

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Element43 1.0 documentation

Welcome to Element43’s documentation!

Element43 is an all-in-one site to track the markets, your industry jobs, trading, you name it. Our goal with Element43
is to provide you, the capsuleer, with everything you need to successfully manage your EVE-wide enterprises.
Element43 is built on a multitude of technologies including Python, Django, Postgresql, Redis, Celery, Memcache,
Numpy, Lighthttpd, HAML and others. We are an open source project available on github at https://github.com/EVE-Tools/element43

This documentation contains everything you need to know to start contributing to the effort of creating the ultimate EVE Online tool.

Contents:

	Getting Started
	Python

	Django

	Writing your first app

	Miscellaneous

	Installation
	Virtual Development Environment

	Manual Installation Instructions
	Prerequisites

	Setting up element43

	Architecture
	Consumer

	Django Web App

	Pathfinding

	Applications
	api

	auth

	common

	dashboard

	legacy_api

	manufacturing

	market_browser

	market_data

	market_scanner

	market_station

	market_tradefinder

	quicklook

	rest_api

	rest_framework

	user_settings

	wallet

	feedreader

	Consumer
	Description

	Requirements

	Installation

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Element43 1.0 documentation

Getting started

You want to join our effort of creating the ultimate community-driven EVE tool? Great!
It does not matter if you are coming from a .NET, PHP or Ruby background. Contributing to Element43 is easy and this guide will help you to get up and running, even if you do not know Python, HTML or CSS yet.

Python

Element43’s core web application is written in Python. If you already know a programming language, learning Python should not be a problem at all - you even might be able to skip this step and start learning Django directly. If you do not know any programming language, don’t worry - it is an excellent language for beginners, too.

learnpython.org [http://www.learnpython.org] offers a nice interactive Python tutorial. After completing the basic section you will know enough Python to proceed with getting acquainted with Django.

Django

Django is the web application framework element43 is built on and is similar to Ruby on Rails or CakePHP. Django has the same MVC (Model - View - Controller) or MTV (Model - Template - View) as many other web application frameworks (read more on this here [http://www.djangobook.com/en/2.0/chapter05.html#the-mtv-or-mvc-development-pattern]). Together with the app structure this makes element43 modular and flexible enough to be the foundation of for example both a trade-finder and a corporate fitting manager.

Learning Django

There are two very good sources for people who are new to Django. First, there is the official Django tutorial which walks you through creating your first Django app and teaches you the major concepts of the framework: Django Tutorial [https://docs.djangoproject.com/en/1.5/intro/tutorial01/]
The second one is the free Django Book [http://www.djangobook.com/]. Some parts could be slightly out of date, however it still is a intelligible reference for most basic topics. For more in-depth and elaborate explanations there is Django’s excellent documentation [https://docs.djangoproject.com]. Getting into Django can be difficult at times. Don’t be afraid of asking questions in our IRC.

For more advanced developers we recommend getting Two Scoops of Django [https://django.2scoops.org] which contains various best-practices for Django projects we are following in element43.

Installing element43 on your dev box

Installation is covered in its own document. You’ll want perform a local installation instead of deploying it on let’s say your VPS. This makes it far more easy to quickly evaluate code changes. Also take your time and click through the project so that you get a basic understanding of element43’s structure.

Models

Element43 is all about data. It’s no wonder that the models play a very important role in the project. Luckily we already have done most of the work for you, like mapping CCPs entire static data dump to the appropiate models or collecting all kinds of market data. This allows you to conveniently access all this data via Django’s ORM so you can do stuff like this:

Necessary Model imports
from eve_db.models import MapSolarSystem
from apps.market_data.models import Orders

#
Getting the entire market of Jita
#

1. Get the solar system named Jita
jita = MapSolarSystem.objects.get(name='Jita')

3. Get all orders in Jita
market_jita = Orders.active.filter(mapsolarsystem=jita)

Of course you could also do
market_jita_by_id = Orders.active.filter(mapsolarsystem=30000142)

#
Some ORM magic
#

Printing Jita's region's name (The Forge)
print(jita.region.name)

Django’s interactive shell which you can access via django-admin.py shell provides a handy playground for experimenting with queries.

As you can see there is no raw SQL involved and relations can be traversed with ease. Note the difference between selecting Orders and a regular model. While we call .objects on regular objects, we have added .active for selecting active orders to save you from always having to filter for is_active when searching through the market.

For documentation on CCP’s SDE have a look at eve-id.net [http://wiki.eve-id.net/Category:CCP_DB_Tables]. The ORM mapping and import is handled via django-eve-db [https://github.com/gtaylor/django-eve-db] - the code of the models should be self-explanatory.

Market data is handled by the models of the app market_data- documentation can be found in the applications document.
Again - if you have problems, ask for help in IRC.

Templates

Element43’s templates are written in HamlPy instead of Dajngo-flavoured HTML. This has various reasons - the main one is that it saves you a ton of code. To get into front-end development it’s recommended to learn basic HTML and CSS first. ‘Learning’ HAML will be a piece of cake then, since it’s only an abstraction of HTML.

A nice introduction into HTML and CSS can be found at Shay Howe’s [http://learn.shayhowe.com/html-css/] website. To learn HAML, have a look at the templates and the reference [http://haml.info/docs/yardoc/file.REFERENCE.html] - our sytax is slightly different, since we are using HamlPy which docs can be found on GitHub [https://github.com/jessemiller/HamlPy].

Furthermore element43 uses a customzied version of Twitter’s Bootstrap (Bootswatch Cyborg theme + custom SCSS) for the easy creation of layouts and UI elements like buttons or tables: Documentation [http://twitter.github.com/bootstrap/]

Writing your first app

Django allows us to create independent modules called apps. An app often serves a single purpose like tradefinding or the management of API update tasks. Each app not only can have its own models, views, tasks and templates, but can also re-use common functions or models from other apps.
First, you’ll want to fork our repository at GitHub, so you have a nice versioned base for your new module. Getting your first app up and running is simple. We’ll create an app called myapp which will serve some static content fetched from the DB.

	Create a folder named myapp``inside the ``apps directory

	In that newly created folder create 3 empty files:

	__init__.py - So Python knows that your app is a module

	urls.py- The file containing your URL patterns

	views.py- The file containing your views

	Create a folder named templates in myapp

Now you have to tell Django where to find your app. Just add apps.myapp to the INSTALLED_APPS tuple in settings/base.py (don’t forget the comma).
That’s basically it. Let’s add some functionality now:

apps/myapp/urls.py

Necessary URL imports
from django.conf.urls import patterns, url

The URL patterns for your app
urlpatterns = patterns('apps.myapp.views',
 # History JSON
 url(r'^start/$', 'start', name='myapp_start'),
)

Here we’ve created an url pattern called myapp_start that calls the function start inside your views.py whenever start/ is matched. In order for that route to work, we have to add the new app’s url patterns to the global URL list at /urls.py:

apps/myapp/urls.py

[...]

#
URLs for Element43
#

urlpatterns = patterns('',

 [...]
 # Add myapp's URLs to /myapp
 url(r'^myapp/, include('apps.myapp.urls')),
 [...]
)

This will mount myapp’s URLs under [root]/myapp. Now that your routes have been added to the main application’s router - we can add a view and a template.

apps/myapp/views.py

Imports
from django.shortcuts import render_to_response
from django.template import RequestContext

Models
from eve_db.models import MapSolarSystem

def start(request):

 """
 Returns information about Jita
 """

 # Get the object from DB
 jita = MapSolarSystem.objects.get(name='Jita')

 # Add that object to our context, so we can use it in our template
 rcontext = RequestContext(request, {'system_object': jita})

 # Render our template
 return render_to_response('myapp_start.haml', rcontext)

Create a file called myapp_start.haml inside apps/myapp/templates.

apps/myapp/templates/myapp_start.haml

- extends "base.haml"
- block title
 = block.super
 This is my new app's title :D
- block content
 %h1
 = system_object.name
 %p
 Region: {{system_object.region.name}}

Once you have done all that, run django-admin.py runserver, open http://localhost:8000/myapp/start/ and admire your first app.
I recommend you to play around with all kinds of models, parameters in the URL (just look at the existing apps to see how that works) and the layout - especially Bootstrap’s built-in classes. Try to change small things at first and then work your way up to the bigger ones - that way you’ll quickly learn how to do stuff with Element43.

Once you’re done with creating something useful, just send us a pull request and we’ll review your code then and merge it into the main repository.

Miscellaneous

Coding Style

We like to stick with the PEP8 [http://www.python.org/dev/peps/pep-0008/] coding style guidelines with certain exceptions like a character limit of 120 characters per line. Please also comment you code extensively and use docstrings whenever possible!

Git

Element43’s repository is stored at GitHub - to familiarize yourself with git we recommend taking the free TryGit [http://try.github.com/levels/1/challenges/1] course.

Code Editor

The team uses all kinds of editors and IDEs including:

	
	Sublime Text [http://www.sublimetext.com] - Cross-platform extensible editor

	
	Try the sublime package manager and install SublimeLinter, Hamlpy, Python PEP8 Autoformat, SublimeCodeIntel, SublimeLinter and SublimeRope - those are some really useful packages which add IDE-like features without slowing-down the editor

	Komodo IDE [http://www.activestate.com/komodo-ide] - Cross-platform IDE

	Chocolat [http://chocolatapp.com] - Pretty Mac OS only IDE

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Element43 1.0 documentation

Installation

This guide provides you with all the information you need to get your personal local development instance of element43 running, so you can start hacking on it as soon as possible. Should you encounter any problems do not hesitate to ask us on irc.coldfront.net on channel #element43!

Virtual Development Environment

Our virtual devevelopment environment and its installation instructions can be found here [https://github.com/EVE-Tools/vagrant-element43]. Just follow the instructions to automatically set up your very own instance of Element43!

Further reading

Consider reading our getting started guide.

Manual Installation Instructions

Prerequisites

Windows

You are running Windows? No problem! Get VirtualBox [https://www.virtualbox.org] and set up a Linux VM as element43 was not designed to run on Windows. It is recommended to pick a distribution like Ubuntu Desktop [http://www.ubuntu.com/download/desktop] for both running and editing element43. This gives you the advantage of having a self-contained portable development environment with all the editors and tools you need, instead of having to deal with transferring files between your host system and the guest system. Continue reading in the Linux section of this page once you are done installing Linux.

OS X

Running element43 on OS X is simple. First, download and install Xcode 4 and its command line tools. Second, install the package manager Homebrew [http://mxcl.github.com/homebrew/] and run

brew install libevent memcached libmemcached gfortran zeromq redis

from your favorite terminal app. This installs the basic binary dependencies of element43. The only thing missing is the PostgreSQL server: Just download and install Postgres.app [http://postgresapp.com] The login credentials are:

Host: localhost

User: <your os x user>

Password: <empty>

You should change those parameters later on.
Finally, run

sudo easy_install pip

Linux

For running element43 on Linux you need several packages installed:

	libevent-dev

	memcached

	libmemcached-dev

	gfortran

	libatlas-base-dev

	libzmq

	postgresql-server

	postgresql-client

	python-dev

	python-pip

The actual names of the packages may vary in you distribution. You should be able to use this list with on Debian-based distros like Ubuntu. There are tons of tutorials on the net how to configure the individual components so this won’t be covered in this article - just google around if you are not sure.

Setting up element43

The following steps apply for all operating systems.

Setting up virtualenv

To keep all of element43’s dependencies cleanly separated from your local packages, we will be setting up a virtualenv for the new installation.

	Create a new folder where you want to install element43 to

	cd into that folder and run sudo pip install virtualenv and sudo pip install virtualenvwrapper

	Run source /usr/local/bin/virtualenvwrapper.sh and/or add this line to your .bashrc or .zshrc so you are able to use virtualenvwrapper without having to source it every single time

	Followed by mkvirtualenv element43 to create a virtualenv named element43

Forking / Cloning element43

Unless you already have commit rights for the main repository [https://github.com/EVE-Tools/element43]
, fork it into your own GitHub account so you can actually write to the repo.

	Run git clone --recursive <your repository url here>

From now on we will assume that your repo’s root directory is called ``element43``.

Installing Python dependencies

	Run add2virtualenv element43/webapp to add element43 to your Python path

	Run echo "export DJANGO_SETTINGS_MODULE=element43.settings.local" >> $VIRTUAL_ENV/bin/postactivate

	Run echo "unset DJANGO_SETTINGS_MODULE" >> $VIRTUAL_ENV/bin/postdeactivate

	Run export DJANGO_SETTINGS_MODULE=element43.settings.local

	Run pip install -r element43/requirements/local.txt to install the Python dependencies for developers

There is a high probability of this process failing (especially on Linux) mainly due to missing requirements. If you encounter any problems, have a close look at the error messages to identify the cause of the error. If cannot solve it on your own, head for the IRC.

Preparing the database

	
	Create a database and a user called element43 with the password element43 using either the cli or a tool like pgAdmin [http://www.pgadmin.org] or Navicat [http://www.navicat.com]

	CREATE DATABASE "element43"
WITH OWNER "element43"
ENCODING 'UTF8'
LC_COLLATE = 'en_US.UTF-8'
LC_CTYPE = 'en_US.UTF-8'
TEMPLATE template0;

	Ensure the new user has all rights for the newly-created database!

	Only if you have no other choice edit the settings file at element43/webapp/element43/settings/local.py

	Navigate to element43/webapp/ then ./manage.py syncdb and do not create a superuser

	Run ./manage.py migrate eve_db

	Run ./manage.py migrate apps.common

	Run ./manage.py migrate apps.market_data

	Run ./manage.py migrate apps.api

	Run ./manage.py migrate djcelery

	Download and extract the latest dump from http://files.zweizeichen.org/dump.zip

	Import the dump with django-admin.py eve_import_ccp_dump <location of dump>

	Seed your DB with the latest API info available from CCP via django-admin.py initapi

Running element43

Ensure postgresql-server, memcached and redis-server are running and properly configured

Gather initial market data

	
	Pick one of the two consumers available

	
	Either the standard Python one located at element43/consumer/ - its setup instructions are located on this site, too

	Or the 100% hipster NodeJS one [https://github.com/EVE-Tools/node-43] which is more efficient and does not require cron jobs to work properly, however you have to install NodeJS and npm first

	Let the consumer run for some hours to gather some initial data

Additional applications

	Run celery worker -P eventlet -c 10 -A element43 for parallel EVE API polling and several other scheduled tasks

	Run celery -A element43 beat for task scheduling

	Run python pathfind.py at element43/pathfind for the pathfinding API

Running the devserver

	You should then be ready to run the development webserver (element43/webapp): django-admin.py runserver

	Congratulations! You are ready to hack on element43 now :D

Further reading

Consider reading our getting started guide.

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Element43 1.0 documentation

Architecture

At first element43’s structure might seem a little intimidating to someone who is new to Django or similar frameworks. This document is for understanding the app’s basic structure. Each part has or will have its own, detailed documentation. Element43 is basically made up of three parts: the consumer the webapp and the pathfinding API.

Consumer

The consumer connects to EMDR’s [https://eve-market-data-relay.readthedocs.org/en/latest/] data feed and stores market data into the tables prefixed with market_data_. The consumer also analyzes incoming data for suspicious orders and does some basic statistical processing to speed-up the main application. Currently there are two consumers available:

	
	A python based one located at element43/consumer

	
	Documentation can be found here, too

	And a NodeJS based one [https://github.com/EVE-Tools/node-43] which aims to be more efficient

Django Web App

This is the main part of element43. It handles all the functionality of displaying data, importing data from CCP’s API and authentication of users. In order to keep things clear and modular, element43 is divided into several apps of which each one is only performing a very specific set of tasks. This way every app has access to all the data stored in the database and some common functions without the code getting confusing.

Currently there are sixteen different apps in element43/webapp/element43/apps/:

	App
	Function
	

	api
	Handles EVE API imports and associated models. Does not actually render anything. Mainly contains Celery tasks and API models.
	

	auth
	Handles the registration, authentication and deactivation of expired accounts. Does not contain any models.
	

	common
	Renders all the basic templates like home and about. Also contains util.py with many useful shared functions.
	

	dashboard
	App for displaying the dashboard and character information once the user logged in.
	

	legacy_api
	Provides API functionality compatible with eve-central’s API
	

	manufacturing
	An advanced manufacturing calculator.
	

	market_browser
	Provides the market browser.
	

	market_data
	Element43’s core. Contains all market-data-related models as well as some helper functions, market history JSON generation and database maintenance tasks.
	

	market_scanner
	Contains the market scanners.
	

	market_station
	App for displaying station-related market info.
	

	market_tradefinder
	Contains a basic region-based tradefinder.
	

	quicklook
	Quicklook views for items and regions.
	

	rest_api
	The core of our REST API based on Django REST Framework.
	

	rest_framework
	REST API assets which have to reside here because of a limitation in Django REST Framework.
	

	user_settings
	Presents the user account settings. Allows for adding API keys, characters or changing profile information.
	

	wallet
	Displays wallet-specific information like the journal or transactions using the API models.
	

	feedreader
	Retrieves popular EVE-related RSS feeds for display on the dashboard.
	

See the model and database documentation for further information

Pathfinding

The pathfinding app provides a basic HTTP-based pathfinding API.

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Element43 1.0 documentation

Apps

This document focuses on a detailed description of each app’s models and views. This should be enough to acquaint you with the basic workings of element43.

Large parts of this document are automatically generated and there are known problems with autogenerating docs for our views. Please consult the docstrings in the code if some piece of documentation is missing here.

api

Models

	
class apps.api.models.APIKey(*args, **kwargs)

	Holds API information for a user. One to many with user table.

	Parameters:	
	id (AutoField) – Id

	keyid (PositiveIntegerField) – keyID for this character

	vcode (TextField) – vCode for this key

	expires (DateTimeField) – Expiry date for the key

	accessmask (BigIntegerField) – Access mask for this key

	is_valid (BooleanField) – Is this key valid?

	is_character_key (BooleanField) – Is this a character key? false = corporation key

	user_id (ForeignKey) – Fkey relationship to user table

	
class apps.api.models.APITimer(*args, **kwargs)

	Tracking API timers

	Parameters:	
	id (AutoField) – Id

	character_id (ForeignKey) – FKey relationship to character table

	corporation_id (ForeignKey) – FKey relationship to corporation table

	apisheet (TextField) – Filename of API Call sheet

	nextupdate (DateTimeField) – Date/Time of next allowed API refresh

	
class apps.api.models.CharSkill(*args, **kwargs)

	Tracking skills

	Parameters:	
	id (AutoField) – Id

	character_id (ForeignKey) – FKey relationship to character table

	skill_id (ForeignKey) – FK relationship to skill table

	skillpoints (PositiveIntegerField) – SP trained

	level (PositiveIntegerField) – level trained

	
class apps.api.models.Character(*args, **kwargs)

	Holds information specific to a character. This is a one-to-many relationship between users & characters
(ie, a user can have multiple characters, but a character can only have one user). This stores API key information
and other useful character-specific info.

	Parameters:	
	id (BigIntegerField) – Unique key for this character, uses CCP character ID

	user_id (ForeignKey) – FKey relationship to user table

	apikey_id (ForeignKey) – FKey relationship to api key table

	name (TextField) – Name of character

	dob (DateTimeField) – DoB of character

	race (TextField) – Race of character

	bloodline (TextField) – Bloodline of character

	ancestry (TextField) – Ancestry of character

	gender (TextField) – Gender

	corp_name (TextField) – Name of corporation character is member of

	corp_id (BigIntegerField) – id of corporation

	alliance_name (TextField) – Name of alliance

	alliance_id (BigIntegerField) – id of alliance

	clone_name (TextField) – clone level name

	clone_skill_points (PositiveIntegerField) – max SP of clone

	balance (BigIntegerField) – isk on hand

	implant_memory_name (TextField) – name of memory implant

	implant_memory_bonus (PositiveIntegerField) – memory bonus

	implant_intelligence_name (TextField) – name of intelligence implant

	implant_intelligence_bonus (PositiveIntegerField) – intelligence bonus

	implant_charisma_name (TextField) – name of charisma implant

	implant_charisma_bonus (PositiveIntegerField) – charisma bonus

	implant_willpower_name (TextField) – name of willpower implant

	implant_willpower_bonus (PositiveIntegerField) – willpower bonus

	implant_perception_name (TextField) – name of perception implant

	implant_perception_bonus (PositiveIntegerField) – perception bonus

	cached_until (DateTimeField) – data cached until

	
class apps.api.models.Corp(*args, **kwargs)

	Table for CorporationSheet information

	Parameters:	
	id (AutoField) – Id

	corp_id (BigIntegerField) – Corporation ID

	name (TextField) – Corporation name

	ticker (TextField) – Corp ticker

	ceo_id (BigIntegerField) – character ID of CEO

	ceo_name (TextField) – CEO Name

	stastation_id (ForeignKey) – Station corp headquarters is in

	description (TextField) – Description of corp if provided

	url (TextField) – URL for corporation

	tax_rate (PositiveIntegerField) – Tax rate of corporation

	member_count (PositiveIntegerField) – Number of members of corp

	member_limit (PositiveIntegerField) – Max number of members corp can support

	shares (PositiveIntegerField) – Number of shares of corp outstanding

	
class apps.api.models.CorpDivision(*args, **kwargs)

	Divisions in a corp

	Parameters:	
	id (AutoField) – Id

	corporation_id (ForeignKey) – FK to corporation table

	account_key (PositiveIntegerField) – account key of corporation division

	description (TextField) – Name of division

	
class apps.api.models.CorpPermissions(*args, **kwargs)

	Permissions for corporations so multiple people can see corporation data

	Parameters:	
	id (AutoField) – Id

	user_id (ForeignKey) – FKey relationship to user table

	corporation_id (ForeignKey) – FK to corporation table

	character_id (ForeignKey) – FKey relationship to character table

	view_wallet (BooleanField) – can view corporate wallet

	view_transaction (BooleanField) – can view corporate transactions

	view_research (BooleanField) – can view corporate research

	modify_rights (BooleanField) – can modify corprate rights

	
class apps.api.models.CorpWalletDivision(*args, **kwargs)

	Divisions in a corp

	Parameters:	
	id (AutoField) – Id

	corporation_id (ForeignKey) – FK to corporation table

	account_key (PositiveIntegerField) – account key of corporation wallet account division

	description (TextField) – Name of wallet account division

	
class apps.api.models.JournalEntry(*args, **kwargs)

	Stores char/corp journal entries.

	Parameters:	
	id (AutoField) – Id

	ref_id (BigIntegerField) – Unique refID from CCP for this journal entry. Not primary key - multiple characters could have access to a single corporation’s wallet API.

	character_id (ForeignKey) – FK relationship to character table

	corporation_id (ForeignKey) – FK relationship to corporation table

	date (DateTimeField) – Date and time of the transaction.

	ref_type_id (ForeignKey) – Transaction type FKey relationship.

	amount (FloatField) – Amount transferred between parties.

	balance (FloatField) – Balance in this wallet after this transaction.

	owner_name_1 (TextField) – Name of first party in the transaction.

	owner_id_1 (BigIntegerField) – Character or corporation ID of the first party.

	owner_name_2 (TextField) – Name of second party in the transaction.

	owner_id_2 (BigIntegerField) – Character or corporation ID of the second party.

	arg_name_1 (TextField) – Has different meanings - see: http://wiki.eve-id.net/APIv2_Char_JournalEntries_XML#Arguments

	arg_id_1 (PositiveIntegerField) – Has different meanings - see: http://wiki.eve-id.net/APIv2_Char_JournalEntries_XML#Arguments

	reason (TextField) – Has different meanings - see: http://wiki.eve-id.net/APIv2_Char_JournalEntries_XML#Arguments

	tax_receiver_id (BigIntegerField) – CorpID who received tax for this transaction.

	tax_amount (FloatField) – Amount of tax for this transaction.

	
class apps.api.models.MarketOrder(*args, **kwargs)

	This is the market order table off the CCP API

	Parameters:	
	id_id (ForeignKey) – Unique key for this order, uses CCP order ID

	character_id (ForeignKey) – FK relationship to character table

	corporation_id (ForeignKey) – FK relationship to corporation table

	order_state (PositiveIntegerField) – Valid states: 0 = open/active, 1 = closed, 2 = expired (or fulfilled), 3 = cancelled, 4 = pending, 5 = character deleted

	account_key (PositiveIntegerField) – Which division this order is using as its account. Always 1000 for characters, but in the range 1000 to 1006 for corporations.

	escrow (FloatField) – Escrow amount for this order

	
class apps.api.models.MarketTransaction(*args, **kwargs)

	Stores char/corp market transactions.

	Parameters:	
	id (AutoField) – Id

	character_id (ForeignKey) – FK relationship to character table

	corporation_id (ForeignKey) – FK relationship to corporation table

	date (DateTimeField) – Date and time of the transaction.

	transaction_id (BigIntegerField) – Non-unique transaction ID.

	invtype_id (ForeignKey) – The item traded in this transaction.

	quantity (IntegerField) – Number of items bought/sold.

	price (FloatField) – Price per unit of the item.

	client_id (BigIntegerField) – Character or corporation ID of the other party.

	client_name (TextField) – Name of other party.

	station_id (ForeignKey) – Station the transaction took place at.

	is_bid (BooleanField) – Marks whether this item was bought or sold.

	is_corporate_transaction (BooleanField) – Marks whether this is a corporate or a personal transaction.

	journal_transaction_id (BigIntegerField) – Journal refID for this transaction.

	
class apps.api.models.RefType(*args, **kwargs)

	This provides descriptions for the diffrent RefTypes.

	Parameters:	
	id (PositiveIntegerField) – Unique refTypeID from API.

	name (TextField) – Name of this refType

	
class apps.api.models.Research(*args, **kwargs)

	Stores research jobs.

	Parameters:	
	id (AutoField) – Id

	character_id (ForeignKey) – Character who owns this job.

	agent_id (ForeignKey) – The agent.

	skill_id (ForeignKey) – The skill used for the research.

	start_date (DateTimeField) – The date the character began the current research with the agent at the current points per day.

	points_per_day (FloatField) – The number of points generated per day.

	remainder_points (FloatField) – The number of points remaining since last datacore purchase and/or points_per_day update.

	
class apps.api.models.Skill(*args, **kwargs)

	This is the global Eve skill tree

	Parameters:	
	id (PositiveIntegerField) – Skill ID from API

	name (TextField) – Name of skill

	group_id (ForeignKey) – FK to skill group

	published (BooleanField) – Published flag

	description (TextField) – description of skill

	rank (PositiveIntegerField) – skill difficulty rank

	primary_attribute (TextField) – Primary attribute for skill

	secondary_attribute (TextField) – secondary attribute for skill

	
class apps.api.models.SkillGroup(*args, **kwargs)

	This is the global eve skill groups

	Parameters:	
	id (PositiveIntegerField) – Group ID from API

	name (TextField) – Name of skill group

auth

Views

	
apps.auth.views.activate(request, key)

	Handles the activation by activation links which are provided by e-mail

	
apps.auth.views.login(request)

	View for logging users in

	
apps.auth.views.logout(request)

	View for logging users out

	
apps.auth.views.register(request)

	This view handles user registration

	
apps.auth.views.registration_success(request)

	This view is called when the registration succeeded

	
apps.auth.views.reset_password(request)

	View for resetting a user’s password

common

Views

dashboard

Views

legacy_api

Views

	
apps.legacy_api.views.marketstat.legacy_marketstat(request)

	This will match the Eve-central api for legacy reasons

TODO: multiple regions submitted, multiple typeIDs, better error handling

	
apps.legacy_api.views.marketstat.marketstat(request)

	This is our own e43 api export that provides more data than other sites

TODO: multiple regions submitted, multiple typeIDs, better error handling

	
apps.legacy_api.views.quicklook.quicklook(request)

	This is the JSON response object for the API, not E-C safe

TODO: multiple regions submitted, multiple typeIDs, better error handling

manufacturing

Views

	
apps.manufacturing.views.base.blueprint_search(request)

	Adds the blueprint search to the first form of the manufacturing calculator.

market_browser

Views

market_data

Models

Model definitions for storing market data messages.

	
class apps.market_data.models.ActiveOrdersManager

	Custom manager that only returns active orders.

Example: Get all active orders –> Orders.active.all()

	
class apps.market_data.models.ArchivedOrders(*args, **kwargs)

	Inactive orders, which have been archived automatically.

	Parameters:	
	generated_at (DateTimeField) – When the market data was generated on the user’s machine.

	mapregion_id (ForeignKey) – Region ID the order originated from.

	invtype_id (ForeignKey) – The Type ID of the item in the order.

	price (FloatField) – Item price, as reported in the message.

	volume_remaining (PositiveIntegerField) – Number of remaining items for sale.

	volume_entered (PositiveIntegerField) – Number of items initially put up for sale.

	minimum_volume (PositiveIntegerField) – Minimum volume before the order finishes.

	order_range (IntegerField) – How far the order is visible. 32767 = region-wide

	id (BigIntegerField) – Unique order ID from EVE for this order.

	is_bid (BooleanField) – If True, this is a buy order. If False, this is a sell order.

	issue_date (DateTimeField) – When the order was issued.

	duration (PositiveSmallIntegerField) – The duration of the order, in days.

	stastation_id (ForeignKey) – The station that this order is in.

	mapsolarsystem_id (ForeignKey) – ID of the solar system the order is in.

	is_suspicious (BooleanField) – If this is True, we have reason to question this order’s validity

	message_key (CharField) – The unique hash that of the market message.

	uploader_ip_hash (CharField) – The unique hash for the person who uploaded this message.

	is_active (BooleanField) – is this a live order or is it history

	
class apps.market_data.models.ArchivedOrdersManager

	Custom manager that only returns archived orders.

Example: Get all archived orders –> Orders.archived.all()

	
class apps.market_data.models.EmdrStats(*args, **kwargs)

	Tracking statistics for EMDR messages

	Parameters:	
	id (AutoField) – Id

	status_type (SmallIntegerField) – Message type for statistics

	status_count (PositiveIntegerField) – Count of messages of specific type

	message_timestamp (DateTimeField) – When the stats were counted for this entry

	
class apps.market_data.models.EmdrStatsWorking(*args, **kwargs)

	Tracking statistics for EMDR messages

	Parameters:	
	id (AutoField) – Id

	status_type (SmallIntegerField) – Message type for statistics

	
class apps.market_data.models.History(*args, **kwargs)

	All the history data stored as a compressed JSON message in region/typeID groups

	Parameters:	
	id (CharField) – Primary key, based on UUID

	mapregion_id (ForeignKey) – Region ID the order originated from.

	invtype_id (ForeignKey) – The Type ID of the item in the order.

	history_data (TextField) – Compressed zlib data of the JSON message for history

	
class apps.market_data.models.ItemRegionStat(*args, **kwargs)

	Stats for items on a per region basis
processed when new orders come in during warehousing

	Parameters:	
	id (AutoField) – Id

	mapregion_id (ForeignKey) – FK to region table

	invtype_id (ForeignKey) – FK to type table

	buymean (FloatField) – Mean of buy price

	buyavg (FloatField) – Average of buy price

	sellmean (FloatField) – Mean of sell price

	sellavg (FloatField) – Avg of sell price

	buymedian (FloatField) – Median of buy price

	sellmedian (FloatField) – Median of sell price

	buyvolume (BigIntegerField) – total volume traded

	sellvolume (BigIntegerField) – total volume traded

	buy_95_percentile (FloatField) – 95th % of buy orders

	sell_95_percentile (FloatField) – 95th % of sell orders

	buy_std_dev (FloatField) – standard deviation of buy orders

	sell_std_dev (FloatField) – standard deviation of sell orders

	lastupdate (DateTimeField) – Date the stats were updated

	
class apps.market_data.models.ItemRegionStatHistory(*args, **kwargs)

	Stats for items on a per region basis
processed when new orders come in during warehousing

	Parameters:	
	id (AutoField) – Id

	mapregion_id (ForeignKey) – FK to region table

	invtype_id (ForeignKey) – FK to type table

	buymean (FloatField) – Mean of buy price

	buyavg (FloatField) – Average of buy price

	sellmean (FloatField) – Mean of sell price

	sellavg (FloatField) – Avg of sell price

	buymedian (FloatField) – Median of buy price

	sellmedian (FloatField) – Median of sell price

	buyvolume (BigIntegerField) – total volume traded

	sellvolume (BigIntegerField) – total volume traded

	buy_95_percentile (FloatField) – 95th % of buy orders

	sell_95_percentile (FloatField) – 95th % of sell orders

	buy_std_dev (FloatField) – standard deviation of buy orders

	sell_std_dev (FloatField) – standard deviation of sell orders

	date (DateTimeField) – Date the stats were inserted

	
class apps.market_data.models.OrderHistory(*args, **kwargs)

	Post-processed history

	Parameters:	
	id (AutoField) – Id

	mapregion_id (ForeignKey) – Region ID the order originated from.

	invtype_id (ForeignKey) – The Type ID of the item in the order.

	date (DateTimeField) – Date of the data

	numorders (PositiveIntegerField) – number of transactions for this item/region

	low (FloatField) – low price of orders for this item/region

	high (FloatField) – high price of orders for this item/region

	mean (FloatField) – mean price of orders for this item/region

	quantity (BigIntegerField) – quantity of item sold for this item/region

	
class apps.market_data.models.Orders(*args, **kwargs)

	A parsed order message with the details broken out into the various fields.
This represents a single line in a UUDIF rowset.

	Parameters:	
	generated_at (DateTimeField) – When the market data was generated on the user’s machine.

	mapregion_id (ForeignKey) – Region ID the order originated from.

	invtype_id (ForeignKey) – The Type ID of the item in the order.

	price (FloatField) – Item price, as reported in the message.

	volume_remaining (PositiveIntegerField) – Number of remaining items for sale.

	volume_entered (PositiveIntegerField) – Number of items initially put up for sale.

	minimum_volume (PositiveIntegerField) – Minimum volume before the order finishes.

	order_range (IntegerField) – How far the order is visible. 32767 = region-wide

	id (BigIntegerField) – Unique order ID from EVE for this order.

	is_bid (BooleanField) – If True, this is a buy order. If False, this is a sell order.

	issue_date (DateTimeField) – When the order was issued.

	duration (PositiveSmallIntegerField) – The duration of the order, in days.

	stastation_id (ForeignKey) – The station that this order is in.

	mapsolarsystem_id (ForeignKey) – ID of the solar system the order is in.

	is_suspicious (BooleanField) – If this is True, we have reason to question this order’s validity

	message_key (CharField) – The unique hash that of the market message.

	uploader_ip_hash (CharField) – The unique hash for the person who uploaded this message.

	is_active (BooleanField) – is this a live order or is it history

	
class apps.market_data.models.SeenOrders(*args, **kwargs)

	Track which orders we’ve seen in this last cycle.

	Parameters:	
	id (BigIntegerField) – Order ID

	region_id (PositiveIntegerField) – Region ID of seen order

	type_id (PositiveIntegerField) – Type ID of seen order

	
class apps.market_data.models.UUDIFMessage(*args, **kwargs)

	A raw JSON UUDIF market message. This is typically only used on local
development workstations.

	Parameters:	
	id (AutoField) – Id

	key (CharField) – I’m assuming this is a unique hash for the message.

	received_dtime (DateTimeField) – Time of initial receiving.

	is_order (BooleanField) – If True, this is an order. If False, this is history.

	message (TextField) – Full JSON representation of the message.

Views

	
apps.market_data.views.history_compare_json(request, *args, **kwargs)

	Returns a set of history data in JSON format. Defaults to Tritanium in The Forge.

	
apps.market_data.views.history_json(request, *args, **kwargs)

	Returns a set of history data in JSON format. Defaults to Tritanium in The Forge.

market_scanner

Views

market_station

Views

market_tradefinder

Views

quicklook

Views

rest_api

Views

rest_framework

Only contains static assets and templates.

user_settings

Views

wallet

Views

feedreader

Models

	
class apps.feedreader.models.Feed(*args, **kwargs)

	Holds information about a news-feed which gets updated regularly by a Celery task.

	Parameters:	
	id (AutoField) – Id

	url (URLField) – Newsfeed URL

	name (CharField) – Name of the feed

	icon_file (CharField) – Name of the feed’s icon file

	next_update (DateTimeField) – Timestamp for next update

	
class apps.feedreader.models.FeedItem(*args, **kwargs)

	Holds information about a news item in a news-feed.

	Parameters:	
	id (AutoField) – Id

	feed_id (ForeignKey) – FKey relationship to feed table

	title (CharField) – Title of the item

	description (TextField) – Short description of the item

	link (URLField) – Link to the text

	published (DateTimeField) – Time the item was published

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Element43 1.0 documentation

Consumer Documentation

Description

The consumer consists of five scripts:

	emdr-enqueue.py
This script connects to the remote relay(s) and grabs incoming messages and shoves them onto the “emdr-messages” queue in redis, making them available
to the dequeue script.

	emdr-dequeue.py
This is the main workhorse. We generally run from 2-4 of these processes at once as it’s “threaded” with greenlets. Really 1 is sufficient to keep up with
message frequency but redundancy isn’t a bad thing and redis makes sure the processes don’t get duplicate messages. This script does all the processing of incoming
EMDR messages - validating and inserting them into the database.

	emdr-stats-process.py
This script runs every 5 minutes from cron. It rolls up the current messages processed and puts them into the tracker table for us to output statistics.

	warehouse_orders.py
This script runs every 2 minutes from cron. It goes through and looks at all orders processed in the last 2 minutes and moves orders not seen in a region/type combo
to the “warehouse” table – ie, they are completed (either cancelled, purchased/sold, etc – no longer available).

	load_conquerable_stations.py
This script runs once a day (we run it during downtime). It goes and loads all the user-built outposts and puts them into the staStations table in the static data dump
so that they will display properly when pulling up orders.

Requirements

The consumer works off of the Eve-Market-Data-Relay feed. This requires a number of modules (see requirements.txt) to be installed.
Additionally, you will need to have Zer0MQ installed (https://github.com/zeromq/zeromq2-x.git) and the pyzmq module installed from source (https://github.com/zeromq/pyzmq.git).
See their respective documentation for how to install.

Also required:

	redis

Optional, but useful:

	hotwatch

Installation

See the consumer.conf file - you can override any settings by creating a “local_consumer.conf” file and use the same sections/variable names (anything in local will override consumer.conf).
It is not recommended to change consumer.conf since that will get overwritten every time you pull from the repo.

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Element43 1.0 documentation

License

Copyright (c) 2012, The Eve-Tools Team (https://github.com/EVE-Tools)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Element43 1.0 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 apps	

 	
 	
 apps.api.models	

 	
 	
 apps.auth.views	

 	
 	
 apps.feedreader.models	

 	
 	
 apps.legacy_api.views.marketstat	

 	
 	
 apps.legacy_api.views.quicklook	

 	
 	
 apps.manufacturing.views.base	

 	
 	
 apps.market_data.models	

 	
 	
 apps.market_data.views	

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Element43 1.0 documentation

Index

 A
 | B
 | C
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | O
 | Q
 | R
 | S
 | U

A

 	

 	activate() (in module apps.auth.views)

 	ActiveOrdersManager (class in apps.market_data.models)

 	APIKey (class in apps.api.models)

 	APITimer (class in apps.api.models)

 	apps.api.models (module)

 	apps.auth.views (module)

 	apps.feedreader.models (module)

 	

 	apps.legacy_api.views.marketstat (module)

 	apps.legacy_api.views.quicklook (module)

 	apps.manufacturing.views.base (module)

 	apps.market_data.models (module)

 	apps.market_data.views (module)

 	ArchivedOrders (class in apps.market_data.models)

 	ArchivedOrdersManager (class in apps.market_data.models)

B

 	

 	blueprint_search() (in module apps.manufacturing.views.base)

C

 	

 	Character (class in apps.api.models)

 	CharSkill (class in apps.api.models)

 	Corp (class in apps.api.models)

 	

 	CorpDivision (class in apps.api.models)

 	CorpPermissions (class in apps.api.models)

 	CorpWalletDivision (class in apps.api.models)

E

 	

 	EmdrStats (class in apps.market_data.models)

 	

 	EmdrStatsWorking (class in apps.market_data.models)

F

 	

 	Feed (class in apps.feedreader.models)

 	

 	FeedItem (class in apps.feedreader.models)

H

 	

 	History (class in apps.market_data.models)

 	history_compare_json() (in module apps.market_data.views)

 	

 	history_json() (in module apps.market_data.views)

I

 	

 	ItemRegionStat (class in apps.market_data.models)

 	

 	ItemRegionStatHistory (class in apps.market_data.models)

J

 	

 	JournalEntry (class in apps.api.models)

L

 	

 	legacy_marketstat() (in module apps.legacy_api.views.marketstat)

 	login() (in module apps.auth.views)

 	

 	logout() (in module apps.auth.views)

M

 	

 	MarketOrder (class in apps.api.models)

 	marketstat() (in module apps.legacy_api.views.marketstat)

 	

 	MarketTransaction (class in apps.api.models)

O

 	

 	OrderHistory (class in apps.market_data.models)

 	

 	Orders (class in apps.market_data.models)

Q

 	

 	quicklook() (in module apps.legacy_api.views.quicklook)

R

 	

 	RefType (class in apps.api.models)

 	register() (in module apps.auth.views)

 	registration_success() (in module apps.auth.views)

 	

 	Research (class in apps.api.models)

 	reset_password() (in module apps.auth.views)

S

 	

 	SeenOrders (class in apps.market_data.models)

 	Skill (class in apps.api.models)

 	

 	SkillGroup (class in apps.api.models)

U

 	

 	UUDIFMessage (class in apps.market_data.models)

 Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Element43 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, EVE-Tools Team.
 Created using Sphinx 1.2.2.

_static/down.png

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

