

    
      
          
            
  
elex 2.4.3

[image: Build status]
 [https://travis-ci.org/newsdev/elex][image: PyPI downloads]
 [https://pypi.python.org/pypi/elex][image: Version]
 [https://pypi.python.org/pypi/elex][image: License]
 [https://github.com/newsdev/elex/blob/master/LICENSE][image: Support Python versions]
 [https://pypi.python.org/pypi/elex]Get database-ready election results from the Associated Press Election API v2.0.

Elex is designed to be fast, friendly, and largely agnostic to stack/language/database choice. Basic usage is
as simple as:

elex results 2016-03-01 > results.csv






Important links


	Documentation: http://elex.readthedocs.org/


	Repository: https://github.com/newsdev/elex/


	Issues: https://github.com/newsdev/elex/issues


	Roadmap: https://github.com/newsdev/elex/milestones







Disclaimer

Elex was developed by The New York Times and NPR and not in concert with the Associated Press. Though we plan on using Elex for the 2016 cycle, there is no guarantee that this software will work for you. If you’re thinking about using Elex, check out the license [https://github.com/newsdev/elex/blob/master/LICENSE] and contact the authors.


Elex projects and implementations

NPR


	NPR loader [https://github.com/nprapps/ap-election-loader]: A simple reference data loader for PostgreSQL.




New York Times


	New York Times Elex loader [https://github.com/newsdev/elex-loader]: A more sophisticated data loader for PostgreSQL.


	New York Times AP Deja Vu [https://github.com/newsdev/ap-deja-vu]: A webservice to replay JSON captured during an election.


	New York Times Elex admin [https://github.com/newsdev/elex-admin]: An admin interface for Elex data loaded with the New York Times loader written in Flask.




Experimental


	node-elex-admin [https://github.com/eads/node-elex-admin]: Incomplete node-based admin interface.


	elex-webVideoTextCrawler [https://github.com/OpenNewsLabs/elex-webVideoTextCrawler]:  Convert Elex data into HTML5 text track for live video streaming.







News


	Introducing Elex, A Tool To Make Election Coverage Better For Everyone [https://source.opennews.org/en-US/articles/introducing-elex-tool-make-election-coverage-bette/], Jeremy Bowers and David Eads, Source


	NPR and The New York Times teamed up to make election reporting faster [https://www.poynter.org/news/npr-and-new-york-times-teamed-make-election-reporting-faster], Benjamin Mullin, Poynter







Using the FTP system?

Use the Los Angeles Times’ python-elections [https://github.com/datadesk/python-elections] library.

The New York Times has a sample implementation [https://github.com/newsdev/elex-ftp-loader] that demonstrates how you might integrate the FTP loader with your Elex-based system.




Features


	Uses v2.1 of the Associated Press Election API NOTE: Requires a (paid) account with the AP.


	Intuitive command line interface: Get data as CSV or JSON and pipe to the data tool of your choice.


	Friendly Python API for use as a library.


	Simple election recording (to MongoDB).


	Comprehensive tests.


	Extensive documentation.


	Fast and correct.







Table of contents



	Installation
	Quick install
	Optional requirements





	Install walkthrough with virtualenv
	Set up some base tools

	Install Elex

	Some extra tricks
	Automatically set your API key

	Make human-readable JSON













	Tutorial
	Command Line Interface

	Python Modules





	Command line interface
	Commands and flags

	Command reference





	Output and errors
	Output handling

	Exit codes

	Common errors
	APAPIKeyError

	ConnectionError

	HTTP Error 401 - Forbidden

	HTTP Error 403 - Over Quota Limit

	HTTP Error 404 - Not found









	Configuration
	API_VERSION

	BASE_URL

	AP_API_KEY

	ELEX_CACHE_DIRECTORY

	ELEX_RECORDING, ELEX_RECORDING_DIR





	Recording results
	Flat files

	MongoDB





	Caching
	Exit codes

	Clearing the cache

	Configuring the cache





	Recipes
	Get results at a specific level

	Add timestamp or batch name column to any data command

	Get local election results

	Get AP zero count data

	Auto-generate SQL schemas with csvkit

	Insert results with csvkit + sqlite

	Filter with jq and upload to S3

	Inspect with an ORM using Flask and Peewee





	Python library reference
	Data models / API wrapper (elex.api)
	elex.api

	elex.api.utils

	elex.api.maps





	Command line interface (elex.cli)
	elex.cli.app

	elex.cli.decorators

	elex.cli.ext_csv

	elex.cli.ext_json

	elex.cli.hooks

	elex.cli.utils





	Exceptions (elex.exceptions)

	Official Associated Press API





	Contributing
	Find a task

	Install Elex development environment

	Running tests

	Writing docs

	Submitting code

	Testing performance

	Testing API request limit

	Authors





	Changelog
	2.4.0 - October 23, 2016

	2.3.0 - October 5, 2016

	2.2.0 - September 24, 2016

	2.1.1 - September 12, 2016

	2.1.0 - August 31, 2016

	2.0.10 - 2.0.11 - August 25, 2016

	2.0.9 - August 16, 2016

	2.0.8 - July 25, 2016

	2.0.5 - 2.0.6 - June 6, 2016

	2.0.1 - 2.0.4 - April 26, 2016

	2.0.0 - April 14, 2016

	1.2.0 - Feb. 25, 2016

	1.1.0 - Feb. 2, 2016

	1.0.0 - Jan. 25, 2016

	0.2.0 -  Dec. 24, 2015

	0.1.2 - Dec. 21, 2015

	0.1.1 - Dec. 10, 2015

	0.1.0 - Dec. 10, 2015

	0.0.0 - 0.0.42

















          

      

      

    

  

    
      
          
            
  
Installation


Quick install

Install the Python library:

pip install elex





Set your AP API key:

export AP_API_KEY=<MY_AP_API_KEY>





On Windows machines, use setx instead

setx AP_API_KEY=<MY_AP_API_KEY>






Note

Setx sets a permanent user level environment variable. To set a machine level variable use \m option




Optional requirements


	MongoDB (for recording raw results during tests and elections)









Install walkthrough with virtualenv

If you’ve set up and run Python projects before, you may have your own process, and the Quick Install instructions can get you going. But if you’re fairly new to Python development, or if you’re not familiar with the benefits of using a virtual environment, these tips are for you.


Set up some base tools

The NPR Visuals Team’s guide to setting up a development environment [http://blog.apps.npr.org/2013/06/06/how-to-setup-a-developers-environment.html] is wonderful. Walking through the entire guide is highly recommended; your machine will be much happier for it, and you’ll feel prepared for a lot of things beyond just Elex.

For now, though, the most important piece is “Chapter 2: Install Virtualenv.” At the very least, step through that section and install virtualenv and virtualenvwrapper, two tools that help you use virtual environments for your Python projects.


Note

Virtual environments let you compartmentalize projects and the Python tools you install to work on them. You can create as many virtual environments as you like. When you “activate” one of them, you can feel comfortable installing new libraries, because if things break, no problem. Delete that environment and start again; your global settings haven’t been touched. When you have things working just right, you can “freeze” the environment to create a list of installed packages so someone else can replicate it. Learning to love virtual environments makes you more efficient _and_ less stressed.



Once you’ve installed virtualenv and virtualenvwrapper, then added the appropriate trigger to your .bash_profile as described in the NPR Visuals guide, you’re ready to set up a pristine Elex environment.




Install Elex

The virtualenvwrapper tool gives you access to several commands for creating and managing virtual environments. To create a fresh environment for Elex, run this from your command line:

mkvirtualenv elex





Your new environment won’t know about or have access to any Python tools you’ve installed elsewhere, which is exactly what you want. The mkvirtualenv command will automatically activate your new environment for you, and your command prompt should reflect it. You should see something like:

(elex) username@host: ~/your/path $





For reference, to turn off an active environment, run the deactivate command:

deactivate





And to enable an environment, run workon followed by the environment’s name:

workon elex





With your new “elex” environment activated, installing the Elex library itself is easy:

pip install elex





That will download Elex and add it to your virtual environment, along with all the libraries it depends on. Just for fun, you can print to screen everything that was installed:

pip freeze





Now the Elex code will be available to you any time you activate your “elex” environment. You’ll still need a project API key to actually run commands, so with “elex” active, add the key you should have received from AP:

export AP_API_KEY=your_api_key_string





And with that in place, Elex should work as expected. You can test with any of the tutorial commands [http://elex.readthedocs.org/en/1.0.0/tutorial.html], like:

elex races 11-03-2015 -o json








Some extra tricks


Automatically set your API key

If you’ve followed the instructions above, you should already have your AP_API_KEY set. When you export a variable, however, it’s only available until your session ends. It’s tedious to set something like that manually every time you start a new project session, though. Thankfully virtualenvwrapper provides an easy way to automatically load variables each time you activate an environment.

Open a new tab in your terminal, and:

workon elex
cdvirtualenv
open bin/postactivate





This will activate your “elex” environment, navigate to its internal directory on your machine, then use your text editor to open a file called postactivate. Any code you put in this file will be run immediately after you activate that environment. So just add:

export AP_API_KEY=your_api_key_string
echo "AP_API_KEY set"





Then save and close. From now on, every time you activate a new session of your “elex” environment, your API key will automatically be available (and you’ll get a little “AP_API_KEY set” reminder printed to screen).




Make human-readable JSON

You might notice that generating JSON with an Elex command like elex races 11-03-2015 -o json will put all the results on one line. This is great for keeping file sizes smaller, and it’s perfectly readable by other machines. But if you’re trying to see what properties are available in the JSON generated by different Elex commands, it’s not particularly human-friendly. Fortunately, Elex provides a shortcut to display human-formatted json, the --format-json flag.

elex races 11-03-2015 -o json --format-json





Or to save to a flat file you can inspect later:

elex races 11-03-2015 -o json --format-json > races.json















          

      

      

    

  

    
      
          
            
  
Tutorial


Command Line Interface

This tool is primarily designed for use on the command line using
standard *NIX operations like pipes and output redirection.

To write a stream of races in CSV format to your terminal, run:

elex races '11-03-2015'





To write this data to a file:

elex races '11-03-2015' > races.csv





To pipe it into PostgreSQL:

elex races 11-03-2015 | psql elections -c "COPY races FROM stdin DELIMITER ',' CSV HEADER;"```





To get JSON output:

elex races 11-03-2015 -o json





Output can be piped to tools like sed, awk, jq, or csvkit for further processing.




Python Modules

Perhaps you’d like to use Python objects in your application. This is how you would call the Elex modules directly without using the command line tool.

from elex import api

# Setup and call the AP API.
e = api.Election(electiondate='2015-11-03', datafile=None, testresults=False, liveresults=True, is_test=False)
raw_races = e.get_raw_races()
race_objs = e.get_race_objects(raw_races)

# Get lists of Python objects for each of the core models.
ballot_measures = e.ballot_measures
candidate_reporting_units = e.candidate_reporting_units
candidates = e.candidates
races = e.races
reporting_units = e.reporting_units
results = e.results











          

      

      

    

  

    
      
          
            
  
Command line interface


Commands and flags

commands:

  ballot-measures
    Get ballot measures

  candidate-reporting-units
    Get candidate reporting units (without results)

  candidates
    Get candidates

  clear-cache
    Clear the elex response cache

  delegates
    Get all delegate reports

  elections
    Get list of available elections

  governor-trends
    Get governor trend report

  house-trends
    Get US House trend report

  next-election
    Get the next election (if date is specified, will be relative to that date, otherwise will use today's date)

  races
    Get races

  reporting-units
    Get reporting units

  results
    Get results

  senate-trends
    Get US Senate trend report

positional arguments:
  date                  Election date (e.g. "2015-11-03"; most common date
                        formats accepted).

optional arguments:
  -h, --help            show this help message and exit
  --debug               toggle debug output
  --quiet               suppress all output
  -o {json,csv}         output format (default: csv)
  -t, --test            Use testing API calls
  -n, --not-live        Do not use live data API calls
  -d DATA_FILE, --data-file DATA_FILE
                        Specify data file instead of making HTTP request when
                        using election commands like `elex results` and `elex
                        races`.
  --delegate-sum-file DELEGATE_SUM_FILE
                        Specify delegate sum report file instead of making
                        HTTP request when using `elex delegates`
  --delegate-super-file DELEGATE_SUPER_FILE
                        Specify delegate super report file instead of making
                        HTTP request when using `elex delegates`
  --trend-file TREND_FILE
                        Specify trend file instead of making HTTP request when
                        when using `elex [gov/house/senate]-trends`
  --format-json         Pretty print JSON when using `-o json`.
  -v, --version         show program's version number and exit
  --results-level RESULTS_LEVEL
                        Specify reporting level for results.
  --officeids OFFICEIDS Specify officeids to parse.
  --raceids RACEIDS     Specify raceids to parse.
  --set-zero-counts     Override results with zeros; omits the winner
                        indicator.Sets the vote, delegate, and reporting
                        precinct counts to zero.
  --national-only       Limit results to national-level results only.
  --local-only          Limit results to local-level results only.
  --with-timestamp      Append a `timestamp` column to each row of data output
                        with current system timestamp.
  --batch-name BATCH_NAME
                        Specify a value for a `batchname` column to append to
                        each row.








Command reference


	
class elex.cli.app.ElexBaseController(*args, **kw)

	
	
races()

	elex races <electiondate>

Returns race data for a given election date.

Command:

elex races 2016-03-26





Example output:
























	id

	raceid

	racetype

	racetypeid

	description

	electiondate

	initialization_data

	is_ballot_measure

	lastupdated

	national

	officeid

	officename

	party

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested



	2919

	2919

	Caucus

	E

	
	2016-03-26

	True

	False

	2016-03-27T03:03:54Z

	True

	P

	President

	Dem

	
	
	
	AK

	False

	False



	12975

	12975

	Caucus

	E

	
	2016-03-26

	True

	False

	2016-03-29T17:17:41Z

	True

	P

	President

	Dem

	
	
	
	HI

	False

	False



	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	










	
reporting_units()

	elex reporting-units <electiondate>

Returns reporting unit data for a given election date.

Reporting units represent geographic aggregation of voting data at the
national, state, county, and district level.

Command:

elex reporting-units 2016-03-26










	
candidate_reporting_units()

	elex candidate-reporting-units <electiondate>

Returns candidate reporting unit data for a given election date.

A candidate reporting unit is a container for the results of a voting
in a specific reporting unit. This command is a close cousin of
elex results <electiondate>.

This command does not return results.

Command:

elex candidate-reporting-units 2016-03-26





Notes:

This command can be used to quickly create schemas.

pip install csvkit
elex candidate-reporting-units 03-26-16 | csvsql -i mysql





Will output:

CREATE TABLE stdin (
    id VARCHAR(23) NOT NULL,
    raceid INTEGER NOT NULL,
    racetype VARCHAR(6) NOT NULL,
    racetypeid VARCHAR(1) NOT NULL,
    ...
);










	
candidates()

	elex candidates <electiondate>

Returns candidate data for a given election date.

Command:

elex candidates 2016-03-26





Example output:













	id

	candidateid

	ballotorder

	first

	last

	party

	polid

	polnum



	polid-1445

	6527

	2

	Bernie

	Sanders

	Dem

	1445

	4262



	polid-1746

	6526

	1

	Hillary

	Clinton

	Dem

	1746

	4261



	…

	
	
	
	
	
	
	










	
ballot_measures()

	elex ballot-measures <electiondate>

Returns ballot measure data for a given election date.

Command:

elex ballot-measures 2016-03-15





Example output:














	id

	candidateid

	ballotorder

	description

	electiondate

	last

	polid

	polnum

	seatname



	2016-03-15-43697

	43697

	1

	
	2016-03-15

	For

	
	37229

	Public Improvement Bonds



	2016-03-15-43698

	43698

	2

	
	2016-03-15

	Against

	
	37230

	Public Improvement Bonds



	…

	
	
	
	
	
	
	
	










	
results()

	elex results <electiondate>

Returns result data.

Each row in the output represents a fully flattened and
denormalized version of a result for specific candidate in
a specific race.

Command:

elex results 2016-03-01





Example output:












































	id

	unique_id

	raceid

	racetype

	racetypeid

	ballotorder

	candidateid

	description

	delegatecount

	electiondate

	fipscode

	first

	incumbent

	initialization_data

	is_ballot_measure

	last

	lastupdated

	level

	national

	officeid

	officename

	party

	polid

	polnum

	precinctsreporting

	precinctsreportingpct

	precinctstotal

	reportingunitid

	reportingunitname

	runoff

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested

	votecount

	votepct

	winner



	3021-polid-61815-state-1

	3021

	Caucus

	S

	2

	6528

	
	0

	2016-03-01

	
	Ted

	False

	False

	False

	Cruz

	2016-03-02T17:05:46Z

	state

	True

	P

	President

	GOP

	61815

	4263

	72

	1.0

	72

	state-1

	
	False

	
	
	Alaska

	AK

	False

	False

	7973

	0.363566

	True

	


	3021-polid-8639-state-1

	3021

	Caucus

	S

	5

	6548

	
	0

	2016-03-01

	
	Donald

	False

	False

	False

	Trump

	2016-03-02T17:05:46Z

	state

	True

	P

	President

	GOP

	8639

	4273

	72

	1.0

	72

	state-1

	
	False

	
	
	Alaska

	AK

	False

	False

	7346

	0.334975

	False

	


	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	










	
elections()

	elex elections

Returns all elections known to the API.

Command:

elex elections





Example output:









	2016-02-09

	2016-02-09

	True

	False



	2016-02-16

	2016-02-16

	True

	False



	…

	
	
	










	
delegates()

	elex delegates

Returns delegate report data.

Command:

elex delegates





Example output:


















	level

	party_total

	superdelegates_count

	last

	state

	candidateid

	party_need

	party

	delegates_count

	id

	d1

	d7

	d30



	state

	2472

	0

	Bush

	MN

	1239

	1237

	GOP

	0

	MN-1239

	0

	0

	0



	state

	2472

	0

	Bush

	OR

	1239

	1237

	GOP

	0

	OR-1239

	0

	0

	0











	
governor_trends()

	elex governor-trends

Governor balance of power/trend report.

Command:

elex governor-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	Governor

	7

	7

	12

	19

	20

	0

	-1

	0











	
house_trends()

	elex house-trends

House balance of power/trend report.

Command:

elex house-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	U.S. House

	201

	201

	0

	201

	193

	0

	+8

	0











	
senate_trends()

	elex senate-trends

Senate balance of power/trend report.

Command:

elex senate-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	U.S. Senate

	23

	23

	30

	53

	51

	0

	+2

	0











	
next_election()

	elex next-election <date-after>

Returns data about the next election with an optional date
to start searching.

Command:

elex next-election





Example output:









	id

	electiondate

	liveresults

	testresults



	2016-04-19

	2016-04-19

	False

	True






You can also specify the date to find the next election after, e.g.:

elex next-election 2016-04-15





This will find the first election after April 15, 2016.






	
clear_cache()

	elex clear-cache

Returns data about the next election with an optional date
to start searching.

Command:

elex clear-cache





If no cache entries exist, elex will close with exit code 65.















          

      

      

    

  

    
      
          
            
  
Output and errors


Output handling

In the command line interface, all data is written to stdout. All messages are
written to stderr.

# Direct data to a file and print messages to console
elex results 2016-02-01 > data.csv

# Direct messages to a file and print data to console
elex results 2016-02-01 2> messages.csv

# Direct messages and data to individual files
elex results 2016-02-01 > data.csv 2> elex-log.txt





URLs (which typically contain the API key as a parameter), are only output when
the --debug flag is specified.




Exit codes

If the elex command is successful, it closes with exit code 0.

In the command line interface, common errors are caught, logged, and the
elex command exits with exit code 1.

Unknown / unexpected errors will continue to raise the normal Python exceptions with
a full stacktrace. When this happens, the elex command exits with exit code 1.

Important note about future compatibility: Elex v2.1 [https://github.com/newsdev/elex/issues?q=is%3Aopen+is%3Aissue+milestone%3A2.1]
will integrate a results caching mechanism. When results are returned from the cache and not from the API,
the elex command will exit with exit code 64. To ensure future compatibility, only check for exit code 1
when trapping errors from your scripts.




Common errors


APAPIKeyError

2016-04-13 10:18:03,298 (ERROR) elex (v2.0.0) : APAPIKeyError: AP_API_KEY environment variable is not set.





This means the AP API key is not set. Set the AP_API_KEY environment variable.

If using Elex as a Python library, you will need to pass api_key to the constructor, e.g.:

election = Election(api_key='<APIKEY>', ...)





The API key is not required when calling Elex with the --data-file flag.




ConnectionError

2016-04-12 10:47:59,928 (ERROR) elex (v2.0.0) : Connection error (<requests.packages.urllib3.connection.HTTPConnection object at 0x108525588>: Failed to establish a new connection: [Errno 8] nodename nor servname provided, or not known)





This happens when the elex client cannot connect to the API. Make sure the
AP_API_BASE_URL environment variable is correct and that you have network
connectivity.




HTTP Error 401 - Forbidden

2016-04-12 14:37:37,470 (ERROR) elex (v2.0.0) : HTTP Error 401 - Forbidden (Invalid API key.)





These errors represent an authentication error. Typically, this is a problem with
your AP API key. Make sure the AP_API_KEY environment variable is set correctly.
If the problem persists, contact AP customer support.




HTTP Error 403 - Over Quota Limit

2016-04-12 10:24:01,904 (ERROR) elex (v2.0.0) : HTTP Error 403 - Over quota limit.





This means it is time to cool it and make less requests. Most AP clients have a
quota of 10 requests a second.




HTTP Error 404 - Not found

2016-04-12 14:19:41,279 (ERROR) elex (v2.0.0) : HTTP Error 404 - Not Found.





This means the network connection was fine but the endpoint URL does not exist.
Check AP_API_BASE_URL to make sure the URL is correct.









          

      

      

    

  

    
      
          
            
  
Configuration

The following environment variables may be set:

export API_VERSION='v2'
export BASE_URL='http://api.ap.org/v2'
export AP_API_KEY='<<YOURAPIKEY>>'
export ELEX_RECORDING='flat'
export ELEX_RECORDING_DIR='/tmp/elex-recording'
export ELEX_CACHE_DIRECTORY='/tmp/elex-cache'






API_VERSION

The AP API version. You should never need to change this.




BASE_URL

Use a different base url for API requests. Helpful if running a mirror or archive of raw AP data like Elex Deja Vu [https://github.com/newsdev/ap-deja-vu].




AP_API_KEY

Your API key. Must be set.




ELEX_CACHE_DIRECTORY

Path to the Elex cache directory. If not set, defaults to <tempdir>/elex-cache where <tempdir> is whatever Python’s tempfile.gettempdir() returns.




ELEX_RECORDING, ELEX_RECORDING_DIR

Configure full data recording. See Recording results.







          

      

      

    

  

    
      
          
            
  
Recording results


Flat files

Will record timestamped and namespaced files to the
ELEX_RECORDING_DIR before parsing.

export ELEX_RECORDING=flat
export ELEX_RECORDING_DIR=/tmp








MongoDB

Will record a timestamped record to MongoDB, connecting via
ELEX_RECORDING_MONGO_URL and writing to the
ELEX_RECORDING_MONGO_DB database.

export ELEX_RECORDING=mongodb
export ELEX_RECORDING_MONGO_URL=mongodb://localhost:27017/  # Or your own connection string.
export ELEX_RECORDING_MONGO_DB=ap_elections_loader











          

      

      

    

  

    
      
          
            
  
Caching

Elex uses a simple file-based caching system based using CacheControl [https://github.com/ionrock/cachecontrol].

Each request to the AP Election API is cached. Each subsequent API request sends the etag. If the API returns a 304 not modified response, the cached version of the request is used.


Exit codes

If the underlying API call is returned from the cache, Elex exits with exit code 64.

For example, the first time you run an Elex results command, the exit code will be 0.

elex results '02-01-2016'
echo $?
0





The next time you run the command, the exit code will be 64.

elex results '02-01-2016'
echo $?
64








Clearing the cache

To clear the cache, run:

elex clear-cache





If the cache is empty, the command will return with exit code 65. This is unlikely to be helpful to end users, but helps with automated testing.




Configuring the cache

To set the cache directory, set the ELEX_CACHE_DIRECTORY environment variable.

If ELEX_CACHE_DIRECTORY is not set, the default temp directory as determined by Python’s tempfile module will be used.







          

      

      

    

  

    
      
          
            
  
Recipes

Useful Elex patterns. Contribute your own.

All examples specify a data file instead of a live or test election date
so that all examples can be followed even if you don’t have an AP API key.
For real election data, replace -d FILENAME in these examples with an
election date.


Get results at a specific level

Get only state level results:

elex results --results-level state -d "${VIRTUAL_ENV}/src/elex/tests/data/20160301_super_tuesday.json"















































	id

	raceid

	racetype

	racetypeid

	ballotorder

	candidateid

	description

	delegatecount

	electiondate

	fipscode

	first

	incumbent

	initialization_data

	is_ballot_measure

	last

	lastupdated

	level

	national

	officeid

	officename

	party

	polid

	polnum

	precinctsreporting

	precinctsreportingpct

	precinctstotal

	reportingunitid

	reportingunitname

	runoff

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested

	votecount

	votepct

	winner



	24547-polid-8639-state-1

	24547

	Primary

	R

	2

	33360

	
	0

	2016-03-01

	
	Donald

	False

	False

	False

	Trump

	2016-03-02T20:35:54Z

	state

	True

	P

	President

	GOP

	8639

	27533

	2172

	0.9995

	2173

	state-1

	
	False

	
	
	Massachusetts

	MA

	False

	False

	311313

	0.493056

	True



	24547-polid-36679-state-1

	24547

	Primary

	R

	13

	33366

	
	0

	2016-03-01

	
	John

	False

	False

	False

	Kasich

	2016-03-02T20:35:54Z

	state

	True

	P

	President

	GOP

	36679

	27528

	2172

	0.9995

	2173

	state-1

	
	False

	
	
	Massachusetts

	MA

	False

	False

	113783

	0.180209

	False



	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	





To cut down on load and bandwidth use and speed up loading when you are
repeatedly loading results, specify only the level(s) you need to display.




Add timestamp or batch name column to any data command

You can add a timestamp column to track results (or any other
data output by elex) with the --with-timestamp flag).

elex elections --with-timestamp -d "${VIRTUAL_ENV}/elex-dev/src/elex/tests/data/00000000_elections.json"














	id

	electiondate

	liveresults

	testresults

	timestamp



	2012-03-13

	2012-03-13

	True

	False

	1460438301



	2012-11-06

	2012-11-06

	True

	False

	1460438301



	…

	
	
	
	





If you prefer, you can set a batch name. This is useful when
executing multiple commands that need a single grouping column.

elex elections --batch-name batch-031 -d "${VIRTUAL_ENV}/elex-dev/src/elex/tests/data/00000000_elections.json"














	id

	electiondate

	liveresults

	testresults

	timestamp



	2016-02-23

	2016-02-23

	True

	False

	batch-031



	2016-02-27

	2016-02-27

	True

	False

	batch-031



	…

	
	
	
	








Get local election results

Get only local races:

elex races 03-15-16 --local-only -d "${VIRTUAL_ENV}/src/elex/tests/data/20160301_super_tuesday.json"




























	id

	raceid

	racetype

	racetypeid

	description

	electiondate

	initialization_data

	is_ballot_measure

	lastupdated

	national

	officeid

	officename

	party

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested



	14897

	14897

	Primary

	R

	
	2016-03-15

	True

	False

	2016-03-18T12:29:42Z

	True

	0

	State’s Attorney

	GOP

	Cook County

	
	
	IL

	False

	True



	15329

	15329

	Primary

	D

	
	2016-03-15

	True

	False

	2016-03-18T12:29:42Z

	True

	0

	Recorder of Deeds

	Dem

	Cook County

	
	
	IL

	False

	True



	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	





Get only local results:

elex results --local-only








Get AP zero count data

AP’s set zero count parameter is a special server feature that only makes sense to
query live.

elex results 03-15-16 --set-zero-counts















































	id

	raceid

	racetype

	racetypeid

	ballotorder

	candidateid

	description

	delegatecount

	electiondate

	fipscode

	first

	incumbent

	initialization_data

	is_ballot_measure

	last

	lastupdated

	level

	national

	officeid

	officename

	party

	polid

	polnum

	precinctsreporting

	precinctsreportingpct

	precinctstotal

	reportingunitid

	reportingunitname

	runoff

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested

	votecount

	votepct

	winner



	10673-polid-8639-state-1

	10673

	Primary

	R

	13

	20428

	
	0

	2016-03-15

	
	Donald

	False

	False

	False

	Trump

	2016-03-16T21:05:09Z

	state

	True

	P

	President

	GOP

	8639

	14574

	0

	0.0

	5810

	state-1

	
	False

	
	
	Florida

	FL

	False

	False

	0

	0.0

	False



	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	








Auto-generate SQL schemas with csvkit

Install csvkit [http://csvkit.readthedocs.org/], a handy tool for working with CSVs.

Now build the results schema by using the candidate-reporting-units command.

elex candidate-reporting-units -d "${VIRTUAL_ENV}/src/elex/tests/data/20160301_super_tuesday.json" | csvsql --tables results -i sqlite





2016-04-14 00:51:07,675 (INFO) elex (v2.0.0) : Getting candidate reporting units for election 2016-03-26
CREATE TABLE results (
  id VARCHAR(23) NOT NULL,
  raceid INTEGER NOT NULL,
  racetype VARCHAR(6) NOT NULL,
  racetypeid VARCHAR(1) NOT NULL,
  ballotorder INTEGER NOT NULL,
  candidateid INTEGER NOT NULL,
  description VARCHAR(32),
  delegatecount INTEGER NOT NULL,
  electiondate DATE NOT NULL,
  fipscode VARCHAR(32),
  first VARCHAR(7),
  incumbent BOOLEAN NOT NULL,
  initialization_data BOOLEAN NOT NULL,
  is_ballot_measure BOOLEAN NOT NULL,
  last VARCHAR(12) NOT NULL,
  lastupdated DATETIME NOT NULL,
  level VARCHAR(32),
  national BOOLEAN NOT NULL,
  officeid VARCHAR(1) NOT NULL,
  officename VARCHAR(9) NOT NULL,
  party VARCHAR(3) NOT NULL,
  polid INTEGER NOT NULL,
  polnum INTEGER NOT NULL,
  precinctsreporting INTEGER NOT NULL,
  precinctsreportingpct FLOAT NOT NULL,
  precinctstotal INTEGER NOT NULL,
  reportingunitid VARCHAR(32),
  reportingunitname VARCHAR(32),
  runoff BOOLEAN NOT NULL,
  seatname VARCHAR(32),
  seatnum VARCHAR(32),
  statename VARCHAR(10) NOT NULL,
  statepostal VARCHAR(2) NOT NULL,
  test BOOLEAN NOT NULL,
  uncontested BOOLEAN NOT NULL,
  votecount INTEGER NOT NULL,
  votepct FLOAT NOT NULL,
  winner BOOLEAN NOT NULL,
  CHECK (incumbent IN (0, 1)),
  CHECK (initialization_data IN (0, 1)),
  CHECK (is_ballot_measure IN (0, 1)),
  CHECK (national IN (0, 1)),
  CHECK (runoff IN (0, 1)),
  CHECK (test IN (0, 1)),
  CHECK (uncontested IN (0, 1)),
  CHECK (winner IN (0, 1))
);








Insert results with csvkit + sqlite

This is not a wildly efficient way to get results into a database, but it is lightweight.

elex candidate-reporting-units -d "${VIRTUAL_ENV}/src/elex/tests/data/20160301_super_tuesday.json" | csvsql --tables results --db sqlite:///db.sqlite --insert








Filter with jq and upload to S3

This recipe uses the jq json filtering tool to create a national results json data file with a limited set of data fields and the AWS cli tools to upload the filtered json to S3.

Requirements:


	Amazon web services account [http://docs.aws.amazon.com/gettingstarted/latest/swh/website-hosting-intro.html]


	jq [https://stedolan.github.io/jq/]


	AWS cli tools [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html]




	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#!/bin/bash

# S3 url: MUST be set to your bucket and path.
ELEX_S3_URL='mybucket.tld/output/path.json'

# Get results and upload to S3
elex results 2012-11-06 --results-level state -o json \
| jq -c '[
            .[] |
            select(.level == "state" ) |
            select(.officename == "President") |
            {
              officename: .officename,
              statepostal: .statepostal,
              first: .first,
              last: .last,
              party: .party,
              votecount: .votecount,
              votepct: .votepct,
              winner: .winner,
              level: .level
            }
         ]' \
| gzip -vc \
| aws s3 cp - s3://$ELEX_S3_URL \
    --acl public-read \
    --content-type=application/json \
    --content-encoding gzip

# Check response headers
curl -I $ELEX_S3_URL

# Get first entry of uploaded json
curl -s --compressed $ELEX_S3_URL | jq '[.[]][0]'







ELEX_S3_URL must be set to your s3 bucket and path.

Steps:


	Get election results in json format with elex


	Pipe results to jq for filtering


	Pipe filtered results to gzip to compress


	Pipe gzipped results to aws s3 cp to send to S3.







Inspect with an ORM using Flask and Peewee

This recipe uses the Flask web framework and the Peewee Python ORM to model, query and update data that elex provides.

Requirements:


	Elex loader [https://github.com/newsdev/elex-loader], an NYT project that calls elex to load data into a Postgres database with CSV and the Postgres COPY command.


	Elex admin [https://github.com/newsdev/elex-admin], an NYT project that is a simple, web-based admin for creating and editing data to override AP election results, including candidate names, race descriptions, and race calls.




Steps:


	Install elex-loader using the loader instructions [https://github.com/newsdev/elex-loader/blob/master/README.md].


	Install elex-admin using the admin instructions [https://github.com/newsdev/elex-admin/blob/master/README.md].




Extra steps:


	Use the models.py that come with elex-admin to query data.










          

      

      

    

  

    
      
          
            
  
Python library reference

Elex can be used as a Python library that provides wrapper objects around
AP election data.



	Data models / API wrapper (elex.api)
	elex.api

	elex.api.utils

	elex.api.maps





	Command line interface (elex.cli)
	elex.cli.app

	elex.cli.decorators

	elex.cli.ext_csv

	elex.cli.ext_json

	elex.cli.hooks

	elex.cli.utils





	Exceptions (elex.exceptions)

	Official Associated Press API









          

      

      

    

  

    
      
          
            
  
Data models / API wrapper (elex.api)


elex.api


	
class elex.api.APElection

	Base class for most objects.

Includes handy methods for transformation of data and AP connections


	
set_state_fields_from_reportingunits()

	Set state fields.






	
set_reportingunits()

	Set reporting units.

If this race has reportingunits,
serialize them into objects.






	
set_polid()

	Set politication id.

If polid is zero, set to None.






	
set_reportingunitids()

	Set reporting unit ID.

Per Tracy / AP developers, if the level is
“state”, the reportingunitid is always 1.






	
set_candidates()

	Set candidates.

If this thing (race, reportingunit) has candidates,
serialize them into objects.






	
serialize()

	Serialize the object. Should be implemented in all classes that
inherit from APElection.

Should return an OrderedDict.










	
class elex.api.BallotMeasure(**kwargs)

	Canonical representation of a ballot measure.

Ballot measures are similar to Candidate objects, but represent a
position on a ballot such as “In favor of” or “Against” for ballot
measures such as a referendum.


	
serialize()

	Implements APElection.serialize().






	
set_unique_id()

	Generate and set unique id.

Candidate IDs are not globally unique.
AP National Politian IDs (NPIDs or polid)
are unique, but only national-level
candidates have them; everyone else gets ‘0’.
The unique key, then, is the NAME of the ID
we’re using and then the ID itself.
Verified this is globally unique with Tracy.






	
set_id_field()

	Set id to <unique_id>.










	
class elex.api.Candidate(**kwargs)

	Canonical representation of a
candidate. Should be globally unique
for this election, across races.


	
serialize()

	Implements APElection.serialize().






	
set_unique_id()

	Generate and set unique id.

Candidate IDs are not globally unique.
AP National Politian IDs (NPIDs or polid)
are unique, but only national-level
candidates have them; everyone else gets ‘0’.
The unique key, then, is the NAME of the ID
we’re using and then the ID itself.
Verified this is globally unique with Tracy.






	
set_id_field()

	Set id to <unique_id>.










	
class elex.api.CandidateDelegateReport(**kwargs)

	‘level’: ‘state’,
‘party_total’: 4762,
‘superdelegates_count’: 0,
‘last’: u’Steinberg’,
‘state’: u’SD’,
‘candidateid’: u‘11291’,
‘party_need’: 2382,
‘party’: u’Dem’,
‘delegates_count’: 0,
‘id’: u’SD-11291’,
‘d1’: -1,
‘d7’: 8,
‘d30’: 10


	
serialize()

	Implements APElection.serialize().










	
class elex.api.CandidateReportingUnit(**kwargs)

	Canonical reporesentation of an
AP candidate. Note: A candidate can
be a person OR a ballot measure.


	
set_id_field()

	Set id to <raceid>-<uniqueid>-<reportingunitid>.






	
set_unique_id()

	Generate and set unique id.

Candidate IDs are not globally unique.
AP National Politian IDs (NPIDs or polid)
are unique, but only national-level
candidates have them; everyone else gets ‘0’.
The unique key, then, is the NAME of the ID
we’re using and then the ID itself.
Verified this is globally unique with Tracy Lewis.






	
serialize()

	Implements APElection.serialize().










	
class elex.api.DelegateReport(**kwargs)

	Base class for a single load of AP delegate counts.
d = DelegateReport()
[z.__dict__ for z in d.candidates]


	
output_candidates()

	Transforms our multi-layered dict of candidates / states
into a single list of candidates at each reporting level.






	
parse_sum()

	Parses the delsum JSON produced by the AP.






	
parse_super()

	Parses the delsuper JSON produced by the AP.






	
load_raw_data(delsuper_datafile, delsum_datafile)

	Gets underlying data lists we need for parsing.






	
get_ap_file(path, key)

	Get raw data file.






	
get_ap_report(key, params={})

	Given a report number and a key for indexing, returns a list
of delegate counts by party. Makes a request from the AP
using requests. Formats that request with env vars.






	
get_report_id(reports, key)

	Takes a delSuper or delSum as the argument and returns
organization-specific report ID.










	
class elex.api.Election(**kwargs)

	Canonical representation of an election on
a single date.


	
set_id_field()

	Set id to <electiondate>.






	
get(path, **params)

	Farms out request to api_request.
Could possibly handle choosing which
parser backend to use – API-only right now.
Also the entry point for recording, which
is set via environment variable.


	Parameters

	
	path – API url path.


	**params – A dict of optional parameters to be included in API request.













	
get_uniques(candidate_reporting_units)

	Parses out unique candidates and ballot measures
from a list of CandidateReportingUnit objects.






	
get_raw_races(**params)

	Convenience method for fetching races by election date.
Accepts an AP formatting date string, e.g., YYYY-MM-DD.
Accepts any number of URL params as kwargs.

If datafile passed to constructor, the file will be used instead of
making an HTTP request.


	Parameters

	**params – A dict of additional parameters to pass to API.
Ignored if datafile was passed to the constructor.










	
get_race_objects(parsed_json)

	Get parsed race objects.


	Parameters

	parsed_json – Dict of parsed AP election JSON.










	
get_units(race_objs)

	Parses out races, reporting_units,
and candidate_reporting_units in a
single loop over the race objects.


	Parameters

	race_objs – A list of top-level Race objects.










	
serialize()

	Implements APElection.serialize().






	
races

	Return list of race objects.






	
reporting_units

	Return list of reporting unit objects.






	
candidate_reporting_units

	Return list of candidate reporting unit objects.






	
results

	Return list of candidate reporting unit objects with results.






	
candidates

	Return list of candidate objects with results.






	
ballot_measures

	Return list of ballot measure objects with results.










	
class elex.api.Elections

	Holds a collection of election objects


	
get_elections(datafile=None)

	Get election data from API or cached file.


	Parameters

	datafile – If datafile is specified, use instead of making an API call.










	
get_next_election(datafile=None, electiondate=None)

	Get next election. By default, will be relative to the current date.


	Parameters

	
	datafile – If datafile is specified, use instead of making an API call.


	electiondate – If electiondate is specified, gets the next election
after the specified date.

















	
class elex.api.Race(**kwargs)

	Canonical representation of a single
race, which is a seat in a political geography
within a certain election.


	
set_id_field()

	Set id to <raceid>.






	
serialize()

	Implements APElection.serialize().










	
class elex.api.ReportingUnit(**kwargs)

	Canonical representation of a single
level of reporting.


	
set_level()

	New England states report at the township level.
Every other state reports at the county level.
So, change the level from ‘subunit’ to the
actual level name, either ‘state’ or ‘township’.






	
set_id_field()

	Set id to <reportingunitid>.






	
set_votecount()

	Set vote count.






	
set_candidate_votepct()

	Set vote percentage for each candidate.






	
serialize()

	Implements APElection.serialize().










	
class elex.api.BaseTrendReport(trend_file=None, testresults=False)

	A base class for retrieving trend reports from the AP API.


	
load_raw_data(office_code, trend_file=None)

	Gets underlying data lists we need for parsing.






	
get_ap_file(path)

	Get raw data file.






	
get_ap_report(key, params={})

	Given a report number and a key for indexing, returns a list
of delegate counts by party. Makes a request from the AP
using requests. Formats that request with env vars.






	
get_report_id(reports, key)

	Takes a delSuper or delSum as the argument and returns
organization-specific report ID.






	
output_parties()

	Parse the raw data on political parties returned by the API, converts them into objects
and assigns them to the object’s parties attribute.










	
class elex.api.USGovernorTrendReport(trend_file=None, testresults=False)

	A trend report on U.S. governors.






	
class elex.api.USSenateTrendReport(trend_file=None, testresults=False)

	A trend report on the U.S. Senate.






	
class elex.api.USHouseTrendReport(trend_file=None, testresults=False)

	A trend report on U.S. House.








elex.api.utils

Utility functions to record raw election results and handle low-level HTTP
interaction with the Associated Press Election API.


	
class elex.api.utils.UnicodeMixin

	Python 2 + 3 compatibility for __unicode__






	
elex.api.utils.write_recording(payload)

	Record a timestamped version of an Associated Press Elections API
data download.

Presumes JSON at the moment.
Would have to refactor if using XML or FTP.
FACTOR FOR USE; REFACTOR FOR REUSE.


	Parameters

	payload – JSON payload from Associated Press Elections API.










	
elex.api.utils.api_request(path, **params)

	Function wrapping Python-requests
for making a request to the AP’s
elections API.

A properly formatted request:
* Modifies the BASE_URL with a path.
* Contains an API_KEY.
* Returns a response object.


	Parameters

	**params – Extra parameters to pass to requests. For example,
apiKey=”<YOUR API KEY>, your AP API key, or national=True,
for national-only results.










	
elex.api.utils.get_reports(params={})

	Get data from reports endpoints.








elex.api.maps

Defines FIPS_TO_STATE, STATE_ABBR, OFFICE_NAMES and PARTY_NAMES
look-up constants.







          

      

      

    

  

    
      
          
            
  
Command line interface (elex.cli)


elex.cli.app


	
class elex.cli.app.ElexBaseController(*args, **kw)

	
	
class Meta

	
	
label = 'base'

	




	
description = 'Get and process AP elections data'

	




	
arguments = [(['date'], {'action': 'store', 'nargs': '*', 'help': 'Election date (e.g. "2015-11-03"; most common date formats accepted).'}), (['-t', '--test'], {'action': 'store_true', 'help': 'Use testing API calls'}), (['-n', '--not-live'], {'action': 'store_true', 'help': 'Do not use live data API calls'}), (['-d', '--data-file'], {'action': 'store', 'help': 'Specify data file instead of making HTTP request when using election commands like `elex results` and `elex races`.'}), (['--delegate-sum-file'], {'action': 'store', 'help': 'Specify delegate sum report file instead of making HTTP request when using `elex delegates`'}), (['--delegate-super-file'], {'action': 'store', 'help': 'Specify delegate super report file instead of making HTTP request when using `elex delegates`'}), (['--trend-file'], {'action': 'store', 'help': 'Specify trend file instead of making HTTP request when when using `elex [gov/house/senate]-trends`'}), (['--format-json'], {'action': 'store_true', 'help': 'Pretty print JSON when using `-o json`.'}), (['-v', '--version'], {'action': 'version', 'version': '\nElex version 2.4.3\n'}), (['--results-level'], {'action': 'store', 'help': 'Specify reporting level for results.', 'default': 'ru'}), (['--officeids'], {'action': 'store', 'help': 'Specify officeids to parse.', 'default': None}), (['--raceids'], {'action': 'store', 'help': 'Specify raceids to parse.', 'default': []}), (['--set-zero-counts'], {'action': 'store_true', 'help': 'Override results with zeros; omits the winner indicator.Sets the vote, delegate, and reporting precinct counts to zero.', 'default': False}), (['--national-only'], {'action': 'store_true', 'help': 'Limit results to national-level results only.', 'default': None}), (['--local-only'], {'action': 'store_true', 'help': 'Limit results to local-level results only.', 'default': None}), (['--with-timestamp'], {'action': 'store_true', 'help': 'Append a `timestamp` column to each row of data output with current                      system timestamp.'}), (['--batch-name'], {'action': 'store', 'help': 'Specify a value for a `batchname` column to append to each row.'})]

	








	
default()

	




	
races()

	elex races <electiondate>

Returns race data for a given election date.

Command:

elex races 2016-03-26





Example output:
























	id

	raceid

	racetype

	racetypeid

	description

	electiondate

	initialization_data

	is_ballot_measure

	lastupdated

	national

	officeid

	officename

	party

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested



	2919

	2919

	Caucus

	E

	
	2016-03-26

	True

	False

	2016-03-27T03:03:54Z

	True

	P

	President

	Dem

	
	
	
	AK

	False

	False



	12975

	12975

	Caucus

	E

	
	2016-03-26

	True

	False

	2016-03-29T17:17:41Z

	True

	P

	President

	Dem

	
	
	
	HI

	False

	False



	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	










	
reporting_units()

	elex reporting-units <electiondate>

Returns reporting unit data for a given election date.

Reporting units represent geographic aggregation of voting data at the
national, state, county, and district level.

Command:

elex reporting-units 2016-03-26










	
candidate_reporting_units()

	elex candidate-reporting-units <electiondate>

Returns candidate reporting unit data for a given election date.

A candidate reporting unit is a container for the results of a voting
in a specific reporting unit. This command is a close cousin of
elex results <electiondate>.

This command does not return results.

Command:

elex candidate-reporting-units 2016-03-26





Notes:

This command can be used to quickly create schemas.

pip install csvkit
elex candidate-reporting-units 03-26-16 | csvsql -i mysql





Will output:

CREATE TABLE stdin (
    id VARCHAR(23) NOT NULL,
    raceid INTEGER NOT NULL,
    racetype VARCHAR(6) NOT NULL,
    racetypeid VARCHAR(1) NOT NULL,
    ...
);










	
candidates()

	elex candidates <electiondate>

Returns candidate data for a given election date.

Command:

elex candidates 2016-03-26





Example output:













	id

	candidateid

	ballotorder

	first

	last

	party

	polid

	polnum



	polid-1445

	6527

	2

	Bernie

	Sanders

	Dem

	1445

	4262



	polid-1746

	6526

	1

	Hillary

	Clinton

	Dem

	1746

	4261



	…

	
	
	
	
	
	
	










	
ballot_measures()

	elex ballot-measures <electiondate>

Returns ballot measure data for a given election date.

Command:

elex ballot-measures 2016-03-15





Example output:














	id

	candidateid

	ballotorder

	description

	electiondate

	last

	polid

	polnum

	seatname



	2016-03-15-43697

	43697

	1

	
	2016-03-15

	For

	
	37229

	Public Improvement Bonds



	2016-03-15-43698

	43698

	2

	
	2016-03-15

	Against

	
	37230

	Public Improvement Bonds



	…

	
	
	
	
	
	
	
	










	
results()

	elex results <electiondate>

Returns result data.

Each row in the output represents a fully flattened and
denormalized version of a result for specific candidate in
a specific race.

Command:

elex results 2016-03-01





Example output:












































	id

	unique_id

	raceid

	racetype

	racetypeid

	ballotorder

	candidateid

	description

	delegatecount

	electiondate

	fipscode

	first

	incumbent

	initialization_data

	is_ballot_measure

	last

	lastupdated

	level

	national

	officeid

	officename

	party

	polid

	polnum

	precinctsreporting

	precinctsreportingpct

	precinctstotal

	reportingunitid

	reportingunitname

	runoff

	seatname

	seatnum

	statename

	statepostal

	test

	uncontested

	votecount

	votepct

	winner



	3021-polid-61815-state-1

	3021

	Caucus

	S

	2

	6528

	
	0

	2016-03-01

	
	Ted

	False

	False

	False

	Cruz

	2016-03-02T17:05:46Z

	state

	True

	P

	President

	GOP

	61815

	4263

	72

	1.0

	72

	state-1

	
	False

	
	
	Alaska

	AK

	False

	False

	7973

	0.363566

	True

	


	3021-polid-8639-state-1

	3021

	Caucus

	S

	5

	6548

	
	0

	2016-03-01

	
	Donald

	False

	False

	False

	Trump

	2016-03-02T17:05:46Z

	state

	True

	P

	President

	GOP

	8639

	4273

	72

	1.0

	72

	state-1

	
	False

	
	
	Alaska

	AK

	False

	False

	7346

	0.334975

	False

	


	…

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	










	
elections()

	elex elections

Returns all elections known to the API.

Command:

elex elections





Example output:









	2016-02-09

	2016-02-09

	True

	False



	2016-02-16

	2016-02-16

	True

	False



	…

	
	
	










	
delegates()

	elex delegates

Returns delegate report data.

Command:

elex delegates





Example output:


















	level

	party_total

	superdelegates_count

	last

	state

	candidateid

	party_need

	party

	delegates_count

	id

	d1

	d7

	d30



	state

	2472

	0

	Bush

	MN

	1239

	1237

	GOP

	0

	MN-1239

	0

	0

	0



	state

	2472

	0

	Bush

	OR

	1239

	1237

	GOP

	0

	OR-1239

	0

	0

	0











	
governor_trends()

	elex governor-trends

Governor balance of power/trend report.

Command:

elex governor-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	Governor

	7

	7

	12

	19

	20

	0

	-1

	0











	
house_trends()

	elex house-trends

House balance of power/trend report.

Command:

elex house-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	U.S. House

	201

	201

	0

	201

	193

	0

	+8

	0











	
senate_trends()

	elex senate-trends

Senate balance of power/trend report.

Command:

elex senate-trends





Example output:















	party

	office

	won

	leading

	holdovers

	winning_trend

	current

	insufficient_vote

	net_winners

	net_leaders



	Dem

	U.S. Senate

	23

	23

	30

	53

	51

	0

	+2

	0











	
next_election()

	elex next-election <date-after>

Returns data about the next election with an optional date
to start searching.

Command:

elex next-election





Example output:









	id

	electiondate

	liveresults

	testresults



	2016-04-19

	2016-04-19

	False

	True






You can also specify the date to find the next election after, e.g.:

elex next-election 2016-04-15





This will find the first election after April 15, 2016.






	
clear_cache()

	elex clear-cache

Returns data about the next election with an optional date
to start searching.

Command:

elex clear-cache





If no cache entries exist, elex will close with exit code 65.










	
class elex.cli.app.ElexApp(label=None, **kw)

	
	
class Meta

	
	
label = 'elex'

	




	
base_controller

	alias of ElexBaseController






	
exit_on_close = True

	




	
hooks = [('post_setup', <function cachecontrol_logging_hook>), ('post_argument_parsing', <function add_election_hook>)]

	




	
extensions = ['elex.cli.ext_csv', 'elex.cli.ext_json']

	




	
output_handler = 'csv'

	




	
handler_override_options = {'output': (['-o'], {'help': 'output format (default: csv)'})}

	




	
log_handler = <cement.ext.ext_logging.LoggingLogHandler object>

	












	
elex.cli.app.main()

	






elex.cli.decorators


	
elex.cli.decorators.require_date_argument(fn)

	Decorator that checks for date argument.






	
elex.cli.decorators.require_ap_api_key(fn)

	Decorator that checks for Associated Press API key or data-file argument.








elex.cli.ext_csv


	
class elex.cli.ext_csv.CSVOutputHandler(*args, **kw)

	A custom CSV output handler


	
class Meta

	
	
label = 'csv'

	




	
overridable = True

	








	
render(data, template=None)

	








	
elex.cli.ext_csv.load(app)

	






elex.cli.ext_json


	
class elex.cli.ext_json.ElexJSONOutputHandler(*args, **kw)

	A custom JSON output handler


	
class Meta

	
	
label = 'json'

	




	
overridable = True

	








	
render(data, template=None)

	








	
elex.cli.ext_json.load(app)

	






elex.cli.hooks


	
elex.cli.hooks.add_election_hook(app)

	Cache election API object reference after parsing args.






	
elex.cli.hooks.cachecontrol_logging_hook(app)

	Reroute cachecontrol logger to use cement log handlers.








elex.cli.utils


	
elex.cli.utils.parse_date(datestring)

	Parse many date formats into an AP friendly format.











          

      

      

    

  

    
      
          
            
  
Exceptions (elex.exceptions)

Elex exceptions


	
exception elex.exceptions.APAPIKeyException

	Raise this exception when an AP API key is not set.


	
message = 'AP API key is not set.'

	











          

      

      

    

  

    
      
          
            
  
Official Associated Press API

The official documentation of the Associated Press election data API that this library draws from.








  AP-Elections-API-Developer-Guide-v2-1 (PDF)
  

  AP-Elections-API-Developer-Guide-v2-1 (Text)





          

      

      

    

  

    
      
          
            
  
Contributing

We welcome contributions of all sizes. You got this!


Find a task


	Check out the issue tracker [https://github.com/newsdev/elex/issues] and pick out a task or create a new issue


	Leave a comment on the ticket so that others know you’re working on it.







Install Elex development environment


	Fork the project on Github [https://github.com/newsdev/elex].


	Install a development version of the code with:




mkvirtualenv elex-dev
workon elex-dev
git clone git@github.com:<YOUR_GITHUB_USER>/elex.git .``






	Install developer dependencies for tests and docs:




pip install -r requirements.txt
pip install -r requirements-dev.txt








Running tests

Edit or write the code or docs, taking care to include well=crafted docstrings and generally following the format of the existing code.

Write tests for any new features you add. Add to the tests in the tests directory or follow the format of files like tests/test_election.py.

Make sure all tests are passing in your environment by running the nose2 tests.

make test





If you have Python 2.7, 3.6, and pypy installed, run can run tox to test in multiple environments.




Writing docs

Write documentation by adding to one of the files in docs or adding your own.

To build a local preview, run:

make -C docs html





The documentation is built in docs/_build/html. Use Python’s simple HTTP server to view it.

cd docs/_build/html
python -m http.server





Python 2.7 users should use SimpleHTTPServer instead of http.server.




Submitting code

Submit a pull request on Github.




Testing performance

To get detailed information about performance, run the tests with the –profile flag:

nose2 tests --profile








Testing API request limit

You can test the API request limit, but only by setting an environment variable. Use with extreme
care.

AP_RUN_QUOTA_TEST=1 nose2 tests.test_ap_quota








Authors

elex is maintained by Jeremy Bowers <jeremy.bowers@nytimes.com> and David Eads <davideads@gmail.com>.

These individuals have contributed code, tests, documentation, and troubleshooting:


	Jeremy Bowers


	David Eads


	Livia Labate


	Wilson Andrews


	Eric Buth


	Juan Elosua


	Ben Welsh


	Tom Giratikanon


	Ryan Pitts


	Miles Watkins


	Vanessa Qian










          

      

      

    

  

    
      
          
            
  
Changelog


2.4.0 - October 23, 2016


	Add version number back to log output (#294)


	Restore exit code 64 for cached responses (#302) and document caching (#301)


	Fix csvkit compatibility (#206)


	Add trend reports (#299)







2.3.0 - October 5, 2016


	Fix __str__ methods (#292)


	Fix bug related to parties in initialization data (#293, #286)


	Add clear-cache command to wipe http response cache (#289)







2.2.0 - September 24, 2016


	Add reponse caching (#121, #250)


	Enable gzip on http requests (#273)


	Updated pinned requirements (#279)







2.1.1 - September 12, 2016

Fixes a bug related to national / local flags on races. Running --local-only would show all races as national=true due to a Elex defaulting national to true but the AP drops the national flag in the API results when the URL specifies national=false.




2.1.0 - August 31, 2016


	Breaking change: Adds electwon and electtotal to CandidateReportingUnit and electtotal to ReportingUnit to represent total electoral votes and number of electoral votes won. As these fields were not in previous releases, we’ve bumped to 2.1.x to indicate a breaking change to the schema.







2.0.10 - 2.0.11 - August 25, 2016


	Fixes a bug that makes reportingunitid not-unique for national races, e.g., president. (#278)







2.0.9 - August 16, 2016


	A variety of transparent speedups. (#277)







2.0.8 - July 25, 2016


	Adds a raceids feature. elex races 2016-03-15 --raceids 10675,14897 still downloads the full JSON file but only parses the races passed in the raceids argument. Particularly effective when used with the local-only flag to grab a subset of non-national races, e.g., every NY state race.







2.0.5 - 2.0.6 - June 6, 2016


	Fixes a small bug in the ME reporting for the upcoming 6-14 primary.







2.0.1 - 2.0.4 - April 26, 2016


	Fixes for AP API v2.1.


	Fix for missing Rhode Island mail-in ballot (#263).


	Fix for township to county rollups in New England (#264).


	Delegate report cache has been removed; the feature could have negative consequences and will be better addressed by a full caching system.







2.0.0 - April 14, 2016

Remove redundant data fields, introduce breaking data model fixes, organizational report ID caching, and command line cleanup.

The 2.x release is named for Ethel Payne [https://en.wikipedia.org/wiki/Ethel_L._Payne], the “First Lady of the Black Press”, whose natural curiosity [http://beta.wpcf.org/oralhistory/payn.html] led her to become a groundbreaking journalist.


	Precincts reporting percent now expressed in normal form (#204). Prior to the 2.0 release, precincts reporting percent was expressed as a number between 0 and 100 while vote percent while percent of votes received was expressed as a number between 0 and 1. Now all percents in the data are expressed as a number between 0 and 1 and should be multiplied by 100 to display the human-readable percentage.


	Remove unique_id field (#256). The unique_id has been superseded by the ID field in all cases and was redundant. The 2.0 release removes this field, and all Elex users should adjust their data models and schemas accordingly.


	Race data now includes an is_ballot_measure column for consistency (#238).


	Cache delegate report IDs (#234). Getting delegate reports previously required three API calls which each counted against the API quota limit. Now, on first request, the report IDs are cached until the elex clear-delegate-cache command is run. With the introduction of “free” report access in AP API v2.1, getting delegate reports do not count at all against the request quota except the first elex delegates is run or after running elex clear-delegate-cache.


	Refactor error handling when interacting with the API (#239, #240, #249). All error handling logic has been moved to command line library and out of the Python API. All errors encountered when using Elex as a Python library are raised and must be handled by the developer. The command line library catches common/well-known errors and provides useful feedback.


	Add --with-timestamp and --batch-name flags to add a timestamp based or arbitrary grouping column to any results (#212).


	elex next-election now returns an error when there is no valid next election (#160).


	Election date is automatically determined when using the --data-file flag. This means no date argument is required when specifying a data file. (#161)


	Removed dependency on Clint output library (#63).


	Improve documentation (#251).


	Abandon previous caching and daemon efforts (#122, #137). Caching will be a feature of Elex 2.1.




Important note about exit codes:

Elex will be implementing a caching layer in version 2.1 that uses conditional GET requests to decide whether or not to get fresh data. The command line tool will return exit code 64 when getting data from the cache, the normal 0 exit code on a successful full request, and exit code 1 for all errors. If you have code that depends on reading the Elex exit code, ensure that you are checking for exit code 1 and 1 only when trapping for errors.




1.2.0 - Feb. 25, 2016

Many bugfixes and some new fields / id schemes that might break implementations that rely on stable field names / orders.


	Fixes an issue with requests defaulting to national-only (#229, #230).


	Solves an issue with 3/5 and 3/6 Maine results not including townships (#228).


	Supports a set-zero-counts argument to the CLI to return zeroed-out data (#227).


	Includes a delegatecount field on CandidateReportingUnit to store data from district-level results (#225).


	Supports a results-level argument to the CLI to return district-level data. (#223)


	Solves an issue with reportingunitid not being unique acrosss different result levels (#226).


	Adds an electiondate field on BallotMeasure to guarantee uniqueness (#210).


	Makes a composite id for BallotMeasure that includes electiondate (#210).







1.1.0 - Feb. 2, 2016

Documentation and dependency fixes.


	Elex can now be run in the same virtualenv as csvkit [http://csvkit.readthedocs.org/] (#206).


	Links and copyright notice in documentation updated.


	Added section about virtualenvs to install guide, courtesy of Ryan Pitts.


	Add better tests for AP request quota (#203).







1.0.0 - Jan. 25, 2016

The 1.x release is named for Martha Ellis Gellhorn [https://en.wikipedia.org/wiki/Martha_Gellhorn], one of the greatest war correspondents of the 20th century.


	Delegate counts (#138, #194). Delegate counts can be accessed with elex delegates.


	Rename elex.api.api to elex.api.models and allow model objects to be imported with statements like from elex.api import Election (#146). Python modules directly calling Elex will need to update their import statements accordingly.


	Fix duplicate IDs (#176).


	Handle incorrect null/none values in some cases (#173, #174, #175).


	Expand contributing / developer guide (#151).


	Add recipe for filtering with jq and uploading to s3 in a single command (#131).







0.2.0 -  Dec. 24, 2015


	Tag git versions (#170).


	Fix elections command (#167).


	Use correct state code for county level results (#164).


	Use tox to test multiple Python versions (#153).


	Allow API url to be specified in environment variable (#144).


	Don’t sort results for performance and stability (#136).


	Capture and log full API request URL in command line debugging mode (#134).


	Python 3 compatibility (#99).







0.1.2 - Dec. 21, 2015


	Fix missing vote percent in results (#152).







0.1.1 - Dec. 10, 2015


	Add Travis CI support (#101).


	Fix packaging.







0.1.0 - Dec. 10, 2015

First major release.


	Decided on elex for name (#59).


	Initial tests (#70, #107).


	First draft of docs (#18).


	Set up http://elex.readthedocs.org/ (#60).


	Handle New England states (townships and counties) (#123).


	Remove date parsing (#115) and dynamic field setter (#117) to improve performance.







0.0.0 - 0.0.42

Initial Python API and concept created by Jeremy Bowers; initial command line interface created by David Eads.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   e
   


   
     		 	

     		
       e	

     
       	[image: -]
       	
       elex	
       

     
       	
       	   
       elex.api	
       

     
       	
       	   
       elex.api.maps	
       

     
       	
       	   
       elex.api.utils	
       

     
       	
       	   
       elex.cli.decorators	
       

     
       	
       	   
       elex.cli.ext_csv	
       

     
       	
       	   
       elex.cli.ext_json	
       

     
       	
       	   
       elex.cli.hooks	
       

     
       	
       	   
       elex.cli.utils	
       

     
       	
       	   
       elex.exceptions	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W
 


A


  	
      	add_election_hook() (in module elex.cli.hooks)


      	APAPIKeyException


  

  	
      	APElection (class in elex.api)


      	api_request() (in module elex.api.utils)


  





B


  	
      	ballot_measures (elex.api.Election attribute)


      	ballot_measures() (elex.cli.app.ElexBaseController method)


  

  	
      	BallotMeasure (class in elex.api)


      	BaseTrendReport (class in elex.api)


  





C


  	
      	cachecontrol_logging_hook() (in module elex.cli.hooks)


      	Candidate (class in elex.api)


      	candidate_reporting_units (elex.api.Election attribute)


      	candidate_reporting_units() (elex.cli.app.ElexBaseController method)


      	CandidateDelegateReport (class in elex.api)


  

  	
      	CandidateReportingUnit (class in elex.api)


      	candidates (elex.api.Election attribute)


      	candidates() (elex.cli.app.ElexBaseController method)


      	clear_cache() (elex.cli.app.ElexBaseController method)


      	CSVOutputHandler (class in elex.cli.ext_csv)


      	CSVOutputHandler.Meta (class in elex.cli.ext_csv)


  





D


  	
      	DelegateReport (class in elex.api)


  

  	
      	delegates() (elex.cli.app.ElexBaseController method)


  





E


  	
      	Election (class in elex.api)


      	Elections (class in elex.api)


      	elections() (elex.cli.app.ElexBaseController method)


      	elex.api (module)


      	elex.api.maps (module)


      	elex.api.utils (module)


      	elex.cli.decorators (module)


  

  	
      	elex.cli.ext_csv (module)


      	elex.cli.ext_json (module)


      	elex.cli.hooks (module)


      	elex.cli.utils (module)


      	elex.exceptions (module)


      	ElexBaseController (class in elex.cli.app)


      	ElexJSONOutputHandler (class in elex.cli.ext_json)


      	ElexJSONOutputHandler.Meta (class in elex.cli.ext_json)


  





G


  	
      	get() (elex.api.Election method)


      	get_ap_file() (elex.api.BaseTrendReport method)

      
        	(elex.api.DelegateReport method)


      


      	get_ap_report() (elex.api.BaseTrendReport method)

      
        	(elex.api.DelegateReport method)


      


      	get_elections() (elex.api.Elections method)


      	get_next_election() (elex.api.Elections method)


  

  	
      	get_race_objects() (elex.api.Election method)


      	get_raw_races() (elex.api.Election method)


      	get_report_id() (elex.api.BaseTrendReport method)

      
        	(elex.api.DelegateReport method)


      


      	get_reports() (in module elex.api.utils)


      	get_uniques() (elex.api.Election method)


      	get_units() (elex.api.Election method)


      	governor_trends() (elex.cli.app.ElexBaseController method)


  





H


  	
      	house_trends() (elex.cli.app.ElexBaseController method)


  





L


  	
      	label (elex.cli.ext_csv.CSVOutputHandler.Meta attribute)

      
        	(elex.cli.ext_json.ElexJSONOutputHandler.Meta attribute)


      


      	load() (in module elex.cli.ext_csv)

      
        	(in module elex.cli.ext_json)


      


  

  	
      	load_raw_data() (elex.api.BaseTrendReport method)

      
        	(elex.api.DelegateReport method)


      


  





M


  	
      	message (elex.exceptions.APAPIKeyException attribute)


  





N


  	
      	next_election() (elex.cli.app.ElexBaseController method)


  





O


  	
      	output_candidates() (elex.api.DelegateReport method)


      	output_parties() (elex.api.BaseTrendReport method)


  

  	
      	overridable (elex.cli.ext_csv.CSVOutputHandler.Meta attribute)

      
        	(elex.cli.ext_json.ElexJSONOutputHandler.Meta attribute)


      


  





P


  	
      	parse_date() (in module elex.cli.utils)


  

  	
      	parse_sum() (elex.api.DelegateReport method)


      	parse_super() (elex.api.DelegateReport method)


  





R


  	
      	Race (class in elex.api)


      	races (elex.api.Election attribute)


      	races() (elex.cli.app.ElexBaseController method)


      	render() (elex.cli.ext_csv.CSVOutputHandler method)

      
        	(elex.cli.ext_json.ElexJSONOutputHandler method)


      


      	reporting_units (elex.api.Election attribute)


  

  	
      	reporting_units() (elex.cli.app.ElexBaseController method)


      	ReportingUnit (class in elex.api)


      	require_ap_api_key() (in module elex.cli.decorators)


      	require_date_argument() (in module elex.cli.decorators)


      	results (elex.api.Election attribute)


      	results() (elex.cli.app.ElexBaseController method)


  





S


  	
      	senate_trends() (elex.cli.app.ElexBaseController method)


      	serialize() (elex.api.APElection method)

      
        	(elex.api.BallotMeasure method)


        	(elex.api.Candidate method)


        	(elex.api.CandidateDelegateReport method)


        	(elex.api.CandidateReportingUnit method)


        	(elex.api.Election method)


        	(elex.api.Race method)


        	(elex.api.ReportingUnit method)


      


      	set_candidate_votepct() (elex.api.ReportingUnit method)


      	set_candidates() (elex.api.APElection method)


      	set_id_field() (elex.api.BallotMeasure method)

      
        	(elex.api.Candidate method)


        	(elex.api.CandidateReportingUnit method)


        	(elex.api.Election method)


        	(elex.api.Race method)


        	(elex.api.ReportingUnit method)


      


  

  	
      	set_level() (elex.api.ReportingUnit method)


      	set_polid() (elex.api.APElection method)


      	set_reportingunitids() (elex.api.APElection method)


      	set_reportingunits() (elex.api.APElection method)


      	set_state_fields_from_reportingunits() (elex.api.APElection method)


      	set_unique_id() (elex.api.BallotMeasure method)

      
        	(elex.api.Candidate method)


        	(elex.api.CandidateReportingUnit method)


      


      	set_votecount() (elex.api.ReportingUnit method)


  





U


  	
      	UnicodeMixin (class in elex.api.utils)


      	USGovernorTrendReport (class in elex.api)


  

  	
      	USHouseTrendReport (class in elex.api)


      	USSenateTrendReport (class in elex.api)


  





W


  	
      	write_recording() (in module elex.api.utils)


  







          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/elex.png
“build passing





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          elex 2.4.3
        


        		
          Installation
          
            		
              Quick install
              
                		
                  Optional requirements
                


              


            


            		
              Install walkthrough with virtualenv
              
                		
                  Set up some base tools
                


                		
                  Install Elex
                


                		
                  Some extra tricks
                


              


            


          


        


        		
          Tutorial
          
            		
              Command Line Interface
            


            		
              Python Modules
            


          


        


        		
          Command line interface
          
            		
              Commands and flags
            


            		
              Command reference
            


          


        


        		
          Output and errors
          
            		
              Output handling
            


            		
              Exit codes
            


            		
              Common errors
              
                		
                  APAPIKeyError
                


                		
                  ConnectionError
                


                		
                  HTTP Error 401 - Forbidden
                


                		
                  HTTP Error 403 - Over Quota Limit
                


                		
                  HTTP Error 404 - Not found
                


              


            


          


        


        		
          Configuration
          
            		
              API_VERSION
            


            		
              BASE_URL
            


            		
              AP_API_KEY
            


            		
              ELEX_CACHE_DIRECTORY
            


            		
              ELEX_RECORDING, ELEX_RECORDING_DIR
            


          


        


        		
          Recording results
          
            		
              Flat files
            


            		
              MongoDB
            


          


        


        		
          Caching
          
            		
              Exit codes
            


            		
              Clearing the cache
            


            		
              Configuring the cache
            


          


        


        		
          Recipes
          
            		
              Get results at a specific level
            


            		
              Add timestamp or batch name column to any data command
            


            		
              Get local election results
            


            		
              Get AP zero count data
            


            		
              Auto-generate SQL schemas with csvkit
            


            		
              Insert results with csvkit + sqlite
            


            		
              Filter with jq and upload to S3
            


            		
              Inspect with an ORM using Flask and Peewee
            


          


        


        		
          Python library reference
          
            		
              Data models / API wrapper (elex.api)
              
                		
                  elex.api
                


                		
                  elex.api.utils
                


                		
                  elex.api.maps
                


              


            


            		
              Command line interface (elex.cli)
              
                		
                  elex.cli.app
                


                		
                  elex.cli.decorators
                


                		
                  elex.cli.ext_csv
                


                		
                  elex.cli.ext_json
                


                		
                  elex.cli.hooks
                


                		
                  elex.cli.utils
                


              


            


            		
              Exceptions (elex.exceptions)
            


            		
              Official Associated Press API
            


          


        


        		
          Contributing
          
            		
              Find a task
            


            		
              Install Elex development environment
            


            		
              Running tests
            


            		
              Writing docs
            


            		
              Submitting code
            


            		
              Testing performance
            


            		
              Testing API request limit
            


            		
              Authors
            


          


        


        		
          Changelog
          
            		
              2.4.0 - October 23, 2016
            


            		
              2.3.0 - October 5, 2016
            


            		
              2.2.0 - September 24, 2016
            


            		
              2.1.1 - September 12, 2016
            


            		
              2.1.0 - August 31, 2016
            


            		
              2.0.10 - 2.0.11 - August 25, 2016
            


            		
              2.0.9 - August 16, 2016
            


            		
              2.0.8 - July 25, 2016
            


            		
              2.0.5 - 2.0.6 - June 6, 2016
            


            		
              2.0.1 - 2.0.4 - April 26, 2016
            


            		
              2.0.0 - April 14, 2016
            


            		
              1.2.0 - Feb. 25, 2016
            


            		
              1.1.0 - Feb. 2, 2016
            


            		
              1.0.0 - Jan. 25, 2016
            


            		
              0.2.0 -  Dec. 24, 2015
            


            		
              0.1.2 - Dec. 21, 2015
            


            		
              0.1.1 - Dec. 10, 2015
            


            		
              0.1.0 - Dec. 10, 2015
            


            		
              0.0.0 - 0.0.42
            


          


        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





