

Welcome to FusionDirectory development’s documentation!

[image: FusionDirectory]
Contents:

	Contributing to FusionDirectory
	Registering a FusionDirectory Account

	Guidelines for better contributions

	Coding Standards
	Source Code management

	Coding Style

	Headers for the files in FusionDirectory code

	Writing a plugin
	Plugin folder organization

	Getting started

	Going further with Simple Plugin

	plInfo

	Attributes Types

	Configuration back-end

	Menu sections

	API
	FusionDirectory API

	Fusiondirectory WebService

	LDAP schemas
	Schema naming convention

	LDAP number rules

	LDAP naming rules

	FusionDirectory reserved oid

	Themes
	FusionDirectory theme system

	Translate
	Translate FusionDirectory

	Release Policy
	FusionDirectory Version policy

	FusionDirectory Life Cycle

	Distribution and PHP support
	Distribution and PHP support Policy

	PHP versions

	License
	License

	orphan

	

Contributing to FusionDirectory

How to contribute to FusionDirectory

	Registering a FusionDirectory Account

	Guidelines for better contributions

Registering a FusionDirectory Account

To create a FusionDirectory project Account you must go to
FusionDirectory Sign UP [https://register.fusiondirectory.org]

Guidelines for better contributions

There is a complete set of guidelines that you should read

Contributing to FusionDirectory [https://gitlab.fusiondirectory.org/fusiondirectory/fd/blob/1.3-dev/CONTRIBUTING.md]

Coding Standards

	Source Code management
	Branches

	File Hierarchy System

	Coding Style
	Scope of style guidelines

	Performance and Readability

	Indentation and line length

	Spacing

	Braces

	Casing

	Naming

	Arrays

	PHP specific

	Including files

	Quotes / double quotes

	Files Format

	Checking standards

	Headers for the files in FusionDirectory code

Source Code management

FusionDirectory source code management is handled by GIT [https://en.wikipedia.org/wiki/Git] and hosted on GitHub [https://github.com/fusiondirectory].

There is two repositories :

	FusionDirectory Core [https://gitlab.fusiondirectory.org/fusiondirectory/fd]

	FusionDirectory plugins [https://gitlab.fusiondirectory.org/fusiondirectory/fd-plugins]

In order to contribute to the source code, you will have to know a few things about Git and the development model we follow.

Branches

On the Git repository, you will find several existing branches:

	master contains latest released official code,

	xxx-fixes contains the next minor release source code,

	xxx-dev contains the next major release source-code,

The xxx-dev branch is where new features are added. This code is reputed as non stable.

The xxx-fixes branches is where bugs are fixed. This code is reputed as stable.

File Hierarchy System

Note

This lists current files and directories listed in the FusionDirectory core source code.

This is a brieve description of FusionDirectory core main folders and files:

	[image:] .tx: Transifex configuration

	[image:] contrib

	[image:] apache

	[image:] fusiondirectory-apache.conf: FusionDirectory apache configuration

	[image:] bin

	[image:] fusiondirectory-insert-schema: FusionDirectory console schema management tool

	[image:] fusiondirectory-setup: FusionDirectory console management tool

	[image:] docs

	[image:] README: Global Readme

	[image:] README.cnconfig: Readme about openldap and cn=config

	[image:] README.ldap-migration: Readme about ldap migration issue when using FusionDirectory

	[image:] UPGRADE: Full Documentation on how to upgrade from one version to another

	[image:] images

	[image:] favicon.png: FusionDirectory favicon in png

	[image:] favicon.svg: FusionDirectory favicon in svg

	[image:] Fusiondirectory-logo-noir.eps: FusionDirectory logo in Encapsulated Postscript

	[image:] Fusiondirectory-logo.png: FusionDirectory logo in png

	[image:] lighttpd

	[image:] fusiondirectory-lighttpd.conf: FusionDirectory lighttpd configuration file

	[image:] man

	[image:] openldap : FusionDirectory core schema

	[image:] smarty

	[image:] plugins

	[image:] block.render.php: FusionDirectory lighttpd configuration file

	[image:] function.filePath.php: FusionDirectory lighttpd configuration file

	[image:] function.iconPath.php: FusionDirectory lighttpd configuration file

	[image:] function.msgPool.php: FusionDirectory lighttpd configuration file

	[image:] fusiondirectory.conf: FusionDirectory configuration template

	[image:] html

	[image:] images: static images

	[image:] include: static images

	[image:] plugins: static images

	[image:] themes: static images

	[image:] *.css: themes css

	[image:] icons: icons for the theme following free desktop specification

	[image:] images: static images for this theme if needed (not recommended)

	[image:] svg: icons in svg format

	[image:] ihtml : smarty theme tpl folders

	[image:] themes

	[image:] breezy : official theme

	[image:] legacy : old one for testing only

	[image:] include : core FusionDirectory library and helpers

	[image:] exporter: export to pdf and xls

	[image:] password-methods: all password methods understod by FusionDirectory

	[image:] select: all object specific select dialog and methods

	[image:] simpleplugin: core FusionDirectory library

	[image:] locale

	[image:] ar: ISO code of the language

	[image:] fusiondirectory.po: Gettext’s translations

	[image:] …

	[image:] plugins

	[image:] addons

	[image:] admin: administration plugins

	[image:] config: configuration plugins

	[image:] generic: base core plugins

	[image:] personal : base personal plugins

	[image:] .gitignore: Git ignore list

	[image:] AUTHORS.txt: list of FusionDirectory authors

	[image:] Changelog: Changes

	[image:] COPYING: Licence

	[image:] README.md: all about FusionDirectory :)

Note

This lists current files and directories that can be listed in the FusionDirectory plugin source code.

This is a brieve description of a FusionDirectory plugin folders and files:

	[image:] addons: used if the plugin put things in the addons menu category

	[image:] admin: main dir for all plugins going into the admin menu category

	[image:] config: configuration dir, used if the plugin need to store option in ldap

	[image:] contrib: used to put all the contributed files like schema, docs, manpages etc..

	[image:] openldap: Schemas for the openldap server

	[image:] docs: Documentation how to use the plugin

	[image:] html: used to put all the images or other public files

	[image:] plugins

	[image:] plugin_name

	[image:] images: images which are not icons

	[image:] themes

	[image:] breezy

	[image:] icons: icons to add to default breezy theme

	[image:] 48: sorted by size, for instance 48x48

	[image:] apps: then by category, use apps for application icons

	[image:] myapp.png: format should be png. This example file would be used as geticon.php?context=applications&icon=myapp

	[image:] ihtml: used to put all the smarty template files

	[image:] themes

	[image:] breezy: smarty templates

	[image:] locale: used for localization of the plugin

	[image:] en: language iso code

	[image:] fusiondirectory.po: message file

	[image:] personal: used when plugin is to be used to manage user properties

	[image:] includes: used for files available for inclusion for other plugins

Coding Style

Scope of style guidelines

In order to keep the code consistent, please use the following conventions.
These conventions are no judgement call on your coding abilities, but more
of a style and look call.

Performance and Readability

	It is more important to be correct than to be fast.

	It is more important to be maintainable than to be fast.

	Fast code that is difficult to maintain is likely going to be looked down upon.

Indentation and line length

	2 spaces

	Max line width: 80

<?php
// base level
 // level 1
 // level 2
 // level 1
// base level

As a basic style rule, please use 2 spaces instead of tabulators. This will remove problems when using “diff”.

Note

For VI users, this can be achieved by the following settings:

	set expandtab

	set shiftwidth=2

	set softtabstop=2

	set tabstop=2

Spacing

Use a space before affectations, around operators, before parenthesis or braces.

<?php
// Methods
foo($parameter);

// Arrays
$b = $value[0];

// Readability
if ($b + 5 > foo(bar() + 4)) {
}

For vars declaration place values on the same column

<?php
var $most = "something";
var $iHaveALongName = "value";
var $otherName = "otherValue";

Always use spaces to seperate arguments after commat:

<?php
function foo ($param1, $param2)

Always use single spaces to split logical and mathematical operations:

<?php
if ($a > 6 && $b == 17 && (foo($b) < 1)) {
}

Braces

If statements with or without else clauses are formatted like this:

<?php
if ($value) {
 foo();
 bar();
}

if ($value) {
 foo();
} else {
 bar();
}

Switches are formatted like this:

<?php
switch ($reason) {
 case 'fine':
 foo();
 break;

 case 'well':
 bar();
 break;
}

Always use use braces for single line blocks:

<?php
if ($value) {
 foo();
}

Function definitions, Classes and Methods have an opening brace on the next line:

<?php
function bar ()
{
...
}

Casing

Always use camel casing with lowercase characters in the beginning for multiword identifiers.

<?php
function checkForValidity ()
{
 $testSucceeded = FALSE;
 ...
}

Naming

Non trivial variable names should speak for themselves from within the context.

<?php
// Use
$hour = 5;
// instead of
$g = 5;

Find short function names that describe what the function does, in order to make the code read like a written sentence.

<?php
if (configReadable("/etc/foo.conf")) {
}

Use uppercase for constants/defines and _ to separate if there is more than one word :

<?php
if ($speedUp == TRUE) {
 $wait = SHORT_WAIT;
} else {
 $wait = LONG_WAIT;
}

Arrays

Arrays must be declared using the long notation syntax (array()).

PHP specific

Use return without parenthesis

<?php
return TRUE; // good

return(TRUE); // bad

Open and close tags

Short tag (<?) is not allowed; use complete tags (<?php).

<?php
 // Something here
?>

Including files

Use require_once in order to include the file once and to raise warning if file does not exists:

<?php
require_once("class_setupStep.inc");

Quotes / double quotes

	You must use single quotes for indexes, constants declaration, translations, …

	When you have to use tabulation character (\t), carriage return (\n) and so on, you should use double quotes.

	For performances reasons since PHP7, you may avoid strings concatenation.

Examples:

<?php
//for that one, you should use single, but this is at your option...
$a = 'foo';

//use double quotes here, for $foo to be interpreted
// => with double quotes, $a will be "Hello bar" if $foo = 'bar'
// => with single quotes, $a will be "Hello $foo"
$a = "Hello $foo";

//use single quotes for array keys
$tab = array(
 'lastname' => 'john',
 'firstname' => 'doe'
);

//Do not use concatenation to optimize PHP7
//note that you cannot use functions call in {}
$a = "Hello {$tab['firstname']}";

//single quote translations
$str = _('My string to translate');

//Double quote for special characters
$html = "<p>One paragraph</p>\n<p>Another one</p>";

//single quote cases
switch ($a) {
 case 'foo' : //use single quote here
 ...
 case 'bar' :
 ...
}

Files Format

	UTF-8, LF - not CR LF

Checking standards

In order to check some standards are respected, we provide some custom PHP CodeSniffer [http://pear.php.net/package/PHP_CodeSniffer] rules.

First clone the dev-tools that contains Fusiondirectory developement tools

git clone https://gitlab.fusiondirectory.org/fusiondirectory/dev-tools.git

Then run the codesniffer rules from the top directory:

find . -type f -name '*.php' -o -name '*.inc' -exec phpcs --standard=../dev-tools/php-codesniffer-rules/FDStandard/ruleset.xml "{}" \;

If the above command does not provide any output, then, all is OK :)

An example error output would looks like:

FILE: fusiondirectory/fusiondirectory/include/class_ldap.inc
--
FOUND 9 ERROR(S) AFFECTING 4 LINE(S)
--
260 | ERROR | Case breaking statement indented incorrectly; expected 10
 | | spaces, found 8
802 | ERROR | Assignment blocks should have all assignment tokens on the same
 | | column
965 | ERROR | Expected 1 space before "?"; 0 found
965 | ERROR | Expected 1 space after "?"; 0 found
965 | ERROR | Expected 1 space before ":"; 0 found
965 | ERROR | Expected 1 space after ":"; 0 found
973 | ERROR | Expected 1 space before "?"; 0 found
973 | ERROR | Expected 1 space after "?"; 0 found
973 | ERROR | Expected 1 space before ":"; 0 found
--

Headers for the files in FusionDirectory code

Each file inside FusionDirectory code must have an header mentioning copyright and license

The header should look like this

<?php
/*
 This code is part of FusionDirectory (http://www.fusiondirectory.org/)
 Copyright (C) 2017 FusionDirectory

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/

Writing a plugin

You can write plugins for FusionDirectory using our simplePlugin class.

	Plugin folder organization
	addons, admin, config, personal

	Installation of a plugin

	Getting started
	Directory organization

	Icons

	Basic plugin writing

	Attributes

	Example

	Displaying the plugin in FusionDirectory

	Displaying the plugin in the “My account” menu

	Going further with Simple Plugin
	simplePlugin special attributes

	simplePlugin attributes values and methods

	Section templates

	Managed attributes

	plInfo
	plSection

	plObjectType

	plForeignKeys

	plCategory

	Attributes Types
	StringAttribute

	PasswordAttribute

	IntAttribute

	FloatAttribute

	SelectAttribute

	BooleanAttribute

	ObjectClassBooleanAttribute

	FileAttribute

	DateAttribute

	BaseSelectorAttribute

	ArrayAttribute and SetAttribute

	CompositeAttribute

	OrderedArrayAttribute

	UsersAttribute

	Configuration back-end
	Class for the configuration

	LDAP storage for the configuration

	Menu sections
	Users and groups (accounts)

	Systems (systems)

	Configuration (conf)

	Reporting (reporting)

Plugin folder organization

The directories in a FusionDirectory plugin look like this:

	[image:] addons: used if the plugin put things in the addons menu category

	[image:] admin: main dir for all plugins going into the admin menu category

	[image:] config: configuration dir, used if the plugin need to store option in ldap

	[image:] contrib: used to put all the contributed files like schema, docs, manpages etc..

	[image:] openldap: Schemas for the openldap server

	[image:] docs: Documentation how to use the plugin

	[image:] html: used to put all the images or other public files

	[image:] plugins

	[image:] plugin_name

	[image:] images: images which are not icons

	[image:] themes

	[image:] breezy

	[image:] icons: icons to add to default breezy theme

	[image:] 48: sorted by size, for instance 48x48

	[image:] apps: then by category, use apps for application icons

	[image:] myapp.png: format should be png. This example file would be used as geticon.php?context=applications&icon=myapp

	[image:] ihtml: used to put all the smarty template files

	[image:] themes

	[image:] breezy: smarty templates

	[image:] locale: used for localization of the plugin

	[image:] en: language iso code

	[image:] fusiondirectory.po: message file

	[image:] personal: used when plugin is to be used to manage user properties

	[image:] includes: used for files available for inclusion for other plugins

addons, admin, config, personal

These directories should contain a subdirectory named as the plugin, or as an other plugin which we extend.
For instance, argonaut plugin contains admin/systems/argonaut/class_argonautClient.inc

Installation of a plugin

For addons, admin, config, and personal folders, the content should go into <fd_dir>/plugins/<dir>/

For html, ihtml, include, the content should go into <fd_dir>/<dir>/

For contrib/openldap, the content should go into <ldap_schemas_dir>/fusiondirectory/

For contrib/etc, the content should go into /etc/fusiondirectory/<plugin_name>.

For contrib/doc, the content may go into <doc_dir>/fusiondirectory-plugin-<plugin_name>.

Special cases:

	in html/themes/<theme_name>, svg folder may be ignored

	content of locale goes into <fd_dir>/locale/plugins/<plugin_name>/locale/

Getting started

This page is a how-to to help you write a dummy plugin.

Directory organization

Your plugin should take place in {fd-directory}/plugins/addons/yourpluginname for an addon.

Plugins adding a user tab should go into {fd-directory}/plugins/personal/yourpluginname.

Plugins adding a system tab should go into {fd-directory}/plugins/admin/systems/yourpluginname.

Plugins adding a service should go into {fd-directory}/plugins/admin/systems/services/yourpluginname.

Your main file should be named class_MyPluginClass.inc.

Your plugin should have a main.inc file if you intend it to display on its own (not as a tab of an other object).

Icons

If your plugin packs some icons, they need to be placed in the breezy icon theme:
{fd-directory}/html/themes/breezy/icons/{size}/{category}
Most of the time your icons are those of an application and should therefore be placed in the apps folder, which is for the category applications.
For instance if the small icon for apache goes in {fd-directory}/html/themes/breezy/icons/16/apps/apache.png and is used in the code as geticon.php?context=applications&icon=apache&size=16

Basic plugin writing

This is the code for an empty plugin:

<?php
class demoPlugin extends simplePlugin
{
 // We set displayHeader to FALSE, because we don't want a header allowing to activate/deactivate this plugin,
 // we want it activated on all objects
 var $displayHeader = FALSE;

 // Here we indicate which LDAP classes our plugin is using.
 var $objectclasses = array('demoPlugin');

 // We need this function that returns some information about the plugin
 static function plInfo ()
 {
 return array(
 'plShortName' => _('Demo Plugin'),
 'plTitle' => _('Demo Plugin informations'),
 'plDescription' => _('Edit some useless personal information'),
 'plSelfModify' => TRUE, // Does this plugin have an owner that might be able to edit its entry
 'plObjectType' => array('user'),

 // simplePlugin can generate the ACL list for us
 'plProvidedAcls' => parent::generatePlProvidedAcls(self::getAttributesInfo())
);
 }

 // The main function : information about attributes
 static function getAttributesInfo ()
 {
 return array(
);
 }
}

With this code you’ll have an empty plugin, just adding the “demoPlugin” objectClass.
The plInfo static function must provide informations about your plugin.
Please fill plShortName and plDescription with something meaningful (and plTitle as well if your plugin have its own page).
See plInfo for more details about other fields

Attributes

You might have noticed the empty getAttributesInfo method. This is where the magic happens.
You should fill this function with an array of sections containing attributes.
Available attribute types are BooleanAttribute, IntAttribute, FloatAttribute, StringAttribute, SelectAttribute, PasswordAttribute…
The names are pretty clear about what these attributes are.
There are also three special kind of attributes, SetAttribute, ArrayAttribute and CompositeAttribute.
SetAttribute and ArrayAttribute might both be used for multi-valuated attribute. Array will allow several identical values while Set won’t.
A composite attribute is a unique LDAP attribute composed of several displayed attributes. You’ll see one in the following example.

For more information about each type of attribute, see Attributes Types

Example

<?php
// The main function : information about attributes
static function getAttributesInfo ()
{
 return array(
 // Attributes are grouped by section
 'section1' => array(
 'name' => _('Hair Information'),
 'attrs' => array(
 new SetAttribute(// This attribute is multi-valuated
 new SelectAttribute (
 _('Color'), // Label of the attribute
 _('Color of the hair'), // Description
 'hairColor', // LDAP name
 TRUE, // Mandatory
 array('blond','black','brown'), // [SelectAttribute] Choices
 "", // We don't set any default value, it will be the first one
 array('Blond','Black','Brown') // [SelectAttribute] Output choices
)
),
 new FloatAttribute (
 _('Length'), // Label
 _('Length of the hair in cm'), // Description
 'hairLength', // LDAP name
 FALSE, // Not mandatory
 0, // [FloatAttribute] Minimum value
 FALSE, // [FloatAttribute] No maximum value
 10 // [FloatAttribute] Default value
),
)
),
 'section2' => array(
 'name' => _('Bicycle'),
 'attrs' => array(
 new StringAttribute (
 _('Brand'), // Label
 _('Brand of the bicycle'), // Description
 'bicycleBrand', // LDAP name
 TRUE, // Mandatory
 'GreatBicycleBrand' // Default value
),
 new BooleanAttribute (
 _('Has a bell'), // Label
 _('Does the bicycle have a bell'), // Description
 'bicycleBell', // LDAP name
 FALSE, // Not mandatory
 FALSE // Default value
),
)
),
 'ftp' => array(
 'name' => _('FTP informations'),
 'attrs' => array(
 new CompositeAttribute (
 _('Informations for ftp login'),
 'ftpLoginInfo',
 array(
 new StringAttribute (_('Login'), _('Login for FTP'), 'ftpLogin'),
 new StringAttribute (_('Password'), _('Password for FTP'), 'ftpPassword'),
 new StringAttribute (_('Host'), _('Host for FTP'), 'ftpHost'),
 new IntAttribute (_('Port'), _('Port for FTP'), 'ftpPort', FALSE, 0, FALSE, 21),
),
 'ftp://%[^@:]:%[^@:]@%[^@:]:%d', // scanf format
 'ftp://%s:%s@%s:%d' // printf format
)
)
),
);
}

As you can see, attribute constructor take 5 arguments being label, description,
ldap name, whether this attribute is mandatory or not, default value.
Some attributes takes other arguments before and after the default value.
For each section you might also specify keys ‘icon’ with a section icon path, or ‘class’ with an array of css class this section should have. (Only useful class for now is ‘fullwidth’ which means your section will fill the whole page width)

Displaying the plugin in FusionDirectory

	Put the plugin code into a directory FusionDirectory is reading (see above).

	Run fusiondirectory-setup --update-cache as root.

	Log out, log in.

A tab should now shows in user edition mode, with the attributes we specified:

[image: ../_images/demoplugin.png]

Displaying the plugin in the “My account” menu

You may also want the plugin to show in the “My Account” menu, if your plugin is for users and you’ve set plModifySelf to TRUE.
For this, you need your plugin to have a main.inc PHP file.
Just put this in it:

<?php
 simplePlugin::mainInc('demoPlugin', $ui->dn);
?>

Going further with Simple Plugin

Here, we’ll see what Simple Plugin functions you can inherit in order to adjust the behavior of your plugin.

Because sometimes, you don’t just want to edit LDAP fields.

simplePlugin special attributes

There are some attributes that you can set in your class or in your constructor that will allow you to do more things:

	Set displayHeader to TRUE if you need this tab to be deactivable.

	Set mainTab to TRUE if this plugin is the main tab.

	Set preInitAttributes to an array of attributes names to be sure they’ll be initialized before the others (it’s used by workstationGeneric for the network attribute)

custom template

By default simplePlugin does a template for you, but if you want to add some elements to the template, or just render the sections in a different order, or that kind of things, here’s what to do:
Change templatePath value to your custom template path (usually in the constructor, using get_template_path).

In your template, you’ll be able to use the $sections array that contains each section render.
For instance:

<h1>Hello world!</h1>
<div class="plugin_sections">
 {$sections.section1}
 {$sections.Mysection}
</div>

<input name="{$hiddenPostedInput}" value="1" type="hidden"/>

<!-- Place cursor -->
<script language="JavaScript" type="text/javascript">
 <!-- // First input field on page
 focus_field('{$focusedField}');
 -->
</script>

You need to add the hidden input at the end in order for the POST analysis to work.
The script is needed if you want the auto-focusing of first field to work.

simplePlugin attributes values and methods

	In all of these methods, you can access the attributes by using $this->attributesAccess as follows:

	$this->attributesAccess[‘attributeldapname’]

Don’t forget to look at the documentation of the Attribute classes to know who to use them.
For instance they offer a setDisabled method if you need to disable some of them, hasChanged
will allow you to know if an attribute has been modified, etc…
You can also easily access their value using $this->attributeldapname. Be aware that
this is not a real class attribute, accessing it will call the getValue and setValue methods of the attribute.
That means you can’t create reference to it or call method that needs references like the array ones (array_push, …).
The [] operator for arrays do not work either.

execute

This method is the one that render the plugin.
You can change it, doing something that look like that:

<?php
function execute()
{
 $smarty = get_smarty();
 parent::execute();
 // your code goes here
 if ($this->displayPlugin) {
 return $this->header.$smarty->fetch($this->templatePath);
 } else {
 return $this->header;
 }
}

You can fetch any template but usually $this->templatePath is used, just remember to add $this->header at the beginning if you activated the display header feature.

Please avoid doing heavy things in the execute function as it is just the render function, it’s not supposed to compute anything.

save_object

This function analyse the POST informations.
You can inherit it as follows:

<?php
function save_object()
{
 parent::save_object();
 if (isset($_POST[get_class($this)."_posted"])) {
 // your code goes here
 }
}

ldap_save

This function saves the informations into the LDAP.
You can inherit it and do some additionnal LDAP modifications when saving:

<?php
function ldap_save()
{
 $errors = parent::ldap_save();

 if (!empty($errors)) {
 return $errors;
 }

 // your code goes here

 return $errors;
}

prepare_save

prepare_save will fill the attribute $this->attrs, which is an array of what will be written into the LDAP.
Your code should modify $this->attrs as ldap_save will write it into the LDAP.

<?php
function prepare_save()
{
 parent::prepare_save();

 // your code goes here
}

__construct

Of course, there is always the possibility to have your own constructor, just remember to call the parent one at the end.
The simple plugin constructor have a 3rd optional parameter which is the attributes information. If you don’t give it, the getAttributesInfo static function will be used.
So you can do the following:

<?php
function __construct($dn = NULL, $object = NULL)
{
 $attributesInfo = self::getAttributesInfo();
 // some modifications on $attributesInfo
 parent::__construct($dn, $object, $attributesInfo);
}

An other method, often simpler, is to modify your attributes after being constructed. You can’t do that for all modifications but for common cases like SelectAttribute choices modification, it’s what you should do:

<?php
function __construct($dn = NULL, $object = NULL)
{
 parent::__construct($dn, $object);

 $array = array('node1','node2'); // some dummy array
 // After simplePlugin constructor, you must access attributes by their ldap name
 $this->attributesAccess['myattributeLdapName']->setChoices($array);
}

is_this_account

This method is used to check if an object has your plugin tab activated or not.
By default it will just return TRUE if the objectClasses of your tab are present and FALSE otherwise, it is usually correct. If you need an other behaviour, you will have to override it.

function is_this_account($attrs)

Even if the method is not static, it’s not supposed to use the object attributes and should only use the information in the attrs parameter to tell if the LDAP node has this tab activated or not.

Section templates

We’ve seen that you can use a specific template for your plugin instead of the default one, and that sections are pre-rendered in a sections array.
Here, we’ll see how to use a specific template for a section, in order to modify its organization.
It’s quite easy to do, all you have to do is adding a ‘template’ key to the section array in getAttributesInfo:

'my_section' => array(
 'name' => _('Great Section'),
 'attrs' => array(
 new StringAttribute (_('Something'), _('This attribute does nothing'), 'someThing', FALSE, 'DefaultValue'),
 // other attributes…
),
 'template' => get_template_path('my_section_template.tpl', TRUE, dirname(__FILE__))
),

You need to use get_template_path as above in order to get an absolute path for the tpl file.
In this template file, you need to copy simpleplugin_section.tpl, the default template.
Please don’t touch the fieldset, legend and table, just replace the foreach by what you want.
You need to use the attributes array, which contain for each attribute, indexed by its ldap name, its label and its input html code.
For instance, for the above section, doing the following would have the same result than the default template:

<fieldset id="{$sectionId}" class="plugin_section{$sectionClasses}">
 <legend>{$section}</legend>
 <table>
 <tr>
 <td title="{$attributes.someThing.description}"><label for="someThing">{eval var=$attributes.someThing.label}</label></td>
 <td>{eval var=$attributes.someThing.input}</td>
 </tr>
 </table>
</fieldset>

You need to use ‘eval’ for label and HTML input as it contains some smarty code too (for ACL check for instance).

Managed attributes

In some case you want some attributes to be enabled/disabled depending on a checkbox or select state.
For this, you can use the setManagedAttributes method as follow:

$this->attributesAccess['boolean']->setManagedAttributes (
 array(
 'disable' => array (
 FALSE => array (
 'attribute1',
 'attribute2',
)
)
)
);

‘disable’ means that the attributes will be disabled but still saved into the LDAP.
you can use ‘erase’ instead if you want those to be remove from the LDAP.
FALSE means that when the value is FALSE, they’ll be disabled.
You can also use this method with selectattributes:

$this->attributesAccess['select']->setManagedAttributes (
 array(
 'multiplevalues' => array ('darkcolors' => array('blue','black')),
 'erase' => array (
 'darkcolors' => array (
 'attribute1',
 'attribute2',
),
 'yellow' => array (
 'attribute3',
 'attribute4',
),
)
)
);

Note the multiplevalues special key in order to specify several values that disable the same attributes.

plInfo

plInfo is a static function that must be present on all plugin classes that want to appear in FusionDirectory in one of these ways:

	In FusionDirectory main menu: use plSection

	In an object tabs: use plObjectType

	In ACL settings: use plProvidedAcls

This static method returns an array containing keys from the following table. Some may be safely omitted. Do not fill a key if you intend to use the default value for it. Use translated strings (use the _() function) for all displayable strings.

plInfo keys

	key

	value

	used in

	default

	plShortName

	A short name for this class

	Used in main menu and ACL summaries or such

	mandatory

	plTitle

	A short title for this class

	Used in FD page header at top of the page if this plugin have its own page

	plShortName value

	plDescription

	A short description

	Used as tooltip in the menus and description in ACL management

	mandatory

	plIcon

	A big icon (48x48)

	Used for main menu and header at top of the page

	no icon

	plSmallIcon

	A small icon (16x16)

	Used in listings

	empty icon

	plSelfModify

	TRUE for user tabs, omitted for others

	Define if it should appear in «my account» menu section for logged in users

	FALSE

	plPriority

	an integer (safe to omit most of the time)

	Defines tab order and menu items order

	no prority (at the end, in no specific order)

	plDepends

	Array of tabs this tab depends on

	Listed tabs will need to be activated before this one can be used

	empty

	plCategory

	Array of ACL categories

	Should be omitted if you’ve listed objectTypes

	categories of objectTypes and managed objects

	plObjectType

	Array of objectTypes

	See full documentation below

	empty

	plSection

	menu section key or array (see below)

	See full documentation below

	empty

	plProvidedAcls

	Array of acls

	See full documentation below

	empty

	plForeignKeys

	Array of foreign keys

	See full documentation below

	empty

	plManages

	Array of managed objectTypes (only for management classes)

	Used to create links to objects of these types

	empty

plSection

plSection can be used if your plugin should appear in the menu. Default menu sections are “accounts”, “systems”, “conf”, “reporting” and “personal”.
Usually the plSection is set on the management class if there is any.
No need to set any plSection on plugins with objectType user and selfModify TRUE,
they’ll appear in the ‘My account’ section anyway.

You can also create a new menu section in this attribute using the following syntax:

<?php
array('mysection' => array('name' => _('My section'), 'priority' => 100))

Replace mysection with a lowercase id for your section and My section with the name to display in the menu.

The existing sections are:

Menu sections

	key

	name

	priority

	accounts

	Users and groups

	0

	systems

	Systems

	10

	conf

	Configuration

	20

	reporting

	Reporting

	30

	personal

	My account

	40

So you can for instance use a priority between 0 and 10 create a section between accounts and systems.

plObjectType

plObjectType is used to know which object type should have this plugin in its tabs.
If this tab is the main tab of a new objectType, plObjectType must contain the definition for this object type.

ObjectType definition is an array containing the following keys:

ObjectType properties

	key

	value

	default

	name

	Displayable name for this object type

	mandatory

	description

	Displayable description for this object type

	mandatory

	filter

	LDAP filter to find objects of this type

	mandatory

	mainAttr

	LDAP attribute to use in dn

	cn

	nameAttr

	LDAP attribute to use in object links

	mainAttr

	tabClass

	PHP class to use for tab handling

	simpleTabs

	icon

	Small icon (16x16)

	no icon

	ou

	RDN for the LDAP branch to store these objets in

	empty string

	aclCategory

	The ACL category this objectType is in

	key

aclCategory should be the name of an existing ACL category. Most of the time omit this and a category will automagically be created for you.

For instance, this is the plObjectType of the user class:

<?php
'plObjectType' => array(
 'user' => array(
 'description' => _('Users'),
 'name' => _('User'),
 'filter' => 'objectClass=gosaAccount',
 'mainAttr' => 'cn',
 'icon' => 'geticon.php?context=types&icon=user&size=16',
 'ou' => get_ou('userRDN'),
)
),

plForeignKeys

plForeignKeys is to be used if some of your fields are foreign keys to fields of other objects.
For instance the manager field in a department is a foreign key on the dn of a user.

The syntax for this is:

<?php
'plForeignKeys' => array(
 'myfield' => array(
 array('class', 'hisfield', 'filter'),
)
)

But you can omit filter most of the time (defaults to ‘myfield*=%oldvalue%’) and *hisfield if it is the dn, and if there is only one field you are referring to you can omit the array, so for our department example this gives us:

<?php
'plForeignKeys' => array(
 'manager' => 'user'
)

Which is pretty straight forward.

Declaring a foreignKey ensure you that:

	If the referred field is modified through FD your object will be updated as well

	If the referred object is deleted your field will be emptied if possible (or the specific value referring the object will be removed in case of multi-value attributes)

	Your objects will appear in the references tab of referenced objects

plCategory

ACL categories will be filled automagically if you use either plManages or plObjectType. This is the recommanded way to go.
If you do need to specify ACL categories, you can create an acl category by specifying a descriptive array for it:

<?php
'plCategory' => array(
 'acl' => array(
 'description' => _('ACL'),
 'objectClass' => array('gosaAcl','gosaRole')
)
),

An ACL category only contains a description and a list of LDAP objectClasses (for some historical reason)

Attributes Types

Here is a detailed description about each available attribute type for simple plugin.

StringAttribute

[image: ../_images/string.png]
The most simple class, allows to handle an LDAP attribute which is a string.
Specific constructor parameter :
as last parameter you can pass a pattern that the string must match in order to be valid

There are some attributes that are just like this one but with specific check for validity : MailAttribute, HostNameAttribute, IPv4Attribute, IPv6Attribute, MacAddressAttribute, IPAttribute (accepts both v4 and v6)

PasswordAttribute

[image: ../_images/password.png]
Same thing as StringAttribute but input form is a hidden password input (html password input type). No specific constructor parameters

IntAttribute

[image: ../_images/int.png]
Allow to handle an int.
Specific constructor parameters : min and max. Use “FALSE” to disable either one of them.
“intval” will be used on user input in order to convert it.
html5 “number” input type is displayed.

FloatAttribute

[image: ../_images/float.png]
The same that IntAttribute but for floats.
“floatval” will be used.

SelectAttribute

[image: ../_images/select.png]
Specific constructor attributes : an array containing the available choices.
An html select is displayed.

BooleanAttribute

[image: ../_images/boolean-false.png]
or

[image: ../_images/boolean-true.png]
Allow to handle booleans. No specific constructor parameters.
A checkbox is displayed.

ObjectClassBooleanAttribute

Special kind of boolean that adds or removes object classes from the object.

FileAttribute

[image: ../_images/file1.png]
Allow the user to upload a file, store the file content in the LDAP.
If you need to do something else with the uploaded file, you’ll have to inherit this class and the readFile function.

DateAttribute

[image: ../_images/date1.png]
Show a text input with a calendar in order for the user to choose a date.
You need to pass the wanted date format in LDAP in its constructor

BaseSelectorAttribute

[image: ../_images/base.png]
Allow the user to select the base of the object.
Usually in the main tab of most objects.

ArrayAttribute and SetAttribute

[image: ../_images/set.png]
Allow to handle a multi-valuated attribute.
The constructor takes only two parameters:

	An attribute, which is one of the above.

	An array of default values.

A multiple select will be used for displaying values, with remove and add buttons.
SetAttribute is the same, but does not allow several identical values.

CompositeAttribute

Allow to handle several UI attributes which are stored as only one LDAP field.
For instance let’s say you store an FTP connection URL in an LDAP field as “ftp://user:password@host:port” but you want to display 4 inputs for the 4 parts.
That would look like :

<?php
new CompositeAttribute (
 _('Informations for ftp login'),
 'ftpLoginInfo',
 array(
 new StringAttribute (_('Login'), _('Login for FTP'), 'ftpLogin'),
 new StringAttribute (_('Password'), _('Password for FTP'), 'ftpPassword'),
 new StringAttribute (_('Host'), _('Host for FTP'), 'ftpHost'),
 new IntAttribute (_('Port'), _('Port for FTP'), 'ftpPort', FALSE, 0, FALSE, 21),
),
 'ftp://%[^@:]:%[^@:]@%[^@:]:%d', // sscanf format
 'ftp://%s:%s@%s:%d' // sprintf format
)

(If you need something else than scanf and printf for composition, you have to inherit CompositeAttribute in a new attribute class and write your own readValues and writeValues functions)

OrderedArrayAttribute

This is an OrdreredArrayAttribute of CompositeAttribute (itself composed of a String and a Select attribute)

[image: ../_images/orderedarray.png]
Like a SetAttribute, but shows values as a table with button for removing entries and changing order.
It stores the order as “indice:value” in the LDAP.
You can pass FALSE as second parameter to disable the ordering if you just want a SetAttribute that looks different.

UsersAttribute

Allow the user to select a lists of users.
Their dn are stored in the LDAP.

A dialog is available to add users:

Before:

[image: ../_images/users1.png]
Selection:

[image: ../_images/users2.png]
After:

[image: ../_images/users3.png]

Configuration back-end

If your plugin needs to have some configuration stored into the LDAP and
to appear in the configuration page accessible from the menu, you
need to create another class for the configuration backend, inside your plugin.

Class for the configuration

You need to create a simplePlugin inheriting class that will have the
objectType ‘configuration’ if you want a whole tab for your plugin
or simply ‘smallConfig’ if you have only one or two sections that can be
displayed with the other plugins in the plugins tab of the configuration.

LDAP storage for the configuration

To store your configuration options into the LDAP backend you will need to write your own schema.
The options needs to have a name which starts by the prefix ‘fd’.

They will be accessible in the PHP code using:

<?php
$config->get_cfg_value('option_name', default_value)

With option_name being the option name without the ‘fd’ prefix.

Menu sections

Here are the existing menu sections and examples of priorities they use, so that you can select which priority you give your menu entry.

Users and groups (accounts)

	Departments - 0-9

	Departments - 0

	Users - 10-19

	Users - 10

	Groups - 20-39

	Groups - 20

	(Object groups - 21)

	NIS Netgroups - 25

	Aliases - 26

	ACL roles - 27

	ACL assignments - 28

	Other - 40-99

	Supann structures - 40

	Sudo - 45

	EJBCA - 50

	DSA - 55

	Password Policies - 57

	Applications - 60

Systems (systems)

	Systems - 0-19

	Systems - 0

	DNS - 1

	(DHCP - 2)

	Auto fs - 5

	Deployment - 20-39

	FAI - 20

	Debconf - 21

	Repository management - 22

	OPSI - 25

	Deployment queue - 30

	Other - 40-99

	Samba domains - 40

	SOGo - 50

Configuration (conf)

	Configuration - 0-9

	Configuration - 0

	(Password recovery - 1)

	GPG server info - 5

	Import/export - 10-29

	LDAP import/export - 10

	OPSI import - 15

Reporting (reporting)

	Dashboard - 0

	Debug help - 1

	Inventory objects - 5

	Audit

API

FusionDirectory

	FusionDirectory API

	Fusiondirectory WebService

FusionDirectory API

FusionDirectory API is called simplePlugin and is documented automatically at each build.

FusionDirectory API [http://api.fusiondirectory.org/index.html]

Fusiondirectory WebService

FusionDirectory WebService plugin exposes a JSONRPC webservice you can use if you want to access LDAP content through FusionDirectory system.
This way, you ensure that things like foreign keys are kept consistent, and you have a nicer API than the low-level LDAP one.

It is a standard JSONRPC server served on HTTPS protocol.

Note that you can allow HTTP in plugin configuration, but please avoid doing so except for testing purposes.

The webservice methods are detailed here [http://api.fusiondirectory.org/classfdRPCService.html#details].

Basically you first need to call login to get a session ticket you’ll use in the other method calls you make.
If you have several LDAP configured you might call listLdaps first to list them and specify which one to use as first parameter of login (otherwise just pass NULL as first parameter).

Then you can use ls to list objects of a given type (list types with listTypes first if needed).
getfields method will give you the fields of a given type (and tab) and setfields will allow you to change the value of these fields.

<?php

/* You can find this file in FusionDirectory include directory if argonaut plugin is installed */
require_once('jsonRPCClient.php');

/* Connection information. Fill peer_name with the name matching the certificate. */
$host = 'https://localhost/fusiondirectory/jsonrpc.php';
$ca_file = '/etc/ssl/certs/fd.pem';
$login = 'fd-admin';
$password = 'adminpwd';

/* DN of an existing user we can display and modify */
$userdn = 'uid=bilbo,dc=opensides,dc=be';

$ssl_options = array(
 'cafile' => $ca_file,
 'peer_name' => 'localhost',
 'verify_peer' => TRUE,
 'verify_peer_name' => TRUE,
);

$http_options = array(
 'timeout' => 10
);

try {
 /* We create the connection object */
 $client = new jsonRPCClient($host, $http_options, $ssl_options);

 /* Then we need to login. Here we log in the default LDAP */
 $session_id = $client->login(NULL, $login, $password);

 /* Once we have a session ID, we can ask for the list of users */
 $users = $client->ls($session_id, 'user');

 foreach ($users as $dn => $user) {
 echo "$user ($dn)\n";
 }

 /* We can get a user’s fields */
 /* Doing the same thing with NULL as dn would create a user, if you provide all needed fields. */
 $fields = $client->getfields($session_id, 'user', $userdn);

 /* Change a value. We can pass an array for each tab, main one is 'user'.
 The array for each tab contains attribute ids and their new value.
 Attribute ids can be found in getfields, they are used as keys in the 'attrs' array of each section.
 */
 $result = $client->setfields($session_id, 'user', $userdn,
 array(
 'user' => array('description' => 'Modified by webservice')
)
);

 if (isset($result['errors'])) {
 foreach($result['errors'] as $error) {
 print "Error: $error\n";
 }
 }

} catch (jsonRPCClient_RequestErrorException $e) {
 die($e->getMessage());

} catch (jsonRPCClient_NetworkErrorException $e) {
 die($e->getMessage());
}

LDAP schemas

If your plugin needs a new schema or stores data in config back-end, the following rules apply

	Schema naming convention

	LDAP number rules
	Example

	Attribution

	LDAP naming rules

	FusionDirectory reserved oid

Schema naming convention

Each plugin can have 2 schemas, one schema for the config backend named:

<plugin-name>-fd-conf.schema

and one for the plugin named:

<plugin>-fd.schema

LDAP number rules

This page is here to help you choose ID numbers for your attributeTypes objectClasses in your schemas.
FusionDirectory project has ‘1.3.6.1.4.1.38414’ prefix.
There are three number after this prefix :

	The first one should be the one attributed to your schema

	The second one should start by 1 for attributeTypes and 2 for objectClasses

	The third one should be incremented for each attributeType or objectClass

The important thing is the first one, the two others are up to you, these are just advices and rules we use in FD schemas.

Example

	attribueType 1.3.6.1.4.1.38414.42.1.1

	attribueType 1.3.6.1.4.1.38414.42.1.2

	attribueType 1.3.6.1.4.1.38414.42.1.3

	objectClass 1.3.6.1.4.1.38414.42.2.1

	objectClass 1.3.6.1.4.1.38414.42.2.2

Or, if you have two groups of attributeTypes that are somehow related:

	attribueType 1.3.6.1.4.1.38414.42.10.1

	attribueType 1.3.6.1.4.1.38414.42.10.2

	attribueType 1.3.6.1.4.1.38414.42.11.1

	attribueType 1.3.6.1.4.1.38414.42.11.2

	objectClass 1.3.6.1.4.1.38414.42.2.1

	objectClass 1.3.6.1.4.1.38414.42.2.2

Attribution

	Schema

	Number attributed

	recovery-fd.schema

	1

	argonaut-fd.schema

	2

	quota-fd.schema

	3

	debconf-fd.schema

	4

	zimbra-fd.schema

	5

	goto.schema

	6

	puppet-fd.schema

	7

	core-fd-conf.schema

	8

	samba-fd-conf.schema

	9

	mail-fd.schema, mail-fd-conf.schema

	10

	alias-fd.schema, alias-fd-conf.schema

	11

	sympa-fd.schema

	12

	dsa-fd-conf.schema

	13

	cyrus-fd.schema

	14

	systems-fd.schema

	16

	supann-fd-conf.schema

	17

	system-fd-conf.schema

	18

	asterisk-fd-conf.schema

	19

	opsi-fd.schema

	20

	opsi-fd-conf.schema

	21

	netgroup-fd-conf.schema

	22

	sudo-fd-conf.schema

	23

	fax-fd-conf.schema

	24

	fai-fd-conf.schema

	25

	nagios-fd-conf.schema

	26

	board-fd-conf.schema

	27

	health-fd.schema

	28 reserved for Harmo

	ipmi-fd.schema

	29

	weblink-fd.schema

	30

	dovecot-fd.schema

	31

	sogo-fd-conf.schema

	32

	repository-fd.schema

	33

	repository-fd-conf.schema

	34

	gpg-fd.schema

	35

	ipmi-fd-conf.schema

	36

	desktop-fd-conf.schema

	37

	template-fd.schema

	38

	inventory-fd.schema

	39

	fusioninventory-fd.schema

	40

	fusioninventory-fd-conf.schema

	41

	voip-fd.schema

	42

	dns-fd-conf.schema

	43

	webservice-fd-conf.schema

	44

	ppolicy-fd-conf.schema

	45

	applications-fd.schema

	46

	ejbca-fd-conf.schema

	47

	personal-fd.schema

	48

	ejbca-fd.schema

	49

	personal-fd-conf.schema

	50

	dns-fd.schema

	51

	community-fd.schema

	52

	community-fd-conf.schema

	53

	subcontracting-fd.schema

	54

	newsletter-fd-conf.schema

	55

	newsletter-fd.schema

	56

	dhcp-fd-conf.schema

	57

	spamassassin-fd.schema

	58

	user-reminder-fd-conf.schema

	59

	audit-fd.schema

	60

	audit-fd-conf.schema

	61

	core-fd.schema

	62

	renater-partage-fd.schema

	63

	sympa-fd-conf.schema

	64

	sinaps-fd-conf.schema

	65

	supann-ext-fd.schema

	66

	public-forms-fd.schema

	67

	public-forms-fd-conf.schema

	68

	invitations-fd.schema

	69

	invitations-fd-conf.schema

	70

	seafile-fd.schema

	71

	seafile-fd-conf.schema

	72 (temporary waiting for confirmation)

	demoplugin.schema

	1337

	test-fd.schema

	1338

GOsa legacy Schemas

	Schema

	Number attributed

	core-fd.schema

	1.3.6.1.4.1.10098.1.1.12

	fai.schema

	1.3.6.1.4.1.10098.1.1.5

	mail-fd.schema

	1.3.6.1.4.1.10098.1.1.12

	proxy-fd.schema

	1.3.6.1.4.1.10098.1.1.12

	service-fd.schema

	1.3.6.1.4.1.10098.1.1.9

	system-fd.schema

	1.3.6.1.4.1.10098.1.1.11

LDAP naming rules

When naming your LDAP objectClass and/or attributes, please follow these rules:

	Two first letter of your attribute or objectClass shoud be fd

	After that each letter that start a new word should be in uppercase

	Choose a meaningful name, that says what the attribute does

	If possible choose a first word that is common for all attributes of your objectClass

	Fill the attribute description in your LDAP schema

Also, remember to use the LDAP number rules

For plugins configuration objectClass, the following scheme shoud be used:
fdNamePluginConf (for instance fdSystemsPluginConf)

Examples:

fdCyrusConnect

The description field should always start with “FusionDirectory - “

Example:

attributetype (1.3.6.1.4.1.38414.2.10.2 NAME ‘fdArgonautProtocol’

DESC ‘FusionDirectory - Argonaut, protocol.’

EQUALITY caseExactIA5Match

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

SINGLE-VALUE)

FusionDirectory reserved oid

PEN Assignment The Private Enterprise Number 38414 has been assigned to your organization.

Themes

	FusionDirectory theme system
	Icon theme file

	Replacements of css and tpl files

FusionDirectory theme system

A theme is defined by:

	A folder in html/themes

	A folder with the same name in ihtml/themes

The folder in html/themes contains:

	An index.theme file following the Icon Theme Specification [http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html#file_formats]

	The icons as described in the index.theme file, usually in an icons folder

	Replacements for any css file

The folder in ihtml should have the same name and should contain replacements for any template file.

Icon theme file

Here is the minimal index.theme file to inherit another icon theme.

[Icon Theme]
Name=MyTheme
Comment=Example from documentation
Inherits=oxygen

For an example of a more complex index.theme file look at the one of the default theme [https://gitlab.fusiondirectory.org/fusiondirectory/fd/blob/e2d1369485f03dec3ac9886deba8606ceec897f2/html/themes/breezy/index.theme]

All main icon themes should be working, you can activate them by using a symlink in the right folder.
For instance on Debian if I want gnome icon theme:

$ ls -l /usr/share/fusiondirectory/html/themes/
drwxr-xr-x 4 root root 4096 Mar 16 10:24 breezy/
drwxr-xr-x 4 root root 4096 Mar 16 10:24 legacy/
lrwxrwxrwx 1 root root 23 Jun 12 2014 gnome -> /usr/share/icons/gnome/

Replacements of css and tpl files

Any file you see in html/themes/breezy or ihtml/themes/breezy can be overridden by placing in your theme a file with the same name (css goes in html, tpl in ihtml).

Note that the file html/themes/breezy/theme.css is empty so that you can safely override it without losing anything from the default theme. Consider using it for theme making only small modifications.

Translate

	Translate FusionDirectory

Translate FusionDirectory

We are using Transifex [https://www.transifex.com/fusiondirectory/FusionDirectory-1x/]

	Create a transifex account

	Ask to be added to the language group you want to translate

	Start translating

Release Policy

This section explain the release cycle and where contributions, fixes will be merged

	FusionDirectory Version policy
	Versioning

	Major Release

	Minor release

	FusionDirectory Life Cycle

FusionDirectory Version policy

Versioning

FusionDirectory can have 3 digits at maximum in a version : X.Y.Z

Z version increments (X.Y.Z1 –> X.Y.Z2, for example 1.2.1 to 1.2.2) are minor bug fix only releases.

Y or X version increments are major releases (X.Y1.Z -> X.Y2.Z, for exemple 1.1 to 1.2) are major releases.

Major Release

	Can contain any type of bugfix, new features and code refactor.

	Can remove attributes or objectclasses from the schema only if they were declared OBSOLETE in the previous major release.

	Can put OBSOLETE attributes and classes which are no longer used by the code.

	Two 2 major releases are needed before removing OBSOLETE attributes and objectClass.

	Can provide migration scripts in fusiondirectory-setup if needed for those, and/or migration instructions in the documentation.

	Have to provide migration instruction from previous major release.

Minor release

Minor release are small releases containing only bugfix to the last major release. It should be numbered with 3 digits.

Minor release cannot contain :

	Schema changes

	New features

	Code refactor

	Poorly tested code

	Changes which may break existing plugins or themes for previous release (or scripts based on the webservice)

Minor release contain :

	bugfix : should fix a bug observed in a previous release, something which did not work as intended.

Exceptions can be made :

	New feature can be included if it does not require any schema change and does not interfere with existing features

	Code refactor can be included if it leads to a significant performance gain and is thoroughly tested

	New plugin may be added if it does not require schema change (but it can add new schemas as this is non-intrusive)

Minor release must be released as soon as possible when :

	Security breach is found in the last stable release

	Regression (a bug which was not there in previous releases) is found in the last stable release

	Major bug is found in the last stable release

FusionDirectory Life Cycle

A maintained version is a major version for which we release minor bug fix releases and communicate about security vulnerabilities.

Our general support policy is to maintain major releases until 3 months after the next major version is released to give some time for upgrading.

We also provide a more conservative life-cycle through ESR versions.

The ESR tag is given to a major release once it has been thoroughly tested and proven reliable on real production systems.

ESR versions are maintained until 6 months after the next ESR version is announced, allowing less frequent major upgrades,
and a larger time-frame for switching between them.

Distribution and PHP support

	Distribution and PHP support Policy
	Server OSes

	PHP versions

Distribution and PHP support Policy

Distribution OSes have different interpretations of what a ‘supported version’ is, here are the OS and PHP versions FusionDirectory support.

Server OSes

	Debian: stable and oldstable

	Ubuntu: the two latest LTS releases

	Enterprise Linux (RHEL, CentOS, …): two latest major releases

PHP versions

The version of PHP depend on the FusionDirectory version.

Fusiondirectory need at least PHP 5.4.

	Fusiondirectory 1.2.3 need PHP 5.4

	Fusiondirectory 1.3 need PHP 5.6

	Fusiondirectory 1.4 need PHP 7.0

License

	License

License

FusionDirectory is available under the GNU General Public License 2.0 [https://www.gnu.org/licenses/old-licenses/gpl-2.0.html]

FusionDirectory documentation is under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) [http://creativecommons.org/licenses/by-sa/4.0/]

Index

 _static/images/attributes/select.png
Selectattribute

_static/images/attributes/set.png
Setatiribute example value2

| Add | Delete |

_static/images/attributes/orderedarray.png
valuel cholcel @
valuel choice2 -2
Composite attribute |value2 choicel - @

Stingatiibute Setectatribute [Choice 1) [Add |

_static/images/attributes/password.png
PasswordAttribute | @

_images/folder.png

_static/images/attributes/users2.png
Please select the desired entries Filter &
© 000 el 7 Search in subrees.
 Name

] Givenname ™ ‘Surname Login

& wswis [appy fiter |
£ |3ack George jack
2 2ack2 George2 Jack2
0] £ sackess George234 Jacka3s
0|8 system Administrator to-a0min
0] £ 2000 2000 testmodel2-{%sn}
0] & oo aa azbbs
0] 8 Jece cee cee
[£ importe peu peu
0§ sasiman sasiman sasiman
0] 8 sss sss sss
0] 8 test test test
] £ testiiodel tesihodel testmodel{%sn}
EREE

_images/int.png

_static/images/attributes/users3.png
Jack George
Usersatribute Jack2 George2

Add | Delete

_images/file1.png

_static/images/attributes/string.png
StringAttribute

example value

_images/float.png
FloatAtiribute 13.37

_static/images/attributes/users1.png
UsersAtribute

Add | Delete

_images/php_file.png

_images/select.png
Selectattribute

_images/orderedarray.png
valuel cholcel @
valuel choice2 -2
Composite attribute |value2 choicel - @

Stingatiibute Setectatribute [Choice 1) [Add |

_static/images/register/register-done.png
e FusionDirectory - Sign up
[TR ——

Lastname | benott]

Firstname | mortier

Login| benoit]

passvors

S—

Private email | benoit@acme.com

Submit

_images/password.png
PasswordAttribute | @

_static/images/register/register-main.png
° FusionDirectory - Sign up

Please fill outthe form below and click submit

Last nam;

st
wo]

e
——

S—— \

Submit

_images/set.png
Setatiribute example value2

| Add | Delete |

_images/string.png
StringAttribute

example value

_images/demoplugin.png
Departments
Users

Grouwps

Systems.
Objectgroups
System deployment
FAlsofware
deployment
Debeont profes
Dsa

Alases

Hotplug devces
Mime ypes

Al

Applicatons
Supamn structres

Login
Password

Host

Brang®

Has abell

GreatBlcycletrand

o

Conflouration

_images/fd_logo.png
19 FUSION
DIRECTORY

_images/boolean-true.png
BooleanAttribute

_images/date1.png
DateAtribute

28.11.2012

_images/file.png

_images/users1.png
UsersAtribute

Add | Delete

nav.xhtml

 Table of Contents

 		
 Welcome to FusionDirectory development’s documentation!

 		
 Contributing to FusionDirectory

 		
 Registering a FusionDirectory Account

 		
 Guidelines for better contributions

 		
 Coding Standards

 		
 Source Code management

 		
 Branches

 		
 File Hierarchy System

 		
 Coding Style

 		
 Scope of style guidelines

 		
 Performance and Readability

 		
 Indentation and line length

 		
 Spacing

 		
 Braces

 		
 Casing

 		
 Naming

 		
 Arrays

 		
 PHP specific

 		
 Including files

 		
 Quotes / double quotes

 		
 Files Format

 		
 Checking standards

 		
 Headers for the files in FusionDirectory code

 		
 Writing a plugin

 		
 Plugin folder organization

 		
 addons, admin, config, personal

 		
 Installation of a plugin

 		
 Getting started

 		
 Directory organization

 		
 Icons

 		
 Basic plugin writing

 		
 Attributes

 		
 Example

 		
 Displaying the plugin in FusionDirectory

 		
 Displaying the plugin in the “My account” menu

 		
 Going further with Simple Plugin

 		
 simplePlugin special attributes

 		
 simplePlugin attributes values and methods

 		
 Section templates

 		
 Managed attributes

 		
 plInfo

 		
 plSection

 		
 plObjectType

 		
 plForeignKeys

 		
 plCategory

 		
 Attributes Types

 		
 StringAttribute

 		
 PasswordAttribute

 		
 IntAttribute

 		
 FloatAttribute

 		
 SelectAttribute

 		
 BooleanAttribute

 		
 ObjectClassBooleanAttribute

 		
 FileAttribute

 		
 DateAttribute

 		
 BaseSelectorAttribute

 		
 ArrayAttribute and SetAttribute

 		
 CompositeAttribute

 		
 OrderedArrayAttribute

 		
 UsersAttribute

 		
 Configuration back-end

 		
 Class for the configuration

 		
 LDAP storage for the configuration

 		
 Menu sections

 		
 Users and groups (accounts)

 		
 Systems (systems)

 		
 Configuration (conf)

 		
 Reporting (reporting)

 		
 API

 		
 FusionDirectory API

 		
 Fusiondirectory WebService

 		
 LDAP schemas

 		
 Schema naming convention

 		
 LDAP number rules

 		
 Example

 		
 Attribution

 		
 LDAP naming rules

 		
 FusionDirectory reserved oid

 		
 Themes

 		
 FusionDirectory theme system

 		
 Icon theme file

 		
 Replacements of css and tpl files

 		
 Translate

 		
 Translate FusionDirectory

 		
 Release Policy

 		
 FusionDirectory Version policy

 		
 Versioning

 		
 Major Release

 		
 Minor release

 		
 FusionDirectory Life Cycle

 		
 Distribution and PHP support

 		
 Distribution and PHP support Policy

 		
 Server OSes

 		
 PHP versions

 		
 License

 		
 License

_images/base.png
Base

/[Root]
L ggvus vmsy

_static/ajax-loader.gif

_images/boolean-false.png
BooleanAttribute]

_images/users2.png
Please select the desired entries Filter &
© 000 el 7 Search in subrees.
 Name

] Givenname ™ ‘Surname Login

& wswis [appy fiter |
£ |3ack George jack
2 2ack2 George2 Jack2
0] £ sackess George234 Jacka3s
0|8 system Administrator to-a0min
0] £ 2000 2000 testmodel2-{%sn}
0] & oo aa azbbs
0] 8 Jece cee cee
[£ importe peu peu
0§ sasiman sasiman sasiman
0] 8 sss sss sss
0] 8 test test test
] £ testiiodel tesihodel testmodel{%sn}
EREE

_images/users3.png
Jack George
Usersatribute Jack2 George2

Add | Delete

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/demoplugin.png
Departments
Users

Grouwps

Systems.
Objectgroups
System deployment
FAlsofware
deployment
Debeont profes
Dsa

Alases

Hotplug devces
Mime ypes

Al

Applicatons
Supamn structres

Login
Password

Host

Brang®

Has abell

GreatBlcycletrand

o

Conflouration

_static/images/fd_logo.png
19 FUSION
DIRECTORY

_static/up.png

_static/images/cc-by-nc-nd.png

_static/images/folder.png

_static/images/php_file.png

_static/images/file.png

_static/images/attributes/boolean-true.png
BooleanAttribute

_static/images/attributes/date1.png
DateAtribute

28.11.2012

_static/images/attributes/base.png
Base

/[Root]
L ggvus vmsy

_static/images/attributes/boolean-false.png
BooleanAttribute]

_static/images/attributes/int.png

_static/images/attributes/file.png

_static/images/attributes/float.png
FloatAtiribute 13.37

