

Welcome to DryVR’s user manual!

	Release

	2.0

	Date

	01/30/2018

Latest manual url http://dryvr-02.readthedocs.io/en/latest/

DryVR is a framework for verifying cyber-physical systems. It specifically handles systems that are described by a combination of a Black-box Simulator for trajectories and a white-box Transition Graph specifying mode switches. The framework uses a probabilistic algorithm for learning sensitivity of the continuous trajectories from simulation data and includes a bounded reachability analysis algorithm that uses the learned sensitivity.

	Status

	Installation

	Usage
	Run DryVR Verfication

	Run DryVR Control Synthesis

	Plotter

	DryVR’s Verification Language
	Black-box Simulator

	Transition Graph

	Input Format

	Output Interpretation

	Advanced Tricks: Verify your own black-box system

	DryVR’s Synthesis Language
	Input Format

	Output Interpretation

	Advanced Tricks: Making control synthesis work on your own black-box system

	Examples and Performance Evaluation
	Getting started: Simple Automatic Emergency Braking

	The Autonomous Vehicle Benchmark

	Verification Examples

	Verification Peformance Evaluation

	Synthesis Examples

	Synthesis Performance Evaluation

	Parameters configuration

	Publications

	People Involved

Status

Jan 24.2018. DryVR 2.0 is done. Adding state dependent transition and control synthesis.

April 18.2017. The installation is tested on Ubuntu 16.04 (64 bit version).

March 23.2017. The tool is tested on Ubuntu 16.04 (64 bit version).

Installation

To install the required packages, please run:

sudo ./installRequirement.sh

The current version of installation file has been tested on a clean
install of Ubuntu 16.04. If you wish to install DryVR on other versions of Linux operation system, please make sure the following packages are correctly installed.

To install packages indepently, the following will be required:

	python 2.7

	numpy

	scipy

	sympy

	matplotlib

	python igraph

	python Z3

	glpk(4.39 or ealier eversion)

	pyglpk

	python-cairo

	python tk

	gmpc

	graphviz

	pygraphviz

Usage

Run DryVR Verfication

To run DryVR verfication, please run:

python main.py input/*/[input_file]

for example:

python main.py input/daginput/input_thermo.json

Run DryVR Control Synthesis

To run DryVR graph search algorithm, please run:

python rrt.py input/*/[input_file]

for example:

python rrt.py input/rrtinput/mazefinder.json

Plotter

After you run the our tool, a reachtube.txt file will be generated in output folder unless the model is determined unsafe during simulation test.

To plot the reachtube, please run:

python plotter.py -x [x dimension number] -y [y dimension number list] -f [input file name] -o [output file name]

-x is the dimension number for x-axis, the default value will be 0, which is the dimension of time.

-y is dimension number lists indicates the dimension you want to draw for y-axis. For example -y [1,2]. The default value will be [1].

-f is the file path for reach tube file that you want to plot, the default value will be output/reachtube.txt.

-o is output file option, the default value is plotResult.png.

To get help for plotter, please run:

python plotter.py -h

Note that the dimension 0 is local time and last dimension is global time. For example, input_AEB’s inital set is [[0.0,-23.0,0.0,1.0,0.0,-15.0,0.0,1.0],[0.0,-22.8,0.0,1.0,0.0,-15.0,0.0,1.0]]. Therefore, it has 8 dimensions in total. You can choose to plot dimension from 0 to 9. Where dimension 0 is the local time and dimension 9 is global time. Dimension 1~8 is corresponding to the dimension you specify in initial set.

for example:

python plotter.py -y [1,2] -f output/reachtube.txt

More plot results can be found at the Examples and Performance Evaluation page.

Examples and Performance Evaluation

Getting started: Simple Automatic Emergency Braking

[image: scenario graph]
An illustration of Automatic Emergency Braking System

Consider the example an AEB as shown above:
Cars 1 and 2 are cruising down the highway with zero relative velocity and certain initial relative separation; Car 1 suddenly switches to a braking mode and starts slowing down according, certain amount of time elapses, before Car 2 switches to a braking mode. We are interested to analyze the severity (relative velocity) of any possible collisions.

Safety Verification of the AEB System

The black-box of the vehicle dynamics is described in The Autonomous Vehicle Benchmark, and the transition graph of the above AEB is shown in Transition Graph. The unsafe region is that the relative distance between the two cars are too close ([image: |sy_1-sy_2|<3]). The input files describing the hybrid system is shown in Input Format.

Verification Result of the AEB System

Run DryVR’s verification algorithm for the AEB system:

python main.py input/daginput/input_brake.json

The system is checked to be safe. We can also plot the reachtubes for different variables. For example, the reachtubes for the position of Car1 and Car2 along the road the direction are shown below. From the reachtube we can also clearly see that the relative distance between the two cars are never too small.

[image: Reachtube]
Reachtube of the position sy of Car1 and Car2

The Autonomous Vehicle Benchmark

The hybrid system for a scenario is constructed by putting together several individual vehicles. The higher-level decisions (paths) followed by the vehicles are captured by the transition graphs discussed in Transition Graph.

Each vehicle has the following modes

	Const: move forward at constant speed,

	Acc1: constant acceleration,

	Brk or Dec: constant (slow) deceleration,

	TurnLeft and TurnRight: the acceleration and steering are controlled in such a manner that the vehicle switches to its left (resp. right) lane in a certain amount of time.

The mode for the entire system consists of n vehicles are the mode of each vehicle separated by semicolon. For example, Const;Brk means the first car is in the const speed mode, while the second car is in the brake mode.
For each vehicle, we mainly analyze four variables: absolute position
([image: sx]) and velocity ([image: vx]) orthogonal to the road direction
([image: x]-axis), and absolute position ([image: sy]) and velocity ([image: vy]) along the
road direction ([image: y]-axis). The throttle and steering is captured using the four variables.

Verification Examples

DryVR now comes with more than two dozen interesting examples, including

	6 mixed-signal circuit models with hundreds of nonlinear terms in the dynamics and both time and state dependent transitions

	6 high dimensional linear system models (up to 384 dimensions)derived from fields such as civil engineering and robotics

	an 8-dimensional hybrid vehicle lane switch model modeling a vehicle switches its lane on highway if it get too close to another vehicle in front of it

	a set of standard 2-7 dimensional benchmarks

The simulators for these models are also available in the folder “examples” under the root directory, and the input files are in the folder “input/daginput” and “input/nondaginput”.

Verification Peformance Evaluation

We have measured performance for examples come with DryVR 2.0.
Peformance is measured using computer with i7 6600u, 16gb ram, Ubuntu 16.04 OS.

	Model

	Dimension

	Time for 1 simulation

	Total Time

	Flow* time

	Biological model I

	7

	0.01s

	0.04s

	66.4s

	Biological model II

	7

	0.01s

	0.04s

	223.4s

	Coupled Vanderpol

	4

	0.03s

	0.14s

	1038.3s

	Spring pendulum

	4

	0.05s

	0.16s

	1377.5s

	Roessler

	3

	0.02s

	0.36s

	17.1s

	Lorentz system

	3

	0.34s

	1.07s

	316.7s

	Lac operon

	2

	0.47s

	171.35s

	44.2s

	Lotka-Volterra

	2

	0.02s

	0.10s

	3.9s

	Buckling column

	2

	0.04s

	0.43s

	26.4s

	Jet engine

	2

	0.07s

	12.1s

	6.8s

	Brusselator

	2

	0.10s

	3.02s

	5.2s

	Vanderpol

	2

	0.05s

	2.92s

	6.4s

	Vehicle platoon 3

	9

	0.32s

	4.28s

	21.08s

	Uniform nor sigmoid

	3

	120.91s

	1314.22s

	Exception

	Uniform inverter loop

	2

	10.94s

	278.56s

	Exception

	Uniform inverter sigmoid

	2

	24.87s

	246.76s

	Exception

	Uniform nor ramp

	3

	173.77s

	1765.55s

	Exception

	Uniform or ramp

	4

	176.70s

	1778.87s

	Exception

	Uniform or sigmoid

	4

	168.75s

	2186.00s

	Exception

	Clamped beam

	348

	540.80s

	5717.63s

	Time out

	Building model

	48

	3.28s

	20.24s

	Time out

	Partial differential equation

	20

	12.05s

	41.21s

	Time out

	FOM

	20

	12.18s

	40.9s

	Time out

	Motor control system

	8

	5.22s

	17.89s

	Time out

	International space station

	25

	79.99s

	243.60s

	Time out

	Lane switch

	8

	0.29s

	563.52s

	N/A

Synthesis Examples

We provide 6 controller synthesis benchmarks examples, including:

	A vehicle collision avoidance model where a car driving on the highway is asked to avoid an obstacle in front of it.

	Robot find a path in a maze.

	Motion planning from synthesis tool Pessoa with specification similar to Example 2.

	DC motor where the velocity of a DC motor needs to be regulated.

	Room heating where the task is to control the temperature of 3 rooms and keep them around 21.

	Inverted pendulum as a classical reach-avoid problem.

Synthesis Performance Evaluation

Peformance is measured using computer with i7 6600u, 16gb ram, Ubuntu 16.04 OS.
Note the running time for graph search can be very different since the alogirthm is randomly search for the graph. It may also return nothing as well. Try to run algorithm multiple times if it does not return the graph.

	Example

	Dimension

	Time horizon

	Min staying time

	Running Time

	vehicle collision avoidance

	4

	50.0s

	2.0s

	1896.26s

	robot in maze

	4

	10.0s

	1.0s

	98.93s

	motion plan

	3

	6.0s

	1.0s

	4.55s

	DC motor

	2

	1.0s

	0.1s

	0.35s

	room heating

	3

	25.0s

	2.0s

	2.66s

	inverted pendulum

	2

	2.0s

	0.2s

	6.06s

Parameters configuration

Parameters in DryVR can be changed by users to get desire result for verification and synthesis.
The configuration file is stored in

src/common/constant.py

The following parameters can be changed by users

Verification constant
SIMUTESTNUM = 1
SIMTRACENUM = 10
REFINETHRES = 10
CHILDREFINETHRES = 2

Synthesis Constant
RANDMODENUM = 3
RANDSECTIONNUM = 3

Verification constant:

	SIMUTESTNUM is the number of hybrid simulation runs at beginning of the verification algorithm to find counter examples.

	SIMTRACENUM is the number of sumulation traces generated to learn the sensitity (discrepancy function).

	REFINETHRES is the refine threshold for initial set given by user.

	CHILDREFINETHRES is threshold of the refinement times for non-initial vertices of the transition graph

Synthesis Constant:

	RANDMODENUM is the number of random modes picked at each time for each candidate guard

	RANDSECTIONNUM is number of time intervals picked as the next set of candidate guards

Publications

	Chuchu Fan, Bolun Qi, Sayan Mitra and Mahesh Viswanathan, DRYVR:Data-driven verification and compositional reasoning for automotive systems [https://link.springer.com/chapter/10.1007%2F978-3-319-63387-9_22], CAV 2017. [Video [https://www.youtube.com/watch?v=9j7KcbZx6m0]]

	Chuchu Fan, Bolun Qi and Sayan Mitra, Road to safe autonomy with data and formal reasoning [https://arxiv.org/abs/1704.06406], (To appear in IEEE Design & Test).

People Involved

If you have any problem using the DryVR, contact the authors of the accompanying paper(s)

Chuchu Fan [http://cfan10.web.engr.illinois.edu/]
PhD candidate, ECE, Email

Bolun Qi [https://www.linkedin.com/in/bolun-qi-28483bb9/]
Graduate student, CS, Email

Sayan Mitra [http://mitras.ece.illinois.edu/]
Associate Professor, ECE, Email

Mahesh Viswanathan [http://vmahesh.cs.illinois.edu/]
Professor, CS, Email

Index

DryVR’s Synthesis Language

In DryVR, a hybrid system is modeled as a combination of a white-box that specifies the mode switches (Transition Graph) and a black-box that can simulate the continuous evolution in each mode (Black-box Simulator).

The control synthesis problem for DryVR is to find a white-box transition graph given the black-box simulator with addition inputs listed in (Input Format).

Input Format

The input for DryVR control synthesis is of the form

{
 "modes":[modes that black simulator takes]
 "variables":[the name of variables in the system]
 "initialSet":[two arrays defining the lower and upper bound of each variable]
 "unsafeSet":@[mode name]:[unsafe region]
 "goalSet":[A z3 expression for target set]
 "timeHorizon":[time bound for control synthesis, the graph should be bounded in time horizon]
 "directory": directory of the folder which contains the simulator for black-box system
 "minTimeThres": minimal staying time for each mode to limit number of trainsition.
 "goal":[[goal variables],[lower bound][upper bound]] # This is a rewrite for goal set for dryvr to calculate distance.
}

Example input for the robot in maze example

{
 "modes":["0", "1", "2", "3", "4", "5", "6", "7"],
 "variables":["x","y","vx","vy"],
 "initialSet":[[1.0,1.0,1.0,1.0],[1.1,1.0,1.0,1.0]],
 "unsafeSet":"@Allmode:Or(And(x>=2.0, x<3.0, y>=3.0, y<=4.0), And(x>=3.0, x<=4.0, y>=2.0, y<3.0), x<0, x>5, y<0, y>5)",
 "goalSet":"And(x>=3.0, x<=4.0, y>=3.0, y<=4.0)",
 "timeHorizon":10.0,
 "minTimeThres":1.0,
 "directory":"examples/carinmaze",
 "goal":[["x","y"],[3.0,3.0],[4.0,4.0]]
}

Output Interpretation

The tool will print background information like the current mode, transition time, initial set on the run. The final result about goal reached or not reached will be printed at the bottom.

When the system find the transition graph that statisfy the requirement, the final result will look like

goal reached

When the system cannot find graph, the final result will look like

could not find graph

Note that DryVR’s algorithm is searching the graph randomly, if the system cannot find the graph, it does not mean the graph is not exist with current input. You can try run the algorithm multiple times to get more accurate result. Increase RANDSECTIONNUM in DryVR’s configuration will increase the chance of finding hte transition graph. (See {Parameters configuration})
If the the system find the transition graph, the system will plot the transition graph and will be stored in “output/rrtGraph.png”

Advanced Tricks: Making control synthesis work on your own black-box system

Creating black box simulator is exactly same as we introduced in DryVR’s language page (Advanced Tricks: Verify your own black-box system) up to Step 4.

For the Step 5, instead of creating a verification input file, you need to create control synthesis input file we have discussed in Input Format.

For example, Let’s set the intial temperature within the range [image: [75,76]], and we want to reach the target temperature within the range [image: [68,72]], while avoiding temperature that is larger than [image: 90]. We want to start our search from “On” mode and reach our goal in bounded time [image: 4s], and set the minimal staying time to [image: 1s].

the input file can be written as:

{
 "modes":["On", "Off"],
 "initialMode":"On",
 "variables":["temp"],
 "initialSet":[[75.0],[76.0]],
 "unsafeSet":"@Allmode:temp>90",
 "goalSet":"And(temp>=68.0, temp<=72.0)",
 "timeHorizon":4.0,
 "minTimeThres":1.0,
 "directory":"examples/Thermostats",
 "goal":[["temp"],[68.0],[72.0]]
}

Save the input file in the folder input/rrtinput and name it as temp.json.

Run the graph search algorithm using the command:

python rrt.py input/rrtinput/temp.json

The graph has been found with the output:

goal reached!

If you check the the output/rrtGraph.png, you would get a transition graph for this problem. As you can see the system turn from On state to Off state to reach the goal.

[image: thermostat transition graph]
The white box transition graph of the thermostat system

DryVR’s Verification Language

In DryVR, a hybrid system is modeled as a combination of a white-box that specifies the mode switches (Transition Graph) and a black-box that can simulate the continuous evolution in each mode (Black-box Simulator).

Black-box Simulator

The black-box simulator for a (deterministic) takes as input a mode label, an initial state [image: x_0], and a finite
sequence of time points [image: t_1, \ldots, t_k], and returns a sequence of
states [image: sim(mode,x_0,t_1), \ldots, sim(mode,x_0,t_k)]
as the simulation trajectory of the system in the given mode starting from [image: x_0] at the time points [image: t_1, \ldots, t_k].

DryVR uses the black-box simulator by calling the simulation function:

TC_Simulate(Modes,initialCondition,time_bound)

Given the mode name “Mode”, initial state “initialCondition” and time horizon “time_bound”, the function TC_Simulate should return an python array of the form:

[[t_0,variable_1(t_0),variable_2(t_0),...],[t_1,variable_1(t_1),variable_2(t_1),...],...]

We provide several example simulation functions and you have to write your own if you want to verify systems that use other black-boxes. Once you create the TC_Simulate function and corresponding input file, you can run DryVR to check the safety of your system. To connect DryVR with your own black-box simulator, please refer to section Advanced Tricks: Verify your own black-box system for more details.

Transition Graph

[image: transition graph]
The transition of Automatic Emergency Braking (AEB) system

A transition graph is a labeled, directed graph as shown on the right. The vertex labels (red nodes in the graph) specify the modes of the system, and the edge labels specify the guard and reset from the predecessor node to the successor node.

The transition graph shown on the right defines an automatic emergency braking system. Car1 is driving ahead of Car2 on a straight lane. Initially, both car1 and car2 are in the constant speed mode (Const;Const). Within a short amount of time ([0,0.1]s) Car1 transits into brake mode while Car2 remains in the cruise mode (Brk;Const). After [0.8,0.9]s, Car2 will react by braking as well so both cars are in the brake mode (Brk;Brk).

The transition graph will be generated automatically by DryVR and stored in the tool’s root directory as curGraph.png

Input Format

The input for DryVR is of the form

{
 "vertex":[transition graph vertex labels (modes)]
 "edge":[transition graph edges, (i,j) means there is a directed edge from vertex i to vertex j]
 "variables":[the name of variables in the system]
 "guards":[transition graph edge labels (transition condition)]
 "resets":[reset condition after transition] # This is optional if you do not want reset
 "initialVertex":integer indicates the vertex to start # This is optional for DAG graph
 "initialSet":[two arrays defining the lower and upper bound of each variable]
 "unsafeSet":@[mode name]:[unsafe region]
 "timeHorizon":[Time bound for the verification]
 "directory": directory of the folder which contains the simulator for black-box system
 "bloatingMethod": specify the bloating method, which can be either "PW" or "GLOBAL" # This is optional, if you don't have this field in input file, DryVR will use GLOBAL as default bloating method.
 "kvalue": specify the k-value that used by piecewise bloating method # This field must be specified if you choose the bloatingMethod to "PW"
}

Some fields are optional in DryVR’s input langauge such as resets, initialVertex, bloatingMethod and kvalue under some conditions. Please read the comment.

Example input for the Automatic Emergency Braking System

{
 "vertex":["Const;Const","Brk;Const","Brk;Brk"],
 "edge":[[0,1],[1,2]],
 "variables":["car1_x","car1_y","car1_vx","car1_vy","car2_x","car2_y","car2_vx","car2_vy"],
 "guards":[
 "And(t>0.0,t<=0.1)",
 "And(t>0.8,t<=0.9)"
],
 "initialSet":[[0.0,0.5,0.0,1.0,0.0,-17.0,0.0,1.0],[0.0,1.0,0.0,1.0,0.0,-15.0,0.0,1.0]],
 "unsafeSet":"@Allmode:And(car1_y-car2_y<3, car2_y-car1_y<3)",
 "timeHorizon":5.0,
 "directory":"examples/cars"
}

Output Interpretation

The tool will print background information like the current mode, transition time, initial set and discrepancy function information on the run. The final result about safe/unsafe will be printed at the bottom.

The whole verification algorithm will start from doing a few simulations to quickly find the counter-example. If the simulations are all safe, then the main verification process will start. The number of initial simulation can be changed by the user (See {Parameters configuration})

When the system is safe, the final result will look like

System is Safe!

If the verification result is safe, the cooresponding reachtubes are stored in “output/reachtube.txt”

When the system is unsafe from the initial simulations, the final result will look like

Current simulation is not safe. Program halt

When the system is unsafe from the verification process, the final result will look like

System is not safe in Mode [Mode name]

When the system is unknown from verification, the final result will look like

Hit refine threshold, system halt, result unknown

If the simulation result is not safe from the initial simulations, the unsafe simulation trajectory will be stored in “output/Traj.txt”.

If the verfication result is not safe from the verification process, the counter example reachtube will be stored in “output/unsafeTube.txt”.

Advanced Tricks: Verify your own black-box system

We use a very simple example of a thermostat as the starting point to show how to use DryVR to verify your own black-box system.

The thermostat is a one-dimensional linear hybrid system with two modes “On” and “Off”. The only state variable is the temperature [image: x]. In the “On” mode, the system dynamic is

[image: \dot{x} = 0.1 x,]

and in the “Off” mode, the system dynamic is

[image: \dot{x} = -0.1 x,]

As for DryVR, of course, all the information about dynamics is hidden. Instead, you need to provide the simulator function TC_Simulate as discussed in Black-box Simulator.

Step 1:
Create a folder in the DryVR root directory for your new model and enter it.

cd examples
mkdir Thermostats
cd Thermostats

Step 2:
Inside your model folder, create a python script for your model.

touch Thermostats_ODE.py

Step 3: Write the TC_Simulate function in the python file Thermostats_ODE.py.

For the thermostat system, one simulator function could be:

def thermo_dynamic(y,t,rate):
 dydt = rate*y
 return dydt

def TC_Simulate(Mode,initialCondition,time_bound):
 time_step = 0.05;
 time_bound = float(time_bound)
 initial = [float(tmp) for tmp in initialCondition]
 number_points = int(np.ceil(time_bound/time_step))
 t = [i*time_step for i in range(0,number_points)]
 if t[-1] != time_step:
 t.append(time_bound)

 y_initial = initial[0]

 if Mode == 'On':
 rate = 0.1
 elif Mode == 'Off':
 rate = -0.1
 else:
 print('Wrong Mode name!')
 sol = odeint(thermo_dynamic,y_initial,t,args=(rate,),hmax = time_step)

 # Construct the final output
 trace = []
 for j in range(len(t)):
 tmp = []
 tmp.append(t[j])
 tmp.append(sol[j,0])
 trace.append(tmp)
 return trace

In this example, we use odeint simulator from Scipy, but you use any programming language as long as the TC_Simulate function follows the input-output requirement:

TC_Simulate(Mode,initialCondition,time_bound)
Input:
 Mode (string) -- a string indicates the model you want to simulate. Ex. "On"
 initialCondition (list of float) -- a list contains the initial condition. Ex. "[32.0]"
 time_bound (float) -- a float indicates the time horizon for simulation. EX. '10.0'
Output:
 Trace (list of list of float) -- a list of lists contain the trace from a simulation.
 Each index represents the simulation for certain time step.Represents as [time, v1, v2,].
 Ex. "[[0.0,32.0],[0.1,32.1],[0.2,32.2]........[10.0,34.3]]"

Step 4:
Inside your model folder, create a Python initiate script.

touch __init__.py

Inside your initiate script, import file with function TC_Simulate.

from Thermostats_ODE import *

Step 5:
Go to inputFile folder and create an input file for your new model using the format discussed in Input Format.

Create a transition graph specifying the mode transitions. For example, we want the temperature to start within the range [image: [75,76]] in the “On” mode. After [image: [1,1.1]] second, it transits to the “Off” mode, and transits back to the “On” mode after another [image: [1,1.1]] seconds. For bounded time [image: 3.5s], we want to check whether the temperature is above [image: 90].

The input file can be written as:

{
 "vertex":["On","Off","On"],
 "edge":[[0,1],[1,2]],
 "variables":["temp"],
 "guards":["And(t>1.0,t<=1.1)","And(t>1.0,t<=1.1)"],
 "initialSet":[[75.0],[76.0]],
 "unsafeSet":"@Allmode:temp>91",
 "timeHorizon":3.5,
 "directory":"examples/Thermostats"
}

Save the input file in the folder input/daginput and name it as input_thermo.json.

Step6:
Run the verification algorithm using the command:

python main.py input/daginput/input_thermo.json

The system has been checked to be safe with the output:

System is Safe!

We can plot the reachtube using the command:

python plotter.py

And the reachtube for the temperature is shown as

[image: thermostat reachtubs]
The reachtube for the temperature of the thermostat system example

 _images/curgraph.png
And(t>0.0,t<=0.1)

And(t>0.8,t<=0.9

nst

_images/thermostat.png

_images/Two_cars.png

_images/math/07e0f7d7006933f1f612779ac3aecf313f5b6f6a.png

_images/math/276f7e256cbddeb81eee42e1efc348f3cb4ab5f8.png

_images/v2.png
Const;Const,0

Const;Const,0

T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Brk;Const,1

Const;Const,0->Brk;Const, |

Brk;Brk,2

Const;Const,0->Brk;Const, 1->Brk;Brk,2

_images/math/0649e1087caa1a5792006a570fd8b34da865d371.png
T

—U.1r,

_images/math/27c3f84f870e3078bd73a6c0a6a73241652680d1.png

_images/math/307e583980f527b3f26e1e159435e0a8d262736b.png
L)

_images/math/40a6b534f5e3fadfa3bf3bd9f1c25010346afb5b.png

nav.xhtml

 Table of Contents

 		
 Welcome to DryVR’s user manual!

 		
 Status

 		
 Installation

 		
 Usage

 		
 Run DryVR Verfication

 		
 Run DryVR Control Synthesis

 		
 Plotter

 		
 DryVR’s Verification Language

 		
 Black-box Simulator

 		
 Transition Graph

 		
 Input Format

 		
 Output Interpretation

 		
 Advanced Tricks: Verify your own black-box system

 		
 DryVR’s Synthesis Language

 		
 Input Format

 		
 Output Interpretation

 		
 Advanced Tricks: Making control synthesis work on your own black-box system

 		
 Examples and Performance Evaluation

 		
 Getting started: Simple Automatic Emergency Braking

 		
 Safety Verification of the AEB System

 		
 Verification Result of the AEB System

 		
 The Autonomous Vehicle Benchmark

 		
 Verification Examples

 		
 Verification Peformance Evaluation

 		
 Synthesis Examples

 		
 Synthesis Performance Evaluation

 		
 Parameters configuration

 		
 Publications

 		
 People Involved

_images/math/60a1b194316a8347ea0de0d4133f28875b92cc3c.png
sy; — sy2| < 3

_images/math/706d7993b1e926004418817502d64bbaddd862de.png
mimode, g, t1), ..., sim(mode, xq, ;)

_images/math/586d9f2d0bf8bd88a1ba56a8613540065633bec8.png
70, 76

_images/math/5d097156266d3b1b6226a8cadf3139db4aaebc12.png
r=0U.1r,

_images/math/9d56bbbc3f4be9472b38cbb6cba75877a4c49a00.png
(AN N

_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png

_images/math/85dd92a01545069e5720b438fa43981e71f9f41e.png

_images/math/91ac51b19f354855517947bb3ecfea3be0ccb522.png
68, 72

_images/math/ae16ed0261178011876a45fd0f98f5c72f3307d2.png

_images/math/b7a8028fc10b9e828d9b340dc3459e6c678a38aa.png

_images/math/c1d7feec46252ba2d3538cfa5c71a9235802383c.png
1,1.1

_static/ajax-loader.gif

_images/math/eac614ff2950b134eb3f03433d495c3700e14f66.png

_images/math/fd6ecc3c8de21a8b9fa313de0689ccbab4eb89be.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

