

FRRouting User Guide

	Overview
	About FRR

	System Architecture

	Supported Platforms

	Supported RFCs

	How to get FRR

	Mailing Lists

	Bug Reports

	Installation
	Configure the Software

	Build the Software

	Install the Software

	Basic commands
	Config Commands

	Terminal Mode Commands

	Common Invocation Options

	Loadable Module Support

	Virtual Terminal Interfaces

	VTY shell
	Permissions and setup requirements

	Integrated configuration mode

	Filtering
	IP Access List

	IP Prefix List

	Route Maps
	Route Map Command

	Route Map Match Command

	Route Map Set Command

	Route Map Call Command

	Route Map Exit Action Command

	Route Map Examples

	IPv6 Support
	Router Advertisement

	Kernel Interface

	SNMP Support
	Getting and installing an SNMP agent

	AgentX configuration

	SMUX configuration

	MIB and command reference

	Handling SNMP Traps

	Zebra
	Invoking zebra

	Configuration Addresses behaviour

	Interface Commands

	Static Route Commands

	VRF (Virtual Routing and Forwarding)

	Multicast RIB Commands

	zebra Route Filtering

	zebra FIB push interface

	zebra Terminal Mode Commands

	BGP
	Starting BGP

	BGP router

	BGP MED

	BGP network

	BGP Peer

	BGP Peer Group

	BGP Address Family

	Autonomous System

	BGP Communities Attribute

	BGP Extended Communities Attribute

	BGP Large Communities Attribute

	BGP VRFs

	Displaying BGP information

	Capability Negotiation

	Route Reflector

	Route Server

	BGP Regular Expressions

	How to set up a 6-Bone connection

	Dump BGP packets and table

	BGP Configuration Examples

	Configuring FRR as a Route Server

	Prefix Origin Validation Using RPKI

	Flowspec

	Babel
	Configuring babeld

	Babel configuration

	Babel redistribution

	Show Babel information

	Babel debugging commands

	EIGRP
	Starting and Stopping eigrpd

	EIGRP Configuration

	How to Announce EIGRP route

	Show EIGRP Information

	EIGRP Debug Commands

	ISIS
	Configuring isisd

	ISIS router

	ISIS Timer

	ISIS region

	ISIS interface

	Showing ISIS information

	Traffic Engineering

	Debugging ISIS

	ISIS Configuration Examples

	NHRP
	Routing Design

	Configuring NHRP

	Hub Functionality

	Integration with IKE

	NHRP Events

	Configuration Example

	OSPFv2
	OSPF Fundamentals

	Configuring ospfd

	OSPF router

	OSPF area

	OSPF interface

	Redistribute routes to OSPF

	Showing OSPF information

	Opaque LSA

	Traffic Engineering

	Router Information

	Segment Routing

	Debugging OSPF

	OSPF Configuration Examples

	OSPFv3
	OSPF6 router

	OSPF6 area

	OSPF6 interface

	Redistribute routes to OSPF6

	Showing OSPF6 information

	OSPF6 Configuration Examples

	PIM
	Starting and Stopping pimd

	PIM Interface Configuration

	PIM Multicast RIB insertion:

	Show PIM Information

	PIM Debug Commands

	PBR
	Starting PBR

	Nexthop Groups

	PBR Maps

	PBR Policy

	PBR Details

	RIP
	Starting and Stopping ripd

	RIP Configuration

	RIP Version Control

	How to Announce RIP route

	Filtering RIP Routes

	RIP Metric Manipulation

	RIP distance

	RIP route-map

	RIP Authentication

	RIP Timers

	Show RIP Information

	RIP Debug Commands

	RIPng
	Invoking ripngd

	ripngd Configuration

	ripngd Terminal Mode Commands

	ripngd Filtering Commands

	Starting SHARP

	USING SHARP

	VNC and VNC-GW
	Configuring VNC

	Manual Address Control

	Other VNC-Related Commands

	Example VNC and VNC-GW Configurations

	Glossary

	Packet Binary Dump Format

Overview

FRR is a routing software package that provides TCP/IP based
routing services with routing protocols support such as RIPv1, RIPv2, RIPng,
OSPFv2, OSPFv3, IS-IS, BGP-4, and BGP-4+ (Supported RFCs). FRR also
supports special BGP Route Reflector and Route Server behavior. In addition to
traditional IPv4 routing protocols, FRR also supports IPv6 routing protocols.
With SNMP daemon which supports SMUX and AgentX protocol, FRR provides routing
protocol MIBs (SNMP Support).

FRR uses an advanced software architecture to provide you with a high
quality, multi server routing engine. FRR has an interactive user
interface for each routing protocol and supports common client commands.
Due to this design, you can add new protocol daemons to FRR easily. You
can use FRR library as your program’s client user interface.

FRR is distributed under the GNU General Public License.

About FRR

Today, TCP/IP networks are covering all of the world. The Internet has
been deployed in many countries, companies, and to the home. When you
connect to the Internet your packet will pass many routers which have TCP/IP
routing functionality.

A system with FRR installed acts as a dedicated router. With FRR,
your machine exchanges routing information with other routers using routing
protocols. FRR uses this information to update the kernel routing table
so that the right data goes to the right place. You can dynamically change
the configuration and you may view routing table information from the FRR
terminal interface.

Adding to routing protocol support, FRR can setup interface’s flags,
interface’s address, static routes and so on. If you have a small network,
or a stub network, or xDSL connection, configuring the FRR routing
software is very easy. The only thing you have to do is to set up the
interfaces and put a few commands about static routes and/or default routes.
If the network is rather large, or if the network structure changes
frequently, you will want to take advantage of FRR’s dynamic routing
protocol support for protocols such as RIP, OSPF, IS-IS or BGP.

Traditionally, UNIX based router configuration is done by
ifconfig and route commands. Status of routing
table is displayed by netstat utility. Almost of these commands
work only if the user has root privileges. FRR has a different system
administration method. There are two user modes in FRR. One is normal
mode, the other is enable mode. Normal mode user can only view system
status, enable mode user can change system configuration. This UNIX account
independent feature will be great help to the router administrator.

Currently, FRR supports common unicast routing protocols, that is BGP,
OSPF, RIP and IS-IS. Upcoming for MPLS support, an implementation of LDP is
currently being prepared for merging. Implementations of BFD and PIM-SSM
(IPv4) also exist, but are not actively being worked on.

The ultimate goal of the FRR project is making a productive, quality, free
TCP/IP routing software package.

System Architecture

Traditional routing software is made as a one process program which
provides all of the routing protocol functionalities. FRR takes a
different approach. It is made from a collection of several daemons that
work together to build the routing table. There may be several
protocol-specific routing daemons and zebra the kernel routing manager.

The ripd daemon handles the RIP protocol, while
ospfd is a daemon which supports OSPF version 2.
bgpd supports the BGP-4 protocol. For changing the kernel
routing table and for redistribution of routes between different routing
protocols, there is a kernel routing table manager zebra daemon.
It is easy to add a new routing protocol daemons to the entire routing
system without affecting any other software. You need to run only the
protocol daemon associated with routing protocols in use. Thus, user may
run a specific daemon and send routing reports to a central routing console.

There is no need for these daemons to be running on the same machine. You
can even run several same protocol daemons on the same machine. This
architecture creates new possibilities for the routing system.

+----+ +----+ +-----+ +-----+
|bgpd| |ripd| |ospfd| |zebra|
+----+ +----+ +-----+ +-----+
 |
+---------------------------|--+
| v |
| UNIX Kernel routing table |
| |
+------------------------------+

 FRR System Architecture

Multi-process architecture brings extensibility, modularity and
maintainability. At the same time it also brings many configuration files
and terminal interfaces. Each daemon has it’s own configuration file and
terminal interface. When you configure a static route, it must be done in
zebra configuration file. When you configure BGP network it must
be done in bgpd configuration file. This can be a very annoying
thing. To resolve the problem, FRR provides integrated user interface
shell called vtysh. vtysh connects to each daemon with
UNIX domain socket and then works as a proxy for user input.

FRR was planned to use multi-threaded mechanism when it runs with a
kernel that supports multi-threads. But at the moment, the thread library
which comes with GNU/Linux or FreeBSD has some problems with running
reliable services such as routing software, so we don’t use threads at all.
Instead we use the select(2) system call for multiplexing the
events.

Supported Platforms

Currently FRR supports GNU/Linux and BSD. Porting FRR
to other platforms is not too difficult as platform dependent code should
most be limited to the zebra daemon. Protocol daemons are mostly
platform independent. Please let us know when you find out FRR runs on a
platform which is not listed below.

The list of officially supported platforms are listed below. Note that
FRR may run correctly on other platforms, and may run with partial
functionality on further platforms.

	GNU/Linux

	FreeBSD

	NetBSD

	OpenBSD

Versions of these platforms that are older than around 2 years from the point
of their original release (in case of GNU/Linux, this is since the kernel’s
release on https://kernel.org/) may need some work. Similarly, the following platforms
may work with some effort:

	Solaris

	MacOS

Also note that, in particular regarding proprietary platforms, compiler
and C library choice will affect FRR. Only recent versions of the
following C compilers are well-tested:

	GNU’s GCC

	LLVM’s clang

	Intel’s ICC

Supported RFCs

FRR implements the following RFCs:

	RFC 1058 [https://tools.ietf.org/html/rfc1058.html]
Routing Information Protocol. C.L. Hedrick. Jun-01-1988.

	RFC 2082 [https://tools.ietf.org/html/rfc2082.html]
RIP-2 MD5 Authentication. F. Baker, R. Atkinson. January 1997.

	RFC 2453 [https://tools.ietf.org/html/rfc2453.html]
RIP Version 2. G. Malkin. November 1998.

	RFC 2080 [https://tools.ietf.org/html/rfc2080.html]
RIPng for IPv6. G. Malkin, R. Minnear. January 1997.

	RFC 2328 [https://tools.ietf.org/html/rfc2328.html]
OSPF Version 2. J. Moy. April 1998.

	RFC 2370 [https://tools.ietf.org/html/rfc2370.html]
The OSPF Opaque LSA Option R. Coltun. July 1998.

	RFC 3101 [https://tools.ietf.org/html/rfc3101.html]
The OSPF Not-So-Stubby Area (NSSA) Option P. Murphy. January 2003.

	RFC 2740 [https://tools.ietf.org/html/rfc2740.html]
OSPF for IPv6. R. Coltun, D. Ferguson, J. Moy. December 1999.

	RFC 1771 [https://tools.ietf.org/html/rfc1771.html]
A Border Gateway Protocol 4 (BGP-4). Y. Rekhter & T. Li. March 1995.

	RFC 1965 [https://tools.ietf.org/html/rfc1965.html]
Autonomous System Confederations for BGP. P. Traina. June 1996.

	RFC 1997 [https://tools.ietf.org/html/rfc1997.html]
BGP Communities Attribute. R. Chandra, P. Traina & T. Li. August 1996.

	RFC 2545 [https://tools.ietf.org/html/rfc2545.html]
Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing. P.
Marques, F. Dupont. March 1999.

	RFC 2796 [https://tools.ietf.org/html/rfc2796.html]
BGP Route Reflection An alternative to full mesh IBGP. T. Bates & R.
Chandrasekeran. June 1996.

	RFC 2858 [https://tools.ietf.org/html/rfc2858.html]
Multiprotocol Extensions for BGP-4. T. Bates, Y. Rekhter, R. Chandra, D.
Katz. June 2000.

	RFC 2842 [https://tools.ietf.org/html/rfc2842.html]
Capabilities Advertisement with BGP-4. R. Chandra, J. Scudder. May 2000.

	RFC 3137 [https://tools.ietf.org/html/rfc3137.html]
OSPF Stub Router Advertisement, A. Retana, L. Nguyen, R. White, A. Zinin,
D. McPherson. June 2001

When SNMP support is enabled, the following RFCs are also supported:

	RFC 1227 [https://tools.ietf.org/html/rfc1227.html]
SNMP MUX protocol and MIB. M.T. Rose. May-01-1991.

	RFC 1657 [https://tools.ietf.org/html/rfc1657.html]
Definitions of Managed Objects for the Fourth Version of the Border
Gateway Protocol (BGP-4) using SMIv2. S. Willis, J. Burruss, J. Chu, Editor.
July 1994.

	RFC 1724 [https://tools.ietf.org/html/rfc1724.html]
RIP Version 2 MIB Extension. G. Malkin & F. Baker. November 1994.

	RFC 1850 [https://tools.ietf.org/html/rfc1850.html]
OSPF Version 2 Management Information Base. F. Baker, R. Coltun.
November 1995.

	RFC 2741 [https://tools.ietf.org/html/rfc2741.html]
Agent Extensibility (AgentX) Protocol. M. Daniele, B. Wijnen. January 2000.

How to get FRR

The official FRR website is located at https://frrouting.org/ and contains further
information, as well as links to additional resources.

FRR is a fork of Quagga [http://www.quagga.net/].

Mailing Lists

Italicized lists are private.

	Topic

	List

	Development

	dev@lists.frrouting.org

	Users & Operators

	frog@lists.frrouting.org

	Announcements

	announce@lists.frrouting.org

	Security

	security@lists.frrouting.org

	Technical Steering Committee

	tsc@lists.frrouting.org

The Development list is used to discuss and document general issues related to
project development and governance. The public Slack [https://frrouting.slack.com/] instance and weekly
technical meetings provide a higher bandwidth channel for discussions. The
results of such discussions are reflected in updates, as appropriate, to code
(i.e., merges), GitHub issues [https://github.com/frrouting/frr/issues] tracked issues, and for governance or process
changes, updates to the Development list and either this file or information
posted at FRR.

Bug Reports

If you think you have found a bug, please file a bug report on our
GitHub issues [https://github.com/frrouting/frr/issues] page.

When you send a bug report, please be careful about the points below.

	Please note what kind of OS you are using. If you use the IPv6 stack
please note that as well.

	Please show us the results of netstat -rn and ifconfig -a.
Information from zebra’s VTY command show ip route will also be
helpful.

	Please send your configuration file with the report. If you specify
arguments to the configure script please note that too.

Bug reports help us improve FRR and are very much appreciated.

Installation

Several distributions provide packages for FRR. Check your distribution’s
repositories to find out if a suitable version is available.

FRR depends on various libraries depending on your operating system.

After installing these dependencies, change to the frr source directory and
issue the following commands:

$./bootstrap.sh
$./configure
$ make
$ make install

Configure the Software

The Configure Script

FRR has an excellent configure script which automatically detects most
host configurations. There are several additional configure options to
customize the build to include or exclude specific features and dependencies.

	
--disable-zebra

	Do not build zebra daemon.

	
--disable-ripd

	Do not build ripd.

	
--disable-ripngd

	Do not build ripngd.

	
--disable-ospfd

	Do not build ospfd.

	
--disable-ospf6d

	Do not build ospf6d.

	
--disable-bgpd

	Do not build bgpd.

	
--disable-bgp-announce

	Make bgpd which does not make bgp announcements at all. This
feature is good for using bgpd as a BGP announcement listener.

	
--enable-datacenter

	Enable system defaults to work as if in a Data Center. See defaults.h
for what is changed by this configure option.

	
--enable-snmp

	Enable SNMP support. By default, SNMP support is disabled.

	
--disable-ospfapi

	Disable support for OSPF-API, an API to interface directly with ospfd.
OSPF-API is enabled if –enable-opaque-lsa is set.

	
--disable-ospfclient

	Disable building of the example OSPF-API client.

	
--disable-ospf-ri

	Disable support for OSPF Router Information (RFC4970 & RFC5088) this
requires support for Opaque LSAs and Traffic Engineering.

	
--disable-isisd

	Do not build isisd.

	
--enable-isis-topology

	Enable IS-IS topology generator.

	
--enable-isis-te

	Enable Traffic Engineering Extension for ISIS (RFC5305)

	
--enable-realms

	Enable the support of Linux Realms. Convert tag values from 1-255 into a
realm value when inserting into the Linux kernel. Then routing policy can be
assigned to the realm. See the tc man page.

	
--disable-rtadv

	Disable support IPV6 router advertisement in zebra.

	
--enable-gcc-rdynamic

	Pass the -rdynamic option to the linker driver. This is in most cases
necessary for getting usable backtraces. This option defaults to on if the
compiler is detected as gcc, but giving an explicit enable/disable is
suggested.

	
--disable-backtrace

	Controls backtrace support for the crash handlers. This is autodetected by
default. Using the switch will enforce the requested behaviour, failing with
an error if support is requested but not available. On BSD systems, this
needs libexecinfo, while on glibc support for this is part of libc itself.

	
--enable-dev-build

	Turn on some options for compiling FRR within a development environment in
mind. Specifically turn on -g3 -O0 for compiling options and add inclusion
of grammar sandbox.

	
--enable-fuzzing

	Turn on some compile options to allow you to run fuzzing tools against the
system. This flag is intended as a developer only tool and should not be
used for normal operations.

	
--disable-snmp

	Build without SNMP support.

	
--disable-vtysh

	Build without VTYSH.

	
--enable-fpm

	Build with FPM module support.

	
--enable-numeric-version

	Alpine Linux does not allow non-numeric characters in the version string.
With this option, we provide a way to strip out these characters for APK dev
package builds.

	
--enable-multipath=X

	Compile FRR with up to X way ECMP supported. This number can be from 0-999.
For backwards compatability with older configure options when setting X = 0,
we will build FRR with 64 way ECMP. This is needed because there are
hardcoded arrays that FRR builds towards, so we need to know how big to
make these arrays at build time.

You may specify any combination of the above options to the configure
script. By default, the executables are placed in /usr/local/sbin
and the configuration files in /usr/local/etc. The /usr/local/
installation prefix and other directories may be changed using the following
options to the configuration script.

	
--prefix <prefix>

	Install architecture-independent files in prefix [/usr/local].

	
--sysconfdir <dir>

	Look for configuration files in dir [prefix/etc]. Note that sample
configuration files will be installed here.

	
--localstatedir <dir>

	Configure zebra to use dir for local state files, such as pid files and
unix sockets.

Least-Privilege Support

Additionally, you may configure zebra to drop its elevated privileges
shortly after startup and switch to another user. The configure script will
automatically try to configure this support. There are three configure
options to control the behaviour of FRR daemons.

	
--enable-user <user>

	Switch to user user shortly after startup, and run as user `user in normal
operation.

	
--enable-group <user>

	Switch real and effective group to group shortly after startup.

	
--enable-vty-group <group>

	Create Unix Vty sockets (for use with vtysh) with group ownership set to
group. This allows one to create a separate group which is restricted to
accessing only the vty sockets, hence allowing one to delegate this group to
individual users, or to run vtysh setgid to this group.

The default user and group which will be configured is ‘frr’ if no user or
group is specified. Note that this user or group requires write access to the
local state directory (see --localstatedir) and requires at least
read access, and write access if you wish to allow daemons to write out their
configuration, to the configuration directory (see --sysconfdir).

On systems which have the ‘libcap’ capabilities manipulation library (currently
only Linux), FRR will retain only minimal capabilities required and will only
raise these capabilities for brief periods. On systems without libcap, FRR will
run as the user specified and only raise its UID to 0 for brief periods.

Linux Notes

There are several options available only to GNU/Linux systems 1.
If you use GNU/Linux, make sure that the current kernel configuration is what
you want. FRR will run with any kernel configuration but some recommendations
do exist.

	CONFIG_NETLINK
Kernel/User Netlink socket. This is a brand new feature which enables an
advanced interface between the Linux kernel and zebra (Kernel Interface).

	CONFIG_RTNETLINK
Routing messages.
This makes it possible to receive Netlink routing messages. If you
specify this option, zebra can detect routing information
updates directly from the kernel (Kernel Interface).

	CONFIG_IP_MULTICAST
IP: multicasting.
This option should be specified when you use ripd (RIP) or
ospfd (OSPFv2) because these protocols use multicast.

IPv6 support has been added in GNU/Linux kernel version 2.2. If you
try to use the FRR IPv6 feature on a GNU/Linux kernel, please
make sure the following libraries have been installed. Please note that
these libraries will not be needed when you uses GNU C library 2.1
or upper.

	inet6-apps

The inet6-apps package includes basic IPv6 related libraries such
as inet_ntop and inet_pton. Some basic IPv6 programs such
as ping, ftp, and inetd are also
included. The inet-apps can be found at
ftp://ftp.inner.net/pub/ipv6/.

	net-tools

The net-tools package provides an IPv6 enabled interface and routing
utility. It contains ifconfig, route, netstat, and other tools.
net-tools may be found at http://www.tazenda.demon.co.uk/phil/net-tools/.

Linux sysctl settings and kernel modules

There are several kernel parameters that impact overall operation of FRR when
using Linux as a router. Generally these parameters should be set in a
sysctl related configuration file, e.g., /etc/sysctl.conf on
Ubuntu based systems and a new file
/etc/sysctl.d/90-routing-sysctl.conf on Centos based systems.
Additional kernel modules are also needed to support MPLS forwarding.

	IPv4 and IPv6 forwarding

	The following are set to enable IP forwarding in the kernel:

net.ipv4.conf.all.forwarding=1
net.ipv6.conf.all.forwarding=1

	MPLS forwarding

	Basic MPLS kernel support was introduced 4.1, additional capability
was introduced in 4.3 and 4.5. For some general information on Linux
MPLS support see
https://www.netdevconf.org/1.1/proceedings/slides/prabhu-mpls-tutorial.pdf.
The following modules should be loaded to support MPLS forwarding,
and are generally added to a configuration file such as
/etc/modules-load.d/modules.conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

The following is an example to enable MPLS forwarding in the kernel:

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth0.input=1
net.mpls.conf.eth1.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

Make sure to add a line equal to net.mpls.conf.<if>.input for
each interface ‘<if>’ used with MPLS and to set labels to an
appropriate value.

	VRF forwarding

	General information on Linux VRF support can be found in
https://www.kernel.org/doc/Documentation/networking/vrf.txt. Kernel
support for VRFs was introduced in 4.3 and improved upon through
4.13, which is the version most used in FRR testing (as of June
2018). Additional background on using Linux VRFs and kernel specific
features can be found in
http://schd.ws/hosted_files/ossna2017/fe/vrf-tutorial-oss.pdf.

The following impacts how BGP TCP sockets are managed across VRFs:

net.ipv4.tcp_l3mdev_accept=0

With this setting a BGP TCP socket is opened per VRF. This setting
ensures that other TCP services, such as SSH, provided for non-VRF
purposes are blocked from VRF associated Linux interfaces.

net.ipv4.tcp_l3mdev_accept=1

With this setting a single BGP TCP socket is shared across the
system. This setting exposes any TCP service running on the system,
e.g., SSH, to all VRFs. Generally this setting is not used in
environments where VRFs are used to support multiple administrative
groups.

Important note as of June 2018, Kernel versions 4.14-4.18 have a
known bug where VRF-specific TCP sockets are not properly handled. When
running these kernel versions, if unable to establish any VRF BGP
adjacencies, either downgrade to 4.13 or set
‘net.ipv4.tcp_l3mdev_accept=1’. The fix for this issue is planned to be
included in future kernel versions so upgrading your kernel may also
address this issue.

Build the Software

After configuring the software, you will need to compile it for your system.
Simply issue the command make in the root of the source directory and the
software will be compiled. Cliff Notes versions of different compilation
examples can be found in the Developer’s Manual Appendix. If you have any
problems at this stage, please send a bug report Bug Reports.

$./bootstrap.sh
$./configure <appropriate to your system>
$ make

Install the Software

Installing the software to your system consists of copying the compiled
programs and supporting files to a standard location. After the
installation process has completed, these files have been copied
from your work directory to /usr/local/bin, and /usr/local/etc.

To install the FRR suite, issue the following command at your shell
prompt::

$ make install

FRR daemons have their own terminal interface or VTY. After
installation, you have to setup each beast’s port number to connect to
them. Please add the following entries to /etc/services.

zebrasrv 2600/tcp # zebra service
zebra 2601/tcp # zebra vty
ripd 2602/tcp # RIPd vty
ripngd 2603/tcp # RIPngd vty
ospfd 2604/tcp # OSPFd vty
bgpd 2605/tcp # BGPd vty
ospf6d 2606/tcp # OSPF6d vty
ospfapi 2607/tcp # ospfapi
isisd 2608/tcp # ISISd vty
nhrpd 2610/tcp # nhrpd vty
pimd 2611/tcp # PIMd vty

If you use a FreeBSD newer than 2.2.8, the above entries are already
added to /etc/services so there is no need to add it. If you
specify a port number when starting the daemon, these entries may not be
needed.

You may need to make changes to the config files in
/etc/frr. Config Commands.

	1

	GNU/Linux has very flexible kernel configuration features.

Basic commands

There are five routing daemons in use, and there is one manager daemon.
These daemons may be located on separate machines from the manager
daemon. Each of these daemons will listen on a particular port for
incoming VTY connections. The routing daemons are:

	ripd

	ripngd

	ospfd

	ospf6d

	bgpd

	zebra

The following sections discuss commands common to all the routing
daemons.

Config Commands

In a config file, you can write the debugging options, a vty’s password,
routing daemon configurations, a log file name, and so forth. This
information forms the initial command set for a routing beast as it is
starting.

Config files are generally found in /etc/frr.

Each of the daemons has its own config file. The daemon name plus .conf is
the default config file name. For example, zebra’s default config file name is
zebra.conf. You can specify a config file using the -f or
--config_file options when starting the daemon.

Basic Config Commands

	
hostname HOSTNAME

	Set hostname of the router.

	
[no] password PASSWORD

	Set password for vty interface. The no form of the command deletes the
password. If there is no password, a vty won’t accept connections.

	
[no] enable password PASSWORD

	Set enable password. The no form of the command deletes the enable
password.

	
[no] log trap LEVEL

	These commands are deprecated and are present only for historical
compatibility. The log trap command sets the current logging level for all
enabled logging destinations, and it sets the default for all future logging
commands that do not specify a level. The normal default logging level is
debugging. The no form of the command resets the default level for future
logging commands to debugging, but it does not change the logging level of
existing logging destinations.

	
[no] log stdout LEVEL

	Enable logging output to stdout. If the optional second argument specifying
the logging level is not present, the default logging level (typically
debugging, but can be changed using the deprecated log trap command) will
be used. The no form of the command disables logging to stdout. The
LEVEL argument must have one of these values: emergencies, alerts,
critical, errors, warnings, notifications, informational, or debugging. Note
that the existing code logs its most important messages with severity
errors.

	
[no] log file [FILENAME [LEVEL]]

	If you want to log into a file, please specify filename as
in this example:

log file /var/log/frr/bgpd.log informational

If the optional second argument specifying the logging level is not present,
the default logging level (typically debugging, but can be changed using the
deprecated log trap command) will be used. The no form of the command
disables logging to a file. Note: if you do not configure any file logging,
and a daemon crashes due to a signal or an assertion failure, it will attempt
to save the crash information in a file named /var/tmp/frr.<daemon
name>.crashlog. For security reasons, this will not happen if the file exists
already, so it is important to delete the file after reporting the crash
information.

	
[no] log syslog [LEVEL]

	Enable logging output to syslog. If the optional second argument specifying
the logging level is not present, the default logging level (typically
debugging, but can be changed using the deprecated log trap command) will
be used. The no form of the command disables logging to syslog.

	
[no] log monitor [LEVEL]

	Enable logging output to vty terminals that have enabled logging using the
terminal monitor command. By default, monitor logging is enabled at the
debugging level, but this command (or the deprecated log trap command) can
be used to change the monitor logging level. If the optional second argument
specifying the logging level is not present, the default logging level
(typically debugging, but can be changed using the deprecated log trap
command) will be used. The no form of the command disables logging to
terminal monitors.

	
[no] log facility [FACILITY]

	This command changes the facility used in syslog messages. The default
facility is daemon. The no form of the command resets
the facility to the default daemon facility.

	
[no] log record-priority

	To include the severity in all messages logged to a file, to stdout, or to
a terminal monitor (i.e. anything except syslog),
use the log record-priority global configuration command.
To disable this option, use the no form of the command. By default,
the severity level is not included in logged messages. Note: some
versions of syslogd (including Solaris) can be configured to include
the facility and level in the messages emitted.

	
[no] log timestamp precision [(0-6)]

	This command sets the precision of log message timestamps to the given number
of digits after the decimal point. Currently, the value must be in the range
0 to 6 (i.e. the maximum precision is microseconds). To restore the default
behavior (1-second accuracy), use the no form of the command, or set the
precision explicitly to 0.

 log timestamp precision 3

In this example, the precision is set to provide timestamps with
millisecond accuracy.

	
log commands

	This command enables the logging of all commands typed by a user to
all enabled log destinations. The note that logging includes full
command lines, including passwords. Once set, command logging can only
be turned off by restarting the daemon.

	
service password-encryption

	Encrypt password.

	
service advanced-vty

	Enable advanced mode VTY.

	
service terminal-length (0-512)

	Set system wide line configuration. This configuration command applies
to all VTY interfaces.

	
line vty

	Enter vty configuration mode.

	
banner motd default

	Set default motd string.

	
no banner motd

	No motd banner string will be printed.

	
exec-timeout MINUTE [SECOND]

	Set VTY connection timeout value. When only one argument is specified
it is used for timeout value in minutes. Optional second argument is
used for timeout value in seconds. Default timeout value is 10 minutes.
When timeout value is zero, it means no timeout.

	
no exec-timeout

	Do not perform timeout at all. This command is as same as exec-timeout 0 0.

	
access-class ACCESS-LIST

	Restrict vty connections with an access list.

Sample Config File

Below is a sample configuration file for the zebra daemon.

!
! Zebra configuration file
!
hostname Router
password zebra
enable password zebra
!
log stdout
!
!

‘!’ and ‘#’ are comment characters. If the first character of the word
is one of the comment characters then from the rest of the line forward
will be ignored as a comment.

password zebra!password

If a comment character is not the first character of the word, it’s a
normal character. So in the above example ‘!’ will not be regarded as a
comment and the password is set to ‘zebra!password’.

Terminal Mode Commands

	
write terminal

	Displays the current configuration to the vty interface.

	
write file

	Write current configuration to configuration file.

	
configure terminal

	Change to configuration mode. This command is the first step to
configuration.

	
terminal length (0-512)

	Set terminal display length to (0-512). If length is 0, no
display control is performed.

	
who

	Show a list of currently connected vty sessions.

	
list

	List all available commands.

	
show version

	Show the current version of frr and its build host information.

	
show logging

	Shows the current configuration of the logging system. This includes
the status of all logging destinations.

	
logmsg LEVEL MESSAGE

	Send a message to all logging destinations that are enabled for messages
of the given severity.

Common Invocation Options

These options apply to all frr daemons.

	
-d, --daemon

	Run in daemon mode.

	
-f, --config_file <file>

	Set configuration file name.

	
-h, --help

	Display this help and exit.

	
-i, --pid_file <file>

	Upon startup the process identifier of the daemon is written to a file,
typically in /var/run. This file can be used by the init system
to implement commands such as .../init.d/zebra status,
.../init.d/zebra restart or .../init.d/zebra stop.

The file name is an run-time option rather than a configure-time option
so that multiple routing daemons can be run simultaneously. This is
useful when using frr to implement a routing looking glass. One
machine can be used to collect differing routing views from differing
points in the network.

	
-A, --vty_addr <address>

	Set the VTY local address to bind to. If set, the VTY socket will only
be bound to this address.

	
-P, --vty_port <port>

	Set the VTY TCP port number. If set to 0 then the TCP VTY sockets will not
be opened.

	
-u <user>

	Set the user and group to run as.

	
-v, --version

	Print program version.

Loadable Module Support

FRR supports loading extension modules at startup. Loading, reloading or
unloading modules at runtime is not supported (yet). To load a module, use
the following command line option at daemon startup:

	
-M, --module <module:options>

	Load the specified module, optionally passing options to it. If the module
name contains a slash (/), it is assumed to be a full pathname to a file to
be loaded. If it does not contain a slash, the /usr/lib/frr/modules
directory is searched for a module of the given name; first with the daemon
name prepended (e.g. zebra_mod for mod), then without the daemon
name prepended.

This option is available on all daemons, though some daemons may not have
any modules available to be loaded.

The SNMP Module

If SNMP is enabled during compile-time and installed as part of the package,
the snmp module can be loaded for the zebra, bgpd, ospfd, ospf6d
and ripd daemons.

The module ignores any options passed to it. Refer to SNMP Support
for information on its usage.

The FPM Module

If FPM is enabled during compile-time and installed as part of the package, the
fpm module can be loaded for the zebra daemon. This provides the
Forwarding Plane Manager (“FPM”) API.

The module expects its argument to be either Netlink or protobuf,
specifying the encapsulation to use. Netlink is the default, and
protobuf may not be available if the module was built without protobuf
support. Refer to zebra FIB push interface for more information.

Virtual Terminal Interfaces

VTY – Virtual Terminal [aka TeletYpe] Interface is a command line
interface (CLI) for user interaction with the routing daemon.

VTY Overview

VTY stands for Virtual TeletYpe interface. It means you can connect to
the daemon via the telnet protocol.

To enable a VTY interface, you have to setup a VTY password. If there
is no VTY password, one cannot connect to the VTY interface at all.

% telnet localhost 2601
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Hello, this is |PACKAGE_NAME| (version |PACKAGE_VERSION|)
|COPYRIGHT_STR|

User Access Verification

Password: XXXXX
Router> ?
 enable . . . Turn on privileged commands
 exit . . . Exit current mode and down to previous mode
 help . . . Description of the interactive help system
 list . . . Print command list
 show . . . Show system inform

 wh. . . Display who is on a vty
Router> enable
Password: XXXXX
Router# configure terminal
Router(config)# interface eth0
Router(config-if)# ip address 10.0.0.1/8
Router(config-if)# ^Z
Router#

? and the find command are very useful for looking up commands.

VTY Modes

There are three basic VTY modes:

There are commands that may be restricted to specific VTY modes.

VTY View Mode

This mode is for read-only access to the CLI. One may exit the mode by
leaving the system, or by entering enable mode.

VTY Enable Mode

This mode is for read-write access to the CLI. One may exit the mode by
leaving the system, or by escaping to view mode.

VTY Other Modes

This page is for describing other modes.

VTY CLI Commands

Commands that you may use at the command-line are described in the following
three subsubsections.

CLI Movement Commands

These commands are used for moving the CLI cursor. The C character
means press the Control Key.

	C-f / LEFT

	Move forward one character.

	C-b / RIGHT

	Move backward one character.

	M-f

	Move forward one word.

	M-b

	Move backward one word.

	C-a

	Move to the beginning of the line.

	C-e

	Move to the end of the line.

CLI Editing Commands

These commands are used for editing text on a line. The C
character means press the Control Key.

	C-h / DEL

	Delete the character before point.

	C-d

	Delete the character after point.

	M-d

	Forward kill word.

	C-w

	Backward kill word.

	C-k

	Kill to the end of the line.

	C-u

	Kill line from the beginning, erasing input.

	C-t

	Transpose character.

CLI Advanced Commands

There are several additional CLI commands for command line completions,
insta-help, and VTY session management.

	C-c

	Interrupt current input and moves to the next line.

	C-z

	End current configuration session and move to top node.

	C-n / DOWN

	Move down to next line in the history buffer.

	C-p / UP

	Move up to previous line in the history buffer.

	TAB

	Use command line completion by typing TAB.

	?

	You can use command line help by typing help at the beginning of the
line. Typing ? at any point in the line will show possible
completions.

VTY shell

vtysh provides a combined frontend to all FRR daemons in a single combined
session. It is enabled by default at build time, but can be disabled through
the --disable-vtysh option to the configure script.

vtysh has a configuration file, vtysh.conf. The location of that
file cannot be changed from /etc/frr since it contains options
controlling authentication behavior. This file will also not be written by
configuration-save commands, it is intended to be updated manually by an
administrator with an external editor.

Warning

This also means the hostname and banner motd commands (which both do
have effect for vtysh) need to be manually updated in vtysh.conf.

Permissions and setup requirements

vtysh connects to running daemons through Unix sockets located in
/var/run/frr. Running vtysh thus requires access to that directory,
plus membership in the frrvty group (which is the group that the
daemons will change ownership of their sockets to).

To restrict access to FRR configuration, make sure no unauthorized users are
members of the frrvty group.

Warning

VTYSH implements a CLI option -u, --user that disallows entering the
characters “en” on the command line, which ideally restricts access to
configuration commands. However, VTYSH was never designed to be a privilege
broker and is not built using secure coding practices. No guarantees of
security are provided for this option and under no circumstances should this
option be used to provide any semblance of security or read-only access to
FRR.

PAM support (experimental)

vtysh has working (but rather useless) PAM support. It will perform an
“authenticate” PAM call using frr as service name. No other
(accounting, session, password change) calls will be performed by vtysh.

Users using vtysh still need to have appropriate access to the daemons’ VTY
sockets, usually by being member of the frrvty group. If they
have this membership, PAM support is useless since they can connect to daemons
and issue commands using some other tool. Alternatively, the vtysh binary
could be made SGID (set group ID) to the frrvty group.

Warning

No security guarantees are made for this configuration.

	
username USERNAME nopassword

	If PAM support is enabled at build-time, this command allows disabling the
use of PAM on a per-user basis. If vtysh finds that an user is trying to
use vtysh and a “nopassword” entry is found, no calls to PAM will be made
at all.

Integrated configuration mode

Integrated configuration mode uses a single configuration file,
frr.conf, for all daemons. This replaces the individual files like
zebra.conf or bgpd.conf.

frr.conf is located in /etc/frr. All daemons check for the
existence of this file at startup, and if it exists will not load their
individual configuration files. Instead, vtysh -b must be invoked to
process frr.conf and apply its settings to the individual daemons.

Warning

vtysh -b must also be executed after restarting any daemon.

Configuration saving, file ownership and permissions

The frr.conf file is not written by any of the daemons; instead vtysh
contains the necessary logic to collect configuration from all of the daemons,
combine it and write it out.

Warning

Daemons must be running for vtysh to be able to collect their
configuration. Any configuration from non-running daemons is permanently
lost after doing a configuration save.

Since the vtysh command may be running as ordinary user on the system,
configuration writes will be tried through watchfrr, using the write
integrated command internally. Since watchfrr is running as superuser,
vtysh is able to ensure correct ownership and permissions on
frr.conf.

If watchfrr is not running or the configuration write fails, vtysh will
attempt to directly write to the file. This is likely to fail if running as
unprivileged user; alternatively it may leave the file with incorrect owner or
permissions.

Writing the configuration can be triggered directly by invoking vtysh -w.
This may be useful for scripting. Note this command should be run as either the
superuser or the FRR user.

We recommend you do not mix the use of the two types of files. Further, it is
better not to use the integrated frr.conf file, as any syntax error in
it can lead to /all/ of your daemons being unable to start up. Per daemon files
are more robust as impact of errors in configuration are limited to the daemon
in whose file the error is made.

	
service integrated-vtysh-config

	

	
no service integrated-vtysh-config

	Control whether integrated frr.conf file is written when
‘write file’ is issued.

These commands need to be placed in vtysh.conf to have any effect.
Note that since vtysh.conf is not written by FRR itself, they
therefore need to be manually placed in that file.

This command has 3 states:

	service integrated-vtysh-config

	vtysh will always write frr.conf.

	no service integrated-vtysh-config

	vtysh will never write frr.conf; instead it will ask
daemons to write their individual configuration files.

	Neither option present (default)

	vtysh will check whether frr.conf exists. If it does,
configuration writes will update that file. Otherwise, writes are performed
through the individual daemons.

This command is primarily intended for packaging/distribution purposes, to
preset one of the two operating modes and ensure consistent operation across
installations.

	
write integrated

	Unconditionally (regardless of service integrated-vtysh-config setting)
write out integrated frr.conf file through watchfrr. If watchfrr
is not running, this command is unavailable.

Warning

Configuration changes made while some daemon is not running will be
invisible to that daemon. The daemon will start up with its saved
configuration (either in its individual configuration file, or in
frr.conf). This is particularly troublesome for route-maps and
prefix lists, which would otherwise be synchronized between daemons.

Filtering

FRR provides many very flexible filtering features. Filtering is used
for both input and output of the routing information. Once filtering is
defined, it can be applied in any direction.

IP Access List

	
access-list NAME permit IPV4-NETWORK

	

	
access-list NAME deny IPV4-NETWORK

	Basic filtering is done by access-list as shown in the
following example.

access-list filter deny 10.0.0.0/9
access-list filter permit 10.0.0.0/8

IP Prefix List

ip prefix-list provides the most powerful prefix based
filtering mechanism. In addition to access-list functionality,
ip prefix-list has prefix length range specification and
sequential number specification. You can add or delete prefix based
filters to arbitrary points of prefix-list using sequential number specification.

If no ip prefix-list is specified, it acts as permit. If ip prefix-list
is defined, and no match is found, default deny is applied.

	
ip prefix-list NAME (permit|deny) PREFIX [le LEN] [ge LEN]

	

	
ip prefix-list NAME seq NUMBER (permit|deny) PREFIX [le LEN] [ge LEN]

	You can create ip prefix-list using above commands.

	seq

	seq number can be set either automatically or manually. In the
case that sequential numbers are set manually, the user may pick any
number less than 4294967295. In the case that sequential number are set
automatically, the sequential number will increase by a unit of five (5)
per list. If a list with no specified sequential number is created
after a list with a specified sequential number, the list will
automatically pick the next multiple of five (5) as the list number.
For example, if a list with number 2 already exists and a new list with
no specified number is created, the next list will be numbered 5. If
lists 2 and 7 already exist and a new list with no specified number is
created, the new list will be numbered 10.

	le

	Specifies prefix length. The prefix list will be applied if the prefix
length is less than or equal to the le prefix length.

	ge

	Specifies prefix length. The prefix list will be applied if the prefix
length is greater than or equal to the ge prefix length.

Less than or equal to prefix numbers and greater than or equal to
prefix numbers can be used together. The order of the le and ge
commands does not matter.

If a prefix list with a different sequential number but with the exact
same rules as a previous list is created, an error will result.
However, in the case that the sequential number and the rules are
exactly similar, no error will result.

If a list with the same sequential number as a previous list is created,
the new list will overwrite the old list.

Matching of IP Prefix is performed from the smaller sequential number to the
larger. The matching will stop once any rule has been applied.

In the case of no le or ge command, the prefix length must match exactly the
length specified in the prefix list.

	
no ip prefix-list NAME

	

ip prefix-list description

	
ip prefix-list NAME description DESC

	Descriptions may be added to prefix lists. This command adds a
description to the prefix list.

	
no ip prefix-list NAME description [DESC]

	Deletes the description from a prefix list. It is possible to use the
command without the full description.

ip prefix-list sequential number control

	
ip prefix-list sequence-number

	With this command, the IP prefix list sequential number is displayed.
This is the default behavior.

	
no ip prefix-list sequence-number

	With this command, the IP prefix list sequential number is not
displayed.

Showing ip prefix-list

	
show ip prefix-list

	Display all IP prefix lists.

	
show ip prefix-list NAME

	Show IP prefix list can be used with a prefix list name.

	
show ip prefix-list NAME seq NUM

	Show IP prefix list can be used with a prefix list name and sequential
number.

	
show ip prefix-list NAME A.B.C.D/M

	If the command longer is used, all prefix lists with prefix lengths equal to
or longer than the specified length will be displayed. If the command first
match is used, the first prefix length match will be displayed.

	
show ip prefix-list NAME A.B.C.D/M longer

	

	
show ip prefix-list NAME A.B.C.D/M first-match

	

	
show ip prefix-list summary

	

	
show ip prefix-list summary NAME

	

	
show ip prefix-list detail

	

	
show ip prefix-list detail NAME

	

Clear counter of ip prefix-list

	
clear ip prefix-list

	Clears the counters of all IP prefix lists. Clear IP Prefix List can be used
with a specified name and prefix.

	
clear ip prefix-list NAME

	

	
clear ip prefix-list NAME A.B.C.D/M

	

Route Maps

Route maps provide a means to both filter and/or apply actions to route, hence
allowing policy to be applied to routes.

Route maps are an ordered list of route map entries. Each entry may specify up
to four distinct sets of clauses:

	Matching Conditions

	A route-map entry may, optionally, specify one or more conditions which
must be matched if the entry is to be considered further, as governed by
the Match Policy. If a route-map entry does not explicitly specify any
matching conditions, then it always matches.

	Set Actions

	A route-map entry may, optionally, specify one or more Set Actions to set
or modify attributes of the route.

	Matching Policy

	This specifies the policy implied if the Matching Conditions are
met or not met, and which actions of the route-map are to be taken, if
any. The two possibilities are:

	permit: If the entry matches, then carry out the
Set Actions. Then finish processing the route-map, permitting
the route, unless an Exit Policy action indicates otherwise.

	deny: If the entry matches, then finish processing the route-map and
deny the route (return deny).

The Matching Policy is specified as part of the command which defines
the ordered entry in the route-map. See below.

	Call Action

	Call to another route-map, after any Set Actions have been carried out.
If the route-map called returns deny then processing of the route-map
finishes and the route is denied, regardless of the :term:Matching Policy` or
the Exit Policy. If the called route-map returns permit, then
Matching Policy and Exit Policy govern further behaviour, as normal.

	Exit Policy

	An entry may, optionally, specify an alternative Exit Policy to
take if the entry matched, rather than the normal policy of exiting the
route-map and permitting the route. The two possibilities are:

	next: Continue on with processing of the route-map entries.

	goto N: Jump ahead to the first route-map entry whose order in
the route-map is >= N. Jumping to a previous entry is not permitted.

The default action of a route-map, if no entries match, is to deny. I.e. a
route-map essentially has as its last entry an empty deny entry, which
matches all routes. To change this behaviour, one must specify an empty
permit entry as the last entry in the route-map.

To summarise the above:

	
	Match

	No Match

	Permit

	action

	cont

	Deny

	deny

	cont

	action

	
	Apply set statements

	If call is present, call given route-map. If that returns a deny,
finish processing and return deny.

	If Exit Policy is next, goto next route-map entry

	If Exit Policy is goto, goto first entry whose order in the
list is >= the given order.

	Finish processing the route-map and permit the route.

	deny

	The route is denied by the route-map (return deny).

	cont

	goto next route-map entry

Route Map Command

	
route-map ROUTE-MAP-NAME (permit|deny) ORDER

	Configure the order’th entry in route-map-name with Match Policy of
either permit or deny.

Route Map Match Command

	
match ip address ACCESS_LIST

	Matches the specified access_list

	
match ip address PREFIX-LIST

	Matches the specified prefix-list

	
match ip address prefix-len 0-32

	Matches the specified prefix-len. This is a Zebra specific command.

	
match ipv6 address ACCESS_LIST

	Matches the specified access_list

	
match ipv6 address PREFIX-LIST

	Matches the specified prefix-list

	
match ipv6 address prefix-len 0-128

	Matches the specified prefix-len. This is a Zebra specific command.

	
match ip next-hop IPV4_ADDR

	Matches the specified ipv4_addr.

	
match aspath AS_PATH

	Matches the specified as_path.

	
match metric METRIC

	Matches the specified metric.

	
match tag TAG

	Matches the specified tag value associated with the route. This tag value
can be in the range of (1-4294967295).

	
match local-preference METRIC

	Matches the specified local-preference.

	
match community COMMUNITY_LIST

	Matches the specified community_list

	
match peer IPV4_ADDR

	This is a BGP specific match command. Matches the peer ip address
if the neighbor was specified in this manner.

	
match peer IPV6_ADDR

	This is a BGP specific match command. Matches the peer ipv6
address if the neighbor was specified in this manner.

	
match peer INTERFACE_NAME

	This is a BGP specific match command. Matches the peer
interface name specified if the neighbor was specified
in this manner.

	
match source-protocol PROTOCOL_NAME

	This is a ZEBRA specific match command. Matches the
originating protocol specified.

	
match source-instance NUMBER

	This is a ZEBRA specific match command. The number is a range from (0-255).
Matches the originating protocols instance specified.

Route Map Set Command

	
set tag TAG

	Set a tag on the matched route. This tag value can be from (1-4294967295).
Additionally if you have compiled with the --enable-realms
configure option. Tag values from (1-255) are sent to the Linux kernel as a
realm value. Then route policy can be applied. See the tc man page.

	
set ip next-hop IPV4_ADDRESS

	Set the BGP nexthop address to the specified IPV4_ADDRESS. For both
incoming and outgoing route-maps.

	
set ip next-hop peer-address

	Set the BGP nexthop address to the address of the peer. For an incoming
route-map this means the ip address of our peer is used. For an outgoing
route-map this means the ip address of our self is used to establish the
peering with our neighbor.

	
set ip next-hop unchanged

	Set the route-map as unchanged. Pass the route-map through without
changing it’s value.

	
set ipv6 next-hop peer-address

	Set the BGP nexthop address to the address of the peer. For an incoming
route-map this means the ipv6 address of our peer is used. For an outgoing
route-map this means the ip address of our self is used to establish the
peering with our neighbor.

	
set ipv6 next-hop prefer-global

	For Incoming and Import Route-maps if we receive a v6 global and v6 LL
address for the route, then prefer to use the global address as the nexthop.

	
set ipv6 next-hop global IPV6_ADDRESS

	Set the next-hop to the specified IPV6_ADDRESS for both incoming and
outgoing route-maps.

	
set local-preference LOCAL_PREF

	Set the BGP local preference to local_pref.

	
set weight WEIGHT

	Set the route’s weight.

	
set metric METRIC

	Set the BGP attribute MED.

	
set as-path prepend AS_PATH

	Set the BGP AS path to prepend.

	
set community COMMUNITY

	Set the BGP community attribute.

	
set ipv6 next-hop local IPV6_ADDRESS

	Set the BGP-4+ link local IPv6 nexthop address.

Route Map Call Command

	
call NAME

	Call route-map name. If it returns deny, deny the route and
finish processing the route-map.

Route Map Exit Action Command

	
on-match next

	

	
continue

	Proceed on to the next entry in the route-map.

	
on-match goto N

	

	
continue N

	Proceed processing the route-map at the first entry whose order is >= N

Route Map Examples

A simple example of a route-map:

route-map test permit 10
 match ip address 10
 set local-preference 200

This means that if a route matches ip access-list number 10 it’s
local-preference value is set to 200.

See BGP Configuration Examples for examples of more sophisticated
usage of route-maps, including of the call action.

IPv6 Support

FRR fully supports IPv6 routing. As described so far, FRR supports RIPng,
OSPFv3, and BGP-4+. You can give IPv6 addresses to an interface and configure
static IPv6 routing information. FRR IPv6 also provides automatic address
configuration via a feature called address auto configuration. To do it,
the router must send router advertisement messages to the all nodes that exist
on the network.

Previous versions of FRR could be built without IPv6 support. This is
no longer possible.

Router Advertisement

	
no ipv6 nd suppress-ra

	Send router advertisement messages.

	
ipv6 nd suppress-ra

	Don’t send router advertisement messages.

	
ipv6 nd prefix ipv6prefix [valid-lifetime] [preferred-lifetime] [off-link] [no-autoconfig] [router-address]

	Configuring the IPv6 prefix to include in router advertisements. Several prefix
specific optional parameters and flags may follow:

	valid-lifetime: the length of time in seconds during what the prefix is
valid for the purpose of on-link determination. Value infinite represents
infinity (i.e. a value of all one bits (0xffffffff)).
Range: (0-4294967295) Default: 2592000

	preferred-lifetime: the length of time in seconds during what addresses
generated from the prefix remain preferred. Value infinite represents
infinity.
Range: (0-4294967295) Default: 604800

	off-link: indicates that advertisement makes no statement about on-link or
off-link properties of the prefix.
Default: not set, i.e. this prefix can be used for on-link determination.

	no-autoconfig: indicates to hosts on the local link that the specified prefix
cannot be used for IPv6 autoconfiguration.

Default: not set, i.e. prefix can be used for autoconfiguration.

	router-address: indicates to hosts on the local link that the specified
prefix contains a complete IP address by setting R flag.

Default: not set, i.e. hosts do not assume a complete IP address is placed.

	
[no] ipv6 nd ra-interval [(1-1800)]

	The maximum time allowed between sending unsolicited multicast router
advertisements from the interface, in seconds.
Default: 600

	
[no] ipv6 nd ra-interval [msec (70-1800000)]

	The maximum time allowed between sending unsolicited multicast router
advertisements from the interface, in milliseconds.
Default: 600000

	
[no] ipv6 nd ra-lifetime [(0-9000)]

	The value to be placed in the Router Lifetime field of router advertisements
sent from the interface, in seconds. Indicates the usefulness of the router
as a default router on this interface. Setting the value to zero indicates
that the router should not be considered a default router on this interface.
Must be either zero or between value specified with ipv6 nd ra-interval
(or default) and 9000 seconds.
Default: 1800

	
[no] ipv6 nd reachable-time [(1-3600000)]

	The value to be placed in the Reachable Time field in the Router
Advertisement messages sent by the router, in milliseconds. The configured
time enables the router to detect unavailable neighbors. The value zero
means unspecified (by this router).
Default: 0

	
[no] ipv6 nd managed-config-flag

	Set/unset flag in IPv6 router advertisements which indicates to hosts that
they should use managed (stateful) protocol for addresses autoconfiguration
in addition to any addresses autoconfigured using stateless address
autoconfiguration.
Default: not set

	
[no] ipv6 nd other-config-flag

	Set/unset flag in IPv6 router advertisements which indicates to hosts that
they should use administered (stateful) protocol to obtain autoconfiguration
information other than addresses.
Default: not set

	
[no] ipv6 nd home-agent-config-flag

	Set/unset flag in IPv6 router advertisements which indicates to hosts that
the router acts as a Home Agent and includes a Home Agent Option.
Default: not set

	
[no] ipv6 nd home-agent-preference [(0-65535)]

	The value to be placed in Home Agent Option, when Home Agent config flag is
set, which indicates to hosts Home Agent preference. The default value of 0
stands for the lowest preference possible.
Default: 0

	
[no] ipv6 nd home-agent-lifetime [(0-65520)]

	The value to be placed in Home Agent Option, when Home Agent config flag is set,
which indicates to hosts Home Agent Lifetime. The default value of 0 means to
place the current Router Lifetime value.

Default: 0

	
[no] ipv6 nd adv-interval-option

	Include an Advertisement Interval option which indicates to hosts the maximum time,
in milliseconds, between successive unsolicited Router Advertisements.
Default: not set

	
[no] ipv6 nd router-preference [(high|medium|low)]

	Set default router preference in IPv6 router advertisements per RFC4191.
Default: medium

	
[no] ipv6 nd mtu [(1-65535)]

	Include an MTU (type 5) option in each RA packet to assist the attached
hosts in proper interface configuration. The announced value is not verified
to be consistent with router interface MTU.

	Default: don’t advertise any MTU option.::

	
	interface eth0

	no ipv6 nd suppress-ra
ipv6 nd prefix 2001:0DB8:5009::/64

See also

	RFC 2462 [https://tools.ietf.org/html/rfc2462.html] (IPv6 Stateless Address Autoconfiguration)

	RFC 4861 [https://tools.ietf.org/html/rfc4861.html] (Neighbor Discovery for IP Version 6 (IPv6))

	RFC 6275 [https://tools.ietf.org/html/rfc6275.html] (Mobility Support in IPv6)

	RFC 4191 [https://tools.ietf.org/html/rfc4191.html] (Default Router Preferences and More-Specific Routes)

Kernel Interface

There are several different methods for reading kernel routing table
information, updating kernel routing tables, and for looking up interfaces.

	
	ioctl

	This method is a very traditional way for reading or writing kernel
information. ioctl can be used for looking up interfaces and for
modifying interface addresses, flags, mtu settings and other types of
information. Also, ioctl can insert and delete kernel routing table
entries. It will soon be available on almost any platform which zebra
supports, but it is a little bit ugly thus far, so if a better method is
supported by the kernel, zebra will use that.

	
	sysctl

	This is a program that can lookup kernel information using MIB (Management
Information Base) syntax. Normally, it only provides a way of getting
information from the kernel. So one would usually want to change kernel
information using another method such as ioctl.

	
	proc filesystem

	This is a special filesystem mount that provides an easy way of getting
kernel information.

	
	routing socket / Netlink

	On recent Linux kernels (2.0.x and 2.2.x), there is a kernel/user
communication support called Netlink. It makes asynchronous communication
between kernel and FRR possible, similar to a routing socket on BSD systems.

Before you use this feature, be sure to select (in kernel configuration) the
kernel/Netlink support option ‘Kernel/User network link driver’ and ‘Routing
messages’.

Today, the /dev/route special device file is obsolete. Netlink
communication is done by reading/writing over Netlink socket.

After the kernel configuration, please reconfigure and rebuild FRR. You can
use Netlink as a dynamic routing update channel between FRR and the kernel.

SNMP Support

SNMP is a widely implemented feature
for collecting network information from router and/or host. FRR itself does
not support SNMP agent (server daemon) functionality but is able to connect to
a SNMP agent using the SMUX protocol (RFC 1227 [https://tools.ietf.org/html/rfc1227.html]) or the AgentX protocol
(RFC 2741 [https://tools.ietf.org/html/rfc2741.html]) and make the routing protocol MIBs available through it.

Note that SNMP Support needs to be enabled at compile-time and loaded as module
on daemon startup. Refer to Loadable Module Support on the latter.

Getting and installing an SNMP agent

There are several SNMP agent which support SMUX or AgentX. We recommend to use
the latest version of net-snmp which was formerly known as ucd-snmp. It is
free and open software and available at http://www.net-snmp.org/
and as binary package for most Linux distributions. net-snmp has to be
compiled with –with-mib-modules=agentx to be able to accept connections from
FRR using AgentX protocol or with –with-mib-modules=smux to use SMUX
protocol.

Nowadays, SMUX is a legacy protocol. The AgentX protocol should be preferred
for any new deployment. Both protocols have the same coverage.

AgentX configuration

To enable AgentX protocol support, FRR must have been build with the
--enable-snmp or –enable-snmp=agentx option. Both the
master SNMP agent (snmpd) and each of the FRR daemons must be configured. In
/etc/snmp/snmpd.conf, the master agentx directive should be added.
In each of the FRR daemons, agentx command will enable AgentX support.

	/etc/snmp/snmpd.conf:

	#
example access restrictions setup
#
com2sec readonly default public
group MyROGroup v1 readonly
view all included .1 80
access MyROGroup “” any noauth exact all none none
#
enable master agent for AgentX subagents
#
master agentx

/etc/frr/ospfd.conf:

! ... the rest of ospfd.conf has been omitted for clarity ...
!
agentx
!

Upon successful connection, you should get something like this in the log of
each FRR daemons:

2012/05/25 11:39:08 ZEBRA: snmp[info]: NET-SNMP version 5.4.3 AgentX subagent connected

Then, you can use the following command to check everything works as expected:

snmpwalk -c public -v1 localhost .1.3.6.1.2.1.14.1.1
OSPF-MIB::ospfRouterId.0 = IpAddress: 192.168.42.109
[...]

The AgentX protocol can be transported over a Unix socket or using TCP or UDP.
It usually defaults to a Unix socket and depends on how NetSNMP was built. If
need to configure FRR to use another transport, you can configure it through
/etc/snmp/frr.conf:

[snmpd]
Use a remote master agent
agentXSocket tcp:192.168.15.12:705

SMUX configuration

To enable SMUX protocol support, FRR must have been build with the
--enable-snmp option.

A separate connection has then to be established between the SNMP agent (snmpd)
and each of the FRR daemons. This connections each use different OID numbers
and passwords. Be aware that this OID number is not the one that is used in
queries by clients, it is solely used for the intercommunication of the
daemons.

In the following example the ospfd daemon will be connected to the snmpd daemon
using the password “frr_ospfd”. For testing it is recommending to take exactly
the below snmpd.conf as wrong access restrictions can be hard to debug.

	/etc/snmp/snmpd.conf:

	#
example access restrictions setup
#
com2sec readonly default public
group MyROGroup v1 readonly
view all included .1 80
access MyROGroup “” any noauth exact all none none
#
the following line is relevant for FRR
#
smuxpeer .1.3.6.1.4.1.3317.1.2.5 frr_ospfd

	/etc/frr/ospf:

	! … the rest of ospfd.conf has been omitted for clarity …
!
smux peer .1.3.6.1.4.1.3317.1.2.5 frr_ospfd
!

After restarting snmpd and frr, a successful connection can be verified in the
syslog and by querying the SNMP daemon:

snmpd[12300]: [smux_accept] accepted fd 12 from 127.0.0.1:36255
snmpd[12300]: accepted smux peer: \\
 oid GNOME-PRODUCT-ZEBRA-MIB::ospfd, frr-0.96.5

snmpwalk -c public -v1 localhost .1.3.6.1.2.1.14.1.1
OSPF-MIB::ospfRouterId.0 = IpAddress: 192.168.42.109

Be warned that the current version (5.1.1) of the Net-SNMP daemon writes a line
for every SNMP connect to the syslog which can lead to enormous log file sizes.
If that is a problem you should consider to patch snmpd and comment out the
troublesome snmp_log() line in the function netsnmp_agent_check_packet() in
agent/snmp_agent.c.

MIB and command reference

The following OID numbers are used for the interprocess communication of snmpd and
the FRR daemons with SMUX only.:

. (OIDs below .iso.org.dod.internet.private.enterprises)
zebra .1.3.6.1.4.1.3317.1.2.1 .gnome.gnomeProducts.zebra.zserv
bgpd .1.3.6.1.4.1.3317.1.2.2 .gnome.gnomeProducts.zebra.bgpd
ripd .1.3.6.1.4.1.3317.1.2.3 .gnome.gnomeProducts.zebra.ripd
ospfd .1.3.6.1.4.1.3317.1.2.5 .gnome.gnomeProducts.zebra.ospfd
ospf6d .1.3.6.1.4.1.3317.1.2.6 .gnome.gnomeProducts.zebra.ospf6d

Sadly, SNMP has not been implemented in all daemons yet. The following
OID numbers are used for querying the SNMP daemon by a client::

zebra .1.3.6.1.2.1.4.24 .iso.org.dot.internet.mgmt.mib-2.ip.ipForward
ospfd .1.3.6.1.2.1.14 .iso.org.dot.internet.mgmt.mib-2.ospf
bgpd .1.3.6.1.2.1.15 .iso.org.dot.internet.mgmt.mib-2.bgp
ripd .1.3.6.1.2.1.23 .iso.org.dot.internet.mgmt.mib-2.rip2
ospf6d .1.3.6.1.3.102 .iso.org.dod.internet.experimental.ospfv3

The following syntax is understood by the FRR daemons for configuring SNMP
using SMUX:

	
smux peer OID

	

	
no smux peer OID

	

	
smux peer OID PASSWORD

	

	
no smux peer OID PASSWORD

	

Here is the syntax for using AgentX:

	
agentx

	

	
no agentx

	

Handling SNMP Traps

To handle snmp traps make sure your snmp setup of frr works correctly as
described in the frr documentation in SNMP Support.

The BGP4 mib will send traps on peer up/down events. These should be visible in
your snmp logs with a message similar to:

snmpd[13733]: Got trap from peer on fd 14

To react on these traps they should be handled by a trapsink. Configure your
trapsink by adding the following lines to /etc/snmpd/snmpd.conf:

send traps to the snmptrapd on localhost
trapsink localhost

This will send all traps to an snmptrapd running on localhost. You can of
course also use a dedicated management station to catch traps. Configure the
snmptrapd daemon by adding the following line to
/etc/snmpd/snmptrapd.conf:

traphandle .1.3.6.1.4.1.3317.1.2.2 /etc/snmp/snmptrap_handle.sh

This will use the bash script /etc/snmp/snmptrap_handle.sh to handle
the BGP4 traps. To add traps for other protocol daemons, lookup their
appropriate OID from their mib. (For additional information about which traps
are supported by your mib, lookup the mib on
http://www.oidview.com/mibs/detail.html).

Make sure snmptrapd is started.

The snmptrap_handle.sh script I personally use for handling BGP4 traps is
below. You can of course do all sorts of things when handling traps, like sound
a siren, have your display flash, etc., be creative ;).

#!/bin/bash

routers name
ROUTER=`hostname -s`

#email address use to sent out notification
EMAILADDR="john@doe.com"
#email address used (allongside above) where warnings should be sent
EMAILADDR_WARN="sms-john@doe.com"

type of notification
TYPE="Notice"

local snmp community for getting AS belonging to peer
COMMUNITY="<community>"

if a peer address is in $WARN_PEERS a warning should be sent
WARN_PEERS="192.0.2.1"

get stdin
INPUT=`cat -`

get some vars from stdin
uptime=`echo $INPUT | cut -d' ' -f5`
peer=`echo $INPUT | cut -d' ' -f8 | sed -e 's/SNMPv2-SMI::mib-2.15.3.1.14.//g'`
peerstate=`echo $INPUT | cut -d' ' -f13`
errorcode=`echo $INPUT | cut -d' ' -f9 | sed -e 's/\\"//g'`
suberrorcode=`echo $INPUT | cut -d' ' -f10 | sed -e 's/\\"//g'`
remoteas=`snmpget -v2c -c $COMMUNITY localhost SNMPv2-SMI::mib-2.15.3.1.9.$peer | cut -d' ' -f4`

WHOISINFO=`whois -h whois.ripe.net " -r AS$remoteas" | egrep '(as-name|descr)'`
asname=`echo "$WHOISINFO" | grep "^as-name:" | sed -e 's/^as-name://g' -e 's/ //g' -e 's/^ //g' | uniq`
asdescr=`echo "$WHOISINFO" | grep "^descr:" | sed -e 's/^descr://g' -e 's/ //g' -e 's/^ //g' | uniq`

if peer address is in $WARN_PEER, the email should also
be sent to $EMAILADDR_WARN
for ip in $WARN_PEERS; do
if ["x$ip" == "x$peer"]; then
EMAILADDR="$EMAILADDR,$EMAILADDR_WARN"
TYPE="WARNING"
break
fi
done

convert peer state
case "$peerstate" in
1) peerstate="Idle" ;;
2) peerstate="Connect" ;;
3) peerstate="Active" ;;
4) peerstate="Opensent" ;;
5) peerstate="Openconfirm" ;;
6) peerstate="Established" ;;
*) peerstate="Unknown" ;;
esac

get textual messages for errors
case "$errorcode" in
00)
error="No error"
suberror=""
;;
01)
error="Message Header Error"
case "$suberrorcode" in
01) suberror="Connection Not Synchronized" ;;
02) suberror="Bad Message Length" ;;
03) suberror="Bad Message Type" ;;
*) suberror="Unknown" ;;
esac
;;
02)
error="OPEN Message Error"
case "$suberrorcode" in
01) suberror="Unsupported Version Number" ;;
02) suberror="Bad Peer AS" ;;
03) suberror="Bad BGP Identifier" ;;
04) suberror="Unsupported Optional Parameter" ;;
05) suberror="Authentication Failure" ;;
06) suberror="Unacceptable Hold Time" ;;
*) suberror="Unknown" ;;
esac
;;
03)
error="UPDATE Message Error"
case "$suberrorcode" in
01) suberror="Malformed Attribute List" ;;
02) suberror="Unrecognized Well-known Attribute" ;;
03) suberror="Missing Well-known Attribute" ;;
04) suberror="Attribute Flags Error" ;;
05) suberror="Attribute Length Error" ;;
06) suberror="Invalid ORIGIN Attribute" ;;
07) suberror="AS Routing Loop" ;;
08) suberror="Invalid NEXT_HOP Attribute" ;;
09) suberror="Optional Attribute Error" ;;
10) suberror="Invalid Network Field" ;;
11) suberror="Malformed AS_PATH" ;;
*) suberror="Unknown" ;;
esac
;;
04)
error="Hold Timer Expired"
suberror=""
;;
05)
error="Finite State Machine Error"
suberror=""
;;
06)
error="Cease"
case "$suberrorcode" in
01) suberror="Maximum Number of Prefixes Reached" ;;
02) suberror="Administratively Shutdown" ;;
03) suberror="Peer Unconfigured" ;;
04) suberror="Administratively Reset" ;;
05) suberror="Connection Rejected" ;;
06) suberror="Other Configuration Change" ;;
07) suberror="Connection collision resolution" ;;
08) suberror="Out of Resource" ;;
09) suberror="MAX" ;;
*) suberror="Unknown" ;;
esac
;;
*)
error="Unknown"
suberror=""
;;
esac

create textual message from errorcodes
if ["x$suberror" == "x"]; then
NOTIFY="$errorcode ($error)"
else
NOTIFY="$errorcode/$suberrorcode ($error/$suberror)"
fi

form a decent subject
SUBJECT="$TYPE: $ROUTER [bgp] $peer is $peerstate: $NOTIFY"
create the email body
MAIL=`cat << EOF
BGP notification on router $ROUTER.

Peer: $peer
AS: $remoteas
New state: $peerstate
Notification: $NOTIFY

Info:
$asname
$asdescr

Snmpd uptime: $uptime
EOF`

mail the notification
echo "$MAIL" | mail -s "$SUBJECT" $EMAILADDR

Zebra

zebra is an IP routing manager. It provides kernel routing
table updates, interface lookups, and redistribution of routes between
different routing protocols.

Invoking zebra

Besides the common invocation options (Common Invocation Options), the
zebra specific invocation options are listed below.

	
-b, --batch

	Runs in batch mode. zebra parses configuration file and terminates
immediately.

	
-k, --keep_kernel

	When zebra starts up, don’t delete old self inserted routes.

	
-r, --retain

	When program terminates, retain routes added by zebra.

	
-e X, --ecmp X

	Run zebra with a limited ecmp ability compared to what it is compiled to.
If you are running zebra on hardware limited functionality you can
force zebra to limit the maximum ecmp allowed to X. This number
is bounded by what you compiled FRR with as the maximum number.

	
-n, --vrfwnetns

	When Zebra starts with this option, the VRF backend is based on Linux
network namespaces. That implies that all network namespaces discovered by
ZEBRA will create an associated VRF. The other daemons will operate on the
VRF defined by Zebra, as usual.

See also

VRF (Virtual Routing and Forwarding)

Configuration Addresses behaviour

At startup, Zebra will first discover the underlying networking objects
from the operating system. This includes interfaces, addresses of
interfaces, static routes, etc. Then, it will read the configuration
file, including its own interface addresses, static routes, etc. All this
information comprises the operational context from Zebra. But
configuration context from Zebra will remain the same as the one from
zebra.conf config file. As an example, executing the following
show running-config will reflect what was in zebra.conf.
In a similar way, networking objects that are configured outside of the
Zebra like iproute2 will not impact the configuration context from
Zebra. This behaviour permits you to continue saving your own config
file, and decide what is really to be pushed on the config file, and what
is dependent on the underlying system.
Note that inversely, from Zebra, you will not be able to delete networking
objects that were previously configured outside of Zebra.

Interface Commands

Standard Commands

	
interface IFNAME

	

	
interface IFNAME vrf VRF

	

	
shutdown

	

	
no shutdown

	Up or down the current interface.

	
ip address ADDRESS/PREFIX

	

	
ipv6 address ADDRESS/PREFIX

	

	
no ip address ADDRESS/PREFIX

	

	
no ipv6 address ADDRESS/PREFIX

	Set the IPv4 or IPv6 address/prefix for the interface.

	
ip address LOCAL-ADDR peer PEER-ADDR/PREFIX

	

	
no ip address LOCAL-ADDR peer PEER-ADDR/PREFIX

	Configure an IPv4 Point-to-Point address on the interface. (The concept of
PtP addressing does not exist for IPv6.)

local-addr has no subnet mask since the local side in PtP addressing is
always a single (/32) address. peer-addr/prefix can be an arbitrary subnet
behind the other end of the link (or even on the link in Point-to-Multipoint
setups), though generally /32s are used.

	
ip address ADDRESS/PREFIX secondary

	

	
no ip address ADDRESS/PREFIX secondary

	Set the secondary flag for this address. This causes ospfd to not treat the
address as a distinct subnet.

	
description DESCRIPTION ...

	Set description for the interface.

	
multicast

	

	
no multicast

	Enable or disables multicast flag for the interface.

	
bandwidth (1-10000000)

	

	
no bandwidth (1-10000000)

	Set bandwidth value of the interface in kilobits/sec. This is for
calculating OSPF cost. This command does not affect the actual device
configuration.

	
link-detect

	

	
no link-detect

	Enable/disable link-detect on platforms which support this. Currently only
Linux and Solaris, and only where network interface drivers support
reporting link-state via the IFF_RUNNING flag.

Link Parameters Commands

	
link-params

	

	
no link-param

	Enter into the link parameters sub node. At least ‘enable’ must be set to
activate the link parameters, and consequently Traffic Engineering on this
interface. MPLS-TE must be enable at the OSPF
(Traffic Engineering) or ISIS (Traffic Engineering)
router level in complement to this. Disable link parameters for this
interface.

Under link parameter statement, the following commands set the different TE values:

	
link-params [enable]

	Enable link parameters for this interface.

	
link-params [metric (0-4294967295)]

	

	
link-params max-bw BANDWIDTH

	

	
link-params max-rsv-bw BANDWIDTH

	

	
link-params unrsv-bw (0-7) BANDWIDTH

	

	
link-params admin-grp BANDWIDTH

	These commands specifies the Traffic Engineering parameters of the interface
in conformity to RFC3630 (OSPF) or RFC5305 (ISIS). There are respectively
the TE Metric (different from the OSPF or ISIS metric), Maximum Bandwidth
(interface speed by default), Maximum Reservable Bandwidth, Unreserved
Bandwidth for each 0-7 priority and Admin Group (ISIS) or Resource
Class/Color (OSPF).

Note that BANDIWDTH is specified in IEEE floating point format and express
in Bytes/second.

	
link-param delay (0-16777215) [min (0-16777215) | max (0-16777215)]

	

	
link-param delay-variation (0-16777215)

	

	
link-param packet-loss PERCENTAGE

	

	
link-param res-bw BANDWIDTH

	

	
link-param ava-bw BANDWIDTH

	

	
link-param use-bw BANDWIDTH

	These command specifies additional Traffic Engineering parameters of the
interface in conformity to draft-ietf-ospf-te-metrics-extension-05.txt and
draft-ietf-isis-te-metrics-extension-03.txt. There are respectively the
delay, jitter, loss, available bandwidth, reservable bandwidth and utilized
bandwidth.

Note that BANDWIDTH is specified in IEEE floating point format and express
in Bytes/second. Delays and delay variation are express in micro-second
(µs). Loss is specified in PERCENTAGE ranging from 0 to 50.331642% by step
of 0.000003.

	
link-param neighbor <A.B.C.D> as (0-65535)

	

	
link-param no neighbor

	Specifies the remote ASBR IP address and Autonomous System (AS) number
for InterASv2 link in OSPF (RFC5392). Note that this option is not yet
supported for ISIS (RFC5316).

Static Route Commands

Static routing is a very fundamental feature of routing technology. It
defines static prefix and gateway.

	
ip route NETWORK GATEWAY

	NETWORK is destination prefix with format of A.B.C.D/M. GATEWAY is gateway
for the prefix. When GATEWAY is A.B.C.D format. It is taken as a IPv4
address gateway. Otherwise it is treated as an interface name. If the
interface name is null0 then zebra installs a blackhole route.

Some example configuration:

ip route 10.0.0.0/8 10.0.0.2
ip route 10.0.0.0/8 ppp0
ip route 10.0.0.0/8 null0

First example defines 10.0.0.0/8 static route with gateway 10.0.0.2.
Second one defines the same prefix but with gateway to interface ppp0. The
third install a blackhole route.

	
ip route NETWORK NETMASK GATEWAY

	This is alternate version of above command. When NETWORK is
A.B.C.D format, user must define NETMASK value with A.B.C.D
format. GATEWAY is same option as above command.

ip route 10.0.0.0 255.255.255.0 10.0.0.2
ip route 10.0.0.0 255.255.255.0 ppp0
ip route 10.0.0.0 255.255.255.0 null0

These statements are equivalent to those in the previous example.

	
ip route NETWORK GATEWAY DISTANCE

	Installs the route with the specified distance.

Multiple nexthop static route:

ip route 10.0.0.1/32 10.0.0.2
ip route 10.0.0.1/32 10.0.0.3
ip route 10.0.0.1/32 eth0

If there is no route to 10.0.0.2 and 10.0.0.3, and interface eth0
is reachable, then the last route is installed into the kernel.

If zebra has been compiled with multipath support, and both 10.0.0.2 and
10.0.0.3 are reachable, zebra will install a multipath route via both
nexthops, if the platform supports this.

zebra> show ip route
S> 10.0.0.1/32 [1/0] via 10.0.0.2 inactive
 via 10.0.0.3 inactive
 * is directly connected, eth0

ip route 10.0.0.0/8 10.0.0.2
ip route 10.0.0.0/8 10.0.0.3
ip route 10.0.0.0/8 null0 255

This will install a multihop route via the specified next-hops if they are
reachable, as well as a high-metric blackhole route, which can be useful to
prevent traffic destined for a prefix to match less-specific routes (e.g.
default) should the specified gateways not be reachable. E.g.:

zebra> show ip route 10.0.0.0/8
Routing entry for 10.0.0.0/8
 Known via "static", distance 1, metric 0
 10.0.0.2 inactive
 10.0.0.3 inactive

Routing entry for 10.0.0.0/8
 Known via "static", distance 255, metric 0
 directly connected, Null0

	
ipv6 route NETWORK GATEWAY

	

	
ipv6 route NETWORK GATEWAY DISTANCE

	These behave similarly to their ipv4 counterparts.

	
ipv6 route NETWORK from SRCPREFIX GATEWAY

	

	
ipv6 route NETWORK from SRCPREFIX GATEWAY DISTANCE

	Install a static source-specific route. These routes are currently supported
on Linux operating systems only, and perform AND matching on packet’s
destination and source addresses in the kernel’s forwarding path. Note that
destination longest-prefix match is “more important” than source LPM, e.g.
“2001:db8:1::/64 from 2001:db8::/48” will win over
“2001:db8::/48 from 2001:db8:1::/64” if both match.

	
table TABLENO

	Select the primary kernel routing table to be used. This only works
for kernels supporting multiple routing tables (like GNU/Linux 2.2.x
and later). After setting TABLENO with this command,
static routes defined after this are added to the specified table.

VRF (Virtual Routing and Forwarding)

Currently, the user has the possibility to configure VRFs. VRF is a way to
separate networking contexts on the same machine. Those networking contexts
are associated with separate interfaces, thus making it possible to associate
one interface with a specific VRF.
VRF can be used, for example, when instantiating per enterprise networking
services, without having to instantiate the physical host machine or the routing
management daemons for each enterprise. As a result, interfaces are separate for
each set of VRF, and routing daemons can have their own context for each VRF.

This conceptual view introduces the Default VRF case. If the user does not
configure any specific VRF, then by default, the user will however configure the
Default VRF.
On the Zebra context, this can be done when being in configuration mode, when
configuring a static route clicmd:ip route NETWORK GATEWAY.

case without VRF
configure terminal
 ip route 10.0.0.0 255.255.255.0 10.0.0.2
exit

Configuring VRF networking contexts can be done in various ways on FRR. The VRF
interfaces can be configured by entering in interface configuration mode :
interface IFNAME vrf VRF. Also, if the user wants to configure a static
route for a specific VRF, then a specific VRF configuration mode is available. After
entering into that mode by following command: vrf VRF. the user can enter
the same route command as before, but this time, the route command will apply to vrf
VRF.

case with VRF
configure terminal
vrf r1-cust1
 ip route 10.0.0.0 255.255.255.0 10.0.0.2
exit-vrf

A VRF backend mode is chosen when running Zebra.

If no option is chosen, then the Linux VRF implementation as references in
https://www.kernel.org/doc/Documentation/networking/vrf.txt will be mapped over
the Zebra VRF. The routing table associated to that VRF is a Linux table
identifier located in the same Linux network namespace where Zebra started.

If the -n option is chosen, then the Linux network namespace will be
mapped over the Zebra VRF. That implies that Zebra is able to configure several
Linux network namespaces. The routing table associated to that VRF is the whole
routing tables located in that namespace. For instance, this mode matches OpenStack
Network Namespaces. It matches also OpenFastPath. The default behavior remains Linux
VRF which is supported by the Linux kernel community, see
https://www.kernel.org/doc/Documentation/networking/vrf.txt.

Because of that difference, there are some subtle differences when running some
commands in relationship to VRF. Here is an extract of some of those commands:

	
vrf VRF

	This command is available on configuration mode. By default, above command
permits accessing the vrf configuration mode. This mode is available for
both VRFs. It is to be noted that Zebra does not create Linux VRF.
The network administrator can however decide to provision this command in
configuration file to provide more clarity about the intended configuration.

	
netns NAMESPACE

	This command is based on VRF configuration mode. This command is available
when Zebra is run in -n mode. This command reflects which Linux
network namespace is to be mapped with Zebra VRF. It is to be noted that
Zebra creates and detects added/suppressed VRFs from the Linux environment
(in fact, those managed with iproute2). The network administrator can however
decide to provision this command in configuration file to provide more clarity
about the intended configuration.

	
ip route NETWORK NETMASK GATEWAY NEXTHOPVRF

	This command is based on VRF configuration mode or in configuration mode. If
on configuration mode, this applies to default VRF. Otherwise, this command
applies to the VRF of the vrf configuration mode. This command is used to
configure a vrf route leak across 2 VRFs. This command is only available when
Zebra is launched without -n option.

	
ip route NETWORK NETMASK GATEWAY table TABLENO

	This command is based on VRF configuration mode. There, this command is only
available with -n command. This commands permits configuring a network
route in the given TABLENO of the Linux network namespace.

	
ip route NETWORK NETMASK GATEWAY table TABLENO

	This command is based on configuration mode. There, for default VRF, this command
is available for all modes. The TABLENO configured is one of the tables from
Default Linux network namespace.

	
show ip route vrf VRF

	The show command permits dumping the routing table associated to the VRF. If
Zebra is launched with default settings, this will be the TABLENO of the
VRF configured on the kernel, thanks to information provided in
https://www.kernel.org/doc/Documentation/networking/vrf.txt.
If Zebra is launched with -n option, this will be the default routing
table of the Linux network namespace VRF.

	
show ip route vrf VRF table TABLENO

	The show command is only available with -n option.
This command will dump the routing table TABLENO of the Linux network
namespace VRF.

ip route 10.0.0.0 255.255.255.0 10.0.0.2 vrf r1-cust1 table 43
show ip table vrf r1-cust1 table 43

Multicast RIB Commands

The Multicast RIB provides a separate table of unicast destinations which
is used for Multicast Reverse Path Forwarding decisions. It is used with
a multicast source’s IP address, hence contains not multicast group
addresses but unicast addresses.

This table is fully separate from the default unicast table. However,
RPF lookup can include the unicast table.

WARNING: RPF lookup results are non-responsive in this version of FRR,
i.e. multicast routing does not actively react to changes in underlying
unicast topology!

	
ip multicast rpf-lookup-mode MODE

	

	
no ip multicast rpf-lookup-mode [MODE]

	MODE sets the method used to perform RPF lookups. Supported modes:

	urib-only

	Performs the lookup on the Unicast RIB. The Multicast RIB is never used.

	mrib-only

	Performs the lookup on the Multicast RIB. The Unicast RIB is never used.

	mrib-then-urib

	Tries to perform the lookup on the Multicast RIB. If any route is found,
that route is used. Otherwise, the Unicast RIB is tried.

	lower-distance

	Performs a lookup on the Multicast RIB and Unicast RIB each. The result
with the lower administrative distance is used; if they’re equal, the
Multicast RIB takes precedence.

	longer-prefix

	Performs a lookup on the Multicast RIB and Unicast RIB each. The result
with the longer prefix length is used; if they’re equal, the
Multicast RIB takes precedence.

The mrib-then-urib setting is the default behavior if nothing is
configured. If this is the desired behavior, it should be explicitly
configured to make the configuration immune against possible changes in
what the default behavior is.

Warning

Unreachable routes do not receive special treatment and do not cause
fallback to a second lookup.

	
show ip rpf ADDR

	Performs a Multicast RPF lookup, as configured with ip multicast
rpf-lookup-mode MODE. ADDR specifies the multicast source address to look
up.

> show ip rpf 192.0.2.1
Routing entry for 192.0.2.0/24 using Unicast RIB

Known via "kernel", distance 0, metric 0, best
* 198.51.100.1, via eth0

Indicates that a multicast source lookup for 192.0.2.1 would use an
Unicast RIB entry for 192.0.2.0/24 with a gateway of 198.51.100.1.

	
show ip rpf

	Prints the entire Multicast RIB. Note that this is independent of the
configured RPF lookup mode, the Multicast RIB may be printed yet not
used at all.

	
ip mroute PREFIX NEXTHOP [DISTANCE]

	

	
no ip mroute PREFIX NEXTHOP [DISTANCE]

	Adds a static route entry to the Multicast RIB. This performs exactly as the
ip route command, except that it inserts the route in the Multicast RIB
instead of the Unicast RIB.

zebra Route Filtering

Zebra supports prefix-list s and Route Maps s to match routes
received from other FRR components. The permit/deny facilities provided by
these commands can be used to filter which routes zebra will install in the
kernel.

	
ip protocol PROTOCOL route-map ROUTEMAP

	Apply a route-map filter to routes for the specified protocol. PROTOCOL can
be any or one of

	system,

	kernel,

	connected,

	static,

	rip,

	ripng,

	ospf,

	ospf6,

	isis,

	bgp,

	hsls.

	
set src ADDRESS

	Within a route-map, set the preferred source address for matching routes
when installing in the kernel.

The following creates a prefix-list that matches all addresses, a route-map
that sets the preferred source address, and applies the route-map to all
rip routes.

ip prefix-list ANY permit 0.0.0.0/0 le 32
route-map RM1 permit 10
 match ip address prefix-list ANY
 set src 10.0.0.1

ip protocol rip route-map RM1

zebra FIB push interface

Zebra supports a ‘FIB push’ interface that allows an external
component to learn the forwarding information computed by the FRR
routing suite. This is a loadable module that needs to be enabled
at startup as described in Loadable Module Support.

In FRR, the Routing Information Base (RIB) resides inside
zebra. Routing protocols communicate their best routes to zebra, and
zebra computes the best route across protocols for each prefix. This
latter information makes up the Forwarding Information Base
(FIB). Zebra feeds the FIB to the kernel, which allows the IP stack in
the kernel to forward packets according to the routes computed by
FRR. The kernel FIB is updated in an OS-specific way. For example,
the Netlink interface is used on Linux, and route sockets are
used on FreeBSD.

The FIB push interface aims to provide a cross-platform mechanism to
support scenarios where the router has a forwarding path that is
distinct from the kernel, commonly a hardware-based fast path. In
these cases, the FIB needs to be maintained reliably in the fast path
as well. We refer to the component that programs the forwarding plane
(directly or indirectly) as the Forwarding Plane Manager or FPM.

The FIB push interface comprises of a TCP connection between zebra and
the FPM. The connection is initiated by zebra – that is, the FPM acts
as the TCP server.

The relevant zebra code kicks in when zebra is configured with the
--enable-fpm flag. Zebra periodically attempts to connect to
the well-known FPM port. Once the connection is up, zebra starts
sending messages containing routes over the socket to the FPM. Zebra
sends a complete copy of the forwarding table to the FPM, including
routes that it may have picked up from the kernel. The existing
interaction of zebra with the kernel remains unchanged – that is, the
kernel continues to receive FIB updates as before.

The encapsulation header for the messages exchanged with the FPM is
defined by the file fpm/fpm.h in the frr tree. The routes
themselves are encoded in Netlink or protobuf format, with Netlink
being the default.

Protobuf is one of a number of new serialization formats wherein the
message schema is expressed in a purpose-built language. Code for
encoding/decoding to/from the wire format is generated from the
schema. Protobuf messages can be extended easily while maintaining
backward-compatibility with older code. Protobuf has the following
advantages over Netlink:

	Code for serialization/deserialization is generated automatically. This
reduces the likelihood of bugs, allows third-party programs to be integrated
quickly, and makes it easy to add fields.

	The message format is not tied to an OS (Linux), and can be evolved
independently.

As mentioned before, zebra encodes routes sent to the FPM in Netlink
format by default. The format can be controlled via the FPM module’s
load-time option to zebra, which currently takes the values Netlink
and protobuf.

The zebra FPM interface uses replace semantics. That is, if a ‘route
add’ message for a prefix is followed by another ‘route add’ message,
the information in the second message is complete by itself, and
replaces the information sent in the first message.

If the connection to the FPM goes down for some reason, zebra sends
the FPM a complete copy of the forwarding table(s) when it reconnects.

zebra Terminal Mode Commands

	
show ip route

	Display current routes which zebra holds in its database.

Router# show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP,
 B - BGP * - FIB route.

K* 0.0.0.0/0 203.181.89.241
S 0.0.0.0/0 203.181.89.1
C* 127.0.0.0/8 lo
C* 203.181.89.240/28 eth0

	
show ipv6 route

	

	
show interface

	

	
show ip prefix-list [NAME]

	

	
show route-map [NAME]

	

	
show ip protocol

	

	
show ipforward

	Display whether the host’s IP forwarding function is enabled or not.
Almost any UNIX kernel can be configured with IP forwarding disabled.
If so, the box can’t work as a router.

	
show ipv6forward

	Display whether the host’s IP v6 forwarding is enabled or not.

	
show zebra

	Display various statistics related to the installation and deletion
of routes, neighbor updates, and LSP’s into the kernel.

	
show zebra fpm stats

	Display statistics related to the zebra code that interacts with the
optional Forwarding Plane Manager (FPM) component.

	
clear zebra fpm stats

	Reset statistics related to the zebra code that interacts with the
optional Forwarding Plane Manager (FPM) component.

BGP

BGP stands for a Border Gateway Protocol. The latest BGP version is 4.
BGP-4 is one of the Exterior Gateway Protocols and the de facto standard
interdomain routing protocol. BGP-4 is described in RFC 1771 [https://tools.ietf.org/html/rfc1771.html].

Many extensions have been added to RFC 1771 [https://tools.ietf.org/html/rfc1771.html]. RFC 2858 [https://tools.ietf.org/html/rfc2858.html] adds multiprotocol
support to BGP-4.

Starting BGP

Default configuration file of bgpd is bgpd.conf. bgpd searches the
current directory first then /etc/frr/bgpd.conf. All of bgpd’s
command must be configured in bgpd.conf.

bgpd specific invocation options are described below. Common options may also
be specified (Common Invocation Options).

	
-p, --bgp_port <port>

	Set the bgp protocol’s port number. When port number is 0, that means do not
listen bgp port.

	
-r, --retain

	When program terminates, retain BGP routes added by zebra.

	
-l, --listenon

	Specify a specific IP address for bgpd to listen on, rather than its
default of INADDR_ANY / IN6ADDR_ANY. This can be useful to constrain bgpd
to an internal address, or to run multiple bgpd processes on one host.

BGP router

First of all you must configure BGP router with router bgp command. To
configure BGP router, you need AS number. AS number is an identification of
autonomous system. BGP protocol uses the AS number for detecting whether the
BGP connection is internal one or external one.

	
router bgp ASN

	Enable a BGP protocol process with the specified ASN. After
this statement you can input any BGP Commands. You can not
create different BGP process under different ASN without
specifying multiple-instance (Multiple instance).

	
no router bgp ASN

	Destroy a BGP protocol process with the specified ASN.

	
bgp router-id A.B.C.D

	This command specifies the router-ID. If bgpd connects to zebra it gets
interface and address information. In that case default router ID value is
selected as the largest IP Address of the interfaces. When router zebra is
not enabled bgpd can’t get interface information so router-id is set to
0.0.0.0. So please set router-id by hand.

BGP distance

	
distance bgp (1-255) (1-255) (1-255)

	This command change distance value of BGP. Each argument is distance value
for external routes, internal routes and local routes.

	
distance (1-255) A.B.C.D/M

	

	
distance (1-255) A.B.C.D/M word

	

BGP decision process

The decision process FRR BGP uses to select routes is as follows:

	Weight check
Prefer higher local weight routes to lower routes.

	Local preference check
Prefer higher local preference routes to lower.

	Local route check
Prefer local routes (statics, aggregates, redistributed) to received routes.

	AS path length check
Prefer shortest hop-count AS_PATHs.

	Origin check
Prefer the lowest origin type route. That is, prefer IGP origin routes to
EGP, to Incomplete routes.

	MED check
Where routes with a MED were received from the same AS, prefer the route
with the lowest MED. BGP MED.

	External check
Prefer the route received from an external, eBGP peer over routes received
from other types of peers.

	IGP cost check
Prefer the route with the lower IGP cost.

	Multi-path check
If multi-pathing is enabled, then check whether the routes not yet
distinguished in preference may be considered equal. If
bgp bestpath as-path multipath-relax is set, all such routes are
considered equal, otherwise routes received via iBGP with identical AS_PATHs
or routes received from eBGP neighbours in the same AS are considered equal.

	Already-selected external check
Where both routes were received from eBGP peers, then prefer the route
which is already selected. Note that this check is not applied if
bgp bestpath compare-routerid is configured. This check can
prevent some cases of oscillation.

	Router-ID check
Prefer the route with the lowest router-ID. If the route has an
ORIGINATOR_ID attribute, through iBGP reflection, then that router ID is
used, otherwise the router-ID of the peer the route was received from is
used.

	Cluster-List length check
The route with the shortest cluster-list length is used. The cluster-list
reflects the iBGP reflection path the route has taken.

	Peer address
Prefer the route received from the peer with the higher transport layer
address, as a last-resort tie-breaker.

	
bgp bestpath as-path confed

	This command specifies that the length of confederation path sets and
sequences should should be taken into account during the BGP best path
decision process.

	
bgp bestpath as-path multipath-relax

	This command specifies that BGP decision process should consider paths
of equal AS_PATH length candidates for multipath computation. Without
the knob, the entire AS_PATH must match for multipath computation.

	
bgp bestpath compare-routerid

	Ensure that when comparing routes where both are equal on most metrics,
including local-pref, AS_PATH length, IGP cost, MED, that the tie is broken
based on router-ID.

If this option is enabled, then the already-selected check, where
already selected eBGP routes are preferred, is skipped.

If a route has an ORIGINATOR_ID attribute because it has been reflected,
that ORIGINATOR_ID will be used. Otherwise, the router-ID of the peer the
route was received from will be used.

The advantage of this is that the route-selection (at this point) will be
more deterministic. The disadvantage is that a few or even one lowest-ID
router may attract all traffic to otherwise-equal paths because of this
check. It may increase the possibility of MED or IGP oscillation, unless
other measures were taken to avoid these. The exact behaviour will be
sensitive to the iBGP and reflection topology.

BGP route flap dampening

	
bgp dampening (1-45) (1-20000) (1-20000) (1-255)

	This command enables BGP route-flap dampening and specifies dampening parameters.

	half-life

	Half-life time for the penalty

	reuse-threshold

	Value to start reusing a route

	suppress-threshold

	Value to start suppressing a route

	max-suppress

	Maximum duration to suppress a stable route

The route-flap damping algorithm is compatible with RFC 2439 [https://tools.ietf.org/html/rfc2439.html]. The use of
this command is not recommended nowadays.

See also

http://www.ripe.net/ripe/docs/ripe-378,,RIPE-378

BGP MED

The BGP MED attribute has properties which
can cause subtle convergence problems in BGP. These properties and problems
have proven to be hard to understand, at least historically, and may still not
be widely understood. The following attempts to collect together and present
what is known about MED, to help operators and FRR users in designing and
configuring their networks.

The BGP MED attribute is intended to allow one AS to indicate its
preferences for its ingress points to another AS. The MED attribute will not be
propagated on to another AS by the receiving AS - it is ‘non-transitive’ in the
BGP sense.

E.g., if AS X and AS Y have 2 different BGP peering points, then AS X might set
a MED of 100 on routes advertised at one and a MED of 200 at the other. When AS
Y selects between otherwise equal routes to or via AS X, AS Y should prefer to
take the path via the lower MED peering of 100 with AS X. Setting the MED
allows an AS to influence the routing taken to it within another, neighbouring
AS.

In this use of MED it is not really meaningful to compare the MED value on
routes where the next AS on the paths differs. E.g., if AS Y also had a route
for some destination via AS Z in addition to the routes from AS X, and AS Z had
also set a MED, it wouldn’t make sense for AS Y to compare AS Z’s MED values to
those of AS X. The MED values have been set by different administrators, with
different frames of reference.

The default behaviour of BGP therefore is to not compare MED values across
routes received from different neighbouring ASes. In FRR this is done by
comparing the neighbouring, left-most AS in the received AS_PATHs of the routes
and only comparing MED if those are the same.

Unfortunately, this behaviour of MED, of sometimes being compared across routes
and sometimes not, depending on the properties of those other routes, means MED
can cause the order of preference over all the routes to be undefined. That is,
given routes A, B, and C, if A is preferred to B, and B is preferred to C, then
a well-defined order should mean the preference is transitive (in the sense of
orders 1) and that A would be preferred to C.

However, when MED is involved this need not be the case. With MED it is
possible that C is actually preferred over A. So A is preferred to B, B is
preferred to C, but C is preferred to A. This can be true even where BGP
defines a deterministic ‘most preferred’ route out of the full set of A,B,C.
With MED, for any given set of routes there may be a deterministically
preferred route, but there need not be any way to arrange them into any order
of preference. With unmodified MED, the order of preference of routes literally
becomes undefined.

That MED can induce non-transitive preferences over routes can cause issues.
Firstly, it may be perceived to cause routing table churn locally at speakers;
secondly, and more seriously, it may cause routing instability in iBGP
topologies, where sets of speakers continually oscillate between different
paths.

The first issue arises from how speakers often implement routing decisions.
Though BGP defines a selection process that will deterministically select the
same route as best at any given speaker, even with MED, that process requires
evaluating all routes together. For performance and ease of implementation
reasons, many implementations evaluate route preferences in a pair-wise fashion
instead. Given there is no well-defined order when MED is involved, the best
route that will be chosen becomes subject to implementation details, such as
the order the routes are stored in. That may be (locally) non-deterministic,
e.g.: it may be the order the routes were received in.

This indeterminism may be considered undesirable, though it need not cause
problems. It may mean additional routing churn is perceived, as sometimes more
updates may be produced than at other times in reaction to some event .

This first issue can be fixed with a more deterministic route selection that
ensures routes are ordered by the neighbouring AS during selection.
bgp deterministic-med. This may reduce the number of updates as routes
are received, and may in some cases reduce routing churn. Though, it could
equally deterministically produce the largest possible set of updates in
response to the most common sequence of received updates.

A deterministic order of evaluation tends to imply an additional overhead of
sorting over any set of n routes to a destination. The implementation of
deterministic MED in FRR scales significantly worse than most sorting
algorithms at present, with the number of paths to a given destination. That
number is often low enough to not cause any issues, but where there are many
paths, the deterministic comparison may quickly become increasingly expensive
in terms of CPU.

Deterministic local evaluation can not fix the second, more major, issue of
MED however. Which is that the non-transitive preference of routes MED can
cause may lead to routing instability or oscillation across multiple speakers
in iBGP topologies. This can occur with full-mesh iBGP, but is particularly
problematic in non-full-mesh iBGP topologies that further reduce the routing
information known to each speaker. This has primarily been documented with iBGP
route-reflection topologies. However, any route-hiding technologies potentially
could also exacerbate oscillation with MED.

This second issue occurs where speakers each have only a subset of routes, and
there are cycles in the preferences between different combinations of routes -
as the undefined order of preference of MED allows - and the routes are
distributed in a way that causes the BGP speakers to ‘chase’ those cycles. This
can occur even if all speakers use a deterministic order of evaluation in route
selection.

E.g., speaker 4 in AS A might receive a route from speaker 2 in AS X, and from
speaker 3 in AS Y; while speaker 5 in AS A might receive that route from
speaker 1 in AS Y. AS Y might set a MED of 200 at speaker 1, and 100 at speaker
3. I.e, using ASN:ID:MED to label the speakers:

.
 /---------------\\
X:2------|--A:4-------A:5--|-Y:1:200
 Y:3:100--|-/ |
 \\---------------/

Assuming all other metrics are equal (AS_PATH, ORIGIN, 0 IGP costs), then based
on the RFC4271 decision process speaker 4 will choose X:2 over Y:3:100, based
on the lower ID of 2. Speaker 4 advertises X:2 to speaker 5. Speaker 5 will
continue to prefer Y:1:200 based on the ID, and advertise this to speaker 4.
Speaker 4 will now have the full set of routes, and the Y:1:200 it receives
from 5 will beat X:2, but when speaker 4 compares Y:1:200 to Y:3:100 the MED
check now becomes active as the ASes match, and now Y:3:100 is preferred.
Speaker 4 therefore now advertises Y:3:100 to 5, which will also agrees that
Y:3:100 is preferred to Y:1:200, and so withdraws the latter route from 4.
Speaker 4 now has only X:2 and Y:3:100, and X:2 beats Y:3:100, and so speaker 4
implicitly updates its route to speaker 5 to X:2. Speaker 5 sees that Y:1:200
beats X:2 based on the ID, and advertises Y:1:200 to speaker 4, and the cycle
continues.

The root cause is the lack of a clear order of preference caused by how MED
sometimes is and sometimes is not compared, leading to this cycle in the
preferences between the routes:

.
 /---> X:2 ---beats---> Y:3:100 --\\
| |
| |
 \\---beats--- Y:1:200 <---beats---/

This particular type of oscillation in full-mesh iBGP topologies can be
avoided by speakers preferring already selected, external routes rather than
choosing to update to new a route based on a post-MED metric (e.g. router-ID),
at the cost of a non-deterministic selection process. FRR implements this, as
do many other implementations, so long as it is not overridden by setting
bgp bestpath compare-routerid, and see also
BGP decision process.

However, more complex and insidious cycles of oscillation are possible with
iBGP route-reflection, which are not so easily avoided. These have been
documented in various places. See, e.g.:

	[bgp-route-osci-cond]

	[stable-flexible-ibgp]

	[ibgp-correctness]

for concrete examples and further references.

There is as of this writing no known way to use MED for its original purpose;
and reduce routing information in iBGP topologies; and be sure to avoid the
instability problems of MED due the non-transitive routing preferences it can
induce; in general on arbitrary networks.

There may be iBGP topology specific ways to reduce the instability risks, even
while using MED, e.g.: by constraining the reflection topology and by tuning
IGP costs between route-reflector clusters, see RFC 3345 [https://tools.ietf.org/html/rfc3345.html] for details. In the
near future, the Add-Path extension to BGP may also solve MED oscillation while
still allowing MED to be used as intended, by distributing “best-paths per
neighbour AS”. This would be at the cost of distributing at least as many
routes to all speakers as a full-mesh iBGP would, if not more, while also
imposing similar CPU overheads as the “Deterministic MED” feature at each
Add-Path reflector.

More generally, the instability problems that MED can introduce on more
complex, non-full-mesh, iBGP topologies may be avoided either by:

	Setting bgp always-compare-med, however this allows MED to be compared
across values set by different neighbour ASes, which may not produce
coherent desirable results, of itself.

	Effectively ignoring MED by setting MED to the same value (e.g.: 0) using
set metric METRIC on all received routes, in combination with
setting bgp always-compare-med on all speakers. This is the simplest
and most performant way to avoid MED oscillation issues, where an AS is happy
not to allow neighbours to inject this problematic metric.

As MED is evaluated after the AS_PATH length check, another possible use for
MED is for intra-AS steering of routes with equal AS_PATH length, as an
extension of the last case above. As MED is evaluated before IGP metric, this
can allow cold-potato routing to be implemented to send traffic to preferred
hand-offs with neighbours, rather than the closest hand-off according to the
IGP metric.

Note that even if action is taken to address the MED non-transitivity issues,
other oscillations may still be possible. E.g., on IGP cost if iBGP and IGP
topologies are at cross-purposes with each other - see the Flavel and Roughan
paper above for an example. Hence the guideline that the iBGP topology should
follow the IGP topology.

	
bgp deterministic-med

	Carry out route-selection in way that produces deterministic answers
locally, even in the face of MED and the lack of a well-defined order of
preference it can induce on routes. Without this option the preferred route
with MED may be determined largely by the order that routes were received
in.

Setting this option will have a performance cost that may be noticeable when
there are many routes for each destination. Currently in FRR it is
implemented in a way that scales poorly as the number of routes per
destination increases.

The default is that this option is not set.

Note that there are other sources of indeterminism in the route selection
process, specifically, the preference for older and already selected routes
from eBGP peers, BGP decision process.

	
bgp always-compare-med

	Always compare the MED on routes, even when they were received from
different neighbouring ASes. Setting this option makes the order of
preference of routes more defined, and should eliminate MED induced
oscillations.

If using this option, it may also be desirable to use
set metric METRIC to set MED to 0 on routes received from external
neighbours.

This option can be used, together with set metric METRIC to use
MED as an intra-AS metric to steer equal-length AS_PATH routes to, e.g.,
desired exit points.

BGP network

BGP route

	
network A.B.C.D/M

	This command adds the announcement network.

router bgp 1
 address-family ipv4 unicast
 network 10.0.0.0/8
 exit-address-family

This configuration example says that network 10.0.0.0/8 will be
announced to all neighbors. Some vendors’ routers don’t advertise
routes if they aren’t present in their IGP routing tables; bgpd
doesn’t care about IGP routes when announcing its routes.

	
no network A.B.C.D/M

	

Route Aggregation

	
aggregate-address A.B.C.D/M

	This command specifies an aggregate address.

	
aggregate-address A.B.C.D/M as-set

	This command specifies an aggregate address. Resulting routes include
AS set.

	
aggregate-address A.B.C.D/M summary-only

	This command specifies an aggregate address. Aggregated routes will
not be announce.

	
no aggregate-address A.B.C.D/M

	

Redistribute to BGP

	
redistribute kernel

	Redistribute kernel route to BGP process.

	
redistribute static

	Redistribute static route to BGP process.

	
redistribute connected

	Redistribute connected route to BGP process.

	
redistribute rip

	Redistribute RIP route to BGP process.

	
redistribute ospf

	Redistribute OSPF route to BGP process.

	
redistribute vpn

	Redistribute VNC routes to BGP process.

	
update-delay MAX-DELAY

	

	
update-delay MAX-DELAY ESTABLISH-WAIT

	This feature is used to enable read-only mode on BGP process restart or when
BGP process is cleared using ‘clear ip bgp *’. When applicable, read-only
mode would begin as soon as the first peer reaches Established status and a
timer for max-delay seconds is started.

During this mode BGP doesn’t run any best-path or generate any updates to its
peers. This mode continues until:

	All the configured peers, except the shutdown peers, have sent explicit EOR
(End-Of-RIB) or an implicit-EOR. The first keep-alive after BGP has reached
Established is considered an implicit-EOR.
If the establish-wait optional value is given, then BGP will wait for
peers to reach established from the beginning of the update-delay till the
establish-wait period is over, i.e. the minimum set of established peers for
which EOR is expected would be peers established during the establish-wait
window, not necessarily all the configured neighbors.

	max-delay period is over.

On hitting any of the above two conditions, BGP resumes the decision process
and generates updates to its peers.

Default max-delay is 0, i.e. the feature is off by default.

	
table-map ROUTE-MAP-NAME

	This feature is used to apply a route-map on route updates from BGP to
Zebra. All the applicable match operations are allowed, such as match on
prefix, next-hop, communities, etc. Set operations for this attach-point are
limited to metric and next-hop only. Any operation of this feature does not
affect BGPs internal RIB.

Supported for ipv4 and ipv6 address families. It works on multi-paths as
well, however, metric setting is based on the best-path only.

BGP Peer

Defining Peer

	
neighbor PEER remote-as ASN

	Creates a new neighbor whose remote-as is ASN. PEER can be an IPv4 address
or an IPv6 address or an interface to use for the connection.

router bgp 1
 neighbor 10.0.0.1 remote-as 2

In this case my router, in AS-1, is trying to peer with AS-2 at 10.0.0.1.

This command must be the first command used when configuring a neighbor. If
the remote-as is not specified, bgpd will complain like this:

can't find neighbor 10.0.0.1

	
neighbor PEER remote-as internal

	Create a peer as you would when you specify an ASN, except that if the
peers ASN is different than mine as specified under the router bgp ASN
command the connection will be denied.

	
neighbor PEER remote-as external

	Create a peer as you would when you specify an ASN, except that if the
peers ASN is the same as mine as specified under the router bgp ASN
command the connection will be denied.

BGP Peer commands

In a router bgp clause there are neighbor specific configurations
required.

	
neighbor PEER shutdown

	

	
no neighbor PEER shutdown

	Shutdown the peer. We can delete the neighbor’s configuration by
no neighbor PEER remote-as ASN but all configuration of the neighbor
will be deleted. When you want to preserve the configuration, but want to
drop the BGP peer, use this syntax.

	
neighbor PEER ebgp-multihop

	

	
no neighbor PEER ebgp-multihop

	

	
neighbor PEER description ...

	

	
no neighbor PEER description ...

	Set description of the peer.

	
neighbor PEER version VERSION

	Set up the neighbor’s BGP version. version can be 4, 4+ or 4-. BGP
version 4 is the default value used for BGP peering. BGP version 4+
means that the neighbor supports Multiprotocol Extensions for BGP-4. BGP
version 4- is similar but the neighbor speaks the old Internet-Draft
revision 00’s Multiprotocol Extensions for BGP-4. Some routing software is
still using this version.

	
neighbor PEER interface IFNAME

	

	
no neighbor PEER interface IFNAME

	When you connect to a BGP peer over an IPv6 link-local address, you have to
specify the IFNAME of the interface used for the connection. To specify
IPv4 session addresses, see the neighbor PEER update-source command
below.

This command is deprecated and may be removed in a future release. Its use
should be avoided.

	
neighbor PEER next-hop-self [all]

	

	
no neighbor PEER next-hop-self [all]

	This command specifies an announced route’s nexthop as being equivalent to
the address of the bgp router if it is learned via eBGP. If the optional
keyword all is specified the modification is done also for routes learned
via iBGP.

	
neighbor PEER update-source <IFNAME|ADDRESS>

	

	
no neighbor PEER update-source

	Specify the IPv4 source address to use for the BGP session to this
neighbour, may be specified as either an IPv4 address directly or as an
interface name (in which case the zebra daemon MUST be running in order
for bgpd to be able to retrieve interface state).

router bgp 64555
 neighbor foo update-source 192.168.0.1
 neighbor bar update-source lo0

	
neighbor PEER default-originate

	

	
no neighbor PEER default-originate

	bgpd’s default is to not announce the default route (0.0.0.0/0) even if it
is in routing table. When you want to announce default routes to the peer,
use this command.

	
neighbor PEER port PORT

	

	
neighbor PEER send-community

	

	
neighbor PEER weight WEIGHT

	

	
no neighbor PEER weight WEIGHT

	This command specifies a default weight value for the neighbor’s routes.

	
neighbor PEER maximum-prefix NUMBER

	

	
no neighbor PEER maximum-prefix NUMBER

	

	
neighbor PEER local-as AS-NUMBER

	

	
neighbor PEER local-as AS-NUMBER no-prepend

	

	
neighbor PEER local-as AS-NUMBER no-prepend replace-as

	

	
no neighbor PEER local-as

	Specify an alternate AS for this BGP process when interacting with the
specified peer. With no modifiers, the specified local-as is prepended to
the received AS_PATH when receiving routing updates from the peer, and
prepended to the outgoing AS_PATH (after the process local AS) when
transmitting local routes to the peer.

If the no-prepend attribute is specified, then the supplied local-as is not
prepended to the received AS_PATH.

If the replace-as attribute is specified, then only the supplied local-as is
prepended to the AS_PATH when transmitting local-route updates to this peer.

Note that replace-as can only be specified if no-prepend is.

This command is only allowed for eBGP peers.

	
neighbor PEER ttl-security hops NUMBER

	

	
no neighbor PEER ttl-security hops NUMBER

	This command enforces Generalized TTL Security Mechanism (GTSM), as
specified in RFC 5082. With this command, only neighbors that are the
specified number of hops away will be allowed to become neighbors. This
command is mutually exclusive with ebgp-multihop.

Peer filtering

	
neighbor PEER distribute-list NAME [in|out]

	This command specifies a distribute-list for the peer. direct is
in or out.

	
neighbor PEER prefix-list NAME [in|out]

	

	
neighbor PEER filter-list NAME [in|out]

	

	
neighbor PEER route-map NAME [in|out]

	Apply a route-map on the neighbor. direct must be in or out.

	
bgp route-reflector allow-outbound-policy

	By default, attribute modification via route-map policy out is not reflected
on reflected routes. This option allows the modifications to be reflected as
well. Once enabled, it affects all reflected routes.

BGP Peer Group

	
neighbor WORD peer-group

	This command defines a new peer group.

	
neighbor PEER peer-group WORD

	This command bind specific peer to peer group WORD.

BGP Address Family

Multiprotocol BGP enables BGP to carry routing information for multiple Network
Layer protocols. BGP supports multiple Address Family Identifier (AFI), namely
IPv4 and IPv6. Support is also provided for multiple sets of per-AFI
information via Subsequent Address Family Identifiers (SAFI). In addition to
unicast information, VPN information RFC 4364 [https://tools.ietf.org/html/rfc4364.html] and RFC 4659 [https://tools.ietf.org/html/rfc4659.html], and
Encapsulation attribute RFC 5512 [https://tools.ietf.org/html/rfc5512.html] is supported.

	
show ip bgp ipv4 vpn

	

	
show ipv6 bgp ipv6 vpn

	Print active IPV4 or IPV6 routes advertised via the VPN SAFI.

	
show bgp ipv4 vpn summary

	

	
show bgp ipv6 vpn summary

	Print a summary of neighbor connections for the specified AFI/SAFI combination.

Autonomous System

The AS number is one of the essential element of
BGP. BGP is a distance vector routing protocol, and the AS-Path framework
provides distance vector metric and loop detection to BGP. RFC 1930 [https://tools.ietf.org/html/rfc1930.html] provides
some background on the concepts of an AS.

The AS number is a two octet value, ranging in value from 1 to 65535. The AS
numbers 64512 through 65535 are defined as private AS numbers. Private AS
numbers must not to be advertised in the global Internet.

Display BGP Routes by AS Path

To show BGP routes which has specific AS path information show ip bgp command
can be used.

	
show bgp ipv4|ipv6 regexp LINE

	This commands displays BGP routes that matches a regular
expression line (BGP Regular Expressions).

AS Path Access List

AS path access list is user defined AS path.

	
ip as-path access-list WORD permit|deny LINE

	This command defines a new AS path access list.

	
no ip as-path access-list WORD

	

	
no ip as-path access-list WORD permit|deny LINE

	

Using AS Path in Route Map

	
match as-path WORD

	

	
set as-path prepend AS-PATH

	Prepend the given string of AS numbers to the AS_PATH.

	
set as-path prepend last-as NUM

	Prepend the existing last AS number (the leftmost ASN) to the AS_PATH.

Private AS Numbers

BGP Communities Attribute

BGP communities attribute is widely used for implementing policy routing.
Network operators can manipulate BGP communities attribute based on their
network policy. BGP communities attribute is defined in RFC 1997 [https://tools.ietf.org/html/rfc1997.html] and
RFC 1998 [https://tools.ietf.org/html/rfc1998.html]. It is an optional transitive attribute, therefore local policy can
travel through different autonomous system.

Communities attribute is a set of communities values. Each communities value is
4 octet long. The following format is used to define communities value.

	AS:VAL

	This format represents 4 octet communities value. AS is high order 2
octet in digit format. VAL is low order 2 octet in digit format. This
format is useful to define AS oriented policy value. For example,
7675:80 can be used when AS 7675 wants to pass local policy value 80 to
neighboring peer.

	internet

	internet represents well-known communities value 0.

	no-export

	no-export represents well-known communities value NO_EXPORT
0xFFFFFF01. All routes carry this value must not be advertised to
outside a BGP confederation boundary. If neighboring BGP peer is part of BGP
confederation, the peer is considered as inside a BGP confederation
boundary, so the route will be announced to the peer.

	no-advertise

	no-advertise represents well-known communities value NO_ADVERTISE
0xFFFFFF02. All routes carry this value must not be advertise to other
BGP peers.

	local-AS

	local-AS represents well-known communities value NO_EXPORT_SUBCONFED
0xFFFFFF03. All routes carry this value must not be advertised to
external BGP peers. Even if the neighboring router is part of confederation,
it is considered as external BGP peer, so the route will not be announced to
the peer.

When BGP communities attribute is received, duplicated communities value in the
communities attribute is ignored and each communities values are sorted in
numerical order.

BGP Community Lists

BGP community list is a user defined BGP communities attribute list. BGP
community list can be used for matching or manipulating BGP communities
attribute in updates.

There are two types of community list. One is standard community list and
another is expanded community list. Standard community list defines communities
attribute. Expanded community list defines communities attribute string with
regular expression. Standard community list is compiled into binary format when
user define it. Standard community list will be directly compared to BGP
communities attribute in BGP updates. Therefore the comparison is faster than
expanded community list.

	
ip community-list standard NAME permit|deny COMMUNITY

	This command defines a new standard community list. COMUNITY is
communities value. The COMUNITY is compiled into community structure. We
can define multiple community list under same name. In that case match will
happen user defined order. Once the community list matches to communities
attribute in BGP updates it return permit or deny by the community list
definition. When there is no matched entry, deny will be returned. When
COMUNITY is empty it matches to any routes.

	
ip community-list expanded NAME permit|deny LINE

	This command defines a new expanded community list. COMUNITY is a
string expression of communities attribute. COMUNITY can be a
regular expression (BGP Regular Expressions) to match
the communities attribute in BGP updates.

	
no ip community-list NAME

	

	
no ip community-list standard NAME

	

	
no ip community-list expanded NAME

	These commands delete community lists specified by NAME. All of
community lists shares a single name space. So community lists can be
removed simply specifying community lists name.

	
show ip community-list

	

	
show ip community-list NAME

	This command displays current community list information. When NAME is
specified the specified community list’s information is shown.

show ip community-list
Named Community standard list CLIST
permit 7675:80 7675:100 no-export
deny internet
 Named Community expanded list EXPAND
permit :

 # show ip community-list CLIST
 Named Community standard list CLIST
permit 7675:80 7675:100 no-export
deny internet

Numbered BGP Community Lists

When number is used for BGP community list name, the number has
special meanings. Community list number in the range from 1 and 99 is
standard community list. Community list number in the range from 100
to 199 is expanded community list. These community lists are called
as numbered community lists. On the other hand normal community lists
is called as named community lists.

	
ip community-list (1-99) permit|deny COMMUNITY

	This command defines a new community list. (1-99) is standard
community list number. Community list name within this range defines
standard community list. When community is empty it matches to
any routes.

	
ip community-list (100-199) permit|deny COMMUNITY

	This command defines a new community list. (100-199) is expanded
community list number. Community list name within this range defines
expanded community list.

	
ip community-list NAME permit|deny COMMUNITY

	When community list type is not specified, the community list type is
automatically detected. If COMMUNITY can be compiled into communities
attribute, the community list is defined as a standard community list.
Otherwise it is defined as an expanded community list. This feature is left
for backward compatibility. Use of this feature is not recommended.

BGP Community in Route Map

In Route Map (Route Maps), we can match or set BGP
communities attribute. Using this feature network operator can
implement their network policy based on BGP communities attribute.

Following commands can be used in Route Map.

	
match community WORD

	

	
match community WORD exact-match

	This command perform match to BGP updates using community list WORD. When
the one of BGP communities value match to the one of communities value in
community list, it is match. When exact-match keyword is specified, match
happen only when BGP updates have completely same communities value
specified in the community list.

	
set community none

	

	
set community COMMUNITY

	

	
set community COMMUNITY additive

	This command manipulate communities value in BGP updates. When
none is specified as communities value, it removes entire
communities attribute from BGP updates. When community is not
none, specified communities value is set to BGP updates. If
BGP updates already has BGP communities value, the existing BGP
communities value is replaced with specified community value.
When additive keyword is specified, community is appended
to the existing communities value.

	
set comm-list WORD delete

	This command remove communities value from BGP communities attribute.
The word is community list name. When BGP route’s communities
value matches to the community list word, the communities value
is removed. When all of communities value is removed eventually, the
BGP update’s communities attribute is completely removed.

Display BGP Routes by Community

To show BGP routes which has specific BGP communities attribute,
show bgp {ipv4|ipv6} command can be used. The
community and community-list subcommand can be used.

	
show bgp ipv4|ipv6 community

	

	
show bgp ipv4|ipv6 community COMMUNITY

	

	
show bgp ipv4|ipv6 community COMMUNITY exact-match

	show bgp {ipv4|ipv6} community displays BGP routes which has communities
attribute. Where the address family can be IPv4 or IPv6 among others. When
community is specified, BGP routes that matches community value is
displayed. For this command, internet keyword can’t be used for
community value. When exact-match is specified, it display only
routes that have an exact match.

	
show bgp ipv4|ipv6 community-list WORD

	

	
show bgp ipv4|ipv6 community-list WORD exact-match

	This commands display BGP routes for the address family specified that matches
community list word. When exact-match is specified, display only
routes that have an exact match.

Using BGP Communities Attribute

Following configuration is the most typical usage of BGP communities
attribute. AS 7675 provides upstream Internet connection to AS 100.
When following configuration exists in AS 7675, AS 100 networks
operator can set local preference in AS 7675 network by setting BGP
communities attribute to the updates.

router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 address-family ipv4 unicast
 neighbor 192.168.0.1 route-map RMAP in
 exit-address-family
!
ip community-list 70 permit 7675:70
ip community-list 70 deny
ip community-list 80 permit 7675:80
ip community-list 80 deny
ip community-list 90 permit 7675:90
ip community-list 90 deny
!
route-map RMAP permit 10
 match community 70
 set local-preference 70
!
route-map RMAP permit 20
 match community 80
 set local-preference 80
!
route-map RMAP permit 30
 match community 90
 set local-preference 90

Following configuration announce 10.0.0.0/8 from AS 100 to AS 7675.
The route has communities value 7675:80 so when above configuration
exists in AS 7675, announced route’s local preference will be set to
value 80.

router bgp 100
 network 10.0.0.0/8
 neighbor 192.168.0.2 remote-as 7675
 address-family ipv4 unicast
 neighbor 192.168.0.2 route-map RMAP out
 exit-address-family
!
ip prefix-list PLIST permit 10.0.0.0/8
!
route-map RMAP permit 10
 match ip address prefix-list PLIST
 set community 7675:80

Following configuration is an example of BGP route filtering using
communities attribute. This configuration only permit BGP routes
which has BGP communities value 0:80 or 0:90. Network operator can
put special internal communities value at BGP border router, then
limit the BGP routes announcement into the internal network.

router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 address-family ipv4 unicast
 neighbor 192.168.0.1 route-map RMAP in
 exit-address-family
!
ip community-list 1 permit 0:80 0:90
!
route-map RMAP permit in
 match community 1

Following example filter BGP routes which has communities value 1:1.
When there is no match community-list returns deny. To avoid
filtering all of routes, we need to define permit any at last.

router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 address-family ipv4 unicast
 neighbor 192.168.0.1 route-map RMAP in
 exit-address-family
!
ip community-list standard FILTER deny 1:1
ip community-list standard FILTER permit
!
route-map RMAP permit 10
 match community FILTER

Communities value keyword internet has special meanings in
standard community lists. In below example internet act as
match any. It matches all of BGP routes even if the route does not
have communities attribute at all. So community list INTERNET
is same as above example’s FILTER.

ip community-list standard INTERNET deny 1:1
ip community-list standard INTERNET permit internet

Following configuration is an example of communities value deletion.
With this configuration communities value 100:1 and 100:2 is removed
from BGP updates. For communities value deletion, only permit
community-list is used. deny community-list is ignored.

router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 address-family ipv4 unicast
 neighbor 192.168.0.1 route-map RMAP in
 exit-address-family
!
ip community-list standard DEL permit 100:1 100:2
!
route-map RMAP permit 10
 set comm-list DEL delete

BGP Extended Communities Attribute

BGP extended communities attribute is introduced with MPLS VPN/BGP technology.
MPLS VPN/BGP expands capability of network infrastructure to provide VPN
functionality. At the same time it requires a new framework for policy routing.
With BGP Extended Communities Attribute we can use Route Target or Site of
Origin for implementing network policy for MPLS VPN/BGP.

BGP Extended Communities Attribute is similar to BGP Communities Attribute. It
is an optional transitive attribute. BGP Extended Communities Attribute can
carry multiple Extended Community value. Each Extended Community value is
eight octet length.

BGP Extended Communities Attribute provides an extended range compared with BGP
Communities Attribute. Adding to that there is a type field in each value to
provides community space structure.

There are two format to define Extended Community value. One is AS based format
the other is IP address based format.

	AS:VAL

	This is a format to define AS based Extended Community value.
AS part is 2 octets Global Administrator subfield in Extended
Community value. VAL part is 4 octets Local Administrator
subfield. 7675:100 represents AS 7675 policy value 100.

	IP-Address:VAL

	This is a format to define IP address based Extended Community value.
IP-Address part is 4 octets Global Administrator subfield.
VAL part is 2 octets Local Administrator subfield.
10.0.0.1:100 represents

BGP Extended Community Lists

Expanded Community Lists is a user defined BGP Expanded Community
Lists.

	
ip extcommunity-list standard NAME permit|deny EXTCOMMUNITY

	This command defines a new standard extcommunity-list. extcommunity is
extended communities value. The extcommunity is compiled into extended
community structure. We can define multiple extcommunity-list under same
name. In that case match will happen user defined order. Once the
extcommunity-list matches to extended communities attribute in BGP updates
it return permit or deny based upon the extcommunity-list definition. When
there is no matched entry, deny will be returned. When extcommunity is
empty it matches to any routes.

	
ip extcommunity-list expanded NAME permit|deny LINE

	This command defines a new expanded extcommunity-list. line is a string
expression of extended communities attribute. line can be a regular
expression (BGP Regular Expressions) to match an extended communities
attribute in BGP updates.

	
no ip extcommunity-list NAME

	

	
no ip extcommunity-list standard NAME

	

	
no ip extcommunity-list expanded NAME

	These commands delete extended community lists specified by name. All of
extended community lists shares a single name space. So extended community
lists can be removed simply specifying the name.

	
show ip extcommunity-list

	

	
show ip extcommunity-list NAME

	This command displays current extcommunity-list information. When name is
specified the community list’s information is shown.:

show ip extcommunity-list

BGP Extended Communities in Route Map

	
match extcommunity WORD

	

	
set extcommunity rt EXTCOMMUNITY

	This command set Route Target value.

	
set extcommunity soo EXTCOMMUNITY

	This command set Site of Origin value.

BGP Large Communities Attribute

The BGP Large Communities attribute was introduced in Feb 2017 with
RFC 8092 [https://tools.ietf.org/html/rfc8092.html].

The BGP Large Communities Attribute is similar to the BGP Communities
Attribute except that it has 3 components instead of two and each of
which are 4 octets in length. Large Communities bring additional
functionality and convenience over traditional communities, specifically
the fact that the GLOBAL part below is now 4 octets wide allowing
AS4 operators seamless use.

	GLOBAL:LOCAL1:LOCAL2

	This is the format to define Large Community values. Referencing
RFC8195, Use of BGP Large Communities the values are commonly
referred to as follows.
The GLOBAL part is a 4 octet Global Administrator field, common
use of this field is the operators AS number.
The LOCAL1 part is a 4 octet Local Data Part 1 subfield referred
to as a function.
The LOCAL2 part is a 4 octet Local Data Part 2 field and referred
to as the parameter subfield. 65551:1:10 represents AS 65551
function 1 and parameter 10.
The referenced RFC above gives some guidelines on recommended usage.

BGP Large Community Lists

Two types of large community lists are supported, namely standard and
expanded.

	
ip large-community-list standard NAME permit|deny LARGE-COMMUNITY

	This command defines a new standard large-community-list. large-community
is the Large Community value. We can add multiple large communities under
same name. In that case the match will happen in the user defined order.
Once the large-community-list matches the Large Communities attribute in BGP
updates it will return permit or deny based upon the large-community-list
definition. When there is no matched entry, a deny will be returned. When
large-community is empty it matches any routes.

	
ip large-community-list expanded NAME permit|deny LINE

	This command defines a new expanded large-community-list. Where line is a
string matching expression, it will be compared to the entire Large
Communities attribute as a string, with each large-community in order from
lowest to highest. line can also be a regular expression which matches
this Large Community attribute.

	
no ip large-community-list NAME

	

	
no ip large-community-list standard NAME

	

	
no ip large-community-list expanded NAME

	These commands delete Large Community lists specified by name. All Large
Community lists share a single namespace. This means Large Community lists
can be removed by simply specifying the name.

	
show ip large-community-list

	

	
show ip large-community-list NAME

	This command display current large-community-list information. When
name is specified the community list information is shown.

	
show ip bgp large-community-info

	This command displays the current large communities in use.

BGP Large Communities in Route Map

	
match large-community LINE

	Where line can be a simple string to match, or a regular expression. It
is very important to note that this match occurs on the entire
large-community string as a whole, where each large-community is ordered
from lowest to highest.

	
set large-community LARGE-COMMUNITY

	

	
set large-community LARGE-COMMUNITY LARGE-COMMUNITY

	

	
set large-community LARGE-COMMUNITY additive

	These commands are used for setting large-community values. The first
command will overwrite any large-communities currently present.
The second specifies two large-communities, which overwrites the current
large-community list. The third will add a large-community value without
overwriting other values. Multiple large-community values can be specified.

BGP VRFs

BPGD supports multiple VRF instances via the router bgp command:

	
router bgp ASN vrf VRFNAME

	

VRFNAME is matched against VRFs configured in the kernel. When no vrf VRFNAME
is specified, the BGP protocol process belongs to the default VRF.

With VRF, you can isolate networking information. Having BGP VRF allows you to
have several BGP instances on the same system process. This solution solves
scalabiliy issues where the network administrator had previously to run separately
several BGP processes on each namespace. Now, not only BGP VRF solves this, but
also this method applies to both kind of VRFs backend: default VRF from Linux kernel
or network namespaces. Also, having separate BGP instances does not imply that the
AS number has to be different. For internal purposes, it is possible to do iBGP
peering from two differents network namespaces.

BGP routes may be leaked (i.e., copied) between a unicast VRF RIB and the VPN
safi RIB of the default VRF (leaking is also permitted between the unicast RIB
of the default VRF and VPN). A shortcut syntax is also available for
specifying leaking from one vrf to another vrf using the VPN RIB as
the intemediary. A common application of the VPN-VRF feature is to
connect a customer’s private routing domain to a provider’s VPN service.
Leaking is configured from the point of view of an individual VRF: import
refers to routes leaked from VPN to a unicast VRF, whereas export refers to
routes leaked from a unicast VRF to VPN.

Required Parameters

Routes exported from a unicast VRF to the VPN RIB must be augmented by two
parameters:

	an RD

	an RTLIST

Configuration for these exported routes must, at a minimum, specify these two
parameters.

Routes imported from the VPN RIB to a unicast VRF are selected according to
their RTLISTs. Routes whose RTLIST contains at least one route-target in
common with the configured import RTLIST are leaked. Configuration for these
imported routes must specify an RTLIST to be matched.

The RD, which carries no semantic value, is intended to make the route unique
in the VPN RIB among all routes of its prefix that originate from all the
customers and sites that are attached to the provider’s VPN service.
Accordingly, each site of each customer is typically assigned an RD that is
unique across the entire provider network.

The RTLIST is a set of route-target extended community values whose purpose is
to specify route-leaking policy. Typically, a customer is assigned a single
route-target value for import and export to be used at all customer sites. This
configuration specifies a simple topology wherein a customer has a single
routing domain which is shared across all its sites. More complex routing
topologies are possible through use of additional route-targets to augment the
leaking of sets of routes in various ways.

When using the shortcut syntax for vrf-to-vrf leaking, the RD and RT are
auto-derived.

Configuration

Configuration of route leaking between a unicast VRF RIB and the VPN safi RIB
of the default VRF is accomplished via commands in the context of a VRF
address-family:

	
rd vpn export AS:NN|IP:nn

	Specifies the route distinguisher to be added to a route exported from the
current unicast VRF to VPN.

	
no rd vpn export [AS:NN|IP:nn]

	Deletes any previously-configured export route distinguisher.

	
rt vpn import|export|both RTLIST...

	Specifies the route-target list to be attached to a route (export) or the
route-target list to match against (import) when exporting/importing between
the current unicast VRF and VPN.

The RTLIST is a space-separated list of route-targets, which are BGP
extended community values as described in
BGP Extended Communities Attribute.

	
no rt vpn import|export|both [RTLIST...]

	Deletes any previously-configured import or export route-target list.

	
label vpn export (0..1048575)|auto

	Specifies an optional MPLS label to be attached to a route exported from the
current unicast VRF to VPN. If label is specified as auto, the label
value is automatically assigned from a pool maintained by the zebra
daemon. If zebra is not running, automatic label assignment will not
complete, which will block corresponding route export.

	
no label vpn export [(0..1048575)|auto]

	Deletes any previously-configured export label.

	
nexthop vpn export A.B.C.D|X:X::X:X

	Specifies an optional nexthop value to be assigned to a route exported from
the current unicast VRF to VPN. If left unspecified, the nexthop will be set
to 0.0.0.0 or 0:0::0:0 (self).

	
no nexthop vpn export [A.B.C.D|X:X::X:X]

	Deletes any previously-configured export nexthop.

	
route-map vpn import|export MAP

	Specifies an optional route-map to be applied to routes imported or exported
between the current unicast VRF and VPN.

	
no route-map vpn import|export [MAP]

	Deletes any previously-configured import or export route-map.

	
import|export vpn

	Enables import or export of routes between the current unicast VRF and VPN.

	
no import|export vpn

	Disables import or export of routes between the current unicast VRF and VPN.

	
import vrf VRFNAME

	Shortcut syntax for specifying automatic leaking from vrf VRFNAME to
the current VRF using the VPN RIB as intermediary. The RD and RT
are auto derived and should not be specified explicitly for either the
source or destination VRF’s.

This shortcut syntax mode is not compatible with the explicit
import vpn and export vpn statements for the two VRF’s involved.
The CLI will disallow attempts to configure incompatible leaking
modes.

	
no import vrf VRFNAME

	Disables automatic leaking from vrf VRFNAME to the current VRF using
the VPN RIB as intermediary.

Displaying BGP information

Showing BGP information

	
show ip bgp

	

	
show ip bgp A.B.C.D

	

	
show ip bgp X:X::X:X

	This command displays BGP routes. When no route is specified it
display all of IPv4 BGP routes.

BGP table version is 0, local router ID is 10.1.1.1
 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
 Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
 *> 1.1.1.1/32 0.0.0.0 0 32768 i

 Total number of prefixes 1

	
show ip bgp regexp LINE

	This command displays BGP routes using AS path regular expression
(BGP Regular Expressions).

	
show ip bgp community COMMUNITY

	

	
show ip bgp community COMMUNITY exact-match

	This command displays BGP routes using community
(Display BGP Routes by Community).

	
show ip bgp community-list WORD

	

	
show ip bgp community-list WORD exact-match

	This command displays BGP routes using community list
(Display BGP Routes by Community).

	
show bgp ipv4|ipv6 summary

	Show a bgp peer summary for the specified address family.

	
show bgp ipv4|ipv6 neighbor [PEER]

	This command shows information on a specific BGP peer.

	
show bgp ipv4|ipv6 dampening dampened-paths

	Display paths suppressed due to dampening.

	
show bgp ipv4|ipv6 dampening flap-statistics

	Display flap statistics of routes.

Other BGP commands

	
clear bgp ipv4|ipv6 *

	Clear all address family peers.

	
clear bgp ipv4|ipv6 PEER

	Clear peers which have addresses of X.X.X.X

	
clear bgp ipv4|ipv6 PEER soft in

	Clear peer using soft reconfiguration.

	
show debug

	

	
debug event

	

	
debug update

	

	
debug keepalive

	

	
no debug event

	

	
no debug update

	

	
no debug keepalive

	

Capability Negotiation

When adding IPv6 routing information exchange feature to BGP. There were some
proposals. IETF
IDR adopted a proposal called Multiprotocol
Extension for BGP. The specification is described in RFC 2283 [https://tools.ietf.org/html/rfc2283.html]. The protocol
does not define new protocols. It defines new attributes to existing BGP. When
it is used exchanging IPv6 routing information it is called BGP-4+. When it is
used for exchanging multicast routing information it is called MBGP.

bgpd supports Multiprotocol Extension for BGP. So if a remote peer supports
the protocol, bgpd can exchange IPv6 and/or multicast routing information.

Traditional BGP did not have the feature to detect a remote peer’s
capabilities, e.g. whether it can handle prefix types other than IPv4 unicast
routes. This was a big problem using Multiprotocol Extension for BGP in an
operational network. RFC 2842 [https://tools.ietf.org/html/rfc2842.html] adopted a feature called Capability
Negotiation. bgpd use this Capability Negotiation to detect the remote peer’s
capabilities. If a peer is only configured as an IPv4 unicast neighbor, bgpd
does not send these Capability Negotiation packets (at least not unless other
optional BGP features require capability negotiation).

By default, FRR will bring up peering with minimal common capability for the
both sides. For example, if the local router has unicast and multicast
capabilities and the remote router only has unicast capability the local router
will establish the connection with unicast only capability. When there are no
common capabilities, FRR sends Unsupported Capability error and then resets the
connection.

If you want to completely match capabilities with remote peer. Please use
strict-capability-match command.

	
neighbor PEER strict-capability-match

	

	
no neighbor PEER strict-capability-match

	Strictly compares remote capabilities and local capabilities. If
capabilities are different, send Unsupported Capability error then reset
connection.

You may want to disable sending Capability Negotiation OPEN message optional
parameter to the peer when remote peer does not implement Capability
Negotiation. Please use dont-capability-negotiate command to disable the
feature.

	
neighbor PEER dont-capability-negotiate

	

	
no neighbor PEER dont-capability-negotiate

	Suppress sending Capability Negotiation as OPEN message optional parameter
to the peer. This command only affects the peer is configured other than
IPv4 unicast configuration.

When remote peer does not have capability negotiation feature, remote peer
will not send any capabilities at all. In that case, bgp configures the peer
with configured capabilities.

You may prefer locally configured capabilities more than the negotiated
capabilities even though remote peer sends capabilities. If the peer is
configured by override-capability, bgpd ignores received capabilities
then override negotiated capabilities with configured values.

	
neighbor PEER override-capability

	

	
no neighbor PEER override-capability

	Override the result of Capability Negotiation with local configuration.
Ignore remote peer’s capability value.

Route Reflector

	
bgp cluster-id A.B.C.D

	

	
neighbor PEER route-reflector-client

	

	
no neighbor PEER route-reflector-client

	

Route Server

At an Internet Exchange point, many ISPs are connected to each other by the
“full mesh method”. As with internal BGP full mesh formation, this method has a
scaling problem.

This scaling problem is well known. Route Server is a method to resolve the
problem. Each ISP’s BGP router only peers to Route Server. Route Server serves
as BGP information exchange to other BGP routers. By applying this method,
numbers of BGP connections is reduced from O(n*(n-1)/2) to O(n).

Unlike a normal BGP router, Route Server must have several routing tables for
managing different routing policies for each BGP speaker. We call the routing
tables as different “views”. bgpd can work as normal BGP router or Route
Server or both at the same time.

Multiple instance

To enable multiple view function of bgpd, you must turn on multiple instance
feature beforehand.

	
bgp multiple-instance

	Enable BGP multiple instance feature. After this feature is enabled,
you can make multiple BGP instances or multiple BGP views.

	
no bgp multiple-instance

	Disable BGP multiple instance feature. You can not disable this feature
when BGP multiple instances or views exist.

When you want to make configuration more Cisco like one,

	
bgp config-type cisco

	Cisco compatible BGP configuration output.

When bgp config-type cisco is specified,

no synchronization is displayed.
no auto-summary is displayed.

The network and aggregate-address arguments are displayed as:

A.B.C.D M.M.M.M

FRR: network 10.0.0.0/8
Cisco: network 10.0.0.0

FRR: aggregate-address 192.168.0.0/24
Cisco: aggregate-address 192.168.0.0 255.255.255.0

Community attribute handling is also different. If no configuration is
specified community attribute and extended community attribute are sent to the
neighbor. If a user manually disables the feature, the community attribute is
not sent to the neighbor. When bgp config-type cisco is specified, the
community attribute is not sent to the neighbor by default. To send the
community attribute user has to specify neighbor A.B.C.D send-community
command.

!
router bgp 1
 neighbor 10.0.0.1 remote-as 1
 address-family ipv4 unicast
 no neighbor 10.0.0.1 send-community
 exit-address-family
!
router bgp 1
 neighbor 10.0.0.1 remote-as 1
 address-family ipv4 unicast
 neighbor 10.0.0.1 send-community
 exit-address-family
!

	
bgp config-type zebra

	FRR style BGP configuration. This is default.

BGP instance and view

BGP instance is a normal BGP process. The result of route selection goes to the
kernel routing table. You can setup different AS at the same time when BGP
multiple instance feature is enabled.

	
router bgp AS-NUMBER

	Make a new BGP instance. You can use an arbitrary word for the name.

bgp multiple-instance
!
router bgp 1
 neighbor 10.0.0.1 remote-as 2
 neighbor 10.0.0.2 remote-as 3
!
router bgp 2
 neighbor 10.0.0.3 remote-as 4
 neighbor 10.0.0.4 remote-as 5

BGP view is almost same as normal BGP process. The result of route selection
does not go to the kernel routing table. BGP view is only for exchanging BGP
routing information.

	
router bgp AS-NUMBER view NAME

	Make a new BGP view. You can use arbitrary word for the name. This view’s
route selection result does not go to the kernel routing table.

With this command, you can setup Route Server like below.

bgp multiple-instance
!
router bgp 1 view 1
 neighbor 10.0.0.1 remote-as 2
 neighbor 10.0.0.2 remote-as 3
!
router bgp 2 view 2
 neighbor 10.0.0.3 remote-as 4
 neighbor 10.0.0.4 remote-as 5

Routing policy

You can set different routing policy for a peer. For example, you can set
different filter for a peer.

bgp multiple-instance
!
router bgp 1 view 1
 neighbor 10.0.0.1 remote-as 2
 address-family ipv4 unicast
 neighbor 10.0.0.1 distribute-list 1 in
 exit-address-family
!
router bgp 1 view 2
 neighbor 10.0.0.1 remote-as 2
 address-family ipv4 unicast
 neighbor 10.0.0.1 distribute-list 2 in
 exit-address-family

This means BGP update from a peer 10.0.0.1 goes to both BGP view 1 and view 2.
When the update is inserted into view 1, distribute-list 1 is applied. On the
other hand, when the update is inserted into view 2, distribute-list 2 is
applied.

Viewing the view

To display routing table of BGP view, you must specify view name.

	
show ip bgp view NAME

	Display routing table of BGP view NAME.

BGP Regular Expressions

BGP regular expressions are based on POSIX 1003.2 regular expressions. The
following description is just a quick subset of the POSIX regular
expressions. Adding to that, the special character ‘_’ is added.

	.*

	Matches any single character.

	Matches 0 or more occurrences of pattern.

	Matches 1 or more occurrences of pattern.

	?

	Match 0 or 1 occurrences of pattern.

	^

	Matches the beginning of the line.

	$

	Matches the end of the line.

	_

	Character _ has special meanings in BGP regular expressions. It matches
to space and comma , and AS set delimiter { and } and AS confederation
delimiter (and). And it also matches to the beginning of the line and
the end of the line. So _ can be used for AS value boundaries match. This
character technically evaluates to (^|[,{}()]|$).

How to set up a 6-Bone connection

! bgpd configuration
! ==================
!
! MP-BGP configuration
!
router bgp 7675
 bgp router-id 10.0.0.1
 neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 remote-as `as-number`
!
 address-family ipv6
 network 3ffe:506::/32
 neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 activate
 neighbor 3ffe:1cfa:0:2:2a0:c9ff:fe9e:f56 route-map set-nexthop out
 neighbor 3ffe:1cfa:0:2:2c0:4fff:fe68:a231 remote-as `as-number`
 neighbor 3ffe:1cfa:0:2:2c0:4fff:fe68:a231 route-map set-nexthop out
 exit-address-family
!
ipv6 access-list all permit any
!
! Set output nexthop address.
!
route-map set-nexthop permit 10
 match ipv6 address all
 set ipv6 nexthop global 3ffe:1cfa:0:2:2c0:4fff:fe68:a225
 set ipv6 nexthop local fe80::2c0:4fff:fe68:a225
!
log file bgpd.log
!

Dump BGP packets and table

	
dump bgp all PATH [INTERVAL]

	

	
dump bgp all-et PATH [INTERVAL]

	

	
no dump bgp all [PATH] [INTERVAL]

	Dump all BGP packet and events to path file.
If interval is set, a new file will be created for echo interval of
seconds. The path path can be set with date and time formatting
(strftime). The type ‘all-et’ enables support for Extended Timestamp Header
(Packet Binary Dump Format).

	
dump bgp updates PATH [INTERVAL]

	

	
dump bgp updates-et PATH [INTERVAL]

	

	
no dump bgp updates [PATH] [INTERVAL]

	Dump only BGP updates messages to path file.
If interval is set, a new file will be created for echo interval of
seconds. The path path can be set with date and time formatting
(strftime). The type ‘updates-et’ enables support for Extended Timestamp
Header (Packet Binary Dump Format).

	
dump bgp routes-mrt PATH

	

	
dump bgp routes-mrt PATH INTERVAL

	

	
no dump bgp route-mrt [PATH] [INTERVAL]

	Dump whole BGP routing table to path. This is heavy process. The path
path can be set with date and time formatting (strftime). If interval is
set, a new file will be created for echo interval of seconds.

Note: the interval variable can also be set using hours and minutes: 04h20m00.

BGP Configuration Examples

Example of a session to an upstream, advertising only one prefix to it.

router bgp 64512
 bgp router-id 10.236.87.1
 neighbor upstream peer-group
 neighbor upstream remote-as 64515
 neighbor upstream capability dynamic
 neighbor 10.1.1.1 peer-group upstream
 neighbor 10.1.1.1 description ACME ISP

 address-family ipv4 unicast
 network 10.236.87.0/24
 neighbor upstream prefix-list pl-allowed-adv out
 exit-address-family
!
ip prefix-list pl-allowed-adv seq 5 permit 82.195.133.0/25
ip prefix-list pl-allowed-adv seq 10 deny any

A more complex example. With upstream, peer and customer sessions. Advertising
global prefixes and NO_EXPORT prefixes and providing actions for customer
routes based on community values. Extensive use of route-maps and the ‘call’
feature to support selective advertising of prefixes. This example is intended
as guidance only, it has NOT been tested and almost certainly contains silly
mistakes, if not serious flaws.

router bgp 64512
 bgp router-id 10.236.87.1
 neighbor upstream capability dynamic
 neighbor cust capability dynamic
 neighbor peer capability dynamic
 neighbor 10.1.1.1 remote-as 64515
 neighbor 10.1.1.1 peer-group upstream
 neighbor 10.2.1.1 remote-as 64516
 neighbor 10.2.1.1 peer-group upstream
 neighbor 10.3.1.1 remote-as 64517
 neighbor 10.3.1.1 peer-group cust-default
 neighbor 10.3.1.1 description customer1
 neighbor 10.4.1.1 remote-as 64518
 neighbor 10.4.1.1 peer-group cust
 neighbor 10.4.1.1 description customer2
 neighbor 10.5.1.1 remote-as 64519
 neighbor 10.5.1.1 peer-group peer
 neighbor 10.5.1.1 description peer AS 1
 neighbor 10.6.1.1 remote-as 64520
 neighbor 10.6.1.1 peer-group peer
 neighbor 10.6.1.1 description peer AS 2

 address-family ipv4 unicast
 network 10.123.456.0/24
 network 10.123.456.128/25 route-map rm-no-export
 neighbor upstream route-map rm-upstream-out out
 neighbor cust route-map rm-cust-in in
 neighbor cust route-map rm-cust-out out
 neighbor cust send-community both
 neighbor peer route-map rm-peer-in in
 neighbor peer route-map rm-peer-out out
 neighbor peer send-community both
 neighbor 10.3.1.1 prefix-list pl-cust1-network in
 neighbor 10.4.1.1 prefix-list pl-cust2-network in
 neighbor 10.5.1.1 prefix-list pl-peer1-network in
 neighbor 10.6.1.1 prefix-list pl-peer2-network in
 exit-address-family
!
ip prefix-list pl-default permit 0.0.0.0/0
!
ip prefix-list pl-upstream-peers permit 10.1.1.1/32
ip prefix-list pl-upstream-peers permit 10.2.1.1/32
!
ip prefix-list pl-cust1-network permit 10.3.1.0/24
ip prefix-list pl-cust1-network permit 10.3.2.0/24
!
ip prefix-list pl-cust2-network permit 10.4.1.0/24
!
ip prefix-list pl-peer1-network permit 10.5.1.0/24
ip prefix-list pl-peer1-network permit 10.5.2.0/24
ip prefix-list pl-peer1-network permit 192.168.0.0/24
!
ip prefix-list pl-peer2-network permit 10.6.1.0/24
ip prefix-list pl-peer2-network permit 10.6.2.0/24
ip prefix-list pl-peer2-network permit 192.168.1.0/24
ip prefix-list pl-peer2-network permit 192.168.2.0/24
ip prefix-list pl-peer2-network permit 172.16.1/24
!
ip as-path access-list asp-own-as permit ^$
ip as-path access-list asp-own-as permit _64512_
!
! ###
! Match communities we provide actions for, on routes receives from
! customers. Communities values of <our-ASN>:X, with X, have actions:
!
! 100 - blackhole the prefix
! 200 - set no_export
! 300 - advertise only to other customers
! 400 - advertise only to upstreams
! 500 - set no_export when advertising to upstreams
! 2X00 - set local_preference to X00
!
! blackhole the prefix of the route
ip community-list standard cm-blackhole permit 64512:100
!
! set no-export community before advertising
ip community-list standard cm-set-no-export permit 64512:200
!
! advertise only to other customers
ip community-list standard cm-cust-only permit 64512:300
!
! advertise only to upstreams
ip community-list standard cm-upstream-only permit 64512:400
!
! advertise to upstreams with no-export
ip community-list standard cm-upstream-noexport permit 64512:500
!
! set local-pref to least significant 3 digits of the community
ip community-list standard cm-prefmod-100 permit 64512:2100
ip community-list standard cm-prefmod-200 permit 64512:2200
ip community-list standard cm-prefmod-300 permit 64512:2300
ip community-list standard cm-prefmod-400 permit 64512:2400
ip community-list expanded cme-prefmod-range permit 64512:2...
!
! Informational communities
!
! 3000 - learned from upstream
! 3100 - learned from customer
! 3200 - learned from peer
!
ip community-list standard cm-learnt-upstream permit 64512:3000
ip community-list standard cm-learnt-cust permit 64512:3100
ip community-list standard cm-learnt-peer permit 64512:3200
!
! ###
! Utility route-maps
!
! These utility route-maps generally should not used to permit/deny
! routes, i.e. they do not have meaning as filters, and hence probably
! should be used with 'on-match next'. These all finish with an empty
! permit entry so as not interfere with processing in the caller.
!
route-map rm-no-export permit 10
 set community additive no-export
route-map rm-no-export permit 20
!
route-map rm-blackhole permit 10
 description blackhole, up-pref and ensure it cant escape this AS
 set ip next-hop 127.0.0.1
 set local-preference 10
 set community additive no-export
route-map rm-blackhole permit 20
!
! Set local-pref as requested
route-map rm-prefmod permit 10
 match community cm-prefmod-100
 set local-preference 100
route-map rm-prefmod permit 20
 match community cm-prefmod-200
 set local-preference 200
route-map rm-prefmod permit 30
 match community cm-prefmod-300
 set local-preference 300
route-map rm-prefmod permit 40
 match community cm-prefmod-400
 set local-preference 400
route-map rm-prefmod permit 50
!
! Community actions to take on receipt of route.
route-map rm-community-in permit 10
 description check for blackholing, no point continuing if it matches.
 match community cm-blackhole
 call rm-blackhole
route-map rm-community-in permit 20
 match community cm-set-no-export
 call rm-no-export
 on-match next
route-map rm-community-in permit 30
 match community cme-prefmod-range
 call rm-prefmod
route-map rm-community-in permit 40
!
! ###
! Community actions to take when advertising a route.
! These are filtering route-maps,
!
! Deny customer routes to upstream with cust-only set.
route-map rm-community-filt-to-upstream deny 10
 match community cm-learnt-cust
 match community cm-cust-only
route-map rm-community-filt-to-upstream permit 20
!
! Deny customer routes to other customers with upstream-only set.
route-map rm-community-filt-to-cust deny 10
 match community cm-learnt-cust
 match community cm-upstream-only
route-map rm-community-filt-to-cust permit 20
!
! ###
! The top-level route-maps applied to sessions. Further entries could
! be added obviously..
!
! Customers
route-map rm-cust-in permit 10
 call rm-community-in
 on-match next
route-map rm-cust-in permit 20
 set community additive 64512:3100
route-map rm-cust-in permit 30
!
route-map rm-cust-out permit 10
 call rm-community-filt-to-cust
 on-match next
route-map rm-cust-out permit 20
!
! Upstream transit ASes
route-map rm-upstream-out permit 10
 description filter customer prefixes which are marked cust-only
 call rm-community-filt-to-upstream
 on-match next
route-map rm-upstream-out permit 20
 description only customer routes are provided to upstreams/peers
 match community cm-learnt-cust
!
! Peer ASes
! outbound policy is same as for upstream
route-map rm-peer-out permit 10
 call rm-upstream-out
!
route-map rm-peer-in permit 10
 set community additive 64512:3200

Configuring FRR as a Route Server

The purpose of a Route Server is to centralize the peerings between BGP
speakers. For example if we have an exchange point scenario with four BGP
speakers, each of which maintaining a BGP peering with the other three
(Full Mesh), we can convert it into a centralized scenario where
each of the four establishes a single BGP peering against the Route Server
(Route server and clients).

We will first describe briefly the Route Server model implemented by FRR.
We will explain the commands that have been added for configuring that
model. And finally we will show a full example of FRR configured as Route
Server.

Description of the Route Server model

First we are going to describe the normal processing that BGP announcements
suffer inside a standard BGP speaker, as shown in Announcement processing inside a ‘normal’ BGP speaker,
it consists of three steps:

	When an announcement is received from some peer, the In filters configured
for that peer are applied to the announcement. These filters can reject the
announcement, accept it unmodified, or accept it with some of its attributes
modified.

	The announcements that pass the In filters go into the Best Path Selection
process, where they are compared to other announcements referred to the same
destination that have been received from different peers (in case such other
announcements exist). For each different destination, the announcement which
is selected as the best is inserted into the BGP speaker’s Loc-RIB.

	The routes which are inserted in the Loc-RIB are considered for announcement
to all the peers (except the one from which the route came). This is done by
passing the routes in the Loc-RIB through the Out filters corresponding to
each peer. These filters can reject the route, accept it unmodified, or
accept it with some of its attributes modified. Those routes which are
accepted by the Out filters of a peer are announced to that peer.

[image: Normal announcement processing]
Announcement processing inside a ‘normal’ BGP speaker

[image: Full Mesh BGP Topology]
Full Mesh

[image: Route Server BGP Topology]
Route server and clients

Of course we want that the routing tables obtained in each of the routers are
the same when using the route server than when not. But as a consequence of
having a single BGP peering (against the route server), the BGP speakers can no
longer distinguish from/to which peer each announce comes/goes.

This means that the routers connected to the route server are not able to apply
by themselves the same input/output filters as in the full mesh scenario, so
they have to delegate those functions to the route server.

Even more, the ‘best path’ selection must be also performed inside the route
server on behalf of its clients. The reason is that if, after applying the
filters of the announcer and the (potential) receiver, the route server decides
to send to some client two or more different announcements referred to the same
destination, the client will only retain the last one, considering it as an
implicit withdrawal of the previous announcements for the same destination.
This is the expected behavior of a BGP speaker as defined in RFC 1771 [https://tools.ietf.org/html/rfc1771.html],
and even though there are some proposals of mechanisms that permit multiple
paths for the same destination to be sent through a single BGP peering, none
are currently supported by most existing BGP implementations.

As a consequence a route server must maintain additional information and
perform additional tasks for a RS-client that those necessary for common BGP
peerings. Essentially a route server must:

	Maintain a separated Routing Information Base (Loc-RIB)
for each peer configured as RS-client, containing the routes
selected as a result of the ‘Best Path Selection’ process
that is performed on behalf of that RS-client.

	Whenever it receives an announcement from a RS-client,
it must consider it for the Loc-RIBs of the other RS-clients.

	This means that for each of them the route server must pass the
announcement through the appropriate Out filter of the
announcer.

	Then through the appropriate In filter of the potential receiver.

	Only if the announcement is accepted by both filters it will be passed
to the ‘Best Path Selection’ process.

	Finally, it might go into the Loc-RIB of the receiver.

When we talk about the ‘appropriate’ filter, both the announcer and the
receiver of the route must be taken into account. Suppose that the route server
receives an announcement from client A, and the route server is considering it
for the Loc-RIB of client B. The filters that should be applied are the same
that would be used in the full mesh scenario, i.e., first the Out filter of
router A for announcements going to router B, and then the In filter of
router B for announcements coming from router A.

We call ‘Export Policy’ of a RS-client to the set of Out filters that the
client would use if there was no route server. The same applies for the ‘Import
Policy’ of a RS-client and the set of In filters of the client if there was
no route server.

It is also common to demand from a route server that it does not modify some
BGP attributes (next-hop, as-path and MED) that are usually modified by
standard BGP speakers before announcing a route.

The announcement processing model implemented by FRR is shown in
Announcement processing model implemented by the Route Server. The figure shows a mixture of RS-clients (B, C and D)
with normal BGP peers (A). There are some details that worth additional
comments:

	Announcements coming from a normal BGP peer are also considered for the
Loc-RIBs of all the RS-clients. But logically they do not pass through any
export policy.

	Those peers that are configured as RS-clients do not receive any announce
from the Main Loc-RIB.

	Apart from import and export policies, In and Out filters can also be set
for RS-clients. In filters might be useful when the route server has also
normal BGP peers. On the other hand, Out filters for RS-clients are
probably unnecessary, but we decided not to remove them as they do not hurt
anybody (they can always be left empty).

[image: Route Server Processing Model]
Announcement processing model implemented by the Route Server

Commands for configuring a Route Server

Now we will describe the commands that have been added to frr
in order to support the route server features.

	
neighbor PEER-GROUP route-server-client

	

	
neighbor A.B.C.D route-server-client

	

	
neighbor X:X::X:X route-server-client

	This command configures the peer given by peer, A.B.C.D or X:X::X:X as
an RS-client.

Actually this command is not new, it already existed in standard FRR. It
enables the transparent mode for the specified peer. This means that some
BGP attributes (as-path, next-hop and MED) of the routes announced to that
peer are not modified.

With the route server patch, this command, apart from setting the
transparent mode, creates a new Loc-RIB dedicated to the specified peer
(those named Loc-RIB for X in Announcement processing model implemented by the Route Server.). Starting from
that moment, every announcement received by the route server will be also
considered for the new Loc-RIB.

	
neigbor A.B.C.D|X.X::X.X|peer-group route-map WORD import|export

	This set of commands can be used to specify the route-map that represents
the Import or Export policy of a peer which is configured as a RS-client
(with the previous command).

	
match peer A.B.C.D|X:X::X:X

	This is a new match statement for use in route-maps, enabling them to
describe import/export policies. As we said before, an import/export policy
represents a set of input/output filters of the RS-client. This statement
makes possible that a single route-map represents the full set of filters
that a BGP speaker would use for its different peers in a non-RS scenario.

The match peer statement has different semantics whether it is used inside
an import or an export route-map. In the first case the statement matches if
the address of the peer who sends the announce is the same that the address
specified by {A.B.C.D|X:X::X:X}. For export route-maps it matches when
{A.B.C.D|X:X::X:X} is the address of the RS-Client into whose Loc-RIB the
announce is going to be inserted (how the same export policy is applied
before different Loc-RIBs is shown in Announcement processing model implemented by the Route Server.).

	
call WORD

	This command (also used inside a route-map) jumps into a different
route-map, whose name is specified by WORD. When the called
route-map finishes, depending on its result the original route-map
continues or not. Apart from being useful for making import/export
route-maps easier to write, this command can also be used inside
any normal (in or out) route-map.

Example of Route Server Configuration

Finally we are going to show how to configure a FRR daemon to act as a
Route Server. For this purpose we are going to present a scenario without
route server, and then we will show how to use the configurations of the BGP
routers to generate the configuration of the route server.

All the configuration files shown in this section have been taken
from scenarios which were tested using the VNUML tool
http://www.dit.upm.es/vnuml,VNUML.

Configuration of the BGP routers without Route Server

We will suppose that our initial scenario is an exchange point with three
BGP capable routers, named RA, RB and RC. Each of the BGP speakers generates
some routes (with the network command), and establishes BGP peerings
against the other two routers. These peerings have In and Out route-maps
configured, named like ‘PEER-X-IN’ or ‘PEER-X-OUT’. For example the
configuration file for router RA could be the following:

#Configuration for router 'RA'
!
hostname RA
password ****
!
router bgp 65001
 no bgp default ipv4-unicast
 neighbor 2001:0DB8::B remote-as 65002
 neighbor 2001:0DB8::C remote-as 65003
!
 address-family ipv6
 network 2001:0DB8:AAAA:1::/64
 network 2001:0DB8:AAAA:2::/64
 network 2001:0DB8:0000:1::/64
 network 2001:0DB8:0000:2::/64
 neighbor 2001:0DB8::B activate
 neighbor 2001:0DB8::B soft-reconfiguration inbound
 neighbor 2001:0DB8::B route-map PEER-B-IN in
 neighbor 2001:0DB8::B route-map PEER-B-OUT out
 neighbor 2001:0DB8::C activate
 neighbor 2001:0DB8::C soft-reconfiguration inbound
 neighbor 2001:0DB8::C route-map PEER-C-IN in
 neighbor 2001:0DB8::C route-map PEER-C-OUT out
 exit-address-family
!
ipv6 prefix-list COMMON-PREFIXES seq 5 permit 2001:0DB8:0000::/48 ge 64 le 64
ipv6 prefix-list COMMON-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-A-PREFIXES seq 5 permit 2001:0DB8:AAAA::/48 ge 64 le 64
ipv6 prefix-list PEER-A-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-B-PREFIXES seq 5 permit 2001:0DB8:BBBB::/48 ge 64 le 64
ipv6 prefix-list PEER-B-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-C-PREFIXES seq 5 permit 2001:0DB8:CCCC::/48 ge 64 le 64
ipv6 prefix-list PEER-C-PREFIXES seq 10 deny any
!
route-map PEER-B-IN permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set metric 100
route-map PEER-B-IN permit 20
 match ipv6 address prefix-list PEER-B-PREFIXES
 set community 65001:11111
!
route-map PEER-C-IN permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set metric 200
route-map PEER-C-IN permit 20
 match ipv6 address prefix-list PEER-C-PREFIXES
 set community 65001:22222
!
route-map PEER-B-OUT permit 10
 match ipv6 address prefix-list PEER-A-PREFIXES
!
route-map PEER-C-OUT permit 10
 match ipv6 address prefix-list PEER-A-PREFIXES
!
line vty
!

Configuration of the BGP routers with Route Server

To convert the initial scenario into one with route server, first we must
modify the configuration of routers RA, RB and RC. Now they must not peer
between them, but only with the route server. For example, RA’s
configuration would turn into:

Configuration for router 'RA'
!
hostname RA
password ****
!
router bgp 65001
 no bgp default ipv4-unicast
 neighbor 2001:0DB8::FFFF remote-as 65000
!
 address-family ipv6
 network 2001:0DB8:AAAA:1::/64
 network 2001:0DB8:AAAA:2::/64
 network 2001:0DB8:0000:1::/64
 network 2001:0DB8:0000:2::/64

 neighbor 2001:0DB8::FFFF activate
 neighbor 2001:0DB8::FFFF soft-reconfiguration inbound
 exit-address-family
!
line vty
!

Which is logically much simpler than its initial configuration, as it now
maintains only one BGP peering and all the filters (route-maps) have
disappeared.

Configuration of the Route Server itself

As we said when we described the functions of a route server
(Description of the Route Server model), it is in charge of all the
route filtering. To achieve that, the In and Out filters from the RA, RB and RC
configurations must be converted into Import and Export policies in the route
server.

This is a fragment of the route server configuration (we only show
the policies for client RA):

Configuration for Route Server ('RS')
!
hostname RS
password ix
!
bgp multiple-instance
!
router bgp 65000 view RS
 no bgp default ipv4-unicast
 neighbor 2001:0DB8::A remote-as 65001
 neighbor 2001:0DB8::B remote-as 65002
 neighbor 2001:0DB8::C remote-as 65003
!
 address-family ipv6
 neighbor 2001:0DB8::A activate
 neighbor 2001:0DB8::A route-server-client
 neighbor 2001:0DB8::A route-map RSCLIENT-A-IMPORT import
 neighbor 2001:0DB8::A route-map RSCLIENT-A-EXPORT export
 neighbor 2001:0DB8::A soft-reconfiguration inbound

 neighbor 2001:0DB8::B activate
 neighbor 2001:0DB8::B route-server-client
 neighbor 2001:0DB8::B route-map RSCLIENT-B-IMPORT import
 neighbor 2001:0DB8::B route-map RSCLIENT-B-EXPORT export
 neighbor 2001:0DB8::B soft-reconfiguration inbound

 neighbor 2001:0DB8::C activate
 neighbor 2001:0DB8::C route-server-client
 neighbor 2001:0DB8::C route-map RSCLIENT-C-IMPORT import
 neighbor 2001:0DB8::C route-map RSCLIENT-C-EXPORT export
 neighbor 2001:0DB8::C soft-reconfiguration inbound
 exit-address-family
!
ipv6 prefix-list COMMON-PREFIXES seq 5 permit 2001:0DB8:0000::/48 ge 64 le 64
ipv6 prefix-list COMMON-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-A-PREFIXES seq 5 permit 2001:0DB8:AAAA::/48 ge 64 le 64
ipv6 prefix-list PEER-A-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-B-PREFIXES seq 5 permit 2001:0DB8:BBBB::/48 ge 64 le 64
ipv6 prefix-list PEER-B-PREFIXES seq 10 deny any
!
ipv6 prefix-list PEER-C-PREFIXES seq 5 permit 2001:0DB8:CCCC::/48 ge 64 le 64
ipv6 prefix-list PEER-C-PREFIXES seq 10 deny any
!
route-map RSCLIENT-A-IMPORT permit 10
 match peer 2001:0DB8::B
 call A-IMPORT-FROM-B
route-map RSCLIENT-A-IMPORT permit 20
 match peer 2001:0DB8::C
 call A-IMPORT-FROM-C
!
route-map A-IMPORT-FROM-B permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set metric 100
route-map A-IMPORT-FROM-B permit 20
 match ipv6 address prefix-list PEER-B-PREFIXES
 set community 65001:11111
!
route-map A-IMPORT-FROM-C permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set metric 200
route-map A-IMPORT-FROM-C permit 20
 match ipv6 address prefix-list PEER-C-PREFIXES
 set community 65001:22222
!
route-map RSCLIENT-A-EXPORT permit 10
 match peer 2001:0DB8::B
 match ipv6 address prefix-list PEER-A-PREFIXES
route-map RSCLIENT-A-EXPORT permit 20
 match peer 2001:0DB8::C
 match ipv6 address prefix-list PEER-A-PREFIXES
!
...
...
...

If you compare the initial configuration of RA with the route server
configuration above, you can see how easy it is to generate the Import and
Export policies for RA from the In and Out route-maps of RA’s original
configuration.

When there was no route server, RA maintained two peerings, one with RB and
another with RC. Each of this peerings had an In route-map configured. To
build the Import route-map for client RA in the route server, simply add
route-map entries following this scheme:

route-map <NAME> permit 10
 match peer <Peer Address>
 call <In Route-Map for this Peer>
route-map <NAME> permit 20
 match peer <Another Peer Address>
 call <In Route-Map for this Peer>

This is exactly the process that has been followed to generate the route-map
RSCLIENT-A-IMPORT. The route-maps that are called inside it (A-IMPORT-FROM-B
and A-IMPORT-FROM-C) are exactly the same than the In route-maps from the
original configuration of RA (PEER-B-IN and PEER-C-IN), only the name is
different.

The same could have been done to create the Export policy for RA (route-map
RSCLIENT-A-EXPORT), but in this case the original Out route-maps where so
simple that we decided not to use the call WORD commands, and we
integrated all in a single route-map (RSCLIENT-A-EXPORT).

The Import and Export policies for RB and RC are not shown, but
the process would be identical.

Further considerations about Import and Export route-maps

The current version of the route server patch only allows to specify a
route-map for import and export policies, while in a standard BGP speaker
apart from route-maps there are other tools for performing input and output
filtering (access-lists, community-lists, …). But this does not represent
any limitation, as all kinds of filters can be included in import/export
route-maps. For example suppose that in the non-route-server scenario peer
RA had the following filters configured for input from peer B:

neighbor 2001:0DB8::B prefix-list LIST-1 in
neighbor 2001:0DB8::B filter-list LIST-2 in
neighbor 2001:0DB8::B route-map PEER-B-IN in
...
...
route-map PEER-B-IN permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set local-preference 100
route-map PEER-B-IN permit 20
 match ipv6 address prefix-list PEER-B-PREFIXES
 set community 65001:11111

It is possible to write a single route-map which is equivalent to the three
filters (the community-list, the prefix-list and the route-map). That route-map
can then be used inside the Import policy in the route server. Lets see how to
do it:

neighbor 2001:0DB8::A route-map RSCLIENT-A-IMPORT import
...
!
...
route-map RSCLIENT-A-IMPORT permit 10
 match peer 2001:0DB8::B
 call A-IMPORT-FROM-B
...
...
!
route-map A-IMPORT-FROM-B permit 1
 match ipv6 address prefix-list LIST-1
 match as-path LIST-2
 on-match goto 10
route-map A-IMPORT-FROM-B deny 2
route-map A-IMPORT-FROM-B permit 10
 match ipv6 address prefix-list COMMON-PREFIXES
 set local-preference 100
route-map A-IMPORT-FROM-B permit 20
 match ipv6 address prefix-list PEER-B-PREFIXES
 set community 65001:11111
!
...
...

The route-map A-IMPORT-FROM-B is equivalent to the three filters (LIST-1,
LIST-2 and PEER-B-IN). The first entry of route-map A-IMPORT-FROM-B (sequence
number 1) matches if and only if both the prefix-list LIST-1 and the
filter-list LIST-2 match. If that happens, due to the ‘on-match goto 10’
statement the next route-map entry to be processed will be number 10, and as of
that point route-map A-IMPORT-FROM-B is identical to PEER-B-IN. If the first
entry does not match, on-match goto 10’ will be ignored and the next
processed entry will be number 2, which will deny the route.

Thus, the result is the same that with the three original filters, i.e., if
either LIST-1 or LIST-2 rejects the route, it does not reach the route-map
PEER-B-IN. In case both LIST-1 and LIST-2 accept the route, it passes to
PEER-B-IN, which can reject, accept or modify the route.

Prefix Origin Validation Using RPKI

Prefix Origin Validation allows BGP routers to verify if the origin AS of an IP
prefix is legitimate to announce this IP prefix. The required attestation
objects are stored in the Resource Public Key Infrastructure (RPKI).
However, RPKI-enabled routers do not store cryptographic data itself but only
validation information. The validation of the cryptographic data (so called
Route Origin Authorization, or short ROA, objects) will be performed by
trusted cache servers. The RPKI/RTR protocol defines a standard mechanism to
maintain the exchange of the prefix/origin AS mapping between the cache server
and routers. In combination with a BGP Prefix Origin Validation scheme a
router is able to verify received BGP updates without suffering from
cryptographic complexity.

The RPKI/RTR protocol is defined in RFC 6810 [https://tools.ietf.org/html/rfc6810.html] and the validation scheme in
RFC 6811 [https://tools.ietf.org/html/rfc6811.html]. The current version of Prefix Origin Validation in FRR implements
both RFCs.

For a more detailed but still easy-to-read background, we suggest:

	[Securing-BGP]

	[Resource-Certification]

Features of the Current Implementation

In a nutshell, the current implementation provides the following features

	The BGP router can connect to one or more RPKI cache servers to receive
validated prefix to origin AS mappings. Advanced failover can be implemented
by server sockets with different preference values.

	If no connection to an RPKI cache server can be established after a
pre-defined timeout, the router will process routes without prefix origin
validation. It still will try to establish a connection to an RPKI cache
server in the background.

	By default, enabling RPKI does not change best path selection. In particular,
invalid prefixes will still be considered during best path selection.
However, the router can be configured to ignore all invalid prefixes.

	Route maps can be configured to match a specific RPKI validation state. This
allows the creation of local policies, which handle BGP routes based on the
outcome of the Prefix Origin Validation.

Enabling RPKI

	
rpki

	This command enables the RPKI configuration mode. Most commands that start
with rpki can only be used in this mode.

When it is used in a telnet session, leaving of this mode cause rpki to be initialized.

Executing this command alone does not activate prefix validation. You need
to configure at least one reachable cache server. See section
Configuring RPKI/RTR Cache Servers for configuring a cache server.

Configuring RPKI/RTR Cache Servers

The following commands are independent of a specific cache server.

	
rpki polling_period (1-3600)

	

	
no rpki polling_period

	Set the number of seconds the router waits until the router asks the cache
again for updated data.

The default value is 300 seconds.

	
rpki timeout <1-4,294,967,296>

	

	
no rpki timeout

	Set the number of seconds the router waits for the cache reply. If the cache
server is not replying within this time period, the router deletes all
received prefix records from the prefix table.

The default value is 600 seconds.

	
rpki initial-synchronisation-timeout <1-4,294,967,296>

	

	
no rpki initial-synchronisation-timeout

	Set the number of seconds until the first synchronization with the cache
server needs to be completed. If the timeout expires, BGP routing is started
without RPKI. The router will try to establish the cache server connection in
the background.

The default value is 30 seconds.

The following commands configure one or multiple cache servers.

	
rpki cache (A.B.C.D|WORD) PORT [SSH_USERNAME] [SSH_PRIVKEY_PATH] [SSH_PUBKEY_PATH] [KNOWN_HOSTS_PATH] PREFERENCE

	

	
no rpki cache (A.B.C.D|WORD) [PORT] PREFERENCE

	Add a cache server to the socket. By default, the connection between router
and cache server is based on plain TCP. Protecting the connection between
router and cache server by SSH is optional. Deleting a socket removes the
associated cache server and terminates the existing connection.

	A.B.C.D|WORD

	Address of the cache server.

	PORT

	Port number to connect to the cache server

	SSH_USERNAME

	SSH username to establish an SSH connection to the cache server.

	SSH_PRIVKEY_PATH

	Local path that includes the private key file of the router.

	SSH_PUBKEY_PATH

	Local path that includes the public key file of the router.

	KNOWN_HOSTS_PATH

	Local path that includes the known hosts file. The default value depends
on the configuration of the operating system environment, usually
~/.ssh/known_hosts.

Validating BGP Updates

	
match rpki notfound|invalid|valid

	

	
no match rpki notfound|invalid|valid

	Create a clause for a route map to match prefixes with the specified RPKI
state.

Note that the matching of invalid prefixes requires that invalid
prefixes are considered for best path selection, i.e.,
bgp bestpath prefix-validate disallow-invalid is not enabled.

In the following example, the router prefers valid routes over invalid
prefixes because invalid routes have a lower local preference.

! Allow for invalid routes in route selection process
route bgp 60001
!
! Set local preference of invalid prefixes to 10
route-map rpki permit 10
 match rpki invalid
 set local-preference 10
!
! Set local preference of valid prefixes to 500
route-map rpki permit 500
 match rpki valid
 set local-preference 500

Debugging

	
debug rpki

	

	
no debug rpki

	Enable or disable debugging output for RPKI.

Displaying RPKI

	
show rpki prefix-table

	Display all validated prefix to origin AS mappings/records which have been
received from the cache servers and stored in the router. Based on this data,
the router validates BGP Updates.

	
show rpki cache-connection

	Display all configured cache servers, whether active or not.

RPKI Configuration Example

hostname bgpd1
password zebra
! log stdout
debug bgp updates
debug bgp keepalives
debug rpki
!
rpki
 rpki polling_period 1000
 rpki timeout 10
 ! SSH Example:
 rpki cache example.com 22 rtr-ssh ./ssh_key/id_rsa ./ssh_key/id_rsa.pub preference 1
 ! TCP Example:
 rpki cache rpki-validator.realmv6.org 8282 preference 2
 exit
!
router bgp 60001
 bgp router-id 141.22.28.223
 network 192.168.0.0/16
 neighbor 123.123.123.0 remote-as 60002
 neighbor 123.123.123.0 route-map rpki in
!
 address-family ipv6
 neighbor 123.123.123.0 activate
 neighbor 123.123.123.0 route-map rpki in
 exit-address-family
!
route-map rpki permit 10
 match rpki invalid
 set local-preference 10
!
route-map rpki permit 20
 match rpki notfound
 set local-preference 20
!
route-map rpki permit 30
 match rpki valid
 set local-preference 30
!
route-map rpki permit 40
!

	Securing-BGP

	Geoff Huston, Randy Bush: Securing BGP, In: The Internet Protocol Journal, Volume 14, No. 2, 2011. <http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_14-2/142_bgp.html>

	Resource-Certification

	Geoff Huston: Resource Certification, In: The Internet Protocol Journal, Volume 12, No.1, 2009. <http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_12-1/121_resource.html>

Flowspec

Overview

Flowspec introduces a new NLRI
encoding format that is used to distribute traffic rule flow specifications.
Basically, instead of simply relying on destination IP address for IP prefixes,
the IP prefix is replaced by a n-tuple consisting of a rule. That rule can be a
more or less complex combination of the following:

	Network source/destination (can be one or the other, or both).

	Layer 4 information for UDP/TCP: source port, destination port, or any port.

	Layer 4 information for ICMP type and ICMP code.

	Layer 4 information for TCP Flags.

	Layer 3 information: DSCP value, Protocol type, packet length, fragmentation.

	Misc layer 4 TCP flags.

A combination of the above rules is applied for traffic filtering. This is
encoded as part of specific BGP extended communities and the action can range
from the obvious rerouting (to nexthop or to separate VRF) to shaping, or
discard.

The following IETF drafts and RFCs have been used to implement FRR Flowspec:

	RFC 5575 [https://tools.ietf.org/html/rfc5575.html]

	[Draft-IETF-IDR-Flowspec-redirect-IP]

Design Principles

FRR implements the Flowspec client side, that is to say that BGP is able to
receive Flowspec entries, but is not able to act as manager and send Flowspec
entries.

Linux provides the following mechanisms to implement policy based routing:

	Filtering the traffic with Netfilter.
Netfilter provides a set of tools like ipset and iptables that are
powerful enough to be able to filter such Flowspec filter rule.

	using non standard routing tables via iproute2 (via the ip rule
command provided by iproute2).
iproute2 is already used by FRR’s PBR daemon which provides basic
policy based routing based on IP source and destination criterion.

Below example is an illustration of what Flowspec will inject in the underlying
system:

linux shell
ipset create match0x102 hash:net,net counters
ipset add match0x102 32.0.0.0/16,40.0.0.0/16
iptables -N match0x102 -t mangle
iptables -A match0x102 -t mangle -j MARK --set-mark 102
iptables -A match0x102 -t mangle -j ACCEPT
iptables -i ntfp3 -t mangle -I PREROUTING -m set --match-set match0x102
 src,dst -g match0x102
ip rule add fwmark 102 lookup 102
ip route add 40.0.0.0/16 via 44.0.0.2 table 102

For handling an incoming Flowspec entry, the following workflow is applied:

	Incoming Flowspec entries are handled by bgpd, stored in the BGP RIB.

	Flowspec entry is installed according to its complexity.

It will be installed if one of the following filtering action is seen on the
BGP extended community: either redirect IP, or redirect VRF, in conjunction
with rate option, for redirecting traffic. Or rate option set to 0, for
discarding traffic.

According to the degree of complexity of the Flowspec entry, it will be
installed in zebra RIB. For more information about what is supported in the
FRR implementation as rule, see Limitations / Known Issues chapter. Flowspec
entry is split in several parts before being sent to zebra.

	zebra daemon receives the policy routing configuration

Policy Based Routing entities necessary to policy route the traffic in the
underlying system, are received by zebra. Two filtering contexts will be
created or appended in Netfilter: ipset and iptable context. The
former is used to define an IP filter based on multiple criterium. For
instance, an ipset net:net is based on two ip addresses, while
net,port,net is based on two ip addresses and one port (for ICMP, UDP, or
TCP). The way the filtering is used (for example, is src port or dst port
used?) is defined by the latter filtering context. iptable command will
reference the ipset context and will tell how to filter and what to do. In
our case, a marker will be set to indicate iproute2 where to forward the
traffic to. Sometimes, for dropping action, there is no need to add a marker;
the iptable will tell to drop all packets matching the ipset entry.

Configuration Guide

In order to configure an IPv4 Flowspec engine, use the following configuration.
As of today, it is only possible to configure Flowspec on the default VRF.

router bgp <AS>
 neighbor <A.B.C.D> remote-as <remoteAS>
 address-family ipv4 flowspec
 neighbor <A.B.C.D> activate
 exit
exit

You can see Flowspec entries, by using one of the following show commands:

	
show bgp ipv4 flowspec [detail | A.B.C.D]

	

Per-interface configuration

One nice feature to use is the ability to apply Flowspec to a specific
interface, instead of applying it to the whole machine. Despite the following
IETF draft [Draft-IETF-IDR-Flowspec-Interface-Set] is not implemented, it is
possible to manually limit Flowspec application to some incoming interfaces.
Actually, not using it can result to some unexpected behaviour like accounting
twice the traffic, or slow down the traffic (filtering costs). To limit
Flowspec to one specific interface, use the following command, under
flowspec address-family node.

	
[no] local-install <IFNAME | any>

	

By default, Flowspec is activated on all interfaces. Installing it to a named
interface will result in allowing only this interface. Conversely, enabling any
interface will flush all previously configured interfaces.

VRF redirection

Another nice feature to configure is the ability to redirect traffic to a
separate VRF. This feature does not go against the ability to configure
Flowspec only on default VRF. Actually, when you receive incoming BGP flowspec
entries on that default VRF, you can redirect traffic to an other VRF.

As a reminder, BGP flowspec entries have a BGP extended community that contains
a Route Target. Finding out a local VRF based on Route Target consists in the
following:

	A configuration of each VRF must be done, with its Route Target set
Each VRF is being configured within a BGP VRF instance with its own Route
Target list. Route Target accepted format matches the following:
A.B.C.D:U16, or U16:U32, U32:U16.

	The first VRF with the matching Route Target will be selected to route traffic
to. Use the following command under ipv4 unicast address-family node

	
[no] rt redirect import RTLIST...

	

In order to illustrate, if the Route Target configured in the Flowspec entry is
E.F.G.H:II, then a BGP VRF instance with the same Route Target will be set
set. That VRF will then be selected. The below full configuration example
depicts how Route Targets are configured and how VRFs and cross VRF
configuration is done. Note that the VRF are mapped on Linux Network
Namespaces. For data traffic to cross VRF boundaries, virtual ethernet
interfaces are created with private IP adressing scheme.

router bgp <ASx>
 neighbor <A.B.C.D> remote-as <ASz>
 address-family ipv4 flowspec
 neighbor A.B.C.D activate
 exit
exit
router bgp <ASy> vrf vrf2
 address-family ipv4 unicast
 rt redirect import <E.F.G.H:II>
 exit
exit

Flowspec monitoring & troubleshooting

You can monitor policy-routing objects by using one of the following commands.
Those command rely on the filtering contexts configured from BGP, and get the
statistics information retrieved from the underlying system. In other words,
those statistics are retrieved from Netfilter.

	
show pbr ipset IPSETNAME | iptable

	

IPSETNAME is the policy routing object name created by ipset. About
rule contexts, it is possible to know which rule has been configured to
policy-route some specific traffic. The show pbr iptable command
displays for forwarded traffic, which table is used. Then it is easy to use
that table identifier to dump the routing table that the forwarded traffic will
match.

	
show ip route table TABLEID

	TABLEID is the table number identifier referencing the non standard
routing table used in this example.

	
[no] debug bgp flowspec

	You can troubleshoot Flowspec, or BGP policy based routing. For instance, if
you encounter some issues when decoding a Flowspec entry, you should enable
debug bgp flowspec.

	
[no] debug bgp pbr [error]

	If you fail to apply the flowspec entry into zebra, there should be some
relationship with policy routing mechanism. Here,
debug bgp pbr error could help.

To get information about policy routing contexts created/removed, only use
debug bgp pbr command.

Ensuring that a Flowspec entry has been correctly installed and that incoming
traffic is policy-routed correctly can be checked as demonstrated below. First
of all, you must check whether the Flowspec entry has been installed or not.

CLI# show bgp ipv4 flowspec 5.5.5.2/32
 BGP flowspec entry: (flags 0x418)
 Destination Address 5.5.5.2/32
 IP Protocol = 17
 Destination Port >= 50 , <= 90
 FS:redirect VRF RT:255.255.255.255:255
 received for 18:41:37
 installed in PBR (match0x271ce00)

This means that the Flowspec entry has been installed in an iptable named
match0x271ce00. Once you have confirmation it is installed, you can check
whether you find the associate entry by executing following command. You can
also check whether incoming traffic has been matched by looking at counter
line.

CLI# show pbr ipset match0x271ce00
IPset match0x271ce00 type net,port
 to 5.5.5.0/24:proto 6:80-120 (8)
 pkts 1000, bytes 1000000
 to 5.5.5.2:proto 17:50-90 (5)
 pkts 1692918, bytes 157441374

As you can see, the entry is present. note that an iptable entry can be
used to host several Flowspec entries. In order to know where the matching
traffic is redirected to, you have to look at the policy routing rules. The
policy-routing is done by forwarding traffic to a routing table number. That
routing table number is reached by using a iptable. The relationship
between the routing table number and the incoming traffic is a MARKER that
is set by the IPtable referencing the IPSet. In Flowspec case, iptable
referencing the ipset context have the same name. So it is easy to know
which routing table is used by issuing following command:

CLI# show pbr iptable
 IPtable match0x271ce00 action redirect (5)
 pkts 1700000, bytes 158000000
 table 257, fwmark 257
...

As you can see, by using following Linux commands, the MARKER 0x101 is
present in both iptable and ip rule contexts.

iptables -t mangle --list match0x271ce00 -v
Chain match0x271ce00 (1 references)
pkts bytes target prot opt in out source destination
1700K 158M MARK all -- any any anywhere anywhere
 MARK set 0x101
1700K 158M ACCEPT all -- any any anywhere anywhere

ip rule list
0:from all lookup local
0:from all fwmark 0x101 lookup 257
32766:from all lookup main
32767:from all lookup default

This allows us to see where the traffic is forwarded to.

Limitations / Known Issues

As you can see, Flowspec is rich and can be very complex. As of today, not all
Flowspec rules will be able to be converted into Policy Based Routing actions.

	The Netfilter driver is not integrated into FRR yet. Not having this
piece of code prevents from injecting flowspec entries into the underlying
system.

	There are some limitations around filtering contexts

If I take example of UDP ports, or TCP ports in Flowspec, the information
can be a range of ports, or a unique value. This case is handled.
However, complexity can be increased, if the flow is a combination of a list
of range of ports and an enumerate of unique values. Here this case is not
handled. Similarly, it is not possible to create a filter for both src port
and dst port. For instance, filter on src port from [1-1000] and dst port =
80. The same kind of complexity is not possible for packet length, ICMP type,
ICMP code.

There are some other known issues:

	The validation procedure depicted in RFC 5575 [https://tools.ietf.org/html/rfc5575.html] is not available.

This validation procedure has not been implemented, as this feature was not
used in the existing setups you shared wih us.

	The filtering action shaper value, if positive, is not used to apply shaping.

If value is positive, the traffic is redirected to the wished destination,
without any other action configured by Flowspec.
It is recommended to configure Quality of Service if needed, more globally on
a per interface basis.

	Upon an unexpected crash or other event, zebra may not have time to flush
PBR contexts.

That is to say ipset, iptable and ip rule contexts. This is also a
consequence due to the fact that ip rule / ipset / iptables are not discovered
at startup (not able to read appropriate contexts coming from Flowspec).

Appendix

More information with a public presentation that explains the design of Flowspec
inside FRRouting.

[Presentation]

	Draft-IETF-IDR-Flowspec-redirect-IP

	<https://tools.ietf.org/id/draft-ietf-idr-flowspec-redirect-ip-02.txt>

	Draft-IETF-IDR-Flowspec-Interface-Set

	<https://tools.ietf.org/id/draft-ietf-idr-flowspec-interfaceset-03.txt>

	Presentation

	<https://docs.google.com/presentation/d/1ekQygUAG5yvQ3wWUyrw4Wcag0LgmbW1kV02IWcU4iUg/edit#slide=id.g378f0e1b5e_1_44>

	1

	For some set of objects to have an order, there must be some binary ordering relation that is defined for every combination of those objects, and that relation must be transitive. I.e.:, if the relation operator is <, and if a < b and b < c then that relation must carry over and it must be that a < c for the objects to have an order. The ordering relation may allow for equality, i.e. a < b and b < a may both be true and imply that a and b are equal in the order and not distinguished by it, in which case the set has a partial order. Otherwise, if there is an order, all the objects have a distinct place in the order and the set has a total order)

	bgp-route-osci-cond

	McPherson, D. and Gill, V. and Walton, D., “Border Gateway Protocol (BGP) Persistent Route Oscillation Condition”, IETF RFC3345

	stable-flexible-ibgp

	Flavel, A. and M. Roughan, “Stable and flexible iBGP”, ACM SIGCOMM 2009

	ibgp-correctness

	Griffin, T. and G. Wilfong, “On the correctness of IBGP configuration”, ACM SIGCOMM 2002

Babel

Babel is an interior gateway protocol that is suitable both for wired networks
and for wireless mesh networks. Babel has been described as ‘RIP on speed’ –
it is based on the same principles as RIP, but includes a number of refinements
that make it react much faster to topology changes without ever counting to
infinity, and allow it to perform reliable link quality estimation on wireless
links. Babel is a double-stack routing protocol, meaning that a single Babel
instance is able to perform routing for both IPv4 and IPv6.

FRR implements Babel as described in RFC 6126 [https://tools.ietf.org/html/rfc6126.html].

Configuring babeld

The babeld daemon can be invoked with any of the common
options (Common Invocation Options).

The zebra daemon must be running before babeld is
invoked. Also, if zebra is restarted then babeld
must be too.

Configuration of babeld is done in its configuration file
babeld.conf.

Babel configuration

	
[no] router babel

	Enable or disable Babel routing.

	
[no] babel resend-delay (20-655340)

	Specifies the time after which important messages are resent when
avoiding a black-hole. The default is 2000 ms.

	
[no] babel diversity

	Enable or disable routing using radio frequency diversity. This is
highly recommended in networks with many wireless nodes.
If you enable this, you will probably want to set babel
diversity-factor and babel channel below.

	
babel diversity-factor (1-256)

	Sets the multiplicative factor used for diversity routing, in units of
1/256; lower values cause diversity to play a more important role in
route selection. The default it 256, which means that diversity plays
no role in route selection; you will probably want to set that to 128
or less on nodes with multiple independent radios.

	
no network IFNAME

	Enable or disable Babel on the given interface.

	
babel <wired|wireless>

	Specifies whether this interface is wireless, which disables a number
of optimisations that are only correct on wired interfaces.
Specifying wireless (the default) is always correct, but may
cause slower convergence and extra routing traffic.

	
[no] babel split-horizon

	Specifies whether to perform split-horizon on the interface. Specifying
no babel split-horizon is always correct, while babel
split-horizon is an optimisation that should only be used on symmetric
and transitive (wired) networks. The default is babel split-horizon
on wired interfaces, and no babel split-horizon on wireless
interfaces. This flag is reset when the wired/wireless status of an
interface is changed.

	
babel hello-interval (20-655340)

	Specifies the time in milliseconds between two scheduled hellos. On
wired links, Babel notices a link failure within two hello intervals;
on wireless links, the link quality value is reestimated at every
hello interval. The default is 4000 ms.

	
babel update-interval (20-655340)

	Specifies the time in milliseconds between two scheduled updates. Since
Babel makes extensive use of triggered updates, this can be set to fairly
high values on links with little packet loss. The default is 20000 ms.

	
babel channel (1-254)

	

	
babel channel interfering

	

	
babel channel noninterfering

	Set the channel number that diversity routing uses for this interface (see
babel diversity above). Noninterfering interfaces are assumed to only
interfere with themselves, interfering interfaces are assumed to interfere
with all other channels except noninterfering channels, and interfaces with
a channel number interfere with interfering interfaces and interfaces with
the same channel number. The default is babel channel interfering for
wireless interfaces, and babel channel noninterfering for wired
interfaces. This is reset when the wired/wireless status of an interface is
changed.

	
babel rxcost (1-65534)

	Specifies the base receive cost for this interface. For wireless
interfaces, it specifies the multiplier used for computing the ETX
reception cost (default 256); for wired interfaces, it specifies the
cost that will be advertised to neighbours. This value is reset when
the wired/wireless attribute of the interface is changed.

Note

Do not use this command unless you know what you are doing; in most
networks, acting directly on the cost using route maps is a better
technique.

	
babel rtt-decay (1-256)

	This specifies the decay factor for the exponential moving average of
RTT samples, in units of 1/256. Higher values discard old samples
faster. The default is 42.

	
babel rtt-min (1-65535)

	This specifies the minimum RTT, in milliseconds, starting from which we
increase the cost to a neighbour. The additional cost is linear in
(rtt - rtt-min). The default is 100 ms.

	
babel rtt-max (1-65535)

	This specifies the maximum RTT, in milliseconds, above which we don’t
increase the cost to a neighbour. The default is 120 ms.

	
babel max-rtt-penalty (0-65535)

	This specifies the maximum cost added to a neighbour because of RTT, i.e.
when the RTT is higher or equal than rtt-max. The default is 0, which
effectively disables the use of a RTT-based cost.

	
[no] babel enable-timestamps

	Enable or disable sending timestamps with each Hello and IHU message in
order to compute RTT values. The default is no babel enable-timestamps.

	
babel resend-delay (20-655340)

	Specifies the time in milliseconds after which an ‘important’ request or
update will be resent. The default is 2000 ms. You probably don’t want to
tweak this value.

	
babel smoothing-half-life (0-65534)

	Specifies the time constant, in seconds, of the smoothing algorithm used for
implementing hysteresis. Larger values reduce route oscillation at the cost
of very slightly increasing convergence time. The value 0 disables
hysteresis, and is suitable for wired networks. The default is 4 s.

Babel redistribution

	
[no] redistribute <ipv4|ipv6> KIND

	Specify which kind of routes should be redistributed into Babel.

Show Babel information

These commands dump various parts of babeld’s internal state.

	
show babel route

	

	
show babel route A.B.C.D

	

	
show babel route X:X::X:X

	

	
show babel route A.B.C.D/M

	

	
show babel route X:X::X:X/M

	

	
show babel interface

	

	
show babel interface IFNAME

	

	
show babel neighbor

	

	
show babel parameters

	

Babel debugging commands

	
[no] debug babel KIND

	Enable or disable debugging messages of a given kind. KIND can
be one of:

	common

	filter

	timeout

	interface

	route

	all

Note

If you have compiled with the NO_DEBUG flag, then these commands aren’t
available.

EIGRP

	DUAL

	The Diffusing Update ALgorithm, a Bellman-Ford based routing
algorithm used by EIGRP.

EIGRP – Routing Information Protocol is widely deployed interior gateway
routing protocol. EIGRP was developed in the 1990’s. EIGRP is a
distance-vector protocol and is based on the DUAL algorithms.
As a distance-vector protocol, the EIGRP router send updates to its
neighbors as networks change, thus allowing the convergence to a
known topology.

eigrpd supports EIGRP as described in RFC7868

Starting and Stopping eigrpd

The default configuration file name of eigrpd’s is eigrpd.conf. When
invocation eigrpd searches directory /etc/frr. If
eigrpd.conf is not there next search current directory. If an
integrated config is specified configuration is written into frr.conf.

The EIGRP protocol requires interface information maintained by zebra daemon.
So running zebra is mandatory to run eigrpd. Thus minimum sequence for
running EIGRP is:

zebra -d
eigrpd -d

Please note that zebra must be invoked before eigrpd.

	To stop eigrpd, please use ::

	kill cat /var/run/eigrpd.pid

Certain signals have special meanings to eigrpd.

	Signal

	Meaning

	SIGHUP & SIGUSR1

	Rotate the log file

	SIGINT & SIGTERM

	Sweep all installed EIGRP routes and gracefully terminate

eigrpd invocation options. Common options that can be specified
(Common Invocation Options).

	
-r, --retain

	When the program terminates, retain routes added by eigrpd.

EIGRP Configuration

	
router eigrp (1-65535)

	The router eigrp command is necessary to enable EIGRP. To disable EIGRP,
use the no router eigrp (1-65535) command. EIGRP must be enabled before
carrying out any of the EIGRP commands.

	
no router eigrp (1-65535)

	Disable EIGRP.

	
network NETWORK

	

	
no network NETWORK

	Set the EIGRP enable interface by network. The interfaces which
have addresses matching with network are enabled.

This group of commands either enables or disables EIGRP interfaces between
certain numbers of a specified network address. For example, if the
network for 10.0.0.0/24 is EIGRP enabled, this would result in all the
addresses from 10.0.0.0 to 10.0.0.255 being enabled for EIGRP. The no
network command will disable EIGRP for the specified network.

Below is very simple EIGRP configuration. Interface eth0 and
interface which address match to 10.0.0.0/8 are EIGRP enabled.

!
router eigrp 1
 network 10.0.0.0/8
!

	
passive-interface (IFNAME|default)

	

	
no passive-interface IFNAME

	This command sets the specified interface to passive mode. On passive mode
interface, all receiving packets are ignored and eigrpd does not send either
multicast or unicast EIGRP packets except to EIGRP neighbors specified with
neighbor command. The interface may be specified as default to make
eigrpd default to passive on all interfaces.

The default is to be passive on all interfaces.

How to Announce EIGRP route

	
redistribute kernel

	

	
redistribute kernel metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

	

	
no redistribute kernel

	redistribute kernel redistributes routing information from kernel route
entries into the EIGRP tables. no redistribute kernel disables the routes.

	
redistribute static

	

	
redistribute static metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

	

	
no redistribute static

	redistribute static redistributes routing information from static route
entries into the EIGRP tables. no redistribute static disables the routes.

	
redistribute connected

	

	
redistribute connected metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

	

	
no redistribute connected

	Redistribute connected routes into the EIGRP tables. no redistribute
connected disables the connected routes in the EIGRP tables. This command
redistribute connected of the interface which EIGRP disabled. The connected
route on EIGRP enabled interface is announced by default.

	
redistribute ospf

	

	
redistribute ospf metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

	

	
no redistribute ospf

	redistribute ospf redistributes routing information from ospf route
entries into the EIGRP tables. no redistribute ospf disables the routes.

	
redistribute bgp

	

	
redistribute bgp metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

	

	
no redistribute bgp

	redistribute bgp redistributes routing information from bgp route entries
into the EIGRP tables. no redistribute bgp disables the routes.

Show EIGRP Information

	
show ip eigrp topology

	Display current EIGRP status.

eigrpd> **show ip eigrp topology**
show ip eigrp topo

EIGRP Topology Table for AS(4)/ID(0.0.0.0)

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply
 r - reply Status, s - sia Status

P 10.0.2.0/24, 1 successors, FD is 256256, serno: 0
 via Connected, enp0s3

EIGRP Debug Commands

Debug for EIGRP protocol.

	
debug eigrp packets

	Debug eigrp packets

debug eigrp will show EIGRP packets that are sent and received.

	
debug eigrp transmit

	Debug eigrp transmit events

debug eigrp transmit will display detailed information about the EIGRP
transmit events.

	
show debugging eigrp

	Display eigrpd’s debugging option.

show debugging eigrp will show all information currently set for eigrpd
debug.

ISIS

ISIS is a routing protocol
which is described in ISO10589, RFC 1195 [https://tools.ietf.org/html/rfc1195.html], RFC 5308 [https://tools.ietf.org/html/rfc5308.html]. ISIS is an
IGP. Compared with RIP,
ISIS can provide scalable network support and faster convergence times
like OSPF. ISIS is widely used in large networks such as ISP and carrier backbone networks.

Configuring isisd

There are no isisd specific options. Common options can be specified
(Common Invocation Options) to isisd. isisd needs to acquire
interface information from zebra in order to function. Therefore zebra must
be running before invoking isisd. Also, if zebra is restarted then isisd
must be too.

Like other daemons, isisd configuration is done in ISIS specific
configuration file isisd.conf.

ISIS router

To start ISIS process you have to specify the ISIS router. As of this
writing, isisd does not support multiple ISIS processes.

	
router isis WORD

	

	
no router isis WORD

	Enable or disable the ISIS process by specifying the ISIS domain with
‘WORD’. isisd does not yet support multiple ISIS processes but you must
specify the name of ISIS process. The ISIS process name ‘WORD’ is then used
for interface (see command ip router isis WORD).

	
net XX.XXXX.XXX.XX

	

	
no net XX.XXXX.XXX.XX

	Set/Unset network entity title (NET) provided in ISO format.

	
hostname dynamic

	

	
no hostname dynamic

	Enable support for dynamic hostname.

	
area-password [clear | md5] <password>

	

	
domain-password [clear | md5] <password>

	

	
no area-password

	

	
no domain-password

	Configure the authentication password for an area, respectively a domain, as
clear text or md5 one.

	
log-adjacency-changes

	

	
no log-adjacency-changes

	Log changes in adjacency state.

	
metric-style [narrow | transition | wide]

	

	
no metric-style

	Set old-style (ISO 10589) or new-style packet formats:

	narrow
Use old style of TLVs with narrow metric

	transition
Send and accept both styles of TLVs during transition

	wide
Use new style of TLVs to carry wider metric

	
set-overload-bit

	

	
no set-overload-bit

	Set overload bit to avoid any transit traffic.

ISIS Timer

	
lsp-gen-interval (1-120)

	

	
lsp-gen-interval [level-1 | level-2] (1-120)

	

	
no lsp-gen-interval

	

	
no lsp-gen-interval [level-1 | level-2]

	Set minimum interval in seconds between regenerating same LSP,
globally, for an area (level-1) or a domain (level-2).

	
lsp-refresh-interval [level-1 | level-2] (1-65235)

	

	
no lsp-refresh-interval [level-1 | level-2]

	Set LSP refresh interval in seconds, globally, for an area (level-1) or a
domain (level-2).

	
max-lsp-lifetime (360-65535)

	

	
max-lsp-lifetime [level-1 | level-2] (360-65535)

	

	
no max-lsp-lifetime

	

	
no max-lsp-lifetime [level-1 | level-2]

	Set LSP maximum LSP lifetime in seconds, globally, for an area (level-1) or
a domain (level-2).

	
spf-interval (1-120)

	

	
spf-interval [level-1 | level-2] (1-120)

	

	
no spf-interval

	

	
no spf-interval [level-1 | level-2]

	Set minimum interval between consecutive SPF calculations in seconds.

ISIS region

	
is-type [level-1 | level-1-2 | level-2-only]

	

	
no is-type

	Define the ISIS router behavior:

	level-1
Act as a station router only

	level-1-2
Act as both a station router and an area router

	level-2-only
Act as an area router only

ISIS interface

	
ip router isis WORD

	

	
no ip router isis WORD

	

Activate ISIS adjacency on this interface. Note that the name
of ISIS instance must be the same as the one used to configure the ISIS process
(see command router isis WORD).

	
isis circuit-type [level-1 | level-1-2 | level-2]

	

	
no isis circuit-type

	Configure circuit type for interface:

	level-1
Level-1 only adjacencies are formed

	level-1-2
Level-1-2 adjacencies are formed

	level-2-only
Level-2 only adjacencies are formed

	
isis csnp-interval (1-600)

	

	
isis csnp-interval (1-600) [level-1 | level-2]

	

	
no isis csnp-interval

	

	
no isis csnp-interval [level-1 | level-2]

	Set CSNP interval in seconds globally, for an area (level-1) or a domain
(level-2).

	
isis hello padding

	Add padding to IS-IS hello packets.

	
isis hello-interval (1-600)

	

	
isis hello-interval (1-600) [level-1 | level-2]

	

	
no isis hello-interval

	

	
no isis hello-interval [level-1 | level-2]

	Set Hello interval in seconds globally, for an area (level-1) or a domain
(level-2).

	
isis hello-multiplier (2-100)

	

	
isis hello-multiplier (2-100) [level-1 | level-2]

	

	
no isis hello-multiplier

	

	
no isis hello-multiplier [level-1 | level-2]

	Set multiplier for Hello holding time globally, for an area (level-1) or a
domain (level-2).

	
isis metric [(0-255) | (0-16777215)]

	

	
isis metric [(0-255) | (0-16777215)] [level-1 | level-2]

	

	
no isis metric

	

	
no isis metric [level-1 | level-2]

	Set default metric value globally, for an area (level-1) or a domain
(level-2). Max value depend if metric support narrow or wide value (see
command metric-style [narrow | transition | wide]).

	
isis network point-to-point

	

	
no isis network point-to-point

	Set network type to ‘Point-to-Point’ (broadcast by default).

	
isis passive

	

	
no isis passive

	Configure the passive mode for this interface.

	
isis password [clear | md5] <password>

	

	
no isis password

	Configure the authentication password (clear or encoded text) for the
interface.

	
isis priority (0-127)

	

	
isis priority (0-127) [level-1 | level-2]

	

	
no isis priority

	

	
no isis priority [level-1 | level-2]

	Set priority for Designated Router election, globally, for the area
(level-1) or the domain (level-2).

	
isis psnp-interval (1-120)

	

	
isis psnp-interval (1-120) [level-1 | level-2]

	

	
no isis psnp-interval

	

	
no isis psnp-interval [level-1 | level-2]

	Set PSNP interval in seconds globally, for an area (level-1) or a domain
(level-2).

	
isis three-way-handshake

	

	
no isis three-way-handshake

	Enable or disable RFC 5303 [https://tools.ietf.org/html/rfc5303.html] Three-Way Handshake for P2P adjacencies.
Three-Way Handshake is enabled by default.

Showing ISIS information

	
show isis summary

	Show summary information about ISIS.

	
show isis hostname

	Show information about ISIS node.

	
show isis interface

	

	
show isis interface detail

	

	
show isis interface <interface name>

	Show state and configuration of ISIS specified interface, or all interfaces
if no interface is given with or without details.

	
show isis neighbor

	

	
show isis neighbor <System Id>

	

	
show isis neighbor detail

	Show state and information of ISIS specified neighbor, or all neighbors if
no system id is given with or without details.

	
show isis database

	

	
show isis database [detail]

	

	
show isis database <LSP id> [detail]

	

	
show isis database detail <LSP id>

	Show the ISIS database globally, for a specific LSP id without or with
details.

	
show isis topology

	

	
show isis topology [level-1|level-2]

	Show topology IS-IS paths to Intermediate Systems, globally, in area
(level-1) or domain (level-2).

	
show ip route isis

	Show the ISIS routing table, as determined by the most recent SPF
calculation.

Traffic Engineering

	
mpls-te on

	

	
no mpls-te

	Enable Traffic Engineering LSP flooding.

	
mpls-te router-address <A.B.C.D>

	

	
no mpls-te router-address

	Configure stable IP address for MPLS-TE.

	
show isis mpls-te interface

	

	
show isis mpls-te interface INTERFACE

	Show MPLS Traffic Engineering parameters for all or specified interface.

	
show isis mpls-te router

	Show Traffic Engineering router parameters.

See also

Traffic Engineering

Debugging ISIS

	
debug isis adj-packets

	

	
no debug isis adj-packets

	IS-IS Adjacency related packets.

	
debug isis checksum-errors

	

	
no debug isis checksum-errors

	IS-IS LSP checksum errors.

	
debug isis events

	

	
no debug isis events

	IS-IS Events.

	
debug isis local-updates

	

	
no debug isis local-updates

	IS-IS local update packets.

	
debug isis packet-dump

	

	
no debug isis packet-dump

	IS-IS packet dump.

	
debug isis protocol-errors

	

	
no debug isis protocol-errors

	IS-IS LSP protocol errors.

	
debug isis route-events

	

	
no debug isis route-events

	IS-IS Route related events.

	
debug isis snp-packets

	

	
no debug isis snp-packets

	IS-IS CSNP/PSNP packets.

	
debug isis spf-events

	

	
debug isis spf-statistics

	

	
debug isis spf-triggers

	

	
no debug isis spf-events

	

	
no debug isis spf-statistics

	

	
no debug isis spf-triggers

	IS-IS Shortest Path First Events, Timing and Statistic Data and triggering
events.

	
debug isis update-packets

	

	
no debug isis update-packets

	Update related packets.

	
show debugging isis

	Print which ISIS debug level is activate.

ISIS Configuration Examples

A simple example, with MD5 authentication enabled:

!
interface eth0
 ip router isis FOO
 isis network point-to-point
 isis circuit-type level-2-only
!
router isis FOO
net 47.0023.0000.0000.0000.0000.0000.0000.1900.0004.00
 metric-style wide
 is-type level-2-only

A Traffic Engineering configuration, with Inter-ASv2 support.

First, the zebra.conf part:

hostname HOSTNAME
password PASSWORD
log file /var/log/zebra.log
!
interface eth0
 ip address 10.2.2.2/24
 link-params
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
 admin-grp 0xab
!
interface eth1
 ip address 10.1.1.1/24
 link-params
 enable
 metric 100
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
 neighbor 10.1.1.2 as 65000

Then the isisd.conf itself:

hostname HOSTNAME
password PASSWORD
log file /var/log/isisd.log
!
!
interface eth0
 ip router isis FOO
!
interface eth1
 ip router isis FOO
!
!
router isis FOO
 isis net 47.0023.0000.0000.0000.0000.0000.0000.1900.0004.00
 mpls-te on
 mpls-te router-address 10.1.1.1
!
line vty

NHRP

nhrpd is an implementation of the :abbr:NHRP (Next Hop Routing Protocol).
NHRP is described in :rfc`2332`.

NHRP is used to improve the efficiency of routing computer network traffic over
NBMA networks. NHRP provides an
ARP-like solution that allows a system to dynamically learn the NBMA address of
the other systems that are part of that network, allowing these systems to
directly communicate without requiring traffic to use an intermediate hop.

Cisco Dynamic Multipoint VPN (DMVPN) is based on NHRP, and frr nhrpd
implements this scenario.

Routing Design

nhrpd never handles routing of prefixes itself. You need to run some
real routing protocol (e.g. BGP) to advertise routes over the tunnels.
What nhrpd does it establishes ‘shortcut routes’ that optimizes the
routing protocol to avoid going through extra nodes in NBMA GRE mesh.

nhrpd does route NHRP domain addresses individually using per-host prefixes.
This is similar to Cisco FlexVPN; but in contrast to opennhrp which uses
a generic subnet route.

To create NBMA GRE tunnel you might use the following (Linux terminal
commands)::

ip tunnel add gre1 mode gre key 42 ttl 64
ip addr add 10.255.255.2/32 dev gre1
ip link set gre1 up

Note that the IP-address is assigned as host prefix to gre1. nhrpd will
automatically create additional host routes pointing to gre1 when
a connection with these hosts is established.

The gre1 subnet prefix should be announced by routing protocol from the
hub nodes (e.g. BGP ‘network’ announce). This allows the routing protocol
to decide which is the closest hub and determine the relay hub on prefix
basis when direct tunnel is not established.

nhrpd will redistribute directly connected neighbors to zebra. Within
hub nodes, these routes should be internally redistributed using some
routing protocol (e.g. iBGP) to allow hubs to be able to relay all traffic.

This can be achieved in hubs with the following bgp configuration (network
command defines the GRE subnet):

router bgp 65555
 address-family ipv4 unicast
 network 172.16.0.0/16
 redistribute nhrp
 exit-address-family

Configuring NHRP

FIXME

Hub Functionality

In addition to routing nhrp redistributed host prefixes, the hub nodes
are also responsible to send NHRP Traffic Indication messages that
trigger creation of the shortcut tunnels.

nhrpd sends Traffic Indication messages based on network traffic captured
using NFLOG. Typically you want to send Traffic Indications for network
traffic that is routed from gre1 back to gre1 in rate limited manner.
This can be achieved with the following iptables rule.

iptables -A FORWARD -i gre1 -o gre1 \\
 -m hashlimit --hashlimit-upto 4/minute --hashlimit-burst 1 \\
 --hashlimit-mode srcip,dstip --hashlimit-srcmask 24 --hashlimit-dstmask 24 \\
 --hashlimit-name loglimit-0 -j NFLOG --nflog-group 1 --nflog-range 128

You can fine tune the src/dstmask according to the prefix lengths you
announce internal, add additional IP range matches, or rate limitation
if needed. However, the above should be good in most cases.

This kernel NFLOG target’s nflog-group is configured in global nhrp config
with:

nhrp nflog-group 1

To start sending these traffic notices out from hubs, use the nhrp
per-interface directive:

interface gre1
 ip nhrp redirect

Integration with IKE

nhrpd needs tight integration with IKE daemon for various reasons.
Currently only strongSwan is supported as IKE daemon.

nhrpd connects to strongSwan using VICI protocol based on UNIX socket
(hardcoded now as /var/run/charon.vici).

strongSwan currently needs few patches applied. Please check out the
http://git.alpinelinux.org/cgit/user/tteras/strongswan/log/?h=tteras-release,release
and
http://git.alpinelinux.org/cgit/user/tteras/strongswan/log/?h=tteras,working tree [http://git.alpinelinux.org/cgit/user/tteras/strongswan/log/?h=tteras,workingtree]
git repositories for the patches.

NHRP Events

FIXME

Configuration Example

FIXME

OSPFv2

OSPF version 2 is a routing protocol which
is described in RFC 2328 [https://tools.ietf.org/html/rfc2328.html]. OSPF is an IGP. Compared with RIP, OSPF can provide scalable
network support and faster convergence times. OSPF is widely used in large
networks such as ISP backbone and
enterprise networks.

OSPF Fundamentals

OSPF is, mostly, a link-state routing protocol. In contrast to
distance-vector protocols, such as RIP or BGP, where
routers describe available paths (i.e. routes) to each other, in
link-state protocols routers instead describe the state of their links
to their immediate neighbouring routers.

Each router describes their link-state information in a message known as an
LSA, which is then propagated through to all
other routers in a link-state routing domain, by a process called flooding.
Each router thus builds up an LSDB of all the
link-state messages. From this collection of LSAs in the LSDB, each router can
then calculate the shortest path to any other router, based on some common
metric, by using an algorithm such as
Edgar Djikstra’s [http://www.cs.utexas.edu/users/EWD/]
SPF algorithm.

By describing connectivity of a network in this way, in terms of
routers and links rather than in terms of the paths through a network,
a link-state protocol can use less bandwidth and converge more quickly
than other protocols. A link-state protocol need distribute only one
link-state message throughout the link-state domain when a link on any
single given router changes state, in order for all routers to
reconverge on the best paths through the network. In contrast, distance
vector protocols can require a progression of different path update
messages from a series of different routers in order to converge.

The disadvantage to a link-state protocol is that the process of
computing the best paths can be relatively intensive when compared to
distance-vector protocols, in which near to no computation need be done
other than (potentially) select between multiple routes. This overhead
is mostly negligible for modern embedded CPUs, even for networks with
thousands of nodes. The primary scaling overhead lies more in coping
with the ever greater frequency of LSA updates as the size of a
link-state area increases, in managing the LSDB and required
flooding.

This section aims to give a distilled, but accurate, description of the
more important workings of OSPF which an administrator may need
to know to be able best configure and trouble-shoot OSPF.

OSPF Mechanisms

OSPF defines a range of mechanisms, concerned with detecting,
describing and propagating state through a network. These mechanisms
will nearly all be covered in greater detail further on. They may be
broadly classed as:

The Hello Protocol

The OSPF Hello protocol allows OSPF to quickly detect changes in two-way
reachability between routers on a link. OSPF can additionally avail of other
sources of reachability information, such as link-state information provided by
hardware, or through dedicated reachability protocols such as
BFD.

OSPF also uses the Hello protocol to propagate certain state between routers
sharing a link, for example:

	Hello protocol configured state, such as the dead-interval.

	Router priority, for DR/BDR election.

	DR/BDR election results.

	Any optional capabilities supported by each router.

The Hello protocol is comparatively trivial and will not be explored in greater
detail than here.

LSAs

At the heart of OSPF are LSA
messages. Despite the name, some LSA s do not, strictly speaking,
describe link-state information. Common LSA s describe information
such as:

	Routers, in terms of their links.

	Networks, in terms of attached routers.

	Routes, external to a link-state domain:

	External Routes

	Routes entirely external to OSPF. Routers originating such
routes are known as ASBR
routers.

	Summary Routes

	Routes which summarise routing information relating to OSPF areas
external to the OSPF link-state area at hand, originated by
ABR routers.

LSA Flooding

OSPF defines several related mechanisms, used to manage synchronisation of
LSDB s between neighbours as neighbours form adjacencies and the
propagation, or flooding of new or updated LSA s.

Areas

OSPF provides for the protocol to be broken up into multiple smaller and
independent link-state areas. Each area must be connected to a common backbone
area by an ABR. These ABR routers are
responsible for summarising the link-state routing information of an area into
Summary LSAs, possibly in a condensed (i.e. aggregated) form, and then
originating these summaries into all other areas the ABR is connected
to.

Note that only summaries and external routes are passed between areas. As
these describe paths, rather than any router link-states, routing between
areas hence is by distance-vector, not link-state.

OSPF LSAs

The core objects in OSPF are LSA s. Everything else in OSPF revolves
around detecting what to describe in LSAs, when to update them, how to flood
them throughout a network and how to calculate routes from them.

There are a variety of different LSA s, for purposes such as describing
actual link-state information, describing paths (i.e. routes), describing
bandwidth usage of links for TE purposes, and
even arbitrary data by way of Opaque LSA s.

LSA Header

All LSAs share a common header with the following information:

	Type

Different types of LSA s describe different things in
OSPF. Types include:

	Router LSA

	Network LSA

	Network Summary LSA

	Router Summary LSA

	AS-External LSA

The specifics of the different types of LSA are examined below.

	Advertising Router

The Router ID of the router originating the LSA.

See also

ospf router-id A.B.C.D.

	LSA ID

The ID of the LSA, which is typically derived in some way from the
information the LSA describes, e.g. a Router LSA uses the Router ID as
the LSA ID, a Network LSA will have the IP address of the DR
as its LSA ID.

The combination of the Type, ID and Advertising Router ID must uniquely
identify the LSA. There can however be multiple instances of
an LSA with the same Type, LSA ID and Advertising Router ID, see
sequence number.

	Age

A number to allow stale LSA s to, eventually, be purged by routers
from their LSDB s.

The value nominally is one of seconds. An age of 3600, i.e. 1 hour, is
called the MaxAge. MaxAge LSAs are ignored in routing
calculations. LSAs must be periodically refreshed by their Advertising
Router before reaching MaxAge if they are to remain valid.

Routers may deliberately flood LSAs with the age artificially set to
3600 to indicate an LSA is no longer valid. This is called
flushing of an LSA.

It is not abnormal to see stale LSAs in the LSDB, this can occur where
a router has shutdown without flushing its LSA(s), e.g. where it has
become disconnected from the network. Such LSAs do little harm.

	Sequence Number

A number used to distinguish newer instances of an LSA from older instances.

Link-State LSAs

Of all the various kinds of LSA s, just two types comprise the
actual link-state part of OSPF, Router LSA s and
Network LSA s. These LSA types are absolutely core to the
protocol.

Instances of these LSAs are specific to the link-state area in which
they are originated. Routes calculated from these two LSA types are
called intra-area routes.

	Router LSA

Each OSPF Router must originate a router LSA to describe
itself. In it, the router lists each of its OSPF enabled
interfaces, for the given link-state area, in terms of:

	Cost

	The output cost of that interface, scaled inversely to some commonly known
reference value, auto-cost reference-bandwidth (1-4294967.

	Link Type

	Transit Network

A link to a multi-access network, on which the router has at least one
Full adjacency with another router.

	PtP

	A link to a single remote router, with a Full adjacency. No
DR is elected on such links; no network
LSA is originated for such a link.

	Stub

	A link with no adjacent neighbours, or a host route.

	Link ID and Data

These values depend on the Link Type:

	Link Type

	Link ID

	Link Data

	Transit

	Link IP address of the DR

	Interface IP address

	Point-to-Point

	Router ID of the remote router

	Local interface IP address, or the
ifindex
for unnumbered links

	Stub

	IP address

	Subnet Mask

Links on a router may be listed multiple times in the Router LSA, e.g. a
PtP interface on which OSPF is enabled must always be described
by a Stub link in the Router LSA, in addition to being listed as
PtP link in the Router LSA if the adjacency with the remote router
is Full.

Stub links may also be used as a way to describe links on which OSPF is
not spoken, known as passive interfaces, see
passive-interface INTERFACE.

	Network LSA

On multi-access links (e.g. ethernets, certain kinds of ATM and X.25
configurations), routers elect a DR. The DR is
responsible for originating a Network LSA, which helps reduce
the information needed to describe multi-access networks with multiple
routers attached. The DR also acts as a hub for the flooding of
LSA s on that link, thus reducing flooding overheads.

The contents of the Network LSA describes the:

	Subnet Mask

As the LSA ID of a Network LSA must be the IP address of the
DR, the Subnet Mask together with the LSA ID gives
you the network address.

	Attached Routers

Each router fully-adjacent with the DR is listed in the LSA,
by their Router-ID. This allows the corresponding Router LSA s to be
easily retrieved from the LSDB.

Summary of Link State LSAs:

	LSA Type

	LSA ID

	LSA Data Describes

	Router LSA

	Router ID

	The OSPF enabled links of the
router, within a specific link-state area.

	Network LSA

	The IP address of the
DR for the network

	The subnet mask of the network and the
Router IDs of all routers on the network

With an LSDB composed of just these two types of LSA, it is
possible to construct a directed graph of the connectivity between all
routers and networks in a given OSPF link-state area. So, not
surprisingly, when OSPF routers build updated routing tables, the first
stage of SPF calculation concerns itself only with these two
LSA types.

Link-State LSA Examples

The example below shows two LSA s, both originated by the same router
(Router ID 192.168.0.49) and with the same LSA ID (192.168.0.49), but
of different LSA types.

The first LSA being the router LSA describing 192.168.0.49’s links: 2 links
to multi-access networks with fully-adjacent neighbours (i.e. Transit
links) and 1 being a Stub link (no adjacent neighbours).

The second LSA being a Network LSA, for which 192.168.0.49 is the
DR, listing the Router IDs of 4 routers on that network which
are fully adjacent with 192.168.0.49.

show ip ospf database router 192.168.0.49

 OSPF Router with ID (192.168.0.53)

 Router Link States (Area 0.0.0.0)

 LS age: 38
 Options: 0x2 : *|-|-|-|-|-|E|*
 LS Flags: 0x6
 Flags: 0x2 : ASBR
 LS Type: router-LSA
 Link State ID: 192.168.0.49
 Advertising Router: 192.168.0.49
 LS Seq Number: 80000f90
 Checksum: 0x518b
 Length: 60
 Number of Links: 3

 Link connected to: a Transit Network
 (Link ID) Designated Router address: 192.168.1.3
 (Link Data) Router Interface address: 192.168.1.3
 Number of TOS metrics: 0
 TOS 0 Metric: 10

 Link connected to: a Transit Network
 (Link ID) Designated Router address: 192.168.0.49
 (Link Data) Router Interface address: 192.168.0.49
 Number of TOS metrics: 0
 TOS 0 Metric: 10

 Link connected to: Stub Network
 (Link ID) Net: 192.168.3.190
 (Link Data) Network Mask: 255.255.255.255
 Number of TOS metrics: 0
 TOS 0 Metric: 39063
show ip ospf database network 192.168.0.49

 OSPF Router with ID (192.168.0.53)

 Net Link States (Area 0.0.0.0)

 LS age: 285
 Options: 0x2 : *|-|-|-|-|-|E|*
 LS Flags: 0x6
 LS Type: network-LSA
 Link State ID: 192.168.0.49 (address of Designated Router)
 Advertising Router: 192.168.0.49
 LS Seq Number: 80000074
 Checksum: 0x0103
 Length: 40
 Network Mask: /29
 Attached Router: 192.168.0.49
 Attached Router: 192.168.0.52
 Attached Router: 192.168.0.53
 Attached Router: 192.168.0.54

Note that from one LSA, you can find the other. E.g. Given the
Network-LSA you have a list of Router IDs on that network, from which
you can then look up, in the local LSDB, the matching Router
LSA. From that Router-LSA you may (potentially) find links to other
Transit networks and Routers IDs which can be used to lookup the
corresponding Router or Network LSA. And in that fashion, one can find
all the Routers and Networks reachable from that starting LSA.

Given the Router LSA instead, you have the IP address of the
DR of any attached transit links. Network LSAs will have that IP
as their LSA ID, so you can then look up that Network LSA and from that
find all the attached routers on that link, leading potentially to more
links and Network and Router LSAs, etc. etc.

From just the above two LSA s, one can already see the
following partial topology:

------------------------ Network:
 | Designated Router IP: 192.168.1.3
 |
 IP: 192.168.1.3
 (transit link)
 (cost: 10)
 Router ID: 192.168.0.49(stub)---------- IP: 192.168.3.190/32
 (cost: 10) (cost: 39063)
 (transit link)
 IP: 192.168.0.49
 |
 |
------------------------------ Network: 192.168.0.48/29
 | | | Designated Router IP: 192.168.0.49
 | | |
 | | Router ID: 192.168.0.54
 | |
 | Router ID: 192.168.0.53
 |
Router ID: 192.168.0.52

Note the Router IDs, though they look like IP addresses and often are
IP addresses, are not strictly speaking IP addresses, nor need they be
reachable addresses (though, OSPF will calculate routes to Router IDs).

External LSAs

External, or “Type 5”, LSA s describe routing information which is
entirely external to OSPF, and is “injected” into
OSPF. Such routing information may have come from another
routing protocol, such as RIP or BGP, they may represent static routes
or they may represent a default route.

An OSPF router which originates External LSA s is known as an
ASBR. Unlike the link-state LSA s, and
most other LSA s, which are flooded only within the area in
which they originate, External LSA s are flooded through-out
the OSPF network to all areas capable of carrying External
LSA s (Areas).

Routes internal to OSPF (intra-area or inter-area) are always preferred
over external routes.

The External LSA describes the following:

	IP Network number

	The IP Network number of the route is described by the LSA ID field.

	IP Network Mask

	The body of the External LSA describes the IP Network Mask of the route.
This, together with the LSA ID, describes the prefix of the IP route
concerned.

	Metric

	The cost of the External Route. This cost may be an OSPF cost (also known as
a “Type 1” metric), i.e. equivalent to the normal OSPF costs, or an
externally derived cost (“Type 2” metric) which is not comparable to OSPF
costs and always considered larger than any OSPF cost. Where there are both
Type 1 and 2 External routes for a route, the Type 1 is always preferred.

	Forwarding Address

	The address of the router to forward packets to for the route. This may be,
and usually is, left as 0 to specify that the ASBR originating the External
LSA should be used. There must be an internal OSPF route to the
forwarding address, for the forwarding address to be usable.

	Tag

	An arbitrary 4-bytes of data, not interpreted by OSPF, which may carry
whatever information about the route which OSPF speakers desire.

AS External LSA Example

To illustrate, below is an example of an External LSA in the
LSDB of an OSPF router. It describes a route to the IP prefix of
192.168.165.0/24, originated by the ASBR with Router-ID 192.168.0.49. The
metric of 20 is external to OSPF. The forwarding address is 0, so the route
should forward to the originating ASBR if selected.

show ip ospf database external 192.168.165.0
 LS age: 995
 Options: 0x2 : *|-|-|-|-|-|E|*
 LS Flags: 0x9
 LS Type: AS-external-LSA
 Link State ID: 192.168.165.0 (External Network Number)
 Advertising Router: 192.168.0.49
 LS Seq Number: 800001d8
 Checksum: 0xea27
 Length: 36
 Network Mask: /24
 Metric Type: 2 (Larger than any link state path)
 TOS: 0
 Metric: 20
 Forward Address: 0.0.0.0
 External Route Tag: 0

We can add this to our partial topology from above, which now looks
like::

--------------------- Network:
 | Designated Router IP: 192.168.1.3
 |
 IP: 192.168.1.3 /---- External route: 192.168.165.0/24
 (transit link) / Cost: 20 (External metric)
 (cost: 10) /
Router ID: 192.168.0.49(stub)---------- IP: 192.168.3.190/32
 (cost: 10) (cost: 39063)
 (transit link)
 IP: 192.168.0.49
 |
 |
------------------------------ Network: 192.168.0.48/29
 | | | Designated Router IP: 192.168.0.49
 | | |
 | | Router ID: 192.168.0.54
 | |
 | Router ID: 192.168.0.53
 |
Router ID: 192.168.0.52

Summary LSAs

Summary LSAs are created by ABR s to summarise the destinations
available within one area to other areas. These LSAs may describe IP networks,
potentially in aggregated form, or ASBR routers.

Configuring ospfd

There are no ospfd specific options. Common options can be specified
(Common Invocation Options) to ospfd. ospfd needs to acquire
interface information from zebra in order to function. Therefore zebra must
be running before invoking ospfd. Also, if zebra is restarted then ospfd
must be too.

Like other daemons, ospfd configuration is done in OSPF specific
configuration file ospfd.conf.

OSPF router

To start OSPF process you have to specify the OSPF router. As of this
writing, ospfd does not support multiple OSPF processes.

	
router ospf

	

	
no router ospf

	Enable or disable the OSPF process. ospfd does not yet
support multiple OSPF processes. So you can not specify an OSPF process
number.

	
ospf router-id A.B.C.D

	

	
no ospf router-id

	This sets the router-ID of the OSPF process. The
router-ID may be an IP address of the router, but need not be - it can
be any arbitrary 32bit number. However it MUST be unique within the
entire OSPF domain to the OSPF speaker - bad things will happen if
multiple OSPF speakers are configured with the same router-ID! If one
is not specified then ospfd will obtain a router-ID
automatically from zebra.

	
ospf abr-type TYPE

	

	
no ospf abr-type TYPE

	type can be cisco|ibm|shortcut|standard. The “Cisco” and “IBM” types
are equivalent.

The OSPF standard for ABR behaviour does not allow an ABR to consider
routes through non-backbone areas when its links to the backbone are
down, even when there are other ABRs in attached non-backbone areas
which still can reach the backbone - this restriction exists primarily
to ensure routing-loops are avoided.

With the “Cisco” or “IBM” ABR type, the default in this release of FRR, this
restriction is lifted, allowing an ABR to consider summaries learned from
other ABRs through non-backbone areas, and hence route via non-backbone
areas as a last resort when, and only when, backbone links are down.

Note that areas with fully-adjacent virtual-links are considered to be
“transit capable” and can always be used to route backbone traffic, and
hence are unaffected by this setting (area A.B.C.D virtual-link A.B.C.D).

More information regarding the behaviour controlled by this command can
be found in RFC 3509 [https://tools.ietf.org/html/rfc3509.html], and draft-ietf-ospf-shortcut-abr-02.txt.

Quote: “Though the definition of the ABR
in the OSPF specification does not require a router with multiple
attached areas to have a backbone connection, it is actually
necessary to provide successful routing to the inter-area and
external destinations. If this requirement is not met, all traffic
destined for the areas not connected to such an ABR or out of the
OSPF domain, is dropped. This document describes alternative ABR
behaviors implemented in Cisco and IBM routers.”

	
ospf rfc1583compatibility

	

	
no ospf rfc1583compatibility

	RFC 2328 [https://tools.ietf.org/html/rfc2328.html], the successor to RFC 1583 [https://tools.ietf.org/html/rfc1583.html], suggests according
to section G.2 (changes) in section 16.4 a change to the path
preference algorithm that prevents possible routing loops that were
possible in the old version of OSPFv2. More specifically it demands
that inter-area paths and intra-area backbone path are now of equal preference
but still both preferred to external paths.

This command should NOT be set normally.

	
log-adjacency-changes [detail]

	

	
no log-adjacency-changes [detail]

	Configures ospfd to log changes in adjacency. With the optional
detail argument, all changes in adjacency status are shown. Without detail,
only changes to full or regressions are shown.

	
passive-interface INTERFACE

	

	
no passive-interface INTERFACE

	Do not speak OSPF interface on the
given interface, but do advertise the interface as a stub link in the
router-LSA for this router. This
allows one to advertise addresses on such connected interfaces without
having to originate AS-External/Type-5 LSAs (which have global flooding
scope) - as would occur if connected addresses were redistributed into
OSPF (Redistribute routes to OSPF). This is the only way to
advertise non-OSPF links into stub areas.

	
timers throttle spf DELAY INITIAL-HOLDTIME MAX-HOLDTIME

	

	
no timers throttle spf

	This command sets the initial delay, the initial-holdtime
and the maximum-holdtime between when SPF is calculated and the
event which triggered the calculation. The times are specified in
milliseconds and must be in the range of 0 to 600000 milliseconds.

The delay specifies the minimum amount of time to delay SPF
calculation (hence it affects how long SPF calculation is delayed after
an event which occurs outside of the holdtime of any previous SPF
calculation, and also serves as a minimum holdtime).

Consecutive SPF calculations will always be separated by at least
‘hold-time’ milliseconds. The hold-time is adaptive and initially is
set to the initial-holdtime configured with the above command.
Events which occur within the holdtime of the previous SPF calculation
will cause the holdtime to be increased by initial-holdtime, bounded
by the maximum-holdtime configured with this command. If the adaptive
hold-time elapses without any SPF-triggering event occurring then
the current holdtime is reset to the initial-holdtime. The current
holdtime can be viewed with show ip ospf, where it is expressed as
a multiplier of the initial-holdtime.

router ospf
timers throttle spf 200 400 10000

In this example, the delay is set to 200ms, the initial holdtime is set to
400ms and the maximum holdtime to 10s. Hence there will always be at least
200ms between an event which requires SPF calculation and the actual SPF
calculation. Further consecutive SPF calculations will always be separated
by between 400ms to 10s, the hold-time increasing by 400ms each time an
SPF-triggering event occurs within the hold-time of the previous SPF
calculation.

This command supercedes the timers spf command in previous FRR
releases.

	
max-metric router-lsa [on-startup|on-shutdown] (5-86400)

	

	
max-metric router-lsa administrative

	

	
no max-metric router-lsa [on-startup|on-shutdown|administrative]

	This enables RFC 3137 [https://tools.ietf.org/html/rfc3137.html] support, where the OSPF process describes its
transit links in its router-LSA as having infinite distance so that other
routers will avoid calculating transit paths through the router while still
being able to reach networks through the router.

This support may be enabled administratively (and indefinitely) or
conditionally. Conditional enabling of max-metric router-lsas can be for a
period of seconds after startup and/or for a period of seconds prior to
shutdown.

Enabling this for a period after startup allows OSPF to converge fully first
without affecting any existing routes used by other routers, while still
allowing any connected stub links and/or redistributed routes to be
reachable. Enabling this for a period of time in advance of shutdown allows
the router to gracefully excuse itself from the OSPF domain.

Enabling this feature administratively allows for administrative
intervention for whatever reason, for an indefinite period of time. Note
that if the configuration is written to file, this administrative form of
the stub-router command will also be written to file. If ospfd is
restarted later, the command will then take effect until manually
deconfigured.

Configured state of this feature as well as current status, such as the
number of second remaining till on-startup or on-shutdown ends, can be
viewed with the show ip ospf command.

	
auto-cost reference-bandwidth (1-4294967)

	

	
no auto-cost reference-bandwidth

	This sets the reference
bandwidth for cost calculations, where this bandwidth is considered
equivalent to an OSPF cost of 1, specified in Mbits/s. The default is
100Mbit/s (i.e. a link of bandwidth 100Mbit/s or higher will have a
cost of 1. Cost of lower bandwidth links will be scaled with reference
to this cost).

This configuration setting MUST be consistent across all routers within the
OSPF domain.

	
network A.B.C.D/M area A.B.C.D

	

	
network A.B.C.D/M area (0-4294967295)

	

	
no network A.B.C.D/M area A.B.C.D

	

	
no network A.B.C.D/M area (0-4294967295)

	This command specifies the OSPF enabled interface(s). If the interface has
an address from range 192.168.1.0/24 then the command below enables ospf
on this interface so router can provide network information to the other
ospf routers via this interface.

router ospf
network 192.168.1.0/24 area 0.0.0.0

Prefix length in interface must be equal or bigger (i.e. smaller network) than
prefix length in network statement. For example statement above doesn’t enable
ospf on interface with address 192.168.1.1/23, but it does on interface with
address 192.168.1.129/25.

Note that the behavior when there is a peer address
defined on an interface changed after release 0.99.7.
Currently, if a peer prefix has been configured,
then we test whether the prefix in the network command contains
the destination prefix. Otherwise, we test whether the network command prefix
contains the local address prefix of the interface.

In some cases it may be more convenient to enable OSPF on a per
interface/subnet basis (ip ospf area AREA [ADDR]).

OSPF area

	
area A.B.C.D range A.B.C.D/M

	

	
area (0-4294967295) range A.B.C.D/M

	

	
no area A.B.C.D range A.B.C.D/M

	

	
no area (0-4294967295) range A.B.C.D/M

	Summarize intra area paths from specified area into one Type-3 summary-LSA
announced to other areas. This command can be used only in ABR and ONLY
router-LSAs (Type-1) and network-LSAs (Type-2) (i.e. LSAs with scope area) can
be summarized. Type-5 AS-external-LSAs can’t be summarized - their scope is AS.
Summarizing Type-7 AS-external-LSAs isn’t supported yet by FRR.

router ospf
 network 192.168.1.0/24 area 0.0.0.0
 network 10.0.0.0/8 area 0.0.0.10
 area 0.0.0.10 range 10.0.0.0/8

With configuration above one Type-3 Summary-LSA with routing info 10.0.0.0/8 is
announced into backbone area if area 0.0.0.10 contains at least one intra-area
network (i.e. described with router or network LSA) from this range.

	
area A.B.C.D range IPV4_PREFIX not-advertise

	

	
no area A.B.C.D range IPV4_PREFIX not-advertise

	Instead of summarizing intra area paths filter them - i.e. intra area paths from this
range are not advertised into other areas.
This command makes sense in ABR only.

	
area A.B.C.D range IPV4_PREFIX substitute IPV4_PREFIX

	

	
no area A.B.C.D range IPV4_PREFIX substitute IPV4_PREFIX

	Substitute summarized prefix with another prefix.

router ospf
 network 192.168.1.0/24 area 0.0.0.0
 network 10.0.0.0/8 area 0.0.0.10
 area 0.0.0.10 range 10.0.0.0/8 substitute 11.0.0.0/8

One Type-3 summary-LSA with routing info 11.0.0.0/8 is announced into backbone area if
area 0.0.0.10 contains at least one intra-area network (i.e. described with router-LSA or
network-LSA) from range 10.0.0.0/8.
This command makes sense in ABR only.

	
area A.B.C.D virtual-link A.B.C.D

	

	
area (0-4294967295) virtual-link A.B.C.D

	

	
no area A.B.C.D virtual-link A.B.C.D

	

	
no area (0-4294967295) virtual-link A.B.C.D

	

	
area A.B.C.D shortcut

	

	
area (0-4294967295) shortcut

	

	
no area A.B.C.D shortcut

	

	
no area (0-4294967295) shortcut

	Configure the area as Shortcut capable. See RFC 3509 [https://tools.ietf.org/html/rfc3509.html]. This requires
that the ‘abr-type’ be set to ‘shortcut’.

	
area A.B.C.D stub

	

	
area (0-4294967295) stub

	

	
no area A.B.C.D stub

	

	
no area (0-4294967295) stub

	Configure the area to be a stub area. That is, an area where no router
originates routes external to OSPF and hence an area where all external
routes are via the ABR(s). Hence, ABRs for such an area do not need
to pass AS-External LSAs (type-5s) or ASBR-Summary LSAs (type-4) into the
area. They need only pass Network-Summary (type-3) LSAs into such an area,
along with a default-route summary.

	
area A.B.C.D stub no-summary

	

	
area (0-4294967295) stub no-summary

	

	
no area A.B.C.D stub no-summary

	

	
no area (0-4294967295) stub no-summary

	Prevents an ospfd ABR from injecting inter-area
summaries into the specified stub area.

	
area A.B.C.D default-cost (0-16777215)

	

	
no area A.B.C.D default-cost (0-16777215)

	Set the cost of default-summary LSAs announced to stubby areas.

	
area A.B.C.D export-list NAME

	

	
area (0-4294967295) export-list NAME

	

	
no area A.B.C.D export-list NAME

	

	
no area (0-4294967295) export-list NAME

	Filter Type-3 summary-LSAs announced to other areas originated from intra-
area paths from specified area.

router ospf
 network 192.168.1.0/24 area 0.0.0.0
 network 10.0.0.0/8 area 0.0.0.10
 area 0.0.0.10 export-list foo
!
access-list foo permit 10.10.0.0/16
access-list foo deny any

With example above any intra-area paths from area 0.0.0.10 and from range
10.10.0.0/16 (for example 10.10.1.0/24 and 10.10.2.128/30) are announced into
other areas as Type-3 summary-LSA’s, but any others (for example 10.11.0.0/16
or 10.128.30.16/30) aren’t.

This command is only relevant if the router is an ABR for the specified
area.

	
area A.B.C.D import-list NAME

	

	
area (0-4294967295) import-list NAME

	

	
no area A.B.C.D import-list NAME

	

	
no area (0-4294967295) import-list NAME

	Same as export-list, but it applies to paths announced into specified area
as Type-3 summary-LSAs.

	
area A.B.C.D filter-list prefix NAME in

	

	
area A.B.C.D filter-list prefix NAME out

	

	
area (0-4294967295) filter-list prefix NAME in

	

	
area (0-4294967295) filter-list prefix NAME out

	

	
no area A.B.C.D filter-list prefix NAME in

	

	
no area A.B.C.D filter-list prefix NAME out

	

	
no area (0-4294967295) filter-list prefix NAME in

	

	
no area (0-4294967295) filter-list prefix NAME out

	Filtering Type-3 summary-LSAs to/from area using prefix lists. This command
makes sense in ABR only.

	
area A.B.C.D authentication

	

	
area (0-4294967295) authentication

	

	
no area A.B.C.D authentication

	

	
no area (0-4294967295) authentication

	Specify that simple password authentication should be used for the given
area.

	
area A.B.C.D authentication message-digest

	

	
area (0-4294967295) authentication message-digest

	Specify that OSPF packets must be authenticated with MD5 HMACs within the
given area. Keying material must also be configured on a per-interface basis
(ip ospf message-digest-key).

MD5 authentication may also be configured on a per-interface basis
(ip ospf authentication message-digest). Such per-interface
settings will override any per-area authentication setting.

OSPF interface

	
ip ospf area AREA [ADDR]

	

	
no ip ospf area [ADDR]

	Enable OSPF on the interface, optionally restricted to just the IP address
given by ADDR, putting it in the AREA area. Per interface area settings
take precedence to network commands
(network A.B.C.D/M area A.B.C.D).

If you have a lot of interfaces, and/or a lot of subnets, then enabling OSPF
via this command may result in a slight performance improvement.

	
ip ospf authentication-key AUTH_KEY

	

	
no ip ospf authentication-key

	Set OSPF authentication key to a simple password. After setting AUTH_KEY,
all OSPF packets are authenticated. AUTH_KEY has length up to 8 chars.

Simple text password authentication is insecure and deprecated in favour of
MD5 HMAC authentication.

	
ip ospf authentication message-digest

	Specify that MD5 HMAC authentication must be used on this interface. MD5
keying material must also be configured. Overrides any authentication
enabled on a per-area basis
(area A.B.C.D authentication message-digest)

Note that OSPF MD5 authentication requires that time never go backwards
(correct time is NOT important, only that it never goes backwards), even
across resets, if ospfd is to be able to promptly reestablish adjacencies
with its neighbours after restarts/reboots. The host should have system time
be set at boot from an external or non-volatile source (e.g. battery backed
clock, NTP, etc.) or else the system clock should be periodically saved to
non-volatile storage and restored at boot if MD5 authentication is to be
expected to work reliably.

	
ip ospf message-digest-key KEYID md5 KEY

	

	
no ip ospf message-digest-key

	Set OSPF authentication key to a cryptographic password. The cryptographic
algorithm is MD5.

KEYID identifies secret key used to create the message digest. This ID is
part of the protocol and must be consistent across routers on a link.

KEY is the actual message digest key, of up to 16 chars (larger strings will
be truncated), and is associated with the given KEYID.

	
ip ospf cost (1-65535)

	

	
no ip ospf cost

	Set link cost for the specified interface. The cost value is set to
router-LSA’s metric field and used for SPF calculation.

	
ip ospf dead-interval (1-65535)

	

	
ip ospf dead-interval minimal hello-multiplier (2-20)

	

	
no ip ospf dead-interval

	Set number of seconds for RouterDeadInterval timer value used for Wait Timer
and Inactivity Timer. This value must be the same for all routers attached
to a common network. The default value is 40 seconds.

If ‘minimal’ is specified instead, then the dead-interval is set to 1 second
and one must specify a hello-multiplier. The hello-multiplier specifies how
many Hellos to send per second, from 2 (every 500ms) to 20 (every 50ms).
Thus one can have 1s convergence time for OSPF. If this form is specified,
then the hello-interval advertised in Hello packets is set to 0 and the
hello-interval on received Hello packets is not checked, thus the
hello-multiplier need NOT be the same across multiple routers on a common
link.

	
ip ospf hello-interval (1-65535)

	

	
no ip ospf hello-interval

	Set number of seconds for HelloInterval timer value. Setting this value,
Hello packet will be sent every timer value seconds on the specified interface.
This value must be the same for all routers attached to a common network.
The default value is 10 seconds.

This command has no effect if
ip ospf dead-interval minimal hello-multiplier (2-20) is also
specified for the interface.

	
ip ospf network (broadcast|non-broadcast|point-to-multipoint|point-to-point)

	

	
no ip ospf network

	Set explicitly network type for specified interface.

	
ip ospf priority (0-255)

	

	
no ip ospf priority

	Set RouterPriority integer value. The router with the highest priority will
be more eligible to become Designated Router. Setting the value to 0, makes
the router ineligible to become Designated Router. The default value is 1.

	
ip ospf retransmit-interval (1-65535)

	

	
no ip ospf retransmit interval

	Set number of seconds for RxmtInterval timer value. This value is used when
retransmitting Database Description and Link State Request packets. The
default value is 5 seconds.

	
ip ospf transmit-delay

	

	
no ip ospf transmit-delay

	Set number of seconds for InfTransDelay value. LSAs’ age should be
incremented by this value when transmitting. The default value is 1 second.

	
ip ospf area (A.B.C.D|(0-4294967295))

	

	
no ip ospf area

	Enable ospf on an interface and set associated area.

Redistribute routes to OSPF

	
redistribute (kernel|connected|static|rip|bgp)

	

	
redistribute (kernel|connected|static|rip|bgp) ROUTE-MAP

	

	
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2)

	

	
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) route-map WORD

	

	
redistribute (kernel|connected|static|rip|bgp) metric (0-16777214)

	

	
redistribute (kernel|connected|static|rip|bgp) metric (0-16777214) route-map WORD

	

	
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) metric (0-16777214)

	

	
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) metric (0-16777214) route-map WORD

	

	
no redistribute (kernel|connected|static|rip|bgp)

	

Redistribute routes of the specified protocol or kind into OSPF, with the
metric type and metric set if specified, filtering the routes using the
given route-map if specified. Redistributed routes may also be filtered
with distribute-lists, see
ospf distribute-list configuration.

Redistributed routes are distributed as into OSPF as Type-5 External LSAs
into links to areas that accept external routes, Type-7 External LSAs for
NSSA areas and are not redistributed at all into Stub areas, where external
routes are not permitted.

Note that for connected routes, one may instead use the passive-interface
configuration.

See also

clicmd:passive-interface INTERFACE.

	
default-information originate

	

	
default-information originate metric (0-16777214)

	

	
default-information originate metric (0-16777214) metric-type (1|2)

	

	
default-information originate metric (0-16777214) metric-type (1|2) route-map WORD

	

	
default-information originate always

	

	
default-information originate always metric (0-16777214)

	

	
default-information originate always metric (0-16777214) metric-type (1|2)

	

	
default-information originate always metric (0-16777214) metric-type (1|2) route-map WORD

	

	
no default-information originate

	Originate an AS-External (type-5) LSA describing a default route into all
external-routing capable areas, of the specified metric and metric type. If
the ‘always’ keyword is given then the default is always advertised, even
when there is no default present in the routing table.

	
distribute-list NAME out (kernel|connected|static|rip|ospf

	

	
no distribute-list NAME out (kernel|connected|static|rip|ospf

	

Apply the access-list filter, NAME, to redistributed routes of the given
type before allowing the routes to redistributed into OSPF
(ospf redistribution).

	
default-metric (0-16777214)

	

	
no default-metric

	

	
distance (1-255)

	

	
no distance (1-255)

	

	
distance ospf (intra-area|inter-area|external) (1-255)

	

	
no distance ospf

	

	
router zebra

	

	
no router zebra

	

Showing OSPF information

	
show ip ospf

	Show information on a variety of general OSPF and area state and
configuration information.

	
show ip ospf interface [INTERFACE]

	Show state and configuration of OSPF the specified interface, or all
interfaces if no interface is given.

	
show ip ospf neighbor

	

	
show ip ospf neighbor INTERFACE

	

	
show ip ospf neighbor detail

	

	
show ip ospf neighbor INTERFACE detail

	

	
show ip ospf database

	

	
show ip ospf database (asbr-summary|external|network|router|summary)

	

	
show ip ospf database (asbr-summary|external|network|router|summary) LINK-STATE-ID

	

	
show ip ospf database (asbr-summary|external|network|router|summary) LINK-STATE-ID adv-router ADV-ROUTER

	

	
show ip ospf database (asbr-summary|external|network|router|summary) adv-router ADV-ROUTER

	

	
show ip ospf database (asbr-summary|external|network|router|summary) LINK-STATE-ID self-originate

	

	
show ip ospf database (asbr-summary|external|network|router|summary) self-originate

	

	
show ip ospf database max-age

	

	
show ip ospf database self-originate

	

	
show ip ospf route

	Show the OSPF routing table, as determined by the most recent SPF
calculation.

Opaque LSA

	
ospf opaque-lsa

	

	
capability opaque

	

	
no ospf opaque-lsa

	

	
no capability opaque

	ospfd supports Opaque LSA (RFC 2370 [https://tools.ietf.org/html/rfc2370.html]) as fundamental for MPLS Traffic
Engineering LSA. Prior to used MPLS TE, opaque-lsa must be enable in the
configuration file. Alternate command could be “mpls-te on”
(Traffic Engineering).

	
show ip ospf database (opaque-link|opaque-area|opaque-external)

	

	
show ip ospf database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID

	

	
show ip ospf database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID adv-router ADV-ROUTER

	

	
show ip ospf database (opaque-link|opaque-area|opaque-external) adv-router ADV-ROUTER

	

	
show ip ospf database (opaque-link|opaque-area|opaque-external) LINK-STATE-ID self-originate

	

	
show ip ospf database (opaque-link|opaque-area|opaque-external) self-originate

	Show Opaque LSA from the database.

Traffic Engineering

	
mpls-te on

	

	
no mpls-te

	Enable Traffic Engineering LSA flooding.

	
mpls-te router-address <A.B.C.D>

	Configure stable IP address for MPLS-TE. This IP address is then advertise
in Opaque LSA Type-10 TLV=1 (TE) option 1 (Router-Address).

	
mpls-te inter-as area <area-id>|as

	

	
no mpls-te inter-as

	Enable RFC 5392 [https://tools.ietf.org/html/rfc5392.html] support - Inter-AS TE v2 - to flood Traffic Engineering
parameters of Inter-AS link. 2 modes are supported: AREA and AS; LSA are
flood in AREA <area-id> with Opaque Type-10, respectively in AS with Opaque
Type-11. In all case, Opaque-LSA TLV=6.

	
show ip ospf mpls-te interface

	

	
show ip ospf mpls-te interface INTERFACE

	Show MPLS Traffic Engineering parameters for all or specified interface.

	
show ip ospf mpls-te router

	Show Traffic Engineering router parameters.

Router Information

	
router-info [as | area <A.B.C.D>]

	

	
no router-info

	Enable Router Information (RFC 4970 [https://tools.ietf.org/html/rfc4970.html]) LSA advertisement with AS scope
(default) or Area scope flooding when area is specified.

	
pce address <A.B.C.D>

	

	
no pce address

	

	
pce domain as (0-65535)

	

	
no pce domain as (0-65535)

	

	
pce neighbor as (0-65535)

	

	
no pce neighbor as (0-65535)

	

	
pce flag BITPATTERN

	

	
no pce flag

	

	
pce scope BITPATTERN

	

	
no pce scope

	The commands are conform to RFC 5088 [https://tools.ietf.org/html/rfc5088.html] and allow OSPF router announce Path
Computation Element (PCE) capabilities through the Router Information (RI)
LSA. Router Information must be enable prior to this. The command set/unset
respectively the PCE IP address, Autonomous System (AS) numbers of
controlled domains, neighbor ASs, flag and scope. For flag and scope, please
refer to :rfc`5088` for the BITPATTERN recognition. Multiple ‘pce neighbor’
command could be specified in order to specify all PCE neighbours.

	
show ip ospf router-info

	Show Router Capabilities flag.

	
show ip ospf router-info pce

	Show Router Capabilities PCE parameters.

Segment Routing

This is an EXPERIMENTAL support of Segment Routing as per draft
draft-ietf-ospf-segment-routing-extensions-24.txt for MPLS dataplane.

	
[no] segment-routing on

	Enable Segment Routing. Even if this also activate routing information
support, it is preferable to also activate routing information, and set
accordingly the Area or AS flooding.

	
[no] segment-routing global-block (0-1048575) (0-1048575)

	Fix the Segment Routing Global Block i.e. the label range used by MPLS to
store label in the MPLS FIB.

	
[no] segment-routing node-msd (1-16)

	Fix the Maximum Stack Depth supported by the router. The value depend of the
MPLS dataplane. E.g. for Linux kernel, since version 4.13 it is 32.

	
[no] segment-routing prefix A.B.C.D/M index (0-65535) [no-php-flag]

	Set the Segment Routing index for the specified prefix. Note that, only
prefix with /32 corresponding to a loopback interface are currently
supported. The ‘no-php-flag’ means NO Penultimate Hop Popping that allows SR
node to request to its neighbor to not pop the label.

	
show ip ospf database segment-routing <adv-router ADVROUTER|self-originate> [json]

	Show Segment Routing Data Base, all SR nodes, specific advertised router or
self router. Optional JSON output can be obtained by appending ‘json’ to the
end of the command.

Debugging OSPF

	
debug ospf packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]

	

	
no debug ospf packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]

	Dump Packet for debugging

	
debug ospf ism

	

	
debug ospf ism (status|events|timers)

	

	
no debug ospf ism

	

	
no debug ospf ism (status|events|timers)

	Show debug information of Interface State Machine

	
debug ospf nsm

	

	
debug ospf nsm (status|events|timers)

	

	
no debug ospf nsm

	

	
no debug ospf nsm (status|events|timers)

	Show debug information of Network State Machine

	
debug ospf event

	

	
no debug ospf event

	Show debug information of OSPF event

	
debug ospf nssa

	

	
no debug ospf nssa

	Show debug information about Not So Stub Area

	
debug ospf lsa

	

	
debug ospf lsa (generate|flooding|refresh)

	

	
no debug ospf lsa

	

	
no debug ospf lsa (generate|flooding|refresh)

	Show debug detail of Link State messages

	
debug ospf te

	

	
no debug ospf te

	Show debug information about Traffic Engineering LSA

	
debug ospf zebra

	

	
debug ospf zebra (interface|redistribute)

	

	
no debug ospf zebra

	

	
no debug ospf zebra (interface|redistribute)

	Show debug information of ZEBRA API

	
show debugging ospf

	

OSPF Configuration Examples

A simple example, with MD5 authentication enabled:

!
interface bge0
 ip ospf authentication message-digest
 ip ospf message-digest-key 1 md5 ABCDEFGHIJK
!
router ospf
 network 192.168.0.0/16 area 0.0.0.1
 area 0.0.0.1 authentication message-digest

An ABR router, with MD5 authentication and performing summarisation
of networks between the areas:

!
password ABCDEF
log file /var/log/frr/ospfd.log
service advanced-vty
!
interface eth0
 ip ospf authentication message-digest
 ip ospf message-digest-key 1 md5 ABCDEFGHIJK
!
interface ppp0
!
interface br0
 ip ospf authentication message-digest
 ip ospf message-digest-key 2 md5 XYZ12345
!
router ospf
 ospf router-id 192.168.0.1
 redistribute connected
 passive interface ppp0
 network 192.168.0.0/24 area 0.0.0.0
 network 10.0.0.0/16 area 0.0.0.0
 network 192.168.1.0/24 area 0.0.0.1
 area 0.0.0.0 authentication message-digest
 area 0.0.0.0 range 10.0.0.0/16
 area 0.0.0.0 range 192.168.0.0/24
 area 0.0.0.1 authentication message-digest
 area 0.0.0.1 range 10.2.0.0/16
!

A Traffic Engineering configuration, with Inter-ASv2 support.

First, the zebra.conf part:

interface eth0
 ip address 198.168.1.1/24
 link-params
 enable
 admin-grp 0xa1
 metric 100
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
!
interface eth1
 ip address 192.168.2.1/24
 link-params
 enable
 metric 10
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
 neighbor 192.168.2.2 as 65000
 hostname HOSTNAME
 password PASSWORD
 log file /var/log/zebra.log
 !
 interface eth0
 ip address 198.168.1.1/24
 link-params
 enable
 admin-grp 0xa1
 metric 100
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
 !
 interface eth1
 ip address 192.168.2.1/24
 link-params
 enable
 metric 10
 max-bw 1.25e+07
 max-rsv-bw 1.25e+06
 unrsv-bw 0 1.25e+06
 unrsv-bw 1 1.25e+06
 unrsv-bw 2 1.25e+06
 unrsv-bw 3 1.25e+06
 unrsv-bw 4 1.25e+06
 unrsv-bw 5 1.25e+06
 unrsv-bw 6 1.25e+06
 unrsv-bw 7 1.25e+06
 neighbor 192.168.2.2 as 65000

Then the ospfd.conf itself:

hostname HOSTNAME
password PASSWORD
log file /var/log/ospfd.log
!
!
interface eth0
 ip ospf hello-interval 60
 ip ospf dead-interval 240
!
interface eth1
 ip ospf hello-interval 60
 ip ospf dead-interval 240
!
!
router ospf
 ospf router-id 192.168.1.1
 network 192.168.0.0/16 area 1
 ospf opaque-lsa
 mpls-te
 mpls-te router-address 192.168.1.1
 mpls-te inter-as area 1
!
line vty

A router information example with PCE advertisement:

!
router ospf
 ospf router-id 192.168.1.1
 network 192.168.0.0/16 area 1
 capability opaque
 mpls-te
 mpls-te router-address 192.168.1.1
 router-info area 0.0.0.1
 pce address 192.168.1.1
 pce flag 0x80
 pce domain as 65400
 pce neighbor as 65500
 pce neighbor as 65200
 pce scope 0x80
!

OSPFv3

ospf6d is a daemon support OSPF version 3 for IPv6 network. OSPF for IPv6 is
described in RFC 2740 [https://tools.ietf.org/html/rfc2740.html].

OSPF6 router

	
router ospf6

	

	
router-id A.B.C.D

	Set router’s Router-ID.

	
interface IFNAME area AREA

	Bind interface to specified area, and start sending OSPF packets. area can
be specified as 0.

	
timers throttle spf DELAY INITIAL-HOLDTIME MAX-HOLDTIME

	

	
no timers throttle spf

	This command sets the initial delay, the initial-holdtime
and the maximum-holdtime between when SPF is calculated and the
event which triggered the calculation. The times are specified in
milliseconds and must be in the range of 0 to 600000 milliseconds.

The delay specifies the minimum amount of time to delay SPF
calculation (hence it affects how long SPF calculation is delayed after
an event which occurs outside of the holdtime of any previous SPF
calculation, and also serves as a minimum holdtime).

Consecutive SPF calculations will always be separated by at least
‘hold-time’ milliseconds. The hold-time is adaptive and initially is
set to the initial-holdtime configured with the above command.
Events which occur within the holdtime of the previous SPF calculation
will cause the holdtime to be increased by initial-holdtime, bounded
by the maximum-holdtime configured with this command. If the adaptive
hold-time elapses without any SPF-triggering event occurring then
the current holdtime is reset to the initial-holdtime.

router ospf6
 timers throttle spf 200 400 10000

In this example, the delay is set to 200ms, the initial holdtime is set
to 400ms and the maximum holdtime to 10s. Hence there will always be at
least 200ms between an event which requires SPF calculation and the actual
SPF calculation. Further consecutive SPF calculations will always be
separated by between 400ms to 10s, the hold-time increasing by 400ms each
time an SPF-triggering event occurs within the hold-time of the previous
SPF calculation.

	
auto-cost reference-bandwidth COST

	

	
no auto-cost reference-bandwidth

	This sets the reference bandwidth for cost calculations, where this
bandwidth is considered equivalent to an OSPF cost of 1, specified in
Mbits/s. The default is 100Mbit/s (i.e. a link of bandwidth 100Mbit/s
or higher will have a cost of 1. Cost of lower bandwidth links will be
scaled with reference to this cost).

This configuration setting MUST be consistent across all routers
within the OSPF domain.

OSPF6 area

Area support for OSPFv3 is not yet implemented.

OSPF6 interface

	
ipv6 ospf6 cost COST

	Sets interface’s output cost. Default value depends on the interface
bandwidth and on the auto-cost reference bandwidth.

	
ipv6 ospf6 hello-interval HELLOINTERVAL

	Sets interface’s Hello Interval. Default 40

	
ipv6 ospf6 dead-interval DEADINTERVAL

	Sets interface’s Router Dead Interval. Default value is 40.

	
ipv6 ospf6 retransmit-interval RETRANSMITINTERVAL

	Sets interface’s Rxmt Interval. Default value is 5.

	
ipv6 ospf6 priority PRIORITY

	Sets interface’s Router Priority. Default value is 1.

	
ipv6 ospf6 transmit-delay TRANSMITDELAY

	Sets interface’s Inf-Trans-Delay. Default value is 1.

	
ipv6 ospf6 network (broadcast|point-to-point)

	Set explicitly network type for specified interface.

Redistribute routes to OSPF6

	
redistribute static

	

	
redistribute connected

	

	
redistribute ripng

	

Showing OSPF6 information

	
show ipv6 ospf6 [INSTANCE_ID]

	INSTANCE_ID is an optional OSPF instance ID. To see router ID and OSPF
instance ID, simply type “show ipv6 ospf6 <cr>”.

	
show ipv6 ospf6 database

	This command shows LSA database summary. You can specify the type of LSA.

	
show ipv6 ospf6 interface

	To see OSPF interface configuration like costs.

	
show ipv6 ospf6 neighbor

	Shows state and chosen (Backup) DR of neighbor.

	
show ipv6 ospf6 request-list A.B.C.D

	Shows requestlist of neighbor.

	
show ipv6 route ospf6

	This command shows internal routing table.

	
show ipv6 ospf6 zebra

	Shows state about what is being redistributed between zebra and OSPF6

OSPF6 Configuration Examples

Example of ospf6d configured on one interface and area:

interface eth0
 ipv6 ospf6 instance-id 0
!
router ospf6
 router-id 212.17.55.53
 area 0.0.0.0 range 2001:770:105:2::/64
 interface eth0 area 0.0.0.0
!

PIM

PIM – Protocol Independent Multicast

pimd supports pim-sm as well as igmp v2 and v3. pim is
vrf aware and can work within the context of vrf’s in order to
do S,G mrouting.

Starting and Stopping pimd

The default configuration file name of pimd’s is pimd.conf. When
invoked pimd searches directory /etc/frr. If
pimd.conf is not there then next search current directory.

pimd requires zebra for proper operation. Additionally pimd depends on
routing properly setup and working in the network that it is working on.

zebra -d
pimd -d

Please note that zebra must be invoked before pimd.

To stop pimd please use:

kill `cat /var/run/pimd.pid`

Certain signals have special meanings to pimd.

	Signal

	Meaning

	SIGUSR1

	Rotate the pimd logfile

	SIGINT
SIGTERM

	pimd sweeps all installed PIM mroutes then terminates gracefully.

pimd invocation options. Common options that can be specified
(Common Invocation Options).

	
ip pim rp A.B.C.D A.B.C.D/M

	In order to use pim, it is necessary to configure a RP for join messages to
be sent to. Currently the only methodology to do this is via static rp
commands. All routers in the pim network must agree on these values. The
first ip address is the RP’s address and the second value is the matching
prefix of group ranges covered. This command is vrf aware, to configure for
a vrf, enter the vrf submode.

	
ip pim spt-switchover infinity-and-beyond

	On the last hop router if it is desired to not switch over to the SPT tree.
Configure this command. This command is vrf aware, to configure for a vrf,
enter the vrf submode.

	
ip pim ecmp

	If pim has the a choice of ECMP nexthops for a particular RPF, pim will
cause S,G flows to be spread out amongst the nexthops. If this command is
not specified then the first nexthop found will be used. This command is vrf
aware, to configure for a vrf, enter the vrf submode.

	
ip pim ecmp rebalance

	If pim is using ECMP and an interface goes down, cause pim to rebalance all
S,G flows across the remaining nexthops. If this command is not configured
pim only modifies those S,G flows that were using the interface that went
down. This command is vrf aware, to configure for a vrf, enter the vrf
submode.

	
ip pim join-prune-interval (60-600)

	Modify the join/prune interval that pim uses to the new value. Time is
specified in seconds. This command is vrf aware, to configure for a vrf,
enter the vrf submode.

	
ip pim keep-alive-timer (31-60000)

	Modify the time out value for a S,G flow from 31-60000 seconds. 31 seconds
is chosen for a lower bound because some hardware platforms cannot see data
flowing in better than 30 second chunks. This command is vrf aware, to
configure for a vrf, enter the vrf submode.

	
ip pim packets (1-100)

	When processing packets from a neighbor process the number of packets
incoming at one time before moving on to the next task. The default value is
3 packets. This command is only useful at scale when you can possibly have
a large number of pim control packets flowing. This command is vrf aware, to
configure for a vrf, enter the vrf submode.

	
ip pim register-suppress-time (5-60000)

	Modify the time that pim will register suppress a FHR will send register
notifications to the kernel. This command is vrf aware, to configure for a
vrf, enter the vrf submode.

	
ip pim send-v6-secondary

	When sending pim hello packets tell pim to send any v6 secondary addresses
on the interface. This information is used to allow pim to use v6 nexthops
in it’s decision for RPF lookup. This command is vrf aware, to configure for
a vrf, enter the vrf submode.

	
ip pim ssm prefix-list WORD

	Specify a range of group addresses via a prefix-list that forces pim to
never do SM over. This command is vrf aware, to configure for a vrf, enter
the vrf submode.

	
ip multicast rpf-lookup-mode WORD

	Modify how PIM does RPF lookups in the zebra routing table. You can use
these choices:

	longer-prefix

	Lookup the RPF in both tables using the longer prefix as a match

	lower-distance

	Lookup the RPF in both tables using the lower distance as a match

	mrib-only

	Lookup in the Multicast RIB only

	mrib-then-urib

	Lookup in the Multicast RIB then the Unicast Rib, returning first found.
This is the default value for lookup if this command is not entered

	urib-only

	Lookup in the Unicast Rib only.

PIM Interface Configuration

PIM interface commands allow you to configure an interface as either a Receiver
or a interface that you would like to form pim neighbors on. If the interface
is in a vrf, enter the interface command with the vrf keyword at the end.

	
ip pim bfd

	Turns on BFD support for PIM for this interface.

	
ip pim drpriority (1-4294967295)

	Set the DR Priority for the interface. This command is useful to allow the
user to influence what node becomes the DR for a lan segment.

	
ip pim hello (1-180) (1-180)

	Set the pim hello and hold interval for a interface.

	
ip pim sm

	Tell pim that we would like to use this interface to form pim neighbors
over. Please note we will not accept igmp reports over this interface with
this command.

	
ip igmp

	Tell pim to receive IGMP reports and Query on this interface. The default
version is v3. This command is useful on the LHR.

	
ip igmp query-interval (1-1800)

	Set the IGMP query interval that PIM will use.

	
ip igmp query-max-response-time (10-250)

	Set the IGMP query response timeout value. If an report is not returned in
the specified time we will assume the S,G or *,G has timed out.

	
ip igmp version (2-3)

	Set the IGMP version used on this interface. The default value is 3.

	
ip multicat boundary oil WORD

	Set a pim multicast boundary, based upon the WORD prefix-list. If a pim join
or IGMP report is received on this interface and the Group is denied by the
prefix-list, PIM will ignore the join or report.

PIM Multicast RIB insertion:

In order to influence Multicast RPF lookup, it is possible to insert
into zebra routes for the Multicast RIB. These routes are only
used for RPF lookup and will not be used by zebra for insertion
into the kernel or for normal rib processing. As such it is
possible to create weird states with these commands. Use with
caution. Most of the time this will not be necessary.

	
ip mroute A.B.C.D/M A.B.C.D (1-255)

	Insert into the Multicast Rib Route A.B.C.D/M with specified nexthop. The
distance can be specified as well if desired.

	
ip mroute A.B.C.D/M INTERFACE (1-255)

	Insert into the Multicast Rib Route A.B.C.D/M using the specified INTERFACE.
The distance can be specified as well if desired.

Show PIM Information

All PIM show commands are vrf aware and typically allow you to insert a
specified vrf command if information is desired about a specific vrf. If no
vrf is specified then the default vrf is assumed. Finally the special keyword
‘all’ allows you to look at all vrfs for the command. Naming a vrf ‘all’ will
cause great confusion.

	
show ip multicast

	Display various information about the interfaces used in this pim instance.

	
show ip mroute

	Display information about installed into the kernel S,G mroutes.

	
show ip mroute count

	Display information about installed into the kernel S,G mroutes and in
addition display data about packet flow for the mroutes.

	
show ip pim assert

	Display information about asserts in the PIM system for S,G mroutes.

	
show ip pim assert-internal

	Display internal assert state for S,G mroutes

	
show ip pim assert-metric

	Display metric information about assert state for S,G mroutes

	
show ip pim assert-winner-metric

	Display winner metric for assert state for S,G mroutes

	
show ip pim group-type

	Display SSM group ranges.

	
show ip pim interface

	Display information about interfaces PIM is using.

	
show ip pim join

	Display information about PIM joins received.

	
show ip pim local-membership

	Display information about PIM interface local-membership.

	
show ip pim neighbor

	Display information about PIM neighbors.

	
show ip pim nexthop

	Display information about pim nexthops that are being used.

	
show ip pim nexthop-lookup

	Display information about a S,G pair and how the RPF would be chosen. This
is especially useful if there are ECMP’s available from the RPF lookup.

	
show ip pim rp-info

	Display information about RP’s that are configured on this router.

	
show ip pim rpf

	Display information about currently being used S,G’s and their RPF lookup
information. Additionally display some statistics about what has been
happening on the router.

	
show ip pim secondary

	Display information about an interface and all the secondary addresses
associated with it.

	
show ip pim state

	Display information about known S,G’s and incoming interface as well as the
OIL and how they were chosen.

	
show ip pim upstream

	Display upstream information about a S,G mroute.

	
show ip pim upstream-join-desired

	Display upstream information for S,G’s and if we desire to
join the multicast tree

	
show ip pim upstream-rpf

	Display upstream information for S,G’s and the RPF data associated with them.

	
show ip rpf

	Display the multicast RIB created in zebra.

PIM Debug Commands

The debugging subsystem for PIM behaves in accordance with how FRR handles
debugging. You can specify debugging at the enable CLI mode as well as the
configure CLI mode. If you specify debug commands in the configuration cli
mode, the debug commands can be persistent across restarts of the FRR pimd if
the config was written out.

	
debug pim events

	This turns on debugging for PIM system events. Especially timers.

	
debug pim nht

	This turns on debugging for PIM nexthop tracking. It will display
information about RPF lookups and information about when a nexthop changes.

	
debug pim packet-dump

	This turns on an extraordinary amount of data. Each pim packet sent and
received is dumped for debugging purposes. This should be considered a
developer only command.

	
debug pim packets

	This turns on information about packet generation for sending and about
packet handling from a received packet.

	
debug pim trace

	This traces pim code and how it is running.

	
debug pim zebra

	This gathers data about events from zebra that come up through the ZAPI.

PBR

PBR is Policy Based Routing. This implementation supports a very simple
interface to allow admins to influence routing on their router. At this time
you can only match on destination and source prefixes for an incoming interface.
At this point in time, this implementation will only work on Linux.

Starting PBR

Default configuration file for pbrd is pbrd.conf. The typical
location of pbrd.conf is /etc/frr/pbrd.conf.

If the user is using integrated config, then pbrd.conf need not be
present and the frr.conf is read instead.

PBR supports all the common FRR daemon start options which are
documented elsewhere.

Nexthop Groups

Nexthop groups are a way to encapsulate ECMP information together. It’s a
listing of ECMP nexthops used to forward packets for when a pbr-map is matched.

	
nexthop-group NAME

	Create a nexthop-group with an associated NAME. This will put you into a
sub-mode where you can specify individual nexthops. To exit this mode type
exit or end as per normal conventions for leaving a sub-mode.

	
nexthop [A.B.C.D|X:X::X:XX] [interface] [nexthop-vrf NAME]

	Create a v4 or v6 nexthop. All normal rules for creating nexthops that you
are used to are allowed here. The syntax was intentionally kept the same as
creating nexthops as you would for static routes.

PBR Maps

PBR maps are a way to group policies that we would like to apply
to individual interfaces. These policies when applied are matched
against incoming packets. If matched the nexthop-group or nexthop
is used to forward the packets to the end destination

	
pbr-map NAME seq (1-1000)

	Create a pbr-map with NAME and sequence number specified. This command puts
you into a new submode for pbr-map specification. To exit this mode type
exit or end as per normal conventions for leaving a sub-mode.

	
match src-ip PREFIX

	When a incoming packet matches the source prefix specified, take the packet
and forward according to the nexthops specified. This command accepts both
v4 and v6 prefixes. This command is used in conjunction of the
match dst-ip PREFIX command for matching.

	
match dst-ip PREFIX

	When a incoming packet matches the destination prefix specified, take the
packet and forward according to the nexthops specified. This command accepts
both v4 and v6 prefixes. This command is used in conjuction of the
match src-ip PREFIX command for matching.

	
set nexthop-group NAME

	Use the nexthop-group NAME as the place to forward packets when the match
commands have matched a packet.

	
set nexthop [A.B.C.D|X:X::X:XX] [interface] [nexthop-vrf NAME]

	Use this individual nexthop as the place to forward packets when the match
commands have matched a packet.

PBR Policy

After you have specified a PBR map, in order for it to be turned on, you must
apply the PBR map to an interface. This policy application to an interface
causes the policy to be installed into the kernel.

	
pbr-policy NAME

	This command is available under interface sub-mode. This turns
on the PBR map NAME and allows it to work properly.

PBR Details

Under the covers a PBR map is translated into two separate constructs in the
Linux kernel.

The PBR map specified creates a ip rule … that is inserted into the Linux
kernel that points to a table to use for forwarding once the rule matches.

The creation of a nexthop or nexthop-group is translated to a default route in a
table with the nexthops specified as the nexthops for the default route.

RIP

RIP – Routing Information Protocol is widely deployed interior gateway
protocol. RIP was developed in the 1970s at Xerox Labs as part of the
XNS routing protocol. RIP is a distance-vector protocol and is
based on the Bellman-Ford algorithms. As a distance-vector
protocol, RIP router send updates to its neighbors periodically, thus
allowing the convergence to a known topology. In each update, the
distance to any given network will be broadcast to its neighboring
router.

ripd supports RIP version 2 as described in RFC2453 and RIP
version 1 as described in RFC1058.

Starting and Stopping ripd

The default configuration file name of ripd’s is ripd.conf. When
invocation ripd searches directory /etc/frr. If ripd.conf
is not there next search current directory.

RIP uses UDP port 520 to send and receive RIP packets. So the user must have
the capability to bind the port, generally this means that the user must have
superuser privileges. RIP protocol requires interface information maintained by
zebra daemon. So running zebra is mandatory to run ripd. Thus minimum
sequence for running RIP is like below:

zebra -d
ripd -d

Please note that zebra must be invoked before ripd.

	To stop ripd. Please use::

	kill cat /var/run/ripd.pid

Certain signals have special meanings to ripd.

	Signal

	Action

	SIGHUP

	Reload configuration file ripd.conf.
All configurations are reset. All routes learned
so far are cleared and removed from routing table.

	SIGUSR1

	Rotate the ripd logfile.

	SIGINT
SIGTERM

	Sweep all installed routes and gracefully terminate.

ripd invocation options. Common options that can be specified
(Common Invocation Options).

	
-r, --retain

	When the program terminates, retain routes added by ripd.

RIP netmask

The netmask features of ripd support both version 1 and version 2 of RIP.
Version 1 of RIP originally contained no netmask information. In RIP version 1,
network classes were originally used to determine the size of the netmask.
Class A networks use 8 bits of mask, Class B networks use 16 bits of masks,
while Class C networks use 24 bits of mask. Today, the most widely used method
of a network mask is assigned to the packet on the basis of the interface that
received the packet. Version 2 of RIP supports a variable length subnet mask
(VLSM). By extending the subnet mask, the mask can be divided and reused. Each
subnet can be used for different purposes such as large to middle size LANs and
WAN links. FRR ripd does not support the non-sequential netmasks that are
included in RIP Version 2.

In a case of similar information with the same prefix and metric, the old
information will be suppressed. Ripd does not currently support equal cost
multipath routing.

RIP Configuration

	
router rip

	The router rip command is necessary to enable RIP. To disable RIP, use the
no router rip command. RIP must be enabled before carrying out any of the
RIP commands.

	
no router rip

	Disable RIP.

	
network NETWORK

	

	
no network NETWORK

	Set the RIP enable interface by NETWORK. The interfaces which have addresses
matching with NETWORK are enabled.

This group of commands either enables or disables RIP interfaces between
certain numbers of a specified network address. For example, if the network
for 10.0.0.0/24 is RIP enabled, this would result in all the addresses from
10.0.0.0 to 10.0.0.255 being enabled for RIP. The no network command will
disable RIP for the specified network.

	
network IFNAME

	

	
no network IFNAME

	Set a RIP enabled interface by IFNAME. Both the sending and
receiving of RIP packets will be enabled on the port specified in the
network ifname command. The no network ifname command will disable
RIP on the specified interface.

	
neighbor A.B.C.D

	

	
no neighbor A.B.C.D

	Specify RIP neighbor. When a neighbor doesn’t understand multicast, this
command is used to specify neighbors. In some cases, not all routers will be
able to understand multicasting, where packets are sent to a network or a
group of addresses. In a situation where a neighbor cannot process multicast
packets, it is necessary to establish a direct link between routers. The
neighbor command allows the network administrator to specify a router as a
RIP neighbor. The no neighbor a.b.c.d command will disable the RIP
neighbor.

Below is very simple RIP configuration. Interface eth0 and interface which
address match to 10.0.0.0/8 are RIP enabled.

!
router rip
 network 10.0.0.0/8
 network eth0
!

	
passive-interface (IFNAME|default)

	

	
no passive-interface IFNAME

	This command sets the specified interface to passive mode. On passive mode
interface, all receiving packets are processed as normal and ripd does not
send either multicast or unicast RIP packets except to RIP neighbors
specified with neighbor command. The interface may be specified as
default to make ripd default to passive on all interfaces.

The default is to be passive on all interfaces.

	
ip split-horizon

	

	
no ip split-horizon

	Control split-horizon on the interface. Default is ip split-horizon. If
you don’t perform split-horizon on the interface, please specify no ip
split-horizon.

RIP Version Control

RIP can be configured to send either Version 1 or Version 2 packets. The
default is to send RIPv2 while accepting both RIPv1 and RIPv2 (and replying
with packets of the appropriate version for REQUESTS / triggered updates). The
version to receive and send can be specified globally, and further overridden on
a per-interface basis if needs be for send and receive separately (see below).

It is important to note that RIPv1 cannot be authenticated. Further, if RIPv1
is enabled then RIP will reply to REQUEST packets, sending the state of its RIP
routing table to any remote routers that ask on demand. For a more detailed
discussion on the security implications of RIPv1 see RIP Authentication.

	
version VERSION

	Set RIP version to accept for reads and send. VERSION can be either 1 or
1.

Disabling RIPv1 by specifying version 2 is STRONGLY encouraged,
RIP Authentication. This may become the default in a future release.

Default: Send Version 2, and accept either version.

	
no version

	Reset the global version setting back to the default.

	
ip rip send version VERSION

	VERSION can be 1, 2, or 1 2.

This interface command overrides the global rip version setting, and selects
which version of RIP to send packets with, for this interface specifically.
Choice of RIP Version 1, RIP Version 2, or both versions. In the latter
case, where 1 2 is specified, packets will be both broadcast and
multicast.

Default: Send packets according to the global version (version 2)

	
ip rip receive version VERSION

	VERSION can be 1, 2, or 1 2.

This interface command overrides the global rip version setting, and selects
which versions of RIP packets will be accepted on this interface. Choice of
RIP Version 1, RIP Version 2, or both.

Default: Accept packets according to the global setting (both 1 and 2).

How to Announce RIP route

	
redistribute kernel

	

	
redistribute kernel metric (0-16)

	

	
redistribute kernel route-map ROUTE-MAP

	

	
no redistribute kernel

	redistribute kernel redistributes routing information from kernel route
entries into the RIP tables. no redistribute kernel disables the routes.

	
redistribute static

	

	
redistribute static metric (0-16)

	

	
redistribute static route-map ROUTE-MAP

	

	
no redistribute static

	redistribute static redistributes routing information from static route
entries into the RIP tables. no redistribute static disables the routes.

	
redistribute connected

	

	
redistribute connected metric (0-16)

	

	
redistribute connected route-map ROUTE-MAP

	

	
no redistribute connected

	Redistribute connected routes into the RIP tables. no redistribute
connected disables the connected routes in the RIP tables. This command
redistribute connected of the interface which RIP disabled. The connected
route on RIP enabled interface is announced by default.

	
redistribute ospf

	

	
redistribute ospf metric (0-16)

	

	
redistribute ospf route-map ROUTE-MAP

	

	
no redistribute ospf

	redistribute ospf redistributes routing information from ospf route
entries into the RIP tables. no redistribute ospf disables the routes.

	
redistribute bgp

	

	
redistribute bgp metric (0-16)

	

	
redistribute bgp route-map ROUTE-MAP

	

	
no redistribute bgp

	redistribute bgp redistributes routing information from bgp route entries
into the RIP tables. no redistribute bgp disables the routes.

If you want to specify RIP only static routes:

	
default-information originate

	

	
route A.B.C.D/M

	

	
no route A.B.C.D/M

	This command is specific to FRR. The route command makes a static route
only inside RIP. This command should be used only by advanced users who are
particularly knowledgeable about the RIP protocol. In most cases, we
recommend creating a static route in FRR and redistributing it in RIP using
redistribute static.

Filtering RIP Routes

RIP routes can be filtered by a distribute-list.

	
distribute-list ACCESS_LIST DIRECT IFNAME

	You can apply access lists to the interface with a distribute-list command.
ACCESS_LIST is the access list name. DIRECT is in or out. If DIRECT
is in the access list is applied to input packets.

The distribute-list command can be used to filter the RIP path.
distribute-list can apply access-lists to a chosen interface. First, one
should specify the access-list. Next, the name of the access-list is used in
the distribute-list command. For example, in the following configuration
eth0 will permit only the paths that match the route 10.0.0.0/8

!
router rip
 distribute-list private in eth0
!
access-list private permit 10 10.0.0.0/8
access-list private deny any
!

distribute-list can be applied to both incoming and outgoing data.

	
distribute-list prefix PREFIX_LIST (in|out) IFNAME

	You can apply prefix lists to the interface with a distribute-list
command. PREFIX_LIST is the prefix list name. Next is the direction of
in or out. If DIRECT is in the access list is applied to input
packets.

RIP Metric Manipulation

RIP metric is a value for distance for the network. Usually
ripd increment the metric when the network information is
received. Redistributed routes’ metric is set to 1.

	
default-metric (1-16)

	

	
no default-metric (1-16)

	This command modifies the default metric value for redistributed routes.
The default value is 1. This command does not affect connected route even if
it is redistributed by redistribute connected. To modify connected route’s
metric value, please use redistribute connected metric or route-map.
offset-list also affects connected routes.

	
offset-list ACCESS-LIST (in|out)

	

	
offset-list ACCESS-LIST (in|out) IFNAME

	

RIP distance

Distance value is used in zebra daemon. Default RIP distance is 120.

	
distance (1-255)

	

	
no distance (1-255)

	Set default RIP distance to specified value.

	
distance (1-255) A.B.C.D/M

	

	
no distance (1-255) A.B.C.D/M

	Set default RIP distance to specified value when the route’s source IP
address matches the specified prefix.

	
distance (1-255) A.B.C.D/M ACCESS-LIST

	

	
no distance (1-255) A.B.C.D/M ACCESS-LIST

	Set default RIP distance to specified value when the route’s source IP
address matches the specified prefix and the specified access-list.

RIP route-map

Usage of ripd’s route-map support.

Optional argument route-map MAP_NAME can be added to each redistribute
statement.

redistribute static [route-map MAP_NAME]
redistribute connected [route-map MAP_NAME]
.....

Cisco applies route-map _before_ routes will exported to rip route table. In
current FRR’s test implementation, ripd applies route-map after routes are
listed in the route table and before routes will be announced to an interface
(something like output filter). I think it is not so clear, but it is draft and
it may be changed at future.

Route-map statement (Route Maps) is needed to use route-map
functionality.

	
match interface WORD

	This command match to incoming interface. Notation of this match is
different from Cisco. Cisco uses a list of interfaces - NAME1 NAME2 …
NAMEN. Ripd allows only one name (maybe will change in the future). Next -
Cisco means interface which includes next-hop of routes (it is somewhat
similar to “ip next-hop” statement). Ripd means interface where this route
will be sent. This difference is because “next-hop” of same routes which
sends to different interfaces must be different. Maybe it’d be better to
made new matches - say “match interface-out NAME” or something like that.

	
match ip address WORD

	

	
match ip address prefix-list WORD

	Match if route destination is permitted by access-list.

	
match ip next-hop WORD

	

	
match ip next-hop prefix-list WORD

	Match if route next-hop (meaning next-hop listed in the rip route-table as
displayed by “show ip rip”) is permitted by access-list.

	
match metric (0-4294967295)

	This command match to the metric value of RIP updates. For other protocol
compatibility metric range is shown as (0-4294967295). But for RIP protocol
only the value range (0-16) make sense.

	
set ip next-hop A.B.C.D

	This command set next hop value in RIPv2 protocol. This command does not
affect RIPv1 because there is no next hop field in the packet.

	
set metric (0-4294967295)

	Set a metric for matched route when sending announcement. The metric value
range is very large for compatibility with other protocols. For RIP, valid
metric values are from 1 to 16.

RIP Authentication

RIPv2 allows packets to be authenticated via either an insecure plain
text password, included with the packet, or via a more secure MD5 based
HMAC,
RIPv1 can not be authenticated at all, thus when authentication is
configured ripd will discard routing updates received via RIPv1
packets.

However, unless RIPv1 reception is disabled entirely,
RIP Version Control, RIPv1 REQUEST packets which are received,
which query the router for routing information, will still be honoured
by ripd, and ripd WILL reply to such packets. This allows
ripd to honour such REQUESTs (which sometimes is used by old
equipment and very simple devices to bootstrap their default route),
while still providing security for route updates which are received.

In short: Enabling authentication prevents routes being updated by
unauthenticated remote routers, but still can allow routes (I.e. the
entire RIP routing table) to be queried remotely, potentially by anyone
on the internet, via RIPv1.

To prevent such unauthenticated querying of routes disable RIPv1,
RIP Version Control.

	
ip rip authentication mode md5

	

	
no ip rip authentication mode md5

	Set the interface with RIPv2 MD5 authentication.

	
ip rip authentication mode text

	

	
no ip rip authentication mode text

	Set the interface with RIPv2 simple password authentication.

	
ip rip authentication string STRING

	

	
no ip rip authentication string STRING

	RIP version 2 has simple text authentication. This command sets
authentication string. The string must be shorter than 16 characters.

	
ip rip authentication key-chain KEY-CHAIN

	

	
no ip rip authentication key-chain KEY-CHAIN

	Specify Keyed MD5 chain.

!
key chain test
 key 1
 key-string test
!
interface eth1
 ip rip authentication mode md5
 ip rip authentication key-chain test
!

RIP Timers

	
timers basic UPDATE TIMEOUT GARBAGE

	RIP protocol has several timers. User can configure those timers’ values
by timers basic command.

The default settings for the timers are as follows:

	The update timer is 30 seconds. Every update timer seconds, the RIP
process is awakened to send an unsolicited Response message containing
the complete routing table to all neighboring RIP routers.

	The timeout timer is 180 seconds. Upon expiration of the timeout, the
route is no longer valid; however, it is retained in the routing table
for a short time so that neighbors can be notified that the route has
been dropped.

	The garbage collect timer is 120 seconds. Upon expiration of the
garbage-collection timer, the route is finally removed from the routing
table.

The timers basic command allows the the default values of the timers
listed above to be changed.

	
no timers basic

	The no timers basic command will reset the timers to the default settings
listed above.

Show RIP Information

To display RIP routes.

	
show ip rip

	Show RIP routes.

The command displays all RIP routes. For routes that are received
through RIP, this command will display the time the packet was sent and
the tag information. This command will also display this information
for routes redistributed into RIP.

	
show ip rip status

	The command displays current RIP status. It includes RIP timer,
filtering, version, RIP enabled interface and RIP peer information.

ripd> **show ip rip status**
Routing Protocol is "rip"
 Sending updates every 30 seconds with +/-50%, next due in 35 seconds
 Timeout after 180 seconds, garbage collect after 120 seconds
 Outgoing update filter list for all interface is not set
 Incoming update filter list for all interface is not set
 Default redistribution metric is 1
 Redistributing: kernel connected
 Default version control: send version 2, receive version 2
 Interface Send Recv
 Routing for Networks:
 eth0
 eth1
 1.1.1.1
 203.181.89.241
 Routing Information Sources:
 Gateway BadPackets BadRoutes Distance Last Update

RIP Debug Commands

Debug for RIP protocol.

	
debug rip events

	Shows RIP events. Sending and receiving packets, timers, and changes in
interfaces are events shown with ripd.

	
debug rip packet

	Shows display detailed information about the RIP packets. The origin and
port number of the packet as well as a packet dump is shown.

	
debug rip zebra

	This command will show the communication between ripd and zebra. The
main information will include addition and deletion of paths to the kernel
and the sending and receiving of interface information.

	
show debugging rip

	Shows all information currently set for ripd debug.

RIPng

ripngd supports the RIPng protocol as described in RFC 2080 [https://tools.ietf.org/html/rfc2080.html]. It’s an IPv6
reincarnation of the RIP protocol.

Invoking ripngd

There are no ripngd specific invocation options. Common options can be
specified (Common Invocation Options).

ripngd Configuration

Currently ripngd supports the following commands:

	
router ripng

	Enable RIPng.

	
flush_timer TIME

	Set flush timer.

	
network NETWORK

	Set RIPng enabled interface by NETWORK.

	
network IFNAME

	Set RIPng enabled interface by IFNAME.

	
route NETWORK

	Set RIPng static routing announcement of NETWORK.

	
router zebra

	This command is the default and does not appear in the configuration. With
this statement, RIPng routes go to the zebra daemon.

ripngd Terminal Mode Commands

	
show ip ripng

	

	
show debugging ripng

	

	
debug ripng events

	

	
debug ripng packet

	

	
debug ripng zebra

	

ripngd Filtering Commands

	
distribute-list ACCESS_LIST (in|out) IFNAME

	You can apply an access-list to the interface using the distribute-list
command. ACCESS_LIST is an access-list name. direct is in or
out. If direct is in, the access-list is applied only to incoming
packets.:

distribute-list local-only out sit1

 *
SHARP
*

SHARP Super Happy Advanced Routing Process. This daemon is useful
for the testing of FRR itself as well as useful for creation of Proof of
Concept labs.

Starting SHARP

Default configuration file for sharpd is sharpd.conf. The typical
location of sharpd.conf is /etc/frr/sharpd.conf.

If the user is using integrated config, then sharpd.conf need not be
present and the frr.conf is read instead.

SHARP supports all the common FRR daemon start options which are
documented elsewhere.

USING SHARP

All sharp commands are under the enable node and proceeded by the
sharp keyword. There are currently no permenent sharp
commands for configuration.

..index:: sharp install
..clicmd:: sharp install routes A.B.C.D nexthop E.F.G.H (1-1000000)

Install up to a million /32 routes starting at A.B.C.D with specified nexthop
E.F.G.H. The nexthop is a NEXTHOP_TYPE_IPV4 and must be reachable to be
installed into the kernel. The routes are installed into zebra as
ZEBRA_ROUTE_SHARP and can be used as part of a normal route redistribution.
Route installation time is noted in the debug log and upon zebra successful
installation into the kernel and sharp receiving the notification of all
route installs the success will be noted in the debug log as well.

..index:: sharp remove
..clicmd:: sharp remove routes A.B.C.D (1-1000000)

Remove up 1000000 million /32 routes starting at A.B.C.D. The routes are
removed from zebra. Route deletion start is noted in the debug log
and when all routes have been successfully deleted the debug log will
be updated with this information as well.

..index:: sharp label
..clicmd:: sharp label <ipv4|ipv6> vrf NAME label (0-1000000)

Install a label into the kernel that causes the specified vrf NAME table to be
used for pop and forward operations when the specified label is seen.

..index:: sharp watch
..clicmd: sharp watch nexthop <A.B.C.D|X:X::X:X>

Instruct zebra to monitor and notify sharp when the specified nexthop is
changed. The notification from zebra is written into the debug log.

VNC and VNC-GW

This chapter describes how to use VNC
services, including NVA and
VNC-GW functions. Background information on NVAs,
NVE s, UN s,
and VN is available from the
IETF [https://datatracker.ietf.org/wg/nvo3]. VNC-GW s
support the import/export of routing information between VNC and CE routers operating within a VN. Both IP/Layer 3 (L3) VNs, and
IP with Ethernet/Layer 2 (L2) VNs are supported.

BGP, with IP VPNs and Tunnel Encapsulation, is used to distribute VN
information between NVAs. BGP based IP VPN support is defined in RFC 4364 [https://tools.ietf.org/html/rfc4364.html],
and RFC 4659 [https://tools.ietf.org/html/rfc4659.html]. Encapsulation information is provided via the Tunnel
Encapsulation Attribute, RFC 5512 [https://tools.ietf.org/html/rfc5512.html].

The protocol that is used to communicate routing and Ethernet / Layer 2 (L2)
forwarding information between NVAs and NVEs is referred to as the Remote
Forwarder Protocol (RFP). OpenFlow is an example RFP. Specific RFP
implementations may choose to implement either a hard-state or soft-state
prefix and address registration model. To support a soft-state refresh model,
a lifetime in seconds is associated with all registrations and responses.

The chapter also provides sample configurations for basic example scenarios.

Configuring VNC

Virtual Network Control (VNC) service configuration commands appear in
the router bgp section of the BGPD configuration file
(BGP Configuration Examples). The commands are broken down into the
following areas:

	General VNC configuration applies to general VNC operation and is
primarily used to control the method used to advertise tunnel information.

	Remote Forwarder Protocol (RFP) configuration relates to the protocol
used between NVAs and NVEs.

	VNC Defaults provides default parameters for registered NVEs.

	VNC NVE Group provides for configuration of a specific set of
registered NVEs and overrides default parameters.

	Redistribution and Export control VNC-GW operation, i.e., the
import/export of routing information between VNC and customer edge routers
(CE s) operating within a VN.

General VNC Configuration

RFP Related Configuration

The protocol that is used to communicate routing and Ethernet / L2 forwarding
information between NVAs and NVEs is referred to as the Remote Forwarder
Protocol (RFP). Currently, only a simple example RFP is included in FRR.
Developers may use this example as a starting point to integrate FRR with an
RFP of their choosing, e.g., OpenFlow. The example code includes the
following sample configuration:

	
rfp example-config-value VALUE

	

This is a simple example configuration parameter included as part of the RFP
example code. VALUE must be in the range of 0 to 4294967295.

VNC Defaults Configuration

The VNC Defaults section allows the user to specify default values for
configuration parameters for all registered NVEs.
Default values are overridden by VNC NVE Group Configuration.

	
vnc defaults

	

Enter VNC configuration mode for specifying VNC default behaviors. Use
exit-vnc to leave VNC configuration mode. vnc defaults is optional.

vnc defaults
... various VNC defaults
exit-vnc

These are the statements that can appear between vnc defaults and
exit-vnc. Documentation for these statements is given in
VNC NVE Group Configuration.

	rt import RT-LIST

	rt export RT-LIST

	rt both RT-LIST

	rd ROUTE-DISTINGUISHER

	l2rd NVE-ID-VALUE

	response-lifetime LIFETIME|infinite

	export bgp|zebra route-map MAP-NAME

	export bgp|zebra no route-map

	
exit-vnc

	Exit VNC configuration mode.

VNC NVE Group Configuration

A NVE Group corresponds to a specific set of NVEs. A Client NVE is
assigned to an NVE Group based on whether there is a match for either
its virtual or underlay network address against the VN and/or UN address
prefixes specified in the NVE Group definition. When an NVE Group
definition specifies both VN and UN address prefixes, then an NVE must
match both prefixes in order to be assigned to the NVE Group. In the
event that multiple NVE Groups match based on VN and/or UN addresses,
the NVE is assigned to the first NVE Group listed in the configuration.
If an NVE is not assigned to an NVE Group, its messages will be ignored.

Configuration values specified for an NVE group apply to all
member NVEs and override configuration values specified in the VNC
Defaults section.

At least one `nve-group` is mandatory for useful VNC operation.

	
vnc nve-group NAME

	Enter VNC configuration mode for defining the NVE group name.
Use exit or exit-vnc to exit group configuration mode.

vnc nve-group group1
... configuration commands
exit-vnc

	
no vnc nve-group NAME

	Delete the NVE group named name.

The following statements are valid in an NVE group definition:

	
l2rd NVE-ID-VALUE

	Set the value used to distinguish NVEs connected to the same physical
Ethernet segment (i.e., at the same location) 1.

The nve-id subfield may be specified as either a literal value in the range
1-255, or it may be specified as auto:vn, which means to use the
least-significant octet of the originating NVE’s VN address.

	
prefix vn|un A.B.C.D/M|X:X::X:X/M

	Specify the matching prefix for this NVE group by either virtual-network
address (vn) or underlay-network address (un). Either or both
virtual-network and underlay-network prefixes may be specified. Subsequent
virtual-network or underlay-network values within a vnc nve-group
exit-vnc block override their respective previous values.

These prefixes are used only for determining assignments of NVEs to NVE
Groups.

	
rd ROUTE-DISTINGUISHER

	Specify the route distinguisher for routes advertised via BGP
VPNs. The route distinguisher must be in one of these forms:

	IPv4-address:two-byte-integer

	four-byte-autonomous-system-number:two-byte-integer

	two-byte-autonomous-system-number:four-byte-integer

	auto:vn:two-byte-integer

Routes originated by NVEs in the NVE group will use the group’s specified
route-distinguisher when they are advertised via BGP. If the auto form
is specified, it means that a matching NVE has its RD set to
rd_type=IP=1:IPv4-address=VN-address:two-byte-integer, for IPv4 VN
addresses and
rd_type=IP=1:IPv4-address=Last-four-bytes-of-VN-address:two-byte-integer,
for IPv6 VN addresses.

If the NVE group definition does not specify a route-distinguisher, then
the default route-distinguisher is used. If neither a group nor a default
route-distinguisher is configured, then the advertised RD is set to
two-byte-autonomous-system-number=0:four-byte-integer=0.

	
response-lifetime LIFETIME|infinite

	Specify the response lifetime, in seconds, to be included in RFP response
messages sent to NVEs. If the value ‘infinite’ is given, an infinite
lifetime will be used.

Note that this parameter is not the same as the lifetime supplied by NVEs in
RFP registration messages. This parameter does not affect the lifetime value
attached to routes sent by this server via BGP.

If the NVE group definition does not specify a response-lifetime, the
default response-lifetime will be used. If neither a group nor a default
response-lifetime is configured, the value 3600 will be used. The maximum
response lifetime is 2147483647.

	
rt export RT-LIST

	

	
rt import RT-LIST

	

	
rt both RT-LIST

	Specify route target import and export lists. rt-list is a
space-separated list of route targets, each element of which is
in one of the following forms:

	IPv4-address:two-byte-integer

	four-byte-autonomous-system-number:two-byte-integer

	two-byte-autonomous-system-number:four-byte-integer

The first form, rt export, specifies an export rt-list. The export
rt-list will be attached to routes originated by NVEs in the NVE group
when they are advertised via BGP. If the NVE group definition does not
specify an export rt-list, then the default export rt-list is used.
If neither a group nor a default export rt-list is configured, then no
RT list will be sent; in turn, these routes will probably not be
processed by receiving NVAs.

The second form, rt import specifies an import rt-list, which is a
filter for incoming routes. In order to be made available to NVEs in the
group, incoming BGP VPN routes must have RT lists that have at least one
route target in common with the group’s import rt-list.

If the NVE group definition does not specify an import filter, then the
default import rt-list is used. If neither a group nor a default
import rt-list is configured, there can be no RT intersections when
receiving BGP routes and therefore no incoming BGP routes will be
processed for the group.

The third, rt both, is a shorthand way of specifying both lists
simultaneously, and is equivalent to rt export `rt-list` followed by
rt import `rt-list`.

	
export bgp|zebra route-map MAP-NAME

	Specify that the named route-map should be applied to routes being exported
to bgp or zebra. This parameter is used in conjunction with
Configuring Export of Routes to Other Routing Protocols. This item
is optional.

	
export bgp|zebra no route-map

	Specify that no route-map should be applied to routes being exported to bgp
or zebra. This parameter is used in conjunction with
Configuring Export of Routes to Other Routing Protocols. This item
is optional.

	
export bgp|zebra ipv4|ipv6 prefix-list LIST-NAME

	Specify that the named prefix-list filter should be applied to routes being
exported to bgp or zebra. Prefix-lists for ipv4 and ipv6 are independent of
each other. This parameter is used in conjunction with
Configuring Export of Routes to Other Routing Protocols. This item
is optional.

	
export bgp|zebra no ipv4|ipv6 prefix-list

	Specify that no prefix-list filter should be applied to routes being
exported to bgp or zebra. This parameter is used in conjunction with
Configuring Export of Routes to Other Routing Protocols. This item
is optional.

VNC L2 Group Configuration

The route targets advertised with prefixes and addresses registered by an NVE
are determined based on the NVE’s associated VNC NVE Group Configuration,
VNC NVE Group Configuration. Layer 2 (L2) Groups are used to override
the route targets for an NVE’s Ethernet registrations based on the Logical
Network Identifier and label value. A Logical Network Identifier is used to
uniquely identify a logical Ethernet segment and is conceptually similar to the
Ethernet Segment Identifier defined in RFC 7432 [https://tools.ietf.org/html/rfc7432.html]. Both the Logical Network
Identifier and Label are passed to VNC via RFP prefix and address registration.

Note that a corresponding NVE group configuration must be present, and that
other NVE associated configuration information, notably RD, is not impacted by
L2 Group Configuration.

	
vnc l2-group NAME

	Enter VNC configuration mode for defining the L2 group name.
Use exit or exit-vnc to exit group configuration mode.

vnc l2-group group1
 ... configuration commands
exit-vnc

	
no vnc l2-group NAME

	Delete the L2 group named name.

The following statements are valid in a L2 group definition:

	
logical-network-id VALUE

	Define the Logical Network Identifier with a value in the range of
0-4294967295 that identifies the logical Ethernet segment.

	
labels LABEL-LIST

	

	
no labels LABEL-LIST

	Add or remove labels associated with the group. label-list is a
space separated list of label values in the range of 0-1048575.

	
rt import RT-TARGET

	

	
rt export RT-TARGET

	

	
rt both RT-TARGET

	Specify the route target import and export value associated with the group.
A complete definition of these parameters is given above,
VNC NVE Group Configuration.

Configuring Redistribution of Routes from Other Routing Protocols

Routes from other protocols (including BGP) can be provided to VNC (both for
RFP and for redistribution via BGP) from three sources: the zebra kernel
routing process; directly from the main (default) unicast BGP RIB; or directly
from a designated BGP unicast exterior routing RIB instance.

The protocol named in the vnc redistribute command indicates the route
source: bgp-direct routes come directly from the main (default) unicast BGP
RIB and are available for RFP and are redistributed via BGP;
bgp-direct-to-nve-groups routes come directly from a designated BGP unicast
routing RIB and are made available only to RFP; and routes from other protocols
come from the zebra kernel routing process.
Note that the zebra process does not need to be active if
only bgp-direct or bgp-direct-to-nve-groups routes are used.

zebra routes

Routes originating from protocols other than BGP must be obtained
via the zebra routing process.
Redistribution of these routes into VNC does not support policy mechanisms
such as prefix-lists or route-maps.

bgp-direct routes

bgp-direct redistribution supports policy via
prefix lists and route-maps. This policy is applied to incoming
original unicast routes before the redistribution translations
(described below) are performed.

Redistribution of bgp-direct routes is performed in one of three
possible modes: plain, nve-group, or resolve-nve.
The default mode is plain.
These modes indicate the kind of translations applied to routes before
they are added to the VNC RIB.

In plain mode, the route’s next hop is unchanged and the RD is set
based on the next hop.
For bgp-direct redistribution, the following translations are performed:

	The VN address is set to the original unicast route’s next hop address.

	The UN address is NOT set. (VN->UN mapping will occur via
ENCAP route or attribute, based on vnc advertise-un-method
setting, generated by the RFP registration of the actual NVE)

	The RD is set to as if auto:vn:0 were specified (i.e.,
rd_type=IP=1:IPv4-address=VN-address:two-byte-integer=0)

	The RT list is included in the extended community list copied from the
original unicast route (i.e., it must be set in the original unicast route).

In nve-group mode, routes are registered with VNC as if they came from an NVE
in the nve-group designated in the vnc redistribute nve-group command. The
following translations are performed:

	The next hop/VN address is set to the VN prefix configured for the
redistribute nve-group.

	The UN address is set to the UN prefix configured for the redistribute
nve-group.

	The RD is set to the RD configured for the redistribute nve-group.

	The RT list is set to the RT list configured for the redistribute nve-group.
If bgp-direct routes are being redistributed, any extended communities
present in the original unicast route will also be included.

In resolve-nve mode, the next hop of the original BGP route is typically the
address of an NVE connected router (CE) connected by one or more NVEs.
Each of the connected NVEs will register, via RFP, a VNC host route to the CE.
This mode may be though of as a mechanism to proxy RFP registrations of BGP
unicast routes on behalf of registering NVEs.

Multiple copies of the BGP route, one per matching NVE host route, will be
added to VNC. In other words, for a given BGP unicast route, each instance of
a RFP-registered host route to the unicast route’s next hop will result in an
instance of an imported VNC route. Each such imported VNC route will have a
prefix equal to the original BGP unicast route’s prefix, and a next hop equal
to the next hop of the matching RFP-registered host route. If there is no
RFP-registered host route to the next hop of the BGP unicast route, no
corresponding VNC route will be imported.

The following translations are applied:

	The Next Hop is set to the next hop of the NVE route (i.e., the
VN address of the NVE).

	The extended community list in the new route is set to the
union of:

	Any extended communities in the original BGP route

	Any extended communities in the NVE route

	An added route-origin extended community with the next hop of the
original BGP route
is added to the new route.
The value of the local administrator field defaults 5226 but may
be configured by the user via the roo-ec-local-admin parameter.

	The Tunnel Encapsulation attribute is set to the value of the Tunnel
Encapsulation attribute of the NVE route, if any.

bgp-direct-to-nve-groups routes

Unicast routes from the main or a designated instance of BGP may be
redistributed to VNC as bgp-direct-to-nve-groups routes. These routes are NOT
announced via BGP, but they are made available for local RFP lookup in response
to queries from NVEs.

A non-main/default BGP instance is configured using the bgp multiple-instance
and router bgp AS view NAME commands as described elsewhere in this document.

In order for a route in the unicast BGP RIB to be made available to a querying
NVE, there must already be, available to that NVE, an (interior) VNC route
matching the next hop address of the unicast route. When the unicast route is
provided to the NVE, its next hop is replaced by the next hop of the
corresponding NVE. If there are multiple longest-prefix-match VNC routes, the
unicast route will be replicated for each.

There is currently no policy (prefix-list or route-map) support for
bgp-direct-to-nve-groups routes.

Redistribution Command Syntax

	
vnc redistribute ipv4|ipv6 bgp|bgp-direct|ipv6 bgp-direct-to-nve-groups|connected|kernel|ospf|rip|static

	

	
vnc redistribute ipv4|ipv6 bgp-direct-to-nve-groups view VIEWNAME

	

	
no vnc redistribute ipv4|ipv6 bgp|bgp-direct|bgp-direct-to-nve-groups|connected|kernel|ospf|rip|static

	Import (or do not import) prefixes from another routing protocols. Specify
both the address family to import (ipv4 or ipv6) and the protocol
(bgp, bgp-direct, bgp-direct-to-nve-groups, connected, kernel,
ospf, rip, or static). Repeat this statement as needed for each
combination of address family and routing protocol. Prefixes from protocol
bgp-direct are imported from unicast BGP in the same bgpd process.
Prefixes from all other protocols (including bgp) are imported via the
zebra kernel routing process.

	
vnc redistribute mode plain|nve-group|resolve-nve

	Redistribute routes from other protocols into VNC using the specified mode.
Not all combinations of modes and protocols are supported.

	
vnc redistribute nve-group GROUP-NAME

	

	
no vnc redistribute nve-group GROUP-NAME

	When using nve-group mode, assign (or do not assign) the NVE group
group-name to routes redistributed from another routing protocol.
group-name must be configured using vnc nve-group.

The VN and UN prefixes of the nve-group must both be configured, and each
prefix must be specified as a full-length (/32 for IPv4, /128 for IPv6)
prefix.

	
vnc redistribute lifetime LIFETIME|infinite

	Assign a registration lifetime, either lifetime seconds or infinite, to
prefixes redistributed from other routing protocols as if they had been
received via RFP registration messages from an NVE. lifetime can be any
integer between 1 and 4294967295, inclusive.

	
vnc redistribute resolve-nve roo-ec-local-admin 0-65536

	Assign a value to the local-administrator subfield used in the
Route Origin extended community that is assigned to routes exported
under the resolve-nve mode. The default value is 5226.

The following four prefix-list and route-map commands may be specified
in the context of an nve-group or not. If they are specified in the context
of an nve-group, they apply only if the redistribution mode is nve-group,
and then only for routes being redistributed from bgp-direct. If they are
specified outside the context of an nve-group, then they apply only for
redistribution modes plain and resolve-nve, and then only for routes
being redistributed from bgp-direct.

	
vnc redistribute bgp-direct (ipv4|ipv6) prefix-list LIST-NAME

	When redistributing bgp-direct routes,
specifies that the named prefix-list should be applied.

	
vnc redistribute bgp-direct no (ipv4|ipv6) prefix-list

	When redistributing bgp-direct routes,
specifies that no prefix-list should be applied.

	
vnc redistribute bgp-direct route-map MAP-NAME

	When redistributing bgp-direct routes,
specifies that the named route-map should be applied.

	
vnc redistribute bgp-direct no route-map

	When redistributing bgp-direct routes,
specifies that no route-map should be applied.

Configuring Export of Routes to Other Routing Protocols

Routes from VNC (both for RFP and for redistribution via BGP) can be provided
to other protocols, either via zebra or directly to BGP.

It is important to note that when exporting routes to other protocols, the
downstream protocol must also be configured to import the routes. For example,
when VNC routes are exported to unicast BGP, the BGP configuration must include
a corresponding redistribute vnc-direct statement.

	
export bgp|zebra mode none|group-nve|registering-nve|ce

	Specify how routes should be exported to bgp or zebra. If the mode is
none, routes are not exported. If the mode is group-nve, routes are
exported according to nve-group or vrf-policy group configuration
(VNC NVE Group Configuration): if a group is configured to allow
export, then each prefix visible to the group is exported with next hops set
to the currently-registered NVEs. If the mode is registering-nve, then all
VNC routes are exported with their original next hops. If the mode is ce,
only VNC routes that have an NVE connected CE Router encoded in a Route
Origin Extended Community are exported. This extended community must have an
administrative value that matches the configured roo-ec-local-admin value.
The next hop of the exported route is set to the encoded NVE connected CE
Router.

The default for both bgp and zebra is mode none.

	
vnc export bgp|zebra group-nve group GROUP-NAME

	

	
vnc export bgp|zebra group-nve no group GROUP-NAME

	When export mode is group-nve, export (or do not export) prefixes from the
specified nve-group or vrf-policy group to unicast BGP or to zebra. Repeat
this statement as needed for each nve-group to be exported. Each VNC prefix
that is exported will result in N exported routes to the prefix, each with a
next hop corresponding to one of the N NVEs currently associated with the
nve-group.

Some commands have a special meaning under certain export modes.

	export bgp|zebra ipv4|ipv6 prefix-list LIST-NAME

	When export mode is ce or registering-nve,
specifies that the named prefix-list should be applied to routes
being exported to bgp or zebra.
Prefix-lists for ipv4 and ipv6 are independent of each other.

	export bgp|zebra no ipv4|ipv6 prefix-list

	When export mode is ce or registering-nve,
specifies that no prefix-list should be applied to routes
being exported to bgp or zebra.

	export bgp|zebra route-map MAP-NAME

	When export mode is ce or registering-nve, specifies that the named
route-map should be applied to routes being exported to bgp or zebra.

	export bgp|zebra no route-map

	When export mode is ce or registering-nve, specifies that no route-map
should be applied to routes being exported to bgp or zebra.

When the export mode is group-nve, policy for exported routes is specified
per-NVE-group or vrf-policy group inside a nve-group RFG-NAME block via
the following commands(VNC NVE Group Configuration):

	export bgp|zebra route-map MAP-NAME

	This command is valid inside a nve-group RFG-NAME block. It specifies
that the named route-map should be applied to routes being exported to bgp
or zebra.

	export bgp|zebra no route-map

	This command is valid inside a nve-group RFG-NAME block. It specifies
that no route-map should be applied to routes being exported to bgp or
zebra.

	export bgp|zebra ipv4|ipv6 prefix-list LIST-NAME

	This command is valid inside a nve-group RFG-NAME block. It specifies
that the named prefix-list filter should be applied to routes being exported
to bgp or zebra. Prefix-lists for ipv4 and ipv6 are independent of each
other.

	export bgp|zebra no ipv4|ipv6 prefix-list

	This command is valid inside a nve-group RFG-NAME block. It specifies
that no prefix-list filter should be applied to routes being exported to
bgp or zebra.

Manual Address Control

The commands in this section can be used to augment normal dynamic VNC. The
add vnc commands can be used to manually add IP prefix or Ethernet MAC
address forwarding information. The clear vnc commands can be used to remove
manually and dynamically added information.

	
add vnc prefix (A.B.C.D/M|X:X::X:X/M) vn (A.B.C.D|X:X::X:X) un (A.B.C.D|X:X::X:X) [cost (0-255)] [lifetime (infinite|(1-4294967295))] [local-next-hop (A.B.C.D|X:X::X:X) [local-cost (0-255)]]

	Register an IP prefix on behalf of the NVE identified by the VN and UN
addresses. The cost parameter provides the administrative preference of
the forwarding information for remote advertisement. If omitted, it defaults
to 255 (lowest preference). The lifetime parameter identifies the period,
in seconds, that the information remains valid. If omitted, it defaults to
infinite. The optional local-next-hop parameter is used to configure a
nexthop to be used by an NVE to reach the prefix via a locally connected CE
router. This information remains local to the NVA, i.e., not passed to other
NVAs, and is only passed to registered NVEs. When specified, it is also
possible to provide a local-cost parameter to provide a forwarding
preference. If omitted, it defaults to 255 (lowest preference).

	
add vnc mac xx:xx:xx:xx:xx:xx virtual-network-identifier (1-4294967295) vn (A.B.C.D|X:X::X:X) un (A.B.C.D|X:X::X:X) [prefix (A.B.C.D/M|X:X::X:X/M)] [cost (0-255)] [lifetime (infinite|(1-4294967295))]

	Register a MAC address for a logical Ethernet (L2VPN) on behalf of the NVE
identified by the VN and UN addresses. The optional prefix parameter is to
support enable IP address mediation for the given prefix. The cost
parameter provides the administrative preference of the forwarding
information. If omitted, it defaults to 255. The lifetime parameter
identifies the period, in seconds, that the information remains valid. If
omitted, it defaults to infinite.

	
clear vnc prefix (*|A.B.C.D/M|X:X::X:X/M) (*|[(vn|un) (A.B.C.D|X:X::X:X|*) [(un|vn) (A.B.C.D|X:X::X:X|*)] [mac xx:xx:xx:xx:xx:xx] [local-next-hop (A.B.C.D|X:X::X:X)])

	Delete the information identified by prefix, VN address, and UN address.
Any or all of these parameters may be wildcarded to (potentially) match more
than one registration. The optional mac parameter specifies a layer-2 MAC
address that must match the registration(s) to be deleted. The optional
local-next-hop parameter is used to delete specific local nexthop
information.

	
clear vnc mac (*|xx:xx:xx:xx:xx:xx) virtual-network-identifier (*|(1-4294967295)) (*|[(vn|un) (A.B.C.D|X:X::X:X|*) [(un|vn) (A.B.C.D|X:X::X:X|*)] [prefix (*|A.B.C.D/M|X:X::X:X/M)])

	Delete mac forwarding information. Any or all of these parameters may be
wildcarded to (potentially) match more than one registration. The default
value for the prefix parameter is the wildcard value *.

	
clear vnc nve (*|((vn|un) (A.B.C.D|X:X::X:X) [(un|vn) (A.B.C.D|X:X::X:X)]))

	Delete prefixes associated with the NVE specified by the given VN and UN
addresses. It is permissible to specify only one of VN or UN, in which case
any matching registration will be deleted. It is also permissible to specify
* in lieu of any VN or UN address, in which case all registrations will
match.

Other VNC-Related Commands

Note: VNC-Related configuration can be obtained via the show
running-configuration command when in enable mode.

The following commands are used to clear and display Virtual Network Control
related information:

	
clear vnc counters

	Reset the counter values stored by the NVA. Counter
values can be seen using the show vnc commands listed above. This
command is only available in enable mode.

	
show vnc summary

	Print counter values and other general information
about the NVA. Counter values can be reset
using the clear vnc counters command listed below.

	
show vnc nves

	

	
show vnc nves vn|un ADDRESS

	Display the NVA’s current clients. Specifying address limits the output to
the NVEs whose addresses match address. The time since the NVA last
communicated with the NVE, per-NVE summary counters and each NVE’s addresses
will be displayed.

	
show vnc queries

	

	
show vnc queries PREFIX

	Display active Query information. Queries remain valid for the default
Response Lifetime (VNC Defaults Configuration) or NVE-group Response
Lifetime (VNC NVE Group Configuration). Specifying prefix limits
the output to Query Targets that fall within prefix.

Query information is provided for each querying NVE, and includes the Query
Target and the time remaining before the information is removed.

	
show vnc registrations [all|local|remote|holddown|imported]

	

	
show vnc registrations [all|local|remote|holddown|imported] PREFIX

	Display local, remote, holddown, and/or imported registration information.
Local registrations are routes received via RFP, which are present in the
NVA Registrations Cache. Remote registrations are routes received via BGP
(VPN SAFIs), which are present in the NVE-group import tables. Holddown
registrations are local and remote routes that have been withdrawn but whose
holddown timeouts have not yet elapsed. Imported information represents
routes that are imported into NVA and are made available to querying NVEs.
Depending on configuration, imported routes may also be advertised via BGP.
Specifying prefix limits the output to the registered prefixes that fall
within prefix.

Registration information includes the registered prefix, the registering NVE
addresses, the registered administrative cost, the registration lifetime and
the time since the information was registered or, in the case of Holddown
registrations, the amount of time remaining before the information is
removed.

	
show vnc responses [active|removed]

	

	
show vnc responses [active|removed] PREFIX

	Display all, active and/or removed response information which are
present in the NVA Responses Cache. Responses remain valid for the
default Response Lifetime (VNC Defaults Configuration) or
NVE-group Response Lifetime (VNC NVE Group Configuration.)
When Removal Responses are enabled (General VNC Configuration),
such responses are listed for the Response Lifetime. Specifying
prefix limits the output to the addresses that fall within
prefix.

Response information is provided for each querying NVE, and includes
the response prefix, the prefix-associated registering NVE addresses,
the administrative cost, the provided response lifetime and the time
remaining before the information is to be removed or will become inactive.

	
show memory vnc

	Print the number of memory items allocated by the NVA.

Example VNC and VNC-GW Configurations

Mesh NVA Configuration

This example includes three NVAs, nine NVEs, and two NVE groups. Note that
while not shown, a single physical device may support multiple logical NVEs.
A three-way full mesh with three NVEs per NVA. shows code NVA-1 (192.168.1.100), NVA 2
(192.168.1.101), and NVA 3 (192.168.1.102), which are connected in a full
mesh. Each is a member of the autonomous system 64512. Each NVA provides VNC
services to three NVE clients in the 172.16.0.0/16 virtual-network address
range. The 172.16.0.0/16 address range is partitioned into two NVE groups,
group1 (172.16.0.0/17) and group2 (172.16.128.0/17).

Each NVE belongs to either NVE group group1 or NVE group group2. The
NVEs NVE 1, NVE 2, NVE 4, NVE 7, and NVE 8 are members of
the NVE group group1. The NVEs NVE 3, NVE 5, NVE 6, and NVE
9 are members of the NVE group group2.

Each NVA advertises NVE underlay-network IP addresses using the
Tunnel Encapsulation Attribute.

[image: Three-way Mesh]
A three-way full mesh with three NVEs per NVA.

bgpd.conf for NVA 1 (192.168.1.100):

router bgp 64512

 bgp router-id 192.168.1.100

 neighbor 192.168.1.101 remote-as 64512
 neighbor 192.168.1.102 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.101 activate
 neighbor 192.168.1.102 activate
 exit-address-family

 vnc defaults
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc

 vnc nve-group group1
 prefix vn 172.16.0.0/17
 rt both 1000:1
 exit-vnc

 vnc nve-group group2
 prefix vn 172.16.128.0/17
 rt both 1000:2
 exit-vnc

exit

bgpd.conf for NVA 2 (192.168.1.101):

router bgp 64512

 bgp router-id 192.168.1.101

 neighbor 192.168.1.100 remote-as 64512
 neighbor 192.168.1.102 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 neighbor 192.168.1.102 activate
 exit-address-family

 vnc nve-group group1
 prefix vn 172.16.0.0/17
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc
exit

bgpd.conf for NVA 3 (192.168.1.102):

router bgp 64512

 bgp router-id 192.168.1.102

 neighbor 192.168.1.101 remote-as 64512
 neighbor 192.168.1.102 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 neighbor 192.168.1.101 activate
 exit-address-family

 vnc defaults
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc

 vnc nve-group group1
 prefix vn 172.16.128.0/17
 exit-vnc
exit

Mesh NVA and VNC-GW Configuration

This example includes two NVAs, each with two associated NVEs, and two VNC-GWs,
each supporting two CE routers physically attached to the four NVEs. Note that
this example is showing a more complex configuration where VNC-GW is separated
from normal NVA functions; it is equally possible to simplify the configuration
and combine NVA and VNC-GW functions in a single FRR instance.

[image: FRR VNC Gateway]
Meshed NVEs and VNC-GWs

As shown in Meshed NVEs and VNC-GWs, NVAs and VNC-GWs are connected in a full iBGP
mesh. The VNC-GWs each have two CEs configured as route-reflector clients.
Each client provides BGP updates with unicast routes that the VNC-GW reflects
to the other client. The VNC-GW also imports these unicast routes into VPN
routes to be shared with the other VNC-GW and the two NVAs. This route
importation is controlled with the vnc redistribute statements shown in the
configuration. Similarly, registrations sent by NVEs via RFP to the NVAs are
exported by the VNC-GWs to the route-reflector clients as unicast routes. RFP
registrations exported this way have a next-hop address of the CE behind the
connected (registering) NVE. Exporting VNC routes as IPv4 unicast is enabled
with the vnc export command below.

The configuration for VNC-GW 1 is shown below.

router bgp 64512
 bgp router-id 192.168.1.101
 bgp cluster-id 1.2.3.4
 neighbor 192.168.1.102 remote-as 64512
 neighbor 192.168.1.103 remote-as 64512
 neighbor 192.168.1.104 remote-as 64512
 neighbor 172.16.1.2 remote-as 64512
 neighbor 172.16.2.2 remote-as 64512
 !
 address-family ipv4 unicast
 redistribute vnc-direct
 no neighbor 192.168.1.102 activate
 no neighbor 192.168.1.103 activate
 no neighbor 192.168.1.104 activate
 neighbor 172.16.1.2 route-reflector-client
 neighbor 172.16.2.2 route-reflector-client
 exit-address-family
 !
 address-family ipv4 vpn
 neighbor 192.168.1.102 activate
 neighbor 192.168.1.103 activate
 neighbor 192.168.1.104 activate
 exit-address-family
 vnc export bgp mode ce
 vnc redistribute mode resolve-nve
 vnc redistribute ipv4 bgp-direct
 exit

Note that in the VNC-GW configuration, the neighboring VNC-GW and NVAs each
have a statement disabling the IPv4 unicast address family. IPv4 unicast is on
by default and this prevents the other VNC-GW and NVAs from learning unicast
routes advertised by the route-reflector clients.

Configuration for NVA 2:

router bgp 64512
 bgp router-id 192.168.1.104
 neighbor 192.168.1.101 remote-as 64512
 neighbor 192.168.1.102 remote-as 64512
 neighbor 192.168.1.103 remote-as 64512
 !
 address-family ipv4 unicast
 no neighbor 192.168.1.101 activate
 no neighbor 192.168.1.102 activate
 no neighbor 192.168.1.103 activate
 exit-address-family
 !
 address-family ipv4 vpn
 neighbor 192.168.1.101 activate
 neighbor 192.168.1.102 activate
 neighbor 192.168.1.103 activate
 exit-address-family
 !
 vnc defaults
 response-lifetime 3600
 exit-vnc
 vnc nve-group nve1
 prefix vn 172.16.1.1/32
 response-lifetime 3600
 rt both 1000:1 1000:2
 exit-vnc
 vnc nve-group nve2
 prefix vn 172.16.2.1/32
 response-lifetime 3600
 rt both 1000:1 1000:2
 exit-vnc
 exit

VNC with FRR Route Reflector Configuration

A route reflector eliminates the need for a fully meshed NVA network by acting
as the hub between NVAs. Two NVAs and a BGP Route Reflector shows BGP
route reflector BGP Route Reflector 1 (192.168.1.100) as a route reflector
for NVAs NVA 2``(192.168.1.101) and ``NVA 3 (192.168.1.102).

[image: FRR Route Reflector]
Two NVAs and a BGP Route Reflector

NVA 2 and NVA 3 advertise NVE underlay-network IP addresses using the
Tunnel Encapsulation Attribute. BGP Route Reflector 1 reflects''
advertisements from ``NVA 2 to NVA 3 and vice versa.

As in the example of Mesh NVA Configuration, there are two NVE groups. The
172.16.0.0/16 address range is partitioned into two NVE groups, group1
(172.16.0.0/17) and group2 (172.16.128.0/17). The NVE NVE 4, NVE
7, and NVE 8 are members of the NVE group group1. The NVEs NVE
5, NVE 6, and NVE 9 are members of the NVE group group2.

bgpd.conf for BGP Route Reflector 1 on 192.168.1.100:

router bgp 64512

 bgp router-id 192.168.1.100

 neighbor 192.168.1.101 remote-as 64512
 neighbor 192.168.1.101 port 7179
 neighbor 192.168.1.101 description iBGP-client-192-168-1-101

 neighbor 192.168.1.102 remote-as 64512
 neighbor 192.168.1.102 port 7179
 neighbor 192.168.1.102 description iBGP-client-192-168-1-102

 address-family ipv4 unicast
 neighbor 192.168.1.101 route-reflector-client
 neighbor 192.168.1.102 route-reflector-client
 exit-address-family

 address-family ipv4 vpn
 neighbor 192.168.1.101 activate
 neighbor 192.168.1.102 activate

 neighbor 192.168.1.101 route-reflector-client
 neighbor 192.168.1.102 route-reflector-client
 exit-address-family

exit

bgpd.conf for NVA 2 on 192.168.1.101:

router bgp 64512

 bgp router-id 192.168.1.101

 neighbor 192.168.1.100 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 exit-address-family

 vnc nve-group group1
 prefix vn 172.16.0.0/17
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc
exit

bgpd.conf for NVA 2 on 192.168.1.102:

router bgp 64512

 bgp router-id 192.168.1.102

 neighbor 192.168.1.100 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 exit-address-family

 vnc defaults
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc

 vnc nve-group group1
 prefix vn 172.16.128.0/17
 exit-vnc
exit

While not shown, an NVA can also be configured as a route reflector.

VNC with Commercial Route Reflector Configuration

This example is identical to VNC with FRR Route Reflector Configuration
with the exception that the route reflector is a commercial router. Only the
VNC-relevant configuration is provided.

[image: Commercial Route Reflector]
Two NVAs with a commercial route reflector

bgpd.conf for BGP route reflector Commercial Router on 192.168.1.104::

version 8.5R1.13;
routing-options {
 rib inet.0 {
 static {
 route 172.16.0.0/16 next-hop 192.168.1.104;
 }
 }
 autonomous-system 64512;
 resolution {
 rib inet.3 {
 resolution-ribs inet.0;
 }
 rib bgp.l3vpn.0 {
 resolution-ribs inet.0;
 }
 }
}
protocols {
 bgp {
 advertise-inactive;
 family inet {
 labeled-unicast;
 }
 group 1 {
 type internal;
 advertise-inactive;
 advertise-peer-as;
 import h;
 family inet {
 unicast;
 }
 family inet-vpn {
 unicast;
 }
 cluster 192.168.1.104;
 neighbor 192.168.1.101;
 neighbor 192.168.1.102;
 }
 }
}
policy-options {
 policy-statement h {
 from protocol bgp;
 then {
 as-path-prepend 64512;
 accept;
 }
 }
}

bgpd.conf for NVA 2 on 192.168.1.101:

router bgp 64512

 bgp router-id 192.168.1.101

 neighbor 192.168.1.100 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 exit-address-family

 vnc nve-group group1
 prefix vn 172.16.0.0/17
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc
exit

bgpd.conf for NVA 3 on 192.168.1.102:

router bgp 64512

 bgp router-id 192.168.1.102

 neighbor 192.168.1.100 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 exit-address-family

 vnc defaults
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc

 vnc nve-group group1
 prefix vn 172.16.128.0/17
 exit-vnc
exit

VNC with Redundant Route Reflectors Configuration

This example combines the previous two
(VNC with FRR Route Reflector Configuration and
VNC with Commercial Route Reflector Configuration) into a redundant route
reflector configuration. BGP route reflectors BGP Route Reflector 1 and
Commercial Router are the route reflectors for NVAs NVA 2 and NVA
3. The two NVAs have connections to both route reflectors.

[image: Redundant Route Reflectors]
FRR-based NVA with redundant route reflectors

bgpd.conf for BPGD Route Reflector 1 on 192.168.1.100:

router bgp 64512

 bgp router-id 192.168.1.100
 bgp cluster-id 192.168.1.100

 neighbor 192.168.1.104 remote-as 64512

 neighbor 192.168.1.101 remote-as 64512
 neighbor 192.168.1.101 description iBGP-client-192-168-1-101
 neighbor 192.168.1.101 route-reflector-client

 neighbor 192.168.1.102 remote-as 64512
 neighbor 192.168.1.102 description iBGP-client-192-168-1-102
 neighbor 192.168.1.102 route-reflector-client

 address-family ipv4 vpn
 neighbor 192.168.1.101 activate
 neighbor 192.168.1.102 activate
 neighbor 192.168.1.104 activate

 neighbor 192.168.1.101 route-reflector-client
 neighbor 192.168.1.102 route-reflector-client
 exit-address-family
exit

bgpd.conf for NVA 2 on 192.168.1.101:

router bgp 64512

 bgp router-id 192.168.1.101

 neighbor 192.168.1.100 remote-as 64512
 neighbor 192.168.1.104 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 neighbor 192.168.1.104 activate
 exit-address-family

 vnc nve-group group1
 prefix vn 172.16.0.0/17
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc
exit

bgpd.conf for NVA 3 on 192.168.1.102:

router bgp 64512

 bgp router-id 192.168.1.102

 neighbor 192.168.1.100 remote-as 64512
 neighbor 192.168.1.104 remote-as 64512

 address-family ipv4 vpn
 neighbor 192.168.1.100 activate
 neighbor 192.168.1.104 activate
 exit-address-family

 vnc defaults
 rd 64512:1
 response-lifetime 200
 rt both 1000:1 1000:2
 exit-vnc

 vnc nve-group group1
 prefix vn 172.16.128.0/17
 exit-vnc
exit

bgpd.conf for the Commercial Router route reflector on 192.168.1.104::

routing-options {
 rib inet.0 {
 static {
 route 172.16.0.0/16 next-hop 192.168.1.104;
 }
 }
 autonomous-system 64512;
 resolution {
 rib inet.3 {
 resolution-ribs inet.0;
 }
 rib bgp.l3vpn.0 {
 resolution-ribs inet.0;
 }
 }
}
protocols {
 bgp {
 advertise-inactive;
 family inet {
 labeled-unicast;
 }
 group 1 {
 type internal;
 advertise-inactive;
 advertise-peer-as;
 import h;
 family inet {
 unicast;
 }
 family inet-vpn {
 unicast;
 }
 cluster 192.168.1.104;
 neighbor 192.168.1.101;
 neighbor 192.168.1.102;
 }

 group 2 {
 type internal;
 advertise-inactive;
 advertise-peer-as;
 import h;
 family inet {
 unicast;
 }
 family inet-vpn {
 unicast;
 }
 neighbor 192.168.1.100;
 }

 }
}
policy-options {
 policy-statement h {
 from protocol bgp;
 then {
 as-path-prepend 64512;
 accept;
 }
 }
}

	1

	The nve-id is carried in the route distinguisher. It is the second octet
of the eight-octet route distinguisher generated for Ethernet / L2
advertisements. The first octet is a constant 0xFF, and the third
through eighth octets are set to the L2
ethernet address being advertised.

Glossary

	distance-vector

	A distance-vector routing protocol in data networks determines the best
route for data packets based on distance. Distance-vector routing
protocols measure the distance by the number of routers a packet has to
pass. Some distance-vector protocols also take into account network
latency and other factors that influence traffic on a given route. To
determine the best route across a network, routers on which a
distance-vector protocol is implemented exchange information with one
another, usually routing tables plus hop counts for destination networks
and possibly other traffic information. Distance-vector routing protocols
also require that a router informs its neighbours of network topology
changes periodically. [distance-vector-rp]

	link-state

	Link-state algorithms (also known as shortest path first algorithms)
flood routing information to all nodes in the internetwork. Each router,
however, sends only the portion of the routing table that describes the
state of its own links. In link-state algorithms, each router builds a
picture of the entire network in its routing tables. Distance vector
algorithms (also known as Bellman-Ford algorithms) call for each router
to send all or some portion of its routing table, but only to its
neighbors. In essence, link-state algorithms send small updates
everywhere, while distance vector algorithms send larger updates only to
neighboring routers. Distance vector algorithms know only about their
neighbors. [link-state-rp]

	Bellman-Ford

	The Bellman–Ford algorithm is an algorithm that computes shortest paths
from a single source vertex to all of the other vertices in a weighted
digraph. [bellman-ford]

	distance-vector-rp

	https://en.wikipedia.org/wiki/Distance-vector_routing_protocol

	link-state-rp

	https://en.wikipedia.org/wiki/Link-state_routing_protocol

	bellman-ford

	https://en.wikipedia.org/wiki/Bellman-Ford_algorithm

Packet Binary Dump Format

FRR can dump routing protocol packets into a file with a binary format.

It seems to be better that we share the MRT’s header format for
backward compatibility with MRT’s dump logs. We should also define the
binary format excluding the header, because we must support both IP
v4 and v6 addresses as socket addresses and / or routing entries.

In the last meeting, we discussed to have a version field in the
header. But Masaki told us that we can define new ‘type’ value rather
than having a ‘version’ field, and it seems to be better because we
don’t need to change header format.

Here is the common header format. This is same as that of MRT.:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Time |
+-+
| Type | Subtype |
+-+
| Length |
+-+

If ‘type’ is PROTOCOL_BGP4MP_ET, the common header format will
contain an additional microsecond field (RFC6396 2011).:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Time |
+-+
| Type | Subtype |
+-+
| Length |
+-+
| Microsecond |
+-+

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_STATE_CHANGE, and
Address Family == IP (version 4):

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source AS number | Destination AS number |
+-+
| Interface Index | Address Family |
+-+
| Source IP address |
+-+
| Destination IP address |
+-+
| Old State | New State |
+-+

Where State is the value defined in RFC1771.

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_STATE_CHANGE,
and Address Family == IP version 6:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source AS number | Destination AS number |
+-+
| Interface Index | Address Family |
+-+
| Source IP address |
+-+
| Source IP address (Cont'd) |
+-+
| Source IP address (Cont'd) |
+-+
| Source IP address (Cont'd) |
+-+
| Destination IP address |
+-+
| Destination IP address (Cont'd) |
+-+
| Destination IP address (Cont'd) |
+-+
| Destination IP address (Cont'd) |
+-+
| Old State | New State |
+-+

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_MESSAGE,
and Address Family == IP (version 4):

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source AS number | Destination AS number |
+-+
| Interface Index | Address Family |
+-+
| Source IP address |
+-+
| Destination IP address |
+-+
| BGP Message Packet |
| |
+-+

Where BGP Message Packet is the whole contents of the
BGP4 message including header portion.

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_MESSAGE,
and Address Family == IP version 6:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source AS number | Destination AS number |
+-+
| Interface Index | Address Family |
+-+
| Source IP address |
+-+
| Source IP address (Cont'd) |
+-+
| Source IP address (Cont'd) |
+-+
| Source IP address (Cont'd) |
+-+
| Destination IP address |
+-+
| Destination IP address (Cont'd) |
+-+
| Destination IP address (Cont'd) |
+-+
| Destination IP address (Cont'd) |
+-+
| BGP Message Packet |
| |
+-+

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_ENTRY,
and Address Family == IP (version 4):

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| View # | Status |
+-+
| Time Last Change |
+-+
| Address Family | SAFI | Next-Hop-Len |
+-+
| Next Hop Address |
+-+
| Prefix Length | Address Prefix [variable] |
+-+
| Attribute Length |
+-+
| BGP Attribute [variable length] |
+-+

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_ENTRY,
and Address Family == IP version 6:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| View # | Status |
+-+
| Time Last Change |
+-+
| Address Family | SAFI | Next-Hop-Len |
+-+
| Next Hop Address |
+-+
| Next Hop Address (Cont'd) |
+-+
| Next Hop Address (Cont'd) |
+-+
| Next Hop Address (Cont'd) |
+-+
| Prefix Length | Address Prefix [variable] |
+-+
| Address Prefix (cont'd) [variable] |
+-+
| Attribute Length |
+-+
| BGP Attribute [variable length] |
+-+

BGP4 Attribute must not contain MP_UNREACH_NLRI. If BGP Attribute has
MP_REACH_NLRI field, it must has zero length NLRI, e.g., MP_REACH_NLRI has only
Address Family, SAFI and next-hop values.

If ‘type’ is PROTOCOL_BGP4MP and ‘subtype’ is BGP4MP_SNAPSHOT:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| View # | File Name [variable] |
+-+

The file specified in “File Name” contains all routing entries,
which are in the format of subtype == BGP4MP_ENTRY.

Constants:

 /* type value */
 #define MSG_PROTOCOL_BGP4MP 16
 #define MSG_PROTOCOL_BGP4MP_ET 17
 /* subtype value */
 #define BGP4MP_STATE_CHANGE 0
 #define BGP4MP_MESSAGE 1
 #define BGP4MP_ENTRY 2
 #define BGP4MP_SNAPSHOT 3

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	
 --disable-backtrace

 	configure command line option

 	
 --disable-bgp-announce

 	configure command line option

 	
 --disable-bgpd

 	configure command line option

 	
 --disable-isisd

 	configure command line option

 	
 --disable-ospf-ri

 	configure command line option

 	
 --disable-ospf6d

 	configure command line option

 	
 --disable-ospfapi

 	configure command line option

 	
 --disable-ospfclient

 	configure command line option

 	
 --disable-ospfd

 	configure command line option

 	
 --disable-ripd

 	configure command line option

 	
 --disable-ripngd

 	configure command line option

 	
 --disable-rtadv

 	configure command line option

 	
 --disable-snmp

 	configure command line option

 	
 --disable-vtysh

 	configure command line option

 	
 --disable-zebra

 	configure command line option

 	
 --enable-datacenter

 	configure command line option

 	
 --enable-dev-build

 	configure command line option

 	
 --enable-fpm

 	configure command line option

 	
 --enable-fuzzing

 	configure command line option

 	
 --enable-gcc-rdynamic

 	configure command line option

 	
 --enable-group <user>

 	configure command line option

 	
 --enable-isis-te

 	configure command line option

 	
 --enable-isis-topology

 	configure command line option

 	
 --enable-multipath=X

 	configure command line option

 	
 --enable-numeric-version

 	configure command line option

 	
 --enable-realms

 	configure command line option

 	
 --enable-snmp

 	configure command line option

 	
 --enable-user <user>

 	configure command line option

 	
 	
 --enable-vty-group <group>

 	configure command line option

 	
 --localstatedir <dir>

 	configure command line option

 	
 --prefix <prefix>

 	configure command line option

 	
 --sysconfdir <dir>

 	configure command line option

 	
 -A, --vty_addr <address>

 	command line option

 	
 -b, --batch

 	zebra command line option

 	
 -d, --daemon

 	command line option

 	
 -e X, --ecmp X

 	zebra command line option

 	
 -f, --config_file <file>

 	command line option

 	
 -h, --help

 	command line option

 	
 -i, --pid_file <file>

 	command line option

 	
 -k, --keep_kernel

 	zebra command line option

 	
 -l, --listenon

 	bgpd command line option

 	
 -M, --module <module:options>

 	command line option

 	
 -n, --vrfwnetns

 	zebra command line option

 	
 -p, --bgp_port <port>

 	bgpd command line option

 	
 -P, --vty_port <port>

 	command line option

 	
 -r, --retain

 	bgpd command line option

 	command line option

 	eigrpd command line option

 	zebra command line option

 	
 -u <user>

 	command line option

 	
 -v, --version

 	command line option

 	294, [1]

 	296>, [1]

 	967, [1]

 	[no] debug bgp flowspec

 	[no] debug bgp pbr [error]

 	[no] local-install <IFNAME | any>

 	[no] log timestamp precision (0-6)

 	[no] rt redirect import RTLIST...

 	[no] segment-routing global-block (0-1048575) (0-1048575)

 	[no] segment-routing node-msd (1-16)

 	[no] segment-routing on

 	[no] segment-routing prefix A.B.C.D/M index (0-65535) [no-php-flag]

A

 	
 	access-class ACCESS-LIST

 	access-list NAME deny IPV4-NETWORK

 	access-list NAME permit IPV4-NETWORK

 	agentx

 	aggregate-address A.B.C.D/M

 	aggregate-address A.B.C.D/M as-set

 	aggregate-address A.B.C.D/M summary-only

 	area (0-4294967295) authentication

 	(0-4294967295), [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	area A.B.C.D authentication

 	area A.B.C.D authentication message-digest

 	area A.B.C.D default-cost (0-16777215)

 	area A.B.C.D export-list NAME

 	
 	area A.B.C.D filter-list prefix NAME in

 	area A.B.C.D filter-list prefix NAME out

 	area A.B.C.D import-list NAME

 	area A.B.C.D range A.B.C.D/M

 	area A.B.C.D range IPV4_PREFIX not-advertise

 	area A.B.C.D range IPV4_PREFIX substitute IPV4_PREFIX

 	area A.B.C.D shortcut

 	area A.B.C.D stub

 	area A.B.C.D stub no-summary

 	area A.B.C.D virtual-link A.B.C.D

 	area-password [clear | md5] <password>

 	auto-cost reference-bandwidth (1-4294967)

 	auto-cost reference-bandwidth COST

B

 	
 	babel <wired|wireless>

 	babel channel (1-254)

 	babel channel interfering

 	babel channel noninterfering

 	babel diversity

 	babel diversity-factor (1-256)

 	babel enable-timestamps

 	babel hello-interval (20-655340)

 	babel max-rtt-penalty (0-65535)

 	babel resend-delay (20-655340), [1]

 	babel rtt-decay (1-256)

 	babel rtt-max (1-65535)

 	babel rtt-min (1-65535)

 	babel rxcost (1-65534)

 	babel smoothing-half-life (0-65534)

 	babel split-horizon

 	babel update-interval (20-655340)

 	bandwidth (1-10000000)

 	banner motd default

 	
 	Bellman-Ford

 	bgp always-compare-med

 	bgp bestpath as-path confed

 	bgp bestpath as-path multipath-relax

 	bgp cluster-id A.B.C.D

 	bgp config-type cisco

 	bgp config-type zebra

 	bgp deterministic-med

 	bgp multiple-instance

 	bgp route-reflector allow-outbound-policy

 	bgp router-id A.B.C.D

 	
 bgpd command line option

 	-l, --listenon

 	-p, --bgp_port <port>

 	-r, --retain

 	Bug hunting

 	Bug Reports

 	Build options

 	Building on Linux boxes

 	Building the system

C

 	
 	Call Action

 	call NAME

 	call WORD

 	capability opaque

 	clear bgp ipv4|ipv6 *

 	clear bgp ipv4|ipv6 PEER

 	clear bgp ipv4|ipv6 PEER soft in

 	clear ip prefix-list

 	clear ip prefix-list NAME

 	clear ip prefix-list NAME A.B.C.D/M

 	clear vnc counters

 	clear vnc mac (*|xx:xx:xx:xx:xx:xx) virtual-network-identifier (*|(1-4294967295)) (*|[(vn|un) (A.B.C.D|X:X::X:X|*) [(un|vn) (A.B.C.D|X:X::X:X|*)] [prefix (*|A.B.C.D/M|X:X::X:X/M)])

 	clear vnc nve (*|((vn|un) (A.B.C.D|X:X::X:X) [(un|vn) (A.B.C.D|X:X::X:X)]))

 	clear zebra fpm stats

 	
 command line option

 	-A, --vty_addr <address>

 	-M, --module <module:options>

 	-P, --vty_port <port>

 	-d, --daemon

 	-f, --config_file <file>

 	-h, --help

 	-i, --pid_file <file>

 	-r, --retain

 	-u <user>

 	-v, --version

 	Compatibility with other systems

 	Configuration files for running the software

 	Configuration options

 	
 configure command line option

 	--disable-backtrace

 	--disable-bgp-announce

 	--disable-bgpd

 	--disable-isisd

 	--disable-ospf-ri

 	--disable-ospf6d

 	--disable-ospfapi

 	--disable-ospfclient

 	--disable-ospfd

 	--disable-ripd

 	--disable-ripngd

 	--disable-rtadv

 	--disable-snmp

 	--disable-vtysh

 	--disable-zebra

 	--enable-datacenter

 	--enable-dev-build

 	--enable-fpm

 	--enable-fuzzing

 	--enable-gcc-rdynamic

 	--enable-group <user>

 	--enable-isis-te

 	--enable-isis-topology

 	--enable-multipath=X

 	--enable-numeric-version

 	--enable-realms

 	--enable-snmp

 	--enable-user <user>

 	--enable-vty-group <group>

 	--localstatedir <dir>

 	--prefix <prefix>

 	--sysconfdir <dir>

 	
 	configure terminal

 	Configuring FRR

 	Contact information

 	continue

 	continue N

D

 	
 	debug eigrp packets

 	debug eigrp transmit

 	debug event

 	debug isis adj-packets

 	debug isis checksum-errors

 	debug isis events

 	debug isis local-updates

 	debug isis packet-dump

 	debug isis protocol-errors

 	debug isis route-events

 	debug isis snp-packets

 	debug isis spf-events

 	debug isis spf-statistics

 	debug isis spf-triggers

 	debug isis update-packets

 	debug keepalive

 	debug ospf event

 	debug ospf ism

 	(status|events|timers)

 	debug ospf lsa

 	(generate|flooding|refresh)

 	debug ospf nsm

 	(status|events|timers)

 	debug ospf nssa

 	debug ospf packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]

 	debug ospf te

 	debug ospf zebra

 	(interface|redistribute)

 	debug pim events

 	debug pim nht

 	debug pim packet-dump

 	debug pim packets

 	debug pim trace

 	debug pim zebra

 	debug rip events

 	debug rip packet

 	
 	debug rip zebra

 	debug ripng events

 	debug ripng packet

 	debug ripng zebra

 	debug rpki

 	debug update

 	default-information originate, [1]

 	default-information originate always

 	default-information originate always metric (0-16777214)

 	default-information originate always metric (0-16777214) metric-type (1|2)

 	(1|2)

 	default-information originate metric (0-16777214)

 	default-information originate metric (0-16777214) metric-type (1|2)

 	(1|2)

 	default-metric (0-16777214)

 	(1-16)

 	description DESCRIPTION ...

 	distance (1-255), [1]

 	(1-255), [1], [2], [3]

 	distance bgp (1-255) (1-255) (1-255)

 	distance ospf (intra-area|inter-area|external) (1-255)

 	distance-vector

 	Distance-vector routing protocol

 	distribute-list ACCESS_LIST (in|out) IFNAME

 	distribute-list ACCESS_LIST DIRECT IFNAME

 	distribute-list NAME out (kernel|connected|static|rip|ospf

 	distribute-list prefix PREFIX_LIST (in|out) IFNAME

 	Distribution configuration

 	domain-password [clear | md5] <password>

 	DUAL

 	dump bgp all PATH [INTERVAL]

 	dump bgp all-et PATH [INTERVAL]

 	dump bgp routes-mrt PATH

 	dump bgp routes-mrt PATH INTERVAL

 	dump bgp updates PATH [INTERVAL]

 	dump bgp updates-et PATH [INTERVAL]

E

 	
 	
 eigrpd command line option

 	-r, --retain

 	enable password PASSWORD

 	Errors in the software

 	exec-timeout MINUTE [SECOND]

 	Exit Policy

 	
 	exit-vnc

 	export bgp|zebra ipv4|ipv6 prefix-list LIST-NAME

 	export bgp|zebra mode none|group-nve|registering-nve|ce

 	export bgp|zebra no ipv4|ipv6 prefix-list

 	export bgp|zebra no route-map

 	export bgp|zebra route-map MAP-NAME

F

 	
 	Files for running configurations

 	flush_timer TIME

 	Found a bug?

 	
 	FRR Least-Privileges

 	FRR on other systems

 	FRR Privileges

G

 	
 	Getting the herd running

H

 	
 	hostname dynamic

 	hostname HOSTNAME

 	
 	How to get in touch with FRR

 	How to install FRR

I

 	
 	import vrf VRFNAME

 	import|export vpn

 	Installation

 	Installing FRR

 	interface IFNAME

 	interface IFNAME area AREA

 	interface IFNAME vrf VRF

 	ip address ADDRESS/PREFIX

 	ip address ADDRESS/PREFIX secondary

 	ip address LOCAL-ADDR peer PEER-ADDR/PREFIX

 	ip as-path access-list WORD permit|deny LINE

 	ip community-list (1-99) permit|deny COMMUNITY

 	(100-199)

 	ip community-list expanded NAME permit|deny LINE

 	ip community-list NAME permit|deny COMMUNITY

 	ip community-list standard NAME permit|deny COMMUNITY

 	ip extcommunity-list expanded NAME permit|deny LINE

 	ip extcommunity-list standard NAME permit|deny EXTCOMMUNITY

 	ip igmp

 	ip igmp query-interval (1-1800)

 	ip igmp query-max-response-time (10-250)

 	ip igmp version (2-3)

 	ip large-community-list expanded NAME permit|deny LINE

 	ip large-community-list standard NAME permit|deny LARGE-COMMUNITY

 	ip mroute A.B.C.D/M A.B.C.D (1-255)

 	ip mroute A.B.C.D/M INTERFACE (1-255)

 	ip mroute PREFIX NEXTHOP [DISTANCE]

 	ip multicast rpf-lookup-mode MODE

 	ip multicast rpf-lookup-mode WORD

 	ip multicat boundary oil WORD

 	ip ospf area (A.B.C.D|(0-4294967295))

 	ip ospf area AREA [ADDR]

 	ip ospf authentication message-digest

 	ip ospf authentication-key AUTH_KEY

 	ip ospf cost (1-65535)

 	ip ospf dead-interval (1-65535)

 	ip ospf dead-interval minimal hello-multiplier (2-20)

 	ip ospf hello-interval (1-65535)

 	ip ospf message-digest-key KEYID md5 KEY

 	ip ospf network (broadcast|non-broadcast|point-to-multipoint|point-to-point)

 	ip ospf priority (0-255)

 	ip ospf retransmit-interval (1-65535)

 	ip ospf transmit-delay

 	ip pim bfd

 	ip pim drpriority (1-4294967295)

 	ip pim ecmp

 	ip pim ecmp rebalance

 	ip pim hello (1-180) (1-180)

 	ip pim join-prune-interval (60-600)

 	ip pim keep-alive-timer (31-60000)

 	ip pim packets (1-100)

 	ip pim register-suppress-time (5-60000)

 	ip pim rp A.B.C.D A.B.C.D/M

 	ip pim send-v6-secondary

 	ip pim sm

 	ip pim spt-switchover infinity-and-beyond

 	ip pim ssm prefix-list WORD

 	ip prefix-list NAME (permit|deny) PREFIX [le LEN] [ge LEN]

 	ip prefix-list NAME description DESC

 	
 	ip prefix-list NAME seq NUMBER (permit|deny) PREFIX [le LEN] [ge LEN]

 	ip prefix-list sequence-number

 	ip protocol PROTOCOL route-map ROUTEMAP

 	ip rip authentication key-chain KEY-CHAIN

 	ip rip authentication mode md5

 	ip rip authentication mode text

 	ip rip authentication string STRING

 	ip rip receive version VERSION

 	ip rip send version VERSION

 	ip route NETWORK GATEWAY

 	ip route NETWORK GATEWAY DISTANCE

 	ip route NETWORK NETMASK GATEWAY

 	ip route NETWORK NETMASK GATEWAY NEXTHOPVRF

 	ip route NETWORK NETMASK GATEWAY table TABLENO, [1]

 	ip router isis WORD

 	ip split-horizon

 	ipv6 address ADDRESS/PREFIX

 	ipv6 nd adv-interval-option

 	ipv6 nd home-agent-config-flag

 	ipv6 nd home-agent-lifetime (0-65520)

 	ipv6 nd home-agent-preference (0-65535), [1]

 	ipv6 nd managed-config-flag

 	ipv6 nd mtu (1-65535)

 	ipv6 nd other-config-flag

 	ipv6 nd prefix ipv6prefix [valid-lifetime] [preferred-lifetime] [off-link] [no-autoconfig] [router-address]

 	ipv6 nd ra-interval msec (70-1800000), [1]

 	ipv6 nd ra-lifetime (0-9000)

 	ipv6 nd reachable-time (1-3600000)

 	ipv6 nd router-preference (high|medium|low)

 	ipv6 nd suppress-ra

 	ipv6 ospf6 cost COST

 	ipv6 ospf6 dead-interval DEADINTERVAL

 	ipv6 ospf6 hello-interval HELLOINTERVAL

 	ipv6 ospf6 network (broadcast|point-to-point)

 	ipv6 ospf6 priority PRIORITY

 	ipv6 ospf6 retransmit-interval RETRANSMITINTERVAL

 	ipv6 ospf6 transmit-delay TRANSMITDELAY

 	ipv6 route NETWORK from SRCPREFIX GATEWAY

 	ipv6 route NETWORK from SRCPREFIX GATEWAY DISTANCE

 	ipv6 route NETWORK GATEWAY

 	ipv6 route NETWORK GATEWAY DISTANCE

 	is-type [level-1 | level-1-2 | level-2-only]

 	isis circuit-type [level-1 | level-1-2 | level-2]

 	isis csnp-interval (1-600)

 	(1-600)

 	isis hello padding

 	isis hello-interval (1-600)

 	(1-600)

 	isis hello-multiplier (2-100)

 	(2-100)

 	isis metric [(0-255) | (0-16777215)]

 	(0-16777215)

 	isis network point-to-point

 	isis passive

 	isis password [clear | md5] <password>

 	isis priority (0-127)

 	(0-127)

 	isis psnp-interval (1-120)

 	(1-120)

 	isis three-way-handshake

L

 	
 	l2rd NVE-ID-VALUE

 	label vpn export (0..1048575)|auto

 	labels LABEL-LIST

 	line vty

 	Link State Advertisement

 	Link State Announcement

 	Link State Database

 	link-detect

 	link-param ava-bw BANDWIDTH

 	link-param delay (0-16777215) [min (0-16777215) | max (0-16777215)]

 	link-param delay-variation (0-16777215)

 	link-param neighbor <A.B.C.D> as (0-65535)

 	link-param no neighbor

 	link-param packet-loss PERCENTAGE

 	link-param res-bw BANDWIDTH

 	link-param use-bw BANDWIDTH

 	link-params

 	link-params [enable]

 	link-params [metric (0-4294967295)]

 	link-params admin-grp BANDWIDTH

 	link-params max-bw BANDWIDTH

 	link-params max-rsv-bw BANDWIDTH

 	link-params unrsv-bw (0-7) BANDWIDTH

 	
 	link-state

 	Link-state routing protocol

 	Link-state routing protocol advantages

 	Link-state routing protocol disadvantages

 	Linux configurations

 	list

 	log commands

 	log facility [FACILITY]

 	log file FILENAME [LEVEL]

 	log monitor [LEVEL]

 	log record-priority

 	log stdout [LEVEL]

 	log syslog [LEVEL]

 	log timestamp precision (0-6)

 	log trap LEVEL

 	log-adjacency-changes

 	log-adjacency-changes [detail]

 	logical-network-id VALUE

 	logmsg LEVEL MESSAGE

 	LSA flooding

 	lsp-gen-interval (1-120)

 	lsp-gen-interval [level-1 | level-2] (1-120)

 	lsp-refresh-interval [level-1 | level-2] (1-65235)

M

 	
 	Mailing lists

 	Making FRR

 	match

 	match as-path WORD

 	match aspath AS_PATH

 	match community COMMUNITY_LIST

 	match community WORD

 	match community WORD exact-match

 	match extcommunity WORD

 	match interface WORD

 	match ip address ACCESS_LIST

 	match ip address prefix-len 0-32

 	match ip address PREFIX-LIST

 	match ip address prefix-list WORD

 	match ip address WORD

 	match ip next-hop IPV4_ADDR

 	match ip next-hop prefix-list WORD

 	match ip next-hop WORD

 	match ipv6 address ACCESS_LIST

 	match ipv6 address prefix-len 0-128

 	match ipv6 address PREFIX-LIST

 	match large-community LINE

 	
 	match local-preference METRIC

 	match metric (0-4294967295)

 	match metric METRIC

 	match peer A.B.C.D|X:X::X:X

 	match peer INTERFACE_NAME

 	match peer IPV4_ADDR

 	match peer IPV6_ADDR

 	match rpki notfound|invalid|valid

 	match source-instance NUMBER

 	match source-protocol PROTOCOL_NAME

 	match tag TAG

 	Matching Conditions

 	Matching Policy

 	max-lsp-lifetime (360-65535)

 	max-lsp-lifetime [level-1 | level-2] (360-65535)

 	max-metric router-lsa [on-startup|on-shutdown] (5-86400)

 	max-metric router-lsa administrative

 	metric-style [narrow | transition | wide]

 	Modifying the herd's behavior

 	mpls-te inter-as area <area-id>|as

 	mpls-te on, [1]

 	mpls-te router-address <A.B.C.D>, [1]

 	multicast

N

 	
 	neigbor A.B.C.D|X.X::X.X|peer-group route-map WORD import|export

 	neighbor A.B.C.D

 	neighbor A.B.C.D route-server-client

 	neighbor PEER default-originate

 	neighbor PEER description ...

 	neighbor PEER distribute-list NAME [in|out]

 	neighbor PEER dont-capability-negotiate

 	neighbor PEER ebgp-multihop

 	neighbor PEER filter-list NAME [in|out]

 	neighbor PEER interface IFNAME

 	neighbor PEER local-as AS-NUMBER

 	neighbor PEER local-as AS-NUMBER no-prepend

 	neighbor PEER local-as AS-NUMBER no-prepend replace-as

 	neighbor PEER maximum-prefix NUMBER

 	neighbor PEER next-hop-self [all]

 	neighbor PEER override-capability

 	neighbor PEER peer-group WORD

 	neighbor PEER port PORT

 	neighbor PEER prefix-list NAME [in|out]

 	neighbor PEER remote-as ASN

 	neighbor PEER remote-as external

 	neighbor PEER remote-as internal

 	neighbor PEER route-map NAME [in|out]

 	neighbor PEER route-reflector-client

 	neighbor PEER send-community

 	neighbor PEER shutdown

 	neighbor PEER strict-capability-match

 	neighbor PEER ttl-security hops NUMBER

 	neighbor PEER update-source <IFNAME|ADDRESS>

 	neighbor PEER version VERSION

 	neighbor PEER weight WEIGHT

 	neighbor PEER-GROUP route-server-client

 	neighbor WORD peer-group

 	neighbor X:X::X:X route-server-client

 	net XX.XXXX.XXX.XX

 	netns NAMESPACE

 	network A.B.C.D/M

 	network A.B.C.D/M area (0-4294967295)

 	network A.B.C.D/M area A.B.C.D

 	network IFNAME, [1], [2]

 	network NETWORK, [1], [2]

 	nexthop vpn export A.B.C.D|X:X::X:X

 	nexthop-group

 	no agentx

 	no aggregate-address A.B.C.D/M

 	no area (0-4294967295) authentication

 	(0-4294967295), [1], [2], [3], [4], [5], [6], [7], [8]

 	no area A.B.C.D authentication

 	no area A.B.C.D default-cost (0-16777215)

 	no area A.B.C.D export-list NAME

 	no area A.B.C.D filter-list prefix NAME in

 	no area A.B.C.D filter-list prefix NAME out

 	no area A.B.C.D import-list NAME

 	no area A.B.C.D range A.B.C.D/M

 	no area A.B.C.D range IPV4_PREFIX not-advertise

 	no area A.B.C.D range IPV4_PREFIX substitute IPV4_PREFIX

 	no area A.B.C.D shortcut

 	no area A.B.C.D stub

 	no area A.B.C.D stub no-summary

 	no area A.B.C.D virtual-link A.B.C.D

 	no area-password

 	no auto-cost reference-bandwidth, [1]

 	no babel diversity

 	no babel enable-timestamps

 	no babel resend-delay [(20-655340)]

 	no babel split-horizon

 	no bandwidth (1-10000000)

 	no banner motd

 	no bgp multiple-instance

 	no capability opaque

 	no debug event

 	no debug isis adj-packets

 	no debug isis checksum-errors

 	no debug isis events

 	no debug isis local-updates

 	no debug isis packet-dump

 	no debug isis protocol-errors

 	no debug isis route-events

 	no debug isis snp-packets

 	no debug isis spf-events

 	no debug isis spf-statistics

 	no debug isis spf-triggers

 	no debug isis update-packets

 	no debug keepalive

 	no debug ospf event

 	no debug ospf ism

 	(status|events|timers)

 	no debug ospf lsa

 	(generate|flooding|refresh)

 	no debug ospf nsm

 	(status|events|timers)

 	no debug ospf nssa

 	no debug ospf packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]

 	no debug ospf te

 	no debug ospf zebra

 	(interface|redistribute)

 	no debug rpki

 	no debug update

 	no default-information originate

 	no default-metric

 	(1-16)

 	no distance (1-255), [1]

 	(1-255), [1]

 	no distance ospf

 	no distribute-list NAME out (kernel|connected|static|rip|ospf

 	no domain-password

 	no dump bgp all [PATH] [INTERVAL]

 	no dump bgp route-mrt [PATH] [INTERVAL]

 	no dump bgp updates [PATH] [INTERVAL]

 	no enable password PASSWORD

 	no exec-timeout

 	no hostname dynamic

 	no import vrf VRFNAME

 	no import|export vpn

 	no ip address ADDRESS/PREFIX

 	no ip address ADDRESS/PREFIX secondary

 	no ip address LOCAL-ADDR peer PEER-ADDR/PREFIX

 	no ip as-path access-list WORD

 	no ip as-path access-list WORD permit|deny LINE

 	no ip community-list expanded NAME

 	no ip community-list NAME

 	no ip community-list standard NAME

 	no ip extcommunity-list expanded NAME

 	no ip extcommunity-list NAME

 	no ip extcommunity-list standard NAME

 	no ip large-community-list expanded NAME

 	no ip large-community-list NAME

 	no ip large-community-list standard NAME

 	no ip mroute PREFIX NEXTHOP [DISTANCE]

 	no ip multicast rpf-lookup-mode [MODE]

 	no ip ospf area

 	no ip ospf area [ADDR]

 	no ip ospf authentication-key

 	no ip ospf cost

 	no ip ospf dead-interval

 	no ip ospf hello-interval

 	no ip ospf message-digest-key

 	no ip ospf network

 	no ip ospf priority

 	
 	no ip ospf retransmit interval

 	no ip ospf transmit-delay

 	no ip prefix-list NAME

 	no ip prefix-list NAME description [DESC]

 	no ip prefix-list sequence-number

 	no ip rip authentication key-chain KEY-CHAIN

 	no ip rip authentication mode md5

 	no ip rip authentication mode text

 	no ip rip authentication string STRING

 	no ip router isis WORD

 	no ip split-horizon

 	no ipv6 address ADDRESS/PREFIX

 	no ipv6 nd adv-interval-option

 	no ipv6 nd home-agent-config-flag

 	no ipv6 nd home-agent-lifetime (0-65520)

 	no ipv6 nd home-agent-preference [(0-65535)]

 	no ipv6 nd managed-config-flag

 	no ipv6 nd mtu [(1-65535)]

 	no ipv6 nd other-config-flag

 	no ipv6 nd ra-interval [(1-1800)], [1]

 	no ipv6 nd ra-interval [msec (70-1800000)]

 	no ipv6 nd ra-lifetime [(0-9000)]

 	no ipv6 nd reachable-time [(1-3600000)]

 	no ipv6 nd router-preference (high|medium|low)

 	no ipv6 nd suppress-ra

 	no is-type

 	no isis circuit-type

 	no isis csnp-interval

 	no isis csnp-interval [level-1 | level-2]

 	no isis hello-interval

 	no isis hello-interval [level-1 | level-2]

 	no isis hello-multiplier

 	no isis hello-multiplier [level-1 | level-2]

 	no isis metric

 	no isis metric [level-1 | level-2]

 	no isis network point-to-point

 	no isis passive

 	no isis password

 	no isis priority

 	no isis priority [level-1 | level-2]

 	no isis psnp-interval

 	no isis psnp-interval [level-1 | level-2]

 	no isis three-way-handshake

 	no label vpn export [(0..1048575)|auto]

 	no labels LABEL-LIST

 	no link-detect

 	no link-param

 	no log facility [FACILITY]

 	no log file [FILENAME [LEVEL]]

 	no log monitor [LEVEL]

 	no log record-priority

 	no log stdout [LEVEL]

 	no log syslog [LEVEL]

 	no log trap [LEVEL]

 	no log-adjacency-changes

 	no log-adjacency-changes [detail]

 	no lsp-gen-interval

 	no lsp-gen-interval [level-1 | level-2]

 	no lsp-refresh-interval [level-1 | level-2]

 	no match rpki notfound|invalid|valid

 	no max-lsp-lifetime

 	no max-lsp-lifetime [level-1 | level-2]

 	no max-metric router-lsa [on-startup|on-shutdown|administrative]

 	no metric-style

 	no mpls-te, [1]

 	no mpls-te inter-as

 	no mpls-te router-address

 	no multicast

 	no neighbor A.B.C.D

 	no neighbor PEER default-originate

 	no neighbor PEER description ...

 	no neighbor PEER dont-capability-negotiate

 	no neighbor PEER ebgp-multihop

 	no neighbor PEER interface IFNAME

 	no neighbor PEER local-as

 	no neighbor PEER maximum-prefix NUMBER

 	no neighbor PEER next-hop-self [all]

 	no neighbor PEER override-capability

 	no neighbor PEER route-reflector-client

 	no neighbor PEER shutdown

 	no neighbor PEER strict-capability-match

 	no neighbor PEER ttl-security hops NUMBER

 	no neighbor PEER update-source

 	no neighbor PEER weight WEIGHT

 	no net XX.XXXX.XXX.XX

 	no network A.B.C.D/M

 	no network A.B.C.D/M area (0-4294967295)

 	no network A.B.C.D/M area A.B.C.D

 	no network IFNAME, [1]

 	no network NETWORK, [1]

 	no nexthop vpn export [A.B.C.D|X:X::X:X]

 	no ospf abr-type TYPE

 	no ospf opaque-lsa

 	no ospf rfc1583compatibility

 	no ospf router-id

 	no passive-interface IFNAME, [1]

 	no passive-interface INTERFACE

 	no password PASSWORD

 	no pce address

 	no pce domain as (0-65535)

 	no pce flag

 	no pce neighbor as (0-65535)

 	no pce scope

 	no rd vpn export [AS:NN|IP:nn]

 	no redistribute (kernel|connected|static|rip|bgp)

 	no redistribute <ipv4|ipv6> KIND

 	no redistribute bgp, [1]

 	no redistribute connected, [1]

 	no redistribute kernel, [1]

 	no redistribute ospf, [1]

 	no redistribute static, [1]

 	no route A.B.C.D/M

 	no route-map vpn import|export [MAP]

 	no router babel

 	no router bgp ASN

 	no router eigrp (1-65535)

 	no router isis WORD

 	no router ospf

 	no router rip

 	no router zebra

 	no router-info

 	no rpki cache (A.B.C.D|WORD) [PORT] PREFERENCE

 	no rpki initial-synchronisation-timeout

 	no rpki polling_period

 	no rpki timeout

 	no rt vpn import|export|both [RTLIST...]

 	no service integrated-vtysh-config

 	no set-overload-bit

 	no shutdown

 	no smux peer OID

 	no smux peer OID PASSWORD

 	no spf-interval

 	no spf-interval [level-1 | level-2]

 	no timers basic

 	no timers throttle spf, [1]

 	no version

 	no vnc l2-group NAME

 	no vnc nve-group NAME

 	no vnc redistribute ipv4|ipv6 bgp|bgp-direct|bgp-direct-to-nve-groups|connected|kernel|ospf|rip|static

 	no vnc redistribute nve-group GROUP-NAME

O

 	
 	offset-list ACCESS-LIST (in|out)

 	(in|out)

 	on-match goto N

 	on-match next

 	Operating systems that support FRR

 	Options for configuring

 	Options to `./configure`

 	
 	ospf abr-type TYPE

 	OSPF Areas overview

 	OSPF Hello Protocol

 	OSPF LSA overview

 	ospf opaque-lsa

 	ospf rfc1583compatibility

 	ospf router-id A.B.C.D

P

 	
 	passive-interface (IFNAME|default), [1]

 	passive-interface INTERFACE

 	password PASSWORD

 	PBR Rules

 	PBR Tables

 	pbr-map

 	
 	pbr-policy

 	pce address <A.B.C.D>

 	pce domain as (0-65535)

 	pce flag BITPATTERN

 	pce neighbor as (0-65535)

 	pce scope BITPATTERN

 	prefix vn|un A.B.C.D/M|X:X::X:X/M

R

 	
 	rd ROUTE-DISTINGUISHER

 	rd vpn export AS:NN|IP:nn

 	redistribute (kernel|connected|static|rip|bgp)

 	redistribute (kernel|connected|static|rip|bgp) metric (0-16777214)

 	(0-16777214)

 	redistribute (kernel|connected|static|rip|bgp) metric-type (1|2)

 	redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) metric (0-16777214)

 	(0-16777214)

 	redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) route-map WORD

 	redistribute (kernel|connected|static|rip|bgp) ROUTE-MAP

 	redistribute <ipv4|ipv6> KIND

 	redistribute bgp, [1]

 	redistribute bgp metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

 	redistribute bgp metric (0-16)

 	redistribute bgp route-map ROUTE-MAP

 	redistribute connected, [1], [2], [3]

 	redistribute connected metric (0-16)

 	redistribute connected metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

 	redistribute connected route-map ROUTE-MAP

 	redistribute kernel, [1], [2]

 	redistribute kernel metric (0-16)

 	redistribute kernel metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

 	redistribute kernel route-map ROUTE-MAP

 	redistribute ospf, [1], [2]

 	redistribute ospf metric (0-16)

 	redistribute ospf metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

 	redistribute ospf route-map ROUTE-MAP

 	redistribute rip

 	redistribute ripng

 	redistribute static, [1], [2], [3]

 	redistribute static metric (0-16)

 	redistribute static metric (1-4294967295) (0-4294967295) (0-255) (1-255) (1-65535)

 	redistribute static route-map ROUTE-MAP

 	redistribute vpn

 	Reporting bugs

 	Reporting software errors

 	response-lifetime LIFETIME|infinite

 	
 RFC

 	RFC 1058

 	RFC 1195

 	RFC 1227, [1]

 	RFC 1583

 	RFC 1657

 	RFC 1724

 	RFC 1771, [1], [2], [3]

 	RFC 1850

 	RFC 1930

 	RFC 1965

 	RFC 1997, [1]

 	RFC 1998

 	RFC 2080, [1]

 	RFC 2082

 	RFC 2283

 	RFC 2328, [1], [2]

 	RFC 2370, [1]

 	RFC 2439

 	RFC 2453

 	RFC 2462

 	RFC 2545

 	RFC 2740, [1]

 	RFC 2741, [1]

 	RFC 2796

 	RFC 2842, [1]

 	RFC 2858, [1]

 	RFC 3101

 	RFC 3137, [1]

 	RFC 3345

 	RFC 3509, [1]

 	RFC 4191

 	RFC 4364, [1]

 	RFC 4659, [1]

 	RFC 4861

 	RFC 4970

 	RFC 5088

 	RFC 5303

 	RFC 5308

 	RFC 5392

 	RFC 5512, [1]

 	RFC 5575, [1]

 	RFC 6126

 	RFC 6275

 	RFC 6810

 	RFC 6811

 	RFC 7432

 	RFC 8092

 	
 	route A.B.C.D/M

 	route NETWORK

 	route-map ROUTE-MAP-NAME (permit|deny) ORDER

 	route-map vpn import|export MAP

 	router babel

 	router bgp AS-NUMBER

 	router bgp AS-NUMBER view NAME

 	router bgp ASN

 	router bgp ASN vrf VRFNAME

 	router eigrp (1-65535)

 	router isis WORD

 	router ospf

 	router ospf6

 	router rip

 	router ripng

 	router zebra, [1]

 	router-id A.B.C.D

 	router-info [as | area <A.B.C.D>]

 	rpki

 	rpki cache (A.B.C.D|WORD) PORT [SSH_USERNAME] [SSH_PRIVKEY_PATH] [SSH_PUBKEY_PATH] [KNOWN_HOSTS_PATH] PREFERENCE

 	rpki initial-synchronisation-timeout <1-4

 	rpki polling_period (1-3600)

 	rpki timeout <1-4

 	rt both RT-LIST

 	rt both RT-TARGET

 	rt export RT-LIST

 	rt export RT-TARGET

 	rt import RT-LIST

 	rt import RT-TARGET

 	rt vpn import|export|both RTLIST...

S

 	
 	service advanced-vty

 	service integrated-vtysh-config

 	service password-encryption

 	service terminal-length (0-512)

 	Set Actions

 	set as-path prepend AS-PATH

 	set as-path prepend AS_PATH

 	set as-path prepend last-as NUM

 	set comm-list WORD delete

 	set community COMMUNITY, [1]

 	set community COMMUNITY additive

 	set community none

 	set extcommunity rt EXTCOMMUNITY

 	set extcommunity soo EXTCOMMUNITY

 	set ip next-hop A.B.C.D

 	set ip next-hop IPV4_ADDRESS

 	set ip next-hop peer-address

 	set ip next-hop unchanged

 	set ipv6 next-hop global IPV6_ADDRESS

 	set ipv6 next-hop local IPV6_ADDRESS

 	set ipv6 next-hop peer-address

 	set ipv6 next-hop prefer-global

 	set large-community LARGE-COMMUNITY

 	set large-community LARGE-COMMUNITY additive

 	set large-community LARGE-COMMUNITY LARGE-COMMUNITY

 	set local-preference LOCAL_PREF

 	set metric (0-4294967295)

 	set metric METRIC

 	set src ADDRESS

 	set tag TAG

 	set weight WEIGHT

 	set-overload-bit

 	show babel interface

 	show babel interface IFNAME

 	show babel neighbor

 	show babel parameters

 	show babel route

 	show babel route A.B.C.D

 	show babel route A.B.C.D/M

 	show babel route X:X::X:X

 	show babel route X:X::X:X/M

 	show bgp ipv4 flowspec [detail | A.B.C.D]

 	show bgp ipv4 vpn summary

 	show bgp ipv4|ipv6 community

 	show bgp ipv4|ipv6 community COMMUNITY

 	show bgp ipv4|ipv6 community COMMUNITY exact-match

 	show bgp ipv4|ipv6 community-list WORD

 	show bgp ipv4|ipv6 community-list WORD exact-match

 	show bgp ipv4|ipv6 dampening dampened-paths

 	show bgp ipv4|ipv6 dampening flap-statistics

 	show bgp ipv4|ipv6 neighbor [PEER]

 	show bgp ipv4|ipv6 regexp LINE

 	show bgp ipv4|ipv6 summary

 	show bgp ipv6 vpn summary

 	show debug

 	show debugging eigrp

 	show debugging isis

 	show debugging ospf

 	show debugging rip

 	show debugging ripng

 	show interface

 	show ip bgp

 	show ip bgp A.B.C.D

 	show ip bgp community COMMUNITY

 	show ip bgp community COMMUNITY exact-match

 	show ip bgp community-list WORD

 	show ip bgp community-list WORD exact-match

 	show ip bgp ipv4 vpn

 	show ip bgp large-community-info

 	show ip bgp regexp LINE

 	show ip bgp view NAME

 	show ip bgp X:X::X:X

 	show ip community-list

 	show ip community-list NAME

 	show ip eigrp topology

 	show ip extcommunity-list

 	show ip extcommunity-list NAME

 	show ip large-community-list

 	show ip large-community-list NAME

 	show ip mroute

 	show ip mroute count

 	show ip multicast

 	show ip ospf

 	show ip ospf database

 	(asbr-summary|external|network|router|summary), [1], [2], [3], [4], [5]

 	(opaque-link|opaque-area|opaque-external), [1], [2], [3], [4], [5]

 	show ip ospf database max-age

 	show ip ospf database segment-routing <adv-router ADVROUTER|self-originate> [json]

 	show ip ospf database self-originate

 	show ip ospf interface [INTERFACE]

 	show ip ospf mpls-te interface

 	show ip ospf mpls-te interface INTERFACE

 	show ip ospf mpls-te router

 	show ip ospf neighbor

 	show ip ospf neighbor detail

 	show ip ospf neighbor INTERFACE

 	show ip ospf neighbor INTERFACE detail

 	show ip ospf route

 	
 	show ip ospf router-info

 	show ip ospf router-info pce

 	show ip pim assert

 	show ip pim assert-internal

 	show ip pim assert-metric

 	show ip pim assert-winner-metric

 	show ip pim group-type

 	show ip pim interface

 	show ip pim join

 	show ip pim local-membership

 	show ip pim neighbor

 	show ip pim nexthop

 	show ip pim nexthop-lookup

 	show ip pim rp-info

 	show ip pim rpf

 	show ip pim secondary

 	show ip pim state

 	show ip pim upstream

 	show ip pim upstream-join-desired

 	show ip pim upstream-rpf

 	show ip prefix-list

 	show ip prefix-list [NAME]

 	show ip prefix-list detail

 	show ip prefix-list detail NAME

 	show ip prefix-list NAME

 	show ip prefix-list NAME A.B.C.D/M

 	show ip prefix-list NAME A.B.C.D/M first-match

 	show ip prefix-list NAME A.B.C.D/M longer

 	show ip prefix-list NAME seq NUM

 	show ip prefix-list summary

 	show ip prefix-list summary NAME

 	show ip protocol

 	show ip rip

 	show ip rip status

 	show ip ripng

 	show ip route

 	show ip route isis

 	show ip route table TABLEID

 	show ip route vrf VRF

 	show ip route vrf VRF table TABLENO

 	show ip rpf, [1]

 	show ip rpf ADDR

 	show ipforward

 	show ipv6 bgp ipv6 vpn

 	show ipv6 ospf6 [INSTANCE_ID]

 	show ipv6 ospf6 database

 	show ipv6 ospf6 interface

 	show ipv6 ospf6 neighbor

 	show ipv6 ospf6 request-list A.B.C.D

 	show ipv6 ospf6 zebra

 	show ipv6 route

 	show ipv6 route ospf6

 	show ipv6forward

 	show isis database

 	show isis database <LSP id> [detail]

 	show isis database [detail]

 	show isis database detail <LSP id>

 	show isis hostname

 	show isis interface

 	show isis interface <interface name>

 	show isis interface detail

 	show isis mpls-te interface

 	show isis mpls-te interface INTERFACE

 	show isis mpls-te router

 	show isis neighbor

 	show isis neighbor <System Id>

 	show isis neighbor detail

 	show isis summary

 	show isis topology

 	show isis topology [level-1|level-2]

 	show logging

 	show memory vnc

 	show pbr ipset IPSETNAME | iptable

 	show route-map [NAME]

 	show rpki cache-connection

 	show rpki prefix-table

 	show version

 	show vnc nves

 	show vnc nves vn|un ADDRESS

 	show vnc queries

 	show vnc queries PREFIX

 	show vnc registrations [all|local|remote|holddown|imported]

 	show vnc registrations [all|local|remote|holddown|imported] PREFIX

 	show vnc responses [active|removed]

 	show vnc responses [active|removed] PREFIX

 	show vnc summary

 	show zebra

 	show zebra fpm stats

 	shutdown

 	simple: debug babel KIND

 	simple: no debug babel KIND

 	smux peer OID

 	smux peer OID PASSWORD

 	Software architecture

 	Software internals

 	spf-interval (1-120)

 	spf-interval [level-1 | level-2] (1-120)

 	Supported platforms

 	System architecture

T

 	
 	table TABLENO

 	table-map ROUTE-MAP-NAME

 	
 	terminal length (0-512)

 	timers basic UPDATE TIMEOUT GARBAGE

 	timers throttle spf DELAY INITIAL-HOLDTIME MAX-HOLDTIME, [1]

U

 	
 	update-delay MAX-DELAY

 	
 	update-delay MAX-DELAY ESTABLISH-WAIT

 	username USERNAME nopassword

V

 	
 	version VERSION

 	vnc export bgp|zebra group-nve group GROUP-NAME

 	vnc export bgp|zebra group-nve no group GROUP-NAME

 	vnc l2-group NAME

 	vnc nve-group NAME

 	vnc redistribute bgp-direct (ipv4|ipv6) prefix-list LIST-NAME

 	vnc redistribute bgp-direct no (ipv4|ipv6) prefix-list

 	vnc redistribute bgp-direct no route-map

 	
 	vnc redistribute bgp-direct route-map MAP-NAME

 	vnc redistribute ipv4|ipv6 bgp-direct-to-nve-groups view VIEWNAME

 	vnc redistribute ipv4|ipv6 bgp|bgp-direct|ipv6 bgp-direct-to-nve-groups|connected|kernel|ospf|rip|static

 	vnc redistribute lifetime LIFETIME|infinite

 	vnc redistribute mode plain|nve-group|resolve-nve

 	vnc redistribute nve-group GROUP-NAME

 	vnc redistribute resolve-nve roo-ec-local-admin 0-65536

 	vrf VRF

W

 	
 	who

 	write file

 	
 	write integrated

 	write terminal

Z

 	
 	
 zebra command line option

 	-b, --batch

 	-e X, --ecmp X

 	-k, --keep_kernel

 	-n, --vrfwnetns

 	-r, --retain

Handling SNMP Traps

To handle snmp traps make sure your snmp setup of frr works correctly as
described in the frr documentation in SNMP Support.

The BGP4 mib will send traps on peer up/down events. These should be visible in
your snmp logs with a message similar to:

snmpd[13733]: Got trap from peer on fd 14

To react on these traps they should be handled by a trapsink. Configure your
trapsink by adding the following lines to /etc/snmpd/snmpd.conf:

send traps to the snmptrapd on localhost
trapsink localhost

This will send all traps to an snmptrapd running on localhost. You can of
course also use a dedicated management station to catch traps. Configure the
snmptrapd daemon by adding the following line to
/etc/snmpd/snmptrapd.conf:

traphandle .1.3.6.1.4.1.3317.1.2.2 /etc/snmp/snmptrap_handle.sh

This will use the bash script /etc/snmp/snmptrap_handle.sh to handle
the BGP4 traps. To add traps for other protocol daemons, lookup their
appropriate OID from their mib. (For additional information about which traps
are supported by your mib, lookup the mib on
http://www.oidview.com/mibs/detail.html).

Make sure snmptrapd is started.

The snmptrap_handle.sh script I personally use for handling BGP4 traps is
below. You can of course do all sorts of things when handling traps, like sound
a siren, have your display flash, etc., be creative ;).

#!/bin/bash

routers name
ROUTER=`hostname -s`

#email address use to sent out notification
EMAILADDR="john@doe.com"
#email address used (allongside above) where warnings should be sent
EMAILADDR_WARN="sms-john@doe.com"

type of notification
TYPE="Notice"

local snmp community for getting AS belonging to peer
COMMUNITY="<community>"

if a peer address is in $WARN_PEERS a warning should be sent
WARN_PEERS="192.0.2.1"

get stdin
INPUT=`cat -`

get some vars from stdin
uptime=`echo $INPUT | cut -d' ' -f5`
peer=`echo $INPUT | cut -d' ' -f8 | sed -e 's/SNMPv2-SMI::mib-2.15.3.1.14.//g'`
peerstate=`echo $INPUT | cut -d' ' -f13`
errorcode=`echo $INPUT | cut -d' ' -f9 | sed -e 's/\\"//g'`
suberrorcode=`echo $INPUT | cut -d' ' -f10 | sed -e 's/\\"//g'`
remoteas=`snmpget -v2c -c $COMMUNITY localhost SNMPv2-SMI::mib-2.15.3.1.9.$peer | cut -d' ' -f4`

WHOISINFO=`whois -h whois.ripe.net " -r AS$remoteas" | egrep '(as-name|descr)'`
asname=`echo "$WHOISINFO" | grep "^as-name:" | sed -e 's/^as-name://g' -e 's/ //g' -e 's/^ //g' | uniq`
asdescr=`echo "$WHOISINFO" | grep "^descr:" | sed -e 's/^descr://g' -e 's/ //g' -e 's/^ //g' | uniq`

if peer address is in $WARN_PEER, the email should also
be sent to $EMAILADDR_WARN
for ip in $WARN_PEERS; do
if ["x$ip" == "x$peer"]; then
EMAILADDR="$EMAILADDR,$EMAILADDR_WARN"
TYPE="WARNING"
break
fi
done

convert peer state
case "$peerstate" in
1) peerstate="Idle" ;;
2) peerstate="Connect" ;;
3) peerstate="Active" ;;
4) peerstate="Opensent" ;;
5) peerstate="Openconfirm" ;;
6) peerstate="Established" ;;
*) peerstate="Unknown" ;;
esac

get textual messages for errors
case "$errorcode" in
00)
error="No error"
suberror=""
;;
01)
error="Message Header Error"
case "$suberrorcode" in
01) suberror="Connection Not Synchronized" ;;
02) suberror="Bad Message Length" ;;
03) suberror="Bad Message Type" ;;
*) suberror="Unknown" ;;
esac
;;
02)
error="OPEN Message Error"
case "$suberrorcode" in
01) suberror="Unsupported Version Number" ;;
02) suberror="Bad Peer AS" ;;
03) suberror="Bad BGP Identifier" ;;
04) suberror="Unsupported Optional Parameter" ;;
05) suberror="Authentication Failure" ;;
06) suberror="Unacceptable Hold Time" ;;
*) suberror="Unknown" ;;
esac
;;
03)
error="UPDATE Message Error"
case "$suberrorcode" in
01) suberror="Malformed Attribute List" ;;
02) suberror="Unrecognized Well-known Attribute" ;;
03) suberror="Missing Well-known Attribute" ;;
04) suberror="Attribute Flags Error" ;;
05) suberror="Attribute Length Error" ;;
06) suberror="Invalid ORIGIN Attribute" ;;
07) suberror="AS Routing Loop" ;;
08) suberror="Invalid NEXT_HOP Attribute" ;;
09) suberror="Optional Attribute Error" ;;
10) suberror="Invalid Network Field" ;;
11) suberror="Malformed AS_PATH" ;;
*) suberror="Unknown" ;;
esac
;;
04)
error="Hold Timer Expired"
suberror=""
;;
05)
error="Finite State Machine Error"
suberror=""
;;
06)
error="Cease"
case "$suberrorcode" in
01) suberror="Maximum Number of Prefixes Reached" ;;
02) suberror="Administratively Shutdown" ;;
03) suberror="Peer Unconfigured" ;;
04) suberror="Administratively Reset" ;;
05) suberror="Connection Rejected" ;;
06) suberror="Other Configuration Change" ;;
07) suberror="Connection collision resolution" ;;
08) suberror="Out of Resource" ;;
09) suberror="MAX" ;;
*) suberror="Unknown" ;;
esac
;;
*)
error="Unknown"
suberror=""
;;
esac

create textual message from errorcodes
if ["x$suberror" == "x"]; then
NOTIFY="$errorcode ($error)"
else
NOTIFY="$errorcode/$suberrorcode ($error/$suberror)"
fi

form a decent subject
SUBJECT="$TYPE: $ROUTER [bgp] $peer is $peerstate: $NOTIFY"
create the email body
MAIL=`cat << EOF
BGP notification on router $ROUTER.

Peer: $peer
AS: $remoteas
New state: $peerstate
Notification: $NOTIFY

Info:
$asname
$asdescr

Snmpd uptime: $uptime
EOF`

mail the notification
echo "$MAIL" | mail -s "$SUBJECT" $EMAILADDR

 _static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 FRRouting User Guide

 		
 Overview

 		
 About FRR

 		
 System Architecture

 		
 Supported Platforms

 		
 Supported RFCs

 		
 How to get FRR

 		
 Mailing Lists

 		
 Bug Reports

 		
 Installation

 		
 Configure the Software

 		
 The Configure Script

 		
 Least-Privilege Support

 		
 Linux Notes

 		
 Build the Software

 		
 Install the Software

 		
 Basic commands

 		
 Config Commands

 		
 Basic Config Commands

 		
 Sample Config File

 		
 Terminal Mode Commands

 		
 Common Invocation Options

 		
 Loadable Module Support

 		
 The SNMP Module

 		
 The FPM Module

 		
 Virtual Terminal Interfaces

 		
 VTY Overview

 		
 VTY Modes

 		
 VTY CLI Commands

 		
 VTY shell

 		
 Permissions and setup requirements

 		
 PAM support (experimental)

 		
 Integrated configuration mode

 		
 Configuration saving, file ownership and permissions

 		
 Filtering

 		
 IP Access List

 		
 IP Prefix List

 		
 ip prefix-list description

 		
 ip prefix-list sequential number control

 		
 Showing ip prefix-list

 		
 Clear counter of ip prefix-list

 		
 Route Maps

 		
 Route Map Command

 		
 Route Map Match Command

 		
 Route Map Set Command

 		
 Route Map Call Command

 		
 Route Map Exit Action Command

 		
 Route Map Examples

 		
 IPv6 Support

 		
 Router Advertisement

 		
 Kernel Interface

 		
 SNMP Support

 		
 Getting and installing an SNMP agent

 		
 AgentX configuration

 		
 SMUX configuration

 		
 MIB and command reference

 		
 Handling SNMP Traps

 		
 Zebra

 		
 Invoking zebra

 		
 Configuration Addresses behaviour

 		
 Interface Commands

 		
 Standard Commands

 		
 Link Parameters Commands

 		
 Static Route Commands

 		
 VRF (Virtual Routing and Forwarding)

 		
 Multicast RIB Commands

 		
 zebra Route Filtering

 		
 zebra FIB push interface

 		
 zebra Terminal Mode Commands

 		
 BGP

 		
 Starting BGP

 		
 BGP router

 		
 BGP distance

 		
 BGP decision process

 		
 BGP route flap dampening

 		
 BGP MED

 		
 BGP network

 		
 BGP route

 		
 Route Aggregation

 		
 Redistribute to BGP

 		
 BGP Peer

 		
 Defining Peer

 		
 BGP Peer commands

 		
 Peer filtering

 		
 BGP Peer Group

 		
 BGP Address Family

 		
 Autonomous System

 		
 Display BGP Routes by AS Path

 		
 AS Path Access List

 		
 Using AS Path in Route Map

 		
 Private AS Numbers

 		
 BGP Communities Attribute

 		
 BGP Community Lists

 		
 Numbered BGP Community Lists

 		
 BGP Community in Route Map

 		
 Display BGP Routes by Community

 		
 Using BGP Communities Attribute

 		
 BGP Extended Communities Attribute

 		
 BGP Extended Community Lists

 		
 BGP Extended Communities in Route Map

 		
 BGP Large Communities Attribute

 		
 BGP Large Community Lists

 		
 BGP Large Communities in Route Map

 		
 BGP VRFs

 		
 Required Parameters

 		
 Configuration

 		
 Displaying BGP information

 		
 Showing BGP information

 		
 Other BGP commands

 		
 Capability Negotiation

 		
 Route Reflector

 		
 Route Server

 		
 Multiple instance

 		
 BGP instance and view

 		
 Routing policy

 		
 Viewing the view

 		
 BGP Regular Expressions

 		
 How to set up a 6-Bone connection

 		
 Dump BGP packets and table

 		
 BGP Configuration Examples

 		
 Configuring FRR as a Route Server

 		
 Description of the Route Server model

 		
 Commands for configuring a Route Server

 		
 Example of Route Server Configuration

 		
 Configuration of the BGP routers without Route Server

 		
 Configuration of the BGP routers with Route Server

 		
 Configuration of the Route Server itself

 		
 Further considerations about Import and Export route-maps

 		
 Prefix Origin Validation Using RPKI

 		
 Features of the Current Implementation

 		
 Enabling RPKI

 		
 Configuring RPKI/RTR Cache Servers

 		
 Validating BGP Updates

 		
 Debugging

 		
 Displaying RPKI

 		
 RPKI Configuration Example

 		
 Flowspec

 		
 Overview

 		
 Design Principles

 		
 Configuration Guide

 		
 Limitations / Known Issues

 		
 Appendix

 		
 Babel

 		
 Configuring babeld

 		
 Babel configuration

 		
 Babel redistribution

 		
 Show Babel information

 		
 Babel debugging commands

 		
 EIGRP

 		
 Starting and Stopping eigrpd

 		
 EIGRP Configuration

 		
 How to Announce EIGRP route

 		
 Show EIGRP Information

 		
 EIGRP Debug Commands

 		
 ISIS

 		
 Configuring isisd

 		
 ISIS router

 		
 ISIS Timer

 		
 ISIS region

 		
 ISIS interface

 		
 Showing ISIS information

 		
 Traffic Engineering

 		
 Debugging ISIS

 		
 ISIS Configuration Examples

 		
 NHRP

 		
 Routing Design

 		
 Configuring NHRP

 		
 Hub Functionality

 		
 Integration with IKE

 		
 NHRP Events

 		
 Configuration Example

 		
 OSPFv2

 		
 OSPF Fundamentals

 		
 OSPF Mechanisms

 		
 OSPF LSAs

 		
 Configuring ospfd

 		
 OSPF router

 		
 OSPF area

 		
 OSPF interface

 		
 Redistribute routes to OSPF

 		
 Showing OSPF information

 		
 Opaque LSA

 		
 Traffic Engineering

 		
 Router Information

 		
 Segment Routing

 		
 Debugging OSPF

 		
 OSPF Configuration Examples

 		
 OSPFv3

 		
 OSPF6 router

 		
 OSPF6 area

 		
 OSPF6 interface

 		
 Redistribute routes to OSPF6

 		
 Showing OSPF6 information

 		
 OSPF6 Configuration Examples

 		
 PIM

 		
 Starting and Stopping pimd

 		
 PIM Interface Configuration

 		
 PIM Multicast RIB insertion:

 		
 Show PIM Information

 		
 PIM Debug Commands

 		
 PBR

 		
 Starting PBR

 		
 Nexthop Groups

 		
 PBR Maps

 		
 PBR Policy

 		
 PBR Details

 		
 RIP

 		
 Starting and Stopping ripd

 		
 RIP netmask

 		
 RIP Configuration

 		
 RIP Version Control

 		
 How to Announce RIP route

 		
 Filtering RIP Routes

 		
 RIP Metric Manipulation

 		
 RIP distance

 		
 RIP route-map

 		
 RIP Authentication

 		
 RIP Timers

 		
 Show RIP Information

 		
 RIP Debug Commands

 		
 RIPng

 		
 Invoking ripngd

 		
 ripngd Configuration

 		
 ripngd Terminal Mode Commands

 		
 ripngd Filtering Commands

 		
 Starting SHARP

 		
 USING SHARP

 		
 VNC and VNC-GW

 		
 Configuring VNC

 		
 General VNC Configuration

 		
 RFP Related Configuration

 		
 VNC Defaults Configuration

 		
 VNC NVE Group Configuration

 		
 VNC L2 Group Configuration

 		
 Configuring Redistribution of Routes from Other Routing Protocols

 		
 Configuring Export of Routes to Other Routing Protocols

 		
 Manual Address Control

 		
 Other VNC-Related Commands

 		
 Example VNC and VNC-GW Configurations

 		
 Mesh NVA Configuration

 		
 Mesh NVA and VNC-GW Configuration

 		
 VNC with FRR Route Reflector Configuration

 		
 VNC with Commercial Route Reflector Configuration

 		
 VNC with Redundant Route Reflectors Configuration

 		
 Glossary

 		
 Packet Binary Dump Format

_images/fig-normal-processing.png
From Peer A

From Peer B

From Peer C

From Peer D

To Peer A
To Peer B

To Peer C

“In” Filter
for Peer X

“Out” Filter
for Peer X

_images/fig-rs-processing.png
From Peer A

From RS-Client B

From RS-Client C

From RS-Client D

ToRS-Client B

To RS-Client C

ToRS-Client D

_images/fig-vnc-commercial-route-reflector.png
NVE 4
VN 172.16.4.1

NVE 5
VN 172.16.130.1

NVE 6
VN 172.16.132.1

NVA 2
192.168.1.101

Commercial Router
Route Reflector
192.168.1.104

NVE 7
VN 172.16.6.1

NVA 3
192.168.1.102

NVE 8
VN 172.16.8.1

NVE o
VN 172.16.134.1

_images/fig-vnc-frr-route-reflector.png
NVE 4
VN 172.16.4.1

NVE 5
VN 172.16.130.1

NVE 6
VN 172.16.132.1

NVA 2
192.168.1.101

BGP Route Reflector 1
192.168.1.100

NVE 7
VN 172.16.6.1

NVA 3
192.168.1.102

NVE 8
VN 172.16.8.1

NVE o
VN 172.16.134.1

_images/fig-vnc-redundant-route-reflectors.png
NVE 4
VN 172.16.4.1

NVE 5
VN 172.16.130.1

NVE 6
VN 172.16.132.1

BGP Route Reflector 1

192.168.1.100

NVA 2
192.168.1.101

Commercial Router
Route Reflector
192.168.1.104

NVA 3
192.168.1.102

NVE 7
VN 172.16.6.1

NVE 8
VN 172.16.8.1

NVE o
VN 172.16.134.1

_images/fig_topologies_full.png

_images/fig-vnc-gw.png
NVE 1
VN 172.16.1.1

NVE 2
VN 17216.2.1

VNC Gateway 1

192.168.1.101

NVA 1 (NVA)
192.168.1.103

VNC Gateway 2

192.168.1.102

NVA 2 (NVA)
192.168.1.104

NVE 3
VN 172.16.3.1

NVE 4
VN 172.16.4.1

_images/fig-vnc-mesh.png
NVE 4
VN 172.16.4.1

NVE 5
VN 172.16.130.1

NVE 6
VN 172.16.132.1

NVE 1
VN 172.16.0.1

NVE 2
VN 17216.2.1

NVE 3
VN 172.16.128.1

NVA 2
192.168.1.101

NVA 1
192.168.1.100

NVA 3
192.168.1.102

NVE 7
VN 172.16.6.1

NVE 8
VN 172.16.8.1

NVE o
VN 172.16.134.1

_static/comment-bright.png

_images/fig_topologies_rs.png
RF3)

RS

RF2,

RF:

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/frr-logo-icon.png

_static/minus.png

