

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ella CMS 3.0.13 documentation

Ella CMS

Ella [http://www.ellaproject.cz] is a Content Management System based on Python [http://www.python.org/] web framework
Django [http://www.djangoproject.com/] with a main focus on high-traffic news websites and Internet
magazines.

It is composed from several modules:

	Ella core is the main module which links the rest together. It
defines architecture on which other modules are built but doesn’t do
anything really usefull all alone.

	Ella core plugins are plugins that are shipped in one package
together with Ella. There are articles and positions which
we consider to be a basic toolbox for each Ella site.

	Other Ella plugins are standalone applications (and therfore
not shipped with the core) that provide some
specific functionality using Ella’s architecture. We can mention
polls, galleries, quizes and many more.

Feature highlights:

	Simple organization of content based on categories

	Efficent implementation of the published content

	In-build photo formating backend

	Django-admin ready

	Plugin system

	Flexibile

	Scalable

	Extensible

	Caching-friendly

	Well tested

	Proven in production environment

For creating site using Ella, working knowledge of Django and its templating
language is required. It is therfore highly recommended to get familiar with
Django [http://www.djangoproject.com/] before you try to dwell into Ella. You can start in
Django documentation [http://docs.djangoproject.com/en/dev/].

Documentation

Contents:

	Quickstart
	Setting up Ella

	Basic templates

	Enhancing templates

	I am a Python developer - where do I begin?

	I am a HTML coder - where do I begin?

	Features
	Template fallback mechanisms

	Category detail page

	Object detail page

	Archive pages

	Rich-text fields: using WYSIWYG editors or a markup language

	Integrating custom views

	Defining positions on the page

	Working with photos

	Working with related objects

	Syndication - ATOM and his RSS friend

	Incorporating plugins

	Extending category/publishable metadata

	Caching

	Deployment

	Plugins
	Where to get ‘em?

	Basic plugin structure

	Plugin API

	API reference
	Models

	Views

	Templatetags

	Template overview

	Middleware

	Related finders

	Common gotchas & FAQs
	Creating site navigation

	Category-specific sidebars

	Taking advantage of template inheritance

	Static pages that don’t ever change

	Integrating searching

	List of configuration settings
	Core settings

	Photos settings

Sites using Ella

Ella is getting more and more popular. Here are some sites that take advantage
of it:

	tested.com [http://www.tested.com]

	mom.me [http://mom.me]

	Investicniweb.cz [http://www.investicniweb.cz]

	MarieClaire.cz [http://www.marieclaire.cz]

	Dumazahrada.cz [http://www.dumazahrada.cz]

	Květy [http://kvety.kafe.cz]

	Vlasta [http://www.vlasta.cz]

	Crazycafe.cz [http://www.crazycafe.cz]

	EquiTV.cz [http://equitv.cz/]

	Vaquero.cz [http://vaquero.cz/]

	Ranch Bystrá [http://ranchbystra.cz/]

	pyvec.org [http://pyvec.org]

Community

	Mailing list: ella-project@googlegroups.com

	IRC channel: #ellacms@freenode.net

License

Ella is licensed under the BSD licence. It utilizes many conceps and examples
from django itself, djangosnippets [http://www.djangosnippets.org] and several other open-source project. We
would like to thank the community around Django for the huge amount of great
quality code they share with other Djangonauts. We are proud to be part of that
community and hope that somebody will find this project helpfull.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

Quickstart

Setting up Ella

This tutorial will guide you through the process of creating and deploying your
first Ella-based site. Since Ella is a CMS, we will create a blog. This first step
will take us through setting up our environment, installing all the dependencies
and kicking off the project. Before you dive into it, we suggest you go
through the official Django tutorial [http://docs.djangoproject.com/en/dev/intro/tutorial01/] to get yourself familiar with Django
since we will be relying on that.

Dependencies

We assume that python, setuptools and python-imaging (PIL) are
installed on your system directly since they can be non-trivial to install the
python way. We will be working with pip [http://pip.openplans.org/] and virtualenv [http://pypi.python.org/pypi/virtualenv] which are great
tools for any Python project.

Note

We will not cover any version control, but we strongly advise you use some
(we prefer GIT [http://git-scm.com/]) to keep track of your emerging project.

First we need to install virtualenv (under root):

easy_install virtualenv

Now we can create and activate a virtualenv where our project and all related
code will reside:

virtualenv ella_sandbox
source ella_sandbox/bin/activate

Next, install Ella into your fresh virtualenv. Ella has all it’s dependencies
covered in it’s setup, so it’s fairly sufficent to run following command
using pip:

pip install ella

After these steps, everything required is ready and we can create a new Django
project using Ella in standard Django [http://www.djangoproject.com] way:

mkdir ellablog
cd ellablog
django-admin.py startproject ellablog

settings.py

Our first step in actual code will be adding Ella to your project’s
INSTALLED_APPS along with some required settings, the resulting values
(unchanged values are omitted) should look similar to this:

...
INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.redirects',

 'ella.core',
 'ella.photos',
 'ella.articles',
)
...

In order to create our new blog, we are gonna need some HTML templates showing
post listings, post details, hompage etc. Therefore, we have to tell
Django, where to look for those templates. This settings are kept in
settings.py contained in root of our project. Second, we need to specify
a directory + URL used to serve media files from:

Note

Media files and static files are not the very same thing.
We consider media files those, that are uploaded dynamically by users,
e.g. main article photos. On the other hand, static files usually don’t
change and their common representatives include CSS styleseets, JS sources
etc.

from os.path import join, dirname

PROJECT_ROOT = dirname(__file__)

set the templates directory
TEMPLATE_DIRS = (
 join(PROJECT_ROOT, 'templates'),
)

give Django media settings
MEDIA_ROOT = join(PROJECT_ROOT, 'media')
MEDIA_URL = '/media/'

This will tell Django, that it should look for the templates in directory
templates which is located in the root of the project directory. And
store the media in PROJECT_ROOT/media/ directory.

urls.py

Last thing to configure is the URL mappings. We want to include ella.core.urls
which handle all the Ella magic but also create some mappings that will
serve our static files (and static files for admin) in the development server.
Note that these patterns for static files will work only when DEBUG mode
is turned on since it would be rather inefficent in production (for more on
this topic, see Managing static files [https://docs.djangoproject.com/en/dev/howto/static-files/] section in Django docs). In similar
fashion, serve also media files discussed in previous paragraph:

from django.conf.urls.defaults import *
from django.conf import settings
from django.contrib import admin
from django.contrib.staticfiles.urls import staticfiles_urlpatterns

register apps for Django admin and let the apps do any initialization they need
from ella.utils.installedapps import call_modules
call_modules(('admin', 'register',))

urlpatterns = patterns('',)

actual URL mappings
urlpatterns += patterns('',
 # serve media files
 (r'^%s/(?P<path>.*)$' % settings.MEDIA_URL, 'django.views.static.serve', { 'document_root': settings.MEDIA_ROOT, 'show_indexes': True }),

 # run Django admin
 (r'^admin/', include(admin.site.urls)),

 # enable Ella
 (r'^', include('ella.core.urls')),
) + staticfiles_urlpatterns()

Note

Instead of calling admin.autodiscover we are using Ella’s
call_modules which is a more generic version of the same thing. and
allows us to load additional modules - namely register.py where, by
convention all Ella apps put the codethey need for their initialization
(connecting signal handlers, registering custom
urls etc.)

Database

Last configuration step is the database settings. Ella supports all Django
DB backends. Example configuration for MySQL can look like this:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'ellablog',
 'USER': 'user',
 'PASSWORD': '',
 'HOST': '',
 'PORT': '',
 }
}

To make this work, you should make appropriate database by your custom
DB-related tool (such as command-line tool mysql in Linux-like operating
systems). After creating the database, you can proceed with creating all the
required tables by Django for you (and admin user during this process):

python manage.py syncdb

Congratulations, you should have a working Ella project. If you start the
development server by typing:

python manage.py runserver

try to load the site’s root. If everything worked out, you should get a
welcome screen looking similar to this:

[image: _images/welcomescreen.png]
Now when we have a working project, we need to actually create the site in the
admin interface. To use it, go to /admin/ and log in using credentials
you entered when creating your superuser account during the syncdb command.
While being there we will also create an article - our very first blog post so
that we can actually have something to work with in our templates in the next
step of the tutorial.

Note

If you are impatient to start, just play around with the admin to create
one instance of ella.core.models.Category to get the root of the web
working and then one ella.articles.models.Article published in that
category (you might need to create additional model like Author on the
way).

First we need some theory on how Ella handles sites, categories and published
objects though.

Ella sites and categories

Ella was designed to serve several sites from a single database. It does so by
using Django’s built-in sites framework [http://docs.djangoproject.com/en/dev/ref/contrib/sites/]. The sites app creates a
default Site called example.com during the syncdb command. Just
rename the domain name to relevant value and you will have an Ella site,
just empty.

Within sites, Ella organizes content into categories. Categories (instances
of ella.core.models.Category) are organized in a tree for each site. Every
site needs to have exactly one what we call root category - a category without
a parent. This category then represents the root of the website (/).

Categories are represented by their tree_path - a path of slugs from
root category, for example with categories layout:

Ella Blog
 About
 Technology
 Concepts
 Django
 Django applications
 Typical deployment env

the tree_path values would be:

	Category
	tree_path attribute

	Ella Blog
	

	About
	about

	Technology
	technology

	Concepts
	technology/concepts

	Django
	technology/django

	Django applications
	technology/django/django-applications

	Typical deployment env
	technology/typical-deployment-env

Category‘s URL is it’s tree_path (which is what makes the root category
the root of the site) and every post in Ella belongs to one or more categories,
nothing shall exist outside of the category tree.

Publishable object

The main objective of Ella is publishing content. Ella together with it’s
plugins provides several types of content (Article,
Gallery, Quiz, ...) and can be easily extended to add more (just define
the model) or used with existing models.

For ease of manipulation and efficiency, all content models inherit from
ella.core.models.Publishable. This base class has all the fields needed to
display a listing of the content object (title, description, slug,
photo), basic metadata (category, authors, source). When using
Ella API you will always receive an instance of the actual class (Article)
and not the base class (Publishable). If you have access to only a
Publishable instance the target property will return instance of the
correct class (it holds a reference to it’s ContentType).

Information about publication are also kept on the Publishable model
(attributes published, publish_from, publish_to and static).
All these information together are used to create an URL for the object
which will point to it’s detail (e.g. article content). There are two types
of publication with slightly different use cases:

	time-based has URL containing the date of publishing and should be
used for objects that have some relevance to date (most of the content
presumably since Ella was designed to power magazines and news sites). The
URL of an object published in time-based way will look like:

/category/tree/path/[YEAR]/[MONTH]/[DAY]/[CONTENT_TYPE_NAME]/slug/

so for example:

/about/2007/08/11/ella-first-in-production/

	static has no date in it’s URL and should be used for objects with
universal validity. URL of statically published objects contains a primary
key reference to avoid namespace clashes:

/category/tree/path/[PK]-slug/

for example:

/about/1-ella-first-in-production/

Just setting up publish information for a Publishable object makes it
visible (starting from publish_from) but doesn’t make it appear in any
listing in any Category. For that you need to specify in which categories
you want it listed.

Listing object

ella.core.models.Listing instances carry the information in which Category
and when should be a publishable object listed - it enables users to list the
object in as many categories as they wish at arbitrary times (but not sooner
that the Publishable.publish_from).

By default, listings in the root category only contain Listings specifically
targeted there whereas listings for any subcategory also contains all the
listings of it’s subcategories. This is a model we found most useful when
working with large sites where the site’s homepage needs to be controlled
closely by editors and the interim categories only serve as aggregators of all
the content published in them either directly or via a subcategory.

Creating a site

Now you should have enough information to be able to start exploring the
admin (found on /admin/) and create your own site and it’s first post.
You will know that you were succesfull if you manage to create and publish an
article whose URL gives you a TemplateDoesNotExist exception upon
accessing - that means we are ready to create some templates.

Basic templates

Now that we have some sample data to work with we can finally start creating
the templates we need to get the site running.

Note

For more information on what templates Ella uses and what context is passed
in, have a look at Template overview.

page/category.html

First we will create a template rendering a category: page/category.html.
This is a default template that will be used for all categories if their
specific template (one with their path) isn’t found. The two most important
variables in the context we want to use is {{ category }} containing the
Category model itself and {{ listings }} containing a list of
Listing objects for that category ordered by publish_from and/or
priority.

The basic template will look like:

<h1>Welcome to category {{ category.title }}</h1>
<p>{{ category.description }}</p>

{% for listing in listings %}
 <p>
 {{ listing.publishable.title }}
 {{ listing.publishable.description|safe }}
 </p>
{% endfor %}

That will render the category title, description and a list of objects published
in that category. Upon accessing / you should then see the name of the
category and the article you created in administration.

page/listing.html

This template represents the archive, it gets the same context as
page/category.html and the same code can be used. We will use the same code:

{% extends "page/category.html" %}

page/object.html

As with page/category.html, page/object.html is a fallback template that
will be used for rendering any object if more suitable template isn’t found.
In real life we will probably have different templates for different content
types, but to verify the concept and get us started a simple template should
be enough:

<h1>{{ object.title }}</h1>
<p>Published on {{ placement.publish_from|date }} in category: {{ category }}</p>
{% render object.description %}

This template will have access to the actual Publishable subclass instance
(Article in our case), as opposed to page/category.html and
page/listing.html which only gets instance of Publishable by default.

Note the use of {% render %} templatetag that is used to render rich-text
fields (which object.description is) thorought Ella.

Now that we have a set of rudimentary templates, we can try
doing something useful with them.

Enhancing templates

Since Ella is a regular Django application, even it’s templates are just plain
Django templates. Therefore we just refer you to other sources [http://docs.djangoproject.com/en/dev/#the-template-layer] and
Common gotchas & FAQs section to learn more
about the templating language and it’s best practices, we will try to focus
just on Ella-specific parts.

Boxes

First change we will make is abstract the rendering of the object listing on
category homepage and archive. To do this, Ella provides a Box for
individual objects. It’s primary use is as a
templatetag. Boxes can be rendered
for objects accessible through a variable or through a database lookup:

{% box <box_name> for <object> %}{% endbox %}
 or
{% box <box_name> for <app.model> with <field> <value> %}{% endbox %}

What {% box %} does is a little more then fancy include - it retrieves the
object, find the appropriate template and renders that with object-specific
context. The context can be quite different for an Article or Photo gallery.
Boxes are usually used throughout an Ella site to provide maximum flexibility
in rendering objects and also for embedding objects into rich text fields stored
in the database (in text of an article for example). Some applications (
Defining positions on the page for example) also use boxes to represent objects.

To create our first box, we just need to create a template called
box/listing.html containing:

<p>
 {{ object.title }}
 {% render object.description %}
</p>

And change page/category.html to use the box instead of manually specifying
the output:

<h1>Welcome to category {{ category.title }}</h1>
<p>{{ category.description }}</p>

{% for listing in listings %}
 {% box listing for listing %}{% endbox %}
{% endfor %}

If you still struggle, why the bloody Box is used instead of standard
{% include SOMETHING %}, keep in mind following advantages:

	They know which template to use with proper fallback engine.

	
	The provide class-specific context so that an Article can have

	different context than Photo.

Template fallback mechanisms

In last step we created a few templates that
should suffice for an entire site based on Ella. In real life you probably
wouldn’t want every category and every object to share the same template. Ella
provides a simple mechanism to target your templates more directly.

Let’s say that we want to create a specific template for rendering articles,
just create a template called page/content_type/articles.article/object.html
and you are done - next time you visit some article’s URL, this template will
get rendered instead of your page/object.html. This template would be a
good place to render the text of an article for example:

{% extends "page/object.html" %}
{% block content %}
 {% render object.content %}
{% endblock %}

Now if you just define the appropriate block in your page/object.html:

<h1>{{ object.title }}</h1>
<p>Published on {{ object.publish_from|date }} in category: {{ category }}</p>
{% render object.description %}

{% block content %}{% endblock %}

You should be able to see your article’s text on the web.

Another way you can override your templates is based on Category. For
example if you want to create a custom template for your root category (and
your root category’s slug is ella-blog), just create one called
page/category/ella-blog/category.html:

<h1>Welcome to site {{ category.site }}</h1>
<p>{{ category.description }}</p>

{% for listing in listings %}
 {% box listing for listing %}{% endbox %}
{% endfor %}

You will be greeted into the site and not your root category next time you visit
the root of your blog. Just create any subcategory to check it will remain
unaffected.

You can use the same simple mechanism (creating new templates) to change the look
of your boxes for individual objects as well.

Note

For more detailed explanation of all the possible template names, have a
look at Views, Template overview
and Templatetags documentation.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

I am a Python developer - where do I begin?

Developers have always a hard time. Unfortunately, you need to be familiar
with the most topics this documentation offers. You will be the key person
coders go to get advice from a you simply have to know the answers.
This docs are trying to offer
you a helping hand and cover most of the topics you will run into when working
with Ella. Not only it gives you API reference, it also offers cooking recipes
for common headache situations.

In this documentation, we expect you have proficency in these areas:

	Standard Python programming.

	At least rudimentary knowledge in Django:
	Models

	Views

	Templating

	Middleware

	Context processors

	Media/static handling

	Knowledge of web programming paradigms: request, response,

Ella always tries to keep things as simple as possible, but, as you probably
learned already, it’s not always just possible. If you want get familiar with
Ella, it’s always best to start off with Quickstart to get a grasp of
core concepts Ella is built upon. Next, continue with reading the docs
in Features section. It is recommended to get yourself familiar with
all the topics covered in here even though the Caching and
Deployment are probably kinda advanced and not strictly required
in the first run. If everything goes allright and you don’t feel lost, keep
reading in the Common gotchas & FAQs section which covers frequent show-stoppers
for new Ella users. Finally, do a fast sprint throught API reference and
List of configuration settings to make your overview complete. And, of course - have a look
at the code itself. Sometimes it works even better than best docs.

If feeling confused or not happy with the way Ella is presented or just simply
having a note, please feel free to let us know! It is always appreciated.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

I am a HTML coder - where do I begin?

As the creator of the templates, you should first get confident when working
with Django templates [https://docs.djangoproject.com/en/dev/topics/templates/]. You should have good understanding of following concepts:

	What are templates and how they are defined.

	How to work with variables.

	How to use use filters and what they are for.

	What are Django templatetags and how to use them.

	Basic overview of the in-built Django templatetags.

	Template inheritance.

It would also be very handy, if you had basic understanding of how Django
itself works, what are views and models. If you are familiar with all
the mentioned topics, great! You are ready to jump into Ella right now. Here is
a topic walkthrough we think will be ideal for you.

First, start with Quickstart. It covers the core principles in brief detail
and should get you in touch with Ella basics. You will get familiar with basic
Ella project setup, the most common templates, and the important models
Ella is all about. As a next step, go to Features section and try
to consume as much as possible from these topics:

	Template fallback mechanisms

	Category detail page

	Object detail page

	Defining positions on the page

	Working with photos

	Working with related objects

	Syndication - ATOM and his RSS friend

If all those topics make sense, you will probably feel at home when going
to Common gotchas & FAQs section, which will hopefully give you last remaining
pieces of the puzzle. If still having questions, please contact us and give us the
very welcomed feedback what is missing in the docs!

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

Features

This section presents core Ella features. It’s recommended to all of the
user base. Some parts might be a little heavy for html coders though. It goes
from the most basic aspects to the more and more specialized ones. It tries to
show the concepts by examples and doesn’t go into the deep descriptions of
the API. If you are looking for reference instead, go to the API reference.

As a rule of the thumb, all sections up to the Working with related objects are
recommended for an every-day Ella user.

Template fallback mechanisms

Templates for rendering categories and publishable objects use fallback mechanism
to provide you full control over what is rendered with minimum effort required.

When selecting template to use for given URL, Ella does several things based
on what we are dealing with. However, in both cases there is final fallback to
default templates which are:

	category.html for a category template

	object.html for an object template

Note

Under some circumstances, category.html can be overriden, see
Defining custom template for category for more details.

Selecting template for a category

When selecting templates for a rendering of category, Ella uses this set of
rules:

	Look at the tree_path. Try to find a template in
page/category/[TREE_PATH]/category.html.

Example:

	http://www.example.com/category/subcategory/

	Ella would first try to find page/category/category/subcategory/category.html.

	If template was not found in previous step, try to find the template
of an direct ancestor providing we have one and it’s not the root category.

Examples:

	http://www.example.com/category/subcategory/subsubcategory/

	First, try page/category/category/subcategory/category.html,
next try page/category/category/category.html and stop because the
category "category" is the main one.

	http://www.example.com/category/subcategory/

	Try page/category/category/category.html and stop.

	http://www.example.com/category/

	Would not try anything, we are already in main category.

	http://www.example.com/

	Would not try anything, we are in root.

	If template wasn’t found yet, use default template (which is
page/category.html in most cases).

Selecting template for an object

Selecting template for an object adds even more possibilities for the developer.
It also uses content_type in form of app_label.model_label (both
lowercased). Example would be: articles.article, videos.video and so on.

	Try to find a template in
page/category/[TREE_PATH]/content_type/[CONTENT_TYPE]/object.html.

	Try to find a template in
page/content_type/[CONTENT_TYPE]/object.html.

	Continue in the same way as when selecting a category template except for
using object.html instead of category.html.

Selecting template for a box

Lookup for boxes is done in "box" subdirectory. It then works exactly
the same as for objects, except that the template name is the name of the
box being rendered and last resort is template box/box.html.

Category detail page

Category detail is the very main page of most content websites. In Ella, we do
not make any difference for homepages and other categories except for the
different URLs. Ella uses categories in several ways:

	For showing your homepage

	For listing content that is published in the category

	As a static page, e.g. for your contact page

Last use case scenario might be little awkward, but the design decision was
made to make this as easy as possible. Because main focus of Ella is content-rich
websites and online news, static pages are usually not the primary focus of an
Ella project. It’s still quite simple to create personal websites though.

Working with category templates

When creating category templates, here are some basic rules you can count on:

The template used is by default category.html using the template fallback
mechanism (for details on that, see Template fallback mechanisms).
You can set the different template for your category using administration.
For details and explanation of the whole concept, have a look at
Defining custom template for category.

Context will always contain at least:

	Key
	Value

	category
	Category object itself.

	is_homepage
	Flag telling you if this is a homepage, see
Homepages.

	is_title_page
	Boolean telling you if this is the first
page of the listing/archive.

	is_paginated
	Boolean which is True more pages are
available.

	results_per_page
	Number of objects per page.

	page
	Current page shown.

	listings
	Objects listed in the category for this
page.

	content_type
	If filtering by Content Type is active,
this will hold the ContentType instance.

	content_type_name
	Verbose name of content type if Content Type
filtering takes place.

The basic scenario when building up site’s category templates is following:

	Create the base template page/category.html. Make this template as generic
as possible to enable nice
inheritance. Most
often, this category will be created as generic, paginated, content listing
as seen on most sites using articles.

	Create customized template for homepage since it has different layout in
most cases. Use proper fallback to tell
Ella that it should use a different template for HP. It’s as simple as
putting the template to page/category/[YOUR_HP_SLUG]/category.html.
Also, practice inheritance, make this template using
{% extend "page/category.html" %}.

	Create other category templates that need customization. You will most likely
end up building some static pages.

Homepages

In Ella, a homepage is recognized as the category, that has no parent. Therefore,
it is also the root category. Only one such page is allowed for each site
that is contained in database.

The URL of homepage is always “/”, so for a domain example.com, full
URL of root category would be of course the root of the whole site:

http://www.example.com/

When working with category templates, homepage will set the variable is_homepage
in the template’s context to True. Thanks to it, something like this is possible:

<!-- in page/category.html -->
{% if is_homepage %}
 This is homepage category.
{% else %}
 This is not a homepage.
{% endif %}

This makes it very easy to have only one template which covers most of the
category pages including homepage. However, you should always consider splitting
the HP-specific code to it’s own template when the HP layout is completely
different from other categories. This would make your templates much more
readable which is always a good thing.

Other categories

In most Ella sites, categories other than HP usually serve for content listings
or static pages. We’ll demonstrate the
basic code for content listing for the sake of completness.

{% extends "page/base.html" %}

{% block content %}
 {% block object_listing %}
 {% listing 10 for category as category_listing %}
 {% for l in category_listing %}
 {% box listing for l.publishable %}{% endbox %}
 {% endfor %}
 {% endblock %}
 {% block pagination %}
 {% if is_paginated %}{% paginator 5 %}{% endif %}
 {% endblock %}
{% endblock %}

Defining custom template for category

By default, template used for rendering category is category.html. You
can override this behavior to use your custom template. This can be useful
when you need to implement several different layouts for your categories.
Suppose we have following layouts:

	Top 4 articles, then listing of 6 more

	Listing of 10 articles without top ones

	Listing of 10 articles without perexes, only big images

If it wasn’t possible to select a template for category, you would need to
override the template for each category diferrent from the base one (let it be
the first one). Using different templates, you can avoid doing so. First, define
the templates in your settings.py:

in settings.py
CATEGORY_TEMPLATES = (
 ('category.html', 'default (top 4 + listing 6)'),
 ('category_10.html', 'top 10'),
 ('category_10_no_perex.html', 'top 10 w/o perexes'),
)

Note

To be consistent with the Ella guidelines, please always use category.html
as your base category template.

Next, create the base template. That would be category.html. It would
be used, when not set otherwise in your Ella administration:

<!-- in page/category.html -->
{% extends "page/base.html" %}

{% block object_listing %}
 <!-- show 4 boxes with big images -->
 {% listing 4 for category as category_listing %}
 {% for l in category_listing %}
 {% box listing_big_image for l.publishable %}{% endbox %}
 {% endfor %}

 <!-- show 6 more regular boxes -->
 {% listing 6 from 4 for category as category_listing %}
 {% for l in category_listing %}
 {% box listing for l.publishable %}{% endbox %}
 {% endfor %}
{% endblock %}

Then, you would create category_10.html template to show only ten same boxes
for listing:

<!-- in page/category_10.html -->
{% extends "page/category.html" %}

{% block object_listing %}
 <!-- show 10 same boxes -->
 {% listing 10 for category as category_listing %}
 {% for l in category_listing %}
 {% box listing for l.publishable %}{% endbox %}
 {% endfor %}
{% endblock %}

Finally, create the last category_10_no_perex.html template, that would
define the last layout:

<!-- in page/category_10_no_perex.html -->
{% extends "page/category.html" %}

{% block object_listing %}
 <!-- show 10 boxes without perexes -->
 {% listing 10 for category as category_listing %}
 {% for l in category_listing %}
 {% box listing_no_perex for l.publishable %}{% endbox %}
 {% endfor %}
{% endblock %}

This way, you don’t need to override template for each of different categories, you
just set the layout in your administration. Also, this is widely used when
it comes to creating Static pages that don’t ever change.

Object detail page

The object detail in Ella terminology is a detail of a publishable object.
This can be the article itself, a page showing gallery or a page
with a video player we used as example in Plugins section. This would
be a main interest for your users, the main source of information on your site.

Similarly to categories, object details use object.html template. Same
fallback rules apply (see Template fallback mechanisms).

When dealing with object detail, you can be sure the context will provide you
with following data:

	Key
	Value

	object
	Publishable subclass instance we are
dealing with.

	category
	Related Category object for this page.

	content_type
	ContentType instance of the object.

	content_type_name
	Verbose name of content type if Content Type.

Defining templates follows a same pattern as when working with categories:

	Define a generic template that will be used when rendering objects without
some special behavior. In this template, try to use only attributes defined
by Publishable model, so it will work for all subclasses correctly.

	Define custom templates for objects of different kinds. There would mostly
likely be different templates for articles, galleries etc. These
templates go to page/content_type/[APP_LABEL].[MODEL_NAME]/object.html,
e.g. page/content_type/articles.article/object.html.

	Define templates for custom layout of object in specific categories. These
might be sometimes required. Imagine a situation when you need an article
detail to look differently in some special category. For example, you can
have normal articles and site news, both of which are internally implemented
as Article instances. It makes sense for site news to keep a little
different layout than normal articles do, you probably won’t show the
news source and so on.

To provide some real world example of basic object page, have a look at this
small snippet:

<!-- in page/object.html -->
{% extends "page/base.html" %}

{% block content %}
 <!-- show photo if available -->
 {% if object.photo %}
 {% box object_main for object.photo %}{% endbox %}
 {% endif %}

 <!-- show basic information, title, authors, publication date -->
 <h1>{% block object_title %}{{ object }}{% endblock %}</h1>

 <p>Published at: {{ object.publish_from|date }}</p>
 {% if object.authors.exists %}
 <p>Authors: {{ object.authors.all|join:", " }}</p>
 {% endif %}

 <!-- render perex/description -->
 {% block perex %}
 {% render object.description %}
 {% endblock %}

 <!-- body for publishable subclasses goes here -->
 {% block body %}{% endblock %}

 <!-- show related objects -->
 {% block related %}
 {% related 5 for object as related %}
 {% for r in related %}
 {% box related for r %}{% endbox %}
 {% endfor %}
 {% endblock %}
{% endblock %}

Most likely, you would also add following things to the base object template:

	Facebook like button, Twitter tweet button, Google +1 button

	Sharing handlers - send by email, ...

	Tags for the object

	Comments

Object detail URL

The URL of Publishable object detail depends on publication type. As we
already mentioned in Quickstart, there are two:

	time-based publication is limited by publish_from - publish_to
period. Outside of these time boundaries, object won’t be reachable
on the website. Most websites only use publish_from so that the object
won’t disappear.

	static publication is not limited by time and thus it is unlimited and
permanent. Such object will be always reachable on the website.

With time-based publications, objects are given a date stamp in the URL
so the namespaces clashes doesn’t happen very often. URL structure goes like:

/category/tree/path/[YEAR]/[MONTH]/[DAY]/[CONTENT_TYPE_NAME]/slug/

So for an example, /about/2007/08/11/articles/ella-first-in-production/ could
be proper result of time-based publication.

With static publication, no date stamp is used. Instead, object’s primary
key is prepended before slug to avoid name conflicts. URL structure looks like
this:

/category/tree/path/[CONTENT_TYPE_NAME]/[PK]-slug/

And a valid result could be /about/articles/1-ella-first-in-production/.

Archive pages

Rich-text fields: using WYSIWYG editors or a markup language

Integrating custom views

Ella doesn’t force you to make your views any prescribed way. You can easily
create any Django application and add it to your project standard Django way
and Ella won’t stand in way.

However, if you try to extend the functionality of the framework itself,
you might want to have a look at Ella plugins
which offer several simple interface for extending the Ella.

Defining positions on the page

Position is understood as placeholder on the page whose context is specific
to the category in use. It allows designers to specify areas of the template to
be overriden by the site writers, editors via the admin interface. Position is
identified by it’s name. Main use case of positions is box embedding, but raw
HTML can be used as well.

	inheritance

	When called from the template tag, the application will first try and
locate the active position for the given category, then, if such position
is not available, it will locate active position in the closest ancestor of
the category. This behavior can be overriden by the nofallback argument to
the {% position %} templatetag.

	tied to objects or raw HTML

	You can either define a generic foreign key to any object whose box you
wish to display instead of the templatetag or, if the generic foreign key
is empty, raw HTML that you wish to insert.

	{% ifposition %} templatetag

	You can check if any position for a given set of names is active using the
{% ifposition %} templatetag. It behaves in same way as common {% if %}
templatetag.

Note

This feature is part of ella.positions app and thus needs to be added to
INSTALLED_APPS before use.

Using positions in your pages

Position is defined in the admin interface and used from the templates via two
templatetags.

{% position %} template tag

Render a given position for category.

Syntax:

{% position POSITION_NAME for CATEGORY [using BOX_TYPE] [nofallback] %}
 ...
{% endposition %}

Parameters:

	Name
	Description

	POSITION_NAME
	Name of the position for lookup.

	CATEGORY
	The category for which to render the position -
either a Category instance or category’s
slug.

	BOX_TYPE
	Default type of the box to use, can be overriden
from the admin.

	nofallback
	If present, do not fall back to parent categories.

Text inside the tag (between {% position %} and {% endposition %}) is
passed to Box used for rendering the object. This can also be overriden
from the database.

{% ifposition %} template tag

Render template according to the availability of given position names within
given category.

Syntax:

{% ifposition POSITION_NAME ... for CATEGORY [nofallback] %}
 POSITION EXISTS!
{% else %}
 NO POSITION DEFINED!
{% endifposition %}

Renders ‘POSITION EXISTS!’ if any of the space separated position name is active for the
given category, ‘NO POSITION DEFINED!‘ otherwise.

Real world examples

Positions are widely used for a lot of page parts that need to be edited by
site staff from time to time, like:

	Site menus (see Creating site navigation)

	Page sidebars (see Category-specific sidebars)

	Top articles on the hompage, which are under strict supervision of editors who
need to control what exactly and in which order is being displayed.

	Carousel-like content on the bottom of the pages.

<!-- in page/category.html -->
{% load positions %}
...

{% block right_column %}
 {% position rightcol_poll for category %}{% endposition %}
{% endblock %}

...

This simple example can be used to show a poll in the page right column
in case the poll is defined. It will also switch the poll for the categories
where the specific one is defined as stated before.

Working with photos

Ella’s core has an integrated photo module which is tightly coupled with the
rest of the modules (articles, ...) and plugins, notably the Newman
administration plugin.

Features:

	Photo format definition with cross-site option.

	Scaling, cropping.

	Definition of important box for automatic cropping while keeping the
important area on the photo intact (e.g.: keeping faces on cropped photo).

	{% img %} template tag for template usage.

Photo module is composed from several important parts:

	Photo model

	Photo model stands for the actual photo uploaded by user.

	Format model

	Describes different formats that a sites is using. Think of format as a
set of rules how to render: “a big photo aligned to right side”, “small
photo to show authors face” and so on.

	FormatedPhoto model

	This model keeps track of photos that have already been formatted in a
given format. It works like a cache so that the formatting only occurs
once.

	{% img %} template tag

	{% img %} is used when placing the photos in the templates. It simplifies
and abstracts the process of thumbnail creation.

Generating thumbnails in the tempalates

The {% img %} template tag is used to get a thumbnail for original Photo
object. It is smart enough to use all the meta info defined on Photo, so
the important box is taken into account.

Syntax:

{% img <FORMAT> for <VAR> as <VAR_NAME> %}
{% img <FORMAT> with <FIELD_VALUE> as <VAR_NAME> %}

Templatetag supports two approaches. First is very simple, you just give it
a Photo instance and it will generate thumbnail for it. The second one
tries to find a Photo you describe by FIELD_VALUE. See the examples:

{% img category_listing for object.photo as thumb %}
{% img category_listing with pk 1150 as thumb %}

The result (stored as thumb in the example above) then contains a
FormatedPhoto instance. This means you can access it’s attributes,
particularly url method and width and height.

Workflow

The basic workflow when using photos goes like this:

	Define formats. This step is usually already done when you enter the
stage as the designer is reponsible for it in most cases. We only need to
enter the data to the Ella database.

	Store the formats in fixtures is quite important step, because it makes
development much easier when a more than one developer is involved. It
makes sense to add the fixture as initial data [https://docs.djangoproject.com/en/dev/howto/initial-data/] because it shouldn’t be
altered in database without an intent.

	Use image boxes in your templates. For the thumbnails, use boxes.
The snippet below shows how you can embed photos using boxes in an object
box we used in Category detail page section.

<!-- in box/listing.html -->
<div class="article">
 <h2>{{ object }}</h2>
 {% if object.photo %}

 {% box category_listing for object.photo %}{% endbox %}

 {% endif %}
</div>

	Use image templatetag to generate thumbnails. When the photo is embedded,
the last remaining step is to generate thumbnails so the photo will fit on
the page nicely. To do this, use {% image %} template tag.

<!-- in box/content_type/photos.photo/category_listing.html -->
{% load photos %}

{% block image_tag %}
 {% image object in "200x100" as image %}

{% endblock %}

Note

It’s a good habit to use format naming convention which describes the used
dimensions (like the “200x100” used in example above) and attributes because:

	It will minimize the number of formats you use and eliminate duplicates.

	It will eliminate the threat that the same image is formatted twice with
same parameters.

Using placeholder images during development

It is quite common that during development of the Ella application, one doesn’t
always have all the photos stated in database on his HDD. This can happen
when you share one database dump with co-workers and someone adds new articles
etc.

In order to show at least something, Ella provides debugging setting which
will replace the missing image files by placeholder images. You can enable
this by setting PHOTOS_DEBUG = True in your project settings. By default,
Ella will use web service http://placehold.it to generate the images. Optionally,
you can use your custom placeholder service by changing the PHOTOS_DEBUG_PLACEHOLDER_PROVIDER_TEMPLATE
to your own. Use something like this:

DEBUG_PLACEHOLDER_PROVIDER_TEMPLATE = 'http://placehold.it/%(width)sx%(height)s'

Working with related objects

What are related objects?

By related objects, we understand publishable objects which have some relation
between them. They can be related in various ways, for example:

	belong to the same category

	have a same topic

	have similar tags attached to them

	have same author

	have same source

Showing such related content is very common on news sites because it helps
to link the content and also, it is very SEO friendly.

Ella has simple but powerful interface for querying such relations and the core
module also implements some basic ones.

{% related %} template tag

Related template tag is ment for simple access to the related queries from
within your templates. It fills up a given variable with list of publishable
objects that were collected by the finder functions defined for the project(see
Related finders for more details). When no query_type is
given, default will be used.

Usage:

{% related <limit>[query_type] [app.model, ...] for <object> as <result> %}

Parameters:

	Option
	Description

	limit
	Number of objects to retrieve.

	query_type
	Named finder to resolve the related objects,
falls back to default when not specified.

	app.model, ...
	List of allowed models, all if omitted.

	object
	Object to get the related for.

	result
	Store the resulting list in context under given
name.

Examples:

{% related 10 for object as related_list %}
{% related 10 directly articles.article, galleries.gallery for object as related_list %}

Note

Please note that you can define new related finders very easily and instantly
call them in your templates. Whenever you need to query for some object
list by some relation, it’s the use case for a custom related finder.

Syndication - ATOM and his RSS friend

Ella has automatic syndication support out of the box. For each category,
there are RSS a ATOM feeds automatically available on:

www.example.com/feeds/rss/[CATEGORY_TREE_PATH]/

and:

www.example.com/feeds/atom/[CATEGORY_TREE_PATH]/

respectively.

Ella uses Django syndication feed framework [https://docs.djangoproject.com/en/dev/ref/contrib/syndication/] internally to render the feeds.
Default number of objects in feed is set to 10 by RSS_NUM_IN_FEED
setting. You can override this setting it to different value in your
settings.py. Also, you can define an enclosure [https://docs.djangoproject.com/en/dev/ref/contrib/syndication/#enclosures] format by setting
RSS_ENCLOSURE_PHOTO_FORMAT which defaults to None.
The value is expected as Format instance name. If you set this to None
(or don’t set it at all), no enclosures will be used.

The feed title and description defaults to category title attribute. If you
need to override this, use app_data and
make sure you set following:

category.app_data['syndication'] = {
 'title': 'My feed title',
 'description': 'My feed description'
}

You can do this through Django administration.

Incorporating plugins

Ella design is as lightweight as possible. Prefered way of extending it’s
functions is via plugins. Ella provides great flexibility when it comes
to plugin possibilities. You can for example:

	Add your custom Publishable subclasses.

	Create custom Box classes for the new publishables.

	Add new actions over the Publishable objects.

	Customize bundled workflow when rendering the content.

We’ve dedicated whole section for plugins, because it’s an
important topic and almost every project has it’s specific needs. So, for
details, go to Plugins.

Extending category/publishable metadata

Since Ella has quite a long history behind it, we’ve gathered lot of experience
from previous fails. One such experience is that almost every project needs
to add aditional data on the bundled models. This can be done in lot of
various ways because of Python’s great possibilities, but more or less, it’s
a dark magic or monkey patching. This is not nice and violates the Django
core principle: explicit is better then implicit. To fix this up, we’ve
added possibility to add arbitrary data on Publishable, Category and Photo
models programatically.

Each of the mentioned models has one JSONField [https://github.com/bradjasper/django-jsonfield] subclass AppDataField
called app_data which can hold any information you need. It has some
limitations though:

	It’s not possible to perform efficent queries over the defined fiels. If
you needed it, add OneToOne relation to your custom model instead.

	You are responsible of setting the fields correctly, no validation measures
are placed on that field so that the data might be corrupted if not used
properly.

AppDataField acts the same way as regular Python dict object. You can
store any data structure you like provided it’s serializable by Django’s JSON
encoder [https://docs.djangoproject.com/en/dev/topics/serialization/#id2].

Conventions

AppDataField recognizes namespaces for different applications. The access
is not limited though so that any application can access any namespace. The
namespace is a simple first-level dict key (e.g. ‘emailing’ or ‘my_articles’
in the following examples).

To avoid name clashes, we encourage you to follow this convention so that all your
custom data is stored by using a key which coresponds to the app label
of aplication storing the data, such as:

in app "emailing"
p = Publishable()
p.app_data['emailing'] = {'sent': False}

in app "my_articles"
p = Publishable()
p.app_data['my_articles'] = {'custom_title': 'Foobar'}

Custom container classes

By default, Ella returns an AppDataContainer class when you access a
namespace. This is simply a dict subclass with no additional data except
for the information about the model class it is bound to. However, you
can provide your own classess for the namespaces. This allows you to create
methods working with the your custom data. For example, you can have
CommentsDataContainer for your comments application which can provide
methods like comment_count.

Registering your custom container class is very simple. The formula is:

from app_data import app_registry
app_registry.register('comments', CommentsDataContainer, Publishable)

Unregistration works the same way:

app_registry.unregister('comments', Publishable)
app_registry.register('comments', SomeOtherDataContainer, Publishable)

Caching

Double rendering

Deployment

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

Plugins

Ella tries to keep the core framework as lightweight as possible. This has
very good reasons:

	it let’s what is required for your app to your decision

	it minimizes the dependencies of core application

	it makes the development faster, because you can enhance your module while
not needing to update the rest of the code

Because of this philosophy, plugins were introduced in version 3.0.0.

Where to get ‘em?

Currently, there are only plugins that were created by us directly. 3rd party
plugins are hopefully on the way – it depends more o less on you, Mr. Reader :)

Our plugins can be found in our GitHub repository [http://github.com/ella].
Here is a list of some interesting ones:

	Newman [http://github.com/ella/django-newman] - use admin forged directly
for Ella needs

	Tagging [http://github.com/ella/ella-tagging] - provides tagging functionality

	Comments [http://github.com/ella/ella-comments] - simple threaded comments

	Galleries [http://github.com/ella/ella-galleries] - create galleries from
your photos

	Polls [http://github.com/ella/ella-polls] - let users vote for things and
compete

	Imports [http://github.com/ella/ella-imports] - load stuff from other sites

	Series [http://github.com/ella/ella-series] - create series from articles
covering same topic

Basic plugin structure

All Ella plugins come as Django applications bundled using setuptools. Each
plugin has dependency on the Ella’s core, so Ella is always required and plugins
can hardly be used without it.

As Ella provides significant flexibility, plugins are able to do quite a lot of
magic, like following:

	Define custom Publishable objects via subclassing. For more details,
see Subclassing Publishable.

	Extend actions performed over the Publishable objects, for details,
see Overriding Publishable URLs section.

	Create custom Box classess for fine-tuned includes. This is discussed in
detail in section Custom Boxes.

	Provide additional methods of listing Publishable objects for a category,
see Listing Handlers.

	Define related finder functions to get related Publishable instances, see
Related finders.

Plugin API

	Subclassing Publishable

	Custom Boxes

	Overriding Publishable URLs
	Adding custom actions

	Overriding objects’ detail

	Listing Handlers
	Usage

	Interface

	Related finders

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	Plugins

Subclassing Publishable

Due to the fact that Publishable is common Django model, it is possible to
simply extend it with your custom model. When doing this, you effectively adding
your custom model to whole Ella machinery and all publishing-related stuff
is ready for you out-of-the box!

Let’s have a look at real-world example. During this walkthrough, we will try
to create a publishable video that will have YouTube video code as source.
We will keep it simple and use YouTube’s video player to show the video itself.

The very first step is to create your own application using the standard Django
way:

django-admin.py startapp video

After creating the app to hold it, let’s define the class itself. If you are
acustomed to Django models, this is going to look very familiar to you.:

in models.py within your video application

from django.db import models
from django.utils.translation import ugettext_lazy as _

from ella.core.models import Publishable

class YoutubeVideo(Publishable):
 code = models.CharField(max_length=20, title=_('Code'))

 class Meta:
 verbose_name = _('Youtube video')
 verbose_name_plural = _('Youtube videos')

 def __unicode__(self):
 return self.code

Note

If you want to examine whats is going on behind the scenes when subclassing
Django models, have a look at Django model inheritance [https://docs.djangoproject.com/en/dev/topics/db/models/#model-inheritance]. We are using
Multi-table inheritance so that each Publishable subclass has a hidden
pointer - publishable_ptr - to the Publishable object. This pointer
also acts as PK in the DB table.

Next step is to put the new app to the settings.:

INSTALLED_APPS = (
 'ella.core',
 'ella.articles',
 ...
 'yourproject.video',
)

Finally, resync your database so the DB table for the class is created:

django-admin.py syncdb

By defining this, we already have a working publishable object, nothing more is
needed. Of course, in real world, you would probably need to do some polishing
(adding better title, etc.), but for now, this is enough.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	Plugins

Custom Boxes

We have defined our new publishable object, but something still remains a
little unclear: how to embed the video in the HTML page. In this part of
walkthrough, we will present you a way that is preferred when working with
Ella. These are so-called boxes.

As described in Boxes, boxes are something you can call
an include on steroids. Boxes behave very much like standard Django
{% include %} templatetag, but are suited to be used with publishable
objects. They do following things for you so you don’t need to care about
them:

	Template path resolution

	Object-specific context within the included template

	Ability to accept advanced parameters

Now back to the Video publishable subclass. What we want to achieve is
that our Video is being rendered in the page. For this, we will create a
custom Box subclass. Here is, how a desired result will look when embedding
the video in the page:

<h1>Watch the video right here!</h1>

{% box video_player for video_object %}
 width: 400
 height: 200
{% endbox %}

The first thing you need to do is to define the box sublcass itself:

in models.py
from ella.core.box import Box

class VideoBox(Box):
 def get_context(self):
 context = super(VideoBox, self).get_context()
 context.update({
 'width': self.params.get('width', '400'),
 'height': self.params.get('height', '200')
 })
 return context

Note the get_context method. Since width and height parameters are
specific to our VideoBox and not recognized by other boxes, we need to
handle them and pass them into the include context. self.params is a
dictionary holding parameters used to call the box. We provide sane defaults
when the parameters are not provided so that we can still call the box by using
simple {% box video_player for video_object %}{% endbox %}.

Next step is to let Ella know, that we want a special type of box to be
used with our Video. If we didn’t do that, Ella would use a basic Box
class which is missing the width and height parameters. To tie our
model with the VideoBox set the box_class class variable on the
Video model:

class Video(Publishable):
 ...
 box_class = VideoBox
 ...

In order to actually render something we also need to create a HTML template.
Box templates are placed in box directory within paths where Django template
finders are able to reach them (if you are unsure what a template finder
is, please refer to the Docs [https://docs.djangoproject.com/en/dev/ref/templates/api/#loading-templates]). The name of the box also serves as name of
the template to use. In our case, the name of the box is video_player so
the template name is going to be video_player.html. Boxes provide a
template search fallback which we’re not gonna discuss here to keep the thing
simple. For further information, see Templatetags.

Our box is fairly simple. We are gonna use the code provided by YouTube and it
will look like this:

<!-- in templates/box/video_player.html -->
<iframe width="{{ width }}" height="{{ height }}" src="http://www.youtube.com/embed/{{ object.code }}" frameborder="0" allowfullscreen></iframe>

See how nicely box integrates all things we have so far together. It uses
object.code to build up the URL and width and height attributes to
define the video player dimensions.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	Plugins

Overriding Publishable URLs

Adding custom actions

Consider a situation, when we would like to have discussion about the video on
a separate page while keeping the nice URL prefix Ella creates for it’s
publishable objects. There is a simple solution for that. Ella’s custom URL
resolver allows us to add actions for the Publishable objects easily.

We would like our URL to have following form:

/about/2007/08/11/videos/ella-first-in-production/discussion/

To do this, we will append a custom view function for the Video model:

in yourapp/video/urls.py
from django.conf.urls.defaults import url, patterns

from ella.core.custom_urls import resolver

from yourapp.models import Video
from yourapp.video.views import show_discussion

urlpatterns = patterns('',
 url(r'^discussion/$', show_discussion, name='video-show-discussions'),
)

resolver.register(urlpatterns, model=Video)

When registering custom URLs, we use ella.core.custom_urls.resolver instead
of regular Django url machinery. This does a little Python magic so that your
URLs will be appended to base Publishable URL. Note the use of model
argument in

resolver.register(urlpatterns, model=Video)

This means, that the custom action will be available only for a Video model.
If we wanted to add our discussion action to all Publishable models, we would
simply omit the model argument altogether.

As you have probably noticed, we are using show_discussion view function
without declaring it, let’s fix that up:

in yourapp/video/views.py

def show_discussion(request, context):
 obj = context['object']
 return render('yourapp/discussion.html', {'object': obj})

Views that are used with Ella’s resolver always accept request (which is a
normal Django request object) and context which is a dictionary that
contains following data:

Custom view arguments

 Listing Handlers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	Plugins

Listing Handlers

By default Ella can list Publishable in categories using the Listing
model. If additional methods of listing, sorting and pagination is required, a
plugin can define a ListingHandler. For example if makes sense for a
comments plugin to define a ListingHandler that will allow you to list
Publishables sorted by number of comments.

Project can define multiple ListingHandler classes and use GET parameters
and optional arguments to the {% listing %} template tag to determine which
to use on per-request basis.

On top of the default ListingHandler
('ella.core.managers.ModelListingHandler') Ella also provides an optimized
RedisListingHandler ('ella.core.cache.redis.RedisListingHandler') to be
used on high traffic sites.

Usage

ListingHandler classes a projects is using are defined in settings, a
configuration entry for 'default' must always be present:

LISTING_HANDLERS = {
 'default': 'ella.core.managers.ModelListingHandler',
 'comments': 'ella_comments.CommentCountListingHandler',
}

Interface

ListingHandler is justa class that defines two methods - count and
get_listings:

from ella.core.managers import ListingHandler

class CommentsListingHandler(ListingHandler):
 def count(self):
 ...

 def get_listings(self, offset=0, count=10):
 ...

The __init__ method of the class accepts folowing aguments:
category, children=None, content_types=[], date_range=(), exclude=None

ListingHandler.__init__ arguments

 Related finders

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	Plugins

Related finders

To provide maximal flexibility, we use so-called related finders. These are
simple functions that are responsible for collecting the related objects. They
are given name, so they can be used in templates too (see
{% related %} template tag). The finders are defined
as list of fallback functions and the main controller calls them one by one,
starting from the top of the list until one of two conditions occur:

	Required number of related objects have been collected.

	All finder functions have been called.

The default definition of a related finder is specified this way:

RELATED_FINDERS = {
 'default': (
 'ella.core.related_finders.directly_related',
 'ella.core.related_finders.related_by_category',
),
 'directly': (
 'ella.core.related_finders.directly_related',
)
}

You can see two related finders (namely default and directly) being
defined as a tuple of functions. You can easily override the default definition
in your settings.py and add your own related finders to involve advanced
searching (haystack, ...) or your very custom relations. For more info on this
topic, see Integrating searching.

Warning

Be sure to always include the default key in RELATED_FINDERS setting,
it is expected to be there.

Each finder function follow this signature:

def related_finder(obj, count, collected_so_far, mods=[], only_from_same_site=True):
 ...

	Parameter
	Description

	obj
	Object we are finding the related for.

	count
	Collect at most this number of related objects.

	collected_so_far
	List of object, that the controller has collected
so far. Can come handy when dealing with duplicates.

	only_from_same_site
	Boolean telling the function if only the objects
from the same site as obj is are required.

Each finder is required to return up to the count of related objects. A valid
option is to return an empty list ([]) if no related exist.

Finders are responsible for taking care of duplicates and no duplicates should
be present in intersection of collected_so_far and what is returned by the
finder function. You can easily use if obj not in collected_so_far condition
to find duplicates.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 API reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

API reference

If you are looking for the description of the models, views and more, you’re
on the right place.

	Models
	Core models

	Photo models

	The Article model

	The Position model

	Views

	Templatetags
	Core templatetags

	Custom URLs templatetags

	Pagination

	Related

	Photos

	Positions

	Template overview
	Object detail templates

	Category detail templates

	Box templates

	Listing templates

	Other templates

	Middleware

	Related finders

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Models

Ella core module consist of four apps, two of them contain the main logic and
the second two provide basic CMS capabilities. The core logic is provided by
ella.core and ella.photos applications, see the image below for quick
overview of models used. Moreover, Ella ships with two basic CMS apps you can
use: articles and positions. Quick overview image follows.

[image: ../_images/core_models.png]
[image: ../_images/photos_models.png]
[image: ../_images/cms_models.png]

Core models

The Author model

	
class ella.core.models.Author

	

Describes an Author of the published content. Author can be:

	Human

	Organization

	...

All the fields except for slug are optional to enable maximum of
flexibility.

	
Author.user

	Optional. Related Django User instance. Can be blank and null.

	
Author.name

	Optional. Name of the author.

	
Author.slug

	Required. The only required field is slug. Must be unique.

	
Author.description

	Optional. You may provide description of author.

	
Author.text

	Optional. Small perex about the author. Use together with description
to provide information about the author.

	
Author.email

	Optional. When dealing with humans as authors, you can fill up his e-mail.

The Source model

	
class ella.core.models.Source

	

A Source in oposition to Author is used for publishable content
that was taken from other sites and it’s purpose is mainly for legal matters.

	
Source.name

	Required. The name of the source.

	
Source.url

	Optional. If source is an organization, you may fill up their URL.

	
Source.description

	Optional. Description about the source.

The Category model

	
class ella.core.models.Category

	

Category is the basic building block of Ella-based sites. All the
published content is divided into categories - every Publishable object
has a ForeignKey to it’s primary Category. Primary category is then
used to build up object’s URL when using Category.get_absolute_url method.
Besides that, objects can be published in other categories (aka “secondary”
categories) via Listing.

Every site has exactly one root category (without a parent) that serve’s as
the sites’s homepage.

Attributes

	
Category.title

	Title of the category for common purposes.

	
Category.description

	Optional. Description of the category for common purposes.

	
Category.content

	When rendering static pages, this can come handy. It’s a rich-text powered
field capable of holding HTML.

	
Category.template

	Required. Template used for rendering the category. Defaults to
category.html and can be overriden for custom layouts of the category
detail.

	
Category.slug

	Required. Slug for querying the category in URL.

	
Category.tree_parent

	Relation to the parent category. When no parent category exists, the value
is None and such category is considered as root category. The
prefered way of getting the parent is Category.get_tree_parent method
insted.

	
Category.main_parent

	Returns parent category, which is considered as main. A main category
is a category, whose parent is the root category.

	
Category.tree_path

	Path in the category tree from the root. Is composed from the slug fields of
the categories on the way joined by “/” symbol. It’s generated automatically.

Example: "nested1/nested2"

	
Category.path

	Returns tree path of the category. Tree path is string that describes the whole
path from the category root to the position of this category.

	
Category.site

	Required. A Site from django.contrib.sites framework, which category
belongs to.

	
Category.app_data

	Optional. A JSONField [https://github.com/bradjasper/django-jsonfield] for keeping arbitrary data. See
Extending category/publishable metadata for further information.

Methods

	
Category.get_tree_parent(self)

	Returns tree parent or None if not existent. Cached. Use in favor of
Category.tree_parent attribute.

	
Category.get_absolute_url(self)

	Returns absolute URL of the category. Useful in templates and views.

	
Category.draw_title(self)

	Returns title indented by elements that can be used to show
users a category tree.

Examples:

	no direct parent (the category root)

	TITLE

	one parent

	&nsbp;TITLE

	on third level of the tree

	 TITLE

The Dependency model

	
class ella.core.models.Dependency

	

	
Dependency.target_ct

	ContentType of the Dependency.target.

	
Dependency.target_id

	Primary key of the Dependency.target.

	
Dependency.target

	Target of the dependency relation.

	
Dependency.dependent_ct

	ContentType of the Dependency.dependent

	
Dependency.dependent_id

	Primary key of the Dependency.target.

	
Dependency.dependent

	Source of the dependency relation.

The Publishable model

	
class ella.core.models.Publishable

	

Base class for all objects that can be published in Ella.

Attributes

	
Publishable.content_type

	Automatically managed. ContentType instance of the Publishable subclass
if applicable. Used to get the subclass instance in case a generic
Publishable parent is dealt with which occurs for example when
querying over all publishable objects.

	
Publishable.target

	Automatically managed. Generic foreign key that points to the subclass
instance for easy access. Cached to save the queries.

	
Publishable.category

	Required. Main Category object a Publishable instance belongs to.
This has significant impact when building up the URL.

	
Publishable.title

	Required. Verbose title of the publishable (gallery name, article title,
...).

	
Publishable.description

	Optional. Basic description of the publishable. Can be used as perex, for
instance.

	
Publishable.slug

	Required. Slug to use when building up the URL. Needs to URL-friendly.

	
Publishable.authors

	Required. A ManyToMany relation with Author model to list publishable
object’s authors.

	
Publishable.source

	Optional. If the object comes from diferent source which needs to be listed,
use this field.

	
Publishable.photo

	Optional. The main photo of publishable objects. Main
article photo for example.

	
Publishable.published

	Required. A BooleanField instance keeping information if the object
is already published or not. Works together with publish_from and
publish_to fields.

	
Publishable.publish_from

	Required. Datetime keeping the start of publication period.

	
Publishable.publish_to

	Required. Datetiem keeping the Finish of publication period.

	
Publishable.static

	Required. A boolean whether the publication is static which means it’s not
bound to some special date. Publication is valid forever.

	
Publishable.app_data

	Optional. A container for arbitrary data on the model, for more info,
see Extending category/publishable metadata.

Methods

	
Publishable.get_absolute_url(self, domain=False)

	Returns absolute URL to the object without the domain and protocol.

Example: "/news/2012/1/1/some-article-slug/"

	
Publishable.get_domain_url(self)

	Returns full URL to the object with the domain and protocol added.

Example: "http://www.example.com/news/2012/1/1/some-article-slug/"

	
Publishable.get_domain_url_admin_tag(self)

	Domain url to be used in adminstration for showing the page link.

	
Publishable.is_published(self)

	Returns True if the Publishable is currently active, False otherwise.

The Listing model

	
class ella.core.models.Listing

	

Listing of an Publishable in a Category. Each and every object that have it’s
own detail page must have a Listing object that is valid (not expired) and
places it in the object’s main category. Any object can be listed in any
number of categories (but only once per category). Even if the object is
listed in other categories besides its main category, its detail page’s url
still belongs to the main one.

Attributes

	
Listing.publishable

	Required. A related Publishable instance to define the listing for.

	
Listing.category

	Required. A Category instance where the listing should occur.

	
Listing.publish_from

	Required. Datetime with start of the listing period.

	
Listing.publish_to

	Required. Detaime with end of the listing period.

	
Listing.commercial

	Optional. Set to True if the listing is a commercial or ad related.
These listings are usually marked with an ad warning. Defaults to False.

Methods

	
Listing.get_absolute_url(self, domain=False)

	Returns absolute URL to the listing without domain and protocol parts.

Example: "/news/2012/1/1/some-article-slug/"

	
Listing.get_domain_url(self)

	Returns absolute URL to the list with the domain and protocol.

Example: "http://www.example.com/news/2012/1/1/some-article-slug/"

The Related model

	
class ella.core.models.Related

	

Related objects - model for recording related Publishable objects. An
example would be two articles sharing a similar topic. When something
like this happens, a Related instance connecting the objects should
be created.

	
Related.publishable

	A Publishable instance as source of the relation.

	
Related.related_ct

	Django ContentType instance for the related object class.

	
Related.related_id

	Integer with primary key of the related object.

	
Related.related

	CachedForeignKey to access the related object.

Photo models

The Photo model

	
class ella.photos.models.Photo

	

Represents original (unformated) photo uploaded by user. Used as source
object for all the formatting stuff and to keep the metadata common to
all related FormatedPhoto objects.

Attributes

	
Photo.title

	Required. Human-readable title of the photo.

	
Photo.description

	Optional description.

	
Photo.slug

	Required. Slug to use when creating URL.

	
Photo.image

	Required. Path to the uploaded image file.

	
Photo.width

	Required. Original width of the uploaded image file.

	
Photo.height

	Required. Original height of the uploaded image file.

important_* attributes describe the rectangular area on the photo, which
shouldn’t be cropped.

	
Photo.important_top

	

	
Photo.important_left

	

	
Photo.important_bottom

	

	
Photo.important_right

	

	
Photo.authors

	Required. A ManyToMany relation with Author model.

	
Photo.source

	

	
Photo.created

	Automatically managed. Keeps information when the photo was uploaded.

	
Photo.app_data

	Optional. A container for arbitrary data on the model, for more info,
see Extending category/publishable metadata.

Methods

	
Photo.__unicode__()

	A human-readable representation of the Photo.

	
Photo.get_absolute_url()

	Full URL to the image file.

	
Photo.get_image_info()

	Returns dictionary with keys url, width and height holding
metainformation about the image.

Example:

>>> p = Photo.objects.get(pk=1)
>>> p.get_image_info()
>>> {'url': 'http://media.example.com/2011/1/23/img.jpg', 'width': 100, 'height': 200}

	
Photo.ratio()

	Returns float holding the ratio between width and height of None
if not applicable.

	
Photo.get_formated_photo(self, format)

	Returns FormatedPhoto instance for given format.

The Format model

	
class ella.photos.models.Format

	

Defines per-site photo sizes together with rules how to adhere to them.

This includes:

	maximum width and height

	cropping settings

	stretch (rescale) settings

	sample quality

Attributes

	
Format.name

	

	
Format.max_width

	Required. Integer with maximum width in pixels of the resulting image.

	
Format.max_height

	Required. Integer with maximum height in pixels of the resulting image.

	
Format.flexible_height

	Required. Boolean if height is “flexible”. If set to True, the allowed
height will be in range max_height - flexible_max_height.

	
Format.flexible_max_height

	See Format.flexible_height above.

	
Format.stretch

	Required. True if stretching can be used to ensure required dimensions.
If set to False, only cropping will be used.

	
Format.nocrop

	Required. True if this format doesn’t do any cropping.

	
Format.resample_quality

	Requried. Sampling quality to use when performing formating operations.
Defaults to 85.

	
Format.sites

	Django Site instances that can use the format.

Methods

	
Format.get_blank_img(self)

	Returns fake FormatedPhoto object to be used in templates when an error
occurs in image generation. The result will be a dictionary with keys
blank, width, height and url which points to storage while
using PHOTOS_EMPTY_IMAGE_SITE_PREFIX setting.

	
Format.ratio(self)

	Returns float holding the ratio between width and height.

The FormatedPhoto model

	
class ella.photos.models.FormatedPhoto

	

Cache-like container of specific photo of specific format. Besides
the path to the generated image file, crop used is also stored together
with new width and height attributes.

Attributes

	
FormatedPhoto.photo

	Related Photo instance that is being formated.

	
FormatedPhoto.format

	Related Format instance that is being used for formating.

	
FormatedPhoto.image

	Source Image instance.

The crop_* attributes keep information how the cropping was done if
peformed.

	
FormatedPhoto.crop_left

	

	
FormatedPhoto.crop_top

	

	
FormatedPhoto.crop_width

	

	
FormatedPhoto.crop_height

	

	
FormatedPhoto.url

	Returns the URL of the resulting photo file.

Methods

	
FormatedPhoto.generate(self, save=True)

	Generates photo file in current format.

If save is True, file is saved too.

	
FormatedPhoto.remove_file(self)

	Deletes the formated file.

	
FormatedPhoto.file(self)

	Returns instance of the formated file.

The Article model

	
class ella.articles.models.Article

	

Article is the most common publishable object. It can be used for
news on internet news pages, blog posts on smaller blogs or even for
news on an organization’s home page.

Attributes

	
Article.upper_title

	Optional. Second title to use for special use cases.

	
Article.created

	Automatically managed. Datetime when the article was created.

	
Article.updated

	Set by user, optional. Datetime when the article was updated. This is
not updated automatically and is in the control of users. Can be used
for information to the readers when the article was last updated.

	
Article.content

	Required. Rich-text field holding content of the article.

Methods

	
Article.article_age(self)

	Returns time since article was created in localized, verbose form.

Examples: “three days ago”, “few minutes ago”

The Position model

	
class ella.positions.models.Position

	

Represents a position – a placeholder – on a page belonging to a certain
category.

Attributes

	
Position.name

	A human-readable name for the position. This name is also used in templates
when using the {% position %} and {% ifposition %} templatetags.

	
Position.category

	A Category object for which the position si defined. This is very
important and used when resolving which Position object to use for
the place defined in template.

	
Position.target_ct

	Optional. Django ContentType instance for the object to show in the
position. Used together with target_id to find out the final
target.

	
Position.target_id

	

	
Position.target

	Optional. Instance of the target object. In case nor target_ct nor
target_id is set, raw HTML is rendered using the text field instead.

	
Position.text

	Optional. When no specific object is bound to the position using the
target attribute, raw HTML in this field is used.

	
Position.box_type

	Optional. Box name to use when rendering taget.

	
Position.active_from

	Optional. Datetime holding information when to start showing this
position. If kept to None, no check is performed.

	
Position.active_till

	Optional. Datetime holding information when to finish showing this
position. If kept to None, no check is performed.

	
Position.disabled

	Optional. Defaults to False. If set to True, position won’t be
shown even though it is active.

Methods

	
Position.__unicode__(self)

	Human-readable representation of the position.

	
Position.render(self, context, nodelist, box_type)

	Returns the rendered position object. When position is bound to an
object, box for the object will be rendered using box_type. If
no object is specified, raw HTML in text attribute use used as template.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Views

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Views

Note

In any template name <tree_path> stands for the value of
Category.path, not it’s actual tree_path. This is because of empty
tree_path for root categories which would make it impossible to
override a template for anything in the root category and the root category
itself.

	
class ella.core.views.ListContentType

	List objects’ listings according to the parameters. If no filtering is
applied (including pagination), the category’s title page is rendered. The
template used depends on template attribute for category being rendered.
Default template is category.html, so it would look like this:

	page/category/<tree_path>/category.html

	page/category.html

If custom template is selected, let’s say static_page.html, it would
result in:

	page/category/<tree_path>/static_page.html

	page/static_page.html

If filtering is active, an archive template gets rendered:

	page/category/<tree_path>/content_type/<app>.<model>/listing.html

	page/category/<tree_path>/listing.html

	page/content_type/<app>.<model>/listing.html

	page/listing.html

The context contains:

	category

	listings: list of Listing objects ordered by date

	page: django.core.paginator.Page instance

	is_paginated: True if there are more pages

	results_per_page: number of objects on one page

	content_type: ContentType of the objects, if filtered on content type

	content_type_name: name of the objects’ type, if filtered on content type

	Parameters:	
	category – tree_path of the Category, root category is used if empty

	month, day (year,) – date matching the publish_from field of the Listing object.

	content_type – slugified verbose_name_plural of the target model, if omitted all content_types are listed

	page_no – which page to display

All parameters are optional, filtering is done on those supplied

	Raises Http404:	if the specified category or content_type does not exist or if the given date is malformed.

	
class ella.core.views.ObjectDetail

	Renders a page for publishable. If url_remainder is specified, tries to
locate custom view via DetailDispatcher.call_view(). If
DetailDispatcher.has_custom_detail() returns True, calls
DetailDispatcher.call_custom_detail(). Otherwise renders a template
with context containing:

	object: Publishable instance representing the URL accessed

	category: Category of the object

	content_type_name: slugified plural verbose name of the publishable’s content type

	content_type: ContentType of the publishable

The template is chosen based on the object in question (the first one that matches is used):

	page/category/<tree_path>/content_type/<app>.<model>/<slug>/object.html

	page/category/<tree_path>/content_type/<app>.<model>/object.html

	page/category/<tree_path>/object.html

	page/content_type/<app>.<model>/object.html

	page/object.html

	Parameters:	
	request – HttpRequest from Django

	category – Category.tree_path (empty if home category)

	month day (year) – date matching the publish_from field of the Publishable object

	slug – slug of the Publishable

	url_remainder – url after the object’s url, used to locate custom views in custom_urls.resolver

	Raises Http404:	if the URL is not valid and/or doesn’t correspond to any valid Publishable

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Templatetags

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Templatetags

Core templatetags

Core templatetags are automatically loaded for your disposal.

	
ella.core.templatetags.core.listing(parser, token)

	Tag that will obtain listing of top objects for a given category and store them in context under given name.

Usage:

{% listing <limit>[from <offset>][of <app.model>[, <app.model>[, ...]]][for <category>] [with children|descendents] [using listing_handler] as <result> %}

	Parameters:

	

	Option
	Description

	limit
	Number of objects to retrieve.

	offset
	Starting with number (1-based), starts from first
if no offset specified.

	app.model, ...
	List of allowed models, all if omitted.

	category
	Category of the listing, all categories if not
specified. Can be either string (tree path),
or variable containing a Category object.

	children
	Include items from direct subcategories.

	descendents
	Include items from all descend subcategories.

	exclude
	Variable including a Publishable to omit.

	using
	Name of Listing Handler ro use

	result
	Store the resulting list in context under given
name.

Examples:

{% listing 10 of articles.article for "home_page" as obj_list %}
{% listing 10 of articles.article for category as obj_list %}
{% listing 10 of articles.article for category with children as obj_list %}
{% listing 10 of articles.article for category with descendents as obj_list %}
{% listing 10 from 10 of articles.article as obj_list %}
{% listing 10 of articles.article, photos.photo as obj_list %}

	
ella.core.templatetags.core.do_box(parser, token)

	Tag Node representing our idea of a reusable box. It can handle multiple
parameters in its body which will then be accessible via {{ box.params
}} in the template being rendered.

Note

The inside of the box will be rendered only when redering the box in
current context and the object template variable will be present
and set to the target of the box.

Author of any Model can specify it’s own box_class which enables
custom handling of some content types (boxes for polls for example need
some extra information to render properly).

Boxes, same as core-views, look for most specific template for a given
object an only fall back to more generic template if the more specific one
doesn’t exist. The list of templates it looks for:

	box/category/<tree_path>/content_type/<app>.<model>/<slug>/<box_name>.html

	box/category/<tree_path>/content_type/<app>.<model>/<box_name>.html

	box/category/<tree_path>/content_type/<app>.<model>/box.html

	box/content_type/<app>.<model>/<slug>/<box_name>.html

	box/content_type/<app>.<model>/<box_name>.html

	box/content_type/<app>.<model>/box.html

	box/<box_name>.html

	box/box.html

Note

Since boxes work for all models (and not just Publishable subclasses),
some template names don’t exist for some model classes, for example
Photo model doesn’t have a link to Category so that cannot be used.

Boxes are always rendered in current context with added variables:

	object - object being represented

	box - instance of ella.core.box.Box

Usage:

{% box <boxtype> for <app.model> with <field> <value> %}
 param_name: value
 param_name_2: {{ some_var }}
{% endbox %}

{% box <boxtype> for <var_name> %}
 ...
{% endbox %}

Parameters:

	Option
	Description

	boxtype
	Name of the box to use

	app.model
	Model class to use

	field
	Field on which to do DB lookup

	value
	Value for DB lookup

	var_name
	Template variable to get the instance from

Examples:

{% box home_listing for articles.article with slug "some-slug" %}{% endbox %}

{% box home_listing for articles.article with pk object_id %}
 template_name : {{object.get_box_template}}
{% endbox %}

{% box home_listing for article %}{% endbox %}

	
ella.core.templatetags.core.do_render(parser, token)

	Renders a rich-text field using defined markup.

Example:

{% render some_var %}

	
ella.core.templatetags.core.ipblur(*args, **kwargs)

	blurs IP address

	
ella.core.templatetags.core.emailblur(*args, **kwargs)

	Obfuscates e-mail addresses - only @ and dot

Custom URLs templatetags

Lot of what you see here has been stolen from Django’s {% url %} tag.

	
ella.core.templatetags.custom_urls_tags.custom_url(parser, token)

	Get URL using Ella custom URL resolver and return it or save it in
context variable.

Syntax:

{% custom_url <FOR_VARIABLE> <VIEWNAME>[[[<ARGS>] <KWARGS>] as <VAR>] %}

Examples:

{% custom_url object send_by_email %}
{% custom_url object send_by_email 1 %}
{% custom_url object send_by_email pk=1 %}
{% custom_url object send_by_email pk=1 as saved_url %}

Pagination

When using any of these, you need to call {% load pagination %}
prior to doing it.

	
ella.core.templatetags.pagination.paginator(context, adjacent_pages=2, template_name=None)

	Renders a inclusion_tags/paginator.html or inc/paginator.html
template with additional pagination context. To be used in conjunction
with the object_list generic
view.

If TEMPLATE_NAME parameter is given,
inclusion_tags/paginator_TEMPLATE_NAME.html or
inc/paginator_TEMPLATE_NAME.html will be used instead.

Adds pagination context variables for use in displaying first, adjacent pages and
last page links in addition to those created by the object_list generic
view.

Taken from http://www.djangosnippets.org/snippets/73/

Syntax:

{% paginator [NUMBER_OF_ADJACENT_PAGES] [TEMPLATE_NAME] %}

Examples:

{% paginator %}
{% paginator 5 %}
{% paginator 5 "special" %}
with Django 1.4 and above you can also do:
{% paginator template_name="special" %}

Related

	
ella.core.templatetags.related.do_related(parser, token)

	Get N related models into a context variable optionally specifying a
named related finder.

Usage:

{% related <limit>[query_type] [app.model, ...] for <object> as <result> %}

	Parameters::

	

	Option
	Description

	limit
	Number of objects to retrieve.

	query_type
	Named finder to resolve the related objects,
falls back to settings.DEFAULT_RELATED_FINDER
when not specified.

	app.model, ...
	List of allowed models, all if omitted.

	object
	Object to get the related for.

	result
	Store the resulting list in context under given
name.

Examples:

{% related 10 for object as related_list %}
{% related 10 directly articles.article, galleries.gallery for object as related_list %}

Photos

	
ella.photos.templatetags.photos.img(parser, token)

	Deprecated, use {% image %} instead. Generates thumbnails for Photo instances.

syntax:

{% img <format> for <var> as <var_name> %}
{% img <format> with <field_value> as <var_name> %}

examples:

{% img category_listing for object.photo as thumb %}
{% img category_listing with pk 1150 as thumb %}

Positions

	
ella.positions.templatetags.positions.position(parser, token)

	Render a given position for category.
If some position is not defined for first category, position from its parent
category is used unless nofallback is specified.

Syntax:

{% position POSITION_NAME for CATEGORY [nofallback] %}{% endposition %}
{% position POSITION_NAME for CATEGORY using BOX_TYPE [nofallback] %}{% endposition %}

Example usage:

{% position top_left for category %}{% endposition %}

	
ella.positions.templatetags.positions.ifposition(parser, token)

	Syntax:

{% ifposition POSITION_NAME ... for CATEGORY [nofallback] %}
{% else %}
{% endifposition %}

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Template overview

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Template overview

This doc part is ment as quick reference for templates that Ella uses. The
details on the template usage are kept in the section related to the each
of the templates presented.

Object detail templates

This table shows the fallback used when selecting the right template for an
object. Note how the most specific template is searched for first. When
no such template is found, Ella tries the find second-most specific and so on.

As a criterion for selection, two things are considered:

	Object’s ContentType, specifically CONTENT_TYPE_NAME which is defined
as app_label.model_label.

	path attribute of the Category which object belongs to.

	Path
	Description

	page/category/[PATH]/content_type/[CONTENT_TYPE_NAME]/object.html
	First template to try (category and content-specific)
when rendering a Publishable detail.

	page/content_type/[CONTENT_TYPE_NAME]/object.html
	Content-type specific template to try
when rendering a Publishable detail.

	page/category/[PATH]/object.html
	Category-specific template to try when
rendering a Publishable detail.

	page/object.html
	Fallback for rendering a Publishable detail
page such as article content, see
Object detail page.

Category detail templates

Following table shows the template path prototypes used when selecting the
suitable template for a category detail. Ella tries to find
a correct template by inspecting the path attribute of the given
Category object.

Note

The category.html can be overriden for specific categories via
administration. This will affect the mentioned fallback so that
instead of category.html Ella will search for [OVERRIDEN_NAME].html
where [OVERRIDEN_NAME] stands for name of the selected template.

For the details, see Category detail page.

	Path
	Description

	page/category/[PATH]/category.html
	Specific template for a category detail
page.

	page/category.html
	Fallback template for rendering
a category detail page, category
listings, static pages.

Box templates

Box templates are distinguised only by CONTENT_TYPE_NAME as described
above. The root for searching is in the box subdirectory of your
templates. Also, boxes are named so that the name of the template
searched is directly related to the name of the box being rendered.

	Path
	Description

	box/content_type/[CONTENT_TYPE_NAME]/[BOX_NAME].html
	Content-type specific template for a box
named [BOX_NAME].

	box/[BOX_NAME].html
	Named template for a box without any specific
content type. These are boxes that are same
for most of publishables.

	box/box.html
	Fallback template for
box templatetag
when no specific template for box is found.

Listing templates

Templates for listings (see Archive pages) follow same rules
as categories with the only difference is that a listing.html is used
as template name.

Other templates

	Path
	Description

	inclusion_tags/paginator.html
	Template for rendering pagination when
listing a category content. Used by
paginator
templatetag.

	404.html
	Used to show user-friendly HTTP 404 page.

	500.html
	Used to show user-friendly HTTP 500 page.

	base.html
	Not required, but convention in Django apps
is that this is the base layout template.

As mentioned in Template fallback mechanisms, when finding
the suitable template, Ella uses smart template fallback for category, object
and box templates so that the ones listed above are only used as last resort.
Please refer there for the details on how Ella decides which template to use.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Middleware

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Middleware

	
class ella.core.middleware.UpdateCacheMiddleware

	Response-phase cache middleware that updates the cache if the response is
cacheable.

Must be used as part of the two-part update/fetch cache middleware.
UpdateCacheMiddleware must be the first piece of middleware in
MIDDLEWARE_CLASSES so that it’ll get called last during the response phase.

	
process_response(request, response)

	Sets the cache, if needed.

	
class ella.core.middleware.FetchFromCacheMiddleware

	Request-phase cache middleware that fetches a page from the cache.

Must be used as part of the two-part update/fetch cache middleware.
FetchFromCacheMiddleware must be the last piece of middleware in
MIDDLEWARE_CLASSES so that it’ll get called last during the request phase.

	
process_request(request)

	Checks whether the page is already cached and returns the cached
version if available.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Related finders

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

 	API reference

Related finders

	
ella.core.related_finders.related_by_category(obj, count, collected_so_far, mods=[], only_from_same_site=True)

	Returns other Publishable objects related to obj by using the same
category principle. Returns up to count objects.

	
ella.core.related_finders.directly_related(obj, count, collected_so_far, mods=[], only_from_same_site=True)

	Returns objects related to obj up to count by searching
Related instances for the obj.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Common gotchas & FAQs

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Ella CMS 3.0.13 documentation

Common gotchas & FAQs

This section tries to present frequent problems Ella users run into. It provides
solutions for those problems. Hopefully, it will enhance you understanding for
doing the things Ella-way.

Creating site navigation

A common situation. Site needs a global menu which consists of links to categories
and/or static pages. The question is: how do we do such a thing in Ella? The
answer is suprisingly simple. Use positions mate! Using positions, it’s
very simple to implement a site menu that can be edited via admin interface and
fast as lightning thanks to caching mechanisms. Have a look at following template:

<!-- in position called "sitemenu" -->
{% load my_tags cache %}

{% cache CACHE_TIMEOUT "mainmenu" request.META.PATH_INFO %}
<div id="menu">

 <li class='home'>Homepage

 {% render_menu_part "news" %}
 {% render_menu_part "economics" %}
 {% render_menu_part "regional" %}

</div>
{% endcache %}

This snippet can be in position’s text field (so it will be considered a
raw html) and renders two-level site menu with highlighting what is currently
active. It does so by using category in context and the responsible
code for this is custom {% render_menu_part %} inclusion tag. New items
can be added very easily. Each link is bound to a Category object using
it’s slug.

@register.inclusion_tag('inc/menu_part.html', takes_context=True)
def render_menu_part(context, slug):
 category = context.get('category', None)
 root = Category.objects.get_by_tree_path(slug)

 return {
 'slug': slug,
 'root': root,
 'current_root': category.get_root_category() if category is not None else None,
 'current': category,
 'sub': root.get_children()
 }

Next, create the template for the menu part itself:

{% load my_tags %}
<li{% ifequal current.get_root_category root %} class="active"{% endifequal %}>
 {{ root.title }}

 {% if sub %}
 <ul{% ifnotequal current_root root %} class="hidden"{% endifnotequal %}>
 {% for cat in sub %}
 <li{% ifequal current cat %} class="active"{% endifequal %}>
 {{ cat.title }}

 {% endfor %}

 {% endif %}

The last step is to add position to the base template so that it will be shown
on each page:

<!-- in page/base.html -->
{% load positions %}
...
{% block sitemenu %}
 {% ifposition sitemenu %}
 {% position sitemenu %}{% endposition %}
 {% endifposition %}
{% endblock %}
...

Category-specific sidebars

Sidebars to show information related to the currently active category. This
can be a category-related poll, most interesting articles by editors choice
or something completely different.

Answer for this question is the same as in previous question. Use positions!
If you are not sure how to do it, please refer to Defining positions on the page.

Taking advantage of template inheritance

One of the best things about Django is undoubtedly it’s templating framework.
And one of it’s most powerful features is the template inheritance [https://docs.djangoproject.com/en/dev/topics/templates/#template-inheritance]. When
building up Django templates, you use so-called blocks which can then
be overriden in the child template which inherits from the parent template.
When using Ella, it’s very beneficial to take the full advantage of the
inheritance concept since the number of templates in large Ella websites
can grow up significantly. Using the inheritance, you can very effectively
write as little code as possible. Here are some hints you may found useful:

	Always write the base template for object and category detail pages. Try
to put there as much shared code as possible.

	In you base template, don’t hesitate to define many blocks so the child
templates won’t need to override big pieces of code.

	It often make sense to put almost all parts of the base template into blocks.
This applies for titles, descriptions, perexes, comment sections, object tools
and so on. The more you allow to override, the smaller the child template will
be.

	When dealing with content used in more than one template type or
when it’s hard to keep the inheritance scheme for some reason, use
{% include %} and put those pieces of content in reusable snippets in
your inclusion_tags template subdirectory. A common use case scenario
for this can be a right sidebar. Consider following example of reusable
right col template. First, define the base rightcol.html template:

<!-- in page/inclusion_tags/rightcol.html -->
{% block rightcol_top %}{% endblock %}

{% block rightcol_top_articles %}
 ... code showing top articles ..
{% endblock %}

{% block rightcol_category_poll %}
 ... code showing poll related to the category ...
{% endblock %}

{% block rightcol_bottom %}{% endblock %}

This template contains the the stuff a sidebar can contain with possibility
to add your own stuff to the top and to the bottom of it. Next define
child templates of the rightcol.html for homepage and common category:

<!-- in page/inclusion_tags/rightcol_hp.html -->
{% extends "page/inclusion_tags/rightcol.html" %}

{% block rightcol_top %}
 ... some special code to add on top of the right col ...
{% endblock %}

<!-- in page/inclusion_tags/rightcol_category.html -->
{% extends "page/inclusion_tags/rightcol.html" %}

{% block rightcol_top_articles %}{% endblock %}

For the purpose of this example, we added a special piece of code at the top
of the sidebar in homepage and turned off the displaying of top articles
in common categories. In real-world situation, your intents will be probably
little different, but for the need of demonstration, this is sufficent.
Finally, put following piece of code in your base category.html:

<!-- in page/category.html -->
{% block rightcol %}
 <div id="sidebar">
 {% block rightcol_content %}
 {% if is_homepage %}
 {% include "inc/rightcol_hp.html" %}
 {% else %}
 {% include "inc/rightcol_category.html" %}
 {% endif %}
 {% endblock %}
 </div>
{% endblock %}

In the main category template, we can easily implement a default behavior
without need to duplicate a single line of code.

	Every time you find yourself duplicating a HTML code, try to think if some
kind of inheritance wouldn’t help you avoid doing so. In most cases, this
would be true.

Static pages that don’t ever change

Content-heavy websites usually don’t build it’s success on lot of static pages.
However, there are always some a Ella is ready to provide effective weapons
to get rid of them.

The key here is to use Category and define a custom template, e.g.
staticpage.html to use when you need to use the category as static page.
The reasoning for this is that categories already have nice, SEO-friendly URLs
and it would simply be unnecessary overhead to create a special solution for
this. You can put you content to Category.content field which was added
for that purpose. Then simply use something like this:

<!-- in page/staticpage.html -->
{% extends "page/base.html" %}

{% block content %}
 <h1>{{ category }}</h1>
 {% render category.content %}
{% endblock %}

Integrating searching

TODO: create ella-haystack and be done with it.

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 List of configuration settings

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Ella CMS 3.0.13 documentation

List of configuration settings

Core settings

	CACHE_TIMEOUT

	Timeout used for cache persistence for most of cached function Ella uses.

Default: 600

	CACHE_TIMEOUT_LONG

	Chache persistence timeout for rarely-changing results.

Default: 3600

	CATEGORY_LISTINGS_PAGINATE_BY

	Number of objects per page when browsing the category listing.

Default: 20

	RSS_NUM_IN_FEED

	Number of items in automated category RSS/Atom feeds.

Default: 10

	RSS_ENCLOSURE_PHOTO_FORMAT

	Photo format to use when providing photo link in RSS/Atom feed <enclosure>
element.

Default: None

	DOUBLE_RENDER

	Boolean that switches the Double render function, for more details on Double
rendering, see Double rendering.

Default: False

	DOUBLE_RENDER_EXCLUDE_URLS

	URLs to be excluded from double rendering. For details, see
Double rendering.

Default: None

	RELATED_FINDERS

	List of named related finders. For instructions how to use it, see
Working with related objects.

Default:

RELATED_FINDERS = {
 'default': (
 'ella.core.related_finders.directly_related',
 'ella.core.related_finders.related_by_category',
),
 'directly': (
 'ella.core.related_finders.directly_related',
)
}

Photos settings

	PHOTOS_FORMAT_QUALITY_DEFAULT

	Sampling quality choices to use in administration when defining
photo formats.

Default:

PHOTOS_FORMAT_QUALITY = (
 (45, _('Low')),
 (65, _('Medium')),
 (75, _('Good')),
 (85, _('Better')),
 (95, _('High')),
)

	PHOTOS_CUSTOM_SUBDIR

	Custom subdirectory in photos directory where to place the photos.

Default: ''

	PHOTOS_UPLOAD_TO

	Completely override where the photos are uploaded to. Symbols %Y,
%m and %d are replaced by integer value of year, month and day
respectively.

Default: 'photos/%Y/%m/%d'

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Ella CMS 3.0.13 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 ella	

 	
 	
 ella.articles.models	

 	
 	
 ella.core.middleware	

 	
 	
 ella.core.models	

 	
 	
 ella.core.related_finders	

 	
 	
 ella.core.templatetags.core	

 	
 	
 ella.core.templatetags.custom_urls_tags	

 	
 	
 ella.core.templatetags.pagination	

 	
 	
 ella.core.templatetags.related	

 	
 	
 ella.core.views	

 	
 	
 ella.photos.models	

 	
 	
 ella.photos.templatetags.photos	

 	
 	
 ella.positions.models	

 	
 	
 ella.positions.templatetags.positions	

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	
 modules |

 	Ella CMS 3.0.13 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	

 	__unicode__() (ella.photos.models.Photo method)

 	

 	(ella.positions.models.Position method)

A

 	

 	active_from (ella.positions.models.Position attribute)

 	active_till (ella.positions.models.Position attribute)

 	app_data (ella.core.models.Category attribute)

 	

 	(ella.core.models.Publishable attribute)

 	(ella.photos.models.Photo attribute)

 	Article (class in ella.articles.models)

 	

 	article_age() (ella.articles.models.Article method)

 	Author (class in ella.core.models)

 	authors (ella.core.models.Publishable attribute)

 	

 	(ella.photos.models.Photo attribute)

B

 	

 	box_type (ella.positions.models.Position attribute)

C

 	

 	Category (class in ella.core.models)

 	category (ella.core.models.Listing attribute)

 	

 	(ella.core.models.Publishable attribute)

 	(ella.positions.models.Position attribute)

 	commercial (ella.core.models.Listing attribute)

 	content (ella.articles.models.Article attribute)

 	

 	(ella.core.models.Category attribute)

 	content_type (ella.core.models.Publishable attribute)

 	created (ella.articles.models.Article attribute)

 	

 	(ella.photos.models.Photo attribute)

 	

 	crop_height (ella.photos.models.FormatedPhoto attribute)

 	crop_left (ella.photos.models.FormatedPhoto attribute)

 	crop_top (ella.photos.models.FormatedPhoto attribute)

 	crop_width (ella.photos.models.FormatedPhoto attribute)

 	custom_url() (in module ella.core.templatetags.custom_urls_tags)

D

 	

 	Dependency (class in ella.core.models)

 	dependent (ella.core.models.Dependency attribute)

 	dependent_ct (ella.core.models.Dependency attribute)

 	dependent_id (ella.core.models.Dependency attribute)

 	description (ella.core.models.Author attribute)

 	

 	(ella.core.models.Category attribute)

 	(ella.core.models.Publishable attribute)

 	(ella.core.models.Source attribute)

 	(ella.photos.models.Photo attribute)

 	directly_related() (in module ella.core.related_finders)

 	

 	disabled (ella.positions.models.Position attribute)

 	do_box() (in module ella.core.templatetags.core)

 	do_related() (in module ella.core.templatetags.related)

 	do_render() (in module ella.core.templatetags.core)

 	draw_title() (ella.core.models.Category method)

E

 	

 	ella.articles.models (module)

 	ella.core.middleware (module)

 	ella.core.models (module)

 	ella.core.related_finders (module)

 	ella.core.templatetags.core (module)

 	ella.core.templatetags.custom_urls_tags (module)

 	ella.core.templatetags.pagination (module)

 	ella.core.templatetags.related (module)

 	

 	ella.core.views (module)

 	ella.photos.models (module)

 	ella.photos.templatetags.photos (module)

 	ella.positions.models (module)

 	ella.positions.templatetags.positions (module)

 	email (ella.core.models.Author attribute)

 	emailblur() (in module ella.core.templatetags.core)

F

 	

 	FetchFromCacheMiddleware (class in ella.core.middleware)

 	file() (ella.photos.models.FormatedPhoto method)

 	flexible_height (ella.photos.models.Format attribute)

 	flexible_max_height (ella.photos.models.Format attribute)

 	

 	Format (class in ella.photos.models)

 	format (ella.photos.models.FormatedPhoto attribute)

 	FormatedPhoto (class in ella.photos.models)

G

 	

 	generate() (ella.photos.models.FormatedPhoto method)

 	get_absolute_url() (ella.core.models.Category method)

 	

 	(ella.core.models.Listing method)

 	(ella.core.models.Publishable method)

 	(ella.photos.models.Photo method)

 	get_blank_img() (ella.photos.models.Format method)

 	get_domain_url() (ella.core.models.Listing method)

 	

 	(ella.core.models.Publishable method)

 	

 	get_domain_url_admin_tag() (ella.core.models.Publishable method)

 	get_formated_photo() (ella.photos.models.Photo method)

 	get_image_info() (ella.photos.models.Photo method)

 	get_tree_parent() (ella.core.models.Category method)

H

 	

 	height (ella.photos.models.Photo attribute)

I

 	

 	ifposition() (in module ella.positions.templatetags.positions)

 	image (ella.photos.models.FormatedPhoto attribute)

 	

 	(ella.photos.models.Photo attribute)

 	img() (in module ella.photos.templatetags.photos)

 	important_bottom (ella.photos.models.Photo attribute)

 	important_left (ella.photos.models.Photo attribute)

 	

 	important_right (ella.photos.models.Photo attribute)

 	important_top (ella.photos.models.Photo attribute)

 	ipblur() (in module ella.core.templatetags.core)

 	is_published() (ella.core.models.Publishable method)

L

 	

 	ListContentType (class in ella.core.views)

 	Listing (class in ella.core.models)

 	

 	listing() (in module ella.core.templatetags.core)

M

 	

 	main_parent (ella.core.models.Category attribute)

 	max_height (ella.photos.models.Format attribute)

 	

 	max_width (ella.photos.models.Format attribute)

N

 	

 	name (ella.core.models.Author attribute)

 	

 	(ella.core.models.Source attribute)

 	(ella.photos.models.Format attribute)

 	(ella.positions.models.Position attribute)

 	

 	nocrop (ella.photos.models.Format attribute)

O

 	

 	ObjectDetail (class in ella.core.views)

P

 	

 	paginator() (in module ella.core.templatetags.pagination)

 	path (ella.core.models.Category attribute)

 	Photo (class in ella.photos.models)

 	photo (ella.core.models.Publishable attribute)

 	

 	(ella.photos.models.FormatedPhoto attribute)

 	Position (class in ella.positions.models)

 	position() (in module ella.positions.templatetags.positions)

 	process_request() (ella.core.middleware.FetchFromCacheMiddleware method)

 	

 	process_response() (ella.core.middleware.UpdateCacheMiddleware method)

 	publish_from (ella.core.models.Listing attribute)

 	

 	(ella.core.models.Publishable attribute)

 	publish_to (ella.core.models.Listing attribute)

 	

 	(ella.core.models.Publishable attribute)

 	Publishable (class in ella.core.models)

 	publishable (ella.core.models.Listing attribute)

 	

 	(ella.core.models.Related attribute)

 	published (ella.core.models.Publishable attribute)

R

 	

 	ratio() (ella.photos.models.Format method)

 	

 	(ella.photos.models.Photo method)

 	Related (class in ella.core.models)

 	related (ella.core.models.Related attribute)

 	related_by_category() (in module ella.core.related_finders)

 	related_ct (ella.core.models.Related attribute)

 	

 	related_id (ella.core.models.Related attribute)

 	remove_file() (ella.photos.models.FormatedPhoto method)

 	render() (ella.positions.models.Position method)

 	resample_quality (ella.photos.models.Format attribute)

S

 	

 	site (ella.core.models.Category attribute)

 	sites (ella.photos.models.Format attribute)

 	slug (ella.core.models.Author attribute)

 	

 	(ella.core.models.Category attribute)

 	(ella.core.models.Publishable attribute)

 	(ella.photos.models.Photo attribute)

 	Source (class in ella.core.models)

 	

 	source (ella.core.models.Publishable attribute)

 	

 	(ella.photos.models.Photo attribute)

 	static (ella.core.models.Publishable attribute)

 	stretch (ella.photos.models.Format attribute)

T

 	

 	target (ella.core.models.Dependency attribute)

 	

 	(ella.core.models.Publishable attribute)

 	(ella.positions.models.Position attribute)

 	target_ct (ella.core.models.Dependency attribute)

 	

 	(ella.positions.models.Position attribute)

 	target_id (ella.core.models.Dependency attribute)

 	

 	(ella.positions.models.Position attribute)

 	template (ella.core.models.Category attribute)

 	

 	text (ella.core.models.Author attribute)

 	

 	(ella.positions.models.Position attribute)

 	title (ella.core.models.Category attribute)

 	

 	(ella.core.models.Publishable attribute)

 	(ella.photos.models.Photo attribute)

 	tree_parent (ella.core.models.Category attribute)

 	tree_path (ella.core.models.Category attribute)

U

 	

 	UpdateCacheMiddleware (class in ella.core.middleware)

 	updated (ella.articles.models.Article attribute)

 	upper_title (ella.articles.models.Article attribute)

 	

 	url (ella.core.models.Source attribute)

 	

 	(ella.photos.models.FormatedPhoto attribute)

 	user (ella.core.models.Author attribute)

W

 	

 	width (ella.photos.models.Photo attribute)

 Copyright 2012, Ella team.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_images/cms_models.png
ella,positions

{arget_ct (oston)

Gategory (publshabe)

Ty

Gontent type (publshable)

ella.articles

publshabe_pt (arice)

ploto (publshabls)

search.html

 Navigation

 		
 index

