture arrays and 2d textures.

For 1D texture arrays address.y provides the array index (also as unsigned
integer). If the value is out of the range of available array indices
[0… (array size - 1)] then the opcode always returns 0 in all components.
For 2D texture arrays address.z provides the array index, otherwise it
exhibits the same behavior as in the case for 1D texture arrays. The exact
semantics of the source address are presented in the table below:

	resource type

	X

	Y

	Z

	W

	PIPE_BUFFER

	x

	
	
	ignored

	PIPE_TEXTURE_1D

	x

	
	
	mpl

	PIPE_TEXTURE_2D

	x

	y

	
	mpl

	PIPE_TEXTURE_3D

	x

	y

	z

	mpl

	PIPE_TEXTURE_RECT

	x

	y

	
	mpl

	PIPE_TEXTURE_CUBE

	not allowed as source

	PIPE_TEXTURE_1D_ARRAY

	x

	idx

	
	mpl

	PIPE_TEXTURE_2D_ARRAY

	x

	y

	idx

	mpl

Where ‘mpl’ is a mipmap level and ‘idx’ is the array index.

	
SAMPLE_I_MS

	Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.

Syntax: SAMPLE_I_MS dst, address, sampler_view, sample

	
SAMPLE_B

	Just like the SAMPLE instruction with the exception that an additional bias
is applied to the level of detail computed as part of the instruction
execution.

Syntax: SAMPLE_B dst, address, sampler_view, sampler, lod_bias

Example: SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x

	
SAMPLE_C

	Similar to the SAMPLE instruction but it performs a comparison filter. The
operands to SAMPLE_C are identical to SAMPLE, except that there is an
additional float32 operand, reference value, which must be a register with
single-component, or a scalar literal. SAMPLE_C makes the hardware use the
current samplers compare_func (in pipe_sampler_state) to compare reference
value against the red component value for the surce resource at each texel
that the currently configured texture filter covers based on the provided
coordinates.

Syntax: SAMPLE_C dst, address, sampler_view.r, sampler, ref_value

Example: SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x

	
SAMPLE_C_LZ

	Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
for level-zero.

Syntax: SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value

Example: SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x

	
SAMPLE_D

	SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
the source address in the x direction and the y direction are provided by
extra parameters.

Syntax: SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y

Example: SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]

	
SAMPLE_L

	SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
directly as a scalar value, representing no anisotropy.

Syntax: SAMPLE_L dst, address, sampler_view, sampler, explicit_lod

Example: SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x

	
GATHER4

	Gathers the four texels to be used in a bi-linear filtering operation and
packs them into a single register. Only works with 2D, 2D array, cubemaps,
and cubemaps arrays. For 2D textures, only the addressing modes of the
sampler and the top level of any mip pyramid are used. Set W to zero. It
behaves like the SAMPLE instruction, but a filtered sample is not
generated. The four samples that contribute to filtering are placed into
xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
magnitude of the deltas are half a texel.

	
SVIEWINFO

	Query the dimensions of a given sampler view. dst receives width, height,
depth or array size and number of mipmap levels as int4. The dst can have a
writemask which will specify what info is the caller interested in.

Syntax: SVIEWINFO dst, src_mip_level, sampler_view

Example: SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]

src_mip_level is an unsigned integer scalar. If it’s out of range then
returns 0 for width, height and depth/array size but the total number of
mipmap is still returned correctly for the given sampler view. The returned
width, height and depth values are for the mipmap level selected by the
src_mip_level and are in the number of texels. For 1d texture array width
is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
still in dst.w. In contrast to d3d10 resinfo, there’s no way in the tgsi
instruction encoding to specify the return type (float/rcpfloat/uint), hence
always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
resinfo allowing swizzling dst values is ignored (due to the interaction
with rcpfloat modifier which requires some swizzle handling in the state
tracker anyway).

	
SAMPLE_POS

	Query the position of a sample in the given resource or render target
when per-sample fragment shading is in effect.

Syntax: SAMPLE_POS dst, source, sample_index

dst receives float4 (x, y, undef, undef) indicated where the sample is
located. Sample locations are in the range [0, 1] where 0.5 is the center
of the fragment.

source is either a sampler view (to indicate a shader resource) or temp
register (to indicate the render target). The source register may have
an optional swizzle to apply to the returned result

sample_index is an integer scalar indicating which sample position is to
be queried.

If per-sample shading is not in effect or the source resource or render
target is not multisampled, the result is (0.5, 0.5, undef, undef).

NOTE: no driver has implemented this opcode yet (and no state tracker
emits it). This information is subject to change.

	
SAMPLE_INFO

	Query the number of samples in a multisampled resource or render target.

Syntax: SAMPLE_INFO dst, source

dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
resource or the render target.

source is either a sampler view (to indicate a shader resource) or temp
register (to indicate the render target). The source register may have
an optional swizzle to apply to the returned result

If per-sample shading is not in effect or the source resource or render
target is not multisampled, the result is (1, 0, 0, 0).

NOTE: no driver has implemented this opcode yet (and no state tracker
emits it). This information is subject to change.

	
LOD (level of detail)

	Same syntax as the SAMPLE opcode but instead of performing an actual
texture lookup/filter, return the computed LOD information that the
texture pipe would use to access the texture. The Y component contains
the computed LOD lambda_prime. The X component contains the LOD that will
be accessed, based on min/max lod’s and mipmap filters.
The Z and W components are set to 0.

Syntax: LOD dst, address, sampler_view, sampler

Resource Access Opcodes

For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.

	
LOAD (Fetch data from a shader buffer or image)

	Syntax: LOAD dst, resource, address

Example: LOAD TEMP[0], BUFFER[0], TEMP[1]

Using the provided integer address, LOAD fetches data
from the specified buffer or texture without any
filtering.

The ‘address’ is specified as a vector of unsigned
integers. If the ‘address’ is out of range the result
is unspecified.

Only the first mipmap level of a resource can be read
from using this instruction.

For 1D or 2D texture arrays, the array index is
provided as an unsigned integer in address.y or
address.z, respectively. address.yz are ignored for
buffers and 1D textures. address.z is ignored for 1D
texture arrays and 2D textures. address.w is always
ignored.

A swizzle suffix may be added to the resource argument
this will cause the resource data to be swizzled accordingly.

	
STORE (Write data to a shader resource)

	Syntax: STORE resource, address, src

Example: STORE BUFFER[0], TEMP[0], TEMP[1]

Using the provided integer address, STORE writes data
to the specified buffer or texture.

The ‘address’ is specified as a vector of unsigned
integers. If the ‘address’ is out of range the result
is unspecified.

Only the first mipmap level of a resource can be
written to using this instruction.

For 1D or 2D texture arrays, the array index is
provided as an unsigned integer in address.y or
address.z, respectively. address.yz are ignored for
buffers and 1D textures. address.z is ignored for 1D
texture arrays and 2D textures. address.w is always
ignored.

	
RESQ (Query information about a resource)

	Syntax: RESQ dst, resource

Example: RESQ TEMP[0], BUFFER[0]

Returns information about the buffer or image resource. For buffer
resources, the size (in bytes) is returned in the x component. For
image resources, .xyz will contain the width/height/layers of the
image, while .w will contain the number of samples for multi-sampled
images.

	
FBFETCH (Load data from framebuffer)

	Syntax: FBFETCH dst, output

Example: FBFETCH TEMP[0], OUT[0]

This is only valid on COLOR semantic outputs. Returns the color
of the current position in the framebuffer from before this fragment
shader invocation. May return the same value from multiple calls for
a particular output within a single invocation. Note that result may
be undefined if a fragment is drawn multiple times without a blend
barrier in between.

Bindless Opcodes

These opcodes are for working with bindless sampler or image handles and
require PIPE_CAP_BINDLESS_TEXTURE.

	
IMG2HND (Get a bindless handle for a image)

	Syntax: IMG2HND dst, image

Example: IMG2HND TEMP[0], IMAGE[0]

Sets ‘dst’ to a bindless handle for ‘image’.

	
SAMP2HND (Get a bindless handle for a sampler)

	Syntax: SAMP2HND dst, sampler

Example: SAMP2HND TEMP[0], SAMP[0]

Sets ‘dst’ to a bindless handle for ‘sampler’.

Inter-thread synchronization opcodes

These opcodes are intended for communication between threads running
within the same compute grid. For now they’re only valid in compute
programs.

	
BARRIER (Thread group barrier)

	BARRIER

This opcode suspends the execution of the current thread until all
the remaining threads in the working group reach the same point of
the program. Results are unspecified if any of the remaining
threads terminates or never reaches an executed BARRIER instruction.

	
MEMBAR (Memory barrier)

	MEMBAR type

This opcode waits for the completion of all memory accesses based on
the type passed in. The type is an immediate bitfield with the following
meaning:

Bit 0: Shader storage buffers
Bit 1: Atomic buffers
Bit 2: Images
Bit 3: Shared memory
Bit 4: Thread group

These may be passed in in any combination. An implementation is free to not
distinguish between these as it sees fit. However these map to all the
possibilities made available by GLSL.

Atomic opcodes

These opcodes provide atomic variants of some common arithmetic and
logical operations. In this context atomicity means that another
concurrent memory access operation that affects the same memory
location is guaranteed to be performed strictly before or after the
entire execution of the atomic operation. The resource may be a BUFFER,
IMAGE, HWATOMIC, or MEMORY. In the case of an image, the offset works
the same as for LOAD and STORE, specified above. For atomic
counters, the offset is an immediate index to the base hw atomic
counter for this operation.
These atomic operations may only be used with 32-bit integer image formats.

	
ATOMUADD (Atomic integer addition)

	Syntax: ATOMUADD dst, resource, offset, src

Example: ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = dst_x + src_x]

	
ATOMFADD (Atomic floating point addition)

	Syntax: ATOMFADD dst, resource, offset, src

Example: ATOMFADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = dst_x + src_x]

	
ATOMXCHG (Atomic exchange)

	Syntax: ATOMXCHG dst, resource, offset, src

Example: ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = src_x]

	
ATOMCAS (Atomic compare-and-exchange)

	Syntax: ATOMCAS dst, resource, offset, cmp, src

Example: ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = (dst_x == cmp_x ? src_x : dst_x)]

	
ATOMAND (Atomic bitwise And)

	Syntax: ATOMAND dst, resource, offset, src

Example: ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = dst_x \& src_x]

	
ATOMOR (Atomic bitwise Or)

	Syntax: ATOMOR dst, resource, offset, src

Example: ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = dst_x | src_x]

	
ATOMXOR (Atomic bitwise Xor)

	Syntax: ATOMXOR dst, resource, offset, src

Example: ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = dst_x \oplus src_x]

	
ATOMUMIN (Atomic unsigned minimum)

	Syntax: ATOMUMIN dst, resource, offset, src

Example: ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = (dst_x < src_x ? dst_x : src_x)]

	
ATOMUMAX (Atomic unsigned maximum)

	Syntax: ATOMUMAX dst, resource, offset, src

Example: ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = (dst_x > src_x ? dst_x : src_x)]

	
ATOMIMIN (Atomic signed minimum)

	Syntax: ATOMIMIN dst, resource, offset, src

Example: ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = (dst_x < src_x ? dst_x : src_x)]

	
ATOMIMAX (Atomic signed maximum)

	Syntax: ATOMIMAX dst, resource, offset, src

Example: ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]

The following operation is performed atomically:

[image: dst_x = resource[offset] resource[offset] = (dst_x > src_x ? dst_x : src_x)]

Inter-lane opcodes

These opcodes reduce the given value across the shader invocations
running in the current SIMD group. Every thread in the subgroup will receive
the same result. The BALLOT operations accept a single-channel argument that
is treated as a boolean and produce a 64-bit value.

	
VOTE_ANY (Value is set in any of the active invocations)

	Syntax: VOTE_ANY dst, value

Example: VOTE_ANY TEMP[0].x, TEMP[1].x

	
VOTE_ALL (Value is set in all of the active invocations)

	Syntax: VOTE_ALL dst, value

Example: VOTE_ALL TEMP[0].x, TEMP[1].x

	
VOTE_EQ (Value is the same in all of the active invocations)

	Syntax: VOTE_EQ dst, value

Example: VOTE_EQ TEMP[0].x, TEMP[1].x

	
BALLOT (Lanemask of whether the value is set in each active)

	
invocation

	Syntax: BALLOT dst, value

Example: BALLOT TEMP[0].xy, TEMP[1].x

When the argument is a constant true, this produces a bitmask of active
invocations. In fragment shaders, this can include helper invocations
(invocations whose outputs and writes to memory are discarded, but which
are used to compute derivatives).

	
READ_FIRST (Broadcast the value from the first active)

	
invocation to all active lanes

	Syntax: READ_FIRST dst, value

Example: READ_FIRST TEMP[0], TEMP[1]

	
READ_INVOC (Retrieve the value from the given invocation)

	
(need not be uniform)

	Syntax: READ_INVOC dst, value, invocation

Example: READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x

invocation.x controls the invocation number to read from for all channels.
The invocation number must be the same across all active invocations in a
sub-group; otherwise, the results are undefined.

Explanation of symbols used

Functions

[image: |x|] Absolute value of x.

[image: \lceil x \rceil] Ceiling of x.

	clamp(x,y,z) Clamp x between y and z.

	(x < y) ? y : (x > z) ? z : x

[image: \lfloor x\rfloor] Floor of x.

[image: \log_2{x}] Logarithm of x, base 2.

	max(x,y) Maximum of x and y.

	(x > y) ? x : y

	min(x,y) Minimum of x and y.

	(x < y) ? x : y

partialx(x) Derivative of x relative to fragment’s X.

partialy(x) Derivative of x relative to fragment’s Y.

pop() Pop from stack.

[image: x^y] x to the power y.

push(x) Push x on stack.

round(x) Round x.

trunc(x) Truncate x, i.e. drop the fraction bits.

Keywords

discard Discard fragment.

pc Program counter.

target Label of target instruction.

Other tokens

Declaration

Declares a register that is will be referenced as an operand in Instruction
tokens.

File field contains register file that is being declared and is one
of TGSI_FILE.

UsageMask field specifies which of the register components can be accessed
and is one of TGSI_WRITEMASK.

The Local flag specifies that a given value isn’t intended for
subroutine parameter passing and, as a result, the implementation
isn’t required to give any guarantees of it being preserved across
subroutine boundaries. As it’s merely a compiler hint, the
implementation is free to ignore it.

If Dimension flag is set to 1, a Declaration Dimension token follows.

If Semantic flag is set to 1, a Declaration Semantic token follows.

If Interpolate flag is set to 1, a Declaration Interpolate token follows.

If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.

If Array flag is set to 1, a Declaration Array token follows.

Array Declaration

Declarations can optional have an ArrayID attribute which can be referred by
indirect addressing operands. An ArrayID of zero is reserved and treated as
if no ArrayID is specified.

If an indirect addressing operand refers to a specific declaration by using
an ArrayID only the registers in this declaration are guaranteed to be
accessed, accessing any register outside this declaration results in undefined
behavior. Note that for compatibility the effective index is zero-based and
not relative to the specified declaration

If no ArrayID is specified with an indirect addressing operand the whole
register file might be accessed by this operand. This is strongly discouraged
and will prevent packing of scalar/vec2 arrays and effective alias analysis.
This is only legal for TEMP and CONST register files.

Declaration Semantic

Vertex and fragment shader input and output registers may be labeled
with semantic information consisting of a name and index.

Follows Declaration token if Semantic bit is set.

Since its purpose is to link a shader with other stages of the pipeline,
it is valid to follow only those Declaration tokens that declare a register
either in INPUT or OUTPUT file.

SemanticName field contains the semantic name of the register being declared.
There is no default value.

SemanticIndex is an optional subscript that can be used to distinguish
different register declarations with the same semantic name. The default value
is 0.

The meanings of the individual semantic names are explained in the following
sections.

TGSI_SEMANTIC_POSITION

For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
output register which contains the homogeneous vertex position in the clip
space coordinate system. After clipping, the X, Y and Z components of the
vertex will be divided by the W value to get normalized device coordinates.

For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
fragment shader input (or system value, depending on which one is
supported by the driver) contains the fragment’s window position. The X
component starts at zero and always increases from left to right.
The Y component starts at zero and always increases but Y=0 may either
indicate the top of the window or the bottom depending on the fragment
coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
The Z coordinate ranges from 0 to 1 to represent depth from the front
to the back of the Z buffer. The W component contains the interpolated
reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
but unlike d3d10 which interpolates the same 1/w but then gives back
the reciprocal of the interpolated value).

Fragment shaders may also declare an output register with
TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
the fragment shader to change the fragment’s Z position.

TGSI_SEMANTIC_COLOR

For vertex shader outputs or fragment shader inputs/outputs, this
label indicates that the register contains an R,G,B,A color.

Several shader inputs/outputs may contain colors so the semantic index
is used to distinguish them. For example, color[0] may be the diffuse
color while color[1] may be the specular color.

This label is needed so that the flat/smooth shading can be applied
to the right interpolants during rasterization.

TGSI_SEMANTIC_BCOLOR

Back-facing colors are only used for back-facing polygons, and are only valid
in vertex shader outputs. After rasterization, all polygons are front-facing
and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
so all BCOLORs effectively become regular COLORs in the fragment shader.

TGSI_SEMANTIC_FOG

Vertex shader inputs and outputs and fragment shader inputs may be
labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
a fog coordinate. Typically, the fragment shader will use the fog coordinate
to compute a fog blend factor which is used to blend the normal fragment color
with a constant fog color. But fog coord really is just an ordinary vec4
register like regular semantics.

TGSI_SEMANTIC_PSIZE

Vertex shader input and output registers may be labeled with
TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
in the form (S, 0, 0, 1). The point size controls the width or diameter
of points for rasterization. This label cannot be used in fragment
shaders.

When using this semantic, be sure to set the appropriate state in the
Rasterizer first.

TGSI_SEMANTIC_TEXCOORD

Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !

Vertex shader outputs and fragment shader inputs may be labeled with
this semantic to make them replaceable by sprite coordinates via the
sprite_coord_enable state in the Rasterizer.
The semantic index permitted with this semantic is limited to <= 7.

If the driver does not support TEXCOORD, sprite coordinate replacement
applies to inputs with the GENERIC semantic instead.

The intended use case for this semantic is gl_TexCoord.

TGSI_SEMANTIC_PCOORD

Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !

Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
that the register contains sprite coordinates in the form (x, y, 0, 1), if
the current primitive is a point and point sprites are enabled. Otherwise,
the contents of the register are undefined.

The intended use case for this semantic is gl_PointCoord.

TGSI_SEMANTIC_GENERIC

All vertex/fragment shader inputs/outputs not labeled with any other
semantic label can be considered to be generic attributes. Typical
uses of generic inputs/outputs are texcoords and user-defined values.

TGSI_SEMANTIC_NORMAL

Indicates that a vertex shader input is a normal vector. This is
typically only used for legacy graphics APIs.

TGSI_SEMANTIC_FACE

This label applies to fragment shader inputs (or system values,
depending on which one is supported by the driver) and indicates that
the register contains front/back-face information.

If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
where F will be positive when the fragment belongs to a front-facing polygon,
and negative when the fragment belongs to a back-facing polygon.

If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
where F is 0xffffffff when the fragment belongs to a front-facing polygon and
0 when the fragment belongs to a back-facing polygon.

TGSI_SEMANTIC_EDGEFLAG

For vertex shaders, this sematic label indicates that an input or
output is a boolean edge flag. The register layout is [F, x, x, x]
where F is 0.0 or 1.0 and x = don’t care. Normally, the vertex shader
simply copies the edge flag input to the edgeflag output.

Edge flags are used to control which lines or points are actually
drawn when the polygon mode converts triangles/quads/polygons into
points or lines.

TGSI_SEMANTIC_STENCIL

For fragment shaders, this semantic label indicates that an output
is a writable stencil reference value. Only the Y component is writable.
This allows the fragment shader to change the fragments stencilref value.

TGSI_SEMANTIC_VIEWPORT_INDEX

For geometry shaders, this semantic label indicates that an output
contains the index of the viewport (and scissor) to use.
This is an integer value, and only the X component is used.

If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
supported, then this semantic label can also be used in vertex or
tessellation evaluation shaders, respectively. Only the value written in the
last vertex processing stage is used.

TGSI_SEMANTIC_LAYER

For geometry shaders, this semantic label indicates that an output
contains the layer value to use for the color and depth/stencil surfaces.
This is an integer value, and only the X component is used.
(Also known as rendertarget array index.)

If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
supported, then this semantic label can also be used in vertex or
tessellation evaluation shaders, respectively. Only the value written in the
last vertex processing stage is used.

TGSI_SEMANTIC_CLIPDIST

Note this covers clipping and culling distances.

When components of vertex elements are identified this way, these
values are each assumed to be a float32 signed distance to a plane.

For clip distances:
Primitive setup only invokes rasterization on pixels for which
the interpolated plane distances are >= 0.

For cull distances:
Primitives will be completely discarded if the plane distance
for all of the vertices in the primitive are < 0.
If a vertex has a cull distance of NaN, that vertex counts as “out”
(as if its < 0);

Multiple clip/cull planes can be implemented simultaneously, by
annotating multiple components of one or more vertex elements with
the above specified semantic.
The limits on both clip and cull distances are bound
by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
the maximum number of components that can be used to hold the
distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
which specifies the maximum number of registers which can be
annotated with those semantics.
The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
are used to divide up the 2 x vec4 space between clipping and culling.

TGSI_SEMANTIC_SAMPLEID

For fragment shaders, this semantic label indicates that a system value
contains the current sample id (i.e. gl_SampleID) as an unsigned int.
Only the X component is used. If per-sample shading is not enabled,
the result is (0, undef, undef, undef).

Note that if the fragment shader uses this system value, the fragment
shader is automatically executed at per sample frequency.

TGSI_SEMANTIC_SAMPLEPOS

For fragment shaders, this semantic label indicates that a system
value contains the current sample’s position as float4(x, y, undef, undef)
in the render target (i.e. gl_SamplePosition) when per-fragment shading
is in effect. Position values are in the range [0, 1] where 0.5 is
the center of the fragment.

Note that if the fragment shader uses this system value, the fragment
shader is automatically executed at per sample frequency.

TGSI_SEMANTIC_SAMPLEMASK

For fragment shaders, this semantic label can be applied to either a
shader system value input or output.

For a system value, the sample mask indicates the set of samples covered by
the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).

For an output, the sample mask is used to disable further sample processing.

For both, the register type is uint[4] but only the X component is used
(i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
to 32x MSAA is supported).

TGSI_SEMANTIC_INVOCATIONID

For geometry shaders, this semantic label indicates that a system value
contains the current invocation id (i.e. gl_InvocationID).
This is an integer value, and only the X component is used.

TGSI_SEMANTIC_INSTANCEID

For vertex shaders, this semantic label indicates that a system value contains
the current instance id (i.e. gl_InstanceID). It does not include the base
instance. This is an integer value, and only the X component is used.

TGSI_SEMANTIC_VERTEXID

For vertex shaders, this semantic label indicates that a system value contains
the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
base vertex. This is an integer value, and only the X component is used.

TGSI_SEMANTIC_VERTEXID_NOBASE

For vertex shaders, this semantic label indicates that a system value contains
the current vertex id without including the base vertex (this corresponds to
d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
== TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
is used.

TGSI_SEMANTIC_BASEVERTEX

For vertex shaders, this semantic label indicates that a system value contains
the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
this contains the first (or start) value instead.
This is an integer value, and only the X component is used.

TGSI_SEMANTIC_PRIMID

For geometry and fragment shaders, this semantic label indicates the value
contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
and only the X component is used.
FIXME: This right now can be either a ordinary input or a system value…

TGSI_SEMANTIC_PATCH

For tessellation evaluation/control shaders, this semantic label indicates a
generic per-patch attribute. Such semantics will not implicitly be per-vertex
arrays.

TGSI_SEMANTIC_TESSCOORD

For tessellation evaluation shaders, this semantic label indicates the
coordinates of the vertex being processed. This is available in XYZ; W is
undefined.

TGSI_SEMANTIC_TESSOUTER

For tessellation evaluation/control shaders, this semantic label indicates the
outer tessellation levels of the patch. Isoline tessellation will only have XY
defined, triangle will have XYZ and quads will have XYZW defined. This
corresponds to gl_TessLevelOuter.

TGSI_SEMANTIC_TESSINNER

For tessellation evaluation/control shaders, this semantic label indicates the
inner tessellation levels of the patch. The X value is only defined for
triangle tessellation, while quads will have XY defined. This is entirely
undefined for isoline tessellation.

TGSI_SEMANTIC_VERTICESIN

For tessellation evaluation/control shaders, this semantic label indicates the
number of vertices provided in the input patch. Only the X value is defined.

TGSI_SEMANTIC_HELPER_INVOCATION

For fragment shaders, this semantic indicates whether the current
invocation is covered or not. Helper invocations are created in order
to properly compute derivatives, however it may be desirable to skip
some of the logic in those cases. See gl_HelperInvocation documentation.

TGSI_SEMANTIC_BASEINSTANCE

For vertex shaders, the base instance argument supplied for this
draw. This is an integer value, and only the X component is used.

TGSI_SEMANTIC_DRAWID

For vertex shaders, the zero-based index of the current draw in a
glMultiDraw* invocation. This is an integer value, and only the X
component is used.

TGSI_SEMANTIC_WORK_DIM

For compute shaders started via opencl this retrieves the work_dim
parameter to the clEnqueueNDRangeKernel call with which the shader
was started.

TGSI_SEMANTIC_GRID_SIZE

For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
of a grid of thread blocks.

TGSI_SEMANTIC_BLOCK_ID

For compute shaders, this semantic indicates the (x, y, z) coordinates of the
current block inside of the grid.

TGSI_SEMANTIC_BLOCK_SIZE

For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
of a block in threads.

TGSI_SEMANTIC_THREAD_ID

For compute shaders, this semantic indicates the (x, y, z) coordinates of the
current thread inside of the block.

TGSI_SEMANTIC_SUBGROUP_SIZE

This semantic indicates the subgroup size for the current invocation. This is
an integer of at most 64, as it indicates the width of lanemasks. It does not
depend on the number of invocations that are active.

TGSI_SEMANTIC_SUBGROUP_INVOCATION

The index of the current invocation within its subgroup.

TGSI_SEMANTIC_SUBGROUP_EQ_MASK

A bit mask of bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION, i.e.
1 << subgroup_invocation in arbitrary precision arithmetic.

TGSI_SEMANTIC_SUBGROUP_GE_MASK

A bit mask of bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION, i.e.
((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation
in arbitrary precision arithmetic.

TGSI_SEMANTIC_SUBGROUP_GT_MASK

A bit mask of bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION, i.e.
((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)
in arbitrary precision arithmetic.

TGSI_SEMANTIC_SUBGROUP_LE_MASK

A bit mask of bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION, i.e.
(1 << (subgroup_invocation + 1)) - 1 in arbitrary precision arithmetic.

TGSI_SEMANTIC_SUBGROUP_LT_MASK

A bit mask of bit index < TGSI_SEMANTIC_SUBGROUP_INVOCATION, i.e.
(1 << subgroup_invocation) - 1 in arbitrary precision arithmetic.

Declaration Interpolate

This token is only valid for fragment shader INPUT declarations.

The Interpolate field specifes the way input is being interpolated by
the rasteriser and is one of TGSI_INTERPOLATE_*.

The Location field specifies the location inside the pixel that the
interpolation should be done at, one of TGSI_INTERPOLATE_LOC_*. Note that
when per-sample shading is enabled, the implementation may choose to
interpolate at the sample irrespective of the Location field.

The CylindricalWrap bitfield specifies which register components
should be subject to cylindrical wrapping when interpolating by the
rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
should be interpolated according to cylindrical wrapping rules.

Declaration Sampler View

Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.

DCL SVIEW[#], resource, type(s)

Declares a shader input sampler view and assigns it to a SVIEW[#]
register.

resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.

type must be 1 or 4 entries (if specifying on a per-component
level) out of UNORM, SNORM, SINT, UINT and FLOAT.

For TEX* style texture sample opcodes (as opposed to SAMPLE* opcodes
which take an explicit SVIEW[#] source register), there may be optionally
SVIEW[#] declarations. In this case, the SVIEW index is implied by the
SAMP index, and there must be a corresponding SVIEW[#] declaration for
each SAMP[#] declaration. Drivers are free to ignore this if they wish.
But note in particular that some drivers need to know the sampler type
(float/int/unsigned) in order to generate the correct code, so cases
where integer textures are sampled, SVIEW[#] declarations should be
used.

NOTE: It is NOT legal to mix SAMPLE* style opcodes and TEX* opcodes
in the same shader.

Declaration Resource

Follows Declaration token if file is TGSI_FILE_RESOURCE.

DCL RES[#], resource [, WR] [, RAW]

Declares a shader input resource and assigns it to a RES[#]
register.

resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2DArray.

If the RAW keyword is not specified, the texture data will be
subject to conversion, swizzling and scaling as required to yield
the specified data type from the physical data format of the bound
resource.

If the RAW keyword is specified, no channel conversion will be
performed: the values read for each of the channels (X,Y,Z,W) will
correspond to consecutive words in the same order and format
they’re found in memory. No element-to-address conversion will be
performed either: the value of the provided X coordinate will be
interpreted in byte units instead of texel units. The result of
accessing a misaligned address is undefined.

Usage of the STORE opcode is only allowed if the WR (writable) flag
is set.

Hardware Atomic Register File

Hardware atomics are declared as a 2D array with an optional array id.

The first member of the dimension is the buffer resource the atomic
is located in.
The second member is a range into the buffer resource, either for
one or multiple counters. If this is an array, the declaration will have
an unique array id.

Each counter is 4 bytes in size, and index and ranges are in counters not bytes.
DCL HWATOMIC[0][0]
DCL HWATOMIC[0][1]

This declares two atomics, one at the start of the buffer and one in the
second 4 bytes.

DCL HWATOMIC[0][0]
DCL HWATOMIC[1][0]
DCL HWATOMIC[1][1..3], ARRAY(1)

This declares 5 atomics, one in buffer 0 at 0,
one in buffer 1 at 0, and an array of 3 atomics in
the buffer 1, starting at 1.

Properties

Properties are general directives that apply to the whole TGSI program.

FS_COORD_ORIGIN

Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
The default value is UPPER_LEFT.

If UPPER_LEFT, the position will be (0,0) at the upper left corner and
increase downward and rightward.
If LOWER_LEFT, the position will be (0,0) at the lower left corner and
increase upward and rightward.

OpenGL defaults to LOWER_LEFT, and is configurable with the
GL_ARB_fragment_coord_conventions extension.

DirectX 9/10 use UPPER_LEFT.

FS_COORD_PIXEL_CENTER

Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
The default value is HALF_INTEGER.

If HALF_INTEGER, the fractionary part of the position will be 0.5
If INTEGER, the fractionary part of the position will be 0.0

Note that this does not affect the set of fragments generated by
rasterization, which is instead controlled by half_pixel_center in the
rasterizer.

OpenGL defaults to HALF_INTEGER, and is configurable with the
GL_ARB_fragment_coord_conventions extension.

DirectX 9 uses INTEGER.
DirectX 10 uses HALF_INTEGER.

FS_COLOR0_WRITES_ALL_CBUFS

Specifies that writes to the fragment shader color 0 are replicated to all
bound cbufs. This facilitates OpenGL’s fragColor output vs fragData[0] where
fragData is directed to a single color buffer, but fragColor is broadcast.

VS_PROHIBIT_UCPS

If this property is set on the program bound to the shader stage before the
fragment shader, user clip planes should have no effect (be disabled) even if
that shader does not write to any clip distance outputs and the rasterizer’s
clip_plane_enable is non-zero.
This property is only supported by drivers that also support shader clip
distance outputs.
This is useful for APIs that don’t have UCPs and where clip distances written
by a shader cannot be disabled.

GS_INVOCATIONS

Specifies the number of times a geometry shader should be executed for each
input primitive. Each invocation will have a different
TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
be 1.

VS_WINDOW_SPACE_POSITION

If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
is assumed to contain window space coordinates.
Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
directly taken from the 4-th component of the shader output.
Naturally, clipping is not performed on window coordinates either.
The effect of this property is undefined if a geometry or tessellation shader
are in use.

TCS_VERTICES_OUT

The number of vertices written by the tessellation control shader. This
effectively defines the patch input size of the tessellation evaluation shader
as well.

TES_PRIM_MODE

This sets the tessellation primitive mode, one of PIPE_PRIM_TRIANGLES,
PIPE_PRIM_QUADS, or PIPE_PRIM_LINES. (Unlike in GL, there is no
separate isolines settings, the regular lines is assumed to mean isolines.)

TES_SPACING

This sets the spacing mode of the tessellation generator, one of
PIPE_TESS_SPACING_*.

TES_VERTEX_ORDER_CW

This sets the vertex order to be clockwise if the value is 1, or
counter-clockwise if set to 0.

TES_POINT_MODE

If set to a non-zero value, this turns on point mode for the tessellator,
which means that points will be generated instead of primitives.

NUM_CLIPDIST_ENABLED

How many clip distance scalar outputs are enabled.

NUM_CULLDIST_ENABLED

How many cull distance scalar outputs are enabled.

FS_EARLY_DEPTH_STENCIL

Whether depth test, stencil test, and occlusion query should run before
the fragment shader (regardless of fragment shader side effects). Corresponds
to GLSL early_fragment_tests.

NEXT_SHADER

Which shader stage will MOST LIKELY follow after this shader when the shader
is bound. This is only a hint to the driver and doesn’t have to be precise.
Only set for VS and TES.

CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH

Threads per block in each dimension, if known at compile time. If the block size
is known all three should be at least 1. If it is unknown they should all be set
to 0 or not set.

MUL_ZERO_WINS

The MUL TGSI operation (FP32 multiplication) will return 0 if either
of the operands are equal to 0. That means that 0 * Inf = 0. This
should be set the same way for an entire pipeline. Note that this
applies not only to the literal MUL TGSI opcode, but all FP32
multiplications implied by other operations, such as MAD, FMA, DP2,
DP3, DP4, DST, LOG, LRP, and possibly others. If there is a
mismatch between shaders, then it is unspecified whether this behavior
will be enabled.

FS_POST_DEPTH_COVERAGE

When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
that have failed the depth/stencil tests. This is only valid when
FS_EARLY_DEPTH_STENCIL is also specified.

Texture Sampling and Texture Formats

This table shows how texture image components are returned as (x,y,z,w) tuples
by TGSI texture instructions, such as TEX, TXD, and
TXP. For reference, OpenGL and Direct3D conventions are shown as
well.

	Texture Components

	Gallium

	OpenGL

	Direct3D 9

	R

	(r, 0, 0, 1)

	(r, 0, 0, 1)

	(r, 1, 1, 1)

	RG

	(r, g, 0, 1)

	(r, g, 0, 1)

	(r, g, 1, 1)

	RGB

	(r, g, b, 1)

	(r, g, b, 1)

	(r, g, b, 1)

	RGBA

	(r, g, b, a)

	(r, g, b, a)

	(r, g, b, a)

	A

	(0, 0, 0, a)

	(0, 0, 0, a)

	(0, 0, 0, a)

	L

	(l, l, l, 1)

	(l, l, l, 1)

	(l, l, l, 1)

	LA

	(l, l, l, a)

	(l, l, l, a)

	(l, l, l, a)

	I

	(i, i, i, i)

	(i, i, i, i)

	N/A

	UV

	XXX TBD

	(0, 0, 0, 1)
1

	(u, v, 1, 1)

	Z

	XXX TBD

	(z, z, z, 1)
2

	(0, z, 0, 1)

	S

	(s, s, s, s)

	unknown

	unknown

	1

	http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt

	2

	the default is (z, z, z, 1) but may also be (0, 0, 0, z)
or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.

Screen

A screen is an object representing the context-independent part of a device.

Flags and enumerations

XXX some of these don’t belong in this section.

PIPE_CAP_*

Capability queries return information about the features and limits of the
driver/GPU. For floating-point values, use get_paramf, and for boolean
or integer values, use get_param.

The integer capabilities:

	PIPE_CAP_NPOT_TEXTURES: Whether NPOT textures may have repeat modes,
normalized coordinates, and mipmaps.

	PIPE_CAP_MAX_DUAL_SOURCE_RENDER_TARGETS: How many dual-source blend RTs are support.
Blend for more information.

	PIPE_CAP_ANISOTROPIC_FILTER: Whether textures can be filtered anisotropically.

	PIPE_CAP_POINT_SPRITE: Whether point sprites are available.

	PIPE_CAP_MAX_RENDER_TARGETS: The maximum number of render targets that may be
bound.

	PIPE_CAP_OCCLUSION_QUERY: Whether occlusion queries are available.

	PIPE_CAP_QUERY_TIME_ELAPSED: Whether PIPE_QUERY_TIME_ELAPSED queries are available.

	PIPE_CAP_TEXTURE_SWIZZLE: Whether swizzling through sampler views is
supported.

	PIPE_CAP_MAX_TEXTURE_2D_SIZE: The maximum size of 2D (and 1D) textures.

	PIPE_CAP_MAX_TEXTURE_3D_LEVELS: The maximum number of mipmap levels available
for a 3D texture.

	PIPE_CAP_MAX_TEXTURE_CUBE_LEVELS: The maximum number of mipmap levels available
for a cubemap.

	PIPE_CAP_TEXTURE_MIRROR_CLAMP_TO_EDGE: Whether mirrored texture coordinates are
supported with the clamp-to-edge wrap mode.

	PIPE_CAP_TEXTURE_MIRROR_CLAMP: Whether mirrored texture coordinates are supported
with clamp or clamp-to-border wrap modes.

	PIPE_CAP_BLEND_EQUATION_SEPARATE: Whether alpha blend equations may be different
from color blend equations, in Blend state.

	PIPE_CAP_SM3: Whether the vertex shader and fragment shader support equivalent
opcodes to the Shader Model 3 specification. XXX oh god this is horrible

	PIPE_CAP_MAX_STREAM_OUTPUT_BUFFERS: The maximum number of stream buffers.

	PIPE_CAP_PRIMITIVE_RESTART: Whether primitive restart is supported.

	PIPE_CAP_INDEP_BLEND_ENABLE: Whether per-rendertarget blend enabling and channel
masks are supported. If 0, then the first rendertarget’s blend mask is
replicated across all MRTs.

	PIPE_CAP_INDEP_BLEND_FUNC: Whether per-rendertarget blend functions are
available. If 0, then the first rendertarget’s blend functions affect all
MRTs.

	PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS: The maximum number of texture array
layers supported. If 0, the array textures are not supported at all and
the ARRAY texture targets are invalid.

	PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT: Whether the TGSI property
FS_COORD_ORIGIN with value UPPER_LEFT is supported.

	PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT: Whether the TGSI property
FS_COORD_ORIGIN with value LOWER_LEFT is supported.

	PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER: Whether the TGSI
property FS_COORD_PIXEL_CENTER with value HALF_INTEGER is supported.

	PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER: Whether the TGSI
property FS_COORD_PIXEL_CENTER with value INTEGER is supported.

	PIPE_CAP_DEPTH_CLIP_DISABLE: Whether the driver is capable of disabling
depth clipping (through pipe_rasterizer_state)

	PIPE_CAP_DEPTH_CLIP_DISABLE_SEPARATE: Whether the driver is capable of
disabling depth clipping (through pipe_rasterizer_state) separately for
the near and far plane. If not, depth_clip_near and depth_clip_far will be
equal.

	PIPE_CAP_SHADER_STENCIL_EXPORT: Whether a stencil reference value can be
written from a fragment shader.

	PIPE_CAP_TGSI_INSTANCEID: Whether TGSI_SEMANTIC_INSTANCEID is supported
in the vertex shader.

	PIPE_CAP_VERTEX_ELEMENT_INSTANCE_DIVISOR: Whether the driver supports
per-instance vertex attribs.

	PIPE_CAP_FRAGMENT_COLOR_CLAMPED: Whether fragment color clamping is
supported. That is, is the pipe_rasterizer_state::clamp_fragment_color
flag supported by the driver? If not, the state tracker will insert
clamping code into the fragment shaders when needed.

	PIPE_CAP_MIXED_COLORBUFFER_FORMATS: Whether mixed colorbuffer formats are
supported, e.g. RGBA8 and RGBA32F as the first and second colorbuffer, resp.

	PIPE_CAP_VERTEX_COLOR_UNCLAMPED: Whether the driver is capable of
outputting unclamped vertex colors from a vertex shader. If unsupported,
the vertex colors are always clamped. This is the default for DX9 hardware.

	PIPE_CAP_VERTEX_COLOR_CLAMPED: Whether the driver is capable of
clamping vertex colors when they come out of a vertex shader, as specified
by the pipe_rasterizer_state::clamp_vertex_color flag. If unsupported,
the vertex colors are never clamped. This is the default for DX10 hardware.
If both clamped and unclamped CAPs are supported, the clamping can be
controlled through pipe_rasterizer_state. If the driver cannot do vertex
color clamping, the state tracker may insert clamping code into the vertex
shader.

	PIPE_CAP_GLSL_FEATURE_LEVEL: Whether the driver supports features
equivalent to a specific GLSL version. E.g. for GLSL 1.3, report 130.

	PIPE_CAP_GLSL_FEATURE_LEVEL_COMPATIBILITY: Whether the driver supports
features equivalent to a specific GLSL version including all legacy OpenGL
features only present in the OpenGL compatibility profile.
The only legacy features that Gallium drivers must implement are
the legacy shader inputs and outputs (colors, texcoords, fog, clipvertex,
edgeflag).

	PIPE_CAP_ESSL_FEATURE_LEVEL: An optional cap to allow drivers to
report a higher GLSL version for GLES contexts. This is useful when a
driver does not support all the required features for a higher GL version,
but does support the required features for a higher GLES version. A driver
is allowed to return 0 in which case PIPE_CAP_GLSL_FEATURE_LEVEL is
used.
Note that simply returning the same value as the GLSL feature level cap is
incorrect. For example, GLSL version 3.30 does not require ARB_gpu_shader5,
but ESSL version 3.20 es does require EXT_gpu_shader5

	PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION: Whether quads adhere to
the flatshade_first setting in pipe_rasterizer_state.

	PIPE_CAP_USER_VERTEX_BUFFERS: Whether the driver supports user vertex
buffers. If not, the state tracker must upload all data which is not in hw
resources. If user-space buffers are supported, the driver must also still
accept HW resource buffers.

	PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY: This CAP describes a hw
limitation. If true, pipe_vertex_buffer::buffer_offset must always be aligned
to 4. If false, there are no restrictions on the offset.

	PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY: This CAP describes a hw
limitation. If true, pipe_vertex_buffer::stride must always be aligned to 4.
If false, there are no restrictions on the stride.

	PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY: This CAP describes
a hw limitation. If true, pipe_vertex_element::src_offset must always be
aligned to 4. If false, there are no restrictions on src_offset.

	PIPE_CAP_COMPUTE: Whether the implementation supports the
compute entry points defined in pipe_context and pipe_screen.

	PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT: Describes the required
alignment of pipe_constant_buffer::buffer_offset.

	PIPE_CAP_START_INSTANCE: Whether the driver supports
pipe_draw_info::start_instance.

	PIPE_CAP_QUERY_TIMESTAMP: Whether PIPE_QUERY_TIMESTAMP and
the pipe_screen::get_timestamp hook are implemented.

	PIPE_CAP_TEXTURE_MULTISAMPLE: Whether all MSAA resources supported
for rendering are also supported for texturing.

	PIPE_CAP_MIN_MAP_BUFFER_ALIGNMENT: The minimum alignment that should be
expected for a pointer returned by transfer_map if the resource is
PIPE_BUFFER. In other words, the pointer returned by transfer_map is
always aligned to this value.

	PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT: Describes the required
alignment for pipe_sampler_view::u.buf.offset, in bytes.
If a driver does not support offset/size, it should return 0.

	PIPE_CAP_BUFFER_SAMPLER_VIEW_RGBA_ONLY: Whether the driver only
supports R, RG, RGB and RGBA formats for PIPE_BUFFER sampler views.
When this is the case it should be assumed that the swizzle parameters
in the sampler view have no effect.

	PIPE_CAP_TGSI_TEXCOORD: This CAP describes a hw limitation.
If true, the hardware cannot replace arbitrary shader inputs with sprite
coordinates and hence the inputs that are desired to be replaceable must
be declared with TGSI_SEMANTIC_TEXCOORD instead of TGSI_SEMANTIC_GENERIC.
The rasterizer’s sprite_coord_enable state therefore also applies to the
TEXCOORD semantic.
Also, TGSI_SEMANTIC_PCOORD becomes available, which labels a fragment shader
input that will always be replaced with sprite coordinates.

	PIPE_CAP_PREFER_BLIT_BASED_TEXTURE_TRANSFER: Whether it is preferable
to use a blit to implement a texture transfer which needs format conversions
and swizzling in state trackers. Generally, all hardware drivers with
dedicated memory should return 1 and all software rasterizers should return 0.

	PIPE_CAP_QUERY_PIPELINE_STATISTICS: Whether PIPE_QUERY_PIPELINE_STATISTICS
is supported.

	PIPE_CAP_TEXTURE_BORDER_COLOR_QUIRK: Bitmask indicating whether special
considerations have to be given to the interaction between the border color
in the sampler object and the sampler view used with it.
If PIPE_QUIRK_TEXTURE_BORDER_COLOR_SWIZZLE_R600 is set, the border color
may be affected in undefined ways for any kind of permutational swizzle
(any swizzle XYZW where X/Y/Z/W are not ZERO, ONE, or R/G/B/A respectively)
in the sampler view.
If PIPE_QUIRK_TEXTURE_BORDER_COLOR_SWIZZLE_NV50 is set, the border color
state should be swizzled manually according to the swizzle in the sampler
view it is intended to be used with, or herein undefined results may occur
for permutational swizzles.

	PIPE_CAP_MAX_TEXTURE_BUFFER_SIZE: The maximum accessible size with
a buffer sampler view, in texels.

	PIPE_CAP_MAX_VIEWPORTS: The maximum number of viewports (and scissors
since they are linked) a driver can support. Returning 0 is equivalent
to returning 1 because every driver has to support at least a single
viewport/scissor combination.

	PIPE_CAP_ENDIANNESS:: The endianness of the device. Either
PIPE_ENDIAN_BIG or PIPE_ENDIAN_LITTLE.

	PIPE_CAP_MIXED_FRAMEBUFFER_SIZES: Whether it is allowed to have
different sizes for fb color/zs attachments. This controls whether
ARB_framebuffer_object is provided.

	PIPE_CAP_TGSI_VS_LAYER_VIEWPORT: Whether TGSI_SEMANTIC_LAYER and
TGSI_SEMANTIC_VIEWPORT_INDEX are supported as vertex shader
outputs. Note that the viewport will only be used if multiple viewports are
exposed.

	PIPE_CAP_MAX_GEOMETRY_OUTPUT_VERTICES: The maximum number of vertices
output by a single invocation of a geometry shader.

	PIPE_CAP_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS: The maximum number of
vertex components output by a single invocation of a geometry shader.
This is the product of the number of attribute components per vertex and
the number of output vertices.

	PIPE_CAP_MAX_TEXTURE_GATHER_COMPONENTS: Max number of components
in format that texture gather can operate on. 1 == RED, ALPHA etc,
4 == All formats.

	PIPE_CAP_TEXTURE_GATHER_SM5: Whether the texture gather
hardware implements the SM5 features, component selection,
shadow comparison, and run-time offsets.

	PIPE_CAP_BUFFER_MAP_PERSISTENT_COHERENT: Whether
PIPE_TRANSFER_PERSISTENT and PIPE_TRANSFER_COHERENT are supported
for buffers.

	PIPE_CAP_TEXTURE_QUERY_LOD: Whether the LODQ instruction is
supported.

	PIPE_CAP_MIN_TEXTURE_GATHER_OFFSET: The minimum offset that can be used
in conjunction with a texture gather opcode.

	PIPE_CAP_MAX_TEXTURE_GATHER_OFFSET: The maximum offset that can be used
in conjunction with a texture gather opcode.

	PIPE_CAP_SAMPLE_SHADING: Whether there is support for per-sample
shading. The context->set_min_samples function will be expected to be
implemented.

	PIPE_CAP_TEXTURE_GATHER_OFFSETS: Whether the TG4 instruction can
accept 4 offsets.

	PIPE_CAP_TGSI_VS_WINDOW_SPACE_POSITION: Whether
TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION is supported, which disables clipping
and viewport transformation.

	PIPE_CAP_MAX_VERTEX_STREAMS: The maximum number of vertex streams
supported by the geometry shader. If stream-out is supported, this should be
at least 1. If stream-out is not supported, this should be 0.

	PIPE_CAP_DRAW_INDIRECT: Whether the driver supports taking draw arguments
{ count, instance_count, start, index_bias } from a PIPE_BUFFER resource.
See pipe_draw_info.

	PIPE_CAP_MULTI_DRAW_INDIRECT: Whether the driver supports
pipe_draw_info::indirect_stride and ::indirect_count

	PIPE_CAP_MULTI_DRAW_INDIRECT_PARAMS: Whether the driver supports
taking the number of indirect draws from a separate parameter
buffer, see pipe_draw_indirect_info::indirect_draw_count.

	PIPE_CAP_TGSI_FS_FINE_DERIVATIVE: Whether the fragment shader supports
the FINE versions of DDX/DDY.

	PIPE_CAP_VENDOR_ID: The vendor ID of the underlying hardware. If it’s
not available one should return 0xFFFFFFFF.

	PIPE_CAP_DEVICE_ID: The device ID (PCI ID) of the underlying hardware.
0xFFFFFFFF if not available.

	PIPE_CAP_ACCELERATED: Whether the renderer is hardware accelerated.

	PIPE_CAP_VIDEO_MEMORY: The amount of video memory in megabytes.

	PIPE_CAP_UMA: If the device has a unified memory architecture or on-card
memory and GART.

	PIPE_CAP_CONDITIONAL_RENDER_INVERTED: Whether the driver supports inverted
condition for conditional rendering.

	PIPE_CAP_MAX_VERTEX_ATTRIB_STRIDE: The maximum supported vertex stride.

	PIPE_CAP_SAMPLER_VIEW_TARGET: Whether the sampler view’s target can be
different than the underlying resource’s, as permitted by
ARB_texture_view. For example a 2d array texture may be reinterpreted as a
cube (array) texture and vice-versa.

	PIPE_CAP_CLIP_HALFZ: Whether the driver supports the
pipe_rasterizer_state::clip_halfz being set to true. This is required
for enabling ARB_clip_control.

	PIPE_CAP_VERTEXID_NOBASE: If true, the driver only supports
TGSI_SEMANTIC_VERTEXID_NOBASE (and not TGSI_SEMANTIC_VERTEXID). This means
state trackers for APIs whose vertexIDs are offset by basevertex (such as GL)
will need to lower TGSI_SEMANTIC_VERTEXID to TGSI_SEMANTIC_VERTEXID_NOBASE
and TGSI_SEMANTIC_BASEVERTEX, so drivers setting this must handle both these
semantics. Only relevant if geometry shaders are supported.
(BASEVERTEX could be exposed separately too via PIPE_CAP_DRAW_PARAMETERS).

	PIPE_CAP_POLYGON_OFFSET_CLAMP: If true, the driver implements support
for pipe_rasterizer_state::offset_clamp.

	PIPE_CAP_MULTISAMPLE_Z_RESOLVE: Whether the driver supports blitting
a multisampled depth buffer into a single-sampled texture (or depth buffer).
Only the first sampled should be copied.

	PIPE_CAP_RESOURCE_FROM_USER_MEMORY: Whether the driver can create
a pipe_resource where an already-existing piece of (malloc’d) user memory
is used as its backing storage. In other words, whether the driver can map
existing user memory into the device address space for direct device access.
The create function is pipe_screen::resource_from_user_memory. The address
and size must be page-aligned.

	PIPE_CAP_DEVICE_RESET_STATUS_QUERY:
Whether pipe_context::get_device_reset_status is implemented.

	PIPE_CAP_MAX_SHADER_PATCH_VARYINGS:
How many per-patch outputs and inputs are supported between tessellation
control and tessellation evaluation shaders, not counting in TESSINNER and
TESSOUTER. The minimum allowed value for OpenGL is 30.

	PIPE_CAP_TEXTURE_FLOAT_LINEAR: Whether the linear minification and
magnification filters are supported with single-precision floating-point
textures.

	PIPE_CAP_TEXTURE_HALF_FLOAT_LINEAR: Whether the linear minification and
magnification filters are supported with half-precision floating-point
textures.

	PIPE_CAP_DEPTH_BOUNDS_TEST: Whether bounds_test, bounds_min, and
bounds_max states of pipe_depth_stencil_alpha_state behave according
to the GL_EXT_depth_bounds_test specification.

	PIPE_CAP_TGSI_TXQS: Whether the TXQS opcode is supported

	PIPE_CAP_FORCE_PERSAMPLE_INTERP: If the driver can force per-sample
interpolation for all fragment shader inputs if
pipe_rasterizer_state::force_persample_interp is set. This is only used
by GL3-level sample shading (ARB_sample_shading). GL4-level sample shading
(ARB_gpu_shader5) doesn’t use this. While GL3 hardware has a state for it,
GL4 hardware will likely need to emulate it with a shader variant, or by
selecting the interpolation weights with a conditional assignment
in the shader.

	PIPE_CAP_SHAREABLE_SHADERS: Whether shader CSOs can be used by any
pipe_context.

	PIPE_CAP_COPY_BETWEEN_COMPRESSED_AND_PLAIN_FORMATS:
Whether copying between compressed and plain formats is supported where
a compressed block is copied to/from a plain pixel of the same size.

	PIPE_CAP_CLEAR_TEXTURE: Whether clear_texture will be
available in contexts.

	PIPE_CAP_DRAW_PARAMETERS: Whether TGSI_SEMANTIC_BASEVERTEX,
TGSI_SEMANTIC_BASEINSTANCE, and TGSI_SEMANTIC_DRAWID are
supported in vertex shaders.

	PIPE_CAP_TGSI_PACK_HALF_FLOAT: Whether the UP2H and PK2H
TGSI opcodes are supported.

	PIPE_CAP_TGSI_FS_POSITION_IS_SYSVAL: If state trackers should use
a system value for the POSITION fragment shader input.

	PIPE_CAP_TGSI_FS_FACE_IS_INTEGER_SYSVAL: If state trackers should use
a system value for the FACE fragment shader input.
Also, the FACE system value is integer, not float.

	PIPE_CAP_SHADER_BUFFER_OFFSET_ALIGNMENT: Describes the required
alignment for pipe_shader_buffer::buffer_offset, in bytes. Maximum
value allowed is 256 (for GL conformance). 0 is only allowed if
shader buffers are not supported.

	PIPE_CAP_INVALIDATE_BUFFER: Whether the use of invalidate_resource
for buffers is supported.

	PIPE_CAP_GENERATE_MIPMAP: Indicates whether pipe_context::generate_mipmap
is supported.

	PIPE_CAP_STRING_MARKER: Whether pipe->emit_string_marker() is supported.

	PIPE_CAP_SURFACE_REINTERPRET_BLOCKS: Indicates whether
pipe_context::create_surface supports reinterpreting a texture as a surface
of a format with different block width/height (but same block size in bits).
For example, a compressed texture image can be interpreted as a
non-compressed surface whose texels are the same number of bits as the
compressed blocks, and vice versa. The width and height of the surface is
adjusted appropriately.

	PIPE_CAP_QUERY_BUFFER_OBJECT: Driver supports
context::get_query_result_resource callback.

	PIPE_CAP_PCI_GROUP: Return the PCI segment group number.

	PIPE_CAP_PCI_BUS: Return the PCI bus number.

	PIPE_CAP_PCI_DEVICE: Return the PCI device number.

	PIPE_CAP_PCI_FUNCTION: Return the PCI function number.

	PIPE_CAP_FRAMEBUFFER_NO_ATTACHMENT:
If non-zero, rendering to framebuffers with no surface attachments
is supported. The context->is_format_supported function will be expected
to be implemented with PIPE_FORMAT_NONE yeilding the MSAA modes the hardware
supports. N.B., The maximum number of layers supported for rasterizing a
primitive on a layer is obtained from PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS
even though it can be larger than the number of layers supported by either
rendering or textures.

	PIPE_CAP_ROBUST_BUFFER_ACCESS_BEHAVIOR: Implementation uses bounds
checking on resource accesses by shader if the context is created with
PIPE_CONTEXT_ROBUST_BUFFER_ACCESS. See the ARB_robust_buffer_access_behavior
extension for information on the required behavior for out of bounds accesses
and accesses to unbound resources.

	PIPE_CAP_CULL_DISTANCE: Whether the driver supports the arb_cull_distance
extension and thus implements proper support for culling planes.

	PIPE_CAP_PRIMITIVE_RESTART_FOR_PATCHES: Whether primitive restart is
supported for patch primitives.

	PIPE_CAP_TGSI_VOTE: Whether the VOTE_* ops can be used in shaders.

	PIPE_CAP_MAX_WINDOW_RECTANGLES: The maxium number of window rectangles
supported in set_window_rectangles.

	PIPE_CAP_POLYGON_OFFSET_UNITS_UNSCALED: If true, the driver implements support
for pipe_rasterizer_state::offset_units_unscaled.

	PIPE_CAP_VIEWPORT_SUBPIXEL_BITS: Number of bits of subpixel precision for
floating point viewport bounds.

	PIPE_CAP_RASTERIZER_SUBPIXEL_BITS: Number of bits of subpixel precision used
by the rasterizer.

	PIPE_CAP_MIXED_COLOR_DEPTH_BITS: Whether there is non-fallback
support for color/depth format combinations that use a different
number of bits. For the purpose of this cap, Z24 is treated as
32-bit. If set to off, that means that a B5G6R5 + Z24 or RGBA8 + Z16
combination will require a driver fallback, and should not be
advertised in the GLX/EGL config list.

	PIPE_CAP_TGSI_ARRAY_COMPONENTS: If true, the driver interprets the
UsageMask of input and output declarations and allows declaring arrays
in overlapping ranges. The components must be a contiguous range, e.g. a
UsageMask of xy or yzw is allowed, but xz or yw isn’t. Declarations with
overlapping locations must have matching semantic names and indices, and
equal interpolation qualifiers.
Components may overlap, notably when the gaps in an array of dvec3 are
filled in.

	PIPE_CAP_STREAM_OUTPUT_INTERLEAVE_BUFFERS: Whether interleaved stream
output mode is able to interleave across buffers. This is required for
ARB_transform_feedback3.

	PIPE_CAP_TGSI_CAN_READ_OUTPUTS: Whether every TGSI shader stage can read
from the output file.

	PIPE_CAP_GLSL_OPTIMIZE_CONSERVATIVELY: Tell the GLSL compiler to use
the minimum amount of optimizations just to be able to do all the linking
and lowering.

	PIPE_CAP_FBFETCH: The number of render targets whose value in the
current framebuffer can be read in the shader. 0 means framebuffer fetch
is not supported. 1 means that only the first render target can be read,
and a larger value would mean that multiple render targets are supported.

	PIPE_CAP_FBFETCH_COHERENT: Whether framebuffer fetches from the fragment
shader can be guaranteed to be coherent with framebuffer writes.

	PIPE_CAP_TGSI_MUL_ZERO_WINS: Whether TGSI shaders support the
TGSI_PROPERTY_MUL_ZERO_WINS shader property.

	PIPE_CAP_DOUBLES: Whether double precision floating-point operations
are supported.

	PIPE_CAP_INT64: Whether 64-bit integer operations are supported.

	PIPE_CAP_INT64_DIVMOD: Whether 64-bit integer division/modulo
operations are supported.

	PIPE_CAP_TGSI_TEX_TXF_LZ: Whether TEX_LZ and TXF_LZ opcodes are
supported.

	PIPE_CAP_TGSI_CLOCK: Whether the CLOCK opcode is supported.

	PIPE_CAP_POLYGON_MODE_FILL_RECTANGLE: Whether the
PIPE_POLYGON_MODE_FILL_RECTANGLE mode is supported for
pipe_rasterizer_state::fill_front and
pipe_rasterizer_state::fill_back.

	PIPE_CAP_SPARSE_BUFFER_PAGE_SIZE: The page size of sparse buffers in
bytes, or 0 if sparse buffers are not supported. The page size must be at
most 64KB.

	PIPE_CAP_TGSI_BALLOT: Whether the BALLOT and READ_* opcodes as well as
the SUBGROUP_* semantics are supported.

	PIPE_CAP_TGSI_TES_LAYER_VIEWPORT: Whether TGSI_SEMANTIC_LAYER and
TGSI_SEMANTIC_VIEWPORT_INDEX are supported as tessellation evaluation
shader outputs.

	PIPE_CAP_CAN_BIND_CONST_BUFFER_AS_VERTEX: Whether a buffer with just
PIPE_BIND_CONSTANT_BUFFER can be legally passed to set_vertex_buffers.

	PIPE_CAP_ALLOW_MAPPED_BUFFERS_DURING_EXECUTION: As the name says.

	PIPE_CAP_POST_DEPTH_COVERAGE: whether
TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE is supported.

	PIPE_CAP_BINDLESS_TEXTURE: Whether bindless texture operations are
supported.

	PIPE_CAP_NIR_SAMPLERS_AS_DEREF: Whether NIR tex instructions should
reference texture and sampler as NIR derefs instead of by indices.

	PIPE_CAP_QUERY_SO_OVERFLOW: Whether the
PIPE_QUERY_SO_OVERFLOW_PREDICATE and
PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE query types are supported. Note that
for a driver that does not support multiple output streams (i.e.,
PIPE_CAP_MAX_VERTEX_STREAMS is 1), both query types are identical.

	PIPE_CAP_MEMOBJ: Whether operations on memory objects are supported.

	PIPE_CAP_LOAD_CONSTBUF: True if the driver supports TGSI_OPCODE_LOAD use
with constant buffers.

	PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS: Any TGSI register can be used as
an address for indirect register indexing.

	PIPE_CAP_TILE_RASTER_ORDER: Whether the driver supports
GL_MESA_tile_raster_order, using the tile_raster_order_* fields in
pipe_rasterizer_state.

	PIPE_CAP_MAX_COMBINED_SHADER_OUTPUT_RESOURCES: Limit on combined shader
output resources (images + buffers + fragment outputs). If 0 the state
tracker works it out.

	PIPE_CAP_FRAMEBUFFER_MSAA_CONSTRAINTS: This determines limitations
on the number of samples that framebuffer attachments can have.
Possible values:

	0: color.nr_samples == zs.nr_samples == color.nr_storage_samples

	(standard MSAA quality)

	1: color.nr_samples >= zs.nr_samples == color.nr_storage_samples

	(enhanced MSAA quality)

	2: color.nr_samples >= zs.nr_samples >= color.nr_storage_samples

	(full flexibility in tuning MSAA quality and performance)

All color attachments must have the same number of samples and the same
number of storage samples.

	PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET:
Whether pipe_vertex_buffer::buffer_offset is treated as signed. The u_vbuf
module needs this for optimal performance in workstation applications.

	PIPE_CAP_CONTEXT_PRIORITY_MASK: For drivers that support per-context
priorities, this returns a bitmask of PIPE_CONTEXT_PRIORITY_x for the
supported priority levels. A driver that does not support prioritized
contexts can return 0.

	PIPE_CAP_FENCE_SIGNAL: True if the driver supports signaling semaphores
using fence_server_signal().

	PIPE_CAP_CONSTBUF0_FLAGS: The bits of pipe_resource::flags that must be
set when binding that buffer as constant buffer 0. If the buffer doesn’t have
those bits set, pipe_context::set_constant_buffer(.., 0, ..) is ignored
by the driver, and the driver can throw assertion failures.

	PIPE_CAP_PACKED_UNIFORMS: True if the driver supports packed uniforms
as opposed to padding to vec4s.

	PIPE_CAP_CONSERVATIVE_RASTER_POST_SNAP_TRIANGLES: Whether the
PIPE_CONSERVATIVE_RASTER_POST_SNAP mode is supported for triangles.
The post-snap mode means the conservative rasterization occurs after
the conversion from floating-point to fixed-point coordinates
on the subpixel grid.

	PIPE_CAP_CONSERVATIVE_RASTER_POST_SNAP_POINTS_LINES: Whether the
PIPE_CONSERVATIVE_RASTER_POST_SNAP mode is supported for points and lines.

	PIPE_CAP_CONSERVATIVE_RASTER_PRE_SNAP_TRIANGLES: Whether the
PIPE_CONSERVATIVE_RASTER_PRE_SNAP mode is supported for triangles.
The pre-snap mode means the conservative rasterization occurs before
the conversion from floating-point to fixed-point coordinates.

	PIPE_CAP_CONSERVATIVE_RASTER_PRE_SNAP_POINTS_LINES: Whether the
PIPE_CONSERVATIVE_RASTER_PRE_SNAP mode is supported for points and lines.

	PIPE_CAP_CONSERVATIVE_RASTER_POST_DEPTH_COVERAGE: Whether
PIPE_CAP_POST_DEPTH_COVERAGE works with conservative rasterization.

	PIPE_CAP_CONSERVATIVE_RASTER_INNER_COVERAGE: Whether
inner_coverage from GL_INTEL_conservative_rasterization is supported.

	PIPE_CAP_MAX_CONSERVATIVE_RASTER_SUBPIXEL_PRECISION_BIAS: The maximum
subpixel precision bias in bits during conservative rasterization.

	PIPE_CAP_PROGRAMMABLE_SAMPLE_LOCATIONS: True is the driver supports
programmable sample location through `get_sample_pixel_grid` and
`set_sample_locations`.

	PIPE_CAP_MAX_GS_INVOCATIONS: Maximum supported value of
TGSI_PROPERTY_GS_INVOCATIONS.

	PIPE_CAP_MAX_SHADER_BUFFER_SIZE: Maximum supported size for binding
with set_shader_buffers.

	PIPE_CAP_MAX_COMBINED_SHADER_BUFFERS: Maximum total number of shader
buffers. A value of 0 means the sum of all per-shader stage maximums (see
PIPE_SHADER_CAP_MAX_SHADER_BUFFERS).

	PIPE_CAP_MAX_COMBINED_HW_ATOMIC_COUNTERS: Maximum total number of atomic
counters. A value of 0 means the default value (MAX_ATOMIC_COUNTERS = 4096).

	PIPE_CAP_MAX_COMBINED_HW_ATOMIC_COUNTER_BUFFERS: Maximum total number of
atomic counter buffers. A value of 0 means the sum of all per-shader stage
maximums (see PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTER_BUFFERS).

	PIPE_CAP_MAX_TEXTURE_UPLOAD_MEMORY_BUDGET: Maximum recommend memory size
for all active texture uploads combined. This is a performance hint.
0 means no limit.

	PIPE_CAP_MAX_VERTEX_ELEMENT_SRC_OFFSET: The maximum supported value for
of pipe_vertex_element::src_offset.

	PIPE_CAP_SURFACE_SAMPLE_COUNT: Whether the driver
supports pipe_surface overrides of resource nr_samples. If set, will
enable EXT_multisampled_render_to_texture.

	PIPE_CAP_TGSI_ATOMFADD: Atomic floating point adds are supported on
images, buffers, and shared memory.

	PIPE_CAP_RGB_OVERRIDE_DST_ALPHA_BLEND: True if the driver needs blend state to use zero/one instead of destination alpha for RGB/XRGB formats.

	PIPE_CAP_GLSL_TESS_LEVELS_AS_INPUTS: True if the driver wants TESSINNER and TESSOUTER to be inputs (rather than system values) for tessellation evaluation shaders.

	PIPE_CAP_DEST_SURFACE_SRGB_CONTROL: Indicates whether the drivers
supports switching the format between sRGB and linear for a surface that is
used as destination in draw and blit calls.

	PIPE_CAP_NIR_COMPACT_ARRAYS: True if the compiler backend supports NIR’s compact array feature, for all shader stages.

	PIPE_CAP_MAX_VARYINGS: The maximum number of fragment shader
varyings. This will generally correspond to
PIPE_SHADER_CAP_MAX_INPUTS for the fragment shader, but in some
cases may be a smaller number.

	PIPE_CAP_COMPUTE_GRID_INFO_LAST_BLOCK: Whether pipe_grid_info::last_block
is implemented by the driver. See struct pipe_grid_info for more details.

	PIPE_CAP_COMPUTE_SHADER_DERIVATIVE: True if the driver supports derivatives (and texture lookups with implicit derivatives) in compute shaders.

	PIPE_CAP_TGSI_SKIP_SHRINK_IO_ARRAYS: Whether the TGSI pass to shrink IO
arrays should be skipped and enforce keeping the declared array sizes instead.
A driver might rely on the input mapping that was defined with the original
GLSL code.

	PIPE_CAP_IMAGE_LOAD_FORMATTED: True if a format for image loads does not need to be specified in the shader IR

	PIPE_CAP_MAX_FRAMES_IN_FLIGHT: Maximum number of frames that state
trackers should allow to be in flight before throttling pipe_context
execution. 0 = throttling is disabled.

	PIPE_CAP_DMABUF: Whether Linux DMABUF handles are supported by
resource_from_handle and resource_get_handle.

	PIPE_CAP_PREFER_COMPUTE_BLIT_FOR_MULTIMEDIA: Whether VDPAU, VAAPI, and
OpenMAX should use a compute-based blit instead of pipe_context::blit.

	PIPE_CAP_FRAGMENT_SHADER_INTERLOCK: True if fragment shader interlock
functionality is supported.

PIPE_CAPF_*

The floating-point capabilities are:

	PIPE_CAPF_MAX_LINE_WIDTH: The maximum width of a regular line.

	PIPE_CAPF_MAX_LINE_WIDTH_AA: The maximum width of a smoothed line.

	PIPE_CAPF_MAX_POINT_WIDTH: The maximum width and height of a point.

	PIPE_CAPF_MAX_POINT_WIDTH_AA: The maximum width and height of a smoothed point.

	PIPE_CAPF_MAX_TEXTURE_ANISOTROPY: The maximum level of anisotropy that can be
applied to anisotropically filtered textures.

	PIPE_CAPF_MAX_TEXTURE_LOD_BIAS: The maximum LOD bias that may be applied
to filtered textures.

	PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE: The minimum conservative rasterization
dilation.

	PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE: The maximum conservative rasterization
dilation.

	PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY: The conservative rasterization
dilation granularity for values relative to the minimum dilation.

PIPE_SHADER_CAP_*

These are per-shader-stage capabitity queries. Different shader stages may
support different features.

	PIPE_SHADER_CAP_MAX_INSTRUCTIONS: The maximum number of instructions.

	PIPE_SHADER_CAP_MAX_ALU_INSTRUCTIONS: The maximum number of arithmetic instructions.

	PIPE_SHADER_CAP_MAX_TEX_INSTRUCTIONS: The maximum number of texture instructions.

	PIPE_SHADER_CAP_MAX_TEX_INDIRECTIONS: The maximum number of texture indirections.

	PIPE_SHADER_CAP_MAX_CONTROL_FLOW_DEPTH: The maximum nested control flow depth.

	PIPE_SHADER_CAP_MAX_INPUTS: The maximum number of input registers.

	PIPE_SHADER_CAP_MAX_OUTPUTS: The maximum number of output registers.
This is valid for all shaders except the fragment shader.

	PIPE_SHADER_CAP_MAX_CONST_BUFFER_SIZE: The maximum size per constant buffer in bytes.

	PIPE_SHADER_CAP_MAX_CONST_BUFFERS: Maximum number of constant buffers that can be bound
to any shader stage using set_constant_buffer. If 0 or 1, the pipe will
only permit binding one constant buffer per shader.

If a value greater than 0 is returned, the driver can have multiple
constant buffers bound to shader stages. The CONST register file is
accessed with two-dimensional indices, like in the example below.

DCL CONST[0][0..7] # declare first 8 vectors of constbuf 0
DCL CONST[3][0] # declare first vector of constbuf 3
MOV OUT[0], CONST[0][3] # copy vector 3 of constbuf 0

	PIPE_SHADER_CAP_MAX_TEMPS: The maximum number of temporary registers.

	PIPE_SHADER_CAP_TGSI_CONT_SUPPORTED: Whether the continue opcode is supported.

	PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR: Whether indirect addressing
of the input file is supported.

	PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR: Whether indirect addressing
of the output file is supported.

	PIPE_SHADER_CAP_INDIRECT_TEMP_ADDR: Whether indirect addressing
of the temporary file is supported.

	PIPE_SHADER_CAP_INDIRECT_CONST_ADDR: Whether indirect addressing
of the constant file is supported.

	PIPE_SHADER_CAP_SUBROUTINES: Whether subroutines are supported, i.e.
BGNSUB, ENDSUB, CAL, and RET, including RET in the main block.

	PIPE_SHADER_CAP_INTEGERS: Whether integer opcodes are supported.
If unsupported, only float opcodes are supported.

	PIPE_SHADER_CAP_INT64_ATOMICS: Whether int64 atomic opcodes are supported. The device needs to support add, sub, swap, cmpswap, and, or, xor, min, and max.

	
	PIPE_SHADER_CAP_FP16: Whether half precision floating-point opcodes are supported.

	If unsupported, half precision ops need to be lowered to full precision.

	PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS: The maximum number of texture
samplers.

	PIPE_SHADER_CAP_PREFERRED_IR: Preferred representation of the
program. It should be one of the pipe_shader_ir enum values.

	PIPE_SHADER_CAP_MAX_SAMPLER_VIEWS: The maximum number of texture
sampler views. Must not be lower than PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS.

	PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED: Whether double precision rounding
is supported. If it is, DTRUNC/DCEIL/DFLR/DROUND opcodes may be used.

	PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED: Whether DFRACEXP and
DLDEXP are supported.

	PIPE_SHADER_CAP_TGSI_LDEXP_SUPPORTED: Whether LDEXP is supported.

	PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED: Whether FMA and DFMA (doubles only)
are supported.

	PIPE_SHADER_CAP_TGSI_ANY_INOUT_DECL_RANGE: Whether the driver doesn’t
ignore tgsi_declaration_range::Last for shader inputs and outputs.

	PIPE_SHADER_CAP_MAX_UNROLL_ITERATIONS_HINT: This is the maximum number
of iterations that loops are allowed to have to be unrolled. It is only
a hint to state trackers. Whether any loops will be unrolled is not
guaranteed.

	PIPE_SHADER_CAP_MAX_SHADER_BUFFERS: Maximum number of memory buffers
(also used to implement atomic counters). Having this be non-0 also
implies support for the LOAD, STORE, and ATOM* TGSI
opcodes.

	PIPE_SHADER_CAP_SUPPORTED_IRS: Supported representations of the
program. It should be a mask of pipe_shader_ir bits.

	PIPE_SHADER_CAP_MAX_SHADER_IMAGES: Maximum number of image units.

	PIPE_SHADER_CAP_LOWER_IF_THRESHOLD: IF and ELSE branches with a lower
cost than this value should be lowered by the state tracker for better
performance. This is a tunable for the GLSL compiler and the behavior is
specific to the compiler.

	PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS: Whether the merge registers
TGSI pass is skipped. This might reduce code size and register pressure if
the underlying driver has a real backend compiler.

	PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTERS: If atomic counters are separate,
how many HW counters are available for this stage. (0 uses SSBO atomics).

	PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTER_BUFFERS: If atomic counters are
separate, how many atomic counter buffers are available for this stage.

	PIPE_SHADER_CAP_SCALAR_ISA: Whether the ISA is a scalar one.

PIPE_COMPUTE_CAP_*

Compute-specific capabilities. They can be queried using
pipe_screen::get_compute_param.

	PIPE_COMPUTE_CAP_IR_TARGET: A description of the target of the form
processor-arch-manufacturer-os that will be passed on to the compiler.
This CAP is only relevant for drivers that specify PIPE_SHADER_IR_NATIVE for
their preferred IR.
Value type: null-terminated string. Shader IR type dependent.

	PIPE_COMPUTE_CAP_GRID_DIMENSION: Number of supported dimensions
for grid and block coordinates. Value type: uint64_t. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_GRID_SIZE: Maximum grid size in block
units. Value type: uint64_t []. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE: Maximum block size in thread
units. Value type: uint64_t []. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK: Maximum number of threads that
a single block can contain. Value type: uint64_t. Shader IR type dependent.
This may be less than the product of the components of MAX_BLOCK_SIZE and is
usually limited by the number of threads that can be resident simultaneously
on a compute unit.

	PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE: Maximum size of the GLOBAL
resource. Value type: uint64_t. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE: Maximum size of the LOCAL
resource. Value type: uint64_t. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE: Maximum size of the PRIVATE
resource. Value type: uint64_t. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_INPUT_SIZE: Maximum size of the INPUT
resource. Value type: uint64_t. Shader IR type dependent.

	PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE: Maximum size of a memory object
allocation in bytes. Value type: uint64_t.

	PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY: Maximum frequency of the GPU
clock in MHz. Value type: uint32_t

	PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS: Maximum number of compute units
Value type: uint32_t

	PIPE_COMPUTE_CAP_IMAGES_SUPPORTED: Whether images are supported
non-zero means yes, zero means no. Value type: uint32_t

	PIPE_COMPUTE_CAP_SUBGROUP_SIZE: The size of a basic execution unit in
threads. Also known as wavefront size, warp size or SIMD width.

	PIPE_COMPUTE_CAP_ADDRESS_BITS: The default compute device address space
size specified as an unsigned integer value in bits.

	PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK: Maximum variable number
of threads that a single block can contain. This is similar to
PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK, except that the variable size is not
known a compile-time but at dispatch-time.

PIPE_BIND_*

These flags indicate how a resource will be used and are specified at resource
creation time. Resources may be used in different roles
during their lifecycle. Bind flags are cumulative and may be combined to create
a resource which can be used for multiple things.
Depending on the pipe driver’s memory management and these bind flags,
resources might be created and handled quite differently.

	PIPE_BIND_RENDER_TARGET: A color buffer or pixel buffer which will be
rendered to. Any surface/resource attached to pipe_framebuffer_state::cbufs
must have this flag set.

	PIPE_BIND_DEPTH_STENCIL: A depth (Z) buffer and/or stencil buffer. Any
depth/stencil surface/resource attached to pipe_framebuffer_state::zsbuf must
have this flag set.

	PIPE_BIND_BLENDABLE: Used in conjunction with PIPE_BIND_RENDER_TARGET to
query whether a device supports blending for a given format.
If this flag is set, surface creation may fail if blending is not supported
for the specified format. If it is not set, a driver may choose to ignore
blending on surfaces with formats that would require emulation.

	PIPE_BIND_DISPLAY_TARGET: A surface that can be presented to screen. Arguments to
pipe_screen::flush_front_buffer must have this flag set.

	PIPE_BIND_SAMPLER_VIEW: A texture that may be sampled from in a fragment
or vertex shader.

	PIPE_BIND_VERTEX_BUFFER: A vertex buffer.

	PIPE_BIND_INDEX_BUFFER: An vertex index/element buffer.

	PIPE_BIND_CONSTANT_BUFFER: A buffer of shader constants.

	PIPE_BIND_STREAM_OUTPUT: A stream output buffer.

	PIPE_BIND_CUSTOM:

	PIPE_BIND_SCANOUT: A front color buffer or scanout buffer.

	PIPE_BIND_SHARED: A sharable buffer that can be given to another
process.

	PIPE_BIND_GLOBAL: A buffer that can be mapped into the global
address space of a compute program.

	PIPE_BIND_SHADER_BUFFER: A buffer without a format that can be bound
to a shader and can be used with load, store, and atomic instructions.

	PIPE_BIND_SHADER_IMAGE: A buffer or texture with a format that can be
bound to a shader and can be used with load, store, and atomic instructions.

	PIPE_BIND_COMPUTE_RESOURCE: A buffer or texture that can be
bound to the compute program as a shader resource.

	PIPE_BIND_COMMAND_ARGS_BUFFER: A buffer that may be sourced by the
GPU command processor. It can contain, for example, the arguments to
indirect draw calls.

PIPE_USAGE_*

The PIPE_USAGE enums are hints about the expected usage pattern of a resource.
Note that drivers must always support read and write CPU access at any time
no matter which hint they got.

	PIPE_USAGE_DEFAULT: Optimized for fast GPU access.

	PIPE_USAGE_IMMUTABLE: Optimized for fast GPU access and the resource is
not expected to be mapped or changed (even by the GPU) after the first upload.

	PIPE_USAGE_DYNAMIC: Expect frequent write-only CPU access. What is
uploaded is expected to be used at least several times by the GPU.

	PIPE_USAGE_STREAM: Expect frequent write-only CPU access. What is
uploaded is expected to be used only once by the GPU.

	PIPE_USAGE_STAGING: Optimized for fast CPU access.

Methods

XXX to-do

get_name

Returns an identifying name for the screen.

The returned string should remain valid and immutable for the lifetime of
pipe_screen.

get_vendor

Returns the screen vendor.

The returned string should remain valid and immutable for the lifetime of
pipe_screen.

get_device_vendor

Returns the actual vendor of the device driving the screen
(as opposed to the driver vendor).

The returned string should remain valid and immutable for the lifetime of
pipe_screen.

get_param

Get an integer/boolean screen parameter.

param is one of the PIPE_CAP_* names.

get_paramf

Get a floating-point screen parameter.

param is one of the PIPE_CAPF_* names.

context_create

Create a pipe_context.

priv is private data of the caller, which may be put to various
unspecified uses, typically to do with implementing swapbuffers
and/or front-buffer rendering.

is_format_supported

Determine if a resource in the given format can be used in a specific manner.

format the resource format

target one of the PIPE_TEXTURE_x flags

sample_count the number of samples. 0 and 1 mean no multisampling,
the maximum allowed legal value is 32.

storage_sample_count the number of storage samples. This must be <=
sample_count. See the documentation of pipe_resource::nr_storage_samples.

bindings is a bitmask of PIPE_BIND_* flags.

Returns TRUE if all usages can be satisfied.

can_create_resource

Check if a resource can actually be created (but don’t actually allocate any
memory). This is used to implement OpenGL’s proxy textures. Typically, a
driver will simply check if the total size of the given resource is less than
some limit.

For PIPE_TEXTURE_CUBE, the pipe_resource::array_size field should be 6.

resource_create

Create a new resource from a template.
The following fields of the pipe_resource must be specified in the template:

target one of the pipe_texture_target enums.
Note that PIPE_BUFFER and PIPE_TEXTURE_X are not really fundamentally different.
Modern APIs allow using buffers as shader resources.

format one of the pipe_format enums.

width0 the width of the base mip level of the texture or size of the buffer.

height0 the height of the base mip level of the texture
(1 for 1D or 1D array textures).

depth0 the depth of the base mip level of the texture
(1 for everything else).

array_size the array size for 1D and 2D array textures.
For cube maps this must be 6, for other textures 1.

last_level the last mip map level present.

nr_samples: Number of samples determining quality, driving the rasterizer,
shading, and framebuffer. It is the number of samples seen by the whole
graphics pipeline. 0 and 1 specify a resource which isn’t multisampled.

nr_storage_samples: Only color buffers can set this lower than nr_samples.
Multiple samples within a pixel can have the same color. nr_storage_samples
determines how many slots for different colors there are per pixel.
If there are not enough slots to store all sample colors, some samples will
have an undefined color (called “undefined samples”).

The resolve blit behavior is driver-specific, but can be one of these two:
1. Only defined samples will be averaged. Undefined samples will be ignored.
2. Undefined samples will be approximated by looking at surrounding defined

samples (even in different pixels).

Blits and MSAA texturing: If the sample being fetched is undefined, one of
the defined samples is returned instead.

Sample shading (set_min_samples) will operate at a sample frequency that
is at most nr_storage_samples. Greater min_samples values will be
replaced by nr_storage_samples.

usage one of the PIPE_USAGE_* flags.

bind bitmask of the PIPE_BIND_* flags.

flags bitmask of PIPE_RESOURCE_FLAG flags.

resource_changed

Mark a resource as changed so derived internal resources will be recreated
on next use.

When importing external images that can’t be directly used as texture sampler
source, internal copies may have to be created that the hardware can sample
from. When those resources are reimported, the image data may have changed, and
the previously derived internal resources must be invalidated to avoid sampling
from old copies.

resource_destroy

Destroy a resource. A resource is destroyed if it has no more references.

get_timestamp

Query a timestamp in nanoseconds. The returned value should match
PIPE_QUERY_TIMESTAMP. This function returns immediately and doesn’t
wait for rendering to complete (which cannot be achieved with queries).

get_driver_query_info

Return a driver-specific query. If the info parameter is NULL,
the number of available queries is returned. Otherwise, the driver
query at the specified index is returned in info.
The function returns non-zero on success.
The driver-specific query is described with the pipe_driver_query_info
structure.

get_driver_query_group_info

Return a driver-specific query group. If the info parameter is NULL,
the number of available groups is returned. Otherwise, the driver
query group at the specified index is returned in info.
The function returns non-zero on success.
The driver-specific query group is described with the
pipe_driver_query_group_info structure.

get_disk_shader_cache

Returns a pointer to a driver-specific on-disk shader cache. If the driver
failed to create the cache or does not support an on-disk shader cache NULL is
returned. The callback itself may also be NULL if the driver doesn’t support
an on-disk shader cache.

Thread safety

Screen methods are required to be thread safe. While gallium rendering
contexts are not required to be thread safe, it is required to be safe to use
different contexts created with the same screen in different threads without
locks. It is also required to be safe using screen methods in a thread, while
using one of its contexts in another (without locks).

Resources and derived objects

Resources represent objects that hold data: textures and buffers.

They are mostly modelled after the resources in Direct3D 10/11, but with a
different transfer/update mechanism, and more features for OpenGL support.

Resources can be used in several ways, and it is required to specify all planned uses through an appropriate set of bind flags.

TODO: write much more on resources

Transfers

Transfers are the mechanism used to access resources with the CPU.

OpenGL: OpenGL supports mapping buffers and has inline transfer functions for both buffers and textures

D3D11: D3D11 lacks transfers, but has special resource types that are mappable to the CPU address space

TODO: write much more on transfers

Resource targets

Resource targets determine the type of a resource.

Note that drivers may not actually have the restrictions listed regarding
coordinate normalization and wrap modes, and in fact efficient OpenCL
support will probably require drivers that don’t have any of them, which
will probably be advertised with an appropriate cap.

TODO: document all targets. Note that both 3D and cube have restrictions
that depend on the hardware generation.

PIPE_BUFFER

Buffer resource: can be used as a vertex, index, constant buffer
(appropriate bind flags must be requested).

Buffers do not really have a format, it’s just bytes, but they are required
to have their type set to a R8 format (without a specific “just byte” format,
R8_UINT would probably make the most sense, but for historic reasons R8_UNORM
is ok too). (This is just to make some shared buffer/texture code easier so
format size can be queried.)
width0 serves as size, most other resource properties don’t apply but must be
set appropriately (depth0/height0/array_size must be 1, last_level 0).

They can be bound to stream output if supported.
TODO: what about the restrictions lifted by the several later GL transform feedback extensions? How does one advertise that in Gallium?

They can be also be bound to a shader stage (for sampling) as usual by
creating an appropriate sampler view, if the driver supports PIPE_CAP_TEXTURE_BUFFER_OBJECTS.
This supports larger width than a 1d texture would
(TODO limit currently unspecified, minimum must be at least 65536).
Only the “direct fetch” sample opcodes are supported (TGSI_OPCODE_TXF,
TGSI_OPCODE_SAMPLE_I) so the sampler state (coord wrapping etc.)
is mostly ignored (with SAMPLE_I there’s no sampler state at all).

They can be also be bound to the framebuffer (only as color render target, not
depth buffer, also there cannot be a depth buffer bound at the same time) as usual
by creating an appropriate view (this is not usable in OpenGL).
TODO there’s no CAP bit currently for this, there’s also unspecified size etc. limits
TODO: is there any chance of supporting GL pixel buffer object acceleration with this?

OpenGL: vertex buffers in GL 1.5 or GL_ARB_vertex_buffer_object

	Binding to stream out requires GL 3.0 or GL_NV_transform_feedback

	Binding as constant buffers requires GL 3.1 or GL_ARB_uniform_buffer_object

	Binding to a sampling stage requires GL 3.1 or GL_ARB_texture_buffer_object

D3D11: buffer resources
- Binding to a render target requires D3D_FEATURE_LEVEL_10_0

PIPE_TEXTURE_1D / PIPE_TEXTURE_1D_ARRAY

1D surface accessed with normalized coordinates.
1D array textures are supported depending on PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS.

	
	If PIPE_CAP_NPOT_TEXTURES is not supported,

	width must be a power of two

	height0 must be 1

	depth0 must be 1

	array_size must be 1 for PIPE_TEXTURE_1D

	Mipmaps can be used

	Must use normalized coordinates

OpenGL: GL_TEXTURE_1D in GL 1.0

	PIPE_CAP_NPOT_TEXTURES is equivalent to GL 2.0 or GL_ARB_texture_non_power_of_two

D3D11: 1D textures in D3D_FEATURE_LEVEL_10_0

PIPE_TEXTURE_RECT

2D surface with OpenGL GL_TEXTURE_RECTANGLE semantics.

	depth0 must be 1

	array_size must be 1

	last_level must be 0

	Must use unnormalized coordinates

	Must use a clamp wrap mode

OpenGL: GL_TEXTURE_RECTANGLE in GL 3.1 or GL_ARB_texture_rectangle or GL_NV_texture_rectangle

OpenCL: can create OpenCL images based on this, that can then be sampled arbitrarily

D3D11: not supported (only PIPE_TEXTURE_2D with normalized coordinates is supported)

PIPE_TEXTURE_2D / PIPE_TEXTURE_2D_ARRAY

2D surface accessed with normalized coordinates.
2D array textures are supported depending on PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS.

	
	If PIPE_CAP_NPOT_TEXTURES is not supported,

	width and height must be powers of two

	depth0 must be 1

	array_size must be 1 for PIPE_TEXTURE_2D

	Mipmaps can be used

	Must use normalized coordinates

	No special restrictions on wrap modes

OpenGL: GL_TEXTURE_2D in GL 1.0

	PIPE_CAP_NPOT_TEXTURES is equivalent to GL 2.0 or GL_ARB_texture_non_power_of_two

OpenCL: can create OpenCL images based on this, that can then be sampled arbitrarily

D3D11: 2D textures

	PIPE_CAP_NPOT_TEXTURES is equivalent to D3D_FEATURE_LEVEL_9_3

PIPE_TEXTURE_3D

3-dimensional array of texels.
Mipmap dimensions are reduced in all 3 coordinates.

	
	If PIPE_CAP_NPOT_TEXTURES is not supported,

	width, height and depth must be powers of two

	array_size must be 1

	Must use normalized coordinates

OpenGL: GL_TEXTURE_3D in GL 1.2 or GL_EXT_texture3D

	PIPE_CAP_NPOT_TEXTURES is equivalent to GL 2.0 or GL_ARB_texture_non_power_of_two

D3D11: 3D textures

	PIPE_CAP_NPOT_TEXTURES is equivalent to D3D_FEATURE_LEVEL_10_0

PIPE_TEXTURE_CUBE / PIPE_TEXTURE_CUBE_ARRAY

Cube maps consist of 6 2D faces.
The 6 surfaces form an imaginary cube, and sampling happens by mapping an
input 3-vector to the point of the cube surface in that direction.
Cube map arrays are supported depending on PIPE_CAP_CUBE_MAP_ARRAY.

Sampling may be optionally seamless if a driver supports it (PIPE_CAP_SEAMLESS_CUBE_MAP),
resulting in filtering taking samples from multiple surfaces near to the edge.

	Width and height must be equal

	depth0 must be 1

	array_size must be a multiple of 6

	
	If PIPE_CAP_NPOT_TEXTURES is not supported,

	width and height must be powers of two

	Must use normalized coordinates

OpenGL: GL_TEXTURE_CUBE_MAP in GL 1.3 or EXT_texture_cube_map

	PIPE_CAP_NPOT_TEXTURES is equivalent to GL 2.0 or GL_ARB_texture_non_power_of_two

	Seamless cube maps require GL 3.2 or GL_ARB_seamless_cube_map or GL_AMD_seamless_cubemap_per_texture

	Cube map arrays require GL 4.0 or GL_ARB_texture_cube_map_array

D3D11: 2D array textures with the D3D11_RESOURCE_MISC_TEXTURECUBE flag

	PIPE_CAP_NPOT_TEXTURES is equivalent to D3D_FEATURE_LEVEL_10_0

	Cube map arrays require D3D_FEATURE_LEVEL_10_1

Surfaces

Surfaces are views of a resource that can be bound as a framebuffer to serve as the render target or depth buffer.

TODO: write much more on surfaces

OpenGL: FBOs are collections of surfaces in GL 3.0 or GL_ARB_framebuffer_object

D3D11: render target views and depth/stencil views

Sampler views

Sampler views are views of a resource that can be bound to a pipeline stage to be sampled from shaders.

TODO: write much more on sampler views

OpenGL: texture objects are actually sampler view and resource in a single unit

D3D11: shader resource views

Formats in gallium

Gallium format names mostly follow D3D10 conventions, with some extensions.

Format names like XnYnZnWn have the X component in the lowest-address n bits
and the W component in the highest-address n bits; for B8G8R8A8, byte 0 is
blue and byte 3 is alpha. Note that platform endianness is not considered
in this definition. In C:

struct x8y8z8w8 { uint8_t x, y, z, w; };

Format aliases like XYZWstrq are (s+t+r+q)-bit integers in host endianness,
with the X component in the s least-significant bits of the integer. In C:

uint32_t xyzw8888 = (x << 0) | (y << 8) | (z << 16) | (w << 24);

Format suffixes affect the interpretation of the channel:

	SINT: N bit signed integer [-2^(N-1) … 2^(N-1) - 1]

	SNORM: N bit signed integer normalized to [-1 … 1]

	SSCALED: N bit signed integer [-2^(N-1) … 2^(N-1) - 1]

	FIXED: Signed fixed point integer, (N/2 - 1) bits of mantissa

	FLOAT: N bit IEEE754 float

	NORM: Normalized integers, signed or unsigned per channel

	UINT: N bit unsigned integer [0 … 2^N - 1]

	UNORM: N bit unsigned integer normalized to [0 … 1]

	USCALED: N bit unsigned integer [0 … 2^N - 1]

The difference between SINT and SSCALED is that the former are pure
integers in shaders, while the latter are floats; likewise for UINT versus
USCALED.

There are two exceptions for FLOAT. R9G9B9E5_FLOAT is nine bits
each of red green and blue mantissa, with a shared five bit exponent.
R11G11B10_FLOAT is five bits of exponent and five or six bits of mantissa
for each color channel.

For the NORM suffix, the signedness of each channel is indicated with an
S or U after the number of channel bits, as in R5SG5SB6U_NORM.

The SRGB suffix is like UNORM in range, but in the sRGB colorspace.

Compressed formats are named first by the compression format string (DXT1,
ETC1, etc), followed by a format-specific subtype. Refer to the
appropriate compression spec for details.

Formats used in video playback are named by their FOURCC code.

Format names with an embedded underscore are subsampled. R8G8_B8G8 is a
single 32-bit block of two pixels, where the R and B values are repeated in
both pixels.

References

DirectX Graphics Infrastructure documentation on DXGI_FORMAT enum:
http://msdn.microsoft.com/en-us/library/windows/desktop/bb173059%28v=vs.85%29.aspx

FOURCC codes for YUV formats:
http://www.fourcc.org/yuv.php

Context

A Gallium rendering context encapsulates the state which effects 3D
rendering such as blend state, depth/stencil state, texture samplers,
etc.

Note that resource/texture allocation is not per-context but per-screen.

Methods

CSO State

All Constant State Object (CSO) state is created, bound, and destroyed,
with triplets of methods that all follow a specific naming scheme.
For example, create_blend_state, bind_blend_state, and
destroy_blend_state.

CSO objects handled by the context object:

	Blend: *_blend_state

	Sampler: Texture sampler states are bound separately for fragment,
vertex, geometry and compute shaders with the bind_sampler_states
function. The start and num_samplers parameters indicate a range
of samplers to change. NOTE: at this time, start is always zero and
the CSO module will always replace all samplers at once (no sub-ranges).
This may change in the future.

	Rasterizer: *_rasterizer_state

	Depth, Stencil, & Alpha: *_depth_stencil_alpha_state

	Shader: These are create, bind and destroy methods for vertex,
fragment and geometry shaders.

	Vertex Elements: *_vertex_elements_state

Resource Binding State

This state describes how resources in various flavours (textures,
buffers, surfaces) are bound to the driver.

	set_constant_buffer sets a constant buffer to be used for a given shader
type. index is used to indicate which buffer to set (some apis may allow
multiple ones to be set, and binding a specific one later, though drivers
are mostly restricted to the first one right now).

	set_framebuffer_state

	set_vertex_buffers

Non-CSO State

These pieces of state are too small, variable, and/or trivial to have CSO
objects. They all follow simple, one-method binding calls, e.g.
set_blend_color.

	set_stencil_ref sets the stencil front and back reference values
which are used as comparison values in stencil test.

	set_blend_color

	set_sample_mask sets the per-context multisample sample mask. Note
that this takes effect even if multisampling is not explicitly enabled if
the frambuffer surface(s) are multisampled. Also, this mask is AND-ed
with the optional fragment shader sample mask output (when emitted).

	set_sample_locations sets the sample locations used for rasterization.
`get_sample_position` still returns the default locations. When NULL,
the default locations are used.

	set_min_samples sets the minimum number of samples that must be run.

	set_clip_state

	set_polygon_stipple

	set_scissor_states sets the bounds for the scissor test, which culls
pixels before blending to render targets. If the Rasterizer does
not have the scissor test enabled, then the scissor bounds never need to
be set since they will not be used. Note that scissor xmin and ymin are
inclusive, but xmax and ymax are exclusive. The inclusive ranges in x
and y would be [xmin..xmax-1] and [ymin..ymax-1]. The number of scissors
should be the same as the number of set viewports and can be up to
PIPE_MAX_VIEWPORTS.

	set_viewport_states

	set_window_rectangles sets the window rectangles to be used for
rendering, as defined by GL_EXT_window_rectangles. There are two
modes - include and exclude, which define whether the supplied
rectangles are to be used for including fragments or excluding
them. All of the rectangles are ORed together, so in exclude mode,
any fragment inside any rectangle would be culled, while in include
mode, any fragment outside all rectangles would be culled. xmin/ymin
are inclusive, while xmax/ymax are exclusive (same as scissor states
above). Note that this only applies to draws, not clears or
blits. (Blits have their own way to pass the requisite rectangles
in.)

	set_tess_state configures the default tessellation parameters:

	default_outer_level is the default value for the outer tessellation
levels. This corresponds to GL’s PATCH_DEFAULT_OUTER_LEVEL.

	default_inner_level is the default value for the inner tessellation
levels. This corresponds to GL’s PATCH_DEFAULT_INNER_LEVEL.

	set_debug_callback sets the callback to be used for reporting
various debug messages, eventually reported via KHR_debug and
similar mechanisms.

Samplers

pipe_sampler_state objects control how textures are sampled (coordinate
wrap modes, interpolation modes, etc). Note that samplers are not used
for texture buffer objects. That is, pipe_context::bind_sampler_views()
will not bind a sampler if the corresponding sampler view refers to a
PIPE_BUFFER resource.

Sampler Views

These are the means to bind textures to shader stages. To create one, specify
its format, swizzle and LOD range in sampler view template.

If texture format is different than template format, it is said the texture
is being cast to another format. Casting can be done only between compatible
formats, that is formats that have matching component order and sizes.

Swizzle fields specify the way in which fetched texel components are placed
in the result register. For example, swizzle_r specifies what is going to be
placed in first component of result register.

The first_level and last_level fields of sampler view template specify
the LOD range the texture is going to be constrained to. Note that these
values are in addition to the respective min_lod, max_lod values in the
pipe_sampler_state (that is if min_lod is 2.0, and first_level 3, the first mip
level used for sampling from the resource is effectively the fifth).

The first_layer and last_layer fields specify the layer range the
texture is going to be constrained to. Similar to the LOD range, this is added
to the array index which is used for sampling.

	set_sampler_views binds an array of sampler views to a shader stage.
Every binding point acquires a reference
to a respective sampler view and releases a reference to the previous
sampler view.

Sampler views outside of [start_slot, start_slot + num_views) are
unmodified. If views is NULL, the behavior is the same as if
views[n] was NULL for the entire range, ie. releasing the reference
for all the sampler views in the specified range.

	create_sampler_view creates a new sampler view. texture is associated
with the sampler view which results in sampler view holding a reference
to the texture. Format specified in template must be compatible
with texture format.

	sampler_view_destroy destroys a sampler view and releases its reference
to associated texture.

Hardware Atomic buffers

Buffers containing hw atomics are required to support the feature
on some drivers.

Drivers that require this need to fill the set_hw_atomic_buffers method.

Shader Resources

Shader resources are textures or buffers that may be read or written
from a shader without an associated sampler. This means that they
have no support for floating point coordinates, address wrap modes or
filtering.

There are 2 types of shader resources: buffers and images.

Buffers are specified using the set_shader_buffers method.

Images are specified using the set_shader_images method. When binding
images, the level, first_layer and last_layer pipe_image_view
fields specify the mipmap level and the range of layers the image will be
constrained to.

Surfaces

These are the means to use resources as color render targets or depthstencil
attachments. To create one, specify the mip level, the range of layers, and
the bind flags (either PIPE_BIND_DEPTH_STENCIL or PIPE_BIND_RENDER_TARGET).
Note that layer values are in addition to what is indicated by the geometry
shader output variable XXX_FIXME (that is if first_layer is 3 and geometry
shader indicates index 2, the 5th layer of the resource will be used). These
first_layer and last_layer parameters will only be used for 1d array, 2d array,
cube, and 3d textures otherwise they are 0.

	create_surface creates a new surface.

	surface_destroy destroys a surface and releases its reference to the
associated resource.

Stream output targets

Stream output, also known as transform feedback, allows writing the primitives
produced by the vertex pipeline to buffers. This is done after the geometry
shader or vertex shader if no geometry shader is present.

The stream output targets are views into buffer resources which can be bound
as stream outputs and specify a memory range where it’s valid to write
primitives. The pipe driver must implement memory protection such that any
primitives written outside of the specified memory range are discarded.

Two stream output targets can use the same resource at the same time, but
with a disjoint memory range.

Additionally, the stream output target internally maintains the offset
into the buffer which is incremented everytime something is written to it.
The internal offset is equal to how much data has already been written.
It can be stored in device memory and the CPU actually doesn’t have to query
it.

The stream output target can be used in a draw command to provide
the vertex count. The vertex count is derived from the internal offset
discussed above.

	create_stream_output_target create a new target.

	stream_output_target_destroy destroys a target. Users of this should
use pipe_so_target_reference instead.

	set_stream_output_targets binds stream output targets. The parameter
offset is an array which specifies the internal offset of the buffer. The
internal offset is, besides writing, used for reading the data during the
draw_auto stage, i.e. it specifies how much data there is in the buffer
for the purposes of the draw_auto stage. -1 means the buffer should
be appended to, and everything else sets the internal offset.

NOTE: The currently-bound vertex or geometry shader must be compiled with
the properly-filled-in structure pipe_stream_output_info describing which
outputs should be written to buffers and how. The structure is part of
pipe_shader_state.

Clearing

Clear is one of the most difficult concepts to nail down to a single
interface (due to both different requirements from APIs and also driver/hw
specific differences).

clear initializes some or all of the surfaces currently bound to
the framebuffer to particular RGBA, depth, or stencil values.
Currently, this does not take into account color or stencil write masks (as
used by GL), and always clears the whole surfaces (no scissoring as used by
GL clear or explicit rectangles like d3d9 uses). It can, however, also clear
only depth or stencil in a combined depth/stencil surface.
If a surface includes several layers then all layers will be cleared.

clear_render_target clears a single color rendertarget with the specified
color value. While it is only possible to clear one surface at a time (which can
include several layers), this surface need not be bound to the framebuffer.
If render_condition_enabled is false, any current rendering condition is ignored
and the clear will be unconditional.

clear_depth_stencil clears a single depth, stencil or depth/stencil surface
with the specified depth and stencil values (for combined depth/stencil buffers,
it is also possible to only clear one or the other part). While it is only
possible to clear one surface at a time (which can include several layers),
this surface need not be bound to the framebuffer.
If render_condition_enabled is false, any current rendering condition is ignored
and the clear will be unconditional.

clear_texture clears a non-PIPE_BUFFER resource’s specified level
and bounding box with a clear value provided in that resource’s native
format.

clear_buffer clears a PIPE_BUFFER resource with the specified clear value
(which may be multiple bytes in length). Logically this is a memset with a
multi-byte element value starting at offset bytes from resource start, going
for size bytes. It is guaranteed that size % clear_value_size == 0.

Evaluating Depth Buffers

evaluate_depth_buffer is a hint to decompress the current depth buffer
assuming the current sample locations to avoid problems that could arise when
using programmable sample locations.

If a depth buffer is rendered with different sample location state than
what is current at the time of reading the depth buffer, the values may differ
because depth buffer compression can depend the sample locations.

Uploading

For simple single-use uploads, use pipe_context::stream_uploader or
pipe_context::const_uploader. The latter should be used for uploading
constants, while the former should be used for uploading everything else.
PIPE_USAGE_STREAM is implied in both cases, so don’t use the uploaders
for static allocations.

Usage:

Call u_upload_alloc or u_upload_data as many times as you want. After you are
done, call u_upload_unmap. If the driver doesn’t support persistent mappings,
u_upload_unmap makes sure the previously mapped memory is unmapped.

Gotchas:
- Always fill the memory immediately after u_upload_alloc. Any following call
to u_upload_alloc and u_upload_data can unmap memory returned by previous
u_upload_alloc.
- Don’t interleave calls using stream_uploader and const_uploader. If you use
one of them, do the upload, unmap, and only then can you use the other one.

Drawing

draw_vbo draws a specified primitive. The primitive mode and other
properties are described by pipe_draw_info.

The mode, start, and count fields of pipe_draw_info specify the
the mode of the primitive and the vertices to be fetched, in the range between
start to start``+``count-1, inclusive.

Every instance with instanceID in the range between start_instance and
start_instance``+``instance_count-1, inclusive, will be drawn.

If index_size != 0, all vertex indices will be looked up from the index
buffer.

In indexed draw, min_index and max_index respectively provide a lower
and upper bound of the indices contained in the index buffer inside the range
between start to start``+``count-1. This allows the driver to
determine which subset of vertices will be referenced during te draw call
without having to scan the index buffer. Providing a over-estimation of the
the true bounds, for example, a min_index and max_index of 0 and
0xffffffff respectively, must give exactly the same rendering, albeit with less
performance due to unreferenced vertex buffers being unnecessarily DMA’ed or
processed. Providing a underestimation of the true bounds will result in
undefined behavior, but should not result in program or system failure.

In case of non-indexed draw, min_index should be set to
start and max_index should be set to start``+``count-1.

index_bias is a value added to every vertex index after lookup and before
fetching vertex attributes.

When drawing indexed primitives, the primitive restart index can be
used to draw disjoint primitive strips. For example, several separate
line strips can be drawn by designating a special index value as the
restart index. The primitive_restart flag enables/disables this
feature. The restart_index field specifies the restart index value.

When primitive restart is in use, array indexes are compared to the
restart index before adding the index_bias offset.

If a given vertex element has instance_divisor set to 0, it is said
it contains per-vertex data and effective vertex attribute address needs
to be recalculated for every index.

attribAddr = stride * index + src_offset

If a given vertex element has instance_divisor set to non-zero,
it is said it contains per-instance data and effective vertex attribute
address needs to recalculated for every instance_divisor-th instance.

attribAddr = stride * instanceID / instance_divisor + src_offset

In the above formulas, src_offset is taken from the given vertex element
and stride is taken from a vertex buffer associated with the given
vertex element.

The calculated attribAddr is used as an offset into the vertex buffer to
fetch the attribute data.

The value of instanceID can be read in a vertex shader through a system
value register declared with INSTANCEID semantic name.

Queries

Queries gather some statistic from the 3D pipeline over one or more
draws. Queries may be nested, though not all state trackers exercise this.

Queries can be created with create_query and deleted with
destroy_query. To start a query, use begin_query, and when finished,
use end_query to end the query.

create_query takes a query type (PIPE_QUERY_*), as well as an index,
which is the vertex stream for PIPE_QUERY_PRIMITIVES_GENERATED and
PIPE_QUERY_PRIMITIVES_EMITTED, and allocates a query structure.

begin_query will clear/reset previous query results.

get_query_result is used to retrieve the results of a query. If
the wait parameter is TRUE, then the get_query_result call
will block until the results of the query are ready (and TRUE will be
returned). Otherwise, if the wait parameter is FALSE, the call
will not block and the return value will be TRUE if the query has
completed or FALSE otherwise.

get_query_result_resource is used to store the result of a query into
a resource without synchronizing with the CPU. This write will optionally
wait for the query to complete, and will optionally write whether the value
is available instead of the value itself.

set_active_query_state Set whether all current non-driver queries except
TIME_ELAPSED are active or paused.

The interface currently includes the following types of queries:

PIPE_QUERY_OCCLUSION_COUNTER counts the number of fragments which
are written to the framebuffer without being culled by
Depth, Stencil, & Alpha testing or shader KILL instructions.
The result is an unsigned 64-bit integer.
This query can be used with render_condition.

In cases where a boolean result of an occlusion query is enough,
PIPE_QUERY_OCCLUSION_PREDICATE should be used. It is just like
PIPE_QUERY_OCCLUSION_COUNTER except that the result is a boolean
value of FALSE for cases where COUNTER would result in 0 and TRUE
for all other cases.
This query can be used with render_condition.

In cases where a conservative approximation of an occlusion query is enough,
PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE should be used. It behaves
like PIPE_QUERY_OCCLUSION_PREDICATE, except that it may return TRUE in
additional, implementation-dependent cases.
This query can be used with render_condition.

PIPE_QUERY_TIME_ELAPSED returns the amount of time, in nanoseconds,
the context takes to perform operations.
The result is an unsigned 64-bit integer.

PIPE_QUERY_TIMESTAMP returns a device/driver internal timestamp,
scaled to nanoseconds, recorded after all commands issued prior to
end_query have been processed.
This query does not require a call to begin_query.
The result is an unsigned 64-bit integer.

PIPE_QUERY_TIMESTAMP_DISJOINT can be used to check the
internal timer resolution and whether the timestamp counter has become
unreliable due to things like throttling etc. - only if this is FALSE
a timestamp query (within the timestamp_disjoint query) should be trusted.
The result is a 64-bit integer specifying the timer resolution in Hz,
followed by a boolean value indicating whether the timestamp counter
is discontinuous or disjoint.

PIPE_QUERY_PRIMITIVES_GENERATED returns a 64-bit integer indicating
the number of primitives processed by the pipeline (regardless of whether
stream output is active or not).

PIPE_QUERY_PRIMITIVES_EMITTED returns a 64-bit integer indicating
the number of primitives written to stream output buffers.

PIPE_QUERY_SO_STATISTICS returns 2 64-bit integers corresponding to
the result of
PIPE_QUERY_PRIMITIVES_EMITTED and
the number of primitives that would have been written to stream output buffers
if they had infinite space available (primitives_storage_needed), in this order.
XXX the 2nd value is equivalent to PIPE_QUERY_PRIMITIVES_GENERATED but it is
unclear if it should be increased if stream output is not active.

PIPE_QUERY_SO_OVERFLOW_PREDICATE returns a boolean value indicating
whether a selected stream output target has overflowed as a result of the
commands issued between begin_query and end_query.
This query can be used with render_condition. The output stream is
selected by the stream number passed to create_query.

PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE returns a boolean value indicating
whether any stream output target has overflowed as a result of the commands
issued between begin_query and end_query. This query can be used
with render_condition, and its result is the logical OR of multiple
PIPE_QUERY_SO_OVERFLOW_PREDICATE queries, one for each stream output
target.

PIPE_QUERY_GPU_FINISHED returns a boolean value indicating whether
all commands issued before end_query have completed. However, this
does not imply serialization.
This query does not require a call to begin_query.

PIPE_QUERY_PIPELINE_STATISTICS returns an array of the following
64-bit integers:
Number of vertices read from vertex buffers.
Number of primitives read from vertex buffers.
Number of vertex shader threads launched.
Number of geometry shader threads launched.
Number of primitives generated by geometry shaders.
Number of primitives forwarded to the rasterizer.
Number of primitives rasterized.
Number of fragment shader threads launched.
Number of tessellation control shader threads launched.
Number of tessellation evaluation shader threads launched.
If a shader type is not supported by the device/driver,
the corresponding values should be set to 0.

PIPE_QUERY_PIPELINE_STATISTICS_SINGLE returns a single counter from
the PIPE_QUERY_PIPELINE_STATISTICS group. The specific counter must
be selected when calling create_query by passing one of the
PIPE_STAT_QUERY enums as the query’s index.

Gallium does not guarantee the availability of any query types; one must
always check the capabilities of the Screen first.

Conditional Rendering

A drawing command can be skipped depending on the outcome of a query
(typically an occlusion query, or streamout overflow predicate).
The render_condition function specifies the query which should be checked
prior to rendering anything. Functions always honoring render_condition include
(and are limited to) draw_vbo and clear.
The blit, clear_render_target and clear_depth_stencil functions (but
not resource_copy_region, which seems inconsistent) can also optionally honor
the current render condition.

If render_condition is called with query = NULL, conditional
rendering is disabled and drawing takes place normally.

If render_condition is called with a non-null query subsequent
drawing commands will be predicated on the outcome of the query.
Commands will be skipped if condition is equal to the predicate result
(for non-boolean queries such as OCCLUSION_QUERY, zero counts as FALSE,
non-zero as TRUE).

If mode is PIPE_RENDER_COND_WAIT the driver will wait for the
query to complete before deciding whether to render.

If mode is PIPE_RENDER_COND_NO_WAIT and the query has not yet
completed, the drawing command will be executed normally. If the query
has completed, drawing will be predicated on the outcome of the query.

If mode is PIPE_RENDER_COND_BY_REGION_WAIT or
PIPE_RENDER_COND_BY_REGION_NO_WAIT rendering will be predicated as above
for the non-REGION modes but in the case that an occlusion query returns
a non-zero result, regions which were occluded may be ommitted by subsequent
drawing commands. This can result in better performance with some GPUs.
Normally, if the occlusion query returned a non-zero result subsequent
drawing happens normally so fragments may be generated, shaded and
processed even where they’re known to be obscured.

Flushing

flush

PIPE_FLUSH_END_OF_FRAME: Whether the flush marks the end of frame.

PIPE_FLUSH_DEFERRED: It is not required to flush right away, but it is required
to return a valid fence. If fence_finish is called with the returned fence
and the context is still unflushed, and the ctx parameter of fence_finish is
equal to the context where the fence was created, fence_finish will flush
the context.

PIPE_FLUSH_ASYNC: The flush is allowed to be asynchronous. Unlike
PIPE_FLUSH_DEFERRED, the driver must still ensure that the returned fence
will finish in finite time. However, subsequent operations in other contexts of
the same screen are no longer guaranteed to happen after the flush. Drivers
which use this flag must implement pipe_context::fence_server_sync.

PIPE_FLUSH_HINT_FINISH: Hints to the driver that the caller will immediately
wait for the returned fence.

Additional flags may be set together with PIPE_FLUSH_DEFERRED for even
finer-grained fences. Note that as a general rule, GPU caches may not have been
flushed yet when these fences are signaled. Drivers are free to ignore these
flags and create normal fences instead. At most one of the following flags can
be specified:

PIPE_FLUSH_TOP_OF_PIPE: The fence should be signaled as soon as the next
command is ready to start executing at the top of the pipeline, before any of
its data is actually read (including indirect draw parameters).

PIPE_FLUSH_BOTTOM_OF_PIPE: The fence should be signaled as soon as the previous
command has finished executing on the GPU entirely (but data written by the
command may still be in caches and inaccessible to the CPU).

flush_resource

Flush the resource cache, so that the resource can be used
by an external client. Possible usage:
- flushing a resource before presenting it on the screen
- flushing a resource if some other process or device wants to use it
This shouldn’t be used to flush caches if the resource is only managed
by a single pipe_screen and is not shared with another process.
(i.e. you shouldn’t use it to flush caches explicitly if you want to e.g.
use the resource for texturing)

Fences

pipe_fence_handle, and related methods, are used to synchronize
execution between multiple parties. Examples include CPU <-> GPU synchronization,
renderer <-> windowing system, multiple external APIs, etc.

A pipe_fence_handle can either be ‘one time use’ or ‘re-usable’. A ‘one time use’
fence behaves like a traditional GPU fence. Once it reaches the signaled state it
is forever considered to be signaled.

Once a re-usable pipe_fence_handle becomes signaled, it can be reset
back into an unsignaled state. The pipe_fence_handle will be reset to
the unsignaled state by performing a wait operation on said object, i.e.
fence_server_sync. As a corollary to this behaviour, a re-usable
pipe_fence_handle can only have one waiter.

This behaviour is useful in producer <-> consumer chains. It helps avoid
unecessarily sharing a new pipe_fence_handle each time a new frame is
ready. Instead, the fences are exchanged once ahead of time, and access is synchronized
through GPU signaling instead of direct producer <-> consumer communication.

fence_server_sync inserts a wait command into the GPU’s command stream.

fence_server_signal inserts a signal command into the GPU’s command stream.

There are no guarantees that the wait/signal commands will be flushed when
calling fence_server_sync or fence_server_signal. An explicit
call to flush is required to make sure the commands are emitted to the GPU.

The Gallium implementation may implicitly flush the command stream during a
fence_server_sync or fence_server_signal call if necessary.

Resource Busy Queries

is_resource_referenced

Blitting

These methods emulate classic blitter controls.

These methods operate directly on pipe_resource objects, and stand
apart from any 3D state in the context. Blitting functionality may be
moved to a separate abstraction at some point in the future.

resource_copy_region blits a region of a resource to a region of another
resource, provided that both resources have the same format, or compatible
formats, i.e., formats for which copying the bytes from the source resource
unmodified to the destination resource will achieve the same effect of a
textured quad blitter.. The source and destination may be the same resource,
but overlapping blits are not permitted.
This can be considered the equivalent of a CPU memcpy.

blit blits a region of a resource to a region of another resource, including
scaling, format conversion, and up-/downsampling, as well as a destination clip
rectangle (scissors) and window rectangles. It can also optionally honor the
current render condition (but either way the blit itself never contributes
anything to queries currently gathering data).
As opposed to manually drawing a textured quad, this lets the pipe driver choose
the optimal method for blitting (like using a special 2D engine), and usually
offers, for example, accelerated stencil-only copies even where
PIPE_CAP_SHADER_STENCIL_EXPORT is not available.

Transfers

These methods are used to get data to/from a resource.

transfer_map creates a memory mapping and the transfer object
associated with it.
The returned pointer points to the start of the mapped range according to
the box region, not the beginning of the resource. If transfer_map fails,
the returned pointer to the buffer memory is NULL, and the pointer
to the transfer object remains unchanged (i.e. it can be non-NULL).

transfer_unmap remove the memory mapping for and destroy
the transfer object. The pointer into the resource should be considered
invalid and discarded.

texture_subdata and buffer_subdata perform a simplified
transfer for simple writes. Basically transfer_map, data write, and
transfer_unmap all in one.

The box parameter to some of these functions defines a 1D, 2D or 3D
region of pixels. This is self-explanatory for 1D, 2D and 3D texture
targets.

For PIPE_TEXTURE_1D_ARRAY and PIPE_TEXTURE_2D_ARRAY, the box::z and box::depth
fields refer to the array dimension of the texture.

For PIPE_TEXTURE_CUBE, the box:z and box::depth fields refer to the
faces of the cube map (z + depth <= 6).

For PIPE_TEXTURE_CUBE_ARRAY, the box:z and box::depth fields refer to both
the face and array dimension of the texture (face = z % 6, array = z / 6).

transfer_flush_region

If a transfer was created with FLUSH_EXPLICIT, it will not automatically
be flushed on write or unmap. Flushes must be requested with
transfer_flush_region. Flush ranges are relative to the mapped range, not
the beginning of the resource.

texture_barrier

This function flushes all pending writes to the currently-set surfaces and
invalidates all read caches of the currently-set samplers. This can be used
for both regular textures as well as for framebuffers read via FBFETCH.

memory_barrier

This function flushes caches according to which of the PIPE_BARRIER_* flags
are set.

resource_commit

This function changes the commit state of a part of a sparse resource. Sparse
resources are created by setting the PIPE_RESOURCE_FLAG_SPARSE flag when
calling resource_create. Initially, sparse resources only reserve a virtual
memory region that is not backed by memory (i.e., it is uncommitted). The
resource_commit function can be called to commit or uncommit parts (or all)
of a resource. The driver manages the underlying backing memory.

The contents of newly committed memory regions are undefined. Calling this
function to commit an already committed memory region is allowed and leaves its
content unchanged. Similarly, calling this function to uncommit an already
uncommitted memory region is allowed.

For buffers, the given box must be aligned to multiples of
PIPE_CAP_SPARSE_BUFFER_PAGE_SIZE. As an exception to this rule, if the size
of the buffer is not a multiple of the page size, changing the commit state of
the last (partial) page requires a box that ends at the end of the buffer
(i.e., box->x + box->width == buffer->width0).

PIPE_TRANSFER

These flags control the behavior of a transfer object.

	PIPE_TRANSFER_READ

	Resource contents read back (or accessed directly) at transfer create time.

	PIPE_TRANSFER_WRITE

	Resource contents will be written back at transfer_unmap time (or modified
as a result of being accessed directly).

	PIPE_TRANSFER_MAP_DIRECTLY

	a transfer should directly map the resource. May return NULL if not supported.

	PIPE_TRANSFER_DISCARD_RANGE

	The memory within the mapped region is discarded. Cannot be used with
PIPE_TRANSFER_READ.

	PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE

	Discards all memory backing the resource. It should not be used with
PIPE_TRANSFER_READ.

	PIPE_TRANSFER_DONTBLOCK

	Fail if the resource cannot be mapped immediately.

	PIPE_TRANSFER_UNSYNCHRONIZED

	Do not synchronize pending operations on the resource when mapping. The
interaction of any writes to the map and any operations pending on the
resource are undefined. Cannot be used with PIPE_TRANSFER_READ.

	PIPE_TRANSFER_FLUSH_EXPLICIT

	Written ranges will be notified later with transfer_flush_region.
Cannot be used with PIPE_TRANSFER_READ.

	PIPE_TRANSFER_PERSISTENT

	Allows the resource to be used for rendering while mapped.
PIPE_RESOURCE_FLAG_MAP_PERSISTENT must be set when creating
the resource.
If COHERENT is not set, memory_barrier(PIPE_BARRIER_MAPPED_BUFFER)
must be called to ensure the device can see what the CPU has written.

	PIPE_TRANSFER_COHERENT

	If PERSISTENT is set, this ensures any writes done by the device are
immediately visible to the CPU and vice versa.
PIPE_RESOURCE_FLAG_MAP_COHERENT must be set when creating
the resource.

Compute kernel execution

A compute program can be defined, bound or destroyed using
create_compute_state, bind_compute_state or
destroy_compute_state respectively.

Any of the subroutines contained within the compute program can be
executed on the device using the launch_grid method. This method
will execute as many instances of the program as elements in the
specified N-dimensional grid, hopefully in parallel.

The compute program has access to four special resources:

	GLOBAL represents a memory space shared among all the threads
running on the device. An arbitrary buffer created with the
PIPE_BIND_GLOBAL flag can be mapped into it using the
set_global_binding method.

	LOCAL represents a memory space shared among all the threads
running in the same working group. The initial contents of this
resource are undefined.

	PRIVATE represents a memory space local to a single thread.
The initial contents of this resource are undefined.

	INPUT represents a read-only memory space that can be
initialized at launch_grid time.

These resources use a byte-based addressing scheme, and they can be
accessed from the compute program by means of the LOAD/STORE TGSI
opcodes. Additional resources to be accessed using the same opcodes
may be specified by the user with the set_compute_resources
method.

In addition, normal texture sampling is allowed from the compute
program: bind_sampler_states may be used to set up texture
samplers for the compute stage and set_sampler_views may
be used to bind a number of sampler views to it.

Mipmap generation

If PIPE_CAP_GENERATE_MIPMAP is true, generate_mipmap can be used
to generate mipmaps for the specified texture resource.
It replaces texel image levels base_level+1 through
last_level for layers range from first_layer through last_layer.
It returns TRUE if mipmap generation succeeds, otherwise it
returns FALSE. Mipmap generation may fail when it is not supported
for particular texture types or formats.

Device resets

The state tracker can query or request notifications of when the GPU
is reset for whatever reason (application error, driver error). When
a GPU reset happens, the context becomes unusable and all related state
should be considered lost and undefined. Despite that, context
notifications are single-shot, i.e. subsequent calls to
get_device_reset_status will return PIPE_NO_RESET.

	get_device_reset_status queries whether a device reset has happened
since the last call or since the last notification by callback.

	set_device_reset_callback sets a callback which will be called when
a device reset is detected. The callback is only called synchronously.

Bindless

If PIPE_CAP_BINDLESS_TEXTURE is TRUE, the following pipe_context functions
are used to create/delete bindless handles, and to make them resident in the
current context when they are going to be used by shaders.

	create_texture_handle creates a 64-bit unsigned integer texture handle
that is going to be directly used in shaders.

	delete_texture_handle deletes a 64-bit unsigned integer texture handle.

	make_texture_handle_resident makes a 64-bit unsigned texture handle
resident in the current context to be accessible by shaders for texture
mapping.

	create_image_handle creates a 64-bit unsigned integer image handle that
is going to be directly used in shaders.

	delete_image_handle deletes a 64-bit unsigned integer image handle.

	make_image_handle_resident makes a 64-bit unsigned integer image handle
resident in the current context to be accessible by shaders for image loads,
stores and atomic operations.

Using several contexts

Several contexts from the same screen can be used at the same time. Objects
created on one context cannot be used in another context, but the objects
created by the screen methods can be used by all contexts.

Transfers

A transfer on one context is not expected to synchronize properly with
rendering on other contexts, thus only areas not yet used for rendering should
be locked.

A flush is required after transfer_unmap to expect other contexts to see the
uploaded data, unless:

	Using persistent mapping. Associated with coherent mapping, unmapping the
resource is also not required to use it in other contexts. Without coherent
mapping, memory_barrier(PIPE_BARRIER_MAPPED_BUFFER) should be called on the
context that has mapped the resource. No flush is required.

	Mapping the resource with PIPE_TRANSFER_MAP_DIRECTLY.

CSO

CSO, Constant State Objects, are a core part of Gallium’s API.

CSO work on the principle of reusable state; they are created by filling
out a state object with the desired properties, then passing that object
to a context. The context returns an opaque context-specific handle which
can be bound at any time for the desired effect.

	Blend
	Blend Factors

	Logical Operations

	Members
	dither

	logicop_enable

	logicop_func

	Per-rendertarget Members

	Depth, Stencil, & Alpha
	Depth Members

	Stencil Members

	Alpha Members

	Rasterizer
	clamp_vertex_color

	clamp_fragment_color
	Shading

	flatshade

	flatshade_first
	Polygons

	light_twoside
	Lines

	Points

	sprite_coord_enable

	sprite_coord_mode

	point_quad_rasterization
	Other Members

	Sampler
	Members

	Shader
	Members

	Vertex Elements
	Input Formats
	Position

	Colors

	Members

Blend

This state controls blending of the final fragments into the target rendering
buffers.

Blend Factors

The blend factors largely follow the same pattern as their counterparts
in other modern and legacy drawing APIs.

Dual source blend factors are supported for up to 1 MRT, although
you can advertise > 1 MRT, the stack cannot handle them for a few reasons.
There is no definition on how the 1D array of shader outputs should be mapped
to something that would be a 2D array (location, index). No current hardware
exposes > 1 MRT, and we should revisit this issue if anyone ever does.

Logical Operations

Logical operations, also known as logicops, lops, or rops, are supported.
Only two-operand logicops are available. When logicops are enabled, all other
blend state is ignored, including per-render-target state, so logicops are
performed on all render targets.

Warning

The blend_enable flag is ignored for all render targets when logical
operations are enabled.

For a source component s and destination component d, the logical
operations are defined as taking the bits of each channel of each component,
and performing one of the following operations per-channel:

	CLEAR: 0

	NOR: [image: \lnot(s \lor d)]

	AND_INVERTED: [image: \lnot s \land d]

	COPY_INVERTED: [image: \lnot s]

	AND_REVERSE: [image: s \land \lnot d]

	INVERT: [image: \lnot d]

	XOR: [image: s \oplus d]

	NAND: [image: \lnot(s \land d)]

	AND: [image: s \land d]

	EQUIV: [image: \lnot(s \oplus d)]

	NOOP: [image: d]

	OR_INVERTED: [image: \lnot s \lor d]

	COPY: [image: s]

	OR_REVERSE: [image: s \lor \lnot d]

	OR: [image: s \lor d]

	SET: 1

Note

The logical operation names and definitions match those of the OpenGL API,
and are similar to the ROP2 and ROP3 definitions of GDI. This is
intentional, to ease transitions to Gallium.

Members

These members affect all render targets.

dither

Whether dithering is enabled.

Note

Dithering is completely implementation-dependent. It may be ignored by
drivers for any reason, and some render targets may always or never be
dithered depending on their format or usage flags.

logicop_enable

Whether the blender should perform a logicop instead of blending.

logicop_func

The logicop to use. One of PIPE_LOGICOP.

	independent_blend_enable

	If enabled, blend state is different for each render target, and
for each render target set in the respective member of the rt array.
If disabled, blend state is the same for all render targets, and only
the first member of the rt array contains valid data.

	rt

	Contains the per-rendertarget blend state.

	alpha_to_coverage

	If enabled, the fragment’s alpha value is used to override the fragment’s
coverage mask. The coverage mask will be all zeros if the alpha value is
zero. The coverage mask will be all ones if the alpha value is one.
Otherwise, the number of bits set in the coverage mask will be proportional
to the alpha value. Note that this step happens regardless of whether
multisample is enabled or the destination buffer is multisampled.

	alpha_to_one

	If enabled, the fragment’s alpha value will be set to one. As with
alpha_to_coverage, this step happens regardless of whether multisample
is enabled or the destination buffer is multisampled.

Per-rendertarget Members

	blend_enable

	If blending is enabled, perform a blend calculation according to blend
functions and source/destination factors. Otherwise, the incoming fragment
color gets passed unmodified (but colormask still applies).

	rgb_func

	The blend function to use for rgb channels. One of PIPE_BLEND.

	rgb_src_factor

	The blend source factor to use for rgb channels. One of PIPE_BLENDFACTOR.

	rgb_dst_factor

	The blend destination factor to use for rgb channels. One of PIPE_BLENDFACTOR.

	alpha_func

	The blend function to use for the alpha channel. One of PIPE_BLEND.

	alpha_src_factor

	The blend source factor to use for the alpha channel. One of PIPE_BLENDFACTOR.

	alpha_dst_factor

	The blend destination factor to use for alpha channel. One of PIPE_BLENDFACTOR.

	colormask

	Bitmask of which channels to write. Combination of PIPE_MASK bits.

Depth, Stencil, & Alpha

These three states control the depth, stencil, and alpha tests, used to
discard fragments that have passed through the fragment shader.

Traditionally, these three tests have been clumped together in hardware, so
they are all stored in one structure.

During actual execution, the order of operations done on fragments is always:

	Alpha

	Stencil

	Depth

Depth Members

	enabled

	Whether the depth test is enabled.

	writemask

	Whether the depth buffer receives depth writes.

	func

	The depth test function. One of PIPE_FUNC.

Stencil Members

	enabled

	Whether the stencil test is enabled. For the second stencil, whether the
two-sided stencil is enabled. If two-sided stencil is disabled, the other
fields for the second array member are not valid.

	func

	The stencil test function. One of PIPE_FUNC.

	valuemask

	Stencil test value mask; this is ANDed with the value in the stencil
buffer and the reference value before doing the stencil comparison test.

	writemask

	Stencil test writemask; this controls which bits of the stencil buffer
are written.

	fail_op

	The operation to carry out if the stencil test fails. One of
PIPE_STENCIL_OP.

	zfail_op

	The operation to carry out if the stencil test passes but the depth test
fails. One of PIPE_STENCIL_OP.

	zpass_op

	The operation to carry out if the stencil test and depth test both pass.
One of PIPE_STENCIL_OP.

Alpha Members

	enabled

	Whether the alpha test is enabled.

	func

	The alpha test function. One of PIPE_FUNC.

	ref_value

	Alpha test reference value; used for certain functions.

Rasterizer

The rasterizer state controls the rendering of points, lines and triangles.
Attributes include polygon culling state, line width, line stipple,
multisample state, scissoring and flat/smooth shading.

Linkage

clamp_vertex_color

If set, TGSI_SEMANTIC_COLOR registers are clamped to the [0, 1] range after
the execution of the vertex shader, before being passed to the geometry
shader or fragment shader.

OpenGL: glClampColor(GL_CLAMP_VERTEX_COLOR) in GL 3.0 or GL_ARB_color_buffer_float

D3D11: seems always disabled

Note the PIPE_CAP_VERTEX_COLOR_CLAMPED query indicates whether or not the
driver supports this control. If it’s not supported, the state tracker may
have to insert extra clamping code.

clamp_fragment_color

Controls whether TGSI_SEMANTIC_COLOR outputs of the fragment shader
are clamped to [0, 1].

OpenGL: glClampColor(GL_CLAMP_FRAGMENT_COLOR) in GL 3.0 or ARB_color_buffer_float

D3D11: seems always disabled

Note the PIPE_CAP_FRAGMENT_COLOR_CLAMPED query indicates whether or not the
driver supports this control. If it’s not supported, the state tracker may
have to insert extra clamping code.

Shading

flatshade

If set, the provoking vertex of each polygon is used to determine the color
of the entire polygon. If not set, fragment colors will be interpolated
between the vertex colors.

The actual interpolated shading algorithm is obviously
implementation-dependent, but will usually be Gourard for most hardware.

Note

This is separate from the fragment shader input attributes
CONSTANT, LINEAR and PERSPECTIVE. The flatshade state is needed at
clipping time to determine how to set the color of new vertices.

Draw can implement flat shading by copying the provoking vertex
color to all the other vertices in the primitive.

flatshade_first

Whether the first vertex should be the provoking vertex, for most primitives.
If not set, the last vertex is the provoking vertex.

There are a few important exceptions to the specification of this rule.

	PIPE_PRIMITIVE_POLYGON: The provoking vertex is always the first
vertex. If the caller wishes to change the provoking vertex, they merely
need to rotate the vertices themselves.

	PIPE_PRIMITIVE_QUAD, PIPE_PRIMITIVE_QUAD_STRIP: The option only has
an effect if PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION is true.
If it is not, the provoking vertex is always the last vertex.

	PIPE_PRIMITIVE_TRIANGLE_FAN: When set, the provoking vertex is the
second vertex, not the first. This permits each segment of the fan to have
a different color.

Polygons

light_twoside

If set, there are per-vertex back-facing colors. The hardware
(perhaps assisted by Draw) should be set up to use this state
along with the front/back information to set the final vertex colors
prior to rasterization.

The frontface vertex shader color output is marked with TGSI semantic
COLOR[0], and backface COLOR[1].

	front_ccw

	Indicates whether the window order of front-facing polygons is
counter-clockwise (TRUE) or clockwise (FALSE).

	cull_mode

	Indicates which faces of polygons to cull, either PIPE_FACE_NONE
(cull no polygons), PIPE_FACE_FRONT (cull front-facing polygons),
PIPE_FACE_BACK (cull back-facing polygons), or
PIPE_FACE_FRONT_AND_BACK (cull all polygons).

	fill_front

	Indicates how to fill front-facing polygons, either
PIPE_POLYGON_MODE_FILL, PIPE_POLYGON_MODE_LINE or
PIPE_POLYGON_MODE_POINT.

	fill_back

	Indicates how to fill back-facing polygons, either
PIPE_POLYGON_MODE_FILL, PIPE_POLYGON_MODE_LINE or
PIPE_POLYGON_MODE_POINT.

	poly_stipple_enable

	Whether polygon stippling is enabled.

	poly_smooth

	Controls OpenGL-style polygon smoothing/antialiasing

	offset_point

	If set, point-filled polygons will have polygon offset factors applied

	offset_line

	If set, line-filled polygons will have polygon offset factors applied

	offset_tri

	If set, filled polygons will have polygon offset factors applied

	offset_units

	Specifies the polygon offset bias

	offset_units_unscaled

	Specifies the unit of the polygon offset bias. If false, use the
GL/D3D1X behaviour. If true, offset_units is a floating point offset
which isn’t scaled (D3D9). Note that GL/D3D1X behaviour has different
formula whether the depth buffer is unorm or float, which is not
the case for D3D9.

	offset_scale

	Specifies the polygon offset scale

	offset_clamp

	Upper (if > 0) or lower (if < 0) bound on the polygon offset result

Lines

	line_width

	The width of lines.

	line_smooth

	Whether lines should be smoothed. Line smoothing is simply anti-aliasing.

	line_stipple_enable

	Whether line stippling is enabled.

	line_stipple_pattern

	16-bit bitfield of on/off flags, used to pattern the line stipple.

	line_stipple_factor

	When drawing a stippled line, each bit in the stipple pattern is
repeated N times, where N = line_stipple_factor + 1.

	line_last_pixel

	Controls whether the last pixel in a line is drawn or not. OpenGL
omits the last pixel to avoid double-drawing pixels at the ends of lines
when drawing connected lines.

Points

sprite_coord_enable

The effect of this state depends on PIPE_CAP_TGSI_TEXCOORD !

Controls automatic texture coordinate generation for rendering sprite points.

If PIPE_CAP_TGSI_TEXCOORD is false:
When bit k in the sprite_coord_enable bitfield is set, then generic
input k to the fragment shader will get an automatically computed
texture coordinate.

If PIPE_CAP_TGSI_TEXCOORD is true:
The bitfield refers to inputs with TEXCOORD semantic instead of generic inputs.

The texture coordinate will be of the form (s, t, 0, 1) where s varies
from 0 to 1 from left to right while t varies from 0 to 1 according to
the state of ‘sprite_coord_mode’ (see below).

If any bit is set, then point_smooth MUST be disabled (there are no
round sprites) and point_quad_rasterization MUST be true (sprites are
always rasterized as quads). Any mismatch between these states should
be considered a bug in the state-tracker.

This feature is implemented in the Draw module but may also be
implemented natively by GPUs or implemented with a geometry shader.

sprite_coord_mode

Specifies how the value for each shader output should be computed when drawing
point sprites. For PIPE_SPRITE_COORD_LOWER_LEFT, the lower-left vertex will
have coordinates (0,0,0,1). For PIPE_SPRITE_COORD_UPPER_LEFT, the upper-left
vertex will have coordinates (0,0,0,1).
This state is used by Draw to generate texcoords.

point_quad_rasterization

Determines if points should be rasterized according to quad or point
rasterization rules.

(Legacy-only) OpenGL actually has quite different rasterization rules
for points and point sprites - hence this indicates if points should be
rasterized as points or according to point sprite (which decomposes them
into quads, basically) rules. Newer GL versions no longer support the old
point rules at all.

Additionally Direct3D will always use quad rasterization rules for
points, regardless of whether point sprites are enabled or not.

If this state is enabled, point smoothing and antialiasing are
disabled. If it is disabled, point sprite coordinates are not
generated.

Note

Some renderers always internally translate points into quads; this state
still affects those renderers by overriding other rasterization state.

	point_tri_clip

	Determines if clipping of points should happen after they are converted
to “rectangles” (required by d3d) or before (required by OpenGL, though
this rule is ignored by some IHVs).
It is not valid to set this to enabled but have point_quad_rasterization
disabled.

	point_smooth

	Whether points should be smoothed. Point smoothing turns rectangular
points into circles or ovals.

	point_size_per_vertex

	Whether the vertex shader is expected to have a point size output.
Undefined behaviour is permitted if there is disagreement between
this flag and the actual bound shader.

	point_size

	The size of points, if not specified per-vertex.

Other Members

	scissor

	Whether the scissor test is enabled.

	multisample

	Whether MSAA is enabled.

	half_pixel_center

	When true, the rasterizer should use (0.5, 0.5) pixel centers for
determining pixel ownership (e.g, OpenGL, D3D10 and higher):

 0 0.5 1
 0 +-----+
 | |
0.5 | X |
 | |
 1 +-----+

When false, the rasterizer should use (0, 0) pixel centers for determining
pixel ownership (e.g., D3D9 or ealier):

 -0.5 0 0.5
-0.5 +-----+
 | |
 0 | X |
 | |
 0.5 +-----+

	bottom_edge_rule

	Determines what happens when a pixel sample lies precisely on a triangle
edge.

When true, a pixel sample is considered to lie inside of a triangle if it
lies on the bottom edge or left edge (e.g., OpenGL drawables):

 0 x
0 +--------------------->
 |
 | +-------------+
+=============+	
y V

When false, a pixel sample is considered to lie inside of a triangle if it
lies on the top edge or left edge (e.g., OpenGL FBOs, D3D):

 0 x
0 +--------------------->
 |
 | +=============+
+-------------+	
y V

	Where:

	
	a top edge is an edge that is horizontal and is above the other edges;

	a bottom edge is an edge that is horizontal and is below the other
edges;

	a left edge is an edge that is not horizontal and is on the left side of
the triangle.

Note

Actually all graphics APIs use a top-left rasterization rule for pixel
ownership, but their notion of top varies with the axis origin (which
can be either at y = 0 or at y = height). Gallium instead always
assumes that top is always at y=0.

	See also:

	
	http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092.aspx

	http://msdn.microsoft.com/en-us/library/windows/desktop/bb147314.aspx

	clip_halfz

	When true clip space in the z axis goes from [0..1] (D3D). When false
[-1, 1] (GL)

	depth_clip

	When false, the near and far depth clipping planes of the view volume are
disabled and the depth value will be clamped at the per-pixel level, after
polygon offset has been applied and before depth testing.

	clip_plane_enable

	For each k in [0, PIPE_MAX_CLIP_PLANES), if bit k of this field is set,
clipping half-space k is enabled, if it is clear, it is disabled.
The clipping half-spaces are defined either by the user clip planes in
pipe_clip_state, or by the clip distance outputs of the shader stage
preceding the fragment shader.
If any clip distance output is written, those half-spaces for which no
clip distance is written count as disabled; i.e. user clip planes and
shader clip distances cannot be mixed, and clip distances take precedence.

	conservative_raster_mode

	The conservative rasterization mode. For PIPE_CONSERVATIVE_RASTER_OFF,
conservative rasterization is disabled. For IPE_CONSERVATIVE_RASTER_POST_SNAP
or PIPE_CONSERVATIVE_RASTER_PRE_SNAP, conservative rasterization is nabled.
When conservative rasterization is enabled, the polygon smooth, line mooth,
point smooth and line stipple settings are ignored.
With the post-snap mode, unlike the pre-snap mode, fragments are never
generated for degenerate primitives. Degenerate primitives, when rasterized,
are considered back-facing and the vertex attributes and depth are that of
the provoking vertex.
If the post-snap mode is used with an unsupported primitive, the pre-snap
mode is used, if supported. Behavior is similar for the pre-snap mode.
If the pre-snap mode is used, fragments are generated with respect to the primitive
before vertex snapping.

	conservative_raster_dilate

	The amount of dilation during conservative rasterization.

	subpixel_precision_x

	A bias added to the horizontal subpixel precision during conservative rasterization.

	subpixel_precision_y

	A bias added to the vertical subpixel precision during conservative rasterization.

Sampler

Texture units have many options for selecting texels from loaded textures;
this state controls an individual texture unit’s texel-sampling settings.

Texture coordinates are always treated as four-dimensional, and referred to
with the traditional (S, T, R, Q) notation.

Members

	wrap_s

	How to wrap the S coordinate. One of PIPE_TEX_WRAP_*.

	wrap_t

	How to wrap the T coordinate. One of PIPE_TEX_WRAP_*.

	wrap_r

	How to wrap the R coordinate. One of PIPE_TEX_WRAP_*.

The wrap modes are:

	PIPE_TEX_WRAP_REPEAT: Standard coord repeat/wrap-around mode.

	PIPE_TEX_WRAP_CLAMP_TO_EDGE: Clamp coord to edge of texture, the border
color is never sampled.

	PIPE_TEX_WRAP_CLAMP_TO_BORDER: Clamp coord to border of texture, the
border color is sampled when coords go outside the range [0,1].

	PIPE_TEX_WRAP_CLAMP: The coord is clamped to the range [0,1] before
scaling to the texture size. This corresponds to the legacy OpenGL GL_CLAMP
texture wrap mode. Historically, this mode hasn’t acted consistantly across
all graphics hardware. It sometimes acts like CLAMP_TO_EDGE or
CLAMP_TO_BORDER. The behaviour may also vary depending on linear vs.
nearest sampling mode.

	PIPE_TEX_WRAP_MIRROR_REPEAT: If the integer part of the coordinate
is odd, the coord becomes (1 - coord). Then, normal texture REPEAT is
applied to the coord.

	PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: First, the absolute value of the
coordinate is computed. Then, regular CLAMP_TO_EDGE is applied to the coord.

	PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: First, the absolute value of the
coordinate is computed. Then, regular CLAMP_TO_BORDER is applied to the
coord.

	PIPE_TEX_WRAP_MIRROR_CLAMP: First, the absolute value of the coord is
computed. Then, regular CLAMP is applied to the coord.

	min_img_filter

	The image filter to use when minifying texels. One of PIPE_TEX_FILTER_*.

	mag_img_filter

	The image filter to use when magnifying texels. One of PIPE_TEX_FILTER_*.

The texture image filter modes are:

	PIPE_TEX_FILTER_NEAREST: One texel is fetched from the texture image
at the texture coordinate.

	PIPE_TEX_FILTER_LINEAR: Two, four or eight texels (depending on the
texture dimensions; 1D/2D/3D) are fetched from the texture image and
linearly weighted and blended together.

	min_mip_filter

	The filter to use when minifying mipmapped textures. One of
PIPE_TEX_MIPFILTER_*.

The texture mip filter modes are:

	PIPE_TEX_MIPFILTER_NEAREST: A single mipmap level/image is selected
according to the texture LOD (lambda) value.

	PIPE_TEX_MIPFILTER_LINEAR: The two mipmap levels/images above/below
the texture LOD value are sampled from. The results of sampling from
those two images are blended together with linear interpolation.

	PIPE_TEX_MIPFILTER_NONE: Mipmap filtering is disabled. All texels
are taken from the level 0 image.

	compare_mode

	If set to PIPE_TEX_COMPARE_R_TO_TEXTURE, the result of texture sampling
is not a color but a true/false value which is the result of comparing the
sampled texture value (typically a Z value from a depth texture) to the
texture coordinate’s R component.
If set to PIPE_TEX_COMPARE_NONE, no comparison calculation is performed.

	compare_func

	The inequality operator used when compare_mode=1. One of PIPE_FUNC_x.

	normalized_coords

	If set, the incoming texture coordinates (nominally in the range [0,1])
will be scaled by the texture width, height, depth to compute texel
addresses. Otherwise, the texture coords are used as-is (they are not
scaled by the texture dimensions).
When normalized_coords=0, only a subset of the texture wrap modes are
allowed: PIPE_TEX_WRAP_CLAMP, PIPE_TEX_WRAP_CLAMP_TO_EDGE and
PIPE_TEX_WRAP_CLAMP_TO_BORDER.

	lod_bias

	Bias factor which is added to the computed level of detail.
The normal level of detail is computed from the partial derivatives of
the texture coordinates and/or the fragment shader TEX/TXB/TXL
instruction.

	min_lod

	Minimum level of detail, used to clamp LOD after bias. The LOD values
correspond to mipmap levels where LOD=0 is the level 0 mipmap image.

	max_lod

	Maximum level of detail, used to clamp LOD after bias.

	border_color

	Color union used for texel coordinates that are outside the [0,width-1],
[0, height-1] or [0, depth-1] ranges. Interpreted according to sampler
view format, unless the driver reports
PIPE_CAP_TEXTURE_BORDER_COLOR_QUIRK, in which case special care has to be
taken (see description of the cap).

	max_anisotropy

	Maximum anistropy ratio to use when sampling from textures. For example,
if max_anistropy=4, a region of up to 1 by 4 texels will be sampled.
Set to zero to disable anisotropic filtering. Any other setting enables
anisotropic filtering, however it’s not unexpected some drivers only will
change their filtering with a setting of 2 and higher.

	seamless_cube_map

	If set, the bilinear filter of a cube map may take samples from adjacent
cube map faces when sampled near a texture border to produce a seamless
look.

Shader

One of the two types of shaders supported by Gallium.

Members

	tokens

	A list of tgsi_tokens.

Vertex Elements

This state controls the format of the input attributes contained in
pipe_vertex_buffers. There is one pipe_vertex_element array member for each
input attribute.

Input Formats

Gallium supports a diverse range of formats for vertex data. Drivers are
guaranteed to support 32-bit floating-point vectors of one to four components.
Additionally, they may support the following formats:

	Integers, signed or unsigned, normalized or non-normalized, 8, 16, or 32
bits wide

	Floating-point, 16, 32, or 64 bits wide

At this time, support for varied vertex data formats is limited by driver
deficiencies. It is planned to support a single uniform set of formats for all
Gallium drivers at some point.

Rather than attempt to specify every small nuance of behavior, Gallium uses a
very simple set of rules for padding out unspecified components. If an input
uses less than four components, it will be padded out with the constant vector
(0, 0, 0, 1).

Fog, point size, the facing bit, and edgeflags, all are in the standard format
of (x, 0, 0, 1), and so only the first component of those inputs is used.

Position

Vertex position may be specified with two to four components. Using less than
two components is not allowed.

Colors

Colors, both front- and back-facing, may omit the alpha component, only using
three components. Using less than three components is not allowed.

Members

	src_offset

	The byte offset of the attribute in the buffer given by
vertex_buffer_index for the first vertex.

	instance_divisor

	The instance data rate divisor, used for instancing.
0 means this is per-vertex data, n means per-instance data used for
n consecutive instances (n > 0).

	vertex_buffer_index

	The vertex buffer this attribute lives in. Several attributes may
live in the same vertex buffer.

	src_format

	The format of the attribute data. One of the PIPE_FORMAT tokens.

Distribution

Along with the interface definitions, the following drivers, state trackers,
and auxiliary modules are shipped in the standard Gallium distribution.

Drivers

Intel i915

Driver for Intel i915 and i945 chipsets.

LLVM Softpipe

A version of Softpipe that uses the Low-Level Virtual Machine to
dynamically generate optimized rasterizing pipelines.

nVidia nv30

Driver for the nVidia nv30 and nv40 families of GPUs.

nVidia nv50

Driver for the nVidia nv50 family of GPUs.

nVidia nvc0

Driver for the nVidia nvc0 / fermi family of GPUs.

VMware SVGA

Driver for VMware virtualized guest operating system graphics processing.

ATI r300

Driver for the ATI/AMD r300, r400, and r500 families of GPUs.

ATI/AMD r600

Driver for the ATI/AMD r600, r700, Evergreen and Northern Islands families of GPUs.

AMD radeonsi

Driver for the AMD Southern Islands family of GPUs.

freedreno

Driver for Qualcomm Adreno a2xx, a3xx, and a4xx series of GPUs.

Softpipe

Reference software rasterizer. Slow but accurate.

Trace

Wrapper driver. Trace dumps an XML record of the calls made to the
Context and Screen objects that it wraps.

Rbug

Wrapper driver. Remote Debugger driver used with stand alone rbug-gui.

State Trackers

Clover

Tracker that implements the Khronos OpenCL standard.

Direct Rendering Infrastructure

Tracker that implements the client-side DRI protocol, for providing direct
acceleration services to X11 servers with the DRI extension. Supports DRI1
and DRI2. Only GL is supported.

GLX

MesaGL

Tracker implementing a GL state machine. Not usable as a standalone tracker;
Mesa should be built with another state tracker, such as Direct Rendering Infrastructure or
EGL.

VDPAU

Tracker for Video Decode and Presentation API for Unix.

WGL

Xorg DDX

Tracker for Xorg X11 servers. Provides device-dependent
modesetting and acceleration as a DDX driver.

XvMC

Tracker for X-Video Motion Compensation.

Auxiliary

OS

The OS module contains the abstractions for basic operating system services:

	memory allocation

	simple message logging

	obtaining run-time configuration option

	threading primitives

This is the bare minimum required to port Gallium to a new platform.

The OS module already provides the implementations of these abstractions for
the most common platforms. When targeting an embedded platform no
implementation will be provided – these must be provided separately.

CSO Cache

The CSO cache is used to accelerate preparation of state by saving
driver-specific state structures for later use.

Draw

Draw is a software TCL pipeline for hardware that lacks vertex shaders
or other essential parts of pre-rasterization vertex preparation.

Gallivm

Indices

Indices provides tools for translating or generating element indices for
use with element-based rendering.

Pipe Buffer Managers

Each of these managers provides various services to drivers that are not
fully utilizing a memory manager.

Remote Debugger

Runtime Assembly Emission

TGSI

The TGSI auxiliary module provides basic utilities for manipulating TGSI
streams.

Translate

Util

Drivers

Driver specific documentation.

	Freedreno
	IR3 NOTES
	External Structure

	The IR
	Internal Structure

	Meta Instructions

	Flow Control

	Register Groups

	Relative Addressing

	Shader Passes
	Flatten

	Copy Propagation

	Grouping

	Depth

	Scheduling

	Register Assignment

	OpenSWR
	Usage
	Requirements

	Building

	Using

	FAQ
	Why another software rasterizer?

	What’s the architecture?

	What’s the performance?

	What’s the conformance?

	Why are you open sourcing this?

	What are your development plans?

	What is the licensing of the code?

	Will this work on AMD?

	Will this work on ARM, MIPS, POWER, <other non-x86 architecture>?

	What hardware do I need?

	Does one build work on both AVX and AVX2?

	Profiling

	Knobs

Freedreno

Freedreno driver specific docs.

	IR3 NOTES
	External Structure

	The IR
	Internal Structure

	Meta Instructions

	Flow Control

	Register Groups

	Relative Addressing

	Shader Passes
	Flatten

	Copy Propagation

	Grouping

	Depth

	Scheduling

	Register Assignment

IR3 NOTES

Some notes about ir3, the compiler and machine-specific IR for the shader ISA introduced with adreno a3xx. The same shader ISA is present, with some small differences, in adreno a4xx.

Compared to the previous generation a2xx ISA (ir2), the a3xx ISA is a “simple” scalar instruction set. However, the compiler is responsible, in most cases, to schedule the instructions. The hardware does not try to hide the shader core pipeline stages. For a common example, a common (cat2) ALU instruction takes four cycles, so a subsequent cat2 instruction which uses the result must have three intervening instructions (or nops). When operating on vec4’s, typically the corresponding scalar instructions for operating on the remaining three components could typically fit. Although that results in a lot of edge cases where things fall over, like:

ADD TEMP[0], TEMP[1], TEMP[2]
MUL TEMP[0], TEMP[1], TEMP[0].wzyx

Here, the second instruction needs the output of the first group of scalar instructions in the wrong order, resulting in not enough instruction spots between the add r0.w, r1.w, r2.w and mul r0.x, r1.x, r0.w. Which is why the original (old) compiler which merely translated nearly literally from TGSI to ir3, had a strong tendency to fall over.

So the current compiler instead, in the frontend, generates a directed-acyclic-graph of instructions and basic blocks, which go through various additional passes to eventually schedule and do register assignment.

For additional documentation about the hardware, see wiki: a3xx ISA [https://github.com/freedreno/freedreno/wiki/A3xx-shader-instruction-set-architecture].

External Structure

	ir3_shader

	A single vertex/fragment/etc shader from gallium perspective (ie.
maps to a single TGSI shader), and manages a set of shader variants
which are generated on demand based on the shader key.

	ir3_shader_key

	The configuration key that identifies a shader variant. Ie. based
on other GL state (two-sided-color, render-to-alpha, etc) or render
stages (binning-pass vertex shader) different shader variants are
generated.

	ir3_shader_variant

	The actual hw shader generated based on input TGSI and shader key.

	ir3_compiler

	Compiler frontend which generates ir3 and runs the various backend
stages to schedule and do register assignment.

The IR

The ir3 IR maps quite directly to the hardware, in that instruction opcodes map directly to hardware opcodes, and that dst/src register(s) map directly to the hardware dst/src register(s). But there are a few extensions, in the form of meta instructions. And additionally, for normal (non-const, etc) src registers, the IR3_REG_SSA flag is set and reg->instr points to the source instruction which produced that value. So, for example, the following TGSI shader:

VERT
DCL IN[0]
DCL IN[1]
DCL OUT[0], POSITION
DCL TEMP[0], LOCAL
 1: DP3 TEMP[0].x, IN[0].xyzz, IN[1].xyzz
 2: MOV OUT[0], TEMP[0].xxxx
 3: END

eventually generates:

[image: digraph G { rankdir=RL; nodesep=0.25; ranksep=1.5; subgraph clusterdce198 { label="vert"; inputdce198 [shape=record,label="inputs|<in0> i0.x|<in1> i0.y|<in2> i0.z|<in4> i1.x|<in5> i1.y|<in6> i1.z"]; instrdcf348 [shape=record,style=filled,fillcolor=lightgrey,label="{mov.f32f32|<dst0>|<src0> }"]; instrdcedd0 [shape=record,style=filled,fillcolor=lightgrey,label="{mad.f32|<dst0>|<src0> |<src1> |<src2> }"]; inputdce198:<in2>:w -> instrdcedd0:<src0> inputdce198:<in6>:w -> instrdcedd0:<src1> instrdcec30 [shape=record,style=filled,fillcolor=lightgrey,label="{mad.f32|<dst0>|<src0> |<src1> |<src2> }"]; inputdce198:<in1>:w -> instrdcec30:<src0> inputdce198:<in5>:w -> instrdcec30:<src1> instrdceb60 [shape=record,style=filled,fillcolor=lightgrey,label="{mul.f|<dst0>|<src0> |<src1> }"]; inputdce198:<in0>:w -> instrdceb60:<src0> inputdce198:<in4>:w -> instrdceb60:<src1> instrdceb60:<dst0> -> instrdcec30:<src2> instrdcec30:<dst0> -> instrdcedd0:<src2> instrdcedd0:<dst0> -> instrdcf348:<src0> instrdcf400 [shape=record,style=filled,fillcolor=lightgrey,label="{mov.f32f32|<dst0>|<src0> }"]; instrdcedd0:<dst0> -> instrdcf400:<src0> instrdcf4b8 [shape=record,style=filled,fillcolor=lightgrey,label="{mov.f32f32|<dst0>|<src0> }"]; instrdcedd0:<dst0> -> instrdcf4b8:<src0> outputdce198 [shape=record,label="outputs|<out0> o0.x|<out1> o0.y|<out2> o0.z|<out3> o0.w"]; instrdcf348:<dst0> -> outputdce198:<out0>:e instrdcf400:<dst0> -> outputdce198:<out1>:e instrdcf4b8:<dst0> -> outputdce198:<out2>:e instrdcedd0:<dst0> -> outputdce198:<out3>:e } }]

(after scheduling, etc, but before register assignment).

Internal Structure

	ir3_block

	Represents a basic block.

TODO: currently blocks are nested, but I think I need to change that
to a more conventional arrangement before implementing proper flow
control. Currently the only flow control handles is if/else which
gets flattened out and results chosen with sel instructions.

	ir3_instruction

	Represents a machine instruction or meta instruction. Has pointers
to dst register (regs[0]) and src register(s) (regs[1..n]),
as needed.

	ir3_register

	Represents a src or dst register, flags indicate const/relative/etc.
If IR3_REG_SSA is set on a src register, the actual register
number (name) has not been assigned yet, and instead the instr
field points to src instruction.

In addition there are various util macros/functions to simplify manipulation/traversal of the graph:

	foreach_src(srcreg, instr)

	Iterate each instruction’s source ir3_registers

	foreach_src_n(srcreg, n, instr)

	Like foreach_src, also setting n to the source number (starting
with 0).

	foreach_ssa_src(srcinstr, instr)

	Iterate each instruction’s SSA source ir3_instructions. This skips
non-SSA sources (consts, etc), but includes virtual sources (such as the
address register if relative addressing is used).

	foreach_ssa_src_n(srcinstr, n, instr)

	Like foreach_ssa_src, also setting n to the source number.

For example:

foreach_ssa_src_n(src, i, instr) {
 unsigned d = delay_calc_srcn(ctx, src, instr, i);
 delay = MAX2(delay, d);
}

TODO probably other helper/util stuff worth mentioning here

Meta Instructions

	input

	Used for shader inputs (registers configured in the command-stream
to hold particular input values, written by the shader core before
start of execution. Also used for connecting up values within a
basic block to an output of a previous block.

	output

	Used to hold outputs of a basic block.

	flow

	TODO

	phi

	TODO

	fanin

	Groups registers which need to be assigned to consecutive scalar
registers, for example sam (texture fetch) src instructions (see
register groups) or array element dereference
(see relative addressing).

	fanout

	The counterpart to fanin, when an instruction such as sam
writes multiple components, splits the result into individual
scalar components to be consumed by other instructions.

Flow Control

TODO

Register Groups

Certain instructions, such as texture sample instructions, consume multiple consecutive scalar registers via a single src register encoded in the instruction, and/or write multiple consecutive scalar registers. In the simplest example:

sam (f32)(xyz)r2.x, r0.z, s#0, t#0

for a 2d texture, would read r0.zw to get the coordinate, and write r2.xyz.

Before register assignment, to group the two components of the texture src together:

[image: digraph G { { rank=same; fanin; }; { rank=same; coord_x; coord_y; }; sam -> fanin [label="regs[1]"]; fanin -> coord_x [label="regs[1]"]; fanin -> coord_y [label="regs[2]"]; coord_x -> coord_y [label="right",style=dotted]; coord_y -> coord_x [label="left",style=dotted]; coord_x [label="coord.x"]; coord_y [label="coord.y"]; }]

The frontend sets up the SSA ptrs from sam source register to the fanin meta instruction, which in turn points to the instructions producing the coord.x and coord.y values. And the grouping pass sets up the left and right neighbor pointers to the fanin’s sources, used later by the register assignment pass to assign blocks of scalar registers.

And likewise, for the consecutive scalar registers for the destination:

[image: digraph { { rank=same; A; B; C; }; { rank=same; fanout_0; fanout_1; fanout_2; }; A -> fanout_0; B -> fanout_1; C -> fanout_2; fanout_0 [label="fanout\noff=0"]; fanout_0 -> sam; fanout_1 [label="fanout\noff=1"]; fanout_1 -> sam; fanout_2 [label="fanout\noff=2"]; fanout_2 -> sam; fanout_0 -> fanout_1 [label="right",style=dotted]; fanout_1 -> fanout_0 [label="left",style=dotted]; fanout_1 -> fanout_2 [label="right",style=dotted]; fanout_2 -> fanout_1 [label="left",style=dotted]; sam; }]

Relative Addressing

Most instructions support addressing indirectly (relative to address register) into const or gpr register file in some or all of their src/dst registers. In this case the register accessed is taken from r<a0.x + n> or c<a0.x + n>, ie. address register (a0.x) value plus n, where n is encoded in the instruction (rather than the absolute register number).

Note that cat5 (texture sample) instructions are the notable exception, not
supporting relative addressing of src or dst.

Relative addressing of the const file (for example, a uniform array) is relatively simple. We don’t do register assignment of the const file, so all that is required is to schedule things properly. Ie. the instruction that writes the address register must be scheduled first, and we cannot have two different address register values live at one time.

But relative addressing of gpr file (which can be as src or dst) has additional restrictions on register assignment (ie. the array elements must be assigned to consecutive scalar registers). And in the case of relative dst, subsequent instructions now depend on both the relative write, as well as the previous instruction which wrote that register, since we do not know at compile time which actual register was written.

Each instruction has an optional address pointer, to capture the dependency on the address register value when relative addressing is used for any of the src/dst register(s). This behaves as an additional virtual src register, ie. foreach_ssa_src() will also iterate the address register (last).

Note that nop’s for timing constraints, type specifiers (ie.
add.f vs add.u), etc, omitted for brevity in examples

mova a0.x, hr1.y
sub r1.y, r2.x, r3.x
add r0.x, r1.y, c<a0.x + 2>

results in:

[image: digraph { rankdir=LR; sub; const [label="const file"]; add; mova; add -> mova; add -> sub; add -> const [label="off=2"]; }]

The scheduling pass has some smarts to schedule things such that only a single a0.x value is used at any one time.

To implement variable arrays, values are stored in consecutive scalar registers. This has some overlap with register groups, in that fanin and fanout are used to help group things for the register assignment pass.

To use a variable array as a src register, a slight variation of what is done for const array src. The instruction src is a fanin instruction that groups all the array members:

mova a0.x, hr1.y
sub r1.y, r2.x, r3.x
add r0.x, r1.y, r<a0.x + 2>

results in:

[image: digraph { a0 [label="r0.z"]; a1 [label="r0.w"]; a2 [label="r1.x"]; a3 [label="r1.y"]; sub; fanin; mova; add; add -> sub; add -> fanin [label="off=2"]; add -> mova; fanin -> a0; fanin -> a1; fanin -> a2; fanin -> a3; }]

TODO better describe how actual deref offset is derived, ie. based on array base register.

To do an indirect write to a variable array, a fanout is used. Say the array was assigned to registers r0.z through r1.y (hence the constant offset of 2):

Note that only cat1 (mov) can do indirect write.

mova a0.x, hr1.y
min r2.x, r2.x, c0.x
mov r<a0.x + 2>, r2.x
mul r0.x, r0.z, c0.z

In this case, the mov instruction does not write all elements of the array (compared to usage of fanout for sam instructions in grouping). But the mov instruction does need an additional dependency (via fanin) on instructions that last wrote the array element members, to ensure that they get scheduled before the mov in scheduling stage (which also serves to group the array elements for the register assignment stage).

[image: digraph { a0 [label="r0.z"]; a1 [label="r0.w"]; a2 [label="r1.x"]; a3 [label="r1.y"]; min; mova; mov; mul; fanout [label="fanout\noff=0"]; mul -> fanout; fanout -> mov; fanin; fanin -> a0; fanin -> a1; fanin -> a2; fanin -> a3; mov -> min; mov -> mova; mov -> fanin; }]

Note that there would in fact be fanout nodes generated for each array element (although only the reachable ones will be scheduled, etc).

Shader Passes

After the frontend has generated the use-def graph of instructions, they are run through various passes which include scheduling and register assignment. Because inserting mov instructions after scheduling would also require inserting additional nop instructions (since it is too late to reschedule to try and fill the bubbles), the earlier stages try to ensure that (at least given an infinite supply of registers) that register assignment after scheduling cannot fail.

Note that we essentially have ~256 scalar registers in the
architecture (although larger register usage will at some thresholds
limit the number of threads which can run in parallel). And at some
point we will have to deal with spilling.

Flatten

In this stage, simple if/else blocks are flattened into a single block with phi nodes converted into sel instructions. The a3xx ISA has very few predicated instructions, and we would prefer not to use branches for simple if/else.

Copy Propagation

Currently the frontend inserts movs in various cases, because certain categories of instructions have limitations about const regs as sources. And the CP pass simply removes all simple movs (ie. src-type is same as dst-type, no abs/neg flags, etc).

The eventual plan is to invert that, with the front-end inserting no movs and CP legalize things.

Grouping

In the grouping pass, instructions which need to be grouped (for fanins, etc) have their left / right neighbor pointers setup. In cases where there is a conflict (ie. one instruction cannot have two unique left or right neighbors), an additional mov instruction is inserted. This ensures that there is some possible valid register assignment at the later stages.

Depth

In the depth pass, a depth is calculated for each instruction node within it’s basic block. The depth is the sum of the required cycles (delay slots needed between two instructions plus one) of each instruction plus the max depth of any of it’s source instructions. (meta instructions don’t add to the depth). As an instruction’s depth is calculated, it is inserted into a per block list sorted by deepest instruction. Unreachable instructions and inputs are marked.

TODO: we should probably calculate both hard and soft depths (?) to
try to coax additional instructions to fit in places where we need
to use sync bits, such as after a texture fetch or SFU.

Scheduling

After the grouping pass, there are no more instructions to insert or remove. Start scheduling each basic block from the deepest node in the depth sorted list created by the depth pass, recursively trying to schedule each instruction after it’s source instructions plus delay slots. Insert nops as required.

Register Assignment

TODO

OpenSWR

The Gallium OpenSWR driver is a high performance, highly scalable
software renderer targeted towards visualization workloads. For such
geometry heavy workloads there is a considerable speedup over llvmpipe,
which is to be expected as the geometry frontend of llvmpipe is single
threaded.

This rasterizer is x86 specific and requires AVX or above. The driver
fits into the gallium framework, and reuses gallivm for doing the TGSI
to vectorized llvm-IR conversion of the shader kernels.

	Usage
	Requirements

	Building

	Using

	FAQ
	Why another software rasterizer?

	What’s the architecture?

	What’s the performance?

	What’s the conformance?

	Why are you open sourcing this?

	What are your development plans?

	What is the licensing of the code?

	Will this work on AMD?

	Will this work on ARM, MIPS, POWER, <other non-x86 architecture>?

	What hardware do I need?

	Does one build work on both AVX and AVX2?

	Profiling

	Knobs

Usage

Requirements

	An x86 processor with AVX or above

	LLVM version 3.9 or later

	C++14 capable compiler

Building

To build with GNU automake, select building the swr driver at
configure time, for example:

configure --with-gallium-drivers=swrast,swr

Using

On Linux, building with autotools will create a drop-in alternative
for libGL.so into:

lib/gallium/libGL.so
lib/gallium/libswrAVX.so
lib/gallium/libswrAVX2.so

Alternatively, building with SCons will produce:

build/linux-x86_64/gallium/targets/libgl-xlib/libGL.so
build/linux-x86_64/gallium/drivers/swr/libswrAVX.so
build/linux-x86_64/gallium/drivers/swr/libswrAVX2.so

To use it set the LD_LIBRARY_PATH environment variable accordingly.

IMPORTANT: Mesa will default to using llvmpipe or softpipe as the default software renderer. To select the OpenSWR driver, set the GALLIUM_DRIVER environment variable appropriately:

GALLIUM_DRIVER=swr

To verify OpenSWR is being used, check to see if a message like the following is printed when the application is started:

SWR detected AVX2

FAQ

Why another software rasterizer?

Good question, given there are already three (swrast, softpipe,
llvmpipe) in the Mesa tree. Two important reasons for this:

	Architecture - given our focus on scientific visualization, our
workloads are much different than the typical game; we have heavy
vertex load and relatively simple shaders. In addition, the core
counts of machines we run on are much higher. These parameters led
to design decisions much different than llvmpipe.

	Historical - Intel had developed a high performance software
graphics stack for internal purposes. Later we adapted this
graphics stack for use in visualization and decided to move forward
with Mesa to provide a high quality API layer while at the same
time benefiting from the excellent performance the software
rasterizerizer gives us.

What’s the architecture?

SWR is a tile based immediate mode renderer with a sort-free threading
model which is arranged as a ring of queues. Each entry in the ring
represents a draw context that contains all of the draw state and work
queues. An API thread sets up each draw context and worker threads
will execute both the frontend (vertex/geometry processing) and
backend (fragment) work as required. The ring allows for backend
threads to pull work in order. Large draws are split into chunks to
allow vertex processing to happen in parallel, with the backend work
pickup preserving draw ordering.

Our pipeline uses just-in-time compiled code for the fetch shader that
does vertex attribute gathering and AOS to SOA conversions, the vertex
shader and fragment shaders, streamout, and fragment blending. SWR
core also supports geometry and compute shaders but we haven’t exposed
them through our driver yet. The fetch shader, streamout, and blend is
built internally to swr core using LLVM directly, while for the vertex
and pixel shaders we reuse bits of llvmpipe from
gallium/auxiliary/gallivm to build the kernels, which we wrap
differently than llvmpipe’s auxiliary/draw code.

What’s the performance?

For the types of high-geometry workloads we’re interested in, we are
significantly faster than llvmpipe. This is to be expected, as
llvmpipe only threads the fragment processing and not the geometry
frontend. The performance advantage over llvmpipe roughly scales
linearly with the number of cores available.

While our current performance is quite good, we know there is more
potential in this architecture. When we switched from a prototype
OpenGL driver to Mesa we regressed performance severely, some due to
interface issues that need tuning, some differences in shader code
generation, and some due to conformance and feature additions to the
core swr. We are looking to recovering most of this performance back.

What’s the conformance?

The major applications we are targeting are all based on the
Visualization Toolkit (VTK), and as such our development efforts have
been focused on making sure these work as best as possible. Our
current code passes vtk’s rendering tests with their new “OpenGL2”
(really OpenGL 3.2) backend at 99%.

piglit testing shows a much lower pass rate, roughly 80% at the time
of writing. Core SWR undergoes rigorous unit testing and we are quite
confident in the rasterizer, and understand the areas where it
currently has issues (example: line rendering is done with triangles,
so doesn’t match the strict line rendering rules). The majority of
the piglit failures are errors in our driver layer interfacing Mesa
and SWR. Fixing these issues is one of our major future development
goals.

Why are you open sourcing this?

	Our customers prefer open source, and allowing them to simply
download the Mesa source and enable our driver makes life much
easier for them.

	The internal gallium APIs are not stable, so we’d like our driver
to be visible for changes.

	It’s easier to work with the Mesa community when the source we’re
working with can be used as reference.

What are your development plans?

	Performance - see the performance section earlier for details.

	Conformance - see the conformance section earlier for details.

	Features - core SWR has a lot of functionality we have yet to
expose through our driver, such as MSAA, geometry shaders, compute
shaders, and tesselation.

	AVX512 support

What is the licensing of the code?

	All code is under the normal Mesa MIT license.

Will this work on AMD?

	If using an AMD processor with AVX or AVX2, it should work though
we don’t have that hardware around to test. Patches if needed
would be welcome.

Will this work on ARM, MIPS, POWER, <other non-x86 architecture>?

	Not without a lot of work. We make extensive use of AVX and AVX2
intrinsics in our code and the in-tree JIT creation. It is not the
intention for this codebase to support non-x86 architectures.

What hardware do I need?

	Any x86 processor with at least AVX (introduced in the Intel
SandyBridge and AMD Bulldozer microarchitectures in 2011) will
work.

	You don’t need a fire-breathing Xeon machine to work on SWR - we do
day-to-day development with laptops and desktop CPUs.

Does one build work on both AVX and AVX2?

Yes. The build system creates two shared libraries, libswrAVX.so and
libswrAVX2.so, and swr_create_screen() loads the appropriate one at
runtime.

Profiling

OpenSWR contains built-in profiling which can be enabled
at build time to provide insight into performance tuning.

To enable this, uncomment the following line in rasterizer/core/knobs.h and rebuild:

//#define KNOB_ENABLE_RDTSC

Running an application will result in a rdtsc.txt file being
created in current working directory. This file contains profile
information captured between the KNOB_BUCKETS_START_FRAME and
KNOB_BUCKETS_END_FRAME (see knobs section).

The resulting file will contain sections for each thread with a
hierarchical breakdown of the time spent in the various operations.
For example:

Thread 0 (API)
 %Tot %Par Cycles CPE NumEvent CPE2 NumEvent2 Bucket
 0.00 0.00 28370 2837 10 0 0 APIClearRenderTarget
 0.00 41.23 11698 1169 10 0 0 |-> APIDrawWakeAllThreads
 0.00 18.34 5202 520 10 0 0 |-> APIGetDrawContext
 98.72 98.72 12413773688 29957 414380 0 0 APIDraw
 0.36 0.36 44689364 107 414380 0 0 |-> APIDrawWakeAllThreads
 96.36 97.62 12117951562 9747 1243140 0 0 |-> APIGetDrawContext
 0.00 0.00 19904 995 20 0 0 APIStoreTiles
 0.00 7.88 1568 78 20 0 0 |-> APIDrawWakeAllThreads
 0.00 25.28 5032 251 20 0 0 |-> APIGetDrawContext
 1.28 1.28 161344902 64 2486370 0 0 APIGetDrawContext
 0.00 0.00 50368 2518 20 0 0 APISync
 0.00 2.70 1360 68 20 0 0 |-> APIDrawWakeAllThreads
 0.00 65.27 32876 1643 20 0 0 |-> APIGetDrawContext

Thread 1 (WORKER)
 %Tot %Par Cycles CPE NumEvent CPE2 NumEvent2 Bucket
 83.92 83.92 13198987522 96411 136902 0 0 FEProcessDraw
 24.91 29.69 3918184840 167 23410158 0 0 |-> FEFetchShader
 11.17 13.31 1756972646 75 23410158 0 0 |-> FEVertexShader
 8.89 10.59 1397902996 59 23410161 0 0 |-> FEPAAssemble
 19.06 22.71 2997794710 384 7803387 0 0 |-> FEClipTriangles
 11.67 61.21 1834958176 235 7803387 0 0 |-> FEBinTriangles
 0.00 0.00 0 0 187258 0 0 |-> FECullZeroAreaAndBackface
 0.00 0.00 0 0 60051033 0 0 |-> FECullBetweenCenters
 0.11 0.11 17217556 2869592 6 0 0 FEProcessStoreTiles
 15.97 15.97 2511392576 73665 34092 0 0 WorkerWorkOnFifoBE
 14.04 87.95 2208687340 9187 240408 0 0 |-> WorkerFoundWork
 0.06 0.43 9390536 13263 708 0 0 |-> BELoadTiles
 0.00 0.01 293020 182 1609 0 0 |-> BEClear
 12.63 89.94 1986508990 949 2093014 0 0 |-> BERasterizeTriangle
 2.37 18.75 372374596 177 2093014 0 0 |-> BETriangleSetup
 0.42 3.35 66539016 31 2093014 0 0 |-> BEStepSetup
 0.00 0.00 0 0 21766 0 0 |-> BETrivialReject
 1.05 8.33 165410662 79 2071248 0 0 |-> BERasterizePartial
 6.06 48.02 953847796 1260 756783 0 0 |-> BEPixelBackend
 0.20 3.30 31521202 41 756783 0 0 |-> BESetup
 0.16 2.69 25624304 33 756783 0 0 |-> BEBarycentric
 0.18 2.92 27884986 36 756783 0 0 |-> BEEarlyDepthTest
 0.19 3.20 30564174 41 744058 0 0 |-> BEPixelShader
 0.26 4.30 41058646 55 744058 0 0 |-> BEOutputMerger
 1.27 20.94 199750822 32 6054264 0 0 |-> BEEndTile
 0.33 2.34 51758160 23687 2185 0 0 |-> BEStoreTiles
 0.20 60.22 31169500 28807 1082 0 0 |-> B8G8R8A8_UNORM
 0.00 0.00 302752 302752 1 0 0 WorkerWaitForThreadEvent

Knobs

OpenSWR has a number of environment variables which control its
operation, in addition to the normal Mesa and gallium controls.

	
KNOB_ENABLE_ASSERT_DIALOGS Type: bool Default: true

	

Use dialogs when asserts fire. Asserts are only enabled in debug builds

	
KNOB_SINGLE_THREADED Type: bool Default: false

	

If enabled will perform all rendering on the API thread. This is useful mainly for debugging purposes.

	
KNOB_DUMP_SHADER_IR Type: bool Default: false

	

Dumps shader LLVM IR at various stages of jit compilation.

	
KNOB_USE_GENERIC_STORETILE Type: bool Default: false

	

Always use generic function for performing StoreTile. Will be slightly slower than using optimized (jitted) path

	
KNOB_FAST_CLEAR Type: bool Default: true

	

Replace 3D primitive execute with a SWRClearRT operation and defer clear execution to first backend op on hottile, or hottile store

	
KNOB_MAX_NUMA_NODES Type: uint32_t Default: 0

	

Maximum # of NUMA-nodes per system used for worker threads 0 == ALL NUMA-nodes in the system N == Use at most N NUMA-nodes for rendering

	
KNOB_MAX_CORES_PER_NUMA_NODE Type: uint32_t Default: 0

	

Maximum # of cores per NUMA-node used for worker threads. 0 == ALL non-API thread cores per NUMA-node N == Use at most N cores per NUMA-node

	
KNOB_MAX_THREADS_PER_CORE Type: uint32_t Default: 1

	

Maximum # of (hyper)threads per physical core used for worker threads. 0 == ALL hyper-threads per core N == Use at most N hyper-threads per physical core

	
KNOB_MAX_WORKER_THREADS Type: uint32_t Default: 0

	

Maximum worker threads to spawn. IMPORTANT: If this is non-zero, no worker threads will be bound to specific HW threads. They will all be “floating” SW threads. In this case, the above 3 KNOBS will be ignored.

	
KNOB_BUCKETS_START_FRAME Type: uint32_t Default: 1200

	

Frame from when to start saving buckets data. NOTE: KNOB_ENABLE_RDTSC must be enabled in core/knobs.h for this to have an effect.

	
KNOB_BUCKETS_END_FRAME Type: uint32_t Default: 1400

	

Frame at which to stop saving buckets data. NOTE: KNOB_ENABLE_RDTSC must be enabled in core/knobs.h for this to have an effect.

	
KNOB_WORKER_SPIN_LOOP_COUNT Type: uint32_t Default: 5000

	

Number of spin-loop iterations worker threads will perform before going to sleep when waiting for work

	
KNOB_MAX_DRAWS_IN_FLIGHT Type: uint32_t Default: 160

	

Maximum number of draws outstanding before API thread blocks.

	
KNOB_MAX_PRIMS_PER_DRAW Type: uint32_t Default: 2040

	

Maximum primitives in a single Draw(). Larger primitives are split into smaller Draw calls. Should be a multiple of (3 * vectorWidth).

	
KNOB_MAX_TESS_PRIMS_PER_DRAW Type: uint32_t Default: 16

	

Maximum primitives in a single Draw() with tessellation enabled. Larger primitives are split into smaller Draw calls. Should be a multiple of (vectorWidth).

	
KNOB_MAX_FRAC_ODD_TESS_FACTOR Type: float Default: 63.0f

	

(DEBUG) Maximum tessellation factor for fractional-odd partitioning.

	
KNOB_MAX_FRAC_EVEN_TESS_FACTOR Type: float Default: 64.0f

	

(DEBUG) Maximum tessellation factor for fractional-even partitioning.

	
KNOB_MAX_INTEGER_TESS_FACTOR Type: uint32_t Default: 64

	

(DEBUG) Maximum tessellation factor for integer partitioning.

	
KNOB_BUCKETS_ENABLE_THREADVIZ Type: bool Default: false

	

Enable threadviz output.

	
KNOB_TOSS_DRAW Type: bool Default: false

	

Disable per-draw/dispatch execution

	
KNOB_TOSS_QUEUE_FE Type: bool Default: false

	

Stop per-draw execution at worker FE NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_FETCH Type: bool Default: false

	

Stop per-draw execution at vertex fetch NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_IA Type: bool Default: false

	

Stop per-draw execution at input assembler NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_VS Type: bool Default: false

	

Stop per-draw execution at vertex shader NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_SETUP_TRIS Type: bool Default: false

	

Stop per-draw execution at primitive setup NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_BIN_TRIS Type: bool Default: false

	

Stop per-draw execution at primitive binning NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

	
KNOB_TOSS_RS Type: bool Default: false

	

Stop per-draw execution at rasterizer NOTE: Requires KNOB_ENABLE_TOSS_POINTS to be enabled in core/knobs.h

Glossary

	GLSL

	GL Shading Language. The official, common high-level shader language used
in GL 2.0 and above.

	layer

	This term is used as the name of the “3rd coordinate” of a resource.
3D textures have zslices, cube maps have faces, 1D and 2D array textures
have array members (other resources do not have multiple layers).
Since the functions only take one parameter no matter what type of
resource is used, use the term “layer” instead of a resource type
specific one.

	LOD

	Level of Detail. Also spelled “LoD.” The value that determines when the
switches between mipmaps occur during texture sampling.

	MSAA

	Multi-Sampled Anti-Aliasing. A basic anti-aliasing technique that takes
multiple samples of the depth buffer, and uses this information to
smooth the edges of polygons.

	NPOT

	Non-power-of-two. Usually applied to textures which have at least one
dimension which is not a power of two.

	TCL

	Transform, Clipping, & Lighting. The three stages of preparation in a
rasterizing pipeline prior to the actual rasterization of vertices into
fragments.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	
 	ADD (TGSI opcode)

 	AND (TGSI opcode)

 	ARL (TGSI opcode)

 	ARR (TGSI opcode)

 	ATOMAND (TGSI opcode)

 	ATOMCAS (TGSI opcode)

 	ATOMFADD (TGSI opcode)

 	
 	ATOMIMAX (TGSI opcode)

 	ATOMIMIN (TGSI opcode)

 	ATOMOR (TGSI opcode)

 	ATOMUADD (TGSI opcode)

 	ATOMUMAX (TGSI opcode)

 	ATOMUMIN (TGSI opcode)

 	ATOMXCHG (TGSI opcode)

 	ATOMXOR (TGSI opcode)

B

 	
 	BALLOT (TGSI opcode)

 	BARRIER (TGSI opcode)

 	BFI (TGSI opcode)

 	
 	BGNLOOP (TGSI opcode)

 	BGNSUB (TGSI opcode)

 	BREV (TGSI opcode)

 	BRK (TGSI opcode)

C

 	
 	CAL (TGSI opcode)

 	CASE (TGSI opcode)

 	CEIL (TGSI opcode)

 	
 	CLOCK (TGSI opcode)

 	CMP (TGSI opcode)

 	CONT (TGSI opcode)

 	COS (TGSI opcode)

D

 	
 	D2F (TGSI opcode)

 	D2I (TGSI opcode)

 	D2I64 (TGSI opcode)

 	D2U (TGSI opcode)

 	D2U64 (TGSI opcode)

 	DABS (TGSI opcode)

 	DADD (TGSI opcode)

 	DCEIL (TGSI opcode)

 	DDIV (TGSI opcode)

 	DDX, DDX_FINE (TGSI opcode)

 	DDY, DDY_FINE (TGSI opcode)

 	DEFAULT (TGSI opcode)

 	DFLR (TGSI opcode)

 	DFMA (TGSI opcode)

 	DFRAC (TGSI opcode)

 	DFRACEXP (TGSI opcode)

 	DIV (TGSI opcode)

 	DLDEXP (TGSI opcode)

 	
 	DMAD (TGSI opcode)

 	DMAX (TGSI opcode)

 	DMIN (TGSI opcode)

 	DMUL (TGSI opcode)

 	DP2 (TGSI opcode)

 	DP3 (TGSI opcode)

 	DP4 (TGSI opcode)

 	DRAW_USE_LLVM (environment variable)

 	DRCP (TGSI opcode)

 	DROUND (TGSI opcode)

 	DRSQ (TGSI opcode)

 	DSEQ (TGSI opcode)

 	DSGE (TGSI opcode)

 	DSLT (TGSI opcode)

 	DSNE (TGSI opcode)

 	DSQRT (TGSI opcode)

 	DSSG (TGSI opcode)

 	DST (TGSI opcode)

 	DTRUNC (TGSI opcode)

E

 	
 	ELSE (TGSI opcode)

 	EMIT (TGSI opcode)

 	ENDIF (TGSI opcode)

 	ENDLOOP (TGSI opcode)

 	
 	ENDPRIM (TGSI opcode)

 	ENDSUB (TGSI opcode)

 	ENDSWITCH (TGSI opcode)

 	EX2 (TGSI opcode)

 	EXP (TGSI opcode)

F

 	
 	F2D (TGSI opcode)

 	F2I (TGSI opcode)

 	F2I64 (TGSI opcode)

 	F2U (TGSI opcode)

 	F2U64 (TGSI opcode)

 	FBFETCH (TGSI opcode)

 	FD_MESA_DEBUG (environment variable)

 	
 	FLR (TGSI opcode)

 	FMA (TGSI opcode)

 	FRC (TGSI opcode)

 	FSEQ (TGSI opcode)

 	FSGE (TGSI opcode)

 	FSLT (TGSI opcode)

 	FSNE (TGSI opcode)

G

 	
 	GALLIUM_DUMP_CPU (environment variable)

 	GALLIUM_PRINT_OPTIONS (environment variable)

 	
 	GALLIUM_RBUG (environment variable)

 	GALLIUM_TRACE (environment variable)

 	GLSL

I

 	
 	I2D (TGSI opcode)

 	I2F (TGSI opcode)

 	I2I64 (TGSI opcode)

 	I642D (TGSI opcode)

 	I642F (TGSI opcode)

 	I64ABS (TGSI opcode)

 	I64DIV (TGSI opcode)

 	I64MAX (TGSI opcode)

 	I64MIN (TGSI opcode)

 	I64MOD (TGSI opcode)

 	I64NEG (TGSI opcode)

 	I64SGE (TGSI opcode)

 	I64SHR (TGSI opcode)

 	I64SLT (TGSI opcode)

 	I64SSG (TGSI opcode)

 	I915_DEBUG (environment variable)

 	I915_DUMP_CMD (environment variable)

 	
 	I915_NO_HW (environment variable)

 	IABS (TGSI opcode)

 	IBFE (TGSI opcode)

 	IDIV (TGSI opcode)

 	IF (TGSI opcode)

 	IMAX (TGSI opcode)

 	IMG2HND (TGSI opcode)

 	IMIN (TGSI opcode)

 	IMSB (TGSI opcode)

 	IMUL_HI (TGSI opcode)

 	INEG (TGSI opcode)

 	INTERP_CENTROID (TGSI opcode)

 	INTERP_OFFSET (TGSI opcode)

 	INTERP_SAMPLE (TGSI opcode)

 	ISGE (TGSI opcode)

 	ISHR (TGSI opcode)

 	ISLT (TGSI opcode)

 	ISSG (TGSI opcode)

K

 	
 	KILL (TGSI opcode)

 	KILL_IF (TGSI opcode)

 	KNOB_BUCKETS_ENABLE_THREADVIZ (environment variable)

 	KNOB_BUCKETS_END_FRAME (environment variable)

 	KNOB_BUCKETS_START_FRAME (environment variable)

 	KNOB_DUMP_SHADER_IR (environment variable)

 	KNOB_ENABLE_ASSERT_DIALOGS (environment variable)

 	KNOB_FAST_CLEAR (environment variable)

 	KNOB_MAX_CORES_PER_NUMA_NODE (environment variable)

 	KNOB_MAX_DRAWS_IN_FLIGHT (environment variable)

 	KNOB_MAX_FRAC_EVEN_TESS_FACTOR (environment variable)

 	KNOB_MAX_FRAC_ODD_TESS_FACTOR (environment variable)

 	KNOB_MAX_INTEGER_TESS_FACTOR (environment variable)

 	KNOB_MAX_NUMA_NODES (environment variable)

 	
 	KNOB_MAX_PRIMS_PER_DRAW (environment variable)

 	KNOB_MAX_TESS_PRIMS_PER_DRAW (environment variable)

 	KNOB_MAX_THREADS_PER_CORE (environment variable)

 	KNOB_MAX_WORKER_THREADS (environment variable)

 	KNOB_SINGLE_THREADED (environment variable)

 	KNOB_TOSS_BIN_TRIS (environment variable)

 	KNOB_TOSS_DRAW (environment variable)

 	KNOB_TOSS_FETCH (environment variable)

 	KNOB_TOSS_IA (environment variable)

 	KNOB_TOSS_QUEUE_FE (environment variable)

 	KNOB_TOSS_RS (environment variable)

 	KNOB_TOSS_SETUP_TRIS (environment variable)

 	KNOB_TOSS_VS (environment variable)

 	KNOB_USE_GENERIC_STORETILE (environment variable)

 	KNOB_WORKER_SPIN_LOOP_COUNT (environment variable)

L

 	
 	layer

 	LDEXP (TGSI opcode)

 	LG2 (TGSI opcode)

 	LIT (TGSI opcode)

 	LOAD (TGSI opcode)

 	LOD

 	(TGSI opcode)

 	
 	LODQ (TGSI opcode)

 	LOG (TGSI opcode)

 	LP_DEBUG (environment variable)

 	LP_NUM_THREADS (environment variable)

 	LRP (TGSI opcode)

 	LSB (TGSI opcode)

M

 	
 	MAD (TGSI opcode)

 	MAX (TGSI opcode)

 	MEMBAR (TGSI opcode)

 	MIN (TGSI opcode)

 	
 	MOD (TGSI opcode)

 	MOV (TGSI opcode)

 	MSAA

 	MUL (TGSI opcode)

N

 	
 	NOP (TGSI opcode)

 	
 	NOT (TGSI opcode)

 	NPOT

O

 	
 	OR (TGSI opcode)

P

 	
 	PK2H (TGSI opcode)

 	PK2US (TGSI opcode)

 	PK4B (TGSI opcode)

 	
 	PK4UB (TGSI opcode)

 	POPC (TGSI opcode)

 	POW (TGSI opcode)

R

 	
 	RCP (TGSI opcode)

 	READ_FIRST (TGSI opcode)

 	READ_INVOC (TGSI opcode)

 	
 	RESQ (TGSI opcode)

 	RET (TGSI opcode)

 	ROUND (TGSI opcode)

 	RSQ (TGSI opcode)

S

 	
 	SAMP2HND (TGSI opcode)

 	SEQ (TGSI opcode)

 	SGE (TGSI opcode)

 	SGT (TGSI opcode)

 	SHL (TGSI opcode)

 	SIN (TGSI opcode)

 	SLE (TGSI opcode)

 	
 	SLT (TGSI opcode)

 	SNE (TGSI opcode)

 	SQRT (TGSI opcode)

 	SSG (TGSI opcode)

 	ST_DEBUG (environment variable)

 	STORE (TGSI opcode)

 	SWITCH (TGSI opcode)

T

 	
 	TCL

 	TEX (TGSI opcode)

 	TEX2 (TGSI opcode)

 	TEX_LZ (TGSI opcode)

 	TG4 (TGSI opcode)

 	TGSI_PRINT_SANITY (environment variable)

 	TRUNC (TGSI opcode)

 	TXB (TGSI opcode)

 	
 	TXB2 (TGSI opcode)

 	TXD (TGSI opcode)

 	TXF (TGSI opcode)

 	TXL (TGSI opcode)

 	TXL2 (TGSI opcode)

 	TXP (TGSI opcode)

 	TXQ (TGSI opcode)

 	TXQS (TGSI opcode)

U

 	
 	U2D (TGSI opcode)

 	U2F (TGSI opcode)

 	U2I64 (TGSI opcode)

 	U642D (TGSI opcode)

 	U642F (TGSI opcode)

 	U64ADD (TGSI opcode)

 	U64DIV (TGSI opcode)

 	U64MAX (TGSI opcode)

 	U64MIN (TGSI opcode)

 	U64MOD (TGSI opcode)

 	U64MUL (TGSI opcode)

 	U64SEQ (TGSI opcode)

 	U64SGE (TGSI opcode)

 	U64SHL (TGSI opcode)

 	U64SHR (TGSI opcode)

 	U64SLT (TGSI opcode)

 	U64SNE (TGSI opcode)

 	UADD (TGSI opcode)

 	UARL (TGSI opcode)

 	
 	UBFE (TGSI opcode)

 	UCMP (TGSI opcode)

 	UDIV (TGSI opcode)

 	UIF (TGSI opcode)

 	UMAD (TGSI opcode)

 	UMAX (TGSI opcode)

 	UMIN (TGSI opcode)

 	UMOD (TGSI opcode)

 	UMSB (TGSI opcode)

 	UMUL (TGSI opcode)

 	UMUL_HI (TGSI opcode)

 	UP2H (TGSI opcode)

 	UP2US (TGSI opcode)

 	UP4B (TGSI opcode)

 	UP4UB (TGSI opcode)

 	USEQ (TGSI opcode)

 	USGE (TGSI opcode)

 	USHR (TGSI opcode)

 	USLT (TGSI opcode)

 	USNE (TGSI opcode)

V

 	
 	VOTE_ALL (TGSI opcode)

 	
 	VOTE_ANY (TGSI opcode)

 	VOTE_EQ (TGSI opcode)

X

 	
 	XOR (TGSI opcode)

 _images/math/a10b089e626d45c14d0a459bd9d4ed8865a41a1e.png
ast.t

sre.x
dst.y = sre.y
dst.z = sre.2
det 1 — S

_images/math/a2c0cf76bee99190f2335aa1ffca8b4520fc72de.png
srel.ry < 0)7 —1: (srcl.xy > 0)71: 0
(src0.2w < 07 — 1 : (sre0.zw > 0)71: 0

dst.ry

_images/math/9c5a5e3b10346d4fa5e69c9c6dc7fc731a610c66.png

_images/math/9e0a220ca680282886a06904016eed024778c3a1.png
dst.xy = |sre.ry|
dst.zw = |sre.zw)

_images/math/a430025ddc96294805d624c7e917dcaee96b71f6.png
dst.x = |src.x|
dst.y = [src.y]
dst.z

sre.s
dst.w = [src.aw]

_images/math/e7c8f9f33bad5965b7c6b03153331ae58aab59a1.png
dst.x = (src0.x > srel.x)?L.OF @ 0.0F
dst.y = (src0.y > srel.y)?LOF : 0.0F
dst.z = (src0.z > srcl.z)?LOF : 0.0F
dst.w = (src0.w > srel.aw)?1.0F : 0.0F

_images/math/a598b65f2016a3a18be99c537dd57c6ebd8658e0.png
coora = srcl

shadow,ef = src0.zorsrc0.w(optional)
unit = srel

dst = texture_sample(unit, coord, shadow,ef)

_images/math/e9fe358517a0bfa6df8bdbf82811982dc607312e.png
dst.x = srcl.x << (0xlf&srcl.x
dst.y = srcl.y << (0z1f&srcly]
dst.z = src0.z << (0zlf&srel.z
0w << (0] f&srel.w

)
)
)
)

dst.w

_images/math/e95de8c5925c338483b9764e376c0aa5b05a7f60.png
dst.ry = trunc(src.ry)
dst.zw

trunc(sre.zw)

_images/math/eca627fbcae2a6a11d1ebdf69ee8e8f0a8b30ebf.png
(st — cos src. T

_images/math/ea3b39b1c675eaae42ba8a071ae5a8c8b717d56d.png
dst.x = (srcl.x < srcl.x,
dst.y = (src0.y < srcly)?

dst.z = (src0.z < srcl.2]

dst.w srcl.w < srel.aw)

7~ 0
7~
7 ~ 0

7 ~ 0

- - & =

_images/math/ef6b59263874170d0e2f671bff861f17723fcaa2.png

_images/math/ef2c9a967dd4b1d6bf96d91bf5b6625c7760f6fd.png

_images/math/f0377d648d4d156160d44cd4a97f6b341bde11e5.png
ast.x = srcl.x X srcl.r + srca.x
dst.y = srcl.y x srcly + src2.y
dst.z = src0.z X srcl.z + src2.z

dst.w c0.w x srel.aw + sre2.aw

_images/math/efa97056d2aa104abfa4cb2789fcf23854128146.png

_images/math/e58baec4f120780a7589e73ea58778416c83a267.png
dst.zy = (int64;)src0.zy
dst.zw

(int64,)src0. 2w

_images/math/e3a2e099ef390b3df9a0e2d3f948d13c108df04a.png
dst.x = trunc(srec.x,
dst.y = trunc(src.y,
dst.z = trunc(src.z,
dst.w

rune(srea

_images/math/9b37cd757d7917007de9c69c1991a83717084af4.png

_images/math/9b8794d084d0a2a7e6481643403d2d151d6d9ded.png

_images/math/9a5a42af7a7307e6a538a4f1ffbcc2bc0ec36136.png
dst.x = maz(src0.z, srcl.x)
dst.y = maz(src0.y, srcl.y)
dst.z = maz(src0.z, srcl.z)
)

dst.w = maz(src0.w, srelaw

_images/math/9a5b80bc70f3aadba24a31b49489406a638c8ff1.png
dst.x = partialz(src.z
dst.y = partialz(src.y)
dst.z = partialz(src.z

dst.w = partialz(sre.aw’

_images/math/d7fdf9f11d72e0f9da6db3db4588efdb36d7a215.png
dst.zy = round(src.zy)
dst. 2w

round(sre.zw)

_images/math/d5583132de22e5e6f2caa8306879f91b8e3c746e.png
dst = f32to_f16(src.x)|f32to_f16(src.y) << 16

_images/math/d95bd416ba3825947e9bc14567fe852b1b8e70a2.png
dst.xy = (uintb4;)srcl.x

(wint64,)src0.y

_images/math/d857afbde636364a94c87b830dc93eb0cb2d3d82.png
dst.ry = double(srcl.x)

double(src0.y)

_images/math/de0fa3b8cc37e2c7a6de12af210b24c0de564843.png
coora = srcl
shadow,ef = srcl.z
unit = src2

dst = texture_sample(unit, coord, shadow,ef)

_images/math/d9a77962f94d6e48b71f4d752aff357b59a7d853.png
dst.x =27
dst.y
dst.z =

srea— |srea

dst.w

_images/math/e093275198a06239f7212dd6d52c37a0ae133035.png
dst.x = (float)src0.ry
dst.y = (float)src0.zw

_images/math/dfd6d9bd4278e05fa2a40dedc56769b17038aa7c.png
ast.r =1

dst.y = srcl.y x srcly

dst.z = srel.z

dst.w cl.w

_images/math/d35d3f63d1f3e6da6e4245956265ea0a372ed6a2.png
ast.t

—sre.x
dst.y = —sre.y
dst.z = —sre.

Tt 10— — 1

_images/math/d2653bb610568a27e316b02c196948e2c39c3b7b.png
dst.x = int(srcl.zy)

dst. int(src0.2w)

_images/math/d457b19e85d3cc5a22527c89fbbe55aa7866af05.png
dst.xy = src.xy — |sre.ry|
dst.zw = sre.zw — |sre.zw]

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_images/math/f5f8a9eae25df059da56f9a7b59382d48a3500af.png

_images/math/f5e01b0f70e69b69dfede8c899092883e1c9398b.png
tod = srcll.x

dst.z = textur ewidth(unit, lod)
dst.y = texture_height(unit, lod)
dst.z = texture_depth(unit, lod)
exture_levels(unit)

dst.w

_images/math/f83df1bb481eb8b13ac3101826462538972bf070.png
dst.x = |logy [sre.z||

Jsre.a|
2llogy |sre.l|
dst.z = log, |src.z|
dstw =1

dsty =

_images/math/f6017ef516a6d915f4814e21d08578de9c772b47.png
dst.r

‘erture_samples(unit)

_images/math/faea8e0f8d84faed1bdf55bc548cf8951925cadc.png
coord = srcl

bias = srcl.x
unit = src2
dst

exture_sample(unit, coord, bias)

_images/math/f9981c22795c7f57eda625b886029556ab19f0cd.png
dst.x = (srcl.x < srcl.x)?L.OF @ 0.0F
dst.y = (src0.y < srel.y)?LOF : 0.0F
dst.z = (src0.z < srcl.z)?LOF : 0.0F
dst.w = (src0.w < srel.aw)?1.0F : 0.0F

_images/math/fe89271fc082147e3c8fe4f83383787fcefd114e.png
dst = f32_to_unorm8(src.x)|(f32_to_unorm8(src.y) << 8)|(f32_to_unorm8(src.z) << 16)|(f32to_unorm8(src.w) << 24)

_images/math/fdf212c9716ccc47bee1727996673123ad4114f6.png
dst.x = srcl.z|srcl.x
dst.y = src0.y|srcl.y
dst.z = srcl.z|srel.z
dst.w

c0.w|srel.aw

_static/ajax-loader.gif

_images/math/f145dcfa05dca693d0cf17c7e19c16f0f7346735.png
coora = srcl)
component = srcl
dst

exture_gatherd(unit, coord, component)

_images/math/341a529b4d019c7beff1f4bbaaca504b53ebe3aa.png
dst.xy = |sre.ry|
dst.zw = [sre.zw]

_images/math/353a57e5061163f638d0c1d25bc5ff507b073ac2.png
dst.x = |src.x
dst.y = |src.y|
dst.z

sre.z
dst.w = |sre.aw]

_images/math/3357f665fe7c0429faa25edef52ef6a6aeb360f8.png
dst.x = (int)round(src.x,
dst.y = (int)round(src.y,
dst.z = (int)round(src.z
dst.w

‘int)round(src.w

_images/math/339d416ef7303766c47dc884b5c7d6154738434c.png
(st = s1n srec.x

_images/math/3934745d4823c8267cea47c9c537d49752abaead.png
ast = srcl.r X srcl.r + srcl.y X srcl.y

_images/math/39db6a8592d0fc8fb68815855b15d6c2c10b3cac.png
dst.x = (unsigned)src.x
dst.y = (unsigned)src.y
dst.z = (unsigned)src.z
dst.w

unsigned)sre.w

_images/math/3561a237568bbc77f1a95a23431033051e30d773.png
ast.x = srcl.xr + srcl.x
dst.y
dst.z

sre0.y + srely

src0.z + srel.z
dst.w = src0.w + srel.w

_images/math/386a3866af42905c5b121203da55f3b433373f53.png
dst.xy = |srcl.xy

0.zl

_images/math/3a7e4ca17129bd18c87b8a69d597d972ebbc1cea.png
dst.x = (srcl.x >= srcl.x)
dst.y = (src0.y >=srcl.y)?
dst.z = (src0.z >= srcl.z

dst.w srcl.w

srcl.aw’

7~ 0
7~
7m0

7m0

- - & =

_images/math/b19593eebcf24d104e1da1348bea05031339aa5e.png
dst.xy = (double)src0.xy
dst. 2w

(double)src0. 2w

_images/math/3f7a0d7911e8994b2aa525d6002d5c9c2de8a4d8.png
dst.ry = \/sre.ry

dst.zw = \/src.zw

_images/math/b1c9fd7eb721769b778eabd12ff6eb3134076349.png
dst.x = srcl.x >> (0xlf&srcl.x
dst.y = srcl.y >> (0rlf&srcl.y]
dst.z = src0.z>> (0zlf&srel.z
0w >> (0] f&srel.w

)
)
)
)

dst.w

_images/math/b19c9ec5d51014d55bfde3ec6c62e7b5fe9b129a.png

_images/math/b30bfd30d2257cb4c4395fd42993747907fa0921.png
dst; = resourcelof fset|
resourcelof fset] = (dsty < sreg?dst, : sreg)

_images/math/b2c6c2e40dd9e86b20148543e9acedf596eeb321.png
dst.r = unsigned(src0.zy)
dst.y = unsigned(src0.zw)

_images/math/abb46f726dbbb8e12be4a015d08ebd51b02b3701.png
dst.xy = man(src0.xy, srcl.xy)

min(src0.zw, srel.zw)

_images/math/a98b89b3c94ca98f63e90a0f6ebcc62f469e71e8.png

_images/math/b01fe92057987290d8b9a1cbdf3579d007ab984c.png
dst = \/src.x

_images/math/afa7ab04f748d7549616c57d328c1f5b7c0ca833.png
ast.r =1
dst.y = maz(src.z,0)

dst.z = elamp(are.n~125.128) . g

sre.x > 0)?maz(sre.y, 0

dst.w

_images/math/b0fea043c0c40e471411ad35e5c6e323396aef59.png
ast.x = srcl.xy! = srcl.ayl~ 000
dst.

srcl.zuw! = srel.zw? ~ 0: 0

_images/math/b06e99ff316f409922a88843f0377449fb995554.png
srcl.zy

srely
sre0.zw

dst.zw =
srcl.zw

_images/math/5888c757b892acae80cec174536152949da4977c.png
dst.xy = srcl.xy >> (unsigned)(0x3 f&srel.x)
dst. 2w

sre0.zw >> (unsigned)(0z3 f&srel.y)

_images/math/59b197a8f265cdb47ea1fc764b6b92b0c349706b.png
(int64;)src0.x
(int64,)src0.y

dst.ry

_images/math/567540f7824de341776a318b805b3b0d12f008c8.png
dst.ry = (uint64;)srcl.zy

(wint64,)src0. 2w

_images/math/584ebd2bfa785749228dad4f14d88b3a377afce6.png

_images/math/63751cb2e98ba393b0f22e45ca127c3cebb61487.png

_images/math/63b02811dbe71879384cbd3b5995053c36baa36d.png
coord = srcl
lod = srel.x
unit = src2

dst = texture_sample(unit, coord, lod)

_images/math/5b2f7b9c705a1d123e67313031d4d191a7ebc006.png
sreay > 0)71.0 : (srexy < 0)7 —1.0:0.0
(sre.zw > 0)71.0 : (sre.zw < 0)? — 1.0 : 0.0

dst.ry

_images/math/5ecdb7b09f444ca221d6b200703ac43440ed9660.png
coora = srcl)
compare = srcl
dst

exture_gather(uint, coord, compare)

_images/math/67041145c7aa328af2c14b56c041bf400d56ed07.png
dstl x 295V — gre

_images/math/a7df30404c8ed3df9e705aa73d7f0a2270e8965b.png
dst.r = (src0.x < 0)?srcl.x: sre2.x
dst.y = (src0.y < 0)?srcly : src2.y
dst.z = (src0.z < 0)?srcl.z : sre2.2
dst.w

sre0aw < 0)?srela : sreaw

_images/math/a5bf1f25d6b7267116f44e1a6d634ac1cc7f2882.png
ast.x = srcll.oy >= srcl.ory’ ~U0:U

srcl.zw srel.zw? ~ 00

_images/math/a9761313eda8fa414e53e26d863299eb045ae0e8.png
coord.xt

srcl.zfsrcd.w
coord.y = srcl.y/src0.w
coord.z = src0.z/src0.w

coordaw = src0.u
unit = srcl

dst = texture_sample(unit, coord)

_images/math/a839108e0975ac997aede3289405ab332e9aa782.png
71.0F : 0.0F
71.0F : 0.0F
71.0F : 0.0F
71.0F : 0.0F

dst.x = (srcl.x >= srcl.x)
dsty = (srel.y >= srcl.y]
dst.z = (src0.z >= srcl.z

dst.w srcl.w

srcl.aw’

_images/math/47d947ea0e556a76b8397739d81100930957bfea.png
dst.x = (srcl.z! =

dst.y = (srcl.yl =
dst.z = (src0.2l =
dst.w

srclaw! =

srcl.x
srely,
srel.z
srelaw

7~ 0
7~ 0
7~ 0

7~ 0

- - & =

_images/math/70bbc8d0b78f60166db2f35b22a954cc2d4d0085.png
dst.x = man(src0.z, srcl.x
dst.y = min(src0.y, srcl.y)
dst.z = min(src0.z, srcl.z

dst.w = min(src0.w, srelaw)

_images/math/71216cfb0d2e20043c524a6dceabb8d2420917de.png
srel.ry << (0z3f&srel.x)
sre0.zw << (023 f&srel.y)

_images/math/6d4f86796f1f5c021db464cd3837ef1f3b624e53.png
dst.x = srcl.x >> (unsigned)(0xlf&srcl.x
dst.y = src.y >> (unsigned)(0z1 f&esrcl.y,
dst.z = src0.z >> (unsigned)(0z1 f&srcl.z
dst.w = src0.aw >> (unsigned)(0z] f&srel.w

)
)
)
)

_images/math/708743551c0669dca08ac31dfcf8a654e2edac01.png
—(s Ad)

_images/math/76f24b8bb484184f7cce255b5677b00b80b0a1ba.png
(s V d)

_images/math/7a359d68a610c11dc5a578d8891eb1b00a658810.png
dsty
resourcelof fset]

resource(of fset]

Cx

_images/math/71817bd1d9b7309735471cc13549a7a4c1af7c02.png
ast.x = srcll.oy < srcl.xy? ~0:0

dst. srcl.zw < srel.zw? ~ 00

_images/math/76eb44a28f43d5bd9a87f00322ab6d85ce706ecc.png
srcl.ox

dst.x =
srela
0
dsty = LY
srely
src0.
dst.z =
srel.z
src0.w
dstaw =

srel.aw

_images/math/c8048cc8925d003c23aee6b7ffde17c4659428dc.png
srel.ry >> (0z3f&srel.x)
sre.zw >> (023 f&srel.y)

_images/math/cb89d7e5e3721cf168f9e546f0e2985915667206.png
dast.r = srcl.x&srcl.r

dst.y = src0.yesrcl.y

dst.z = srcl.z&srel.z
dst.w = srcl.w&srel . w

_images/math/c84b451b3f8b5675e72c087f9c6ee4718de9e3d9.png
dst.ry = clock()

_images/math/ce2e42d29026399fc3cef17e3da6fcd8fe209e60.png
rac(src.ry)

rac(sre.zy)

_images/math/cde6ea32ec0972b4c3da8bbeb9f8ba902c3f5730.png
ast.ry = srcl.ry + srcl.xy

srel.zw + srel.zw

_images/math/d09f65601af7cb36ec981aefae9f68cc8ada1c38.png
dst.x = (float)src.x
dst.y = (float)src.y
dst.z = (float)src.z
dst.w = (float)src.w

_images/math/d078cbc38255b4510d6aae37886a220f34c3945f.png
ast.x = srcl.x @ srcl.x
dst.y
dst.z

srcl.y & srel.y

srcl.z & srcl.z

dst.w c0.w & srel.w

_images/math/c30807d5b4c2a2753be449415ba50ff986ea2bab.png
dst =

Jsre.x

_images/math/c2eb95540724a84d36606f409082bd858576e77f.png
—(s B d)

_images/math/c719f9ac132a168afb8e23e857be39c5649ce5e1.png
ast.r = srcll.r X srcl.x

dst.y = src0.y x srcl.y

dst.z = src0.z x srcl.z

dst.w 0. %X srcl.w

_images/math/c58448a608bfea7e61c999f0f8388166c4fe8cae.png
¥ 28Telaw

dst.r = src0.x * 25 Tdst.y = srcl.y * 25 dst. 2 = src0.z * 2 dstow = src0.w

_images/math/67aee2220b4b7f2ca16cca3735ee228953b88c36.png
dst.x = srcl.x X srel.x + (1 — srcl.x) x sre2.x
dst.y = srcl.y x srely+ (1 — srclly) x sre2.y
dst.z = sre0.z x srcl.z + (1 — src0.z) X src2.z

dst.aw = sre0.w X srelav + (1 — sre0.ap) X sre2.aw

_images/math/6bed5d63f728cdf0f2104a82376b0a1d2507e042.png
ast.xy = srcl.xry * srcl.ry

dst.zw = srcl.zw * srcl.zw

_images/math/8b9338a0c417e107fc14f7bece8ce50088e7a30f.png
71.0F : 0.0F
71.0F : 0.0F
71.0F : 0.0F
71.0F : 0.0F

dst.x = (srcl.r <= srcl.x,
dsty = (srell.y <= srcl.y]
dst.z = (src0.z <= srcl.z

dst.w srcl.w

srcl.aw’

_images/math/8e28962e766a986d8c7553445a22231370db337a.png
coord.r

srcl.x

coord.y = src0.y
coord.z = src0.

coord.w = none

lod = src0.uw

unit = srel

dst = texture_sample(unit, coord, lod)

_images/math/8479c51ddda931108e2fe4781c6a160e1a4fb253.png
dst.x = (src0.x! = srel.x)?1.0F : 0.0F
dst.y = (src0.y! = srcly)?LOF : 0.0F
)?LOF : 0.0F
)

src.w! = srel.aw)?1.0F : 0.0F

dst.z = (src0.2! = srcl.z
dst.w

_images/math/86ab6cafa31766a2c5ffd66c48ebddf231632a31.png
coorda.r = srcl.x

coord.y = srcl.y
coord.z = srcl.2
coord.w = none
lod =0

unit = srcl

dst = texture_sample(unit, coord, lod)

_images/math/9688031b3cfa7d30dc172548c55b464457b9f7cb.png
dst.x = partialy(src.x)
dst.y = partialy(src.y)
dst.z = partialy(src.z)
)

dst.w = partialy(src.w’

_images/math/8e81e8fb6b01be239255fa19ee3f10b8e33cc607.png
dst; = resourcelof fset|
resourcelof fset] = (dsty > sreg?dst, : sreg)

_images/math/922b5887e71aee67a53151defd5645bb977d4df8.png

_images/math/bbbd9da7e823a001dd281d19aefc8d8047d0da82.png
dsty
dst,

resource(of fset]

resourcelof fset] empy?srey : dsty)

_images/math/bac4b154fb0ce72d5c80e62a09a4cca4cd6325ee.png
dst.r = (src0.x <0)7 —
dst.y = (src0.y < 0)? —
dst.z = (src0.z < 0)7 —
sre0.aw < 0)7 —

dst.w

(srcl.z >0
(src0.y > 0
(src0.z > 0
(src0aw > 0

71
71
71

71

- - & =

_images/math/be66288fb89cd63371f454635dca98be637f4eb4.png
dsty = resource|of fset|
resourcelof fset]

dst, + sre;

_images/math/bc0875700835092b1acc957374908c9d934af89e.png
dsty
resourcelof fset]

resource(of fset]

st &Sty

_images/math/c12c1ab7b8778f0dfe9e515552b15c94f24a43bb.png

_images/math/c0006597b2b182e82b4266b71f32c939a7b6b160.png

_images/math/b8e93b4d868ea6a6ee8065849cb9148e0baaf044.png
ast.ry = srcl.ry X srcl.xy

dst.zw = srcl.zw X srcl.zw

_images/math/b8120e927db7a1480d65d4bb7808cf7c4e59808a.png
dst — srel) p57clT

_images/math/b9d10b54744d07746b97f53c55eb98046fd76c8c.png

_images/math/b931d7410cf6422d4269b4430fe86c8256e742b4.png
dst.x = (int)src.x
dst.y = (int)src.y
dst.z = (int)src.z
dst.w

‘int)sre.aw

_images/math/ba465228d10901cf51d022ab3ee5f4405f665f97.png
coora = srcl)
dst.zy = lodg(uint, coord);

_images/math/83a0225422da447e7ce3a1df5d412790b255904c.png
log,

_images/math/841d447d853655c72b05a266ef2f5b5087df46f4.png
dst

coora.r = srcl.x
coord.y = srcl.y
coord.z = srcl.2
coord.w = none

bias = src0.u

unit = srcl

exture_sample(unit, coord, bias)

_images/math/8166da7392da108632179f637ddbfff0d92f1fcd.png

_images/graphviz-0b6b0192540c50d618f7657841eae38ce47615e0.png

_images/graphviz-9399bc541a98f507306f58a5c2e052c8c4d4e3e4.png

_images/graphviz-a296a509dc59add317fbe8b353ba51cca5e24582.png
fanout
off=0

mov

&5 D (o)
OIOIOIO

_images/graphviz-5500c48627c1ee505d9d71475eb492e0c0c7df93.png
pff=2

_images/graphviz-725083182427568defa92c4c140ed57562446988.png

_images/graphviz-acacadc765882cd6fd11686dec9549989de3251a.png
vert

mad.f32

\ mul.f

mov.£32632
outputs
o0x - mov.f32632
0y e
07 |
prw mov.£32632

mad.f32

inputs

i0.x

io.y

0.z

iLy

il.z

_images/math/003619d0c0862feb9b81c8ee6e8d26bd85731d7b.png
dst.x = src.x — |sre.x
dst.y = src.y — |sre.y|
dst.z = src.z — |sre.z]
dst.w = srcaw — |sre.aw|

_images/math/01eb27657cdebd311de4a77c39b2c7d8ded861ce.png
1

sre.ry
1

[

dst.ay =

nav.xhtml

 Table of Contents

 		
 Welcome to Gallium’s documentation!

 		
 Introduction

 		
 What is Gallium?

 		
 Debugging

 		
 Debug Variables

 		
 Common

 		
 State tracker-specific

 		
 Driver-specific

 		
 Flags

 		
 Remote Debugger

 		
 TGSI

 		
 Basics

 		
 Modifiers

 		
 Instruction Set

 		
 Core ISA

 		
 Compute ISA

 		
 Integer ISA

 		
 Bitwise ISA

 		
 Geometry ISA

 		
 GLSL ISA

 		
 Interpolation ISA

 		
 Double ISA

 		
 64-bit Integer ISA

 		
 Resource Sampling Opcodes

 		
 Resource Access Opcodes

 		
 Bindless Opcodes

 		
 Inter-thread synchronization opcodes

 		
 Atomic opcodes

 		
 Inter-lane opcodes

 		
 Explanation of symbols used

 		
 Functions

 		
 Keywords

 		
 Other tokens

 		
 Declaration

 		
 Array Declaration

 		
 Declaration Semantic

 		
 Declaration Interpolate

 		
 Declaration Sampler View

 		
 Declaration Resource

 		
 Hardware Atomic Register File

 		
 Properties

 		
 Texture Sampling and Texture Formats

 		
 Screen

 		
 Flags and enumerations

 		
 PIPE_CAP_*

 		
 PIPE_CAPF_*

 		
 PIPE_SHADER_CAP_*

 		
 PIPE_COMPUTE_CAP_*

 		
 PIPE_BIND_*

 		
 PIPE_USAGE_*

 		
 Methods

 		
 get_name

 		
 get_vendor

 		
 get_device_vendor

 		
 get_param

 		
 get_paramf

 		
 context_create

 		
 is_format_supported

 		
 can_create_resource

 		
 resource_create

 		
 resource_changed

 		
 resource_destroy

 		
 get_timestamp

 		
 get_driver_query_info

 		
 get_driver_query_group_info

 		
 get_disk_shader_cache

 		
 Thread safety

 		
 Resources and derived objects

 		
 Transfers

 		
 Resource targets

 		
 PIPE_BUFFER

 		
 PIPE_TEXTURE_1D / PIPE_TEXTURE_1D_ARRAY

 		
 PIPE_TEXTURE_RECT

 		
 PIPE_TEXTURE_2D / PIPE_TEXTURE_2D_ARRAY

 		
 PIPE_TEXTURE_3D

 		
 PIPE_TEXTURE_CUBE / PIPE_TEXTURE_CUBE_ARRAY

 		
 Surfaces

 		
 Sampler views

 		
 Formats in gallium

 		
 References

 		
 Context

 		
 Methods

 		
 CSO State

 		
 Resource Binding State

 		
 Non-CSO State

 		
 Samplers

 		
 Sampler Views

 		
 Hardware Atomic buffers

 		
 Shader Resources

 		
 Surfaces

 		
 Stream output targets

 		
 Clearing

 		
 Evaluating Depth Buffers

 		
 Uploading

 		
 Drawing

 		
 Queries

 		
 Conditional Rendering

 		
 Flushing

 		
 Fences

 		
 Resource Busy Queries

 		
 Blitting

 		
 Transfers

 		
 PIPE_TRANSFER

 		
 Compute kernel execution

 		
 Mipmap generation

 		
 Device resets

 		
 Bindless

 		
 Using several contexts

 		
 Transfers

 		
 CSO

 		
 Blend

 		
 Blend Factors

 		
 Logical Operations

 		
 Members

 		
 Per-rendertarget Members

 		
 Depth, Stencil, & Alpha

 		
 Depth Members

 		
 Stencil Members

 		
 Alpha Members

 		
 Rasterizer

 		
 clamp_vertex_color

 		
 clamp_fragment_color

 		
 flatshade

 		
 flatshade_first

 		
 light_twoside

 		
 sprite_coord_enable

 		
 sprite_coord_mode

 		
 point_quad_rasterization

 		
 Sampler

 		
 Members

 		
 Shader

 		
 Members

 		
 Vertex Elements

 		
 Input Formats

 		
 Members

 		
 Distribution

 		
 Drivers

 		
 Intel i915

 		
 LLVM Softpipe

 		
 nVidia nv30

 		
 nVidia nv50

 		
 nVidia nvc0

 		
 VMware SVGA

 		
 ATI r300

 		
 ATI/AMD r600

 		
 AMD radeonsi

 		
 freedreno

 		
 Softpipe

 		
 Trace

 		
 Rbug

 		
 State Trackers

 		
 Clover

 		
 Direct Rendering Infrastructure

 		
 GLX

 		
 MesaGL

 		
 VDPAU

 		
 WGL

 		
 Xorg DDX

 		
 XvMC

 		
 Auxiliary

 		
 OS

 		
 CSO Cache

 		
 Draw

 		
 Gallivm

 		
 Indices

 		
 Pipe Buffer Managers

 		
 Remote Debugger

 		
 Runtime Assembly Emission

 		
 TGSI

 		
 Translate

 		
 Util

 		
 Drivers

 		
 Freedreno

 		
 IR3 NOTES

 		
 OpenSWR

 		
 Usage

 		
 FAQ

 		
 Profiling

 		
 Knobs

 		
 Glossary

_images/math/02b72b910ca5c3a3adef25e424b0f6279a6ab2b3.png
ast.x = srcll.xisrcl.x: srea.x
dst.y = srcl.y?srcl.y : sred.y
dst.z = src0.z?srel.z : sr2.
dst w — sre0 w?srelaw : sred.aw

_images/math/037a74392937e1d6bfb78f727ef6727e087cead9.png

_images/math/01f3f66cab4d6f0a1501ee39fa0de561f303294a.png
ast.ry = srcl.ry X srcl.xy + srca.xy

srel.zw X srel.zw + sre2.zw

_images/math/02adda93afd30cd6b303cfa65080fce41c664bb6.png
dst.x = f16_to_f32(src0.x&0zfff f
dst.y = f16.t0_f32(src0.z >> 16
dst.z = f16_t0_f32(src0.z8&0zf ff
dstaw = f16_to_f32(src0.z >> 16

)
)
)
)

_images/math/09e8049010f9e789addfd737dfc79cd66610991b.png
dst.x = (int)|src.x]
dst.y = (int)|src.y|
dst.z = (int)|src.z
dst.w = (int)|src.aw]

_images/math/0a658b6b8c0d12839e8c6852d0ecbfdc49f52a07.png
dst.ry = maz(srcl.ry, srcl.ry)

maz(src0.zw., srel.zw)

_images/math/0453e08139ee1c32e7bee5709981f9480e831d50.png
srel.x)?1.0F : 0.0F

dst.x = (srcl.z)
)?LOF : 0.0F
)
)

dsty = (srcl.y == srcl.y]
?710F : 0.0F
srelaw)?L.0F : 0.0F

dst.z = (src0.z == srel.z

dst.w src0.w

_images/math/069feaf5dea4a85bd0734f82f20b88cf6eac1cfb.png
dst; = resourcelof fset|

resourcelof f set] = dsty|sre,

_images/math/0b2629c7b00857973ff6cc4f583a7ea114551e7c.png
dsty
resourcelof fset] = dsty & sre,

esour celof f set|

_images/math/1110bd96df9a179ab77e87a4bfd43526d728f409.png

_images/math/150fb7bc5c395c3ec42aee2881e755193c900610.png
ast.ry = —src.zy

dst >

_images/math/16b1ea98982322b503beb8c46847cc04527355bd.png
dst.x = float(src0.zy)
dst.y = float(src0.zw)

_images/math/175401c1730e5827b5333234e61fef64e3ab68cf.png
coora = srcl)
ddz = srel
ddy = src?
unit = sre3

dst = texture_sample _deriv(unit, coord, ddz, ddy)

_images/math/15c77b071919d64bffc766d54526aebba8f00e01.png

_images/math/15d3ad34127e5ec172a428ce5fef07b91dc1cd3c.png
ast = srcl).xr X srcl.r+ srcl.y X srcl.y+ srcl.z X srcl.z + srcl.w X srel.w

_images/math/19704ee3a5ce86d390ffca176e2d8aa0e0641f85.png
ast = srcl.r X srcl.xr + srcl.y X srcl.y +srcl.z X srcl.z

_images/math/1fd05aaec4dfe57661a4a323bc8b38f00c868a46.png
dst.x = (src.x >0)71
dst.y = (sre.y > 0)71
dst.z = (sre.z > 0)71

dst.aw = (sreaw > 0)71

(sre.x <0
(srey <0
(sre.z <0
(sreaw < 0

)
)
)
)

1?7

.
.

.

1
1
1
1

- - & =

_images/math/175fd5f2dd157d8e5245addc38e51bb71c5d7009.png
dst.r = round(src.z)
dst.y = round(src.y)
dst.z = round(src.z)
)

dst.w = round(src.w

_images/math/18153ba00e19e0243f09d036dca3e63eeb946484.png
dst.xy = srcl.xy mod srcl.xy

dst.>w = srel. 2w mod srel.zw

_images/math/25c24034abfa2e150371f6ee9bdb1a592393fa3e.png

_images/math/278babcd335226e758c3c1fbb9e95930b9ad62f6.png
dst = f32_to_snorm8(src.x)|(f32_to_snorm8(src.y) << 8)|(f32to_snorm8(src.z) << 16)|(f32to_snorm8(src.w) << 24)

_images/math/2257fafaccf173e21d7dfd9f8c41b5bbc17ab9ba.png
if(srce.x < 0||sre.y < 0l|sre.z < 0f|src.w < 0)discardendi f

_images/math/2bcdd258db26c186a19c6fd9df6c58097d3cb97a.png
dst.x = (srcl.z x srel.x) >> 32
dst.y = (src0.y x srcl.y) >> 32
dst.z = (src0.z x srel.z) >> 32
dstaw = (src0.w x srel.aw) >> 32

_images/math/2c29a7572cc434d4ec0ad8afc6d171e49041d084.png

_images/math/280cc64af9d352af7820021b66124aa241de67cf.png
dst = f32_to_unorml6(src.x)|f32to_unorml6(src.y) << 16

_images/math/2b0715e9deca0fe6cc7e87d29e4a7de014128e3b.png
dst.x = |src.z|
dst.y
dst.z

srey

sre.z|
dst.w = |sre.w

_images/math/31d271ff69ac932cc955067904b691c1d4a31488.png
dst.r = srcl.r mod srcl.x

dst.y = src0.y mod srel.y

dst.z = src0.z mod srel.z

dst.w 0.1 mod srel.w

_images/math/2e4c88e75215ab6532a07614cb9d013ebcddc118.png
gsrelx

dst.ay = srel.ay x

arel) 2 x 95TCL

_images/math/2ede9620fd416120ae0120de2d5f7af707bc3170.png

_static/up.png

_static/up-pressed.png

