

ElasticUtils

Deprecated January 5th, 2015

This project is no longer being maintained. Last release is
ElasticUtils 0.10.2. You should consider switching to
elasticsearch-dsl-py [https://github.com/elasticsearch/elasticsearch-dsl-py].

	Version:	dev

	Code:	https://github.com/mozilla/elasticutils

	License:	BSD; see LICENSE file

	Issues:	https://github.com/mozilla/elasticutils/issues

	Documentation:	http://elasticutils.readthedocs.org/

	IRC:	#elasticutils on irc.mozilla.org

ElasticUtils is a Python library that gives you a chainable search API
for Elasticsearch [http://elasticsearch.org/] as well as some other
tools to make it easier to integrate Elasticsearch into your
application.

So what’s it like? Let’s do a couple basic things:

Create an instance of elasticutils.S and tell it which
index and doctype to look at.

>>> from elasticutils import S, F
>>> s = S().indexes('blog-index').doctypes('blog-entry')

Print the count of everything in that index with that type:

>>> s.count()
4

Show titles of all blog entries with “elasticutils” in the title:

>>> s = s.query(title__match='elasticutils')
>>> [result['title'] for result in s]
[u'ElasticUtils v0.4 released!', u'elasticutils status -- May 18th, 2012',
u'ElasticUtils sprint at PyCon US 2013']

You can also use properties rather than keys:

>>> [result.title for result in s]
[u'ElasticUtils v0.4 released!', u'elasticutils status -- May 18th, 2012',
u'ElasticUtils sprint at PyCon US 2013']

Filter out entries related to PyCon:

>>> s = s.filter(~F(tag='pycon'))
>>> [result['title'] for result in s]
[u'ElasticUtils v0.4 released!', u'elasticutils status -- May 18th, 2012']

Show only the top result:

>>> s = s[:1]
>>> [result['title'] for result in s]
[u'ElasticUtils v0.4 released!']

That’s the gist of it!

Project

	What’s new in ElasticUtils

	Elasticsearch theory

	Resources

User’s Guide

	Installation

	Indexing

	Mapping types and Indexables

	Searching

	More like this: MLT

	Debugging

	API docs

	Migrating from Elasticsearch 0.90 to 1.x with ElasticUtils

Using ElasticUtils with Django

	Using ElasticUtils with Django

	Django API docs

Contributor’s Guide

	Join this project!

	Hacking HOWTO

	Conventions

	Documentation

	Running and writing tests

	Release process

Sample programs

	Basic sample program

	Sample program using facets

Indices and tables

	Index

What’s new in ElasticUtils

	Version 0.11: There will be no 0.11

	Version 0.10.3: March 4th, 2015

	Version 0.10.2: October 10th, 2014

	Version 0.10.1: September 22nd, 2014

	Version 0.10: August 19th, 2014

	Version 0.9.1: April 7th, 2014

	Version 0.9: April 3rd, 2014

	Version 0.8.2: January 6th, 2014

	Version 0.8.1: September 13th, 2013

	Version 0.8: August 19th, 2013

	Version 0.7: Released June 12th, 2013

	Version 0.6: Released January 17th, 2013

	Version 0.5: Released September 4th, 2012

	Version 0.4: Released July 31st, 2012

	Version 0.3: Released June 1st, 2012

Version 0.11: There will be no 0.11

Warning

Development on this project has ceased. There will be no 0.11.

Version 0.10.3: March 4th, 2015

Changes:

	Added support for terms_stats facet.

Version 0.10.2: October 10th, 2014

Note

This has been tested with Elasticsearch 0.90 up through 1.3.4.
We don’t support versions of earlier than 0.90.

This supports elasticsearch-py >= 1.0.

This is a bridging release to help people migrate from Elasticsearch
<= 0.90 to Elasticsearch >= 1.0.

The next version of ElasticUtils will not support versions of
Elasticsearch < 1.0.

Changes:

	Fixed monkeypatch to work with all bulk op_types (e.g. insert,
create, update and delete)

Version 0.10.1: September 22nd, 2014

Note

This supports Elasticsearch 0.90, 1.0, 1.1 and 1.2. It doesn’t
support versions earlier than 0.90 or later than 1.2.

This supports elasticsearch-py >= 1.0.

This is a bridging release to help people migrate from Elasticsearch
<= 0.90 to Elasticsearch >= 1.0.

The next version of ElasticUtils will not support versions of
Elasticsearch < 1.0.

API-breaking changes:

	requires elasticsearch-py >= 1.0

Changes:

	Add distance filter

	Fix tests to work with Elasticsearch 1.2

	Invert monkeypatch for bulk indexing

	Fix infinite recursion when pickling MappingType instances

	Invert monkeypatch–ElasticUtils now requires elasticsearch-py >= 1.0

Version 0.10: August 19th, 2014

Note

This version supports Elasticsearch 0.90, 1.0 and 1.1. It does not
support versions earlier than 0.90 or later than 1.1.

ElasticUtils 0.10 does not work with elasticsearch-py > 0.4.5.

This is a bridging release to help people migrate from Elasticsearch
<= 0.90 to Elasticsearch >= 1.0.

The next version of ElasticUtils will not support versions of
Elasticsearch < 1.0.

API-breaking changes:

	big ``.values_list()`` and ``.values_dict()`` changes

.values_list() and .values_dict() will now always specify
the Elasticsearch fields property.

If you call these two functions with no arguments (i.e. you specify
no fields), they will send fields=* to Elasticsearch. It will
send any fields marked as stored in the document mapping. If you
have no fields marked as stored, then it will return the id and type
of the result.

If you call these two functions with arguments (i.e. you specify
fields), then it’ll return those fields—same as before.

However, they now return all values as lists. For example:

>>> S().values_list()
[([100], ['bob'], [40]), ...]

>>> S().values_list('id')
[([100],), ([101],), ...]

>>> S().values_dict()
[({'id': [100], 'name': ['bob'], 'weight': [40]}), ...]

>>> S().values_dict('id', 'name')
[({'id': [100], 'name': ['bob']}), ...]

	Removed text and text_phrase queries. They’re renamed
in Elasticsearch to match and match_phrase.

	Removed startswith query. Replace uses of it with prefix.

Changes:

	Python 3 support (Python >= 3.3)

	Supports Elasticsearch 0.90, 1.0 and 1.1

Version 0.9.1: April 7th, 2014

Changes:

	Fixed bug with facets that are both sized and filtered

Version 0.9: April 3rd, 2014

Note

This is a big change. We switched from pyelasticsearch to
elasticsearch-py. The Elasticsearch object you get back from
get_es is pretty different. When you upgrade to ElasticUtils
v0.9, you’ll probably need to rewrite code.

If this terrifies you, read through these notes carefully and/or
stay with ElasticUtils v0.8.

Note

This version supports Elasticsearch 0.20 through 0.90. It does not
yet support Elasticsearch 1.0. Support for 1.0 and later will be in
a later version of ElasticUtils.

API-breaking changes:

	elasticsearch-py >= v0.4.3 and < 1.0 required.

ElasticUtils now uses elasticsearch-py.

Note

You have to use elasticsearch-py >= v0.4.3 and < 1.0. ElasticUtils
does not support elasticsearch-py 1.0. Support for later versions
will come in a future ElasticUtils release.

	pyelasticsearch no longer needed

You can remove pyelasticsearch and its requirements.

	thrift now supported!

elasticsearch-py supports http, thrift and memcache protocols, so
you can use any of them now.

	pyelasticsearch -> elasticsearch-py changes.

If you called elasticutils.get_es() and got a pyelasticsearch
ElasticSearch object and did things with that (create index, create
mappings, delete indexes, indexing, cluster health, ...), you’re going
to need to make some changes.

You can either:

	rewrite that code to use elasticsearch-py Elasticsearch
equivalents, or

	write a different function that returns a pyelasticsearch ElasticSearch
object and use that

Rewriting shouldn’t be too hard. The elasticsearcy-py documentation [https://elasticsearch-py.readthedocs.org/en/latest/] is pretty good
and for most things, there’s a 1-to-1 translation. Also, in many cases
it’s cleaner, so you’ll probably be removing code.

	S.all() no longer returns all results

If you were using S.all() to return all search results, you should
change it to S.everything().

	`S._build_query()` was changed to `S.build_search()`

This makes the method public and also changes the name and documentation
to be more correct.

If you really need a S._build_query(), add it to your S subclass.

	Search results metadata is now in the `es_meta` object

Previously, you would access search results metadata like this:

obj._id
obj._highlight
obj._score

etc.

In order to make those accessible in Django templates, we moved them into
an es_meta object. You can now access them like this:

obj.es_meta.id
obj.es_meta.highlight
obj.es_meta.score

etc.

Changes:

	added S.everything() which does what S.all() did

	index_objects celery task can now take es and index args

	unindex_objects celery task can now take es and index args

	added S.suggestions() support

	added S.query_and_fetch() support

	added S.search_type()

	S.facet() can now take a size keyword argument

	S.facet_couts() now returns a dict of FacetResults objects

The FacetResults object contains all the data we get back
from that section in the Elasticsearch response.

	SearchResults now has facet data in facets property

	elasticutils.estestcase.ESTestCase available and cleaned up

Previously, it was in elasticutils/tests/__init__.py. This
makes it so everyone can use the same TestCase subclass we’re
using for our tests.

Version 0.8.2: January 6th, 2014

Changes:

	Allow pyelasticsearch 0.6.1.

This alleviates part of the problem in issue #163.

	Add tox.ini file.

We’re testing with Python 2.6 and 2.7 on Django 1.4, 1.5 and 1.6.

	Add caching for empty results.

ElasticUtils will now correctly remember when it got no results from
a search and won’t redo the search.

	Add support for query and filter facets.

	Attach facets to search result objects.

	order_by() accepts a dict as the sort field so you can do advanced sorts.

Version 0.8.1: September 13th, 2013

API-breaking changes:

	Indexable.index overwrite_existing argument default changed

In v0.8, we added the overwrite_existing argument, but made
it default to False. That’s different than what pyelasticsearch
does.

In v0.8.1, we changed the default to True which is in line with
what pyelasticsearch does.

If you were depending on the old behavior, then you need to
update your indexing code to set overwrite_existing=False.

Version 0.8: August 19th, 2013

API-breaking changes:

	pyelasticsearch v0.6 or later now required.

Further, since pyelasticsearch has released versions that aren’t
backwards compatible, we’re now pegging on specific versions.

	celery 2.5.5 or later now required.

You can ignore this if you’re not using the Django celery tasks.

	Indexable.index arguments changed

pyelasticsearch changed arguments, so we did, too. We dropped
the force_insert argument (which wasn’t working) and picked
up overwrite_existing.

overwrite_existing defaults to False which means it will
not overwrite existing documents in the index.

Note

This was a mistake since pyelasticsearch defaults to True.
We changed this in 0.8.1.

Changes:

	Added support for ``range`` queries and filters.

range is a nice shorthand for gte and lte.

	S.filter_raw added

If elasticutils.S.filter() isn’t doing as it’s told, then you
can skip it and use the Elasticsearch API to create the filter clause
of the search by hand with elasticutils.S.filter_raw().

	Moved requirements files to requirements/.

Version 0.7: Released June 12th, 2013

Note

This is a big change. We switched from pyes to pyelasticsearch. In
doing that, we changed a handful of signatures, nixed some
functionality that didn’t make any sense any more, and cleaned a
bunch of things up.

If this terrifies you, read through these notes carefully and/or
stay with v0.6.

API-breaking changes:

	pyelasticsearch v0.4 or later now required.

ElasticUtils now requires pyelasticsearch v0.4 or later and its
requirements.

	elasticutils.PYES_VERSION is removed.

Since we’re not using pyes, we removed elasticutils.PYES_VERSION.

	ElasticUtils no longer supports thrift.

Pretty sure we did a lousy job of supporting it before—it was all
in the pyes code and we had no tests for it.

	get_es() signatures have changed.

	takes urls now instead of hosts

	dump_curl argument is now gone

	default_indexes argument is gone

The arguments correspond with pyelasticsearch ElasticSearch
object.

ElasticUtils uses HTTP urls for connecting to Elasticsearch now.
Previously, you’d do:

get_es(hosts=['localhost:9200']) # Old way

Now you do:

get_es(urls=['http://localhost:9200']) # New way

The dump_curl argument was helpful for debugging, but we don’t
really need it anymore. See the Debugging for better
debugging methods.

Will now raise a DeprecationWarning if you pass in hosts
argument.

	S searches all indexes and doctypes by default.

Previously, if you did:

S()

it’d search an index named “default” for doctypes “document”. That
was dumb. Now it searches all indexes and all doctypes by default.

	S.es_builder is gone.

es_builder() was there to get around problems with pyes’ ES
class. The pyelasticsearch ElasticSearch class is more
straightforward, so we don’t need to do circus shenanigans.

You can probably do what you need to with either the es()
transform or by subclassing S and overriding the get_es()
method.

	MLT arguments changed.

The fields argument in the constructor was renamed to mlt_fields
to be in line with Elasticsearch API names.

Will now raise a DeprecationWarning if you pass in fields
argument.

	MappingType get_indexes renamed to get_index.

MappingType had a method called get_indexes. This is now
get_index because it should return a single index name.

	Added Indexable mixin for indexing bits for MappingTypes.

	Django: changed settings.

Changed ES_HOSTS setting to ES_URLS. This is both a name and a value
change. ES_URLS takes a list of strings each is an http url. You’ll
neex to update your settings files from:

ES_HOSTS = ['localhost:9200'] # Old way

to:

ES_URLS = ['http://localhost:9200'] # New way

ES_DUMP_CURL is gone.

	Django: removed the statsd code.

	Django: ESTestCase was improved, documented and bugs squashed.

It was improved, documented and bugs were squashed. It’s now used by
the test suite.

	Django: Indexable.index() method no longer has bulk argument.

The Indexable.index() method no longer does bulk indexing. The
way pyes did this was kind of squirrely and caused issues if you
didn’t have the order of operations correct.

Now Indexable.index() only indexes a single document.

But wait...

	Django: Indexable now has bulk_index().

pyes would keep track of all the things you wanted to bulk index
and then at some point push them all. Instead of doing it under the
hood, we added a separate bulk_index() method and now you control
how many items get indexed in bulk in one pass.

	Django: Indexable.refresh_index no longer takes a timeout argument.

pyelasticsearch ElasticSearch.refresh doesn’t take a timesleep
argument, so we don’t need that anymore.

	Django: Indexable es argument defaults to Indexable.get_es() now.

Previously it defaulted to elasticsearch.contrib.django.get_es(). Now
it defaults to Indexable.get_es() class method making it more flexible.

	Django: renamed DjangoMappingType to MappingType.

	Django: moved MappingType and Indexable.

They were in elasticutils.contrib.django.models and are now in
elasticutils.contrib.django. Yay for slightly shorter module paths!

	Django: ditched the cron module and its helpers.

It’s not clear they ever worked (issue #21) and there are no tests.

	pyes -> pyelasticsearch changes.

If you called .get_es() and got a pyes ES object and did
things with that (create index, create mappings, delete indexes,
indexing, cluster health, ...), you’re going to need to make
some changes.

You can either:

	rewrite that code to use pyelasticsearch ElasticSearch
equivalents, or

	write and use your own get_es() function that returns
a pyes ES object

Rewriting shouldn’t be too hard. The pyelasticsearch documentation [https://pyelasticsearch.readthedocs.org/en/latest/] is pretty good
and for most things, there’s a 1-to-1 translation.

Changes:

	pyes is no longer a requirement.

We no longer use pyes so you can remove it from your requirements.

	S.execute added

This allows you to explicitly execute a search and get back a
SearchResults instance.

See elasticutils.S.execute() for details.

	S.all added

Allows you to get all the search results possible rather than
just the first 10 search results which is the default.

You should consider using slices instead which allows you to
specify the maximum number of results to get back.

This is dangerous, so it’s been documented with lots of warnings.

See elasticutils.S.all() for details.

	Added support for ``match`` and ``match_phrase`` queries.

Elasticsearch 0.19.9 renamed text query to match query. This adds
support for match and match_phrase.

See Queries: query for details.

	Added support for ``wildcard`` and ``terms`` queries.

See Queries: query for details.

	Reimplemented filter and query implementation.

The new implementations allow you to add handling for filters and
queries that ElasticUtils doesn’t handle as well as override what
ElasticUtils does.

See elasticutils.S for details.

	S.query_raw added

If elasticutils.S.query() is getting you down, then you
can skip it and use the Elasticsearch API to create the query clause
of the search by hand with elasticutils.S.query_raw().

	Django: es_required_or_50x handles different exceptions.

Previously it handled:

	pyes.urllib3.MaxRetryError

	pyes.exceptions.IndexMissingException

	pyes.exceptions.ElasticSearchException

We’re not using pyes anymore, so now it handles:

	pyelasticsearch.exceptions.ConnectionError

	pyelasticsearch.exceptions.ElasticHttpError

	pyelasticsearch.exceptions.ElasticHttpNotFoundError

	pyelasticsearch.exceptions.InvalidJsonResponseError

	pyelasticsearch.exceptions.Timeout

You probably don’t need to do anything about this, but it’s good to
know.

	Django: celery tasks rewritten.

The celery tasks were rewritten, docs were updated, and tests were
added so they work now.

Version 0.6: Released January 17th, 2013

API-breaking changes:

	S.values_dict no longer always includes id.

values_dict no longer always includes an ‘id’ field in the
fields list if you don’t specify it.

Specifying no fields now returns all fields:

S().values_dict()

Specifying fields now returns only those fields:

S().values_dict('name', 'number')

	S.values_list no longer always includes id.

values_list no longer always includes an ‘id’ field in the
fields list if you don’t specify it.

Specifying no fields now returns all fields:

S().values_list()

Specifying fields now returns data for those fields in the order
the fields are specified:

S().values_list('name', 'number')

	Types have changed.

This is a big change.

Up through ElasticUtils v0.5, S could take a type and that type was
a model. This is now completely different.

In ElasticUtils v0.6 and later, S takes a MappingType. A
MappingType can be related to a model, but it itself should not be
a model. This allows us to return search results as a list of
MappingType instances which can do things rather than forcing you
to do a db hit to get back instances that can do things.

This is similar to how django-haystack works with the SearchIndex
class, except ElasticUtils doesn’t yet support declarative mapping
definition.

See documentation for more details.

	By default, results are now DefaultMappingType.

In ElasticUtils v0.4 and v0.5, if the S was untyped and you didn’t
specify either values_dict or values_list, then the results
would come back as a list of dicts.

In ElasticUtils v0.5, if the S is untyped and you didn’t specify
either values_dict or values_list, then the results would
come back as a list of DefaultMappingType.

See documentation for more details.

	elasticutils.contrib.django.models.SearchMixin is no more.

The SearchMixin class is replaced by DjangoMappingType which
relates Elasticsearch mapping types to Django ORM models and
Indexable which is a mixin that adds a bunch of index-related
infrastructure.

Changes:

	Added _source and _id to the metadata decorated on the
search results.

See documentation for more details.

	Fixed elasticutils.contrib.django.es_required_or_50x.

It works better now.

	prefix filter support.

ElasticUtils supports prefix filters. You can do this now:

S().filter(name__prefix='odin')

Version 0.5: Released September 4th, 2012

API-breaking changes:

None.

Changes:

	Added demote transform: it adds boosting query support allowing
you to do a negative query which reduces scores for documents that
match.

	The elasticutils version is now available in elasticutils.__version__
as well as elasticutils._version.__version__.

	Added __in support for queries. Doing:

S().query(foo__in=['a', 'b', 'c'])

does a terms query now.

	Added MLT class which does morelikethis.

	Added API documentation for S, an index, order_by docs, fixed some
icky bugs, and generally improved everything at least a little bit.

Version 0.4: Released July 31st, 2012

API-breaking changes:

	ElasticUtils no longer requires Django.

If you’re using Django, you should change your import statements
from things like:

from elasticutils import get_es, S, F

to:

from elasticutils.contrib.django import get_es, S, F

Further, Django helper modules like cron, tasks, and
models were all moved to elasticutils.contrib.django.

We moved ESTestCase from elasticutils.tests to
elasticutils.contrib.django.estestcase

If you don’t use Django, ElasticUtils is easier to use!

	S no longer requires a type.

If you’re not using Django, S no longer requires a type. If you
don’t specify a type, then ElasticUtils will return results as
dicts.

	Values and values_list changed.

values() was renamed to values_list().

values_list() (was values()) now always returns a list of
tuples even if you only requested a single field. Previously, doing
something like:

searcher = S().values_list('id')

would return something like:

[1, 2, 3, 4, 5]

Now it returns:

[(1,), (2,), (3,), (4,), (5,)]

	Facet functionality was rewritten.

Changed .facet() to be arg-driven and allow for filtered and
global_ flags.

Changed .facets() to .facet_counts() to match Django
Haystack.

Added .facet_raw() which allows you to do more complicated
facets including scripting. This is similar to the original
.facet() implementation.

Changes:

	Overhauled and cleaned up ElasticUtils tests. Running tests can be done
with:

DJANGO_SETTINGS_MODULE=es_settings nosetests

	Default timeout was changed from 1 second to 5 seconds.

	Added es transform: it allows you to specify the settings with which
to create an ES when the search is executed.

	Added es_builder transform: it allows you to specify a function
that builds an ES which will be executed to create an ES when the
search is executed.

	Added indexes transform: it allows you to specify the indexes to
use for the search.

	Added doctypes transform: it allows you to specify the doctypes
to use for the search.

	Added explain transform: it allows you to set the “explain” flag
which gives you an explanation of how the score was calculated.

I also added elasticutils.utils.format_elasticutils which formats
the resulting explanation text into something slightly more
readable. But it’s likely this will change in the future.

	Added boost transform: it allows you to do query-time field
boosting.

	Added support for prefix. It’s the same as startswith, but
it uses the same word that ElasticSearch uses. At some point, we’ll
remove support for startswith.

	Added support for text_phrase and query_string queries.

	Added highlight transform: generates highlighted fragments of
content that matched the query.

	Removed requirement for nuggets.

	Continued to improve documentation.

Version 0.3: Released June 1st, 2012

Changes:

	Add documentation for debugging, project details and other things.

	Minor project cleanup to make it easier to maintain and use

	Make get_es() more useful. It now takes overrides that allow you to
configure multiple kinds of ES objects for different purposes.

Elasticsearch theory

Indexes and types

Elasticsearch stores documents in an index allowing you to search
them. The index is a container for documents. You can have multiple
indexes in your cluster of Elasticsearch nodes.

Documents are typed. A type has a list of fields that are in the
documents of that type. ElasticUtils calls this a “mapping type” or a
“doc type” since the word “type” is somewhat ambiguous depending on
the context.

See also

	http://www.elasticsearch.org/guide/reference/glossary/#index

	Elasticsearch explanation of indexes

	http://www.elasticsearch.org/guide/reference/glossary/#mapping

	Elasticsearch explanation of mappings

	http://www.elasticsearch.org/guide/reference/glossary/#type

	Elasticsearch explanation of types

Queries vs. filters

A search can contain queries and filters. The two things are very
different.

A filter determines whether a document is in the results set or
not. It doesn’t affect scores. If you do a term filter on whether
field foo has value bar, then the result set ONLY has documents
where foo has value bar. Filters are fast and filter results are
cached in Elasticsearch when appropriate. Use filters when you can.

A query affects the score for a document. If you do a term query
on whether field foo has value bar, then the result set will score
documents where the query holds true higher than documents where the
query does not hold true. Queries are slower than filters and query
results are not cached in Elasticsearch.

The other place where this affects things is when you specify
facets. See Facets for details.

See also

	http://www.elasticsearch.org/guide/reference/query-dsl/

	Elasticsearch Filters and Caching notes

Resources

Documentation

Elasticsearch guide

	Elasticsearch documentation

	http://www.elasticsearch.org/guide/

	Elasticsearch 0.90 guide

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/0.90/index.html

	Elasticsearch 1.x guide

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index.html

This is the canonical documentation.

elasticsearch-py documentation

https://elasticsearch-py.readthedocs.org/en/latest/

ElasticUtils sits on top of elasticsearch-py, so their
documentation is very helpful.

Videos

Elasticsearch videos

http://www.elasticsearch.org/videos/

Lots of videos covering a variety of use cases and other things.

Elasticsearch video tutorials

http://www.elasticsearch.org/tutorials/

Covers deployment and using Elasticsearch for various things

FoodFightShow

http://www.youtube.com/watch?v=dBWlXdmjjzY

Covers Elasticsearch.

Erik Rose’s talks:

http://pyvideo.org/video/1784/elasticsearch-part-1-indexing-and-querying

Elasticsearch provides an easy path to clusterable full-text
search, with synonyms, faceting, and geographic math, but there’s
a paucity of written wisdom beyond its API docs. This talk, part 1
of a 2-part series, surveys its capabilities and shows how its
internal data structures and algorithms work. With the groundwork
laid, we explore how to choose efficient indexing and the right
queries to make your apps go fast.

Installation

Requirements

ElasticUtils requires:

	Python 2.6, 2.7, 3.3 or 3.4

	elasticsearch-py >= 1.0 and its dependencies

	Elasticsearch >= 0.90

This does not work with versions of Elasticsearch older than
0.90.

Installation

There are a few ways to install ElasticUtils:

From PyPI

Do:

$ pip install elasticutils

From git

Do:

$ git clone git://github.com/mozilla/elasticutils.git
$ cd elasticutils
$ python setup.py install

Indexing

	Overview

	Getting an Elasticsearch object

	Indexes

	Types and Mappings

	Indexing documents

	Deleting documents

	Refreshing

	Delete indexes

	Doing all of this with MappingTypes and Indexables

Overview

ElasticUtils is primarily an API for searching. However, before you
can search, you need to create an index and index your documents.

This chapter covers the indexing side of things. It does so
lightly—for more details, read through the elasticsearch-py
documentation [http://elasticsearch-py.readthedocs.org/en/latest/]
and the Elasticsearch guide [http://www.elasticsearch.org/guide/].

Getting an Elasticsearch object

ElasticUtils uses elasticsearch-py which comes with a handy
Elasticsearch object. This lets you:

	create indexes

	create mappings

	apply settings

	check status

	etc.

To access this, you use elasticutils.get_es() which creates
an Elasticsearch object for you.

See elasticutils.get_es() for more details.

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch

	elasticsearch-py Elasticsearch documentation.

Indexes

An index is a collection of documents.

Before you do anything, you need to have an index. You can create one
with .indices.create().

For example:

es = get_es()
es.indices.create(index='blog-index')

You can pass in settings, too. For example, you can set the refresh
interval when creating the index:

es.indices.create(index='blog-index', body={'refresh_interval': '5s'})

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.client.IndicesClient.create

	elasticsearch-py indices.create API documentation

	http://www.elasticsearch.org/guide/reference/api/admin-indices-create-index/

	Elasticsearch create index API documentation

Types and Mappings

A type is a set of fields. A document is of a given type if it has
those fields. Whenever you index a document, you specify which type
the document is. This is sometimes called a “doctype”, “document type”
or “doc type”.

A mapping is the definition of fields and how they should be indexed
for a type. In ElasticUtils, we call a document type that has a
defined mapping a “mapping type” mostly as a shorthand for “document
type with a defined mapping” because that’s a mouthful.

Elasticsearch can infer mappings to some degree, but you get a lot
more value by specifying mappings explicitly.

To define a mapping, you use .indices.put_mapping().

For example:

es = get_es()
es.indices.put_mapping(
 index='blog-index',
 doc_type='blog-entry-type',
 body={
 'blog-entry-type': {
 'properties': {
 'id': {'type': 'integer'},
 'title': {'type': 'string'},
 'content': {'type': 'string'},
 'tags': {'type': 'string'},
 'created': {'type': 'date'}
 }
 }
 }
)

You can also define mappings when you create the index:

es = get_es()
es.indices.create(
 index='blog-index',
 body={
 'mappings': {
 'blog-entry-type': {
 'properties': {
 'id': {'type': 'integer'},
 'title': {'type': 'string'},
 'content': {'type': 'string'},
 'tags': {'type': 'string'},
 'created': {'type': 'date'}
 }
 }
 }
 }
)

Note

If there’s a possibility of a race condition between creating the
index and defining the mapping and some document getting indexed,
then it’s good to create the index and define the mappings at the
same time.

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.client.IndicesClient.put_mapping

	elasticsearch-py indices.put_mapping API documentation

	http://www.elasticsearch.org/guide/reference/api/admin-indices-put-mapping/

	Elasticsearch put_mapping API documentation

	http://www.elasticsearch.org/guide/reference/mapping/

	Elasticsearch mapping documentation

Indexing documents

Use .index() to index a document.

For example:

es = get_es()

entry = {'id': 1,
 'title': 'First post!',
 'content': '<p>First post!</p>',
 'tags': ['status', 'blog'],
 'created': '20130423T16:50:22'
 }

es.index(index='blog-index', doc_type='blog-entry-type', body=entry, id=1)

If you’re indexing a bunch of documents at the same time, you should
use elasticsearch.helpers.bulk_index().

For example:

from elasticsearch.helpers import bulk_index

es = get_es()

entries = [{ '_id': 42, ... }, { '_id': 47, ... }]

bulk_index(es, entries, index='blog-index', doc_type='blog-entry-type')

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.Elasticsearch.index

	elasticsearch-py index API documentation

	http://elasticsearch-py.readthedocs.org/en/latest/helpers.html#elasticsearch.helpers.bulk_index

	elasticsearch-py bulk_index API documentation

	http://www.elasticsearch.org/guide/reference/api/index_/

	Elasticsearch index API documentation

	http://www.elasticsearch.org/guide/reference/api/bulk/

	Elasticsearch bulk index API documentation

Deleting documents

You can delete documents with .delete().

For example:

es = get_es()

es.delete(index='blog-index', doc_type='blog-entry-type', id=1)

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.Elasticsearch.delete

	elasticsearch-py delete API documentation

	http://www.elasticsearch.org/guide/reference/api/delete/

	Elasticsearch delete API documentation

Refreshing

After you index documents, they’re not available for searches until
after the index is refreshed. By default, the index refreshes every
second. If you need the documents to show up in searches before that,
call indices.refresh().

For example:

es = get_es()

es.indices.refresh(index='blog-index')

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.client.IndicesClient.refresh

	elasticsearch-py indices.refresh API documentation

	http://www.elasticsearch.org/guide/reference/api/admin-indices-refresh/

	Elasticsearch refresh API documentation

Delete indexes

You can delete indexes with .indices.delete().

For example:

es = get_es()

es.indices.delete(index='blog-index')

See also

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.client.IndicesClient.delete

	elasticsearch-py indices.delete API documentation

	http://www.elasticsearch.org/guide/reference/api/admin-indices-delete-index/

	Elasticsearch delete index API documentation

Doing all of this with MappingTypes and Indexables

If you’re using MappingTypes, then you can do much of the above using
methods and classmethods on MappingType and
Indexable classes. See Mapping types and Indexables for
more details.

Mapping types and Indexables

The MappingType class

elasticutils.MappingType lets you centralize concerns
regarding documents you’re storing in your Elasticsearch index.

Lets you tie business logic to search results

When you do searches with MappingTypes, you get back those results as
an iterable of MappingTypes by default.

For example, say you had a description field and wanted to have a
truncated version of it. You could do it this way:

class MyMappingType(MappingType):

 # ... missing code here

 def description_truncated(self):
 return self.description[:100]

results = S(MyMappingType).query(description__text='stormy night')

print list(results)[0].description_truncated()

Lets you link source data to search results

You can relate a MappingType to a database model or other source
allowing you to link documents in the Elasticsearch index back to
their origins in a lazy-loading way. This is done by subclassing
MappingType and implementing the get_object() method. You can then
access the original data using the object property.

For example:

class MyMappingType(MappingType):

 # ... missing code here

 def get_object(self):
 return self.get_model().objects.get(pk=self._id)

results = S(MyMappingType).filter(height__gte=72)[:1]

first = list(results)[0]

This prints "height" which comes from the Elasticsearch
document
print first.height

This prints "height" which comes from the database data
that the Elasticsearch document is based on. This is the
first time ``.object`` is used, so it does the db hit
here.
print first.object.height

DefaultMappingType

The most basic MappingType is the DefaultMappingType which is returned
if you don’t specify a MappingType and also don’t call
elasticutils.S.values_dict() or
elasticutils.S.values_list(). The DefaultMappingType lets
you access search result fields as instance attributes or as keys:

res.description
res['description']

The latter syntax is helpful when there are attributes defined on the
class that have the same name as the document field or aren’t valid
Python names.

For more information

See Types and Mappings for documentation on defining
mappings in the index.

See elasticutils.MappingType for documentation on creating
MappingTypes.

The Indexable class

elasticutils.Indexable is a mixin for
elasticutils.MappingType that has methods and classmethods
for making indexing easier.

Example

Here’s an example of a class that subclasses MappingType and
Indexable. It’s based on a model called BlogEntry.

class BlogEntryMappingType(MappingType, Indexable):
 @classmethod
 def get_index(cls):
 return 'blog-index'

 @classmethod
 def get_mapping_type_name(cls):
 return 'blog-entry'

 @classmethod
 def get_model(cls):
 return BlogEntry

 @classmethod
 def get_es(cls):
 return get_es(urls=['http://localhost:9200'])

 @classmethod
 def get_mapping(cls):
 return {
 'properties': {
 'id': {'type': 'integer'},
 'title': {'type': 'string'},
 'tags': {'type': 'string'}
 }
 }

 @classmethod
 def extract_document(cls, obj_id, obj=None):
 if obj == None:
 obj = cls.get_model().get(id=obj_id)

 doc = {}
 doc['id'] = obj.id
 doc['title'] = obj.title
 doc['tags'] = obj.tags
 return doc

 @classmethod
 def get_indexable(cls):
 return cls.get_model().get_objects()

With this, I can write code elsewhere in my project that:

	gets the mapping type name and mapping for documents of type
“blog-entry”

	gets all the objects that are indexable

	for each object, extracts the Elasticsearch document data and
indexes it

When I create my elasticutils.S object, I’d create it like
this:

s = S(BlogEntryMappingType)

and now by default any search results I get back are instances of the
BlogEntryMappingType class.

Searching

	Overview

	All about S: S
	What is S?

	S is chainable

	S can be typed and untyped

	S can be sliced to return the results you want

	S is lazy

	S results can be returned in many shapes

	Where to search
	Specifying connection parameters: es

	Specifying indexes to search: indexes

	Specifying doctypes to search: doctypes

	By default, S does a Match All

	Queries: query

	Advanced queries: Q and query_raw
	calling .query() multiple times

	should, must and must_not

	The Q class

	query_raw

	adding new query actions

	Filters: filter

	Advanced filters: F and filter_raw
	and vs. or

	The F class

	filter_raw

	adding new filteractions

	Query-time field boosting: boost

	Ordering: order_by

	Demoting: demote

	Highlighting: highlight

	Suggestions: suggest

	Facets
	Basic facets: facet

	Facet Results

	Facets and scope (filters and global)

	Facets... RAW!: facet_raw

	Filter and query facets

	Scores and explanations
	Seeing the score

	Getting an explanation: explain

Overview

This chapter covers how to search with ElasticUtils.

All about S: S

What is S?

elasticutils.S helps you define an Elasticsearch
search.

searcher = S()

This creates an untyped elasticutils.S using the
defaults:

	uses an elasticsearch.client.Elasticsearch instance
configured to connect to localhost – call
elasticutils.S.es() to specify connection parameters

	searches across all indexes – call
elasticutils.S.indexes() to specify indexes

	searches across all doctypes – call
elasticutils.S.doctypes() to specify doctypes

S is chainable

elasticutils.S has methods that return a new S instance
with the additional specified criteria. In this way S is chainable and
you can reuse S objects for your searches.

For example:

s1 = S()

s2 = s1.query(content__text='tabs')

s3 = s2.filter(awesome=True)

s4 = s2.filter(awesome=False)

s1, s2, and s3 are all different S objects. s1 is a match
all.

s2 has a query.

s3 has everything in s2 with a awesome=True filter.

s4 has everything in s2 with a awesome=False filter.

S can be typed and untyped

When you create an elasticutils.S with no type, it’s
called an untyped S. By default, search results for a untyped S
are returned in the form of a sequence of
elasticutils.DefaultMappingType instances. You can
explicitly state that you want a sequence of dicts or lists, too. See
S results can be returned in many shapes for more details on how to return results in
various formats.

You can also construct a typed S which is an S with a
elasticutils.MappingType subclass. By default, search
results for a typed S are returned in the form of a sequence of
instances of that type. See Mapping types and Indexables for more about
MappingTypes.

S can be sliced to return the results you want

By default Elasticsearch gives you the first 10 results.

If you want something different than that, elasticutils.S
supports slicing allowing you to get back the specific results you’re
looking for.

For example:

some_s = S()

results = list(some_s) # returns first 10 results (default)
results = list(some_s[:10]) # returns first 10 results
results = list(some_s[10:20]) # returns results 10 through 19

The slicing is chainable, too:

some_s = S()[:10]
first_ten_pitchers = some_s.filter(position='pitcher')

Note

The slicing happens on the Elasticsearch side—it doesn’t pull all
the results back and then slice them in Python. Ew.

Note

Unlike slicing other things in Python, if you choose a start, but
no end, then you get 10 results starting with the start.

In other words, this:

some_s = S()[10:]

does not give you all the results from index 10 onwards. Instead
it gives you results 10 through 19.

If you want “all the results from index 10 onwards”, then you could
do something like this:

SOME_LARGE_NUMBER = 1000000
some_s = S()[10:SOME_LARGE_NUMBER]

If you know you have fewer results than SOME_LARGE_NUMBER or you
could do this which will kick off two Elasticsearch queries:

some_s = S()[10:some_s.count()]

Note that doing open-ended queries like this has the same
ramifications as calling
elasticutils.S.everything(). Refer to that documentation
for the fearsome details.

See also

	http://www.elasticsearch.org/guide/reference/api/search/from-size.html

	Elasticsearch from / size documentation

S is lazy

The search won’t execute until you do one of the following:

	use the elasticutils.S in an iterable context

	call len() on a elasticutils.S

	call the elasticutils.S.execute(),
elasticutils.S.everything(),
elasticutils.S.count(),
elasticutils.S.suggestions() or
elasticutils.S.facet_counts() methods

Once you execute the search, then it will cache the results and
further executions of that elasticutils.S won’t result in
another roundtrip to your Elasticsearch cluster.

S results can be returned in many shapes

An untyped S (e.g. S()) will return instances of
elasticutils.DefaultMappingType by default.

A typed S (e.g. S(FooMappingType)), will return instances of
that type (e.g. type FooMappingType) by default.

elasticutils.S.values_list() gives you a list of
tuples. See documentation for more details.

elasticutils.S.values_dict() gives you a list of dicts. See
documentation for more details.

If you use elasticutils.S.execute(), you get back a
elasticutils.SearchResults instance which has additional
useful bits including the raw response from Elasticsearch. See
documentation for details.

Where to search

Specifying connection parameters: es

elasticutils.S will generate an
elasticsearch.client.Elasticsearch object that connects
to localhost by default. That’s usually not what you want. You can use the
elasticutils.S.es() method to specify the arguments used to create the
elasticsearch-py Elasticsearch object.

Examples:

q = S().es(urls=['localhost'])
q = S().es(urls=['localhost:9200'], timeout=10)

See elasticutils.get_es() for the list of arguments you
can pass in.

Specifying indexes to search: indexes

An untyped S will search all indexes by default.

A typed S will search the index returned by the
elasticutils.MappingType.get_index() method.

If that’s not what you want, use the
elasticutils.S.indexes() method.

For example, this searches all indexes:

q = S()

This searches just “someindex”:

q = S().indexes('someindex')

This searches “thisindex” and “thatindex”:

q = S().indexes('thisindex', 'thatindex')

This searches whatever FooMappingType.get_index() returns:

q = S(FooMappingType)

Specifying doctypes to search: doctypes

An untyped S will search all doctypes by default.

A typed S will search the doctype returned by the
elasticutils.MappingType.get_mapping_type_name() method.

If that’s not what you want, then you should use the
elasticutils.S.doctypes() method.

For example, this searches all doctypes:

q = S()

This searches just the “sometype” doctype:

q = S().doctypes('sometype')

This searches “thistype” and “thattype”:

q = S().doctypes('thistype', 'thattype')

By default, S does a Match All

By default, elasticutils.S with no filters or queries
specified will do a match_all query in Elasticsearch.

See also

	http://www.elasticsearch.org/guide/reference/query-dsl/match-all-query.html

	Elasticsearch match_all documentation

Queries: query

Queries are specified using the elasticutils.S.query()
method. See those docs for API details.

ElasticUtils uses this syntax for specifying queries:

fieldname__fieldaction=value

	fieldname: the field the query applies to

	fieldaction: the kind of query it is

	value: the value to query for

The fieldname and fieldaction are separated by __ (that’s two
underscores).

For example:

q = S().query(title__match='taco trucks')

will do an Elasticsearch match query on the title field for “taco
trucks”.

There are many different field actions to choose from:

	field action
	Elasticsearch query type

	(no action specified)
	Term query

	term
	Term query

	terms
	Terms query

	in
	Terms query

	text
	Text query (DEPRECATED)

	match
	Match query [1]

	prefix
	Prefix query [2]

	gt, gte, lt, lte
	Range query

	range
	Range query [4]

	fuzzy
	Fuzzy query

	wildcard
	Wildcard query

	text_phrase
	Text phrase query (DEPRECATED)

	match_phrase
	Match phrase query [1]

	query_string
	Querystring query [3]

	distance
	Geo distance query [5]

	[1]	(1, 2) Elasticsearch 0.19.9 renamed text queries to match queries. If
you’re using Elasticsearch 0.19.9 or later, you should use
match and match_phrase. If you’re using a version prior to
0.19.9 use text and text_phrase.

	[2]	You can also use startswith, but that’s deprecated.

	[3]	When doing query_string queries, if the query text is malformed
it’ll raise a SearchPhaseExecutionException exception.

	[4]	The range field action is a shortcut for defining both sides of
the range at once. The range is inclusive on both sides and accepts
a tuple with the lower value first and upper value second.

	[5]	The distance field need accepts a tuple with distance, latitude and longitude
where distance is a string like 5km.

See also

	http://www.elasticsearch.org/guide/reference/query-dsl/

	Elasticsearch docs for query dsl

	http://www.elasticsearch.org/guide/reference/query-dsl/term-query.html

	Elasticsearch docs on term queries

	http://www.elasticsearch.org/guide/reference/query-dsl/terms-query.html

	Elasticsearch docs on terms queries

	http://www.elasticsearch.org/guide/reference/query-dsl/text-query.html

	Elasticsearch docs on text and text_phrase queries

	http://www.elasticsearch.org/guide/reference/query-dsl/match-query.html

	Elasticsearch docs on match and match_phrase queries

	http://www.elasticsearch.org/guide/reference/query-dsl/prefix-query.html

	Elasticsearch docs on prefix queries

	http://www.elasticsearch.org/guide/reference/query-dsl/range-query.html

	Elasticsearch docs on range queries

	http://www.elasticsearch.org/guide/reference/query-dsl/fuzzy-query.html

	Elasticsearch docs on fuzzy queries

	http://www.elasticsearch.org/guide/reference/query-dsl/wildcard-query.html

	Elasticsearch docs on wildcard queries

	http://www.elasticsearch.org/guide/reference/query-dsl/query-string-query.html

	Elasticsearch docs on query_string queries

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-filter.html

	Elasticsearch docs on geo_distance queries

Advanced queries: Q and query_raw

calling .query() multiple times

Calling elasticutils.S.query() multiple times will combine
all the queries together.

should, must and must_not

By default all queries must match a document in order for the document
to show up in the search results.

You can alter this behavior by flagging your queries with should,
must, and must_not flags.

should

A query added with should=True affects the score for a result,
but it won’t prevent the document from being in the result set.

Example:

qs = S().query(title__text='castle',
 summary__text='castle',
 should=True)

If the document matches either the title__text or the
summary__text then it’s included in the results set. It
doesn’t have to match both.

must

This is the default, so if you don’t specify, then it’s a must.

A query added with must=True must match in order for the
document to be in the result set.

Example:

qs = S().query(title__text='castle',
 summary__text='castle')

qs = S().query(title__text='castle',
 summary__text='castle',
 must=True)

These two are equivalent. The document must match both the
title__text and summary__text queries in order to be
included in the result set. If it doesn’t match one of them, then
it’s not included.

must_not

A query added with must_not=True must NOT match in order
for the document to be in the result set.

Example:

qs = (S().query(title__text='castle')
 .query(author='castle', must_not=True))

For a document to be included in the result set, it must match the
title__text query and must NOT match the author
query. I.e. The title must have “castle”, but the document can’t
have been written by someone with “castle” in their name.

The Q class

You can manipulate query units with the elasticutils.Q
class. For example, you can incrementally build your query:

q = Q()

if search_authors:
 q += Q(author_name=search_text, should=True)

if search_keywords:
 q += Q(keyword=search_text, should=True)

q += Q(title__text=search_text, summary__text=search_text,
 should=True)

The + Python operator will combine two Q instances together and
return a new instance.

You can then use one or more Q classes in a query call:

if search_authors:
 q += Q(author_name=search_text, should=True)

if search_keywords:
 q += Q(keyword=search_text, should=True)

q += Q(title__text=search_text, summary__text=search_text,
 should=True)

s = S().query(q)

query_raw

elasticutils.S.query_raw() lets you explicitly define the
query portion of an Elasticsearch search.

For example:

q = S().query_raw({'match': {'title': 'example'}})

This will override all .query() calls you’ve made in your
elasticutils.S before and after the .query_raw call.

This is helpful if ElasticUtils is missing functionality you need.

adding new query actions

You can subclass elasticutils.S and add handling for
additional query actions. This is helpful in two circumstances:

	ElasticUtils doesn’t have support for that query type

	ElasticUtils doesn’t support that query type in a way you
need—for example, ElasticUtils uses different argument values

See elasticutils.S for more details on how to do this.

Filters: filter

Filters are specified using the elasticutils.S.filter()
method. See those docs for API details.

q = S().filter(language='korean')

will do a search and only return results where the language is Korean.

elasticutils.S.filter() uses the same syntax for specifying
fields, actions and values as elasticutils.S.query().

	field action
	elasticsearch filter

	in
	Terms filter

	gt, gte, lt, lte
	Range filter

	range
	Range filter [6]

	prefix, startswith
	Prefix filter

	(no action)
	Term filter

	[6]	The range field action is a shortcut for defining both sides of
the range at once. The range is inclusive on both sides and accepts
a tuple with the lower value first and upper value second.

You can also filter on fields that have None as a value or have no
value:

q = S().filter(language=None)

This uses the Elasticsearch Missing filter.

Note

In order to filter on fields that have None as a value, you
have to tell Elasticsearch that the field can have null values. To
do this, you have to add null_value: True to the mapping for
that field.

http://www.elasticsearch.org/guide/reference/mapping/core-types.html

See also

	http://www.elasticsearch.org/guide/reference/query-dsl/

	Elasticsearch docs for query dsl

	http://www.elasticsearch.org/guide/reference/query-dsl/terms-filter.html

	Elasticsearch docs for terms filter

	http://www.elasticsearch.org/guide/reference/query-dsl/range-filter.html

	Elasticsearch docs for range filter

	http://www.elasticsearch.org/guide/reference/query-dsl/prefix-filter.html

	Elasticsearch docs for prefix filter

	http://www.elasticsearch.org/guide/reference/query-dsl/term-filter.html

	Elasticsearch docs for term filter

	http://www.elasticsearch.org/guide/reference/query-dsl/missing-filter.html

	Elasticsearch docs for missing filter

Advanced filters: F and filter_raw

and vs. or

Calling filter multiple times is equivalent to an “and”ing of the
filters.

For example:

q = (S().filter(style='korean')
 .filter(price='FREE'))

will do a query for style ‘korean’ AND price ‘FREE’. Anything that has
a style other than ‘korean’ or a price other than ‘FREE’ is removed
from the result set.

You can do the same thing by putting both filters in the same
elasticutils.S.filter() call.

For example:

q = S().filter(style='korean', price='FREE')

The F class

Suppose you want either Korean or Mexican food. For that, you need an
“or”. You can do something like this:

q = S().filter(or_={'style': 'korean', 'style':'mexican'})

But, wow—that’s icky looking and not particularly helpful!

So, we’ve also got an elasticutils.F() class that makes this
sort of thing easier.

You can do the previous example with F like this:

q = S().filter(F(style='korean') | F(style='mexican'))

will get you all the search results that are either “korean” or
“mexican” style.

What if you want Mexican food, but only if it’s FREE, otherwise you
want Korean?:

q = S().filter(F(style='mexican', price='FREE') | F(style='korean'))

F supports & (and), | (or) and ~ (not) operations.

Additionally, you can create an empty F and build it incrementally:

qs = S()
f = F()
if some_crazy_thing:
 f &= F(price='FREE')
if some_other_crazy_thing:
 f |= F(style='mexican')

qs = qs.filter(f)

If neither some_crazy_thing or some_other_crazy_thing are
True, then F will be empty. That’s ok because empty filters are
ignored.

filter_raw

elasticutils.S.filter_raw() lets you explicitly define
the filter portion of an Elasticsearch search.

For example:

qs = S().filter_raw({'term': {'title': 'foo'}})

This will override all .filter() calls you’ve made in your
elasticutils.S before and after the .filter_raw call.

This is helpful if ElasticUtils is missing functionality you need.

adding new filteractions

You can subclass elasticutils.S and add handling for
additional filter actions. This is helpful in two circumstances:

	ElasticUtils doesn’t have support for that filter type

	ElasticUtils doesn’t support that filter type in a way you
need—for example, ElasticUtils uses different argument values

See elasticutils.S for more details on how to do this.

Query-time field boosting: boost

ElasticUtils allows you to specify query-time field boosts with
elasticutils.S.boost().

These boosts take effect at the time the query is executing. After the
query has executed, then the boost is applied and that becomes the
final score for the query.

This is a useful way to weight queries for some fields over others.

See elasticutils.S.boost() for more details.

Note

Boosts are ignored if you use query_raw.

Ordering: order_by

ElasticUtils elasticutils.S.order_by() lets you change the
order of the search results.

See elasticutils.S.order_by() for more details.

See also

	http://www.elasticsearch.org/guide/reference/api/search/sort.html

	Elasticsearch docs on sort parameter in the Search API

Demoting: demote

You can demote documents that match query criteria:

q = (S().query(title='trucks')
 .demote(0.5, description__text='gross'))

This does a query for trucks, but demotes any that have “gross” in the
description with a fraction boost of 0.5.

Note

You can only call elasticutils.S.demote() once. Calling it
again overwrites previous calls.

This is implemented using the boosting query in Elasticsearch.
Anything you specify with elasticutils.S.query() goes into
the positive section. The negative query and negative boost
portions are specified as the first and second arguments to
elasticutils.S.demote().

Note

Order doesn’t matter. So:

q = (S().query(title='trucks')
 .demote(0.5, description__text='gross'))

does the same thing as:

q = (S().demote(0.5, description__text='gross')
 .query(title='trucks'))

See also

	http://www.elasticsearch.org/guide/reference/query-dsl/boosting-query.html

	Elasticsearch docs on boosting query (which are as clear as mud)

Highlighting: highlight

ElasticUtils can highlight excerpts for search results.

See elasticutils.S.highlight() for more details.

See also

	http://www.elasticsearch.org/guide/reference/api/search/highlighting.html

	Elasticsearch docs for highlight

Suggestions: suggest

Spelling suggestions can be asked for by using the
elasticutils.S.suggest() method, and then retrieved
in elasticutils.S.suggestions():

q = S().query(text='Aice').suggest('mysuggest', 'Alice', field='text')
print q.suggestions()['mysuggest'][0]['options']

Note

Spelling suggestions require Elasticsearch 0.90 or later.

See also

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters.html

	Elasticsearch docs for suggesters

Facets

Basic facets: facet

q = (S().query(title='taco trucks')
 .facet('style', 'location'))

will do a query for “taco trucks” and return terms facets for the
style and location fields.

Note that the fieldname you provide in the
elasticutils.S.facet() call becomes the facet name as well.

The facet counts are available through
elasticutils.S.facet_counts(). For example:

q = (S().query(title='taco trucks')
 .facet('style', 'location'))
counts = q.facet_counts()

Also, you can get them with the facets attribute of the search results:

q = (S().query(title='taco trucks')
 .facet('style', 'location'))

results = q.execute()
counts = results.facets

You can also restrict the number of terms returned per facet by
passing a size keyword argument to
elasticutils.S.facet():

q = S().query(title='taco trucks')
 .facet('style', 'location', size=5)

See also

	http://www.elasticsearch.org/guide/reference/api/search/facets/

	Elasticsearch docs on facets

	http://www.elasticsearch.org/guide/reference/api/search/facets/terms-facet.html

	Elasticsearch docs on terms facet

Facet Results

The execution methods elasticutils.S.facet_counts() and
elasticutils.S.execute() will return a dictionary containing
the named parameter and a elasticutils.FacetResult object.

For example:

>>> facet_counts = S().facet('primary_country_id').facet_counts()
>>> facet_counts
{u'primary_country_id': <elasticutils.FacetResult at 0x45f12d0>}

The FacetResult object contains all of the information returned in the
facet stanza.

In the above case, we faceted on primary_country_id as a terms
facet. To see the facet results simply iterate over the FacetResult
object:

>>> for facet_result in facet_counts['primary_country_id']:
... print facet_result
...
{u'count': 187293, u'term': 41}
 {u'count': 24177, u'term': 9}
 {u'count': 17200, u'term': 50}
 {u'count': 13015, u'term': 15}
 {u'count': 10296, u'term': 30}
 {u'count': 8824, u'term': 32}
 {u'count': 7703, u'term': 6}
 {u'count': 7502, u'term': 23}
 {u'count': 5614, u'term': 2}
 {u'count': 5214, u'term': 33}

And to get the “other”, “missing” and “total” information from the
facetresult:

>>> facet_counts['primary_country_id'].missing
3475

>>> facet_counts['primary_country_id'].other
25273

>>> facet_counts['primary_country_id'].total
312111

FacetResult is backwords compatible with older versions of
ElasticUtils, so you shouldn’t need to change anything when
upgrading:

>>> some_s = S().facet_raw(primary_country_id={'statistical':{"field":"primary_country_id"}})
>>> facet_counts = some_s.facet_counts()
>>> facet_counts['primary_country_id'].max == facet_counts['primary_country_id']['max']
True

Facets and scope (filters and global)

What happens if your search includes filters?

Here’s an example:

q = (S().query(title='taco trucks')
 .filter(style='korean')
 .facet('style', 'location'))

The “style” and “location” facets here ONLY apply to the results of
the query and are not affected at all by the filters.

If you want your filters to apply to your facets as well, pass in the
filtered flag.

For example:

q = (S().query(title='taco trucks')
 .filter(style='korean')
 .facet('style', 'location', filtered=True))

What if you want the filters to apply just to one of the facets and
not the other? You need to add them incrementally.

For example:

q = (S().query(title='taco trucks')
 .filter(style='korean')
 .facet('style', filtered=True)
 .facet('location'))

What if you want the facets to apply to the entire corpus and not just
the results from the query? Use the global_ flag.

For example:

q = (S().query(title='taco trucks')
 .filter(style='korean')
 .facet('style', 'location', global_=True))

Note

The flag name is global_ with an underscore at the end. Why?
Because global with no underscore is a Python keyword.

See also

	http://www.elasticsearch.org/guide/reference/api/search/facets/

	Elasticsearch docs on facets, facet_filter, and global

	http://www.elasticsearch.org/guide/reference/api/search/facets/terms-facet.html

	Elasticsearch docs on terms facet

Facets... RAW!: facet_raw

Elasticsearch facets can do a lot of other things. Because of this,
there exists elasticutils.S.facet_raw() which will do
whatever you need it to. Specify key/value args by facet name.

You could do the first facet example with:

q = (S().query(title='taco trucks')
 .facet_raw(style={'terms': {'field': 'style'}}))

One of the things this lets you do is scripted facets.

For example:

q = (S().query(title='taco trucks')
 .facet_raw(styles={
 'field': 'style',
 'script': 'term == korean ? true : false'
 }))

Warning

If for some reason you have specified a facet with the same name
using both elasticutils.S.facet() and
elasticutils.S.facet_raw(), the facet_raw stuff will
override the facet stuff.

See also

	http://www.elasticsearch.org/guide/reference/modules/scripting.html

	Elasticsearch docs on scripting

Filter and query facets

You can also define arbitrary facets for queries and facets as documented
in Elasticsearch’s docs.

For example:

q = (S().query(title='taco trucks')
 .facet_raw(korean_or_mexican={
 'filter': {
 'or': [
 {'term': {'style': 'korean'}},
 {'term': {'style': 'mexican'}},
]
 }
 }))

Then access the custom facet via the name you passed into facet_raw:

counts = q.facet_counts()
korean_or_mexican_count = counts['korean_or_mexican']['count']

The same can be done with queries:

q = (S().query(title='taco trucks')
 .facet_raw(korean={
 'query': {
 'term': {'style': 'korean'},
 }
 }))

See also

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets-query-facet.html

	Elasticsearch docs on query facets

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets-filter-facet.html

	Elasticsearch docs on filter facets

Scores and explanations

Seeing the score

Wondering what the score for a document was? ElasticUtils puts that in
the score attribute of the es_meta object of the search result.
For example, let’s search an index that holds knowledge base articles
for ones with the word “crash” in them and print out the scores:

q = S().query(title__text='crash', content__text='crash')

for result in q:
 print result.es_meta.score

This works regardless of what form the search results are in.

Getting an explanation: explain

Wondering why one document shows up higher in the results than another
that should have shown up higher? Wonder how that score was computed?
You can set the search to pass the explain flag to Elasticsearch
with elasticutils.S.explain().

ElasticUtils puts the explanation in the explanation attribute
of the es_meta object of the search result.

For example, let’s do a query on a search corpus of knowledge base
articles for articles with the word “crash” in them:

q = (S().query(title__text='crash', content__text='crash')
 .explain())

for result in q:
 print result.es_meta.explanation

This works regardless of what form the search results are in.

See also

	http://www.elasticsearch.org/guide/reference/api/search/explain.html

	Elasticsearch docs on explain (which are pretty bereft of
details).

More like this: MLT

ElasticUtils exposes Elasticsearch More Like This API with the MLT
class.

For example:

mlt = MLT(2034, index='addon_index', doctype='addon')

This creates an MLT that will return documents that are like
document with id 2034 of type addon in the addon_index.

You can pass it an S instance and the MLT will derive the index,
doctype, ElasticSearch object and also use the search specified by
the S in the body of the More Like This request. This allows you to
get documents like the one specified that also meet query and filter
criteria. For example:

s = S().filter(product='firefox')
mlt = MLT(2034, s=s)

See elasticutils.MLT for more details.

See also

	http://www.elasticsearch.org/guide/reference/api/more-like-this.html

	Elasticsearch guide on More Like This API

	http://www.elasticsearch.org/guide/reference/query-dsl/mlt-query.html

	Elasticsearch guide on the moreLikeThis query which specifies the
additional parameters you can use.

	http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch.Elasticsearch.mlt

	elasticsearch-py documentation for MLT

Debugging

Here are a few helpful utilities for debugging your ElasticUtils work.

Score explanations

Want to see how a score for a search result was calculated? See
Scores and explanations.

Logging

elasticsearch-py logs to the elasticsearch and elasticsearch.trace
loggers using the Python logging module.

If you configure elasticsearch.trace to show INFO-level messages, then
it’ll show the requests in curl form, responses if you enable DEBUG.

elasticsearch logger will give you information about node failures
(WARNING-level), their resurrection (INFO) and every request in a short form
(DEBUG). Additionally it will log a WARNING for any failed request.

Elasticsearch-py uses urllib3 by default which logs to the urllib3 logger
using the Python logging module. If you configure that to show INFO-level
messages, then you’ll see all that stuff. If you configured your
elasticsearch-py client to use other transport use it’s logging capabilities.

First set up logging using something like this:

import logging

Set up the logging in some way. If you don't have logging
set up, you can set it up like this.
logging.basicConfig()

Then set the logging level for the elasticsearch-py and urllib3 loggers
to logging.DEBUG:

logging.getLogger('elasticsearch').setLevel(logging.DEBUG)
logging.getLogger('urllib3').setLevel(logging.DEBUG)

elasticsearch-py will log lines like:

INFO:elasticsearch:GET http://localhost:9200/_search [status:200
request:0.001s]

Or you can enable the elasticsearch.trace logger and have it log a shell
transcript of your session using curl:

tracer = logging.getLogger('elasticsearch.trace')
tracer.setLevel(logging.DEBUG)
tracer.addHandler(logging.FileHandler('/tmp/elasticsearch-py.sh'))

Note

The trace logger will always point to localhost:9200 and add ?pretty to
the query string of the url so that when you’re curling, then Elasticsearch
will return a prettified response that’s easier to read.

Getting the search body

The S class has a build_search() method that you can use to see
the body of the Elasticsearch search request it generates with the
parameters you’ve specified. This is helpful in debugging ElasticUtils
and figuring out whether it’s doing things poorly.

For example:

some_s = S()
print some_s.build_search()

We also have elasticutils.utils.to_json() which takes the output
of elasticutils.S.build_search() and returns the JSON
string. This is helpful if you need to take the search body that
ElasticUtils generates and tinker with it using curl or
elasticsearch-head.

elasticsearch-head

https://github.com/mobz/elasticsearch-head

elasticsearch-head is the phpmyadmin for elasticsearch. It makes it
much easier to see what’s going on.

elasticsearch-paramedic

https://github.com/karmi/elasticsearch-paramedic

elasticsearch-paramedic allows you to see the state and real-time
statistics of your Elasticsearch cluster.

es2unix

https://github.com/elasticsearch/es2unix

Use this for calling Elasticsearch API things instead of curl.

API docs

	Functions

	The S class

	The F class

	The Q class

	The SearchResults class

	The MappingType class

	The Indexable class

	The DefaultMappingType class

	The MLT class

	The ESTestCase class

	Helper utilites

Functions

The S class

The F class

The Q class

The SearchResults class

The MappingType class

The Indexable class

The DefaultMappingType class

The MLT class

The ESTestCase class

Helper utilites

Migrating from Elasticsearch 0.90 to 1.x with ElasticUtils

Note

This is a work in progress and probably doesn’t cover everything.

Summary

There are a bunch of API-breaking changes between Elasticsearch 0.90
and 1.x. Because of this, it’s really tricky to get over this hump
without having downtime.

This document covers a high-level walk through for upgrading from
Elasticsearch 0.90 to 1.x and the steps you should take to reduce
your downtime.

Note

“1.x” covers 1.0, 1.1 and 1.2.

Steps

Each of these steps should result in a working system. Do them one at
a time and test everything in between.

	Upgrade to ElasticUtils 0.9.1

You must use elasticsearch-py version 0.4.5–don’t use a later version!

	Upgrade your Elasticsearch cluster to version 0.90.13

	Upgrade to ElasticUtils 0.10.1

You will need to update elasticsearch-py past 0.4.5. The latest version
should work fine.

	Make any changes to your code so that it works with both Elasticsearch
0.90 and 1.x

There are some tricky things here, see the Tricky things section.

	Upgrade to Elasticsearch 1.x

At that point, you should be using a recent version of the
elasticsearch-py library and a recent version of Elasticsearch and
should be all set.

Resources

See also

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/breaking-changes.html

	Breaking changes when migrating to Elasticsearch 1.0

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/_deprecations.html

	Deprecated features when migrating to Elasticsearch 1.0

Tricky things

There are a few tricky differences between Elasticsearch 0.90 and 1.0 that
will affect your code.

Changes with .values_dict() and .values_list()

Explanation

In Elasticsearch 1.x, you get back different shapes of things depending
on whether you specify “fields”. To smooth this out and normalize the
differences between Elasticsearch 0.90 and 1.x, ElasticUtils now always
passes in fields property when you use
elasticutils.S.values_list() and
elasticutils.S.values_dict().

Let’s show some code to illustrate the new behavior.

First, a bunch of setup:

>>> from elasticutils import get_es, S
>>> from elasticsearch.helpers import bulk_index
>>> URL = 'localhost'
>>> INDEX = 'fooindex'
>>> BOOK_DOCTYPE = 'book'
>>> PERSON_DOCTYPE = 'person'
>>> es = get_es(urls=[URL])
>>> es.indices.delete(index=INDEX, ignore=404)

Now define the two document mappings we’re going to use: book and person.
Book has no stored fields. Person has two.

>>> mapping = {
... BOOK_DOCTYPE: {
... 'properties': {
... 'id': {'type': 'integer'},
... 'title': {'type': 'string'},
... 'tags': {'type': 'string'},
... }
... },
... PERSON_DOCTYPE: {
... 'properties': {
... 'id': {'type': 'integer', 'store': True},
... 'name': {'type': 'string', 'store': True},
... 'weight': {'type': 'integer'}
... }
... }
... }

Create the index with the mappings, add some books and add some people.

>>> es.indices.create(INDEX, body={'mappings': mapping})
>>> books = [
... {'_id': 1, 'id': 1, 'title': '10 Balloons', 'tags': ['kids', 'hardcover']},
... {'_id': 2, 'id': 2, 'title': 'Puppies', 'tags': ['animals']},
... {'_id': 3, 'id': 3, 'title': 'Dictionary', 'tags': ['reference']},
...]
>>> bulk_index(es, books, index=INDEX, doc_type=BOOK_DOCTYPE)
(3, [])
>>> people = [
... {'_id': 1, 'id': 1, 'name': 'Bob', 'weight': 40},
... {'_id': 2, 'id': 2, 'name': 'Jim', 'weight': 44},
... {'_id': 3, 'id': 3, 'name': 'Jim Bob', 'weight': 42},
...]
>>> bulk_index(es, people, index=INDEX, doc_type=PERSON_DOCTYPE)
[...]
>>> es.indices.refresh(index=INDEX)
[...]

Now let’s do some queries so we can see how things work now.

Let’s build a basic_s that looks at our Elasticsearch cluster and
the index. Also a book_s and a person_s.

>>> basic_s = S().es(urls=[URL]).indexes(INDEX)
>>> book_s = basic_s.doctypes(BOOK_DOCTYPE)
>>> person_s = basic_s.doctypes(PERSON_DOCTYPE)

How many documents are in our index?

>>> basic_s.count()
6

Call .values_list() on books which has no stored fields so we get back
the _id and _type for each document returned and all values are lists:

>>> list(book_s.values_list())
[([u'1'], [u'book']), ([u'2'], [u'book']), ([u'3'], [u'book'])]

.values_list('id') on books, so we get id returned and all values are
lists:

>>> list(book_s.values_list('id'))
[([1],), ([2],), ([3],)]

.values_list() on persons which does have stored fields (id and
name, but not weight), so we get the stored fields returned and all
values are lists:

>>> list(person_s.values_list())
[([1], [u'Bob']), ([2], [u'Jim']), ([3], [u'Jim Bob'])]

.values_list('id') on persons which works just like books because
we’ve specified which fields we want back:

>>> list(person_s.values_list('id'))
[([1],), ([2],), ([3],)]

The same goes for .values_dict().

What you need to do

	If you have calls to .values_list() and .values_dict() that
don’t specify any fields, then you either need to change the
mapping and store the fields you want back, or change the calls so
they specify the fields you want back.

	Every time you use results from a .values_list() or .values_dict() call,
you need to change it to always treat the values as lists.

Using ElasticUtils with Django

	Summary

	How to integrate ElasticUtils with Django

	Configuration

	Elasticsearch

	Using with Django ORM models

	Celery tasks

	Middleware

	Writing tests

	Helpful things to know
	Indexing and reset_queries

Summary

Django-specific code is all located in elasticutils.contrib.django.

This chapter covers using ElasticUtils Django bits. For API
documentation, see Django API docs.

How to integrate ElasticUtils with Django

	add ElasticUtils configuration settings to your project’s setting
file

	write one or more MappingType classes

	write code to create the Elasticsearch index and populate it with
documents based on your MappingType subclasses

	use elasticutils.contrib.django.S to search and return
results

	use elasticutils.contrib.django.estestcase.ESTestCase
to write tests

That’s the gist of it. You can deviate on any of these depending on
your needs, of course.

Configuration

ElasticUtils depends on the following settings in your Django settings
file:

	
django.conf.settings.ES_DISABLED

	If ES_DISABLED = True, then Any method wrapped with
es_required will return and log a warning. This is useful while
developing, so you don’t have to have Elasticsearch running.

	
django.conf.settings.ES_URLS

	This is a list of Elasticsearch urls. In development this will look
like:

ES_URLS = ['http://localhost:9200']

	
django.conf.settings.ES_INDEXES

	This is a mapping of doctypes to indexes. A default mapping is
required for types that don’t have a specific index.

When ElasticUtils queries the index for a model, by default it
derives the doctype from Model._meta.db_table. When you build
your indexes and mapping types, make sure to match the indexes and
mapping types you’re using.

Example 1:

ES_INDEXES = {'default': 'main_index'}

This only has a default, so all ElasticUtils queries will look in
main_index for all mapping types.

Example 2:

ES_INDEXES = {'default': 'main_index',
 'splugs': 'splugs_index'}

Assuming you have a Splug model which has a
Splug._meta.db_table value of splugs, then ElasticUtils will
run queries for Splug in the splugs_index. ElasticUtils will
run queries for other models in main_index because that’s the
default.

Example 3:

ES_INDEXES = {'default': ['main_index'],
 'splugs': ['splugs_index']}

FIXME: The API allows for this. Pretty sure it should query
multiple indexes, but we have no tests for that and I haven’t
tested it, either.

	
django.conf.settings.ES_TIMEOUT

	Default: 5

The timeout in seconds for creating the Elasticsearch connection.

Elasticsearch

The get_es() in the Django contrib will use Django settings listed
above to build the elasticsearch-py Elasticsearch [http://elasticsearch-py.readthedocs.org/en/latest/api.html#elasticsearch] object.

Using with Django ORM models

	Requirements:	Django

The elasticutils.contrib.django.S class takes a MappingType in the
constructor. That allows you to tie Django ORM models to Elasticsearch
index search results.

In elasticutils.contrib.django is MappingType which
has some additional Django ORM-specific code in it to make it easier.

Define a MappingType subclass for your model. The minimal you
need to define is get_model.

Further, you can use the Indexable mixin to get a bunch of helpful
indexing-related code.

For example, here’s a minimal MappingType subclass:

from django.models import Model
from elasticutils.contrib.django import MappingType

class MyModel(Model):
 # Django model ...

class MyMappingType(MappingType):
 @classmethod
 def get_model(cls):
 return MyModel

searcher = MyMappingType.search()

Here’s one that uses Indexable and handles indexing:

from django.models import Model
from elasticutils.contrib.django import Indexable, MappingType

class MyModel(Model):
 # Django model ...

class MyMappingType(MappingType, Indexable):
 @classmethod
 def get_model(cls):
 """Returns the Django model this MappingType relates to"""
 return MyModel

 @classmethod
 def get_mapping(cls):
 """Returns an Elasticsearch mapping for this MappingType"""
 return {
 'properties': {
 # The id is an integer, so store it as such. Elasticsearch
 # would have inferred this just fine.
 'id': {'type': 'integer'},

 # The name is a name---so we shouldn't analyze it
 # (de-stem, tokenize, parse, etc).
 'name': {'type': 'string', 'index': 'not_analyzed'},

 # The bio has free-form text in it, so analyze it with
 # snowball.
 'bio': {'type': 'string', 'analyzer': 'snowball'},

 # Age is an integer
 'age': {'type': 'integer'}
 }
 }

 @classmethod
 def extract_document(cls, obj_id, obj=None):
 """Converts this instance into an Elasticsearch document"""
 if obj is None:
 obj = cls.get_model().objects.get(pk=obj_id)

 return {
 'id': obj.id,
 'name': obj.name,
 'bio': obj.bio,
 'age': obj.age
 }

searcher = MyMappingType.search()

See also

	http://www.elasticsearch.org/guide/reference/mapping/

	The Elasticsearch guide on mapping types.

	http://www.elasticsearch.org/guide/reference/mapping/core-types.html

	The Elasticsearch guide on mapping type field types.

Celery tasks

	Requirements:	Django, Celery

You can then utilize things such as
elasticutils.contrib.django.tasks.index_objects() to
automatically index all new items.

Middleware

	Requirements:	Django

There’s a middleware that catches all Elasticsearch-related
exceptions and shows a 501/503 template accordingly. See
elasticutils.contrib.django.ESExceptionMiddleware
for details.

Writing tests

	Requirements:	Django

When writing test cases for your ElasticUtils-using code, you’ll want
to do a few things:

	Default ES_DISABLED to True. This way, the tests that kick off
creating data but aren’t testing search-specific things don’t
additionally index stuff. That’ll save you a bunch of test time.

	When testing ElasticUtils things, override the settings and set
ES_DISABLED to False.

	Use an ESTestCase that sets up the indexes before tests run and
tears them down after they run.

	When testing, make sure you use an index name that’s unique. You
don’t want to run your tests and have them affect your production
index.

You can use
elasticutils.contrib.django.estestcase.ESTestCase
for your app’s tests. It’s pretty basic but does all of the above
except item 1 which you’ll need to do in your test settings.

Example usage:

from elasticutils.contrib.django.estestcase import ESTestCase

class TestQueries(ESTestCase):
 # This class holds tests that do elasticsearch things

 def test_query(self):
 # Test code ...

 def test_locked_filters(self):
 # Test code ...

ElasticUtils uses this for it’s Django tests. Look at the test code
for more examples of usage:

https://github.com/mozilla/elasticutils/

If it’s not what you want, you could subclass it and override behavior
or just write your own.

Helpful things to know

Indexing and reset_queries

If you are:

	indexing a lot of data pulled out with the Django ORM, and

	have DEBUG = True (i.e. development environments)

then you’ll probably want to call django.db.reset_queries()
periodically.

What’s going on is that when DEBUG = True (i.e. a devleopment
environment), Django helpfully stores all the queries that are made
which when you’re indexing a lot of data is a lot of data. Calling
django.db.reset_queries() periodically flushes the queries so
it doesn’t monotonically eat all your memory before the indexing
is done.

Django API docs

	The S class

	The MappingType class

	The Indexable class

	View decorators

	The ESExceptionMiddleware class

	Tasks

	The ESTestCase class

The S class

The MappingType class

The Indexable class

View decorators

The ESExceptionMiddleware class

Tasks

The ESTestCase class

Subclass this and make it do what you need it to do. It’s definitely
worth reading the code.

Join this project!

Interested in working on a Python library for using elasticsearch?
Interested in using it? Then you should be interested in this project!

Want to help?

Here are things we need help with:

	fixing bugs listed in the issue tracker

	writing tests

	writing documentation: We could use help writing better
documentation for ElasticUtils.

	spreading the word: Do you know other people who would like this
software? If so, tell them about ElasticUtils!

	project infrastructure: Is there infrastructure that’s missing
in this project that would make it easier for you to collaborate? If
so, what?

Are you thinking, “That list is makes me want to go shopping for bumper
stickers!” That’s ok! Hop on IRC, say hi and we can go from there!

For project details, see ElasticUtils.

Hacking HOWTO

This covers setting up a development environment for developing on
ElasticUtils. If you’re interested in using ElasticUtils, then you
should check out User’s Guide.

External requirements

You should have Elasticsearch [http://elasticsearch.org/] installed
and running.

Install dependencies

Run:

$ virtualenv ./venv
$. ./venv/bin/activate
$ pip install -r requirements/dev.txt
$ python setup.py develop

This sets up the required dependencies for development of ElasticUtils.

Note

You don’t have to put your virtual environment in ./venv/. Feel
free to put it anywhere.

Conventions

We follow the code conventions listed in the coding conventions page
of the webdev bootcamp guide [http://mozweb.readthedocs.org/en/latest/reference/python-style.html]. This covers
all the Python code.

We use git and follow the conventions listed in the git and github
conventions page of the webdev bootcamp guide [http://mozweb.readthedocs.org/en/latest/reference/git_github.html].

Documentation

Conventions

See the docmentation page in the webdev bootcamp guide [http://mozweb.readthedocs.org/en/latest/documentation.html] for
documentation conventions.

The documentation is available in HTML and PDF forms at
http://elasticutils.readthedocs.org/. This tracks documentation
in the master branch of the git repository. Because of this, it is
always up to date.

Building the docs

The documentation in docs/ is built with Sphinx [http://sphinx.pocoo.org/]. To build HTML version of the
documentation, do:

$ cd docs/
$ make html

Running and writing tests

Running the tests

You can run the tests with:

./run_tests.py

This will run all the tests.

Note

If you need to adjust the settings, copy test_settings.py to a
new file (like test_settings_local.py), edit the file, and specify that
as the value for the environment variable DJANGO_SETTINGS_MODULE.

DJANGO_SETTINGS_MODULE=test_settings_local ./run_tests.py

This is helpful if you need to change the value of ES_HOSTS to
match the ip address or port that elasticsearch is listening on.

Writing tests

Tests are located in elasticutils/tests/.

We use nose [https://github.com/nose-devs/nose] for test utilities
and running tests.

ElasticTestCase

If you’re testing things in ElasticUtils that require hitting an
Elasticsearch cluster, then you should subclass
elasticutils.tests.ESTestCase which has code in it for making
things easier.

Release process

	Checkout master tip.

	Check to make sure setup.py, requirements files, and
docs/installation.rst have correct version of
elasticsearch-py.

	Update version numbers in elasticutils/_version.py.

	Set __version__ to something like 0.4.

	Set __releasedate__ to something like 20120731.

	Update CONTRIBUTORS, CHANGELOG, MANIFEST.in.

Make sure to set the date for the release in CHANGELOG.

Make sure requirements in setup.py, docs/installation.rst
and CHANGELOG all match.

	Verify correctness.

	Run tests.

	Build docs.

	Run sample programs in docs.

	Verify all that works.

	Tag the release:

$ git tag -a v0.4

Copy the details from CHANGELOG into the tag comment.

	Push everything:

$ git push --tags official master

	Update PyPI:

$ rm -rf dist/*
$ python setup.py sdist bdist_wheel
$ twine upload dist/*

	Update topic in #elasticutils, blog post, twitter, etc.

Basic sample program

Here’s a short script that gives you the gist of how to use
ElasticUtils:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

	"""
This is a sample program that uses Elasticsearch (from elasticsearch-py)
object to create an index, create a mapping, and index some data. Then
it uses ElasticUtils S to show some behavior.
"""

from elasticutils import get_es, S

from elasticsearch.helpers import bulk_index

URL = 'localhost'
INDEX = 'fooindex'
DOCTYPE = 'testdoc'

This creates an elasticsearch.Elasticsearch object which we can use
to do all our indexing.
es = get_es(urls=[URL])

First, delete the index if it exists.
es.indices.delete(index=INDEX, ignore=404)

Define the mapping for the doctype 'testdoc'. It's got an id field,
a title which is analyzed, and two fields that are lists of tags, so
we don't want to analyze them.
mapping = {
 DOCTYPE: {
 'properties': {
 'id': {'type': 'integer'},
 'title': {'type': 'string', 'analyzer': 'snowball'},
 'topics': {'type': 'string'},
 'product': {'type': 'string', 'index': 'not_analyzed'},
 }
 }
 }

Create the index 'testdoc' mapping.
es.indices.create(INDEX, body={'mappings': mapping})

Let's index some documents and make them available for searching.
documents = [
 {'_id': 1,
 'title': 'Deleting cookies',
 'topics': ['cookies', 'privacy'],
 'product': ['Firefox', 'Firefox for mobile']},
 {'_id': 2,
 'title': 'What is a cookie?',
 'topics': ['cookies', 'privacy'],
 'product': ['Firefox', 'Firefox for mobile']},
 {'_id': 3,
 'title': 'Websites say cookies are blocked - Unblock them',
 'topics': ['cookies', 'privacy', 'websites'],
 'product': ['Firefox', 'Firefox for mobile', 'Boot2Gecko']},
 {'_id': 4,
 'title': 'Awesome Bar',
 'topics': ['tips', 'search', 'user interface'],
 'product': ['Firefox']},
 {'_id': 5,
 'title': 'Flash',
 'topics': ['flash'],
 'product': ['Firefox']}
]

bulk_index(es, documents, index=INDEX, doc_type=DOCTYPE)
es.indices.refresh(index=INDEX)

Now let's do some basic queries.

Let's build a basic S that looks at our Elasticsearch cluster and
the index and doctype we just indexed our documents in.
basic_s = S().es(urls=[URL]).indexes(INDEX).doctypes(DOCTYPE)

How many documents are in our index?
print basic_s.count()
Prints:
5

Print articles with 'cookie' in the title.
print [item['title']
 for item in basic_s.query(title__match='cookie')]
Prints:
[u'Deleting cookies', u'What is a cookie?',
u'Websites say cookies are blocked - Unblock them']

Print articles with 'cookie' in the title that are related to
websites.
print [item['title']
 for item in basic_s.query(title__match='cookie')
 .filter(topics='websites')]
Prints:
[u'Websites say cookies are blocked - Unblock them']

Print articles in the 'search' topic.
print [item['title']
 for item in basic_s.filter(topics='search')]
Prints:
[u'Awesome Bar']

Do a query and use the highlighter to denote the matching text.
print [(item['title'], item.es_meta.highlight['title'])
 for item in basic_s.query(title__match='cookie').highlight('title')]
Prints:
[
(u'Deleting cookies', [u'Deleting cookies']),
(u'What is a cookie?', [u'What is a cookie?']),
(u'Websites say cookies are blocked - Unblock them',
[u'Websites say cookies are blocked - Unblock them']
)
]

That's the gist of it!

Sample program using facets

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

	"""
This is a sample program that uses Elasticsearch (from elasticsearch-py)
object to create an index, create a mapping, and index some data. Then
it uses ElasticUtils S to show some behavior with facets.
"""

from elasticutils import get_es, S

from elasticsearch.helpers import bulk_index

URL = 'localhost'
INDEX = 'fooindex'
DOCTYPE = 'testdoc'

This creates an elasticsearch.Elasticsearch object which we can use
to do all our indexing.
es = get_es(urls=[URL])

First, delete the index, ignore possible 404 - it means the index doesn't
exist, so there's nothing to delete.
es.indices.delete(index=INDEX, ignore=404)

Define the mapping for the doctype 'testdoc'. It's got an id field,
a title which is analyzed, and two fields that are lists of tags, so
we don't want to analyze them.
#
Note: The alternative for the tags is to analyze them and use the
'keyword' analyzer. Both not analyzing and using the keyword
analyzer treats the values as a single term rather than tokenizing
them and treating as multiple terms.
mapping = {
 DOCTYPE: {
 'properties': {
 'id': {'type': 'integer'},
 'title': {'type': 'string'},
 'topics': {'type': 'string'},
 'product': {'type': 'string', 'index': 'not_analyzed'},
 }
 }
 }

create the index with defined mappings
es.indices.create(index=INDEX, body={'mappings': mapping})

This indexes a series of documents each is a Python dict.
documents = [
 {'_id': 1,
 'title': 'Deleting cookies',
 'topics': ['cookies', 'privacy'],
 'product': ['Firefox', 'Firefox for mobile']},
 {'_id': 2,
 'title': 'What is a cookie?',
 'topics': ['cookies', 'privacy', 'basic'],
 'product': ['Firefox', 'Firefox for mobile']},
 {'_id': 3,
 'title': 'Websites say cookies are blocked - Unblock them',
 'topics': ['cookies', 'privacy', 'websites'],
 'product': ['Firefox', 'Firefox for mobile', 'Boot2Gecko']},
 {'_id': 4,
 'title': 'Awesome Bar',
 'topics': ['tips', 'search', 'basic', 'user interface'],
 'product': ['Firefox']},
 {'_id': 5,
 'title': 'Flash',
 'topics': ['flash'],
 'product': ['Firefox']}
]

bulk_index(es, documents, index=INDEX, doc_type=DOCTYPE)

Elasticsearch will refresh the indexes and make those documents
available for querying in a second or so (it's configurable in
Elasticsearch), but we want them available right now, so we refresh
the index.
es.indices.refresh(index=INDEX)

Let's build a basic S that looks at the right Elasticsearch cluster,
index and doctype.
basic_s = S().es(urls=[URL]).indexes(INDEX).doctypes(DOCTYPE).values_dict()

Now let's see facet counts for all the products.
s = basic_s.facet('product')

print s.facet_counts()
Pretty-printed output:
{u'product': {
u'_type': u'terms',
u'total': 9,
u'terms': [
{u'count': 5, u'term': u'Firefox'},
{u'count': 3, u'term': u'Firefox for mobile'},
{u'count': 1, u'term': u'Boot2Gecko'}
],
u'other': 0,
u'missing': 0
}}

Let's do a query for 'cookie' and do a facet count.
print s.query(title__match='cookie').facet_counts()
Pretty-printed output:
{u'product': {
u'_type': u'terms',
u'total': 2,
u'terms': [
{u'count': 1, u'term': u'Firefox for mobile'},
{u'count': 1, u'term': u'Firefox'}
],
u'other': 0,
u'missing': 0
}}

Note that the facet_counts are affected by the query.

Let's do a filter for 'flash' in the topic.
print s.filter(topics='flash').facet_counts()
Pretty-printed output:
{u'product': {
u'_type': u'terms',
u'total': 9,
u'terms': [
{u'count': 5, u'term': u'Firefox'},
{u'count': 3, u'term': u'Firefox for mobile'},
{u'count': 1, u'term': u'Boot2Gecko'}
],
u'other': 0,
u'missing': 0
}}

Note that the facet_counts are NOT affected by filters.

Let's do a filter for 'flash' in the topic, and specify
filtered=True.
print s.facet('product', filtered=True).filter(topics='flash').facet_counts()
Pretty-printed output:
{u'product': {
u'_type': u'terms',
u'total': 1,
u'terms': [
{u'count': 1, u'term': u'Firefox'}
],
u'other': 0,
u'missing': 0
}}

Using filtered=True causes the facet_counts to be affected by the
filters.

We've done a bunch of faceting on a field that is not
analyzed. Let's look at what happens when we try to use facets on a
field that is analyzed.
print basic_s.facet('topics').facet_counts()
Pretty-printed output:
{u'topics': {
u'_type': u'terms',
u'total': 14,
u'terms': [
{u'count': 3, u'term': u'privacy'},
{u'count': 3, u'term': u'cookies'},
{u'count': 2, u'term': u'basic'},
{u'count': 1, u'term': u'websites'},
{u'count': 1, u'term': u'user'},
{u'count': 1, u'term': u'tips'},
{u'count': 1, u'term': u'search'},
{u'count': 1, u'term': u'interface'},
{u'count': 1, u'term': u'flash'}
],
u'other': 0,
u'missing': 0
}}

Note how the facet counts shows 'user' and 'interface' as two
separate terms even though they're a single topic for document with
id=4. When that document is indexed, the topic field is analyzed and
the default analyzer tokenizes it splitting it into two terms.
#
Moral of the story is that you want fields you facet on to be
analyzed as keyword fields or not analyzed at all.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django	

 	
 	
 django.conf.settings	

Index

 D
 | E

D

 	
 	django.conf.settings (module)

E

 	
 	ES_DISABLED (in module django.conf.settings)

 	ES_INDEXES (in module django.conf.settings)

 	
 	ES_TIMEOUT (in module django.conf.settings)

 	ES_URLS (in module django.conf.settings)

 _static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

nav.xhtml

 Table of Contents

 		ElasticUtils

 		What's new in ElasticUtils

 		Version 0.11: There will be no 0.11

 		Version 0.10.3: March 4th, 2015

 		Version 0.10.2: October 10th, 2014

 		Version 0.10.1: September 22nd, 2014

 		Version 0.10: August 19th, 2014

 		Version 0.9.1: April 7th, 2014

 		Version 0.9: April 3rd, 2014

 		Version 0.8.2: January 6th, 2014

 		Version 0.8.1: September 13th, 2013

 		Version 0.8: August 19th, 2013

 		Version 0.7: Released June 12th, 2013

 		Version 0.6: Released January 17th, 2013

 		Version 0.5: Released September 4th, 2012

 		Version 0.4: Released July 31st, 2012

 		Version 0.3: Released June 1st, 2012

 		Elasticsearch theory

 		Indexes and types

 		Queries vs. filters

 		Resources

 		Documentation

 		Videos

 		Installation

 		Requirements

 		Installation

 		From PyPI

 		From git

 		Indexing

 		Overview

 		Getting an Elasticsearch object

 		Indexes

 		Types and Mappings

 		Indexing documents

 		Deleting documents

 		Refreshing

 		Delete indexes

 		Doing all of this with MappingTypes and Indexables

 		Mapping types and Indexables

 		The MappingType class

 		Lets you tie business logic to search results

 		Lets you link source data to search results

 		DefaultMappingType

 		For more information

 		The Indexable class

 		Example

 		Searching

 		Overview

 		All about S: S

 		What is S?

 		S is chainable

 		S can be typed and untyped

 		S can be sliced to return the results you want

 		S is lazy

 		S results can be returned in many shapes

 		Where to search

 		Specifying connection parameters: es

 		Specifying indexes to search: indexes

 		Specifying doctypes to search: doctypes

 		By default, S does a Match All

 		Queries: query

 		Advanced queries: Q and query_raw

 		calling .query() multiple times

 		should, must and must_not

 		The Q class

 		query_raw

 		adding new query actions

 		Filters: filter

 		Advanced filters: F and filter_raw

 		and vs. or

 		The F class

 		filter_raw

 		adding new filteractions

 		Query-time field boosting: boost

 		Ordering: order_by

 		Demoting: demote

 		Highlighting: highlight

 		Suggestions: suggest

 		Facets

 		Basic facets: facet

 		Facet Results

 		Facets and scope (filters and global)

 		Facets... RAW!: facet_raw

 		Filter and query facets

 		Scores and explanations

 		Seeing the score

 		Getting an explanation: explain

 		More like this: MLT

 		Debugging

 		Score explanations

 		Logging

 		Getting the search body

 		elasticsearch-head

 		elasticsearch-paramedic

 		es2unix

 		API docs

 		Functions

 		The S class

 		The F class

 		The Q class

 		The SearchResults class

 		The MappingType class

 		The Indexable class

 		The DefaultMappingType class

 		The MLT class

 		The ESTestCase class

 		Helper utilites

 		Migrating from Elasticsearch 0.90 to 1.x with ElasticUtils

 		Summary

 		Steps

 		Resources

 		Tricky things

 		Changes with .values_dict() and .values_list()

 		Using ElasticUtils with Django

 		Summary

 		How to integrate ElasticUtils with Django

 		Configuration

 		Elasticsearch

 		Using with Django ORM models

 		Celery tasks

 		Middleware

 		Writing tests

 		Helpful things to know

 		Indexing and reset_queries

 		Django API docs

 		The S class

 		The MappingType class

 		The Indexable class

 		View decorators

 		The ESExceptionMiddleware class

 		Tasks

 		The ESTestCase class

 		Join this project!

 		Want to help?

 		Hacking HOWTO

 		External requirements

 		Install dependencies

 		Conventions

 		Documentation

 		Conventions

 		Building the docs

 		Running and writing tests

 		Running the tests

 		Writing tests

 		ElasticTestCase

 		Release process

 		Basic sample program

 		Sample program using facets

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

