

Django documentation contents

	Getting started
	Django at a glance
	Design your model

	Install it

	Enjoy the free API

	A dynamic admin interface: it’s not just scaffolding – it’s the whole house

	Design your URLs

	Write your views

	Design your templates

	This is just the surface

	Quick install guide
	Install Python

	Set up a database

	Install Django

	Verifying

	That’s it!

	Writing your first Django app, part 1
	Creating a project

	The development server

	Creating the Polls app

	Write your first view

	Writing your first Django app, part 2
	Database setup

	Creating models

	Activating models

	Playing with the API

	Introducing the Django Admin

	Writing your first Django app, part 3
	Overview

	Writing more views

	Write views that actually do something

	Raising a 404 error

	Use the template system

	Removing hardcoded URLs in templates

	Namespacing URL names

	Writing your first Django app, part 4
	Write a minimal form

	Use generic views: Less code is better

	Writing your first Django app, part 5
	Introducing automated testing

	Basic testing strategies

	Writing our first test

	Test a view

	When testing, more is better

	Further testing

	What’s next?

	Writing your first Django app, part 6
	Customize your app’s look and feel

	Adding a background-image

	Writing your first Django app, part 7
	Customize the admin form

	Adding related objects

	Customize the admin change list

	Customize the admin look and feel

	Customize the admin index page

	What’s next?

	Advanced tutorial: How to write reusable apps
	Reusability matters

	Your project and your reusable app

	Installing some prerequisites

	Packaging your app

	Using your own package

	Publishing your app

	Installing Python packages with a virtual environment

	What to read next
	Finding documentation

	How the documentation is organized

	How documentation is updated

	Where to get it

	Differences between versions

	Writing your first patch for Django
	Introduction

	Code of Conduct

	Installing Git

	Getting a copy of Django’s development version

	Running Django’s test suite for the first time

	Working on a feature

	Creating a branch for your patch

	Writing some tests for your ticket

	Writing the code for your ticket

	Running Django’s test suite for the second time

	Writing Documentation

	Previewing your changes

	Committing the changes in the patch

	Pushing the commit and making a pull request

	Next steps

	Using Django
	How to install Django
	Install Python

	Install Apache and mod_wsgi

	Get your database running

	Install the Django code

	Models and databases
	Models

	Making queries

	Aggregation

	Search

	Managers

	Performing raw SQL queries

	Database transactions

	Multiple databases

	Tablespaces

	Database access optimization

	Database instrumentation

	Examples of model relationship API usage

	Handling HTTP requests
	URL dispatcher

	Writing views

	View decorators

	File Uploads

	Django shortcut functions

	Generic views

	Middleware

	How to use sessions

	Working with forms
	HTML forms

	Django’s role in forms

	Forms in Django

	Building a form

	More about Django Form classes

	Working with form templates

	Further topics

	Templates
	Support for template engines

	The Django template language

	Class-based views
	Introduction to class-based views

	Built-in class-based generic views

	Form handling with class-based views

	Using mixins with class-based views

	Basic examples

	Usage in your URLconf

	Subclassing generic views

	Migrations
	The Commands

	Backend Support

	Workflow

	Dependencies

	Migration files

	Adding migrations to apps

	Reversing migrations

	Historical models

	Considerations when removing model fields

	Data Migrations

	Squashing migrations

	Serializing values

	Supporting multiple Django versions

	Managing files
	Using files in models

	The File object

	File storage

	Testing in Django
	Writing and running tests

	Testing tools

	Advanced testing topics

	User authentication in Django
	Overview

	Installation

	Usage

	Django’s cache framework
	Setting up the cache

	The per-site cache

	The per-view cache

	Template fragment caching

	The low-level cache API

	Downstream caches

	Using Vary headers

	Controlling cache: Using other headers

	Order of MIDDLEWARE

	Conditional View Processing
	The condition decorator

	Shortcuts for only computing one value

	Using the decorators with other HTTP methods

	Comparison with middleware conditional processing

	Cryptographic signing
	Protecting the SECRET_KEY

	Using the low-level API

	Sending email
	Quick example

	send_mail()

	send_mass_mail()

	mail_admins()

	mail_managers()

	Examples

	Preventing header injection

	The EmailMessage class

	Email backends

	Configuring email for development

	Internationalization and localization
	Overview

	Definitions

	Logging
	A quick logging primer

	Using logging

	Configuring logging

	Django’s logging extensions

	Django’s default logging configuration

	Pagination
	The Paginator class

	Example

	Paginating a ListView

	Using Paginator in a view function

	Security in Django
	Cross site scripting (XSS) protection

	Cross site request forgery (CSRF) protection

	SQL injection protection

	Clickjacking protection

	SSL/HTTPS

	Host header validation

	Referrer policy

	Session security

	User-uploaded content

	Additional security topics

	Performance and optimization
	Introduction

	General approaches

	Caching

	Understanding laziness

	Databases

	HTTP performance

	Template performance

	Using different versions of available software

	Serializing Django objects
	Serializing data

	Deserializing data

	Serialization formats

	Natural keys

	Django settings
	The basics

	Designating the settings

	Default settings

	Using settings in Python code

	Altering settings at runtime

	Security

	Available settings

	Creating your own settings

	Using settings without setting DJANGO_SETTINGS_MODULE

	Signals
	Listening to signals

	Defining and sending signals

	Disconnecting signals

	System check framework
	Writing your own checks

	External packages
	Localflavor

	Comments

	Formtools

	Asynchronous support
	Async-safety

	Async adapter functions

	“How-to” guides
	Authentication using REMOTE_USER
	Configuration

	Using REMOTE_USER on login pages only

	Writing custom django-admin commands
	Accepting optional arguments

	Management commands and locales

	Testing

	Overriding commands

	Command objects

	Writing custom model fields
	Introduction

	Background theory

	Writing a field subclass

	Writing a FileField subclass

	Custom Lookups
	A lookup example

	A transformer example

	Writing an efficient abs__lt lookup

	A bilateral transformer example

	Writing alternative implementations for existing lookups

	How Django determines the lookups and transforms which are used

	Custom template tags and filters
	Code layout

	Writing custom template filters

	Writing custom template tags

	Writing a custom storage system

	Deploying Django
	How to deploy with WSGI

	How to deploy with ASGI

	Deploying static files

	Error reporting

	Deployment checklist

	Upgrading Django to a newer version
	Required Reading

	Dependencies

	Resolving deprecation warnings

	Installation

	Testing

	Deployment

	Error reporting
	Email reports

	Filtering error reports

	Providing initial data for models
	Providing initial data with migrations

	Providing data with fixtures

	Integrating Django with a legacy database
	Give Django your database parameters

	Auto-generate the models

	Install the core Django tables

	Test and tweak

	Outputting CSV with Django
	Using the Python CSV library

	Using the template system

	Other text-based formats

	Outputting PDFs with Django
	Install ReportLab

	Write your view

	Other formats

	Overriding templates
	Overriding from the project’s templates directory

	Overriding from an app’s template directory

	Managing static files (e.g. images, JavaScript, CSS)
	Configuring static files

	Serving static files during development

	Serving files uploaded by a user during development

	Testing

	Deployment

	Learn more

	Deploying static files
	Serving static files in production

	Learn more

	How to install Django on Windows
	Install Python

	About pip

	Setting up a virtual environment

	Install Django

	Common pitfalls

	Writing database migrations
	Data migrations and multiple databases

	Migrations that add unique fields

	Controlling the order of migrations

	Migrating data between third-party apps

	Changing a ManyToManyField to use a through model

	Changing an unmanaged model to managed

	Django FAQ
	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	How is Django licensed?

	Why does Django include Python’s license file?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	How do I cite Django?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	What Python version can I use with Django?

	What Python version should I use with Django?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	Does Django support NoSQL databases?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	Some objects aren’t appearing in the admin.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	What browsers are supported for using the admin?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

	Troubleshooting
	Problems running django-admin

	Miscellaneous

	API Reference
	Applications
	Projects and applications

	Configuring applications

	Application configuration

	Application registry

	Initialization process

	System check framework
	API reference

	Builtin tags

	Core system checks

	contrib app checks

	Built-in class-based views API
	Base views

	Generic display views

	Generic editing views

	Generic date views

	Class-based views mixins

	Class-based generic views - flattened index

	Specification

	Base vs Generic views

	Clickjacking Protection
	An example of clickjacking

	Preventing clickjacking

	How to use it

	Limitations

	contrib packages
	The Django admin site

	django.contrib.auth

	The contenttypes framework

	The flatpages app

	GeoDjango

	django.contrib.humanize

	The messages framework

	django.contrib.postgres

	The redirects app

	The sitemap framework

	The “sites” framework

	The staticfiles app

	The syndication feed framework

	admin

	auth

	contenttypes

	flatpages

	gis

	humanize

	messages

	postgres

	redirects

	sessions

	sites

	sitemaps

	syndication

	Other add-ons

	Cross Site Request Forgery protection
	How to use it

	Rejected requests

	How it works

	Caching

	Testing

	Limitations

	Edge cases

	Contrib and reusable apps

	Settings

	Frequently Asked Questions

	Databases
	General notes

	PostgreSQL notes

	MariaDB notes

	MySQL notes

	SQLite notes

	Oracle notes

	Subclassing the built-in database backends

	Using a 3rd-party database backend

	django-admin and manage.py
	Usage

	Available commands

	Commands provided by applications

	Default options

	Extra niceties

	Running management commands from your code
	Output redirection

	Django Exceptions
	Django Core Exceptions

	URL Resolver exceptions

	Database Exceptions

	Http Exceptions

	Transaction Exceptions

	Testing Framework Exceptions

	Python Exceptions

	File handling
	The File object

	File storage API

	Uploaded Files and Upload Handlers

	Forms
	The Forms API

	Form fields

	Model Form Functions

	Formset Functions

	The form rendering API

	Widgets

	Form and field validation

	Middleware
	Available middleware

	Middleware ordering

	Migration Operations
	Schema Operations

	Special Operations

	Writing your own

	Models
	Model field reference

	Field attribute reference

	Model index reference

	Constraints reference

	Model _meta API

	Related objects reference

	Model class reference

	Model Meta options

	Model instance reference

	QuerySet API reference

	Lookup API reference

	Query Expressions

	Conditional Expressions

	Database Functions

	Paginator
	Paginator class

	Page class

	Exceptions

	Request and response objects
	Quick overview

	HttpRequest objects

	QueryDict objects

	HttpResponse objects

	JsonResponse objects

	StreamingHttpResponse objects

	FileResponse objects

	SchemaEditor
	Methods

	Attributes

	Settings
	Core Settings

	Auth

	Messages

	Sessions

	Sites

	Static Files

	Core Settings Topical Index

	Signals
	Model signals

	Management signals

	Request/response signals

	Test signals

	Database Wrappers

	Templates
	The Django template language

	Built-in template tags and filters

	The Django template language: for Python programmers

	TemplateResponse and SimpleTemplateResponse
	SimpleTemplateResponse objects

	TemplateResponse objects

	The rendering process

	Using TemplateResponse and SimpleTemplateResponse

	Unicode data
	Creating the database

	General string handling

	Models

	Templates

	Files

	Form submission

	django.urls utility functions
	reverse()

	reverse_lazy()

	resolve()

	get_script_prefix()

	django.urls functions for use in URLconfs
	path()

	re_path()

	include()

	register_converter()

	django.conf.urls functions for use in URLconfs
	static()

	url()

	handler400

	handler403

	handler404

	handler500

	Django Utils
	django.utils.cache

	django.utils.dateparse

	django.utils.decorators

	django.utils.encoding

	django.utils.feedgenerator

	django.utils.functional

	django.utils.html

	django.utils.http

	django.utils.module_loading

	django.utils.safestring

	django.utils.text

	django.utils.timezone

	django.utils.translation

	Validators
	Writing validators

	How validators are run

	Built-in validators

	Built-in Views
	Serving files in development

	Error views

	Meta-documentation and miscellany
	API stability
	What “stable” means

	Stable APIs

	Exceptions

	Design philosophies
	Overall

	Models

	Database API

	URL design

	Template system

	Views

	Cache Framework

	Third-party distributions of Django
	For distributors

	Glossary

	Release notes
	Final releases
	3.0 release

	2.2 release

	2.1 release

	2.0 release

	1.11 release

	1.10 release

	1.9 release

	1.8 release

	1.7 release

	1.6 release

	1.5 release

	1.4 release

	1.3 release

	1.2 release

	1.1 release

	1.0 release

	Pre-1.0 releases

	Security releases

	Django internals
	Contributing to Django
	Advice for new contributors

	Reporting bugs and requesting features

	Triaging tickets

	Writing code

	Writing documentation

	Localizing Django

	Committing code

	Mailing lists
	django-users

	django-core-mentorship

	django-developers

	django-i18n

	django-announce

	django-updates

	Organization of the Django Project
	Principles

	Core team

	Technical board

	Changing the organization

	Django’s security policies
	Reporting security issues

	Supported versions

	How Django discloses security issues

	Who receives advance notification

	Requesting notifications

	Django’s release process
	Official releases

	Release cadence

	Deprecation policy

	Supported versions

	Release process

	Django Deprecation Timeline
	4.0

	3.1

	3.0

	2.1

	2.0

	1.10

	1.9

	1.8

	1.7

	1.6

	1.5

	1.4

	1.3

	The Django source code repository
	High-level overview

	The master branch

	Stable branches

	Tags

	How is Django Formed?
	Overview

	Prerequisites

	Pre-release tasks

	Preparing for release

	Actually rolling the release

	Making the release(s) available to the public

	Post-release

	New stable branch tasks

	Notes on setting the VERSION tuple

Indices, glossary and tables

	Index

	Module Index

	Glossary

Django documentation

Everything you need to know about Django.

First steps

Are you new to Django or to programming? This is the place to start!

	From scratch:
Overview |
Installation

	Tutorial:
Part 1: Requests and responses |
Part 2: Models and the admin site |
Part 3: Views and templates |
Part 4: Forms and generic views |
Part 5: Testing |
Part 6: Static files |
Part 7: Customizing the admin site

	Advanced Tutorials:
How to write reusable apps |
Writing your first patch for Django

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to many common questions.

	Looking for specific information? Try the Index, Module Index or
the detailed table of contents.

	Not found anything? See FAQ: Getting Help for information on getting support
and asking questions to the community.

	Report bugs with Django in our ticket tracker [https://code.djangoproject.com/].

How the documentation is organized

Django has a lot of documentation. A high-level overview of how it’s organized
will help you know where to look for certain things:

	Tutorials take you by the hand through a series of
steps to create a Web application. Start here if you’re new to Django or Web
application development. Also look at the “First steps”.

	Topic guides discuss key topics and concepts at a
fairly high level and provide useful background information and explanation.

	Reference guides contain technical reference for APIs and
other aspects of Django’s machinery. They describe how it works and how to
use it but assume that you have a basic understanding of key concepts.

	How-to guides are recipes. They guide you through the
steps involved in addressing key problems and use-cases. They are more
advanced than tutorials and assume some knowledge of how Django works.

The model layer

Django provides an abstraction layer (the “models”) for structuring and
manipulating the data of your Web application. Learn more about it below:

	Models:
Introduction to models |
Field types |
Indexes |
Meta options |
Model class

	QuerySets:
Making queries |
QuerySet method reference |
Lookup expressions

	Model instances:
Instance methods |
Accessing related objects

	Migrations:
Introduction to Migrations |
Operations reference |
SchemaEditor |
Writing migrations

	Advanced:
Managers |
Raw SQL |
Transactions |
Aggregation |
Search |
Custom fields |
Multiple databases |
Custom lookups |
Query Expressions |
Conditional Expressions |
Database Functions |
Asynchronous Support

	Other:
Supported databases |
Legacy databases |
Providing initial data |
Optimize database access |
PostgreSQL specific features

The view layer

Django has the concept of “views” to encapsulate the logic responsible for
processing a user’s request and for returning the response. Find all you need
to know about views via the links below:

	The basics:
URLconfs |
View functions |
Shortcuts |
Decorators

	Reference:
Built-in Views |
Request/response objects |
TemplateResponse objects

	File uploads:
Overview |
File objects |
Storage API |
Managing files |
Custom storage

	Class-based views:
Overview |
Built-in display views |
Built-in editing views |
Using mixins |
API reference |
Flattened index

	Advanced:
Generating CSV |
Generating PDF

	Middleware:
Overview |
Built-in middleware classes

The template layer

The template layer provides a designer-friendly syntax for rendering the
information to be presented to the user. Learn how this syntax can be used by
designers and how it can be extended by programmers:

	The basics:
Overview

	For designers:
Language overview |
Built-in tags and filters |
Humanization

	For programmers:
Template API |
Custom tags and filters

Forms

Django provides a rich framework to facilitate the creation of forms and the
manipulation of form data.

	The basics:
Overview |
Form API |
Built-in fields |
Built-in widgets

	Advanced:
Forms for models |
Integrating media |
Formsets |
Customizing validation

The development process

Learn about the various components and tools to help you in the development and
testing of Django applications:

	Settings:
Overview |
Full list of settings

	Applications:
Overview

	Exceptions:
Overview

	django-admin and manage.py:
Overview |
Adding custom commands

	Testing:
Introduction |
Writing and running tests |
Included testing tools |
Advanced topics

	Deployment:
Overview |
WSGI servers |
ASGI servers |
Deploying static files |
Tracking code errors by email |
Deployment checklist

The admin

Find all you need to know about the automated admin interface, one of Django’s
most popular features:

	Admin site

	Admin actions

	Admin documentation generator

Security

Security is a topic of paramount importance in the development of Web
applications and Django provides multiple protection tools and mechanisms:

	Security overview

	Disclosed security issues in Django

	Clickjacking protection

	Cross Site Request Forgery protection

	Cryptographic signing

	Security Middleware

Internationalization and localization

Django offers a robust internationalization and localization framework to
assist you in the development of applications for multiple languages and world
regions:

	Overview |
Internationalization |
Localization |
Localized Web UI formatting and form input

	Time zones

Performance and optimization

There are a variety of techniques and tools that can help get your code running
more efficiently - faster, and using fewer system resources.

	Performance and optimization overview

Geographic framework

GeoDjango intends to be a world-class geographic
Web framework. Its goal is to make it as easy as possible to build GIS Web
applications and harness the power of spatially enabled data.

Common Web application tools

Django offers multiple tools commonly needed in the development of Web
applications:

	Authentication:
Overview |
Using the authentication system |
Password management |
Customizing authentication |
API Reference

	Caching

	Logging

	Sending emails

	Syndication feeds (RSS/Atom)

	Pagination

	Messages framework

	Serialization

	Sessions

	Sitemaps

	Static files management

	Data validation

Other core functionalities

Learn about some other core functionalities of the Django framework:

	Conditional content processing

	Content types and generic relations

	Flatpages

	Redirects

	Signals

	System check framework

	The sites framework

	Unicode in Django

The Django open-source project

Learn about the development process for the Django project itself and about how
you can contribute:

	Community:
How to get involved |
The release process |
Team organization |
The Django source code repository |
Security policies |
Mailing lists

	Design philosophies:
Overview

	Documentation:
About this documentation

	Third-party distributions:
Overview

	Django over time:
API stability |
Release notes and upgrading instructions |
Deprecation Timeline

Getting started

New to Django? Or to Web development in general? Well, you came to the right
place: read this material to quickly get up and running.

	Django at a glance

	Quick install guide

	Writing your first Django app, part 1

	Writing your first Django app, part 2

	Writing your first Django app, part 3

	Writing your first Django app, part 4

	Writing your first Django app, part 5

	Writing your first Django app, part 6

	Writing your first Django app, part 7

	Advanced tutorial: How to write reusable apps

	What to read next

	Writing your first patch for Django

See also

If you’re new to Python [https://python.org/], you might want to start by getting an idea of what
the language is like. Django is 100% Python, so if you’ve got minimal
comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this
list of Python resources for non-programmers [https://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

If you already know a few other languages and want to get up to speed with
Python quickly, we recommend Dive Into Python [https://diveinto.org/python3/table-of-contents.html]. If that’s not quite your
style, there are many other books about Python [https://wiki.python.org/moin/PythonBooks].

Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was
designed to make common Web-development tasks fast and easy. Here’s an informal
overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to
understand how Django works, but this isn’t intended to be a tutorial or
reference – but we’ve got both! When you’re ready to start a project, you can
start with the tutorial or dive right into more
detailed documentation.

Design your model

Although you can use Django without a database, it comes with an
object-relational mapper [https://en.wikipedia.org/wiki/Object-relational_mapping] in which you describe your database layout in Python
code.

The data-model syntax offers many rich ways of
representing your models – so far, it’s been solving many years’ worth of
database-schema problems. Here’s a quick example:

mysite/news/models.py

from django.db import models

class Reporter(models.Model):
 full_name = models.CharField(max_length=70)

 def __str__(self):
 return self.full_name

class Article(models.Model):
 pub_date = models.DateField()
 headline = models.CharField(max_length=200)
 content = models.TextField()
 reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

 def __str__(self):
 return self.headline

Install it

Next, run the Django command-line utilities to create the database tables
automatically:

$ python manage.py makemigrations
$ python manage.py migrate

The makemigrations command looks at all your available models and
creates migrations for whichever tables don’t already exist. migrate
runs the migrations and creates tables in your database, as well as optionally
providing much richer schema control.

Enjoy the free API

With that, you’ve got a free, and rich, Python API
to access your data. The API is created on the fly, no code generation
necessary:

Import the models we created from our "news" app
>>> from news.models import Article, Reporter

No reporters are in the system yet.
>>> Reporter.objects.all()
<QuerySet []>

Create a new Reporter.
>>> r = Reporter(full_name='John Smith')

Save the object into the database. You have to call save() explicitly.
>>> r.save()

Now it has an ID.
>>> r.id
1

Now the new reporter is in the database.
>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

Fields are represented as attributes on the Python object.
>>> r.full_name
'John Smith'

Django provides a rich database lookup API.
>>> Reporter.objects.get(id=1)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__startswith='John')
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__contains='mith')
<Reporter: John Smith>
>>> Reporter.objects.get(id=2)
Traceback (most recent call last):
 ...
DoesNotExist: Reporter matching query does not exist.

Create an article.
>>> from datetime import date
>>> a = Article(pub_date=date.today(), headline='Django is cool',
... content='Yeah.', reporter=r)
>>> a.save()

Now the article is in the database.
>>> Article.objects.all()
<QuerySet [<Article: Django is cool>]>

Article objects get API access to related Reporter objects.
>>> r = a.reporter
>>> r.full_name
'John Smith'

And vice versa: Reporter objects get API access to Article objects.
>>> r.article_set.all()
<QuerySet [<Article: Django is cool>]>

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.
This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter(reporter__full_name__startswith='John')
<QuerySet [<Article: Django is cool>]>

Change an object by altering its attributes and calling save().
>>> r.full_name = 'Billy Goat'
>>> r.save()

Delete an object with delete().
>>> r.delete()

A dynamic admin interface: it’s not just scaffolding – it’s the whole house

Once your models are defined, Django can automatically create a professional,
production ready administrative interface –
a website that lets authenticated users add, change and delete objects. The
only step required is to register your model in the admin site:

mysite/news/models.py

from django.db import models

class Article(models.Model):
 pub_date = models.DateField()
 headline = models.CharField(max_length=200)
 content = models.TextField()
 reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

mysite/news/admin.py

from django.contrib import admin

from . import models

admin.site.register(models.Article)

The philosophy here is that your site is edited by a staff, or a client, or
maybe just you – and you don’t want to have to deal with creating backend
interfaces only to manage content.

One typical workflow in creating Django apps is to create models and get the
admin sites up and running as fast as possible, so your staff (or clients) can
start populating data. Then, develop the way data is presented to the public.

Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality Web
application. Django encourages beautiful URL design and doesn’t put any cruft
in URLs, like .php or .asp.

To design URLs for an app, you create a Python module called a URLconf. A table of contents for your app, it contains a mapping
between URL patterns and Python callback functions. URLconfs also serve to
decouple URLs from Python code.

Here’s what a URLconf might look like for the Reporter/Article
example above:

mysite/news/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('articles/<int:year>/', views.year_archive),
 path('articles/<int:year>/<int:month>/', views.month_archive),
 path('articles/<int:year>/<int:month>/<int:pk>/', views.article_detail),
]

The code above maps URL paths to Python callback functions (“views”). The path
strings use parameter tags to “capture” values from the URLs. When a user
requests a page, Django runs through each path, in order, and stops at the
first one that matches the requested URL. (If none of them matches, Django
calls a special-case 404 view.) This is blazingly fast, because the paths are
compiled into regular expressions at load time.

Once one of the URL patterns matches, Django calls the given view, which is a
Python function. Each view gets passed a request object – which contains
request metadata – and the values captured in the pattern.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django
would call the function news.views.article_detail(request,
year=2005, month=5, pk=39323).

Write your views

Each view is responsible for doing one of two things: Returning an
HttpResponse object containing the content for the
requested page, or raising an exception such as Http404.
The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template
and renders the template with the retrieved data. Here’s an example view for
year_archive from above:

mysite/news/views.py

from django.shortcuts import render

from .models import Article

def year_archive(request, year):
 a_list = Article.objects.filter(pub_date__year=year)
 context = {'year': year, 'article_list': a_list}
 return render(request, 'news/year_archive.html', context)

This example uses Django’s template system, which has
several powerful features but strives to stay simple enough for non-programmers
to use.

Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among
templates. In your Django settings, you specify a list of directories to check
for templates with DIRS. If a template doesn’t exist
in the first directory, it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that
might look like:

mysite/news/templates/news/year_archive.html

{% extends "base.html" %}

{% block title %}Articles for {{ year }}{% endblock %}

{% block content %}
<h1>Articles for {{ year }}</h1>

{% for article in article_list %}
 <p>{{ article.headline }}</p>
 <p>By {{ article.reporter.full_name }}</p>
 <p>Published {{ article.pub_date|date:"F j, Y" }}</p>
{% endfor %}
{% endblock %}

Variables are surrounded by double-curly braces. {{ article.headline }}
means “Output the value of the article’s headline attribute.” But dots aren’t
used only for attribute lookup. They also can do dictionary-key lookup, index
lookup and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style “pipe” (the “|”
character). This is called a template filter, and it’s a way to filter the value
of a variable. In this case, the date filter formats a Python datetime object in
the given format (as found in PHP’s date function).

You can chain together as many filters as you’d like. You can write custom
template filters. You can write
custom template tags, which run custom
Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the
{% extends "base.html" %} does. It means “First load the template called
‘base’, which has defined a bunch of blocks, and fill the blocks with the
following blocks.” In short, that lets you dramatically cut down on redundancy
in templates: each template has to define only what’s unique to that template.

Here’s what the “base.html” template, including the use of static files, might look like:

mysite/templates/base.html

{% load static %}
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
</head>
<body>

 {% block content %}{% endblock %}
</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo),
and provides “holes” for child templates to fill. This means that a site redesign
can be done by changing a single file – the base template.

It also lets you create multiple versions of a site, with different base
templates, while reusing child templates. Django’s creators have used this
technique to create strikingly different mobile versions of sites by only
creating a new base template.

Note that you don’t have to use Django’s template system if you prefer another
system. While Django’s template system is particularly well-integrated with
Django’s model layer, nothing forces you to use it. For that matter, you don’t
have to use Django’s database API, either. You can use another database
abstraction layer, you can read XML files, you can read files off disk, or
anything you want. Each piece of Django – models, views, templates – is
decoupled from the next.

This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful
features:

	A caching framework that integrates with memcached
or other backends.

	A syndication framework that lets you
create RSS and Atom feeds by writing a small Python class.

	More attractive automatically-generated admin features – this overview
barely scratched the surface.

The next steps are for you to download Django [https://www.djangoproject.com/download/], read the tutorial and join the community [https://www.djangoproject.com/community/]. Thanks for your interest!

Quick install guide

Before you can use Django, you’ll need to get it installed. We have a
complete installation guide that covers all the
possibilities; this guide will guide you to a minimal installation that’ll work
while you walk through the introduction.

Install Python

Being a Python Web framework, Django requires Python. See
What Python version can I use with Django? for details. Python includes a lightweight
database called SQLite [https://sqlite.org/] so you won’t need to set up a database just yet.

Get the latest version of Python at https://www.python.org/downloads/ or with
your operating system’s package manager.

You can verify that Python is installed by typing python from your shell;
you should see something like:

Python 3.x.y
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Set up a database

This step is only necessary if you’d like to work with a “large” database engine
like PostgreSQL, MariaDB, MySQL, or Oracle. To install such a database, consult
the database installation information.

Install Django

You’ve got three options to install Django:

	Install an official release. This
is the best approach for most users.

	Install a version of Django provided by your operating system
distribution.

	Install the latest development version. This option is for enthusiasts who want
the latest-and-greatest features and aren’t afraid of running brand new code.
You might encounter new bugs in the development version, but reporting them
helps the development of Django. Also, releases of third-party packages are
less likely to be compatible with the development version than with the
latest stable release.

Always refer to the documentation that corresponds to the
version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the
documentation marked new in development version. That phrase flags
features that are only available in development versions of Django, and
they likely won’t work with an official release.

Verifying

To verify that Django can be seen by Python, type python from your shell.
Then at the Python prompt, try to import Django:

>>> import django
>>> print(django.get_version())
3.0

You may have another version of Django installed.

That’s it!

That’s it – you can now move onto the tutorial.

Writing your first Django app, part 1

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic
poll application.

It’ll consist of two parts:

	A public site that lets people view polls and vote in them.

	An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can
tell Django is installed and which version by running the following command
in a shell prompt (indicated by the $ prefix):

$ python -m django --version

If Django is installed, you should see the version of your installation. If it
isn’t, you’ll get an error telling “No module named django”.

This tutorial is written for Django 3.0, which supports Python 3.6 and
later. If the Django version doesn’t match, you can refer to the tutorial for
your version of Django by using the version switcher at the bottom right corner
of this page, or update Django to the newest version. If you’re using an older
version of Python, check What Python version can I use with Django? to find a compatible
version of Django.

See How to install Django for advice on how to remove
older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Creating a project

If this is your first time using Django, you’ll have to take care of some
initial setup. Namely, you’ll need to auto-generate some code that establishes a
Django project – a collection of settings for an instance of Django,
including database configuration, Django-specific options and
application-specific settings.

From the command line, cd into a directory where you’d like to store your
code, then run the following command:

$ django-admin startproject mysite

This will create a mysite directory in your current directory. If it didn’t
work, see Problems running django-admin.

Note

You’ll need to avoid naming projects after built-in Python or Django
components. In particular, this means you should avoid using names like
django (which will conflict with Django itself) or test (which
conflicts with a built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks),
you’re probably used to putting code under the Web server’s document root
(in a place such as /var/www). With Django, you don’t do that. It’s
not a good idea to put any of this Python code within your Web server’s
document root, because it risks the possibility that people may be able
to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as
/home/mycode.

Let’s look at what startproject created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 asgi.py
 wsgi.py

These files are:

	The outer mysite/ root directory is a container for your project. Its
name doesn’t matter to Django; you can rename it to anything you like.

	manage.py: A command-line utility that lets you interact with this
Django project in various ways. You can read all the details about
manage.py in django-admin and manage.py.

	The inner mysite/ directory is the actual Python package for your
project. Its name is the Python package name you’ll need to use to import
anything inside it (e.g. mysite.urls).

	mysite/__init__.py: An empty file that tells Python that this
directory should be considered a Python package. If you’re a Python beginner,
read more about packages [https://docs.python.org/3/tutorial/modules.html#tut-packages] in the official Python docs.

	mysite/settings.py: Settings/configuration for this Django
project. Django settings will tell you all about how settings
work.

	mysite/urls.py: The URL declarations for this Django project; a
“table of contents” of your Django-powered site. You can read more about
URLs in URL dispatcher.

	mysite/asgi.py: An entry-point for ASGI-compatible web servers to
serve your project. See How to deploy with ASGI for more details.

	mysite/wsgi.py: An entry-point for WSGI-compatible web servers to
serve your project. See How to deploy with WSGI for more details.

The development server

Let’s verify your Django project works. Change into the outer mysite directory, if
you haven’t already, and run the following commands:

$ python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.

April 06, 2021 - 15:50:53
Django version 3.0, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note

Ignore the warning about unapplied database migrations for now; we’ll deal
with the database shortly.

You’ve started the Django development server, a lightweight Web server written
purely in Python. We’ve included this with Django so you can develop things
rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a
production environment. It’s intended only for use while developing. (We’re in
the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web
browser. You’ll see a “Congratulations!” page, with a rocket taking off.
It worked!

Changing the port

By default, the runserver command starts the development server
on the internal IP at port 8000.

If you want to change the server’s port, pass
it as a command-line argument. For instance, this command starts the server
on port 8080:

$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For
example, to listen on all available public IPs (which is useful if you are
running Vagrant or want to show off your work on other computers on the
network), use:

$ python manage.py runserver 0:8000

0 is a shortcut for 0.0.0.0. Full docs for the development server
can be found in the runserver reference.

Automatic reloading of runserver

The development server automatically reloads Python code for each request
as needed. You don’t need to restart the server for code changes to take
effect. However, some actions like adding files don’t trigger a restart,
so you’ll have to restart the server in these cases.

Creating the Polls app

Now that your environment – a “project” – is set up, you’re set to start
doing work.

Each application you write in Django consists of a Python package that follows
a certain convention. Django comes with a utility that automatically generates
the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web
application that does something – e.g., a Weblog system, a database of
public records or a small poll app. A project is a collection of
configuration and apps for a particular website. A project can contain
multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path [https://docs.python.org/3/tutorial/modules.html#tut-searchpath]. In
this tutorial, we’ll create our poll app in the same directory as your
manage.py file so that it can be imported as its own top-level module,
rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py
and type this command:

$ python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

This directory structure will house the poll application.

Write your first view

Let’s write the first view. Open the file polls/views.py
and put the following Python code in it:

polls/views.py

from django.http import HttpResponse

def index(request):
 return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map
it to a URL - and for this we need a URLconf.

To create a URLconf in the polls directory, create a file called urls.py.
Your app directory should now look like:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 urls.py
 views.py

In the polls/urls.py file include the following code:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('', views.index, name='index'),
]

The next step is to point the root URLconf at the polls.urls module. In
mysite/urls.py, add an import for django.urls.include and insert an
include() in the urlpatterns list, so you have:

mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path('polls/', include('polls.urls')),
 path('admin/', admin.site.urls),
]

The include() function allows referencing other URLconfs.
Whenever Django encounters include(), it chops off whatever
part of the URL matched up to that point and sends the remaining string to the
included URLconf for further processing.

The idea behind include() is to make it easy to
plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under
“/fun_polls/”, or under “/content/polls/”, or any other path root, and the
app will still work.

When to use include()

You should always use include() when you include other URL patterns.
admin.site.urls is the only exception to this.

You have now wired an index view into the URLconf. Verify it’s working with
the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the
text “Hello, world. You’re at the polls index.”, which you defined in the
index view.

Page not found?

If you get an error page here, check that you’re going to
http://localhost:8000/polls/ and not http://localhost:8000/.

The path() function is passed four arguments, two required:
route and view, and two optional: kwargs, and name.
At this point, it’s worth reviewing what these arguments are for.

path() argument: route

route is a string that contains a URL pattern. When processing a request,
Django starts at the first pattern in urlpatterns and makes its way down
the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example,
in a request to https://www.example.com/myapp/, the URLconf will look for
myapp/. In a request to https://www.example.com/myapp/?page=3, the
URLconf will also look for myapp/.

path() argument: view

When Django finds a matching pattern, it calls the specified view function with
an HttpRequest object as the first argument and any
“captured” values from the route as keyword arguments. We’ll give an example
of this in a bit.

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We
aren’t going to use this feature of Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django,
especially from within templates. This powerful feature allows you to make
global changes to the URL patterns of your project while only touching a single
file.

When you’re comfortable with the basic request and response flow, read
part 2 of this tutorial to start working with the
database.

Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off.
We’ll setup the database, create your first model, and get a quick introduction
to Django’s automatically-generated admin site.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Database setup

Now, open up mysite/settings.py. It’s a normal Python module with
module-level variables representing Django settings.

By default, the configuration uses SQLite. If you’re new to databases, or
you’re just interested in trying Django, this is the easiest choice. SQLite is
included in Python, so you won’t need to install anything else to support your
database. When starting your first real project, however, you may want to use a
more scalable database like PostgreSQL, to avoid database-switching headaches
down the road.

If you wish to use another database, install the appropriate database
bindings and change the following keys in the
DATABASES 'default' item to match your database connection
settings:

	ENGINE – Either
'django.db.backends.sqlite3',
'django.db.backends.postgresql',
'django.db.backends.mysql', or
'django.db.backends.oracle'. Other backends are also available.

	NAME – The name of your database. If you’re using SQLite, the
database will be a file on your computer; in that case, NAME
should be the full absolute path, including filename, of that file. The
default value, os.path.join(BASE_DIR, 'db.sqlite3'), will store the file
in your project directory.

If you are not using SQLite as your database, additional settings such as
USER, PASSWORD, and HOST must be added.
For more details, see the reference documentation for DATABASES.

For databases other than SQLite

If you’re using a database besides SQLite, make sure you’ve created a
database by this point. Do that with “CREATE DATABASE database_name;”
within your database’s interactive prompt.

Also make sure that the database user provided in mysite/settings.py
has “create database” privileges. This allows automatic creation of a
test database which will be needed in a later
tutorial.

If you’re using SQLite, you don’t need to create anything beforehand - the
database file will be created automatically when it is needed.

While you’re editing mysite/settings.py, set TIME_ZONE to
your time zone.

Also, note the INSTALLED_APPS setting at the top of the file. That
holds the names of all Django applications that are activated in this Django
instance. Apps can be used in multiple projects, and you can package and
distribute them for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which
come with Django:

	django.contrib.admin – The admin site. You’ll use it shortly.

	django.contrib.auth – An authentication system.

	django.contrib.contenttypes – A framework for content types.

	django.contrib.sessions – A session framework.

	django.contrib.messages – A messaging framework.

	django.contrib.staticfiles – A framework for managing
static files.

These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though,
so we need to create the tables in the database before we can use them. To do
that, run the following command:

$ python manage.py migrate

The migrate command looks at the INSTALLED_APPS setting
and creates any necessary database tables according to the database settings
in your mysite/settings.py file and the database migrations shipped
with the app (we’ll cover those later). You’ll see a message for each
migration it applies. If you’re interested, run the command-line client for your
database and type \dt (PostgreSQL), SHOW TABLES; (MariaDB, MySQL),
.schema (SQLite), or SELECT TABLE_NAME FROM USER_TABLES; (Oracle) to
display the tables Django created.

For the minimalists

Like we said above, the default applications are included for the common
case, but not everybody needs them. If you don’t need any or all of them,
feel free to comment-out or delete the appropriate line(s) from
INSTALLED_APPS before running migrate. The
migrate command will only run migrations for apps in
INSTALLED_APPS.

Creating models

Now we’ll define your models – essentially, your database layout, with
additional metadata.

Philosophy

A model is the single, definitive source of truth about your data. It contains
the essential fields and behaviors of the data you’re storing. Django follows
the DRY Principle. The goal is to define your data model in one
place and automatically derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations
are entirely derived from your models file, and are essentially a
history that Django can roll through to update your database schema to
match your current models.

In our poll app, we’ll create two models: Question and Choice. A
Question has a question and a publication date. A Choice has two
fields: the text of the choice and a vote tally. Each Choice is associated
with a Question.

These concepts are represented by Python classes. Edit the
polls/models.py file so it looks like this:

polls/models.py

from django.db import models

class Question(models.Model):
 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

class Choice(models.Model):
 question = models.ForeignKey(Question, on_delete=models.CASCADE)
 choice_text = models.CharField(max_length=200)
 votes = models.IntegerField(default=0)

Here, each model is represented by a class that subclasses
django.db.models.Model. Each model has a number of class variables,
each of which represents a database field in the model.

Each field is represented by an instance of a Field
class – e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what
type of data each field holds.

The name of each Field instance (e.g.
question_text or pub_date) is the field’s name, in machine-friendly
format. You’ll use this value in your Python code, and your database will use
it as the column name.

You can use an optional first positional argument to a
Field to designate a human-readable name. That’s used
in a couple of introspective parts of Django, and it doubles as documentation.
If this field isn’t provided, Django will use the machine-readable name. In this
example, we’ve only defined a human-readable name for Question.pub_date.
For all other fields in this model, the field’s machine-readable name will
suffice as its human-readable name.

Some Field classes have required arguments.
CharField, for example, requires that you give it a
max_length. That’s used not only in the
database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in
this case, we’ve set the default value of
votes to 0.

Finally, note a relationship is defined, using
ForeignKey. That tells Django each Choice is
related to a single Question. Django supports all the common database
relationships: many-to-one, many-to-many, and one-to-one.

Activating models

That small bit of model code gives Django a lot of information. With it, Django
is able to:

	Create a database schema (CREATE TABLE statements) for this app.

	Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and
you can distribute apps, because they don’t have to be tied to a given
Django installation.

To include the app in our project, we need to add a reference to its
configuration class in the INSTALLED_APPS setting. The
PollsConfig class is in the polls/apps.py file, so its dotted path
is 'polls.apps.PollsConfig'. Edit the mysite/settings.py file and
add that dotted path to the INSTALLED_APPS setting. It’ll look like
this:

mysite/settings.py

INSTALLED_APPS = [
 'polls.apps.PollsConfig',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Now Django knows to include the polls app. Let’s run another command:

$ python manage.py makemigrations polls

You should see something similar to the following:

Migrations for 'polls':
 polls/migrations/0001_initial.py
 - Create model Question
 - Create model Choice

By running makemigrations, you’re telling Django that you’ve made
some changes to your models (in this case, you’ve made new ones) and that
you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your
database schema) - they’re files on disk. You can read the migration for your
new model if you like; it’s the file polls/migrations/0001_initial.py.
Don’t worry, you’re not expected to read them every time Django makes one, but
they’re designed to be human-editable in case you want to manually tweak how
Django changes things.

There’s a command that will run the migrations for you and manage your database
schema automatically - that’s called migrate, and we’ll come to it in a
moment - but first, let’s see what SQL that migration would run. The
sqlmigrate command takes migration names and returns their SQL:

$ python manage.py sqlmigrate polls 0001

You should see something similar to the following (we’ve reformatted it for
readability):

BEGIN;
--
-- Create model Question
--
CREATE TABLE "polls_question" (
 "id" serial NOT NULL PRIMARY KEY,
 "question_text" varchar(200) NOT NULL,
 "pub_date" timestamp with time zone NOT NULL
);
--
-- Create model Choice
--
CREATE TABLE "polls_choice" (
 "id" serial NOT NULL PRIMARY KEY,
 "choice_text" varchar(200) NOT NULL,
 "votes" integer NOT NULL,
 "question_id" integer NOT NULL
);
ALTER TABLE "polls_choice"
 ADD CONSTRAINT "polls_choice_question_id_c5b4b260_fk_polls_question_id"
 FOREIGN KEY ("question_id")
 REFERENCES "polls_question" ("id")
 DEFERRABLE INITIALLY DEFERRED;
CREATE INDEX "polls_choice_question_id_c5b4b260" ON "polls_choice" ("question_id");

COMMIT;

Note the following:

	The exact output will vary depending on the database you are using. The
example above is generated for PostgreSQL.

	Table names are automatically generated by combining the name of the app
(polls) and the lowercase name of the model – question and
choice. (You can override this behavior.)

	Primary keys (IDs) are added automatically. (You can override this, too.)

	By convention, Django appends "_id" to the foreign key field name.
(Yes, you can override this, as well.)

	The foreign key relationship is made explicit by a FOREIGN KEY
constraint. Don’t worry about the DEFERRABLE parts; it’s telling
PostgreSQL to not enforce the foreign key until the end of the transaction.

	It’s tailored to the database you’re using, so database-specific field types
such as auto_increment (MySQL), serial (PostgreSQL), or integer
primary key autoincrement (SQLite) are handled for you automatically. Same
goes for the quoting of field names – e.g., using double quotes or
single quotes.

	The sqlmigrate command doesn’t actually run the migration on your
database - instead, it prints it to the screen so that you can see what SQL
Django thinks is required. It’s useful for checking what Django is going to
do or if you have database administrators who require SQL scripts for
changes.

If you’re interested, you can also run
python manage.py check; this checks for any problems in
your project without making migrations or touching the database.

Now, run migrate again to create those model tables in your database:

$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:
 Rendering model states... DONE
 Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been
applied (Django tracks which ones are applied using a special table in your
database called django_migrations) and runs them against your database -
essentially, synchronizing the changes you made to your models with the schema
in the database.

Migrations are very powerful and let you change your models over time, as you
develop your project, without the need to delete your database or tables and
make new ones - it specializes in upgrading your database live, without
losing data. We’ll cover them in more depth in a later part of the tutorial,
but for now, remember the three-step guide to making model changes:

	Change your models (in models.py).

	Run python manage.py makemigrations to create
migrations for those changes

	Run python manage.py migrate to apply those changes to
the database.

The reason that there are separate commands to make and apply migrations is
because you’ll commit migrations to your version control system and ship them
with your app; they not only make your development easier, they’re also
usable by other developers and in production.

Read the django-admin documentation for full
information on what the manage.py utility can do.

Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free
API Django gives you. To invoke the Python shell, use this command:

$ python manage.py shell

We’re using this instead of simply typing “python”, because manage.py
sets the DJANGO_SETTINGS_MODULE environment variable, which gives Django
the Python import path to your mysite/settings.py file.

Once you’re in the shell, explore the database API:

>>> from polls.models import Choice, Question # Import the model classes we just wrote.

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

Create a new Question.
Support for time zones is enabled in the default settings file, so
Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.
>>> from django.utils import timezone
>>> q = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.
>>> q.save()

Now it has an ID.
>>> q.id
1

Access model field values via Python attributes.
>>> q.question_text
"What's new?"
>>> q.pub_date
datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save().
>>> q.question_text = "What's up?"
>>> q.save()

objects.all() displays all the questions in the database.
>>> Question.objects.all()
<QuerySet [<Question: Question object (1)>]>

Wait a minute. <Question: Question object (1)> isn’t a helpful
representation of this object. Let’s fix that by editing the Question model
(in the polls/models.py file) and adding a
__str__() method to both Question and
Choice:

polls/models.py

from django.db import models

class Question(models.Model):
 # ...
 def __str__(self):
 return self.question_text

class Choice(models.Model):
 # ...
 def __str__(self):
 return self.choice_text

It’s important to add __str__() methods to your
models, not only for your own convenience when dealing with the interactive
prompt, but also because objects’ representations are used throughout Django’s
automatically-generated admin.

Let’s also add a custom method to this model:

polls/models.py

import datetime

from django.db import models
from django.utils import timezone

class Question(models.Model):
 # ...
 def was_published_recently(self):
 return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

Note the addition of import datetime and from django.utils import
timezone, to reference Python’s standard datetime [https://docs.python.org/3/library/datetime.html#module-datetime] module and Django’s
time-zone-related utilities in django.utils.timezone, respectively. If
you aren’t familiar with time zone handling in Python, you can learn more in
the time zone support docs.

Save these changes and start a new Python interactive shell by running
python manage.py shell again:

>>> from polls.models import Choice, Question

Make sure our __str__() addition worked.
>>> Question.objects.all()
<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.
>>> Question.objects.filter(id=1)
<QuerySet [<Question: What's up?>]>
>>> Question.objects.filter(question_text__startswith='What')
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.
>>> from django.utils import timezone
>>> current_year = timezone.now().year
>>> Question.objects.get(pub_date__year=current_year)
<Question: What's up?>

Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get(id=2)
Traceback (most recent call last):
 ...
DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.
The following is identical to Question.objects.get(id=1).
>>> Question.objects.get(pk=1)
<Question: What's up?>

Make sure our custom method worked.
>>> q = Question.objects.get(pk=1)
>>> q.was_published_recently()
True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set
of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation
(e.g. a question's choice) which can be accessed via the API.
>>> q = Question.objects.get(pk=1)

Display any choices from the related object set -- none so far.
>>> q.choice_set.all()
<QuerySet []>

Create three choices.
>>> q.choice_set.create(choice_text='Not much', votes=0)
<Choice: Not much>
>>> q.choice_set.create(choice_text='The sky', votes=0)
<Choice: The sky>
>>> c = q.choice_set.create(choice_text='Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.
>>> q.choice_set.all()
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> q.choice_set.count()
3

The API automatically follows relationships as far as you need.
Use double underscores to separate relationships.
This works as many levels deep as you want; there's no limit.
Find all Choices for any question whose pub_date is in this year
(reusing the 'current_year' variable we created above).
>>> Choice.objects.filter(question__pub_date__year=current_year)
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.
>>> c = q.choice_set.filter(choice_text__startswith='Just hacking')
>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double underscores to perform
field lookups via the API, see Field lookups. For
full details on the database API, see our Database API reference.

Introducing the Django Admin

Philosophy

Generating admin sites for your staff or clients to add, change, and delete
content is tedious work that doesn’t require much creativity. For that
reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation
between “content publishers” and the “public” site. Site managers use the
system to add news stories, events, sports scores, etc., and that content is
displayed on the public site. Django solves the problem of creating a
unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site
managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the
following command:

$ python manage.py createsuperuser

Enter your desired username and press enter.

Username: admin

You will then be prompted for your desired email address:

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your
password twice, the second time as a confirmation of the first.

Password: **********
Password (again): *********
Superuser created successfully.

Start the development server

The Django admin site is activated by default. Let’s start the development
server and explore it.

If the server is not running start it like so:

$ python manage.py runserver

Now, open a Web browser and go to “/admin/” on your local domain – e.g.,
http://127.0.0.1:8000/admin/. You should see the admin’s login screen:

[image: Django admin login screen]
Since translation is turned on by default, if
you set LANGUAGE_CODE, the login screen will be displayed in the
given language (if Django has appropriate translations).

Enter the admin site

Now, try logging in with the superuser account you created in the previous step.
You should see the Django admin index page:

[image: Django admin index page]
You should see a few types of editable content: groups and users. They are
provided by django.contrib.auth, the authentication framework shipped
by Django.

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Only one more thing to do: we need to tell the admin that Question objects
have an admin interface. To do this, open the polls/admin.py file, and
edit it to look like this:

polls/admin.py

from django.contrib import admin

from .models import Question

admin.site.register(Question)

Explore the free admin functionality

Now that we’ve registered Question, Django knows that it should be displayed on
the admin index page:

[image: Django admin index page, now with polls displayed]
Click “Questions”. Now you’re at the “change list” page for questions. This page
displays all the questions in the database and lets you choose one to change it.
There’s the “What’s up?” question we created earlier:

[image: Polls change list page]
Click the “What’s up?” question to edit it:

[image: Editing form for question object]
Things to note here:

	The form is automatically generated from the Question model.

	The different model field types (DateTimeField,
CharField) correspond to the appropriate HTML
input widget. Each type of field knows how to display itself in the Django
admin.

	Each DateTimeField gets free JavaScript
shortcuts. Dates get a “Today” shortcut and calendar popup, and times get
a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:

	Save – Saves changes and returns to the change-list page for this type of
object.

	Save and continue editing – Saves changes and reloads the admin page for
this object.

	Save and add another – Saves changes and loads a new, blank form for this
type of object.

	Delete – Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the
question in Tutorial 1, it probably
means you forgot to set the correct value for the TIME_ZONE setting.
Change it, reload the page and check that the correct value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then
click “Save and continue editing.” Then click “History” in the upper right.
You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

[image: History page for question object]
When you’re comfortable with the models API and have familiarized yourself with
the admin site, read part 3 of this tutorial to learn
about how to add more views to our polls app.

Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We’re
continuing the Web-poll application and will focus on creating the public
interface – “views.”

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Overview

A view is a “type” of Web page in your Django application that generally serves
a specific function and has a specific template. For example, in a blog
application, you might have the following views:

	Blog homepage – displays the latest few entries.

	Entry “detail” page – permalink page for a single entry.

	Year-based archive page – displays all months with entries in the
given year.

	Month-based archive page – displays all days with entries in the
given month.

	Day-based archive page – displays all entries in the given day.

	Comment action – handles posting comments to a given entry.

In our poll application, we’ll have the following four views:

	Question “index” page – displays the latest few questions.

	Question “detail” page – displays a question text, with no results but
with a form to vote.

	Question “results” page – displays results for a particular question.

	Vote action – handles voting for a particular choice in a particular
question.

In Django, web pages and other content are delivered by views. Each view is
represented by a Python function (or method, in the case of class-based views).
Django will choose a view by examining the URL that’s requested (to be precise,
the part of the URL after the domain name).

Now in your time on the web you may have come across such beauties as
ME2/Sites/dirmod.htm?sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B.
You will be pleased to know that Django allows us much more elegant
URL patterns than that.

A URL pattern is the general form of a URL - for example:
/newsarchive/<year>/<month>/.

To get from a URL to a view, Django uses what are known as ‘URLconfs’. A
URLconf maps URL patterns to views.

This tutorial provides basic instruction in the use of URLconfs, and you can
refer to URL dispatcher for more information.

Writing more views

Now let’s add a few more views to polls/views.py. These views are
slightly different, because they take an argument:

polls/views.py

def detail(request, question_id):
 return HttpResponse("You're looking at question %s." % question_id)

def results(request, question_id):
 response = "You're looking at the results of question %s."
 return HttpResponse(response % question_id)

def vote(request, question_id):
 return HttpResponse("You're voting on question %s." % question_id)

Wire these new views into the polls.urls module by adding the following
path() calls:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 # ex: /polls/
 path('', views.index, name='index'),
 # ex: /polls/5/
 path('<int:question_id>/', views.detail, name='detail'),
 # ex: /polls/5/results/
 path('<int:question_id>/results/', views.results, name='results'),
 # ex: /polls/5/vote/
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Take a look in your browser, at “/polls/34/”. It’ll run the detail()
method and display whatever ID you provide in the URL. Try
“/polls/34/results/” and “/polls/34/vote/” too – these will display the
placeholder results and voting pages.

When somebody requests a page from your website – say, “/polls/34/”, Django
will load the mysite.urls Python module because it’s pointed to by the
ROOT_URLCONF setting. It finds the variable named urlpatterns
and traverses the patterns in order. After finding the match at 'polls/',
it strips off the matching text ("polls/") and sends the remaining text –
"34/" – to the ‘polls.urls’ URLconf for further processing. There it
matches '<int:question_id>/', resulting in a call to the detail() view
like so:

detail(request=<HttpRequest object>, question_id=34)

The question_id=34 part comes from <int:question_id>. Using angle
brackets “captures” part of the URL and sends it as a keyword argument to the
view function. The :question_id> part of the string defines the name that
will be used to identify the matched pattern, and the <int: part is a
converter that determines what patterns should match this part of the URL path.

There’s no need to add URL cruft such as .html – unless you want to, in
which case you can do something like this:

path('polls/latest.html', views.index),

But, don’t do that. It’s silly.

Write views that actually do something

Each view is responsible for doing one of two things: returning an
HttpResponse object containing the content for the
requested page, or raising an exception such as Http404. The
rest is up to you.

Your view can read records from a database, or not. It can use a template
system such as Django’s – or a third-party Python template system – or not.
It can generate a PDF file, output XML, create a ZIP file on the fly, anything
you want, using whatever Python libraries you want.

All Django wants is that HttpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered
in Tutorial 2. Here’s one stab at a new index()
view, which displays the latest 5 poll questions in the system, separated by
commas, according to publication date:

polls/views.py

from django.http import HttpResponse

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 output = ', '.join([q.question_text for q in latest_question_list])
 return HttpResponse(output)

Leave the rest of the views (detail, results, vote) unchanged

There’s a problem here, though: the page’s design is hard-coded in the view. If
you want to change the way the page looks, you’ll have to edit this Python code.
So let’s use Django’s template system to separate the design from Python by
creating a template that the view can use.

First, create a directory called templates in your polls directory.
Django will look for templates in there.

Your project’s TEMPLATES setting describes how Django will load and
render templates. The default settings file configures a DjangoTemplates
backend whose APP_DIRS option is set to
True. By convention DjangoTemplates looks for a “templates”
subdirectory in each of the INSTALLED_APPS.

Within the templates directory you have just created, create another
directory called polls, and within that create a file called
index.html. In other words, your template should be at
polls/templates/polls/index.html. Because of how the app_directories
template loader works as described above, you can refer to this template within
Django as polls/index.html.

Template namespacing

Now we might be able to get away with putting our templates directly in
polls/templates (rather than creating another polls subdirectory),
but it would actually be a bad idea. Django will choose the first template
it finds whose name matches, and if you had a template with the same name
in a different application, Django would be unable to distinguish between
them. We need to be able to point Django at the right one, and the best
way to ensure this is by namespacing them. That is, by putting those
templates inside another directory named for the application itself.

Put the following code in that template:

polls/templates/polls/index.html

{% if latest_question_list %}

 {% for question in latest_question_list %}
 {{ question.question_text }}
 {% endfor %}

{% else %}
 <p>No polls are available.</p>
{% endif %}

Note

To make the tutorial shorter, all template examples use incomplete HTML. In
your own projects you should use complete HTML documents [https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started#Anatomy_of_an_HTML_document].

Now let’s update our index view in polls/views.py to use the template:

polls/views.py

from django.http import HttpResponse
from django.template import loader

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 template = loader.get_template('polls/index.html')
 context = {
 'latest_question_list': latest_question_list,
 }
 return HttpResponse(template.render(context, request))

That code loads the template called polls/index.html and passes it a
context. The context is a dictionary mapping template variable names to Python
objects.

Load the page by pointing your browser at “/polls/”, and you should see a
bulleted-list containing the “What’s up” question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render()

It’s a very common idiom to load a template, fill a context and return an
HttpResponse object with the result of the rendered
template. Django provides a shortcut. Here’s the full index() view,
rewritten:

polls/views.py

from django.shortcuts import render

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 context = {'latest_question_list': latest_question_list}
 return render(request, 'polls/index.html', context)

Note that once we’ve done this in all these views, we no longer need to import
loader and HttpResponse (you’ll
want to keep HttpResponse if you still have the stub methods for detail,
results, and vote).

The render() function takes the request object as its
first argument, a template name as its second argument and a dictionary as its
optional third argument. It returns an HttpResponse
object of the given template rendered with the given context.

Raising a 404 error

Now, let’s tackle the question detail view – the page that displays the question text
for a given poll. Here’s the view:

polls/views.py

from django.http import Http404
from django.shortcuts import render

from .models import Question
...
def detail(request, question_id):
 try:
 question = Question.objects.get(pk=question_id)
 except Question.DoesNotExist:
 raise Http404("Question does not exist")
 return render(request, 'polls/detail.html', {'question': question})

The new concept here: The view raises the Http404 exception
if a question with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit
later, but if you’d like to quickly get the above example working, a file
containing just:

polls/templates/polls/detail.html

{{ question }}

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get()
and raise Http404 if the object doesn’t exist. Django
provides a shortcut. Here’s the detail() view, rewritten:

polls/views.py

from django.shortcuts import get_object_or_404, render

from .models import Question
...
def detail(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/detail.html', {'question': question})

The get_object_or_404() function takes a Django model
as its first argument and an arbitrary number of keyword arguments, which it
passes to the get() function of the
model’s manager. It raises Http404 if the object doesn’t
exist.

Philosophy

Why do we use a helper function get_object_or_404()
instead of automatically catching the
ObjectDoesNotExist exceptions at a higher
level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the
foremost design goals of Django is to maintain loose coupling. Some
controlled coupling is introduced in the django.shortcuts module.

There’s also a get_list_or_404() function, which works
just as get_object_or_404() – except using
filter() instead of
get(). It raises
Http404 if the list is empty.

Use the template system

Back to the detail() view for our poll application. Given the context
variable question, here’s what the polls/detail.html template might look
like:

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}
 {{ choice.choice_text }}
{% endfor %}

The template system uses dot-lookup syntax to access variable attributes. In
the example of {{ question.question_text }}, first Django does a dictionary lookup
on the object question. Failing that, it tries an attribute lookup – which
works, in this case. If attribute lookup had failed, it would’ve tried a
list-index lookup.

Method-calling happens in the {% for %} loop:
question.choice_set.all is interpreted as the Python code
question.choice_set.all(), which returns an iterable of Choice objects and is
suitable for use in the {% for %} tag.

See the template guide for more about templates.

Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html
template, the link was partially hardcoded like this:

{{ question.question_text }}

The problem with this hardcoded, tightly-coupled approach is that it becomes
challenging to change URLs on projects with a lot of templates. However, since
you defined the name argument in the path() functions in
the polls.urls module, you can remove a reliance on specific URL paths
defined in your url configurations by using the {% url %} template tag:

{{ question.question_text }}

The way this works is by looking up the URL definition as specified in the
polls.urls module. You can see exactly where the URL name of ‘detail’ is
defined below:

...
the 'name' value as called by the {% url %} template tag
path('<int:question_id>/', views.detail, name='detail'),
...

If you want to change the URL of the polls detail view to something else,
perhaps to something like polls/specifics/12/ instead of doing it in the
template (or templates) you would change it in polls/urls.py:

...
added the word 'specifics'
path('specifics/<int:question_id>/', views.detail, name='detail'),
...

Namespacing URL names

The tutorial project has just one app, polls. In real Django projects,
there might be five, ten, twenty apps or more. How does Django differentiate
the URL names between them? For example, the polls app has a detail
view, and so might an app on the same project that is for a blog. How does one
make it so that Django knows which app view to create for a url when using the
{% url %} template tag?

The answer is to add namespaces to your URLconf. In the polls/urls.py
file, go ahead and add an app_name to set the application namespace:

polls/urls.py

from django.urls import path

from . import views

app_name = 'polls'
urlpatterns = [
 path('', views.index, name='index'),
 path('<int:question_id>/', views.detail, name='detail'),
 path('<int:question_id>/results/', views.results, name='results'),
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Now change your polls/index.html template from:

polls/templates/polls/index.html

{{ question.question_text }}

to point at the namespaced detail view:

polls/templates/polls/index.html

{{ question.question_text }}

When you’re comfortable with writing views, read part 4 of this tutorial to learn the basics about form processing and generic
views.

Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We’re
continuing the Web-poll application and will focus on form processing and
cutting down our code.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Write a minimal form

Let’s update our poll detail template (“polls/detail.html”) from the last
tutorial, so that the template contains an HTML <form> element:

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% if error_message %}<p>{{ error_message }}</p>{% endif %}

<form action="{% url 'polls:vote' question.id %}" method="post">
{% csrf_token %}
{% for choice in question.choice_set.all %}
 <input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}">
 <label for="choice{{ forloop.counter }}">{{ choice.choice_text }}</label>

{% endfor %}
<input type="submit" value="Vote">
</form>

A quick rundown:

	The above template displays a radio button for each question choice. The
value of each radio button is the associated question choice’s ID. The
name of each radio button is "choice". That means, when somebody
selects one of the radio buttons and submits the form, it’ll send the
POST data choice=# where # is the ID of the selected choice. This is the
basic concept of HTML forms.

	We set the form’s action to {% url 'polls:vote' question.id %}, and we
set method="post". Using method="post" (as opposed to
method="get") is very important, because the act of submitting this
form will alter data server-side. Whenever you create a form that alters
data server-side, use method="post". This tip isn’t specific to
Django; it’s good Web development practice in general.

	forloop.counter indicates how many times the for tag has gone
through its loop

	Since we’re creating a POST form (which can have the effect of modifying
data), we need to worry about Cross Site Request Forgeries.
Thankfully, you don’t have to worry too hard, because Django comes with a
helpful system for protecting against it. In short, all POST forms that are
targeted at internal URLs should use the {% csrf_token %}
template tag.

Now, let’s create a Django view that handles the submitted data and does
something with it. Remember, in Tutorial 3, we
created a URLconf for the polls application that includes this line:

polls/urls.py

path('<int:question_id>/vote/', views.vote, name='vote'),

We also created a dummy implementation of the vote() function. Let’s
create a real version. Add the following to polls/views.py:

polls/views.py

from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from .models import Choice, Question
...
def vote(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 try:
 selected_choice = question.choice_set.get(pk=request.POST['choice'])
 except (KeyError, Choice.DoesNotExist):
 # Redisplay the question voting form.
 return render(request, 'polls/detail.html', {
 'question': question,
 'error_message': "You didn't select a choice.",
 })
 else:
 selected_choice.votes += 1
 selected_choice.save()
 # Always return an HttpResponseRedirect after successfully dealing
 # with POST data. This prevents data from being posted twice if a
 # user hits the Back button.
 return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

	request.POST is a dictionary-like
object that lets you access submitted data by key name. In this case,
request.POST['choice'] returns the ID of the selected choice, as a
string. request.POST values are
always strings.

Note that Django also provides request.GET for accessing GET data in the same way –
but we’re explicitly using request.POST in our code, to ensure that data is only
altered via a POST call.

	request.POST['choice'] will raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if
choice wasn’t provided in POST data. The above code checks for
KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] and redisplays the question form with an error
message if choice isn’t given.

	After incrementing the choice count, the code returns an
HttpResponseRedirect rather than a normal
HttpResponse.
HttpResponseRedirect takes a single argument: the
URL to which the user will be redirected (see the following point for how
we construct the URL in this case).

As the Python comment above points out, you should always return an
HttpResponseRedirect after successfully dealing with
POST data. This tip isn’t specific to Django; it’s good Web development
practice in general.

	We are using the reverse() function in the
HttpResponseRedirect constructor in this example.
This function helps avoid having to hardcode a URL in the view function.
It is given the name of the view that we want to pass control to and the
variable portion of the URL pattern that points to that view. In this
case, using the URLconf we set up in Tutorial 3,
this reverse() call will return a string like

'/polls/3/results/'

where the 3 is the value of question.id. This redirected URL will
then call the 'results' view to display the final page.

As mentioned in Tutorial 3, request is an
HttpRequest object. For more on
HttpRequest objects, see the request and
response documentation.

After somebody votes in a question, the vote() view redirects to the results
page for the question. Let’s write that view:

polls/views.py

from django.shortcuts import get_object_or_404, render

def results(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/results.html', {'question': question})

This is almost exactly the same as the detail() view from Tutorial 3. The only difference is the template name. We’ll fix this
redundancy later.

Now, create a polls/results.html template:

polls/templates/polls/results.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}
 {{ choice.choice_text }} -- {{ choice.votes }} vote{{ choice.votes|pluralize }}
{% endfor %}

Vote again?

Now, go to /polls/1/ in your browser and vote in the question. You should see a
results page that gets updated each time you vote. If you submit the form
without having chosen a choice, you should see the error message.

Note

The code for our vote() view does have a small problem. It first gets
the selected_choice object from the database, then computes the new
value of votes, and then saves it back to the database. If two users of
your website try to vote at exactly the same time, this might go wrong:
The same value, let’s say 42, will be retrieved for votes. Then, for
both users the new value of 43 is computed and saved, but 44 would be the
expected value.

This is called a race condition. If you are interested, you can read
Avoiding race conditions using F() to learn how you can solve this
issue.

Use generic views: Less code is better

The detail() (from Tutorial 3) and results()
views are very short – and, as mentioned above, redundant. The index()
view, which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from
the database according to a parameter passed in the URL, loading a template and
returning the rendered template. Because this is so common, Django provides a
shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need
to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a
bunch of our own code. We’ll have to take a few steps to make the conversion.
We will:

	Convert the URLconf.

	Delete some of the old, unneeded views.

	Introduce new views based on Django’s generic views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views
are a good fit for your problem, and you’ll use them from the beginning,
rather than refactoring your code halfway through. But this tutorial
intentionally has focused on writing the views “the hard way” until now, to
focus on core concepts.

You should know basic math before you start using a calculator.

Amend URLconf

First, open the polls/urls.py URLconf and change it like so:

polls/urls.py

from django.urls import path

from . import views

app_name = 'polls'
urlpatterns = [
 path('', views.IndexView.as_view(), name='index'),
 path('<int:pk>/', views.DetailView.as_view(), name='detail'),
 path('<int:pk>/results/', views.ResultsView.as_view(), name='results'),
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Note that the name of the matched pattern in the path strings of the second and
third patterns has changed from <question_id> to <pk>.

Amend views

Next, we’re going to remove our old index, detail, and results
views and use Django’s generic views instead. To do so, open the
polls/views.py file and change it like so:

polls/views.py

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse
from django.views import generic

from .models import Choice, Question

class IndexView(generic.ListView):
 template_name = 'polls/index.html'
 context_object_name = 'latest_question_list'

 def get_queryset(self):
 """Return the last five published questions."""
 return Question.objects.order_by('-pub_date')[:5]

class DetailView(generic.DetailView):
 model = Question
 template_name = 'polls/detail.html'

class ResultsView(generic.DetailView):
 model = Question
 template_name = 'polls/results.html'

def vote(request, question_id):
 ... # same as above, no changes needed.

We’re using two generic views here:
ListView and
DetailView. Respectively, those
two views abstract the concepts of “display a list of objects” and
“display a detail page for a particular type of object.”

	Each generic view needs to know what model it will be acting
upon. This is provided using the model attribute.

	The DetailView generic view
expects the primary key value captured from the URL to be called
"pk", so we’ve changed question_id to pk for the generic
views.

By default, the DetailView generic
view uses a template called <app name>/<model name>_detail.html.
In our case, it would use the template "polls/question_detail.html". The
template_name attribute is used to tell Django to use a specific
template name instead of the autogenerated default template name. We
also specify the template_name for the results list view –
this ensures that the results view and the detail view have a
different appearance when rendered, even though they’re both a
DetailView behind the scenes.

Similarly, the ListView generic
view uses a default template called <app name>/<model
name>_list.html; we use template_name to tell
ListView to use our existing
"polls/index.html" template.

In previous parts of the tutorial, the templates have been provided
with a context that contains the question and latest_question_list
context variables. For DetailView the question variable is provided
automatically – since we’re using a Django model (Question), Django
is able to determine an appropriate name for the context variable.
However, for ListView, the automatically generated context variable is
question_list. To override this we provide the context_object_name
attribute, specifying that we want to use latest_question_list instead.
As an alternative approach, you could change your templates to match
the new default context variables – but it’s a lot easier to tell Django to
use the variable you want.

Run the server, and use your new polling app based on generic views.

For full details on generic views, see the generic views documentation.

When you’re comfortable with forms and generic views, read part 5 of this
tutorial to learn about testing our polls app.

Writing your first Django app, part 5

This tutorial begins where Tutorial 4 left off.
We’ve built a Web-poll application, and we’ll now create some automated tests
for it.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Introducing automated testing

What are automated tests?

Tests are routines that check the operation of your code.

Testing operates at different levels. Some tests might apply to a tiny detail
(does a particular model method return values as expected?) while others
examine the overall operation of the software (does a sequence of user inputs
on the site produce the desired result?). That’s no different from the kind of
testing you did earlier in Tutorial 2, using the
shell to examine the behavior of a method, or running the
application and entering data to check how it behaves.

What’s different in automated tests is that the testing work is done for
you by the system. You create a set of tests once, and then as you make changes
to your app, you can check that your code still works as you originally
intended, without having to perform time consuming manual testing.

Why you need to create tests

So why create tests, and why now?

You may feel that you have quite enough on your plate just learning
Python/Django, and having yet another thing to learn and do may seem
overwhelming and perhaps unnecessary. After all, our polls application is
working quite happily now; going through the trouble of creating automated
tests is not going to make it work any better. If creating the polls
application is the last bit of Django programming you will ever do, then true,
you don’t need to know how to create automated tests. But, if that’s not the
case, now is an excellent time to learn.

Tests will save you time

Up to a certain point, ‘checking that it seems to work’ will be a satisfactory
test. In a more sophisticated application, you might have dozens of complex
interactions between components.

A change in any of those components could have unexpected consequences on the
application’s behavior. Checking that it still ‘seems to work’ could mean
running through your code’s functionality with twenty different variations of
your test data to make sure you haven’t broken something - not a good use
of your time.

That’s especially true when automated tests could do this for you in seconds.
If something’s gone wrong, tests will also assist in identifying the code
that’s causing the unexpected behavior.

Sometimes it may seem a chore to tear yourself away from your productive,
creative programming work to face the unglamorous and unexciting business
of writing tests, particularly when you know your code is working properly.

However, the task of writing tests is a lot more fulfilling than spending hours
testing your application manually or trying to identify the cause of a
newly-introduced problem.

Tests don’t just identify problems, they prevent them

It’s a mistake to think of tests merely as a negative aspect of development.

Without tests, the purpose or intended behavior of an application might be
rather opaque. Even when it’s your own code, you will sometimes find yourself
poking around in it trying to find out what exactly it’s doing.

Tests change that; they light up your code from the inside, and when something
goes wrong, they focus light on the part that has gone wrong - even if you
hadn’t even realized it had gone wrong.

Tests make your code more attractive

You might have created a brilliant piece of software, but you will find that
many other developers will refuse to look at it because it lacks tests; without
tests, they won’t trust it. Jacob Kaplan-Moss, one of Django’s original
developers, says “Code without tests is broken by design.”

That other developers want to see tests in your software before they take it
seriously is yet another reason for you to start writing tests.

Tests help teams work together

The previous points are written from the point of view of a single developer
maintaining an application. Complex applications will be maintained by teams.
Tests guarantee that colleagues don’t inadvertently break your code (and that
you don’t break theirs without knowing). If you want to make a living as a
Django programmer, you must be good at writing tests!

Basic testing strategies

There are many ways to approach writing tests.

Some programmers follow a discipline called “test-driven development [https://en.wikipedia.org/wiki/Test-driven_development]”; they
actually write their tests before they write their code. This might seem
counter-intuitive, but in fact it’s similar to what most people will often do
anyway: they describe a problem, then create some code to solve it. Test-driven
development formalizes the problem in a Python test case.

More often, a newcomer to testing will create some code and later decide that
it should have some tests. Perhaps it would have been better to write some
tests earlier, but it’s never too late to get started.

Sometimes it’s difficult to figure out where to get started with writing tests.
If you have written several thousand lines of Python, choosing something to
test might not be easy. In such a case, it’s fruitful to write your first test
the next time you make a change, either when you add a new feature or fix a bug.

So let’s do that right away.

Writing our first test

We identify a bug

Fortunately, there’s a little bug in the polls application for us to fix
right away: the Question.was_published_recently() method returns True if
the Question was published within the last day (which is correct) but also if
the Question’s pub_date field is in the future (which certainly isn’t).

Confirm the bug by using the shell to check the method on a question
whose date lies in the future:

$ python manage.py shell

>>> import datetime
>>> from django.utils import timezone
>>> from polls.models import Question
>>> # create a Question instance with pub_date 30 days in the future
>>> future_question = Question(pub_date=timezone.now() + datetime.timedelta(days=30))
>>> # was it published recently?
>>> future_question.was_published_recently()
True

Since things in the future are not ‘recent’, this is clearly wrong.

Create a test to expose the bug

What we’ve just done in the shell to test for the problem is exactly
what we can do in an automated test, so let’s turn that into an automated test.

A conventional place for an application’s tests is in the application’s
tests.py file; the testing system will automatically find tests in any file
whose name begins with test.

Put the following in the tests.py file in the polls application:

polls/tests.py

import datetime

from django.test import TestCase
from django.utils import timezone

from .models import Question

class QuestionModelTests(TestCase):

 def test_was_published_recently_with_future_question(self):
 """
 was_published_recently() returns False for questions whose pub_date
 is in the future.
 """
 time = timezone.now() + datetime.timedelta(days=30)
 future_question = Question(pub_date=time)
 self.assertIs(future_question.was_published_recently(), False)

Here we have created a django.test.TestCase subclass with a method that
creates a Question instance with a pub_date in the future. We then check
the output of was_published_recently() - which ought to be False.

Running tests

In the terminal, we can run our test:

$ python manage.py test polls

and you’ll see something like:

Creating test database for alias 'default'...
System check identified no issues (0 silenced).
F
==
FAIL: test_was_published_recently_with_future_question (polls.tests.QuestionModelTests)
--
Traceback (most recent call last):
 File "/path/to/mysite/polls/tests.py", line 16, in test_was_published_recently_with_future_question
 self.assertIs(future_question.was_published_recently(), False)
AssertionError: True is not False

--
Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'...

Different error?

If instead you’re getting a NameError here, you may have missed a step
in Part 2 where we added imports of
datetime and timezone to polls/models.py. Copy the imports from
that section, and try running your tests again.

What happened is this:

	manage.py test polls looked for tests in the polls application

	it found a subclass of the django.test.TestCase class

	it created a special database for the purpose of testing

	it looked for test methods - ones whose names begin with test

	in test_was_published_recently_with_future_question it created a Question
instance whose pub_date field is 30 days in the future

	… and using the assertIs() method, it discovered that its
was_published_recently() returns True, though we wanted it to return
False

The test informs us which test failed and even the line on which the failure
occurred.

Fixing the bug

We already know what the problem is: Question.was_published_recently() should
return False if its pub_date is in the future. Amend the method in
models.py, so that it will only return True if the date is also in the
past:

polls/models.py

def was_published_recently(self):
 now = timezone.now()
 return now - datetime.timedelta(days=1) <= self.pub_date <= now

and run the test again:

Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

After identifying a bug, we wrote a test that exposes it and corrected the bug
in the code so our test passes.

Many other things might go wrong with our application in the future, but we can
be sure that we won’t inadvertently reintroduce this bug, because running the
test will warn us immediately. We can consider this little portion of the
application pinned down safely forever.

More comprehensive tests

While we’re here, we can further pin down the was_published_recently()
method; in fact, it would be positively embarrassing if in fixing one bug we had
introduced another.

Add two more test methods to the same class, to test the behavior of the method
more comprehensively:

polls/tests.py

def test_was_published_recently_with_old_question(self):
 """
 was_published_recently() returns False for questions whose pub_date
 is older than 1 day.
 """
 time = timezone.now() - datetime.timedelta(days=1, seconds=1)
 old_question = Question(pub_date=time)
 self.assertIs(old_question.was_published_recently(), False)

def test_was_published_recently_with_recent_question(self):
 """
 was_published_recently() returns True for questions whose pub_date
 is within the last day.
 """
 time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59)
 recent_question = Question(pub_date=time)
 self.assertIs(recent_question.was_published_recently(), True)

And now we have three tests that confirm that Question.was_published_recently()
returns sensible values for past, recent, and future questions.

Again, polls is a minimal application, but however complex it grows in the
future and whatever other code it interacts with, we now have some guarantee
that the method we have written tests for will behave in expected ways.

Test a view

The polls application is fairly undiscriminating: it will publish any question,
including ones whose pub_date field lies in the future. We should improve
this. Setting a pub_date in the future should mean that the Question is
published at that moment, but invisible until then.

A test for a view

When we fixed the bug above, we wrote the test first and then the code to fix
it. In fact that was an example of test-driven development, but it doesn’t
really matter in which order we do the work.

In our first test, we focused closely on the internal behavior of the code. For
this test, we want to check its behavior as it would be experienced by a user
through a web browser.

Before we try to fix anything, let’s have a look at the tools at our disposal.

The Django test client

Django provides a test Client to simulate a user
interacting with the code at the view level. We can use it in tests.py
or even in the shell.

We will start again with the shell, where we need to do a couple of
things that won’t be necessary in tests.py. The first is to set up the test
environment in the shell:

$ python manage.py shell

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

setup_test_environment() installs a template renderer
which will allow us to examine some additional attributes on responses such as
response.context that otherwise wouldn’t be available. Note that this
method does not setup a test database, so the following will be run against
the existing database and the output may differ slightly depending on what
questions you already created. You might get unexpected results if your
TIME_ZONE in settings.py isn’t correct. If you don’t remember setting
it earlier, check it before continuing.

Next we need to import the test client class (later in tests.py we will use
the django.test.TestCase class, which comes with its own client, so
this won’t be required):

>>> from django.test import Client
>>> # create an instance of the client for our use
>>> client = Client()

With that ready, we can ask the client to do some work for us:

>>> # get a response from '/'
>>> response = client.get('/')
Not Found: /
>>> # we should expect a 404 from that address; if you instead see an
>>> # "Invalid HTTP_HOST header" error and a 400 response, you probably
>>> # omitted the setup_test_environment() call described earlier.
>>> response.status_code
404
>>> # on the other hand we should expect to find something at '/polls/'
>>> # we'll use 'reverse()' rather than a hardcoded URL
>>> from django.urls import reverse
>>> response = client.get(reverse('polls:index'))
>>> response.status_code
200
>>> response.content
b'\n \n \n What's up?\n \n \n\n'
>>> response.context['latest_question_list']
<QuerySet [<Question: What's up?>]>

Improving our view

The list of polls shows polls that aren’t published yet (i.e. those that have a
pub_date in the future). Let’s fix that.

In Tutorial 4 we introduced a class-based view,
based on ListView:

polls/views.py

class IndexView(generic.ListView):
 template_name = 'polls/index.html'
 context_object_name = 'latest_question_list'

 def get_queryset(self):
 """Return the last five published questions."""
 return Question.objects.order_by('-pub_date')[:5]

We need to amend the get_queryset() method and change it so that it also
checks the date by comparing it with timezone.now(). First we need to add
an import:

polls/views.py

from django.utils import timezone

and then we must amend the get_queryset method like so:

polls/views.py

def get_queryset(self):
 """
 Return the last five published questions (not including those set to be
 published in the future).
 """
 return Question.objects.filter(
 pub_date__lte=timezone.now()
).order_by('-pub_date')[:5]

Question.objects.filter(pub_date__lte=timezone.now()) returns a queryset
containing Questions whose pub_date is less than or equal to - that
is, earlier than or equal to - timezone.now.

Testing our new view

Now you can satisfy yourself that this behaves as expected by firing up
runserver, loading the site in your browser, creating Questions with
dates in the past and future, and checking that only those that have been
published are listed. You don’t want to have to do that every single time you
make any change that might affect this - so let’s also create a test, based on
our shell session above.

Add the following to polls/tests.py:

polls/tests.py

from django.urls import reverse

and we’ll create a shortcut function to create questions as well as a new test
class:

polls/tests.py

def create_question(question_text, days):
 """
 Create a question with the given `question_text` and published the
 given number of `days` offset to now (negative for questions published
 in the past, positive for questions that have yet to be published).
 """
 time = timezone.now() + datetime.timedelta(days=days)
 return Question.objects.create(question_text=question_text, pub_date=time)

class QuestionIndexViewTests(TestCase):
 def test_no_questions(self):
 """
 If no questions exist, an appropriate message is displayed.
 """
 response = self.client.get(reverse('polls:index'))
 self.assertEqual(response.status_code, 200)
 self.assertContains(response, "No polls are available.")
 self.assertQuerysetEqual(response.context['latest_question_list'], [])

 def test_past_question(self):
 """
 Questions with a pub_date in the past are displayed on the
 index page.
 """
 create_question(question_text="Past question.", days=-30)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question.>']
)

 def test_future_question(self):
 """
 Questions with a pub_date in the future aren't displayed on
 the index page.
 """
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertContains(response, "No polls are available.")
 self.assertQuerysetEqual(response.context['latest_question_list'], [])

 def test_future_question_and_past_question(self):
 """
 Even if both past and future questions exist, only past questions
 are displayed.
 """
 create_question(question_text="Past question.", days=-30)
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question.>']
)

 def test_two_past_questions(self):
 """
 The questions index page may display multiple questions.
 """
 create_question(question_text="Past question 1.", days=-30)
 create_question(question_text="Past question 2.", days=-5)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question 2.>', '<Question: Past question 1.>']
)

Let’s look at some of these more closely.

First is a question shortcut function, create_question, to take some
repetition out of the process of creating questions.

test_no_questions doesn’t create any questions, but checks the message:
“No polls are available.” and verifies the latest_question_list is empty.
Note that the django.test.TestCase class provides some additional
assertion methods. In these examples, we use
assertContains() and
assertQuerysetEqual().

In test_past_question, we create a question and verify that it appears in
the list.

In test_future_question, we create a question with a pub_date in the
future. The database is reset for each test method, so the first question is no
longer there, and so again the index shouldn’t have any questions in it.

And so on. In effect, we are using the tests to tell a story of admin input
and user experience on the site, and checking that at every state and for every
new change in the state of the system, the expected results are published.

Testing the DetailView

What we have works well; however, even though future questions don’t appear in
the index, users can still reach them if they know or guess the right URL. So
we need to add a similar constraint to DetailView:

polls/views.py

class DetailView(generic.DetailView):
 ...
 def get_queryset(self):
 """
 Excludes any questions that aren't published yet.
 """
 return Question.objects.filter(pub_date__lte=timezone.now())

And of course, we will add some tests, to check that a Question whose
pub_date is in the past can be displayed, and that one with a pub_date
in the future is not:

polls/tests.py

class QuestionDetailViewTests(TestCase):
 def test_future_question(self):
 """
 The detail view of a question with a pub_date in the future
 returns a 404 not found.
 """
 future_question = create_question(question_text='Future question.', days=5)
 url = reverse('polls:detail', args=(future_question.id,))
 response = self.client.get(url)
 self.assertEqual(response.status_code, 404)

 def test_past_question(self):
 """
 The detail view of a question with a pub_date in the past
 displays the question's text.
 """
 past_question = create_question(question_text='Past Question.', days=-5)
 url = reverse('polls:detail', args=(past_question.id,))
 response = self.client.get(url)
 self.assertContains(response, past_question.question_text)

Ideas for more tests

We ought to add a similar get_queryset method to ResultsView and
create a new test class for that view. It’ll be very similar to what we have
just created; in fact there will be a lot of repetition.

We could also improve our application in other ways, adding tests along the
way. For example, it’s silly that Questions can be published on the site
that have no Choices. So, our views could check for this, and exclude such
Questions. Our tests would create a Question without Choices and
then test that it’s not published, as well as create a similar Question
with Choices, and test that it is published.

Perhaps logged-in admin users should be allowed to see unpublished
Questions, but not ordinary visitors. Again: whatever needs to be added to
the software to accomplish this should be accompanied by a test, whether you
write the test first and then make the code pass the test, or work out the
logic in your code first and then write a test to prove it.

At a certain point you are bound to look at your tests and wonder whether your
code is suffering from test bloat, which brings us to:

When testing, more is better

It might seem that our tests are growing out of control. At this rate there will
soon be more code in our tests than in our application, and the repetition
is unaesthetic, compared to the elegant conciseness of the rest of our code.

It doesn’t matter. Let them grow. For the most part, you can write a test
once and then forget about it. It will continue performing its useful function
as you continue to develop your program.

Sometimes tests will need to be updated. Suppose that we amend our views so that
only Questions with Choices are published. In that case, many of our
existing tests will fail - telling us exactly which tests need to be amended to
bring them up to date, so to that extent tests help look after themselves.

At worst, as you continue developing, you might find that you have some tests
that are now redundant. Even that’s not a problem; in testing redundancy is
a good thing.

As long as your tests are sensibly arranged, they won’t become unmanageable.
Good rules-of-thumb include having:

	a separate TestClass for each model or view

	a separate test method for each set of conditions you want to test

	test method names that describe their function

Further testing

This tutorial only introduces some of the basics of testing. There’s a great
deal more you can do, and a number of very useful tools at your disposal to
achieve some very clever things.

For example, while our tests here have covered some of the internal logic of a
model and the way our views publish information, you can use an “in-browser”
framework such as Selenium [http://seleniumhq.org/] to test the way your HTML actually renders in a
browser. These tools allow you to check not just the behavior of your Django
code, but also, for example, of your JavaScript. It’s quite something to see
the tests launch a browser, and start interacting with your site, as if a human
being were driving it! Django includes LiveServerTestCase
to facilitate integration with tools like Selenium.

If you have a complex application, you may want to run tests automatically
with every commit for the purposes of continuous integration [https://en.wikipedia.org/wiki/Continuous_integration], so that
quality control is itself - at least partially - automated.

A good way to spot untested parts of your application is to check code
coverage. This also helps identify fragile or even dead code. If you can’t test
a piece of code, it usually means that code should be refactored or removed.
Coverage will help to identify dead code. See
Integration with coverage.py for details.

Testing in Django has comprehensive
information about testing.

What’s next?

For full details on testing, see Testing in Django.

When you’re comfortable with testing Django views, read
part 6 of this tutorial to learn about
static files management.

Writing your first Django app, part 6

This tutorial begins where Tutorial 5 left off.
We’ve built a tested Web-poll application, and we’ll now add a stylesheet and
an image.

Aside from the HTML generated by the server, web applications generally need
to serve additional files — such as images, JavaScript, or CSS — necessary to
render the complete web page. In Django, we refer to these files as “static
files”.

For small projects, this isn’t a big deal, because you can keep the static
files somewhere your web server can find it. However, in bigger projects –
especially those comprised of multiple apps – dealing with the multiple sets
of static files provided by each application starts to get tricky.

That’s what django.contrib.staticfiles is for: it collects static files
from each of your applications (and any other places you specify) into a
single location that can easily be served in production.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Customize your app’s look and feel

First, create a directory called static in your polls directory. Django
will look for static files there, similarly to how Django finds templates
inside polls/templates/.

Django’s STATICFILES_FINDERS setting contains a list
of finders that know how to discover static files from various
sources. One of the defaults is AppDirectoriesFinder which
looks for a “static” subdirectory in each of the
INSTALLED_APPS, like the one in polls we just created. The admin
site uses the same directory structure for its static files.

Within the static directory you have just created, create another directory
called polls and within that create a file called style.css. In other
words, your stylesheet should be at polls/static/polls/style.css. Because
of how the AppDirectoriesFinder staticfile finder works, you can refer to
this static file in Django as polls/style.css, similar to how you reference
the path for templates.

Static file namespacing

Just like templates, we might be able to get away with putting our static
files directly in polls/static (rather than creating another polls
subdirectory), but it would actually be a bad idea. Django will choose the
first static file it finds whose name matches, and if you had a static file
with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right
one, and the best way to ensure this is by namespacing them. That is, by
putting those static files inside another directory named for the
application itself.

Put the following code in that stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

li a {
 color: green;
}

Next, add the following at the top of polls/templates/polls/index.html:

polls/templates/polls/index.html

{% load static %}

<link rel="stylesheet" type="text/css" href="{% static 'polls/style.css' %}">

The {% static %} template tag generates the absolute URL of static files.

That’s all you need to do for development.

Start the server (or restart it if it’s already running):

$ python manage.py runserver

Reload http://localhost:8000/polls/ and you should see that the question
links are green (Django style!) which means that your stylesheet was properly
loaded.

Adding a background-image

Next, we’ll create a subdirectory for images. Create an images subdirectory
in the polls/static/polls/ directory. Inside this directory, put an image
called background.gif. In other words, put your image in
polls/static/polls/images/background.gif.

Then, add to your stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

body {
 background: white url("images/background.gif") no-repeat;
}

Reload http://localhost:8000/polls/ and you should see the background
loaded in the top left of the screen.

Warning

Of course the {% static %} template tag is not available for use in
static files like your stylesheet which aren’t generated by Django. You
should always use relative paths to link your static files between each
other, because then you can change STATIC_URL (used by the
static template tag to generate its URLs) without having to modify
a bunch of paths in your static files as well.

These are the basics. For more details on settings and other bits included
with the framework see
the static files howto and
the staticfiles reference. Deploying
static files discusses how to use static
files on a real server.

When you’re comfortable with the static files, read part 7 of this
tutorial to learn how to customize Django’s
automatically-generated admin site.

Writing your first Django app, part 7

This tutorial begins where Tutorial 6 left off. We’re
continuing the Web-poll application and will focus on customizing Django’s
automatically-generated admin site that we first explored in Tutorial 2.

Where to get help:

If you’re having trouble going through this tutorial, please head over to
the Getting Help section of the FAQ.

Customize the admin form

By registering the Question model with admin.site.register(Question),
Django was able to construct a default form representation. Often, you’ll want
to customize how the admin form looks and works. You’ll do this by telling
Django the options you want when you register the object.

Let’s see how this works by reordering the fields on the edit form. Replace
the admin.site.register(Question) line with:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
 fields = ['pub_date', 'question_text']

admin.site.register(Question, QuestionAdmin)

You’ll follow this pattern – create a model admin class, then pass it as the
second argument to admin.site.register() – any time you need to change the
admin options for a model.

This particular change above makes the “Publication date” come before the
“Question” field:

[image: Fields have been reordered]
This isn’t impressive with only two fields, but for admin forms with dozens
of fields, choosing an intuitive order is an important usability detail.

And speaking of forms with dozens of fields, you might want to split the form
up into fieldsets:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
 fieldsets = [
 (None, {'fields': ['question_text']}),
 ('Date information', {'fields': ['pub_date']}),
]

admin.site.register(Question, QuestionAdmin)

The first element of each tuple in
fieldsets is the title of the fieldset.
Here’s what our form looks like now:

[image: Form has fieldsets now]

Adding related objects

OK, we have our Question admin page, but a Question has multiple
Choices, and the admin page doesn’t display choices.

Yet.

There are two ways to solve this problem. The first is to register Choice
with the admin just as we did with Question:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question
...
admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form
looks like this:

[image: Choice admin page]
In that form, the “Question” field is a select box containing every question in the
database. Django knows that a ForeignKey should be
represented in the admin as a <select> box. In our case, only one question
exists at this point.

Also note the “Add Another” link next to “Question.” Every object with a
ForeignKey relationship to another gets this for free. When you click “Add
Another”, you’ll get a popup window with the “Add question” form. If you add a question
in that window and click “Save”, Django will save the question to the database and
dynamically add it as the selected choice on the “Add choice” form you’re
looking at.

But, really, this is an inefficient way of adding Choice objects to the system.
It’d be better if you could add a bunch of Choices directly when you create the
Question object. Let’s make that happen.

Remove the register() call for the Choice model. Then, edit the Question
registration code to read:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question

class ChoiceInline(admin.StackedInline):
 model = Choice
 extra = 3

class QuestionAdmin(admin.ModelAdmin):
 fieldsets = [
 (None, {'fields': ['question_text']}),
 ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}),
]
 inlines = [ChoiceInline]

admin.site.register(Question, QuestionAdmin)

This tells Django: “Choice objects are edited on the Question admin page. By
default, provide enough fields for 3 choices.”

Load the “Add question” page to see how that looks:

[image: Add question page now has choices on it]
It works like this: There are three slots for related Choices – as specified
by extra – and each time you come back to the “Change” page for an
already-created object, you get another three extra slots.

At the end of the three current slots you will find an “Add another Choice”
link. If you click on it, a new slot will be added. If you want to remove the
added slot, you can click on the X to the top right of the added slot. Note
that you can’t remove the original three slots. This image shows an added slot:

[image: Additional slot added dynamically]
One small problem, though. It takes a lot of screen space to display all the
fields for entering related Choice objects. For that reason, Django offers a
tabular way of displaying inline related objects. To use it, change the
ChoiceInline declaration to read:

polls/admin.py

class ChoiceInline(admin.TabularInline):
 #...

With that TabularInline (instead of StackedInline), the
related objects are displayed in a more compact, table-based format:

[image: Add question page now has more compact choices]
Note that there is an extra “Delete?” column that allows removing rows added
using the “Add Another Choice” button and rows that have already been saved.

Customize the admin change list

Now that the Question admin page is looking good, let’s make some tweaks to the
“change list” page – the one that displays all the questions in the system.

Here’s what it looks like at this point:

[image: Polls change list page]
By default, Django displays the str() of each object. But sometimes it’d be
more helpful if we could display individual fields. To do that, use the
list_display admin option, which is a
tuple of field names to display, as columns, on the change list page for the
object:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
 # ...
 list_display = ('question_text', 'pub_date')

For good measure, let’s also include the was_published_recently() method
from Tutorial 2:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
 # ...
 list_display = ('question_text', 'pub_date', 'was_published_recently')

Now the question change list page looks like this:

[image: Polls change list page, updated]
You can click on the column headers to sort by those values – except in the
case of the was_published_recently header, because sorting by the output
of an arbitrary method is not supported. Also note that the column header for
was_published_recently is, by default, the name of the method (with
underscores replaced with spaces), and that each line contains the string
representation of the output.

You can improve that by giving that method (in polls/models.py) a few
attributes, as follows:

polls/models.py

class Question(models.Model):
 # ...
 def was_published_recently(self):
 now = timezone.now()
 return now - datetime.timedelta(days=1) <= self.pub_date <= now
 was_published_recently.admin_order_field = 'pub_date'
 was_published_recently.boolean = True
 was_published_recently.short_description = 'Published recently?'

For more information on these method properties, see
list_display.

Edit your polls/admin.py file again and add an improvement to the
Question change list page: filters using the
list_filter. Add the following line to
QuestionAdmin:

list_filter = ['pub_date']

That adds a “Filter” sidebar that lets people filter the change list by the
pub_date field:

[image: Polls change list page, updated]
The type of filter displayed depends on the type of field you’re filtering on.
Because pub_date is a DateTimeField, Django
knows to give appropriate filter options: “Any date”, “Today”, “Past 7 days”,
“This month”, “This year”.

This is shaping up well. Let’s add some search capability:

search_fields = ['question_text']

That adds a search box at the top of the change list. When somebody enters
search terms, Django will search the question_text field. You can use as many
fields as you’d like – although because it uses a LIKE query behind the
scenes, limiting the number of search fields to a reasonable number will make
it easier for your database to do the search.

Now’s also a good time to note that change lists give you free pagination. The
default is to display 100 items per page. Change list pagination, search boxes, filters, date-hierarchies, and
column-header-ordering
all work together like you think they should.

Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is
ridiculous. It’s just placeholder text.

You can change it, though, using Django’s template system. The Django admin is
powered by Django itself, and its interfaces use Django’s own template system.

Customizing your project’s templates

Create a templates directory in your project directory (the one that
contains manage.py). Templates can live anywhere on your filesystem that
Django can access. (Django runs as whatever user your server runs.) However,
keeping your templates within the project is a good convention to follow.

Open your settings file (mysite/settings.py, remember) and add a
DIRS option in the TEMPLATES setting:

mysite/settings.py

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

DIRS is a list of filesystem directories to check
when loading Django templates; it’s a search path.

Organizing templates

Just like the static files, we could have all our templates together, in
one big templates directory, and it would work perfectly well. However,
templates that belong to a particular application should be placed in that
application’s template directory (e.g. polls/templates) rather than the
project’s (templates). We’ll discuss in more detail in the
reusable apps tutorial why we do this.

Now create a directory called admin inside templates, and copy the
template admin/base_site.html from within the default Django admin
template directory in the source code of Django itself
(django/contrib/admin/templates) into that directory.

Where are the Django source files?

If you have difficulty finding where the Django source files are located
on your system, run the following command:

$ python -c "import django; print(django.__path__)"

Then, edit the file and replace
{{ site_header|default:_('Django administration') }} (including the curly
braces) with your own site’s name as you see fit. You should end up with
a section of code like:

{% block branding %}
<h1 id="site-name">Polls Administration</h1>
{% endblock %}

We use this approach to teach you how to override templates. In an actual
project, you would probably use
the django.contrib.admin.AdminSite.site_header attribute to more easily
make this particular customization.

This template file contains lots of text like {% block branding %}
and {{ title }}. The {% and {{ tags are part of Django’s
template language. When Django renders admin/base_site.html, this
template language will be evaluated to produce the final HTML page, just like
we saw in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To
override a template, do the same thing you did with base_site.html – copy
it from the default directory into your custom directory, and make changes.

Customizing your application’s templates

Astute readers will ask: But if DIRS was empty by
default, how was Django finding the default admin templates? The answer is
that, since APP_DIRS is set to True,
Django automatically looks for a templates/ subdirectory within each
application package, for use as a fallback (don’t forget that
django.contrib.admin is an application).

Our poll application is not very complex and doesn’t need custom admin
templates. But if it grew more sophisticated and required modification of
Django’s standard admin templates for some of its functionality, it would be
more sensible to modify the application’s templates, rather than those in the
project. That way, you could include the polls application in any new project
and be assured that it would find the custom templates it needed.

See the template loading documentation for more
information about how Django finds its templates.

Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django
admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been
registered with the admin application, in alphabetical order. You may want to
make significant changes to the layout. After all, the index is probably the
most important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with
admin/base_site.html in the previous section – copy it from the default
directory to your custom template directory). Edit the file, and you’ll see it
uses a template variable called app_list. That variable contains every
installed Django app. Instead of using that, you can hard-code links to
object-specific admin pages in whatever way you think is best.

What’s next?

The beginner tutorial ends here. In the meantime, you might want to check out
some pointers on where to go from here.

If you are familiar with Python packaging and interested in learning how to
turn polls into a “reusable app”, check out Advanced tutorial: How to
write reusable apps.

Advanced tutorial: How to write reusable apps

This advanced tutorial begins where Tutorial 7
left off. We’ll be turning our Web-poll into a standalone Python package
you can reuse in new projects and share with other people.

If you haven’t recently completed Tutorials 1–7, we encourage you to review
these so that your example project matches the one described below.

Reusability matters

It’s a lot of work to design, build, test and maintain a web application. Many
Python and Django projects share common problems. Wouldn’t it be great if we
could save some of this repeated work?

Reusability is the way of life in Python. The Python Package Index (PyPI) [https://pypi.org/] has a vast range of packages you can use in your own
Python programs. Check out Django Packages [https://djangopackages.org] for
existing reusable apps you could incorporate in your project. Django itself is
also a normal Python package. This means that you can take existing Python
packages or Django apps and compose them into your own web project. You only
need to write the parts that make your project unique.

Let’s say you were starting a new project that needed a polls app like the one
we’ve been working on. How do you make this app reusable? Luckily, you’re well
on the way already. In Tutorial 1, we saw how we
could decouple polls from the project-level URLconf using an include.
In this tutorial, we’ll take further steps to make the app easy to use in new
projects and ready to publish for others to install and use.

Package? App?

A Python package [https://docs.python.org/3/glossary.html#term-package] provides a way of grouping related Python code for
easy reuse. A package contains one or more files of Python code (also known
as “modules”).

A package can be imported with import foo.bar or from foo import
bar. For a directory (like polls) to form a package, it must contain
a special file __init__.py, even if this file is empty.

A Django application is a Python package that is specifically intended
for use in a Django project. An application may use common Django
conventions, such as having models, tests, urls, and views
submodules.

Later on we use the term packaging to describe the process of making a
Python package easy for others to install. It can be a little confusing, we
know.

Your project and your reusable app

After the previous tutorials, our project should look like this:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 asgi.py
 wsgi.py
 polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 0001_initial.py
 models.py
 static/
 polls/
 images/
 background.gif
 style.css
 templates/
 polls/
 detail.html
 index.html
 results.html
 tests.py
 urls.py
 views.py
 templates/
 admin/
 base_site.html

You created mysite/templates in Tutorial 7,
and polls/templates in Tutorial 3. Now perhaps
it is clearer why we chose to have separate template directories for the
project and application: everything that is part of the polls application is in
polls. It makes the application self-contained and easier to drop into a
new project.

The polls directory could now be copied into a new Django project and
immediately reused. It’s not quite ready to be published though. For that, we
need to package the app to make it easy for others to install.

Installing some prerequisites

The current state of Python packaging is a bit muddled with various tools. For
this tutorial, we’re going to use setuptools [https://pypi.org/project/setuptools/] to build our package. It’s the
recommended packaging tool (merged with the distribute fork). We’ll also be
using pip [https://pypi.org/project/pip/] to install and uninstall it. You should install these
two packages now. If you need help, you can refer to how to install
Django with pip. You can install setuptools
the same way.

Packaging your app

Python packaging refers to preparing your app in a specific format that can
be easily installed and used. Django itself is packaged very much like
this. For a small app like polls, this process isn’t too difficult.

	First, create a parent directory for polls, outside of your Django
project. Call this directory django-polls.

Choosing a name for your app

When choosing a name for your package, check resources like PyPI to avoid
naming conflicts with existing packages. It’s often useful to prepend
django- to your module name when creating a package to distribute.
This helps others looking for Django apps identify your app as Django
specific.

Application labels (that is, the final part of the dotted path to
application packages) must be unique in INSTALLED_APPS.
Avoid using the same label as any of the Django contrib packages, for example auth, admin, or
messages.

	Move the polls directory into the django-polls directory.

	Create a file django-polls/README.rst with the following contents:

django-polls/README.rst

=====
Polls
=====

Polls is a Django app to conduct Web-based polls. For each question,
visitors can choose between a fixed number of answers.

Detailed documentation is in the "docs" directory.

Quick start

1. Add "polls" to your INSTALLED_APPS setting like this::

 INSTALLED_APPS = [
 ...
 'polls',
]

2. Include the polls URLconf in your project urls.py like this::

 path('polls/', include('polls.urls')),

3. Run ``python manage.py migrate`` to create the polls models.

4. Start the development server and visit http://127.0.0.1:8000/admin/
 to create a poll (you'll need the Admin app enabled).

5. Visit http://127.0.0.1:8000/polls/ to participate in the poll.

	Create a django-polls/LICENSE file. Choosing a license is beyond the
scope of this tutorial, but suffice it to say that code released publicly
without a license is useless. Django and many Django-compatible apps are
distributed under the BSD license; however, you’re free to pick your own
license. Just be aware that your licensing choice will affect who is able
to use your code.

	Next we’ll create setup.cfg and setup.py files which detail how to
build and install the app. A full explanation of these files is beyond the
scope of this tutorial, but the setuptools documentation [https://setuptools.readthedocs.io/en/latest/] has a good explanation.
Create the files django-polls/setup.cfg and django-polls/setup.py
with the following contents:

django-polls/setup.cfg

[metadata]
name = django-polls
version = 0.1
description = A Django app to conduct Web-based polls.
long_description = file: README.rst
url = https://www.example.com/
author = Your Name
author_email = yourname@example.com
license = BSD-3-Clause # Example license
classifiers =
 Environment :: Web Environment
 Framework :: Django
 Framework :: Django :: X.Y # Replace "X.Y" as appropriate
 Intended Audience :: Developers
 License :: OSI Approved :: BSD License
 Operating System :: OS Independent
 Programming Language :: Python
 Programming Language :: Python :: 3
 Programming Language :: Python :: 3 :: Only
 Programming Language :: Python :: 3.6
 Programming Language :: Python :: 3.7
 Programming Language :: Python :: 3.8
 Topic :: Internet :: WWW/HTTP
 Topic :: Internet :: WWW/HTTP :: Dynamic Content

[options]
include_package_data = true
packages = find:

django-polls/setup.py

from setuptools import setup

setup()

	Only Python modules and packages are included in the package by default. To
include additional files, we’ll need to create a MANIFEST.in file. The
setuptools docs referred to in the previous step discuss this file in more
details. To include the templates, the README.rst and our LICENSE
file, create a file django-polls/MANIFEST.in with the following
contents:

django-polls/MANIFEST.in

include LICENSE
include README.rst
recursive-include polls/static *
recursive-include polls/templates *

	It’s optional, but recommended, to include detailed documentation with your
app. Create an empty directory django-polls/docs for future
documentation. Add an additional line to django-polls/MANIFEST.in:

recursive-include docs *

Note that the docs directory won’t be included in your package unless
you add some files to it. Many Django apps also provide their documentation
online through sites like readthedocs.org [https://readthedocs.org].

	Try building your package with python setup.py sdist (run from inside
django-polls). This creates a directory called dist and builds your
new package, django-polls-0.1.tar.gz.

For more information on packaging, see Python’s Tutorial on Packaging and
Distributing Projects [https://packaging.python.org/tutorials/packaging-projects/].

Using your own package

Since we moved the polls directory out of the project, it’s no longer
working. We’ll now fix this by installing our new django-polls package.

Installing as a user library

The following steps install django-polls as a user library. Per-user
installs have a lot of advantages over installing the package system-wide,
such as being usable on systems where you don’t have administrator access
as well as preventing the package from affecting system services and other
users of the machine.

Note that per-user installations can still affect the behavior of system
tools that run as that user, so using a virtual environment is a more robust
solution (see below).

	To install the package, use pip (you already installed it, right?):

python -m pip install --user django-polls/dist/django-polls-0.1.tar.gz

	With luck, your Django project should now work correctly again. Run the
server again to confirm this.

	To uninstall the package, use pip:

python -m pip uninstall django-polls

Publishing your app

Now that we’ve packaged and tested django-polls, it’s ready to share with
the world! If this wasn’t just an example, you could now:

	Email the package to a friend.

	Upload the package on your website.

	Post the package on a public repository, such as the Python Package Index
(PyPI) [https://pypi.org/]. packaging.python.org [https://packaging.python.org] has a good
tutorial [https://packaging.python.org/tutorials/packaging-projects/#uploading-the-distribution-archives]
for doing this.

Installing Python packages with a virtual environment

Earlier, we installed the polls app as a user library. This has some
disadvantages:

	Modifying the user libraries can affect other Python software on your system.

	You won’t be able to run multiple versions of this package (or others with
the same name).

Typically, these situations only arise once you’re maintaining several Django
projects. When they do, the best solution is to use venv [https://docs.python.org/3/tutorial/venv.html]. This tool allows you to maintain multiple isolated
Python environments, each with its own copy of the libraries and package
namespace.

What to read next

So you’ve read all the introductory material and have
decided you’d like to keep using Django. We’ve only just scratched the surface
with this intro (in fact, if you’ve read every single word, you’ve read about
5% of the overall documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should
know enough to start a project of your own and start fooling around. As you need
to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, clear and
as complete as possible. The rest of this document explains more about how the
documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans
to write a document about how to read the document about documentation.)

Finding documentation

Django’s got a lot of documentation – almost 450,000 words and counting –
so finding what you need can sometimes be tricky. A few good places to start
are the Search Page and the Index.

Or you can just browse around!

How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill
different needs:

	The introductory material is designed for people new
to Django – or to Web development in general. It doesn’t cover anything
in depth, but instead gives a high-level overview of how developing in
Django “feels”.

	The topic guides, on the other hand, dive deep into
individual parts of Django. There are complete guides to Django’s
model system, template engine, forms framework, and much
more.

This is probably where you’ll want to spend most of your time; if you work
your way through these guides you should come out knowing pretty much
everything there is to know about Django.

	Web development is often broad, not deep – problems span many domains.
We’ve written a set of how-to guides that answer
common “How do I …?” questions. Here you’ll find information about
generating PDFs with Django, writing
custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

	The guides and how-to’s don’t cover every single class, function, and
method available in Django – that would be overwhelming when you’re
trying to learn. Instead, details about individual classes, functions,
methods, and modules are kept in the reference. This is
where you’ll turn to find the details of a particular function or
whatever you need.

	If you are interested in deploying a project for public use, our docs have
several guides for various deployment
setups as well as a deployment checklist
for some things you’ll need to think about.

	Finally, there’s some “specialized” documentation not usually relevant to
most developers. This includes the release notes and
internals documentation for those who want to add
code to Django itself, and a few other things that don’t fit elsewhere.

How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our
documentation is consistently improving. We improve documentation for several
reasons:

	To make content fixes, such as grammar/typo corrections.

	To add information and/or examples to existing sections that need to be
expanded.

	To document Django features that aren’t yet documented. (The list of
such features is shrinking but exists nonetheless.)

	To add documentation for new features as new features get added, or as
Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It
lives in the docs [https://github.com/django/django/blob/master/docs] directory of our Git repository. Each document
online is a separate text file in the repository.

Where to get it

You can read Django documentation in several ways. They are, in order of
preference:

On the Web

The most recent version of the Django documentation lives at
https://docs.djangoproject.com/en/dev/. These HTML pages are generated
automatically from the text files in source control. That means they reflect the
“latest and greatest” in Django – they include the very latest corrections and
additions, and they discuss the latest Django features, which may only be
available to users of the Django development version. (See
Differences between versions below.)

We encourage you to help improve the docs by submitting changes, corrections and
suggestions in the ticket system [https://code.djangoproject.com/]. The Django developers actively monitor the
ticket system and use your feedback to improve the documentation for everybody.

Note, however, that tickets should explicitly relate to the documentation,
rather than asking broad tech-support questions. If you need help with your
particular Django setup, try the django-users mailing list or the #django
IRC channel instead.

In plain text

For offline reading, or just for convenience, you can read the Django
documentation in plain text.

If you’re using an official release of Django, the zipped package (tarball) of
the code includes a docs/ directory, which contains all the documentation
for that release.

If you’re using the development version of Django (aka the master branch), the
docs/ directory contains all of the documentation. You can update your
Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the
Unix grep utility to search for a phrase in all of the documentation. For
example, this will show you each mention of the phrase “max_length” in any
Django document:

$ grep -r max_length /path/to/django/docs/

As HTML, locally

You can get a local copy of the HTML documentation following a few steps:

	Django’s documentation uses a system called Sphinx [https://www.sphinx-doc.org/] to convert from
plain text to HTML. You’ll need to install Sphinx by either downloading
and installing the package from the Sphinx website, or with pip:

$ python -m pip install Sphinx

	Then, use the included Makefile to turn the documentation into HTML:

$ cd path/to/django/docs
$ make html

You’ll need GNU Make [https://www.gnu.org/software/make/] installed for this.

If you’re on Windows you can alternatively use the included batch file:

cd path\to\django\docs
make.bat html

	The HTML documentation will be placed in docs/_build/html.

Differences between versions

The text documentation in the master branch of the Git repository contains the
“latest and greatest” changes and additions. These changes include
documentation of new features targeted for Django’s next feature
release. For that reason, it’s worth pointing out our policy
to highlight recent changes and additions to Django.

We follow this policy:

	The development documentation at https://docs.djangoproject.com/en/dev/ is
from the master branch. These docs correspond to the latest feature release,
plus whatever features have been added/changed in the framework since then.

	As we add features to Django’s development version, we update the
documentation in the same Git commit transaction.

	To distinguish feature changes/additions in the docs, we use the phrase:
“New in Django Development version” for the version of Django that hasn’t
been released yet, or “New in version X.Y” for released versions.

	Documentation fixes and improvements may be backported to the last release
branch, at the discretion of the committer, however, once a version of
Django is no longer supported, that version
of the docs won’t get any further updates.

	The main documentation Web page [https://docs.djangoproject.com/en/dev/] includes links to documentation for
previous versions. Be sure you are using the version of the docs
corresponding to the version of Django you are using!

Writing your first patch for Django

Introduction

Interested in giving back to the community a little? Maybe you’ve found a bug
in Django that you’d like to see fixed, or maybe there’s a small feature you
want added.

Contributing back to Django itself is the best way to see your own concerns
addressed. This may seem daunting at first, but it’s a well-traveled path with
documentation, tooling, and a community to support you. We’ll walk you through
the entire process, so you can learn by example.

Who’s this tutorial for?

See also

If you are looking for a reference on how to submit patches, see the
Submitting patches
documentation.

For this tutorial, we expect that you have at least a basic understanding of
how Django works. This means you should be comfortable going through the
existing tutorials on writing your first Django app.
In addition, you should have a good understanding of Python itself. But if you
don’t, Dive Into Python [https://diveinto.org/python3/table-of-contents.html] is a fantastic (and free) online book for
beginning Python programmers.

Those of you who are unfamiliar with version control systems and Trac will find
that this tutorial and its links include just enough information to get started.
However, you’ll probably want to read some more about these different tools if
you plan on contributing to Django regularly.

For the most part though, this tutorial tries to explain as much as possible,
so that it can be of use to the widest audience.

Where to get help:

If you’re having trouble going through this tutorial, please post a message
to django-developers or drop by #django-dev on irc.freenode.net to
chat with other Django users who might be able to help.

What does this tutorial cover?

We’ll be walking you through contributing a patch to Django for the first time.
By the end of this tutorial, you should have a basic understanding of both the
tools and the processes involved. Specifically, we’ll be covering the following:

	Installing Git.

	Downloading a copy of Django’s development version.

	Running Django’s test suite.

	Writing a test for your patch.

	Writing the code for your patch.

	Testing your patch.

	Submitting a pull request.

	Where to look for more information.

Once you’re done with the tutorial, you can look through the rest of
Django’s documentation on contributing.
It contains lots of great information and is a must read for anyone who’d like
to become a regular contributor to Django. If you’ve got questions, it’s
probably got the answers.

Python 3 required!

The current version of Django doesn’t support Python 2.7. Get Python 3 at
Python’s download page [https://www.python.org/downloads/] or with your
operating system’s package manager.

For Windows users

See Install Python on Windows docs for additional guidance.

Code of Conduct

As a contributor, you can help us keep the Django community open and inclusive.
Please read and follow our Code of Conduct [https://www.djangoproject.com/conduct/].

Installing Git

For this tutorial, you’ll need Git installed to download the current
development version of Django and to generate patch files for the changes you
make.

To check whether or not you have Git installed, enter git into the command
line. If you get messages saying that this command could not be found, you’ll
have to download and install it, see Git’s download page [https://git-scm.com/download].

If you’re not that familiar with Git, you can always find out more about its
commands (once it’s installed) by typing git help into the command line.

Getting a copy of Django’s development version

The first step to contributing to Django is to get a copy of the source code.
First, fork Django on GitHub [https://github.com/django/django/fork]. Then,
from the command line, use the cd command to navigate to the directory
where you’ll want your local copy of Django to live.

Download the Django source code repository using the following command:

$ git clone https://github.com/YourGitHubName/django.git

Low bandwidth connection?

You can add the --depth 1 argument to git clone to skip downloading
all of Django’s commit history, which reduces data transfer from ~250 MB
to ~70 MB.

Now that you have a local copy of Django, you can install it just like you would
install any package using pip. The most convenient way to do so is by using
a virtual environment, which is a feature built into Python that allows you
to keep a separate directory of installed packages for each of your projects so
that they don’t interfere with each other.

It’s a good idea to keep all your virtual environments in one place, for
example in .virtualenvs/ in your home directory.

Create a new virtual environment by running:

$ python3 -m venv ~/.virtualenvs/djangodev

The path is where the new environment will be saved on your computer.

The final step in setting up your virtual environment is to activate it:

$ source ~/.virtualenvs/djangodev/bin/activate

If the source command is not available, you can try using a dot instead:

$. ~/.virtualenvs/djangodev/bin/activate

You have to activate the virtual environment whenever you open a new
terminal window.

For Windows users

To activate your virtual environment on Windows, run:

...\> %HOMEPATH%\.virtualenvs\djangodev\Scripts\activate.bat

The name of the currently activated virtual environment is displayed on the
command line to help you keep track of which one you are using. Anything you
install through pip while this name is displayed will be installed in that
virtual environment, isolated from other environments and system-wide packages.

Go ahead and install the previously cloned copy of Django:

$ python -m pip install -e /path/to/your/local/clone/django/

The installed version of Django is now pointing at your local copy by installing
in editable mode. You will immediately see any changes you make to it, which is
of great help when writing your first patch.

Creating projects with a local copy of Django

It may be helpful to test your local changes with a Django project. First you
have to create a new virtual environment, install the previously cloned
local copy of Django in editable mode,
and create a new Django project outside of your local copy of Django. You will
immediately see any changes you make to Django in your new project, which is
of great help when writing your first patch.

Running Django’s test suite for the first time

When contributing to Django it’s very important that your code changes don’t
introduce bugs into other areas of Django. One way to check that Django still
works after you make your changes is by running Django’s test suite. If all
the tests still pass, then you can be reasonably sure that your changes
work and haven’t broken other parts Django. If you’ve never run Django’s test
suite before, it’s a good idea to run it once beforehand to get familiar with
its output.

Before running the test suite, install its dependencies by cd-ing into the
Django tests/ directory and then running:

$ python -m pip install -r requirements/py3.txt

If you encounter an error during the installation, your system might be missing
a dependency for one or more of the Python packages. Consult the failing
package’s documentation or search the Web with the error message that you
encounter.

Now we are ready to run the test suite. If you’re using GNU/Linux, macOS, or
some other flavor of Unix, run:

$./runtests.py

Now sit back and relax. Django’s entire test suite has thousands of tests, and
it takes at least a few minutes to run, depending on the speed of your
computer.

While Django’s test suite is running, you’ll see a stream of characters
representing the status of each test as it completes. E indicates that an
error was raised during a test, and F indicates that a test’s assertions
failed. Both of these are considered to be test failures. Meanwhile, x and
s indicated expected failures and skipped tests, respectively. Dots indicate
passing tests.

Skipped tests are typically due to missing external libraries required to run
the test; see Running all the tests for a list of dependencies
and be sure to install any for tests related to the changes you are making (we
won’t need any for this tutorial). Some tests are specific to a particular
database backend and will be skipped if not testing with that backend. SQLite
is the database backend for the default settings. To run the tests using a
different backend, see Using another settings module.

Once the tests complete, you should be greeted with a message informing you
whether the test suite passed or failed. Since you haven’t yet made any changes
to Django’s code, the entire test suite should pass. If you get failures or
errors make sure you’ve followed all of the previous steps properly. See
Running the unit tests for more information.

Note that the latest Django master may not always be stable. When developing
against master, you can check Django’s continuous integration builds [https://djangoci.com] to
determine if the failures are specific to your machine or if they are also
present in Django’s official builds. If you click to view a particular build,
you can view the “Configuration Matrix” which shows failures broken down by
Python version and database backend.

Note

For this tutorial and the ticket we’re working on, testing against SQLite
is sufficient, however, it’s possible (and sometimes necessary) to
run the tests using a different database.

Working on a feature

For this tutorial, we’ll work on a “fake ticket” as a case study. Here are the
imaginary details:

Ticket #99999 – Allow making toast

Django should provide a function django.shortcuts.make_toast() that
returns 'toast'.

We’ll now implement this feature and associated tests.

Creating a branch for your patch

Before making any changes, create a new branch for the ticket:

$ git checkout -b ticket_99999

You can choose any name that you want for the branch, “ticket_99999” is an
example. All changes made in this branch will be specific to the ticket and
won’t affect the main copy of the code that we cloned earlier.

Writing some tests for your ticket

In most cases, for a patch to be accepted into Django it has to include tests.
For bug fix patches, this means writing a regression test to ensure that the
bug is never reintroduced into Django later on. A regression test should be
written in such a way that it will fail while the bug still exists and pass
once the bug has been fixed. For patches containing new features, you’ll need
to include tests which ensure that the new features are working correctly.
They too should fail when the new feature is not present, and then pass once it
has been implemented.

A good way to do this is to write your new tests first, before making any
changes to the code. This style of development is called
test-driven development [https://en.wikipedia.org/wiki/Test-driven_development] and can be applied to both entire projects and
single patches. After writing your tests, you then run them to make sure that
they do indeed fail (since you haven’t fixed that bug or added that feature
yet). If your new tests don’t fail, you’ll need to fix them so that they do.
After all, a regression test that passes regardless of whether a bug is present
is not very helpful at preventing that bug from reoccurring down the road.

Now for our hands-on example.

Writing a test for ticket #99999

In order to resolve this ticket, we’ll add a make_toast() function to the
top-level django module. First we are going to write a test that tries to
use the function and check that its output looks correct.

Navigate to Django’s tests/shortcuts/ folder and create a new file
test_make_toast.py. Add the following code:

from django.shortcuts import make_toast
from django.test import SimpleTestCase

class MakeToastTests(SimpleTestCase):
 def test_make_toast(self):
 self.assertEqual(make_toast(), 'toast')

This test checks that the make_toast() returns 'toast'.

But this testing thing looks kinda hard…

If you’ve never had to deal with tests before, they can look a little hard
to write at first glance. Fortunately, testing is a very big subject in
computer programming, so there’s lots of information out there:

	A good first look at writing tests for Django can be found in the
documentation on Writing and running tests.

	Dive Into Python (a free online book for beginning Python developers)
includes a great introduction to Unit Testing [https://www.diveinto.org/python3/unit-testing.html].

	After reading those, if you want something a little meatier to sink
your teeth into, there’s always the Python unittest [https://docs.python.org/3/library/unittest.html#module-unittest] documentation.

Running your new test

Since we haven’t made any modifications to django.shortcuts yet, our test
should fail. Let’s run all the tests in the shortcuts folder to make sure
that’s really what happens. cd to the Django tests/ directory and run:

$./runtests.py shortcuts

If the tests ran correctly, you should see one failure corresponding to the test
method we added, with this error:

ImportError: cannot import name 'make_toast' from 'django.shortcuts'

If all of the tests passed, then you’ll want to make sure that you added the
new test shown above to the appropriate folder and file name.

Writing the code for your ticket

Next we’ll be adding the make_toast() function.

Navigate to the django/ folder and open the shortcuts.py file. At the
bottom, add:

def make_toast():
 return 'toast'

Now we need to make sure that the test we wrote earlier passes, so we can see
whether the code we added is working correctly. Again, navigate to the Django
tests/ directory and run:

$./runtests.py shortcuts

Everything should pass. If it doesn’t, make sure you correctly added the
function to the correct file.

Running Django’s test suite for the second time

Once you’ve verified that your patch and your test are working correctly, it’s
a good idea to run the entire Django test suite to verify that your change
hasn’t introduced any bugs into other areas of Django. While successfully
passing the entire test suite doesn’t guarantee your code is bug free, it does
help identify many bugs and regressions that might otherwise go unnoticed.

To run the entire Django test suite, cd into the Django tests/
directory and run:

$./runtests.py

Writing Documentation

This is a new feature, so it should be documented. Open the file
docs/topics/http/shortcuts.txt and add the following at the end of the
file:

``make_toast()``
================

.. versionadded:: 2.2

Returns ``'toast'``.

Since this new feature will be in an upcoming release it is also added to the
release notes for the next version of Django. Open the release notes for the
latest version in docs/releases/, which at time of writing is 2.2.txt.
Add a note under the “Minor Features” header:

:mod:`django.shortcuts`
~~~~~~~~~~~~~~~~~~~~~~~

* The new :func:`django.shortcuts.make_toast` function returns ``'toast'``.





For more information on writing documentation, including an explanation of what
the versionadded bit is all about, see
Writing documentation. That page also includes
an explanation of how to build a copy of the documentation locally, so you can
preview the HTML that will be generated.



Previewing your changes

Now it’s time to go through all the changes made in our patch. To stage all the
changes ready for commit, run:

$ git add --all





Then display the differences between your current copy of Django (with your
changes) and the revision that you initially checked out earlier in the
tutorial with:

$ git diff --cached





Use the arrow keys to move up and down.

diff --git a/django/shortcuts.py b/django/shortcuts.py
index 7ab1df0e9d..8dde9e28d9 100644
--- a/django/shortcuts.py
+++ b/django/shortcuts.py
@@ -156,3 +156,7 @@ def resolve_url(to, *args, **kwargs):

     # Finally, fall back and assume it's a URL
     return to
+
+
+def make_toast():
+    return 'toast'
diff --git a/docs/releases/2.2.txt b/docs/releases/2.2.txt
index 7d85d30c4a..81518187b3 100644
--- a/docs/releases/2.2.txt
+++ b/docs/releases/2.2.txt
@@ -40,6 +40,11 @@ database constraints. Constraints are added to models using the
 Minor features
 --------------

+:mod:`django.shortcuts`
+~~~~~~~~~~~~~~~~~~~~~~~
+
+* The new :func:`django.shortcuts.make_toast` function returns ``'toast'``.
+
 :mod:`django.contrib.admin`
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

diff --git a/docs/topics/http/shortcuts.txt b/docs/topics/http/shortcuts.txt
index 7b3a3a2c00..711bf6bb6d 100644
--- a/docs/topics/http/shortcuts.txt
+++ b/docs/topics/http/shortcuts.txt
@@ -271,3 +271,12 @@ This example is equivalent to::
 my_objects = list(MyModel.objects.filter(published=True))
 if not my_objects:
 raise Http404("No MyModel matches the given query.")
+
+``make_toast()``
+================
+
+.. function:: make_toast()
+
+.. versionadded:: 2.2
+
+Returns ``'toast'``.
diff --git a/tests/shortcuts/test_make_toast.py b/tests/shortcuts/test_make_toast.py
new file mode 100644
index 0000000000..6f4c627b6e
--- /dev/null
+++ b/tests/shortcuts/test_make_toast.py
@@ -0,0 +1,7 @@
+from django.shortcuts import make_toast
+from django.test import SimpleTestCase
+
+
+class MakeToastTests(SimpleTestCase):
+ def test_make_toast(self):
+ self.assertEqual(make_toast(), 'toast')

When you’re done previewing the patch, hit the q key to return to the
command line. If the patch’s content looked okay, it’s time to commit the
changes.

Committing the changes in the patch

To commit the changes:

$ git commit

This opens up a text editor to type the commit message. Follow the commit
message guidelines and write a message like:

Fixed #99999 -- Added a shortcut function to make toast.

Pushing the commit and making a pull request

After committing the patch, send it to your fork on GitHub (substitute
“ticket_99999” with the name of your branch if it’s different):

$ git push origin ticket_99999

You can create a pull request by visiting the Django GitHub page [https://github.com/django/django/]. You’ll see your branch under “Your
recently pushed branches”. Click “Compare & pull request” next to it.

Please don’t do it for this tutorial, but on the next page that displays a
preview of the patch, you would click “Create pull request”.

Next steps

Congratulations, you’ve learned how to make a pull request to Django! Details
of more advanced techniques you may need are in
Working with Git and GitHub.

Now you can put those skills to good use by helping to improve Django’s
codebase.

More information for new contributors

Before you get too into writing patches for Django, there’s a little more
information on contributing that you should probably take a look at:

	You should make sure to read Django’s documentation on
claiming tickets and submitting patches.
It covers Trac etiquette, how to claim tickets for yourself, expected
coding style for patches, and many other important details.

	First time contributors should also read Django’s documentation
for first time contributors.
It has lots of good advice for those of us who are new to helping out
with Django.

	After those, if you’re still hungry for more information about
contributing, you can always browse through the rest of
Django’s documentation on contributing.
It contains a ton of useful information and should be your first source
for answering any questions you might have.

Finding your first real ticket

Once you’ve looked through some of that information, you’ll be ready to go out
and find a ticket of your own to write a patch for. Pay special attention to
tickets with the “easy pickings” criterion. These tickets are often much
simpler in nature and are great for first time contributors. Once you’re
familiar with contributing to Django, you can move on to writing patches for
more difficult and complicated tickets.

If you just want to get started already (and nobody would blame you!), try
taking a look at the list of easy tickets that need patches [https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority] and the
easy tickets that have patches which need improvement [https://code.djangoproject.com/query?status=new&status=reopened&needs_better_patch=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority]. If you’re familiar
with writing tests, you can also look at the list of
easy tickets that need tests [https://code.djangoproject.com/query?status=new&status=reopened&needs_tests=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority]. Remember to follow the guidelines about
claiming tickets that were mentioned in the link to Django’s documentation on
claiming tickets and submitting patches.

What’s next after creating a pull request?

After a ticket has a patch, it needs to be reviewed by a second set of eyes.
After submitting a pull request, update the ticket metadata by setting the
flags on the ticket to say “has patch”, “doesn’t need tests”, etc, so others
can find it for review. Contributing doesn’t necessarily always mean writing a
patch from scratch. Reviewing existing patches is also a very helpful
contribution. See Triaging tickets for details.

“How-to” guides

Here you’ll find short answers to “How do I….?” types of questions. These
how-to guides don’t cover topics in depth – you’ll find that material in the
Using Django and the API Reference. However, these guides will help
you quickly accomplish common tasks.

	Authentication using REMOTE_USER

	Writing custom django-admin commands

	Writing custom model fields

	Custom Lookups

	Custom template tags and filters

	Writing a custom storage system

	Deploying Django

	Upgrading Django to a newer version

	Error reporting

	Providing initial data for models

	Integrating Django with a legacy database

	Outputting CSV with Django

	Outputting PDFs with Django

	Overriding templates

	Managing static files (e.g. images, JavaScript, CSS)

	Deploying static files

	How to install Django on Windows

	Writing database migrations

See also

The Django community aggregator [https://www.djangoproject.com/community/], where we aggregate content from the
global Django community. Many writers in the aggregator write this sort of
how-to material.

Authentication using REMOTE_USER

This document describes how to make use of external authentication sources
(where the Web server sets the REMOTE_USER environment variable) in your
Django applications. This type of authentication solution is typically seen on
intranet sites, with single sign-on solutions such as IIS and Integrated
Windows Authentication or Apache and mod_authnz_ldap [https://httpd.apache.org/docs/2.2/mod/mod_authnz_ldap.html], CAS [https://www.apereo.org/projects/cas], Cosign [http://weblogin.org],
WebAuth [https://www.stanford.edu/services/webauth/], mod_auth_sspi [https://sourceforge.net/projects/mod-auth-sspi], etc.

When the Web server takes care of authentication it typically sets the
REMOTE_USER environment variable for use in the underlying application. In
Django, REMOTE_USER is made available in the request.META attribute. Django can be configured to make
use of the REMOTE_USER value using the RemoteUserMiddleware
or PersistentRemoteUserMiddleware, and
RemoteUserBackend classes found in
django.contrib.auth.

Configuration

First, you must add the
django.contrib.auth.middleware.RemoteUserMiddleware to the
MIDDLEWARE setting after the
django.contrib.auth.middleware.AuthenticationMiddleware:

MIDDLEWARE = [
 '...',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.RemoteUserMiddleware',
 '...',
]

Next, you must replace the ModelBackend
with RemoteUserBackend in the
AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.RemoteUserBackend',
]

With this setup, RemoteUserMiddleware will detect the username in
request.META['REMOTE_USER'] and will authenticate and auto-login that user
using the RemoteUserBackend.

Be aware that this particular setup disables authentication with the default
ModelBackend. This means that if the REMOTE_USER value is not set
then the user is unable to log in, even using Django’s admin interface.
Adding 'django.contrib.auth.backends.ModelBackend' to the
AUTHENTICATION_BACKENDS list will use ModelBackend as a fallback
if REMOTE_USER is absent, which will solve these issues.

Django’s user management, such as the views in contrib.admin and
the createsuperuser management command, doesn’t integrate with
remote users. These interfaces work with users stored in the database
regardless of AUTHENTICATION_BACKENDS.

Note

Since the RemoteUserBackend inherits from ModelBackend, you will
still have all of the same permissions checking that is implemented in
ModelBackend.

Users with is_active=False won’t be allowed to
authenticate. Use
AllowAllUsersRemoteUserBackend if
you want to allow them to.

If your authentication mechanism uses a custom HTTP header and not
REMOTE_USER, you can subclass RemoteUserMiddleware and set the
header attribute to the desired request.META key. For example:

from django.contrib.auth.middleware import RemoteUserMiddleware

class CustomHeaderMiddleware(RemoteUserMiddleware):
 header = 'HTTP_AUTHUSER'

Warning

Be very careful if using a RemoteUserMiddleware subclass with a custom
HTTP header. You must be sure that your front-end web server always sets or
strips that header based on the appropriate authentication checks, never
permitting an end-user to submit a fake (or “spoofed”) header value. Since
the HTTP headers X-Auth-User and X-Auth_User (for example) both
normalize to the HTTP_X_AUTH_USER key in request.META, you must
also check that your web server doesn’t allow a spoofed header using
underscores in place of dashes.

This warning doesn’t apply to RemoteUserMiddleware in its default
configuration with header = 'REMOTE_USER', since a key that doesn’t
start with HTTP_ in request.META can only be set by your WSGI
server, not directly from an HTTP request header.

If you need more control, you can create your own authentication backend
that inherits from RemoteUserBackend and
override one or more of its attributes and methods.

Using REMOTE_USER on login pages only

The RemoteUserMiddleware authentication middleware assumes that the HTTP
request header REMOTE_USER is present with all authenticated requests. That
might be expected and practical when Basic HTTP Auth with htpasswd or
similar mechanisms are used, but with Negotiate (GSSAPI/Kerberos) or other
resource intensive authentication methods, the authentication in the front-end
HTTP server is usually only set up for one or a few login URLs, and after
successful authentication, the application is supposed to maintain the
authenticated session itself.

PersistentRemoteUserMiddleware
provides support for this use case. It will maintain the authenticated session
until explicit logout by the user. The class can be used as a drop-in
replacement of RemoteUserMiddleware
in the documentation above.

Writing custom django-admin commands

Applications can register their own actions with manage.py. For example,
you might want to add a manage.py action for a Django app that you’re
distributing. In this document, we will be building a custom closepoll
command for the polls application from the
tutorial.

To do this, add a management/commands directory to the application. Django
will register a manage.py command for each Python module in that directory
whose name doesn’t begin with an underscore. For example:

polls/
 __init__.py
 models.py
 management/
 commands/
 _private.py
 closepoll.py
 tests.py
 views.py

In this example, the closepoll command will be made available to any project
that includes the polls application in INSTALLED_APPS.

The _private.py module will not be available as a management command.

The closepoll.py module has only one requirement – it must define a class
Command that extends BaseCommand or one of its
subclasses.

Standalone scripts

Custom management commands are especially useful for running standalone
scripts or for scripts that are periodically executed from the UNIX crontab
or from Windows scheduled tasks control panel.

To implement the command, edit polls/management/commands/closepoll.py to
look like this:

from django.core.management.base import BaseCommand, CommandError
from polls.models import Question as Poll

class Command(BaseCommand):
 help = 'Closes the specified poll for voting'

 def add_arguments(self, parser):
 parser.add_argument('poll_ids', nargs='+', type=int)

 def handle(self, *args, **options):
 for poll_id in options['poll_ids']:
 try:
 poll = Poll.objects.get(pk=poll_id)
 except Poll.DoesNotExist:
 raise CommandError('Poll "%s" does not exist' % poll_id)

 poll.opened = False
 poll.save()

 self.stdout.write(self.style.SUCCESS('Successfully closed poll "%s"' % poll_id))

Note

When you are using management commands and wish to provide console
output, you should write to self.stdout and self.stderr,
instead of printing to stdout and stderr directly. By
using these proxies, it becomes much easier to test your custom
command. Note also that you don’t need to end messages with a newline
character, it will be added automatically, unless you specify the ending
parameter:

self.stdout.write("Unterminated line", ending='')

The new custom command can be called using python manage.py closepoll
<poll_ids>.

The handle() method takes one or more poll_ids and sets poll.opened
to False for each one. If the user referenced any nonexistent polls, a
CommandError is raised. The poll.opened attribute does not exist in
the tutorial and was added to
polls.models.Question for this example.

Accepting optional arguments

The same closepoll could be easily modified to delete a given poll instead
of closing it by accepting additional command line options. These custom
options can be added in the add_arguments() method like this:

class Command(BaseCommand):
 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument('poll_ids', nargs='+', type=int)

 # Named (optional) arguments
 parser.add_argument(
 '--delete',
 action='store_true',
 help='Delete poll instead of closing it',
)

 def handle(self, *args, **options):
 # ...
 if options['delete']:
 poll.delete()
 # ...

The option (delete in our example) is available in the options dict
parameter of the handle method. See the argparse [https://docs.python.org/3/library/argparse.html#module-argparse] Python documentation
for more about add_argument usage.

In addition to being able to add custom command line options, all
management commands can accept some default options
such as --verbosity and --traceback.

Management commands and locales

By default, management commands are executed with the current active locale.

If, for some reason, your custom management command must run without an active
locale (for example, to prevent translated content from being inserted into
the database), deactivate translations using the @no_translations
decorator on your handle() method:

from django.core.management.base import BaseCommand, no_translations

class Command(BaseCommand):
 ...

 @no_translations
 def handle(self, *args, **options):
 ...

Since translation deactivation requires access to configured settings, the
decorator can’t be used for commands that work without configured settings.

Testing

Information on how to test custom management commands can be found in the
testing docs.

Overriding commands

Django registers the built-in commands and then searches for commands in
INSTALLED_APPS in reverse. During the search, if a command name
duplicates an already registered command, the newly discovered command
overrides the first.

In other words, to override a command, the new command must have the same name
and its app must be before the overridden command’s app in
INSTALLED_APPS.

Management commands from third-party apps that have been unintentionally
overridden can be made available under a new name by creating a new command in
one of your project’s apps (ordered before the third-party app in
INSTALLED_APPS) which imports the Command of the overridden
command.

Command objects

	
class BaseCommand

	

The base class from which all management commands ultimately derive.

Use this class if you want access to all of the mechanisms which
parse the command-line arguments and work out what code to call in
response; if you don’t need to change any of that behavior,
consider using one of its subclasses.

Subclassing the BaseCommand class requires that you implement the
handle() method.

Attributes

All attributes can be set in your derived class and can be used in
BaseCommand’s subclasses.

	
BaseCommand.help

	A short description of the command, which will be printed in the
help message when the user runs the command
python manage.py help <command>.

	
BaseCommand.missing_args_message

	If your command defines mandatory positional arguments, you can customize
the message error returned in the case of missing arguments. The default is
output by argparse [https://docs.python.org/3/library/argparse.html#module-argparse] (“too few arguments”).

	
BaseCommand.output_transaction

	A boolean indicating whether the command outputs SQL statements; if
True, the output will automatically be wrapped with BEGIN; and
COMMIT;. Default value is False.

	
BaseCommand.requires_migrations_checks

	A boolean; if True, the command prints a warning if the set of
migrations on disk don’t match the migrations in the database. A warning
doesn’t prevent the command from executing. Default value is False.

	
BaseCommand.requires_system_checks

	A boolean; if True, the entire Django project will be checked for
potential problems prior to executing the command. Default value is True.

	
BaseCommand.style

	An instance attribute that helps create colored output when writing to
stdout or stderr. For example:

self.stdout.write(self.style.SUCCESS('...'))

See Syntax coloring to learn how to modify the color palette and to
see the available styles (use uppercased versions of the “roles” described
in that section).

If you pass the --no-color option when running your command, all
self.style() calls will return the original string uncolored.

Methods

BaseCommand has a few methods that can be overridden but only
the handle() method must be implemented.

Implementing a constructor in a subclass

If you implement __init__ in your subclass of BaseCommand,
you must call BaseCommand’s __init__:

class Command(BaseCommand):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 # ...

	
BaseCommand.create_parser(prog_name, subcommand, **kwargs)

	Returns a CommandParser instance, which is an
ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] subclass with a few customizations for
Django.

You can customize the instance by overriding this method and calling
super() with kwargs of ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] parameters.

kwargs was added.

	
BaseCommand.add_arguments(parser)

	Entry point to add parser arguments to handle command line arguments passed
to the command. Custom commands should override this method to add both
positional and optional arguments accepted by the command. Calling
super() is not needed when directly subclassing BaseCommand.

	
BaseCommand.get_version()

	Returns the Django version, which should be correct for all built-in Django
commands. User-supplied commands can override this method to return their
own version.

	
BaseCommand.execute(*args, **options)

	Tries to execute this command, performing system checks if needed (as
controlled by the requires_system_checks attribute). If the command
raises a CommandError, it’s intercepted and printed to stderr.

Calling a management command in your code

execute() should not be called directly from your code to execute a
command. Use call_command() instead.

	
BaseCommand.handle(*args, **options)

	The actual logic of the command. Subclasses must implement this method.

It may return a string which will be printed to stdout (wrapped
by BEGIN; and COMMIT; if output_transaction is True).

	
BaseCommand.check(app_configs=None, tags=None, display_num_errors=False)

	Uses the system check framework to inspect the entire Django project for
potential problems. Serious problems are raised as a CommandError;
warnings are output to stderr; minor notifications are output to stdout.

If app_configs and tags are both None, all system checks are
performed. tags can be a list of check tags, like compatibility or
models.

BaseCommand subclasses

	
class AppCommand

	

A management command which takes one or more installed application labels as
arguments, and does something with each of them.

Rather than implementing handle(), subclasses must
implement handle_app_config(), which will be called once for
each application.

	
AppCommand.handle_app_config(app_config, **options)

	Perform the command’s actions for app_config, which will be an
AppConfig instance corresponding to an application
label given on the command line.

	
class LabelCommand

	

A management command which takes one or more arbitrary arguments (labels) on
the command line, and does something with each of them.

Rather than implementing handle(), subclasses must implement
handle_label(), which will be called once for each label.

	
LabelCommand.label

	A string describing the arbitrary arguments passed to the command. The
string is used in the usage text and error messages of the command.
Defaults to 'label'.

	
LabelCommand.handle_label(label, **options)

	Perform the command’s actions for label, which will be the string as
given on the command line.

Command exceptions

	
exception CommandError

	

Exception class indicating a problem while executing a management command.

If this exception is raised during the execution of a management command from a
command line console, it will be caught and turned into a nicely-printed error
message to the appropriate output stream (i.e., stderr); as a result, raising
this exception (with a sensible description of the error) is the preferred way
to indicate that something has gone wrong in the execution of a command.

If a management command is called from code through
call_command(), it’s up to you to catch the
exception when needed.

Writing custom model fields

Introduction

The model reference documentation explains how to use
Django’s standard field classes – CharField,
DateField, etc. For many purposes, those classes are
all you’ll need. Sometimes, though, the Django version won’t meet your precise
requirements, or you’ll want to use a field that is entirely different from
those shipped with Django.

Django’s built-in field types don’t cover every possible database column type –
only the common types, such as VARCHAR and INTEGER. For more obscure
column types, such as geographic polygons or even user-created types such as
PostgreSQL custom types [https://www.postgresql.org/docs/current/sql-createtype.html], you can define your own Django Field subclasses.

Alternatively, you may have a complex Python object that can somehow be
serialized to fit into a standard database column type. This is another case
where a Field subclass will help you use your object with your models.

Our example object

Creating custom fields requires a bit of attention to detail. To make things
easier to follow, we’ll use a consistent example throughout this document:
wrapping a Python object representing the deal of cards in a hand of Bridge [https://en.wikipedia.org/wiki/Contract_bridge].
Don’t worry, you don’t have to know how to play Bridge to follow this example.
You only need to know that 52 cards are dealt out equally to four players, who
are traditionally called north, east, south and west. Our class looks
something like this:

class Hand:
 """A hand of cards (bridge style)"""

 def __init__(self, north, east, south, west):
 # Input parameters are lists of cards ('Ah', '9s', etc.)
 self.north = north
 self.east = east
 self.south = south
 self.west = west

 # ... (other possibly useful methods omitted) ...

This is an ordinary Python class, with nothing Django-specific about it.
We’d like to be able to do things like this in our models (we assume the
hand attribute on the model is an instance of Hand):

example = MyModel.objects.get(pk=1)
print(example.hand.north)

new_hand = Hand(north, east, south, west)
example.hand = new_hand
example.save()

We assign to and retrieve from the hand attribute in our model just like
any other Python class. The trick is to tell Django how to handle saving and
loading such an object.

In order to use the Hand class in our models, we do not have to change
this class at all. This is ideal, because it means you can easily write
model support for existing classes where you cannot change the source code.

Note

You might only be wanting to take advantage of custom database column
types and deal with the data as standard Python types in your models;
strings, or floats, for example. This case is similar to our Hand
example and we’ll note any differences as we go along.

Background theory

Database storage

Let’s start with model fields. If you break it down, a model field provides a
way to take a normal Python object – string, boolean, datetime, or
something more complex like Hand – and convert it to and from a format
that is useful when dealing with the database. (Such a format is also useful
for serialization, but as we’ll see later, that is easier once you have the
database side under control).

Fields in a model must somehow be converted to fit into an existing database
column type. Different databases provide different sets of valid column types,
but the rule is still the same: those are the only types you have to work
with. Anything you want to store in the database must fit into one of
those types.

Normally, you’re either writing a Django field to match a particular database
column type, or you will need a way to convert your data to, say, a string.

For our Hand example, we could convert the card data to a string of 104
characters by concatenating all the cards together in a pre-determined order –
say, all the north cards first, then the east, south and west cards. So
Hand objects can be saved to text or character columns in the database.

What does a field class do?

All of Django’s fields (and when we say fields in this document, we always
mean model fields and not form fields) are subclasses
of django.db.models.Field. Most of the information that Django records
about a field is common to all fields – name, help text, uniqueness and so
forth. Storing all that information is handled by Field. We’ll get into the
precise details of what Field can do later on; for now, suffice it to say
that everything descends from Field and then customizes key pieces of the
class behavior.

It’s important to realize that a Django field class is not what is stored in
your model attributes. The model attributes contain normal Python objects. The
field classes you define in a model are actually stored in the Meta class
when the model class is created (the precise details of how this is done are
unimportant here). This is because the field classes aren’t necessary when
you’re just creating and modifying attributes. Instead, they provide the
machinery for converting between the attribute value and what is stored in the
database or sent to the serializer.

Keep this in mind when creating your own custom fields. The Django Field
subclass you write provides the machinery for converting between your Python
instances and the database/serializer values in various ways (there are
differences between storing a value and using a value for lookups, for
example). If this sounds a bit tricky, don’t worry – it will become clearer in
the examples below. Just remember that you will often end up creating two
classes when you want a custom field:

	The first class is the Python object that your users will manipulate.
They will assign it to the model attribute, they will read from it for
displaying purposes, things like that. This is the Hand class in our
example.

	The second class is the Field subclass. This is the class that knows
how to convert your first class back and forth between its permanent
storage form and the Python form.

Writing a field subclass

When planning your Field subclass, first give some
thought to which existing Field class your new field
is most similar to. Can you subclass an existing Django field and save yourself
some work? If not, you should subclass the Field
class, from which everything is descended.

Initializing your new field is a matter of separating out any arguments that are
specific to your case from the common arguments and passing the latter to the
__init__() method of Field (or your parent
class).

In our example, we’ll call our field HandField. (It’s a good idea to call
your Field subclass <Something>Field, so it’s
easily identifiable as a Field subclass.) It doesn’t
behave like any existing field, so we’ll subclass directly from
Field:

from django.db import models

class HandField(models.Field):

 description = "A hand of cards (bridge style)"

 def __init__(self, *args, **kwargs):
 kwargs['max_length'] = 104
 super().__init__(*args, **kwargs)

Our HandField accepts most of the standard field options (see the list
below), but we ensure it has a fixed length, since it only needs to hold 52
card values plus their suits; 104 characters in total.

Note

Many of Django’s model fields accept options that they don’t do anything
with. For example, you can pass both
editable and
auto_now to a
django.db.models.DateField and it will ignore the
editable parameter
(auto_now being set implies
editable=False). No error is raised in this case.

This behavior simplifies the field classes, because they don’t need to
check for options that aren’t necessary. They pass all the options to
the parent class and then don’t use them later on. It’s up to you whether
you want your fields to be more strict about the options they select, or to
use the more permissive behavior of the current fields.

The Field.__init__() method takes the following parameters:

	verbose_name

	name

	primary_key

	max_length

	unique

	blank

	null

	db_index

	rel: Used for related fields (like ForeignKey). For advanced
use only.

	default

	editable

	serialize: If False, the field will not be serialized when the model
is passed to Django’s serializers. Defaults to
True.

	unique_for_date

	unique_for_month

	unique_for_year

	choices

	help_text

	db_column

	db_tablespace: Only for index creation, if the
backend supports tablespaces. You can usually
ignore this option.

	auto_created: True if the field was
automatically created, as for the OneToOneField
used by model inheritance. For advanced use only.

All of the options without an explanation in the above list have the same
meaning they do for normal Django fields. See the field documentation for examples and details.

Field deconstruction

The counterpoint to writing your __init__() method is writing the
deconstruct() method. It’s used during model migrations to tell Django how to take an instance of your new field
and reduce it to a serialized form - in particular, what arguments to pass to
__init__() to re-create it.

If you haven’t added any extra options on top of the field you inherited from,
then there’s no need to write a new deconstruct() method. If, however,
you’re changing the arguments passed in __init__() (like we are in
HandField), you’ll need to supplement the values being passed.

deconstruct() returns a tuple of four items: the field’s attribute name,
the full import path of the field class, the positional arguments (as a list),
and the keyword arguments (as a dict). Note this is different from the
deconstruct() method for custom classes
which returns a tuple of three things.

As a custom field author, you don’t need to care about the first two values;
the base Field class has all the code to work out the field’s attribute
name and import path. You do, however, have to care about the positional
and keyword arguments, as these are likely the things you are changing.

For example, in our HandField class we’re always forcibly setting
max_length in __init__(). The deconstruct() method on the base Field
class will see this and try to return it in the keyword arguments; thus,
we can drop it from the keyword arguments for readability:

from django.db import models

class HandField(models.Field):

 def __init__(self, *args, **kwargs):
 kwargs['max_length'] = 104
 super().__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super().deconstruct()
 del kwargs["max_length"]
 return name, path, args, kwargs

If you add a new keyword argument, you need to write code in deconstruct()
that puts its value into kwargs yourself. You should also omit the value
from kwargs when it isn’t necessary to reconstruct the state of the field,
such as when the default value is being used:

from django.db import models

class CommaSepField(models.Field):
 "Implements comma-separated storage of lists"

 def __init__(self, separator=",", *args, **kwargs):
 self.separator = separator
 super().__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super().deconstruct()
 # Only include kwarg if it's not the default
 if self.separator != ",":
 kwargs['separator'] = self.separator
 return name, path, args, kwargs

More complex examples are beyond the scope of this document, but remember -
for any configuration of your Field instance, deconstruct() must return
arguments that you can pass to __init__ to reconstruct that state.

Pay extra attention if you set new default values for arguments in the
Field superclass; you want to make sure they’re always included, rather
than disappearing if they take on the old default value.

In addition, try to avoid returning values as positional arguments; where
possible, return values as keyword arguments for maximum future compatibility.
Of course, if you change the names of things more often than their position
in the constructor’s argument list, you might prefer positional, but bear in
mind that people will be reconstructing your field from the serialized version
for quite a while (possibly years), depending how long your migrations live for.

You can see the results of deconstruction by looking in migrations that include
the field, and you can test deconstruction in unit tests by deconstructing and
reconstructing the field:

name, path, args, kwargs = my_field_instance.deconstruct()
new_instance = MyField(*args, **kwargs)
self.assertEqual(my_field_instance.some_attribute, new_instance.some_attribute)

Changing a custom field’s base class

You can’t change the base class of a custom field because Django won’t detect
the change and make a migration for it. For example, if you start with:

class CustomCharField(models.CharField):
 ...

and then decide that you want to use TextField instead, you can’t change
the subclass like this:

class CustomCharField(models.TextField):
 ...

Instead, you must create a new custom field class and update your models to
reference it:

class CustomCharField(models.CharField):
 ...

class CustomTextField(models.TextField):
 ...

As discussed in removing fields, you
must retain the original CustomCharField class as long as you have
migrations that reference it.

Documenting your custom field

As always, you should document your field type, so users will know what it is.
In addition to providing a docstring for it, which is useful for developers,
you can also allow users of the admin app to see a short description of the
field type via the django.contrib.admindocs application. To do this provide descriptive
text in a description class attribute of your custom field. In
the above example, the description displayed by the admindocs application
for a HandField will be ‘A hand of cards (bridge style)’.

In the django.contrib.admindocs display, the field description is
interpolated with field.__dict__ which allows the description to
incorporate arguments of the field. For example, the description for
CharField is:

description = _("String (up to %(max_length)s)")

Useful methods

Once you’ve created your Field subclass, you might
consider overriding a few standard methods, depending on your field’s behavior.
The list of methods below is in approximately decreasing order of importance,
so start from the top.

Custom database types

Say you’ve created a PostgreSQL custom type called mytype. You can
subclass Field and implement the db_type() method, like so:

from django.db import models

class MytypeField(models.Field):
 def db_type(self, connection):
 return 'mytype'

Once you have MytypeField, you can use it in any model, just like any other
Field type:

class Person(models.Model):
 name = models.CharField(max_length=80)
 something_else = MytypeField()

If you aim to build a database-agnostic application, you should account for
differences in database column types. For example, the date/time column type
in PostgreSQL is called timestamp, while the same column in MySQL is called
datetime. You can handle this in a db_type() method by
checking the connection.settings_dict['ENGINE'] attribute.

For example:

class MyDateField(models.Field):
 def db_type(self, connection):
 if connection.settings_dict['ENGINE'] == 'django.db.backends.mysql':
 return 'datetime'
 else:
 return 'timestamp'

The db_type() and rel_db_type() methods are called by
Django when the framework constructs the CREATE TABLE statements for your
application – that is, when you first create your tables. The methods are also
called when constructing a WHERE clause that includes the model field –
that is, when you retrieve data using QuerySet methods like get(),
filter(), and exclude() and have the model field as an argument. They
are not called at any other time, so it can afford to execute slightly complex
code, such as the connection.settings_dict check in the above example.

Some database column types accept parameters, such as CHAR(25), where the
parameter 25 represents the maximum column length. In cases like these,
it’s more flexible if the parameter is specified in the model rather than being
hard-coded in the db_type() method. For example, it wouldn’t make much
sense to have a CharMaxlength25Field, shown here:

This is a silly example of hard-coded parameters.
class CharMaxlength25Field(models.Field):
 def db_type(self, connection):
 return 'char(25)'

In the model:
class MyModel(models.Model):
 # ...
 my_field = CharMaxlength25Field()

The better way of doing this would be to make the parameter specifiable at run
time – i.e., when the class is instantiated. To do that, implement
Field.__init__(), like so:

This is a much more flexible example.
class BetterCharField(models.Field):
 def __init__(self, max_length, *args, **kwargs):
 self.max_length = max_length
 super().__init__(*args, **kwargs)

 def db_type(self, connection):
 return 'char(%s)' % self.max_length

In the model:
class MyModel(models.Model):
 # ...
 my_field = BetterCharField(25)

Finally, if your column requires truly complex SQL setup, return None from
db_type(). This will cause Django’s SQL creation code to skip
over this field. You are then responsible for creating the column in the right
table in some other way, of course, but this gives you a way to tell Django to
get out of the way.

The rel_db_type() method is called by fields such as ForeignKey
and OneToOneField that point to another field to determine their database
column data types. For example, if you have an UnsignedAutoField, you also
need the foreign keys that point to that field to use the same data type:

MySQL unsigned integer (range 0 to 4294967295).
class UnsignedAutoField(models.AutoField):
 def db_type(self, connection):
 return 'integer UNSIGNED AUTO_INCREMENT'

 def rel_db_type(self, connection):
 return 'integer UNSIGNED'

Converting values to Python objects

If your custom Field class deals with data structures that are more
complex than strings, dates, integers, or floats, then you may need to override
from_db_value() and to_python().

If present for the field subclass, from_db_value() will be called in all
circumstances when the data is loaded from the database, including in
aggregates and values() calls.

to_python() is called by deserialization and during the
clean() method used from forms.

As a general rule, to_python() should deal gracefully with any of the
following arguments:

	An instance of the correct type (e.g., Hand in our ongoing example).

	A string

	None (if the field allows null=True)

In our HandField class, we’re storing the data as a VARCHAR field in the
database, so we need to be able to process strings and None in the
from_db_value(). In to_python(), we need to also handle Hand
instances:

import re

from django.core.exceptions import ValidationError
from django.db import models
from django.utils.translation import gettext_lazy as _

def parse_hand(hand_string):
 """Takes a string of cards and splits into a full hand."""
 p1 = re.compile('.{26}')
 p2 = re.compile('..')
 args = [p2.findall(x) for x in p1.findall(hand_string)]
 if len(args) != 4:
 raise ValidationError(_("Invalid input for a Hand instance"))
 return Hand(*args)

class HandField(models.Field):
 # ...

 def from_db_value(self, value, expression, connection):
 if value is None:
 return value
 return parse_hand(value)

 def to_python(self, value):
 if isinstance(value, Hand):
 return value

 if value is None:
 return value

 return parse_hand(value)

Notice that we always return a Hand instance from these methods. That’s the
Python object type we want to store in the model’s attribute.

For to_python(), if anything goes wrong during value conversion, you should
raise a ValidationError exception.

Converting Python objects to query values

Since using a database requires conversion in both ways, if you override
from_db_value() you also have to override
get_prep_value() to convert Python objects back to query values.

For example:

class HandField(models.Field):
 # ...

 def get_prep_value(self, value):
 return ''.join([''.join(l) for l in (value.north,
 value.east, value.south, value.west)])

Warning

If your custom field uses the CHAR, VARCHAR or TEXT
types for MySQL, you must make sure that get_prep_value()
always returns a string type. MySQL performs flexible and unexpected
matching when a query is performed on these types and the provided
value is an integer, which can cause queries to include unexpected
objects in their results. This problem cannot occur if you always
return a string type from get_prep_value().

Converting query values to database values

Some data types (for example, dates) need to be in a specific format
before they can be used by a database backend.
get_db_prep_value() is the method where those conversions should
be made. The specific connection that will be used for the query is
passed as the connection parameter. This allows you to use
backend-specific conversion logic if it is required.

For example, Django uses the following method for its
BinaryField:

def get_db_prep_value(self, value, connection, prepared=False):
 value = super().get_db_prep_value(value, connection, prepared)
 if value is not None:
 return connection.Database.Binary(value)
 return value

In case your custom field needs a special conversion when being saved that is
not the same as the conversion used for normal query parameters, you can
override get_db_prep_save().

Preprocessing values before saving

If you want to preprocess the value just before saving, you can use
pre_save(). For example, Django’s
DateTimeField uses this method to set the attribute
correctly in the case of auto_now or
auto_now_add.

If you do override this method, you must return the value of the attribute at
the end. You should also update the model’s attribute if you make any changes
to the value so that code holding references to the model will always see the
correct value.

Specifying the form field for a model field

To customize the form field used by ModelForm, you can
override formfield().

The form field class can be specified via the form_class and
choices_form_class arguments; the latter is used if the field has choices
specified, the former otherwise. If these arguments are not provided,
CharField or TypedChoiceField
will be used.

All of the kwargs dictionary is passed directly to the form field’s
__init__() method. Normally, all you need to do is set up a good default
for the form_class (and maybe choices_form_class) argument and then
delegate further handling to the parent class. This might require you to write
a custom form field (and even a form widget). See the forms documentation for information about this.

Continuing our ongoing example, we can write the formfield() method
as:

class HandField(models.Field):
 # ...

 def formfield(self, **kwargs):
 # This is a fairly standard way to set up some defaults
 # while letting the caller override them.
 defaults = {'form_class': MyFormField}
 defaults.update(kwargs)
 return super().formfield(**defaults)

This assumes we’ve imported a MyFormField field class (which has its own
default widget). This document doesn’t cover the details of writing custom form
fields.

Emulating built-in field types

If you have created a db_type() method, you don’t need to worry about
get_internal_type() – it won’t be used much. Sometimes, though, your
database storage is similar in type to some other field, so you can use that
other field’s logic to create the right column.

For example:

class HandField(models.Field):
 # ...

 def get_internal_type(self):
 return 'CharField'

No matter which database backend we are using, this will mean that
migrate and other SQL commands create the right column type for
storing a string.

If get_internal_type() returns a string that is not known to Django for
the database backend you are using – that is, it doesn’t appear in
django.db.backends.<db_name>.base.DatabaseWrapper.data_types – the string
will still be used by the serializer, but the default db_type()
method will return None. See the documentation of db_type()
for reasons why this might be useful. Putting a descriptive string in as the
type of the field for the serializer is a useful idea if you’re ever going to
be using the serializer output in some other place, outside of Django.

Converting field data for serialization

To customize how the values are serialized by a serializer, you can override
value_to_string(). Using value_from_object() is the
best way to get the field’s value prior to serialization. For example, since
HandField uses strings for its data storage anyway, we can reuse some
existing conversion code:

class HandField(models.Field):
 # ...

 def value_to_string(self, obj):
 value = self.value_from_object(obj)
 return self.get_prep_value(value)

Some general advice

Writing a custom field can be a tricky process, particularly if you’re doing
complex conversions between your Python types and your database and
serialization formats. Here are a couple of tips to make things go more
smoothly:

	Look at the existing Django fields (in
django/db/models/fields/__init__.py) for inspiration. Try to find
a field that’s similar to what you want and extend it a little bit,
instead of creating an entirely new field from scratch.

	Put a __str__() method on the class you’re wrapping up as a field. There
are a lot of places where the default behavior of the field code is to call
str() on the value. (In our examples in this document, value would
be a Hand instance, not a HandField). So if your __str__()
method automatically converts to the string form of your Python object, you
can save yourself a lot of work.

Writing a FileField subclass

In addition to the above methods, fields that deal with files have a few other
special requirements which must be taken into account. The majority of the
mechanics provided by FileField, such as controlling database storage and
retrieval, can remain unchanged, leaving subclasses to deal with the challenge
of supporting a particular type of file.

Django provides a File class, which is used as a proxy to the file’s
contents and operations. This can be subclassed to customize how the file is
accessed, and what methods are available. It lives at
django.db.models.fields.files, and its default behavior is explained in the
file documentation.

Once a subclass of File is created, the new FileField subclass must be
told to use it. To do so, assign the new File subclass to the special
attr_class attribute of the FileField subclass.

A few suggestions

In addition to the above details, there are a few guidelines which can greatly
improve the efficiency and readability of the field’s code.

	The source for Django’s own ImageField (in
django/db/models/fields/files.py) is a great example of how to
subclass FileField to support a particular type of file, as it
incorporates all of the techniques described above.

	Cache file attributes wherever possible. Since files may be stored in
remote storage systems, retrieving them may cost extra time, or even
money, that isn’t always necessary. Once a file is retrieved to obtain
some data about its content, cache as much of that data as possible to
reduce the number of times the file must be retrieved on subsequent
calls for that information.

Custom Lookups

Django offers a wide variety of built-in lookups for
filtering (for example, exact and icontains). This documentation
explains how to write custom lookups and how to alter the working of existing
lookups. For the API references of lookups, see the Lookup API reference.

A lookup example

Let’s start with a small custom lookup. We will write a custom lookup ne
which works opposite to exact. Author.objects.filter(name__ne='Jack')
will translate to the SQL:

"author"."name" <> 'Jack'

This SQL is backend independent, so we don’t need to worry about different
databases.

There are two steps to making this work. Firstly we need to implement the
lookup, then we need to tell Django about it:

from django.db.models import Lookup

class NotEqual(Lookup):
 lookup_name = 'ne'

 def as_sql(self, compiler, connection):
 lhs, lhs_params = self.process_lhs(compiler, connection)
 rhs, rhs_params = self.process_rhs(compiler, connection)
 params = lhs_params + rhs_params
 return '%s <> %s' % (lhs, rhs), params

To register the NotEqual lookup we will need to call register_lookup on
the field class we want the lookup to be available for. In this case, the lookup
makes sense on all Field subclasses, so we register it with Field
directly:

from django.db.models.fields import Field
Field.register_lookup(NotEqual)

Lookup registration can also be done using a decorator pattern:

from django.db.models.fields import Field

@Field.register_lookup
class NotEqualLookup(Lookup):
 # ...

We can now use foo__ne for any field foo. You will need to ensure that
this registration happens before you try to create any querysets using it. You
could place the implementation in a models.py file, or register the lookup
in the ready() method of an AppConfig.

Taking a closer look at the implementation, the first required attribute is
lookup_name. This allows the ORM to understand how to interpret name__ne
and use NotEqual to generate the SQL. By convention, these names are always
lowercase strings containing only letters, but the only hard requirement is
that it must not contain the string __.

We then need to define the as_sql method. This takes a SQLCompiler
object, called compiler, and the active database connection.
SQLCompiler objects are not documented, but the only thing we need to know
about them is that they have a compile() method which returns a tuple
containing an SQL string, and the parameters to be interpolated into that
string. In most cases, you don’t need to use it directly and can pass it on to
process_lhs() and process_rhs().

A Lookup works against two values, lhs and rhs, standing for
left-hand side and right-hand side. The left-hand side is usually a field
reference, but it can be anything implementing the query expression API. The right-hand is the value given by the user. In the
example Author.objects.filter(name__ne='Jack'), the left-hand side is a
reference to the name field of the Author model, and 'Jack' is the
right-hand side.

We call process_lhs and process_rhs to convert them into the values we
need for SQL using the compiler object described before. These methods
return tuples containing some SQL and the parameters to be interpolated into
that SQL, just as we need to return from our as_sql method. In the above
example, process_lhs returns ('"author"."name"', []) and
process_rhs returns ('"%s"', ['Jack']). In this example there were no
parameters for the left hand side, but this would depend on the object we have,
so we still need to include them in the parameters we return.

Finally we combine the parts into an SQL expression with <>, and supply all
the parameters for the query. We then return a tuple containing the generated
SQL string and the parameters.

A transformer example

The custom lookup above is great, but in some cases you may want to be able to
chain lookups together. For example, let’s suppose we are building an
application where we want to make use of the abs() operator.
We have an Experiment model which records a start value, end value, and the
change (start - end). We would like to find all experiments where the change
was equal to a certain amount (Experiment.objects.filter(change__abs=27)),
or where it did not exceed a certain amount
(Experiment.objects.filter(change__abs__lt=27)).

Note

This example is somewhat contrived, but it nicely demonstrates the range of
functionality which is possible in a database backend independent manner,
and without duplicating functionality already in Django.

We will start by writing an AbsoluteValue transformer. This will use the SQL
function ABS() to transform the value before comparison:

from django.db.models import Transform

class AbsoluteValue(Transform):
 lookup_name = 'abs'
 function = 'ABS'

Next, let’s register it for IntegerField:

from django.db.models import IntegerField
IntegerField.register_lookup(AbsoluteValue)

We can now run the queries we had before.
Experiment.objects.filter(change__abs=27) will generate the following SQL:

SELECT ... WHERE ABS("experiments"."change") = 27

By using Transform instead of Lookup it means we are able to chain
further lookups afterwards. So
Experiment.objects.filter(change__abs__lt=27) will generate the following
SQL:

SELECT ... WHERE ABS("experiments"."change") < 27

Note that in case there is no other lookup specified, Django interprets
change__abs=27 as change__abs__exact=27.

This also allows the result to be used in ORDER BY and DISTINCT ON
clauses. For example Experiment.objects.order_by('change__abs') generates:

SELECT ... ORDER BY ABS("experiments"."change") ASC

And on databases that support distinct on fields (such as PostgreSQL),
Experiment.objects.distinct('change__abs') generates:

SELECT ... DISTINCT ON ABS("experiments"."change")

When looking for which lookups are allowable after the Transform has been
applied, Django uses the output_field attribute. We didn’t need to specify
this here as it didn’t change, but supposing we were applying AbsoluteValue
to some field which represents a more complex type (for example a point
relative to an origin, or a complex number) then we may have wanted to specify
that the transform returns a FloatField type for further lookups. This can
be done by adding an output_field attribute to the transform:

from django.db.models import FloatField, Transform

class AbsoluteValue(Transform):
 lookup_name = 'abs'
 function = 'ABS'

 @property
 def output_field(self):
 return FloatField()

This ensures that further lookups like abs__lte behave as they would for
a FloatField.

Writing an efficient abs__lt lookup

When using the above written abs lookup, the SQL produced will not use
indexes efficiently in some cases. In particular, when we use
change__abs__lt=27, this is equivalent to change__gt=-27 AND
change__lt=27. (For the lte case we could use the SQL BETWEEN).

So we would like Experiment.objects.filter(change__abs__lt=27) to generate
the following SQL:

SELECT .. WHERE "experiments"."change" < 27 AND "experiments"."change" > -27

The implementation is:

from django.db.models import Lookup

class AbsoluteValueLessThan(Lookup):
 lookup_name = 'lt'

 def as_sql(self, compiler, connection):
 lhs, lhs_params = compiler.compile(self.lhs.lhs)
 rhs, rhs_params = self.process_rhs(compiler, connection)
 params = lhs_params + rhs_params + lhs_params + rhs_params
 return '%s < %s AND %s > -%s' % (lhs, rhs, lhs, rhs), params

AbsoluteValue.register_lookup(AbsoluteValueLessThan)

There are a couple of notable things going on. First, AbsoluteValueLessThan
isn’t calling process_lhs(). Instead it skips the transformation of the
lhs done by AbsoluteValue and uses the original lhs. That is, we
want to get "experiments"."change" not ABS("experiments"."change").
Referring directly to self.lhs.lhs is safe as AbsoluteValueLessThan
can be accessed only from the AbsoluteValue lookup, that is the lhs
is always an instance of AbsoluteValue.

Notice also that as both sides are used multiple times in the query the params
need to contain lhs_params and rhs_params multiple times.

The final query does the inversion (27 to -27) directly in the
database. The reason for doing this is that if the self.rhs is something else
than a plain integer value (for example an F() reference) we can’t do the
transformations in Python.

Note

In fact, most lookups with __abs could be implemented as range queries
like this, and on most database backends it is likely to be more sensible to
do so as you can make use of the indexes. However with PostgreSQL you may
want to add an index on abs(change) which would allow these queries to
be very efficient.

A bilateral transformer example

The AbsoluteValue example we discussed previously is a transformation which
applies to the left-hand side of the lookup. There may be some cases where you
want the transformation to be applied to both the left-hand side and the
right-hand side. For instance, if you want to filter a queryset based on the
equality of the left and right-hand side insensitively to some SQL function.

Let’s examine case-insensitive transformations here. This transformation isn’t
very useful in practice as Django already comes with a bunch of built-in
case-insensitive lookups, but it will be a nice demonstration of bilateral
transformations in a database-agnostic way.

We define an UpperCase transformer which uses the SQL function UPPER() to
transform the values before comparison. We define
bilateral = True to indicate that
this transformation should apply to both lhs and rhs:

from django.db.models import Transform

class UpperCase(Transform):
 lookup_name = 'upper'
 function = 'UPPER'
 bilateral = True

Next, let’s register it:

from django.db.models import CharField, TextField
CharField.register_lookup(UpperCase)
TextField.register_lookup(UpperCase)

Now, the queryset Author.objects.filter(name__upper="doe") will generate a case
insensitive query like this:

SELECT ... WHERE UPPER("author"."name") = UPPER('doe')

Writing alternative implementations for existing lookups

Sometimes different database vendors require different SQL for the same
operation. For this example we will rewrite a custom implementation for
MySQL for the NotEqual operator. Instead of <> we will be using !=
operator. (Note that in reality almost all databases support both, including
all the official databases supported by Django).

We can change the behavior on a specific backend by creating a subclass of
NotEqual with an as_mysql method:

class MySQLNotEqual(NotEqual):
 def as_mysql(self, compiler, connection, **extra_context):
 lhs, lhs_params = self.process_lhs(compiler, connection)
 rhs, rhs_params = self.process_rhs(compiler, connection)
 params = lhs_params + rhs_params
 return '%s != %s' % (lhs, rhs), params

Field.register_lookup(MySQLNotEqual)

We can then register it with Field. It takes the place of the original
NotEqual class as it has the same lookup_name.

When compiling a query, Django first looks for as_%s % connection.vendor
methods, and then falls back to as_sql. The vendor names for the in-built
backends are sqlite, postgresql, oracle and mysql.

How Django determines the lookups and transforms which are used

In some cases you may wish to dynamically change which Transform or
Lookup is returned based on the name passed in, rather than fixing it. As
an example, you could have a field which stores coordinates or an arbitrary
dimension, and wish to allow a syntax like .filter(coords__x7=4) to return
the objects where the 7th coordinate has value 4. In order to do this, you
would override get_lookup with something like:

class CoordinatesField(Field):
 def get_lookup(self, lookup_name):
 if lookup_name.startswith('x'):
 try:
 dimension = int(lookup_name[1:])
 except ValueError:
 pass
 else:
 return get_coordinate_lookup(dimension)
 return super().get_lookup(lookup_name)

You would then define get_coordinate_lookup appropriately to return a
Lookup subclass which handles the relevant value of dimension.

There is a similarly named method called get_transform(). get_lookup()
should always return a Lookup subclass, and get_transform() a
Transform subclass. It is important to remember that Transform
objects can be further filtered on, and Lookup objects cannot.

When filtering, if there is only one lookup name remaining to be resolved, we
will look for a Lookup. If there are multiple names, it will look for a
Transform. In the situation where there is only one name and a Lookup
is not found, we look for a Transform and then the exact lookup on that
Transform. All call sequences always end with a Lookup. To clarify:

	.filter(myfield__mylookup) will call myfield.get_lookup('mylookup').

	.filter(myfield__mytransform__mylookup) will call
myfield.get_transform('mytransform'), and then
mytransform.get_lookup('mylookup').

	.filter(myfield__mytransform) will first call
myfield.get_lookup('mytransform'), which will fail, so it will fall back
to calling myfield.get_transform('mytransform') and then
mytransform.get_lookup('exact').

Custom template tags and filters

Django’s template language comes with a wide variety of built-in
tags and filters designed to address the
presentation logic needs of your application. Nevertheless, you may
find yourself needing functionality that is not covered by the core
set of template primitives. You can extend the template engine by
defining custom tags and filters using Python, and then make them
available to your templates using the {% load %} tag.

Code layout

The most common place to specify custom template tags and filters is inside
a Django app. If they relate to an existing app, it makes sense to bundle them
there; otherwise, they can be added to a new app. When a Django app is added
to INSTALLED_APPS, any tags it defines in the conventional location
described below are automatically made available to load within templates.

The app should contain a templatetags directory, at the same level as
models.py, views.py, etc. If this doesn’t already exist, create it -
don’t forget the __init__.py file to ensure the directory is treated as a
Python package.

Development server won’t automatically restart

After adding the templatetags module, you will need to restart your
server before you can use the tags or filters in templates.

Your custom tags and filters will live in a module inside the templatetags
directory. The name of the module file is the name you’ll use to load the tags
later, so be careful to pick a name that won’t clash with custom tags and
filters in another app.

For example, if your custom tags/filters are in a file called
poll_extras.py, your app layout might look like this:

polls/
 __init__.py
 models.py
 templatetags/
 __init__.py
 poll_extras.py
 views.py

And in your template you would use the following:

{% load poll_extras %}

The app that contains the custom tags must be in INSTALLED_APPS in
order for the {% load %} tag to work. This is a security feature:
It allows you to host Python code for many template libraries on a single host
machine without enabling access to all of them for every Django installation.

There’s no limit on how many modules you put in the templatetags package.
Just keep in mind that a {% load %} statement will load
tags/filters for the given Python module name, not the name of the app.

To be a valid tag library, the module must contain a module-level variable
named register that is a template.Library instance, in which all the
tags and filters are registered. So, near the top of your module, put the
following:

from django import template

register = template.Library()

Alternatively, template tag modules can be registered through the
'libraries' argument to
DjangoTemplates. This is useful if
you want to use a different label from the template tag module name when
loading template tags. It also enables you to register tags without installing
an application.

Behind the scenes

For a ton of examples, read the source code for Django’s default filters
and tags. They’re in django/template/defaultfilters.py and
django/template/defaulttags.py, respectively.

For more information on the load tag, read its documentation.

Writing custom template filters

Custom filters are Python functions that take one or two arguments:

	The value of the variable (input) – not necessarily a string.

	The value of the argument – this can have a default value, or be left
out altogether.

For example, in the filter {{ var|foo:"bar" }}, the filter foo would be
passed the variable var and the argument "bar".

Since the template language doesn’t provide exception handling, any exception
raised from a template filter will be exposed as a server error. Thus, filter
functions should avoid raising exceptions if there is a reasonable fallback
value to return. In case of input that represents a clear bug in a template,
raising an exception may still be better than silent failure which hides the
bug.

Here’s an example filter definition:

def cut(value, arg):
 """Removes all values of arg from the given string"""
 return value.replace(arg, '')

And here’s an example of how that filter would be used:

{{ somevariable|cut:"0" }}

Most filters don’t take arguments. In this case, leave the argument out of your
function:

def lower(value): # Only one argument.
 """Converts a string into all lowercase"""
 return value.lower()

Registering custom filters

	
django.template.Library.filter()

	

Once you’ve written your filter definition, you need to register it with
your Library instance, to make it available to Django’s template language:

register.filter('cut', cut)
register.filter('lower', lower)

The Library.filter() method takes two arguments:

	The name of the filter – a string.

	The compilation function – a Python function (not the name of the
function as a string).

You can use register.filter() as a decorator instead:

@register.filter(name='cut')
def cut(value, arg):
 return value.replace(arg, '')

@register.filter
def lower(value):
 return value.lower()

If you leave off the name argument, as in the second example above, Django
will use the function’s name as the filter name.

Finally, register.filter() also accepts three keyword arguments,
is_safe, needs_autoescape, and expects_localtime. These arguments
are described in filters and auto-escaping and
filters and time zones below.

Template filters that expect strings

	
django.template.defaultfilters.stringfilter()

	

If you’re writing a template filter that only expects a string as the first
argument, you should use the decorator stringfilter. This will
convert an object to its string value before being passed to your function:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter
@stringfilter
def lower(value):
 return value.lower()

This way, you’ll be able to pass, say, an integer to this filter, and it
won’t cause an AttributeError (because integers don’t have lower()
methods).

Filters and auto-escaping

When writing a custom filter, give some thought to how the filter will interact
with Django’s auto-escaping behavior. Note that two types of strings can be
passed around inside the template code:

	Raw strings are the native Python strings. On output, they’re escaped if
auto-escaping is in effect and presented unchanged, otherwise.

	Safe strings are strings that have been marked safe from further
escaping at output time. Any necessary escaping has already been done.
They’re commonly used for output that contains raw HTML that is intended
to be interpreted as-is on the client side.

Internally, these strings are of type
SafeString. You can test for them
using code like:

from django.utils.safestring import SafeString

if isinstance(value, SafeString):
 # Do something with the "safe" string.
 ...

Template filter code falls into one of two situations:

	Your filter does not introduce any HTML-unsafe characters (<, >,
', " or &) into the result that were not already present. In
this case, you can let Django take care of all the auto-escaping
handling for you. All you need to do is set the is_safe flag to True
when you register your filter function, like so:

@register.filter(is_safe=True)
def myfilter(value):
 return value

This flag tells Django that if a “safe” string is passed into your
filter, the result will still be “safe” and if a non-safe string is
passed in, Django will automatically escape it, if necessary.

You can think of this as meaning “this filter is safe – it doesn’t
introduce any possibility of unsafe HTML.”

The reason is_safe is necessary is because there are plenty of
normal string operations that will turn a SafeData object back into
a normal str object and, rather than try to catch them all, which would
be very difficult, Django repairs the damage after the filter has completed.

For example, suppose you have a filter that adds the string xx to
the end of any input. Since this introduces no dangerous HTML characters
to the result (aside from any that were already present), you should
mark your filter with is_safe:

@register.filter(is_safe=True)
def add_xx(value):
 return '%sxx' % value

When this filter is used in a template where auto-escaping is enabled,
Django will escape the output whenever the input is not already marked
as “safe”.

By default, is_safe is False, and you can omit it from any filters
where it isn’t required.

Be careful when deciding if your filter really does leave safe strings
as safe. If you’re removing characters, you might inadvertently leave
unbalanced HTML tags or entities in the result. For example, removing a
> from the input might turn <a> into <a, which would need to
be escaped on output to avoid causing problems. Similarly, removing a
semicolon (;) can turn & into &, which is no longer a
valid entity and thus needs further escaping. Most cases won’t be nearly
this tricky, but keep an eye out for any problems like that when
reviewing your code.

Marking a filter is_safe will coerce the filter’s return value to
a string. If your filter should return a boolean or other non-string
value, marking it is_safe will probably have unintended
consequences (such as converting a boolean False to the string
‘False’).

	Alternatively, your filter code can manually take care of any necessary
escaping. This is necessary when you’re introducing new HTML markup into
the result. You want to mark the output as safe from further
escaping so that your HTML markup isn’t escaped further, so you’ll need
to handle the input yourself.

To mark the output as a safe string, use
django.utils.safestring.mark_safe().

Be careful, though. You need to do more than just mark the output as
safe. You need to ensure it really is safe, and what you do depends on
whether auto-escaping is in effect. The idea is to write filters that
can operate in templates where auto-escaping is either on or off in
order to make things easier for your template authors.

In order for your filter to know the current auto-escaping state, set the
needs_autoescape flag to True when you register your filter function.
(If you don’t specify this flag, it defaults to False). This flag tells
Django that your filter function wants to be passed an extra keyword
argument, called autoescape, that is True if auto-escaping is in
effect and False otherwise. It is recommended to set the default of the
autoescape parameter to True, so that if you call the function
from Python code it will have escaping enabled by default.

For example, let’s write a filter that emphasizes the first character of
a string:

from django import template
from django.utils.html import conditional_escape
from django.utils.safestring import mark_safe

register = template.Library()

@register.filter(needs_autoescape=True)
def initial_letter_filter(text, autoescape=True):
 first, other = text[0], text[1:]
 if autoescape:
 esc = conditional_escape
 else:
 esc = lambda x: x
 result = '%s%s' % (esc(first), esc(other))
 return mark_safe(result)

The needs_autoescape flag and the autoescape keyword argument mean
that our function will know whether automatic escaping is in effect when the
filter is called. We use autoescape to decide whether the input data
needs to be passed through django.utils.html.conditional_escape or not.
(In the latter case, we use the identity function as the “escape” function.)
The conditional_escape() function is like escape() except it only
escapes input that is not a SafeData instance. If a SafeData
instance is passed to conditional_escape(), the data is returned
unchanged.

Finally, in the above example, we remember to mark the result as safe
so that our HTML is inserted directly into the template without further
escaping.

There’s no need to worry about the is_safe flag in this case
(although including it wouldn’t hurt anything). Whenever you manually
handle the auto-escaping issues and return a safe string, the
is_safe flag won’t change anything either way.

Warning

Avoiding XSS vulnerabilities when reusing built-in filters

Django’s built-in filters have autoescape=True by default in order to
get the proper autoescaping behavior and avoid a cross-site script
vulnerability.

In older versions of Django, be careful when reusing Django’s built-in
filters as autoescape defaults to None. You’ll need to pass
autoescape=True to get autoescaping.

For example, if you wanted to write a custom filter called
urlize_and_linebreaks that combined the urlize and
linebreaksbr filters, the filter would look like:

from django.template.defaultfilters import linebreaksbr, urlize

@register.filter(needs_autoescape=True)
def urlize_and_linebreaks(text, autoescape=True):
 return linebreaksbr(
 urlize(text, autoescape=autoescape),
 autoescape=autoescape
)

Then:

{{ comment|urlize_and_linebreaks }}

would be equivalent to:

{{ comment|urlize|linebreaksbr }}

Filters and time zones

If you write a custom filter that operates on datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]
objects, you’ll usually register it with the expects_localtime flag set to
True:

@register.filter(expects_localtime=True)
def businesshours(value):
 try:
 return 9 <= value.hour < 17
 except AttributeError:
 return ''

When this flag is set, if the first argument to your filter is a time zone
aware datetime, Django will convert it to the current time zone before passing
it to your filter when appropriate, according to rules for time zones
conversions in templates.

Writing custom template tags

Tags are more complex than filters, because tags can do anything. Django
provides a number of shortcuts that make writing most types of tags easier.
First we’ll explore those shortcuts, then explain how to write a tag from
scratch for those cases when the shortcuts aren’t powerful enough.

Simple tags

	
django.template.Library.simple_tag()

	

Many template tags take a number of arguments – strings or template variables
– and return a result after doing some processing based solely on
the input arguments and some external information. For example, a
current_time tag might accept a format string and return the time as a
string formatted accordingly.

To ease the creation of these types of tags, Django provides a helper function,
simple_tag. This function, which is a method of
django.template.Library, takes a function that accepts any number of
arguments, wraps it in a render function and the other necessary bits
mentioned above and registers it with the template system.

Our current_time function could thus be written like this:

import datetime
from django import template

register = template.Library()

@register.simple_tag
def current_time(format_string):
 return datetime.datetime.now().strftime(format_string)

A few things to note about the simple_tag helper function:

	Checking for the required number of arguments, etc., has already been
done by the time our function is called, so we don’t need to do that.

	The quotes around the argument (if any) have already been stripped away,
so we receive a plain string.

	If the argument was a template variable, our function is passed the
current value of the variable, not the variable itself.

Unlike other tag utilities, simple_tag passes its output through
conditional_escape() if the template context is in
autoescape mode, to ensure correct HTML and protect you from XSS
vulnerabilities.

If additional escaping is not desired, you will need to use
mark_safe() if you are absolutely sure that your
code does not contain XSS vulnerabilities. For building small HTML snippets,
use of format_html() instead of mark_safe() is
strongly recommended.

If your template tag needs to access the current context, you can use the
takes_context argument when registering your tag:

@register.simple_tag(takes_context=True)
def current_time(context, format_string):
 timezone = context['timezone']
 return your_get_current_time_method(timezone, format_string)

Note that the first argument must be called context.

For more information on how the takes_context option works, see the section
on inclusion tags.

If you need to rename your tag, you can provide a custom name for it:

register.simple_tag(lambda x: x - 1, name='minusone')

@register.simple_tag(name='minustwo')
def some_function(value):
 return value - 2

simple_tag functions may accept any number of positional or keyword
arguments. For example:

@register.simple_tag
def my_tag(a, b, *args, **kwargs):
 warning = kwargs['warning']
 profile = kwargs['profile']
 ...
 return ...

Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (”=”) and must be provided after the
positional arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

It’s possible to store the tag results in a template variable rather than
directly outputting it. This is done by using the as argument followed by
the variable name. Doing so enables you to output the content yourself where
you see fit:

{% current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>

Inclusion tags

	
django.template.Library.inclusion_tag()

	

Another common type of template tag is the type that displays some data by
rendering another template. For example, Django’s admin interface uses custom
template tags to display the buttons along the bottom of the “add/change” form
pages. Those buttons always look the same, but the link targets change
depending on the object being edited – so they’re a perfect case for using a
small template that is filled with details from the current object. (In the
admin’s case, this is the submit_row tag.)

These sorts of tags are called “inclusion tags”.

Writing inclusion tags is probably best demonstrated by example. Let’s write a
tag that outputs a list of choices for a given Poll object, such as was
created in the tutorials. We’ll use the tag like this:

{% show_results poll %}

…and the output will be something like this:

 First choice
 Second choice
 Third choice

First, define the function that takes the argument and produces a dictionary of
data for the result. The important point here is we only need to return a
dictionary, not anything more complex. This will be used as a template context
for the template fragment. Example:

def show_results(poll):
 choices = poll.choice_set.all()
 return {'choices': choices}

Next, create the template used to render the tag’s output. This template is a
fixed feature of the tag: the tag writer specifies it, not the template
designer. Following our example, the template is very short:

{% for choice in choices %}
 {{ choice }}
{% endfor %}

Now, create and register the inclusion tag by calling the inclusion_tag()
method on a Library object. Following our example, if the above template is
in a file called results.html in a directory that’s searched by the
template loader, we’d register the tag like this:

Here, register is a django.template.Library instance, as before
@register.inclusion_tag('results.html')
def show_results(poll):
 ...

Alternatively it is possible to register the inclusion tag using a
django.template.Template instance:

from django.template.loader import get_template
t = get_template('results.html')
register.inclusion_tag(t)(show_results)

…when first creating the function.

Sometimes, your inclusion tags might require a large number of arguments,
making it a pain for template authors to pass in all the arguments and remember
their order. To solve this, Django provides a takes_context option for
inclusion tags. If you specify takes_context in creating a template tag,
the tag will have no required arguments, and the underlying Python function
will have one argument – the template context as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a
context that contains home_link and home_title variables that point
back to the main page. Here’s what the Python function would look like:

@register.inclusion_tag('link.html', takes_context=True)
def jump_link(context):
 return {
 'link': context['home_link'],
 'title': context['home_title'],
 }

Note that the first parameter to the function must be called context.

In that register.inclusion_tag() line, we specified takes_context=True
and the name of the template. Here’s what the template link.html might look
like:

Jump directly to {{ title }}.

Then, any time you want to use that custom tag, load its library and call it
without any arguments, like so:

{% jump_link %}

Note that when you’re using takes_context=True, there’s no need to pass
arguments to the template tag. It automatically gets access to the context.

The takes_context parameter defaults to False. When it’s set to
True, the tag is passed the context object, as in this example. That’s the
only difference between this case and the previous inclusion_tag example.

inclusion_tag functions may accept any number of positional or keyword
arguments. For example:

@register.inclusion_tag('my_template.html')
def my_tag(a, b, *args, **kwargs):
 warning = kwargs['warning']
 profile = kwargs['profile']
 ...
 return ...

Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (”=”) and must be provided after the
positional arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

Advanced custom template tags

Sometimes the basic features for custom template tag creation aren’t enough.
Don’t worry, Django gives you complete access to the internals required to build
a template tag from the ground up.

A quick overview

The template system works in a two-step process: compiling and rendering. To
define a custom template tag, you specify how the compilation works and how
the rendering works.

When Django compiles a template, it splits the raw template text into
‘’nodes’’. Each node is an instance of django.template.Node and has
a render() method. A compiled template is a list of Node objects. When
you call render() on a compiled template object, the template calls
render() on each Node in its node list, with the given context. The
results are all concatenated together to form the output of the template.

Thus, to define a custom template tag, you specify how the raw template tag is
converted into a Node (the compilation function), and what the node’s
render() method does.

Writing the compilation function

For each template tag the template parser encounters, it calls a Python
function with the tag contents and the parser object itself. This function is
responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a full implementation of our template tag,
{% current_time %}, that displays the current date/time, formatted according
to a parameter given in the tag, in strftime() [https://docs.python.org/3/library/time.html#time.strftime] syntax. It’s a good
idea to decide the tag syntax before anything else. In our case, let’s say the
tag should be used like this:

<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>

The parser for this function should grab the parameter and create a Node
object:

from django import template

def do_current_time(parser, token):
 try:
 # split_contents() knows not to split quoted strings.
 tag_name, format_string = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires a single argument" % token.contents.split()[0]
)
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return CurrentTimeNode(format_string[1:-1])

Notes:

	parser is the template parser object. We don’t need it in this
example.

	token.contents is a string of the raw contents of the tag. In our
example, it’s 'current_time "%Y-%m-%d %I:%M %p"'.

	The token.split_contents() method separates the arguments on spaces
while keeping quoted strings together. The more straightforward
token.contents.split() wouldn’t be as robust, as it would naively
split on all spaces, including those within quoted strings. It’s a good
idea to always use token.split_contents().

	This function is responsible for raising
django.template.TemplateSyntaxError, with helpful messages, for
any syntax error.

	The TemplateSyntaxError exceptions use the tag_name variable.
Don’t hard-code the tag’s name in your error messages, because that
couples the tag’s name to your function. token.contents.split()[0]
will ‘’always’’ be the name of your tag – even when the tag has no
arguments.

	The function returns a CurrentTimeNode with everything the node needs
to know about this tag. In this case, it passes the argument –
"%Y-%m-%d %I:%M %p". The leading and trailing quotes from the
template tag are removed in format_string[1:-1].

	The parsing is very low-level. The Django developers have experimented
with writing small frameworks on top of this parsing system, using
techniques such as EBNF grammars, but those experiments made the template
engine too slow. It’s low-level because that’s fastest.

Writing the renderer

The second step in writing custom tags is to define a Node subclass that
has a render() method.

Continuing the above example, we need to define CurrentTimeNode:

import datetime
from django import template

class CurrentTimeNode(template.Node):
 def __init__(self, format_string):
 self.format_string = format_string

 def render(self, context):
 return datetime.datetime.now().strftime(self.format_string)

Notes:

	__init__() gets the format_string from do_current_time().
Always pass any options/parameters/arguments to a Node via its
__init__().

	The render() method is where the work actually happens.

	render() should generally fail silently, particularly in a production
environment. In some cases however, particularly if
context.template.engine.debug is True, this method may raise an
exception to make debugging easier. For example, several core tags raise
django.template.TemplateSyntaxError if they receive the wrong number or
type of arguments.

Ultimately, this decoupling of compilation and rendering results in an
efficient template system, because a template can render multiple contexts
without having to be parsed multiple times.

Auto-escaping considerations

The output from template tags is not automatically run through the
auto-escaping filters (with the exception of
simple_tag() as described above). However, there
are still a couple of things you should keep in mind when writing a template
tag.

If the render() method of your template tag stores the result in a context
variable (rather than returning the result in a string), it should take care
to call mark_safe() if appropriate. When the variable is ultimately
rendered, it will be affected by the auto-escape setting in effect at the
time, so content that should be safe from further escaping needs to be marked
as such.

Also, if your template tag creates a new context for performing some
sub-rendering, set the auto-escape attribute to the current context’s value.
The __init__ method for the Context class takes a parameter called
autoescape that you can use for this purpose. For example:

from django.template import Context

def render(self, context):
 # ...
 new_context = Context({'var': obj}, autoescape=context.autoescape)
 # ... Do something with new_context ...

This is not a very common situation, but it’s useful if you’re rendering a
template yourself. For example:

def render(self, context):
 t = context.template.engine.get_template('small_fragment.html')
 return t.render(Context({'var': obj}, autoescape=context.autoescape))

If we had neglected to pass in the current context.autoescape value to our
new Context in this example, the results would have always been
automatically escaped, which may not be the desired behavior if the template
tag is used inside a {% autoescape off %} block.

Thread-safety considerations

Once a node is parsed, its render method may be called any number of times.
Since Django is sometimes run in multi-threaded environments, a single node may
be simultaneously rendering with different contexts in response to two separate
requests. Therefore, it’s important to make sure your template tags are thread
safe.

To make sure your template tags are thread safe, you should never store state
information on the node itself. For example, Django provides a builtin
cycle template tag that cycles among a list of given strings each time
it’s rendered:

{% for o in some_list %}
 <tr class="{% cycle 'row1' 'row2' %}">
 ...
 </tr>
{% endfor %}

A naive implementation of CycleNode might look something like this:

import itertools
from django import template

class CycleNode(template.Node):
 def __init__(self, cyclevars):
 self.cycle_iter = itertools.cycle(cyclevars)

 def render(self, context):
 return next(self.cycle_iter)

But, suppose we have two templates rendering the template snippet from above at
the same time:

	Thread 1 performs its first loop iteration, CycleNode.render()
returns ‘row1’

	Thread 2 performs its first loop iteration, CycleNode.render()
returns ‘row2’

	Thread 1 performs its second loop iteration, CycleNode.render()
returns ‘row1’

	Thread 2 performs its second loop iteration, CycleNode.render()
returns ‘row2’

The CycleNode is iterating, but it’s iterating globally. As far as Thread 1
and Thread 2 are concerned, it’s always returning the same value. This is
not what we want!

To address this problem, Django provides a render_context that’s associated
with the context of the template that is currently being rendered. The
render_context behaves like a Python dictionary, and should be used to
store Node state between invocations of the render method.

Let’s refactor our CycleNode implementation to use the render_context:

class CycleNode(template.Node):
 def __init__(self, cyclevars):
 self.cyclevars = cyclevars

 def render(self, context):
 if self not in context.render_context:
 context.render_context[self] = itertools.cycle(self.cyclevars)
 cycle_iter = context.render_context[self]
 return next(cycle_iter)

Note that it’s perfectly safe to store global information that will not change
throughout the life of the Node as an attribute. In the case of
CycleNode, the cyclevars argument doesn’t change after the Node is
instantiated, so we don’t need to put it in the render_context. But state
information that is specific to the template that is currently being rendered,
like the current iteration of the CycleNode, should be stored in the
render_context.

Note

Notice how we used self to scope the CycleNode specific information
within the render_context. There may be multiple CycleNodes in a
given template, so we need to be careful not to clobber another node’s
state information. The easiest way to do this is to always use self as
the key into render_context. If you’re keeping track of several state
variables, make render_context[self] a dictionary.

Registering the tag

Finally, register the tag with your module’s Library instance, as explained
in writing custom template tags
above. Example:

register.tag('current_time', do_current_time)

The tag() method takes two arguments:

	The name of the template tag – a string. If this is left out, the
name of the compilation function will be used.

	The compilation function – a Python function (not the name of the
function as a string).

As with filter registration, it is also possible to use this as a decorator:

@register.tag(name="current_time")
def do_current_time(parser, token):
 ...

@register.tag
def shout(parser, token):
 ...

If you leave off the name argument, as in the second example above, Django
will use the function’s name as the tag name.

Passing template variables to the tag

Although you can pass any number of arguments to a template tag using
token.split_contents(), the arguments are all unpacked as
string literals. A little more work is required in order to pass dynamic
content (a template variable) to a template tag as an argument.

While the previous examples have formatted the current time into a string and
returned the string, suppose you wanted to pass in a
DateTimeField from an object and have the template
tag format that date-time:

<p>This post was last updated at {% format_time blog_entry.date_updated "%Y-%m-%d %I:%M %p" %}.</p>

Initially, token.split_contents() will return three values:

	The tag name format_time.

	The string 'blog_entry.date_updated' (without the surrounding
quotes).

	The formatting string '"%Y-%m-%d %I:%M %p"'. The return value from
split_contents() will include the leading and trailing quotes for
string literals like this.

Now your tag should begin to look like this:

from django import template

def do_format_time(parser, token):
 try:
 # split_contents() knows not to split quoted strings.
 tag_name, date_to_be_formatted, format_string = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires exactly two arguments" % token.contents.split()[0]
)
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return FormatTimeNode(date_to_be_formatted, format_string[1:-1])

You also have to change the renderer to retrieve the actual contents of the
date_updated property of the blog_entry object. This can be
accomplished by using the Variable() class in django.template.

To use the Variable class, instantiate it with the name of the variable to
be resolved, and then call variable.resolve(context). So, for example:

class FormatTimeNode(template.Node):
 def __init__(self, date_to_be_formatted, format_string):
 self.date_to_be_formatted = template.Variable(date_to_be_formatted)
 self.format_string = format_string

 def render(self, context):
 try:
 actual_date = self.date_to_be_formatted.resolve(context)
 return actual_date.strftime(self.format_string)
 except template.VariableDoesNotExist:
 return ''

Variable resolution will throw a VariableDoesNotExist exception if it
cannot resolve the string passed to it in the current context of the page.

Setting a variable in the context

The above examples output a value. Generally, it’s more flexible if your
template tags set template variables instead of outputting values. That way,
template authors can reuse the values that your template tags create.

To set a variable in the context, use dictionary assignment on the context
object in the render() method. Here’s an updated version of
CurrentTimeNode that sets a template variable current_time instead of
outputting it:

import datetime
from django import template

class CurrentTimeNode2(template.Node):
 def __init__(self, format_string):
 self.format_string = format_string
 def render(self, context):
 context['current_time'] = datetime.datetime.now().strftime(self.format_string)
 return ''

Note that render() returns the empty string. render() should always
return string output. If all the template tag does is set a variable,
render() should return the empty string.

Here’s how you’d use this new version of the tag:

{% current_time "%Y-%m-%d %I:%M %p" %}<p>The time is {{ current_time }}.</p>

Variable scope in context

Any variable set in the context will only be available in the same
block of the template in which it was assigned. This behavior is
intentional; it provides a scope for variables so that they don’t conflict
with context in other blocks.

But, there’s a problem with CurrentTimeNode2: The variable name
current_time is hard-coded. This means you’ll need to make sure your
template doesn’t use {{ current_time }} anywhere else, because the
{% current_time %} will blindly overwrite that variable’s value. A cleaner
solution is to make the template tag specify the name of the output variable,
like so:

{% current_time "%Y-%m-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do that, you’ll need to refactor both the compilation function and Node
class, like so:

import re

class CurrentTimeNode3(template.Node):
 def __init__(self, format_string, var_name):
 self.format_string = format_string
 self.var_name = var_name
 def render(self, context):
 context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
 return ''

def do_current_time(parser, token):
 # This version uses a regular expression to parse tag contents.
 try:
 # Splitting by None == splitting by spaces.
 tag_name, arg = token.contents.split(None, 1)
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires arguments" % token.contents.split()[0]
)
 m = re.search(r'(.*?) as (\w+)', arg)
 if not m:
 raise template.TemplateSyntaxError("%r tag had invalid arguments" % tag_name)
 format_string, var_name = m.groups()
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return CurrentTimeNode3(format_string[1:-1], var_name)

The difference here is that do_current_time() grabs the format string and
the variable name, passing both to CurrentTimeNode3.

Finally, if you only need to have a simple syntax for your custom
context-updating template tag, consider using the
simple_tag() shortcut, which supports assigning
the tag results to a template variable.

Parsing until another block tag

Template tags can work in tandem. For instance, the standard
{% comment %} tag hides everything until {% endcomment %}.
To create a template tag such as this, use parser.parse() in your
compilation function.

Here’s how a simplified {% comment %} tag might be implemented:

def do_comment(parser, token):
 nodelist = parser.parse(('endcomment',))
 parser.delete_first_token()
 return CommentNode()

class CommentNode(template.Node):
 def render(self, context):
 return ''

Note

The actual implementation of {% comment %} is slightly
different in that it allows broken template tags to appear between
{% comment %} and {% endcomment %}. It does so by calling
parser.skip_past('endcomment') instead of parser.parse(('endcomment',))
followed by parser.delete_first_token(), thus avoiding the generation of a
node list.

parser.parse() takes a tuple of names of block tags ‘’to parse until’’. It
returns an instance of django.template.NodeList, which is a list of
all Node objects that the parser encountered ‘’before’’ it encountered
any of the tags named in the tuple.

In "nodelist = parser.parse(('endcomment',))" in the above example,
nodelist is a list of all nodes between the {% comment %} and
{% endcomment %}, not counting {% comment %} and {% endcomment %}
themselves.

After parser.parse() is called, the parser hasn’t yet “consumed” the
{% endcomment %} tag, so the code needs to explicitly call
parser.delete_first_token().

CommentNode.render() returns an empty string. Anything between
{% comment %} and {% endcomment %} is ignored.

Parsing until another block tag, and saving contents

In the previous example, do_comment() discarded everything between
{% comment %} and {% endcomment %}. Instead of doing that, it’s
possible to do something with the code between block tags.

For example, here’s a custom template tag, {% upper %}, that capitalizes
everything between itself and {% endupper %}.

Usage:

{% upper %}This will appear in uppercase, {{ your_name }}.{% endupper %}

As in the previous example, we’ll use parser.parse(). But this time, we
pass the resulting nodelist to the Node:

def do_upper(parser, token):
 nodelist = parser.parse(('endupper',))
 parser.delete_first_token()
 return UpperNode(nodelist)

class UpperNode(template.Node):
 def __init__(self, nodelist):
 self.nodelist = nodelist
 def render(self, context):
 output = self.nodelist.render(context)
 return output.upper()

The only new concept here is the self.nodelist.render(context) in
UpperNode.render().

For more examples of complex rendering, see the source code of
{% for %} in django/template/defaulttags.py and
{% if %} in django/template/smartif.py.

Writing a custom storage system

If you need to provide custom file storage – a common example is storing files
on some remote system – you can do so by defining a custom storage class.
You’ll need to follow these steps:

	Your custom storage system must be a subclass of
django.core.files.storage.Storage:

from django.core.files.storage import Storage

class MyStorage(Storage):
 ...

	Django must be able to instantiate your storage system without any arguments.
This means that any settings should be taken from django.conf.settings:

from django.conf import settings
from django.core.files.storage import Storage

class MyStorage(Storage):
 def __init__(self, option=None):
 if not option:
 option = settings.CUSTOM_STORAGE_OPTIONS
 ...

	Your storage class must implement the _open() and _save()
methods, along with any other methods appropriate to your storage class. See
below for more on these methods.

In addition, if your class provides local file storage, it must override
the path() method.

	Your storage class must be deconstructible
so it can be serialized when it’s used on a field in a migration. As long
as your field has arguments that are themselves
serializable, you can use the
django.utils.deconstruct.deconstructible class decorator for this
(that’s what Django uses on FileSystemStorage).

By default, the following methods raise NotImplementedError and will
typically have to be overridden:

	Storage.delete()

	Storage.exists()

	Storage.listdir()

	Storage.size()

	Storage.url()

Note however that not all these methods are required and may be deliberately
omitted. As it happens, it is possible to leave each method unimplemented and
still have a working Storage.

By way of example, if listing the contents of certain storage backends turns
out to be expensive, you might decide not to implement Storage.listdir().

Another example would be a backend that only handles writing to files. In this
case, you would not need to implement any of the above methods.

Ultimately, which of these methods are implemented is up to you. Leaving some
methods unimplemented will result in a partial (possibly broken) interface.

You’ll also usually want to use hooks specifically designed for custom storage
objects. These are:

	
_open(name, mode='rb')

	

Required.

Called by Storage.open(), this is the actual mechanism the storage class
uses to open the file. This must return a File object, though in most cases,
you’ll want to return some subclass here that implements logic specific to the
backend storage system.

	
_save(name, content)

	

Called by Storage.save(). The name will already have gone through
get_valid_name() and get_available_name(), and the content will be a
File object itself.

Should return the actual name of name of the file saved (usually the name
passed in, but if the storage needs to change the file name return the new name
instead).

	
get_valid_name(name)

	

Returns a filename suitable for use with the underlying storage system. The
name argument passed to this method is either the original filename sent to
the server or, if upload_to is a callable, the filename returned by that
method after any path information is removed. Override this to customize how
non-standard characters are converted to safe filenames.

The code provided on Storage retains only alpha-numeric characters, periods
and underscores from the original filename, removing everything else.

	
get_alternative_name(file_root, file_ext)

	

Returns an alternative filename based on the file_root and file_ext
parameters. By default, an underscore plus a random 7 character alphanumeric
string is appended to the filename before the extension.

	
get_available_name(name, max_length=None)

	

Returns a filename that is available in the storage mechanism, possibly taking
the provided filename into account. The name argument passed to this method
will have already cleaned to a filename valid for the storage system, according
to the get_valid_name() method described above.

The length of the filename will not exceed max_length, if provided. If a
free unique filename cannot be found, a SuspiciousFileOperation exception is raised.

If a file with name already exists, get_alternative_name() is called to
obtain an alternative name.

Deploying Django

Django is full of shortcuts to make Web developers’ lives easier, but all
those tools are of no use if you can’t easily deploy your sites. Since Django’s
inception, ease of deployment has been a major goal.

There are many options for deploying your Django application, based on your
architecture or your particular business needs, but that discussion is outside
the scope of what Django can give you as guidance.

Django, being a web framework, needs a web server in order to operate. And
since most web servers don’t natively speak Python, we need an interface to
make that communication happen.

Django currently supports two interfaces: WSGI and ASGI.

	WSGI [https://wsgi.readthedocs.io/en/latest/] is the main Python standard for communicating between Web servers and
applications, but it only supports synchronous code.

	ASGI [https://asgi.readthedocs.io/en/latest/] is the new, asynchronous-friendly standard that will allow your
Django site to use asynchronous Python features, and asynchronous Django
features as they are developed.

You should also consider how you will handle static files for your application, and how to handle
error reporting.

Finally, before you deploy your application to production, you should run
through our deployment checklist to ensure that your
configurations are suitable.

	How to deploy with WSGI
	How to use Django with Gunicorn

	How to use Django with uWSGI

	How to use Django with Apache and mod_wsgi

	Authenticating against Django’s user database from Apache

	The application object

	Configuring the settings module

	Applying WSGI middleware

	How to deploy with ASGI
	How to use Django with Daphne

	How to use Django with Uvicorn

	The application object

	Configuring the settings module

	Applying ASGI middleware

	Deploying static files
	Serving static files in production

	Learn more

	Error reporting
	Email reports

	Filtering error reports

	Deployment checklist
	Run manage.py check --deploy

	Critical settings

	Environment-specific settings

	HTTPS

	Performance optimizations

	Error reporting

How to deploy with WSGI

Django’s primary deployment platform is WSGI [https://wsgi.readthedocs.io/en/latest/], the Python standard for web
servers and applications.

Django’s startproject management command sets up a minimal default
WSGI configuration for you, which you can tweak as needed for your project,
and direct any WSGI-compliant application server to use.

Django includes getting-started documentation for the following WSGI servers:

	How to use Django with Gunicorn

	How to use Django with uWSGI

	How to use Django with Apache and mod_wsgi

	Authenticating against Django’s user database from Apache

The application object

The key concept of deploying with WSGI is the application callable which
the application server uses to communicate with your code. It’s commonly
provided as an object named application in a Python module accessible to
the server.

The startproject command creates a file
<project_name>/wsgi.py that contains such an application callable.

It’s used both by Django’s development server and in production WSGI
deployments.

WSGI servers obtain the path to the application callable from their
configuration. Django’s built-in server, namely the runserver
command, reads it from the WSGI_APPLICATION setting. By default, it’s
set to <project_name>.wsgi.application, which points to the application
callable in <project_name>/wsgi.py.

Configuring the settings module

When the WSGI server loads your application, Django needs to import the
settings module — that’s where your entire application is defined.

Django uses the DJANGO_SETTINGS_MODULE environment variable to
locate the appropriate settings module. It must contain the dotted path to the
settings module. You can use a different value for development and production;
it all depends on how you organize your settings.

If this variable isn’t set, the default wsgi.py sets it to
mysite.settings, where mysite is the name of your project. That’s how
runserver discovers the default settings file by default.

Note

Since environment variables are process-wide, this doesn’t work when you
run multiple Django sites in the same process. This happens with mod_wsgi.

To avoid this problem, use mod_wsgi’s daemon mode with each site in its
own daemon process, or override the value from the environment by
enforcing os.environ["DJANGO_SETTINGS_MODULE"] = "mysite.settings" in
your wsgi.py.

Applying WSGI middleware

To apply WSGI middleware [https://www.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides] you can wrap the application object. For instance
you could add these lines at the bottom of wsgi.py:

from helloworld.wsgi import HelloWorldApplication
application = HelloWorldApplication(application)

You could also replace the Django WSGI application with a custom WSGI
application that later delegates to the Django WSGI application, if you want
to combine a Django application with a WSGI application of another framework.

How to use Django with Gunicorn

Gunicorn [https://gunicorn.org/] (‘Green Unicorn’) is a pure-Python WSGI server for UNIX. It has no
dependencies and can be installed using pip.

Installing Gunicorn

Install gunicorn by running python -m pip install gunicorn. For more
details, see the gunicorn documentation [https://docs.gunicorn.org/en/latest/install.html].

Running Django in Gunicorn as a generic WSGI application

When Gunicorn is installed, a gunicorn command is available which starts
the Gunicorn server process. The simplest invocation of gunicorn is to pass the
location of a module containing a WSGI application object named
application, which for a typical Django project would look like:

gunicorn myproject.wsgi

This will start one process running one thread listening on 127.0.0.1:8000.
It requires that your project be on the Python path; the simplest way to ensure
that is to run this command from the same directory as your manage.py file.

See Gunicorn’s deployment documentation [https://docs.gunicorn.org/en/latest/deploy.html] for additional tips.

How to use Django with uWSGI

uWSGI [https://uwsgi-docs.readthedocs.io/] is a fast, self-healing and developer/sysadmin-friendly application
container server coded in pure C.

See also

The uWSGI docs offer a tutorial [https://uwsgi.readthedocs.io/en/latest/tutorials/Django_and_nginx.html] covering Django, nginx, and uWSGI (one
possible deployment setup of many). The docs below are focused on how to
integrate Django with uWSGI.

Prerequisite: uWSGI

The uWSGI wiki describes several installation procedures [https://uwsgi-docs.readthedocs.io/en/latest/Install.html]. Using pip, the
Python package manager, you can install any uWSGI version with a single
command. For example:

Install current stable version.
$ python -m pip install uwsgi

Or install LTS (long term support).
$ python -m pip install https://projects.unbit.it/downloads/uwsgi-lts.tar.gz

uWSGI model

uWSGI operates on a client-server model. Your Web server (e.g., nginx, Apache)
communicates with a django-uwsgi “worker” process to serve dynamic content.

Configuring and starting the uWSGI server for Django

uWSGI supports multiple ways to configure the process. See uWSGI’s
configuration documentation [https://uwsgi.readthedocs.io/en/latest/Configuration.html].

Here’s an example command to start a uWSGI server:

uwsgi --chdir=/path/to/your/project \
 --module=mysite.wsgi:application \
 --env DJANGO_SETTINGS_MODULE=mysite.settings \
 --master --pidfile=/tmp/project-master.pid \
 --socket=127.0.0.1:49152 \ # can also be a file
 --processes=5 \ # number of worker processes
 --uid=1000 --gid=2000 \ # if root, uwsgi can drop privileges
 --harakiri=20 \ # respawn processes taking more than 20 seconds
 --max-requests=5000 \ # respawn processes after serving 5000 requests
 --vacuum \ # clear environment on exit
 --home=/path/to/virtual/env \ # optional path to a virtual environment
 --daemonize=/var/log/uwsgi/yourproject.log # background the process

This assumes you have a top-level project package named mysite, and
within it a module mysite/wsgi.py that contains a WSGI application
object. This is the layout you’ll have if you ran django-admin
startproject mysite (using your own project name in place of mysite) with
a recent version of Django. If this file doesn’t exist, you’ll need to create
it. See the How to deploy with WSGI documentation for the default
contents you should put in this file and what else you can add to it.

The Django-specific options here are:

	chdir: The path to the directory that needs to be on Python’s import
path – i.e., the directory containing the mysite package.

	module: The WSGI module to use – probably the mysite.wsgi module
that startproject creates.

	env: Should probably contain at least DJANGO_SETTINGS_MODULE.

	home: Optional path to your project virtual environment.

Example ini configuration file:

[uwsgi]
chdir=/path/to/your/project
module=mysite.wsgi:application
master=True
pidfile=/tmp/project-master.pid
vacuum=True
max-requests=5000
daemonize=/var/log/uwsgi/yourproject.log

Example ini configuration file usage:

uwsgi --ini uwsgi.ini

Fixing UnicodeEncodeError for file uploads

If you get a UnicodeEncodeError when uploading files with file names
that contain non-ASCII characters, make sure uWSGI is configured to accept
non-ASCII file names by adding this to your uwsgi.ini:

env = LANG=en_US.UTF-8

See the Files section of the Unicode reference guide for
details.

See the uWSGI docs on managing the uWSGI process [https://uwsgi-docs.readthedocs.io/en/latest/Management.html] for information on
starting, stopping and reloading the uWSGI workers.

How to use Django with Apache and mod_wsgi

Deploying Django with Apache [https://httpd.apache.org/] and mod_wsgi [https://modwsgi.readthedocs.io/en/develop/] is a tried and tested way to get
Django into production.

mod_wsgi is an Apache module which can host any Python WSGI [https://wsgi.readthedocs.io/en/latest/] application,
including Django. Django will work with any version of Apache which supports
mod_wsgi.

The official mod_wsgi documentation [https://modwsgi.readthedocs.io/] is your source for all the details about
how to use mod_wsgi. You’ll probably want to start with the installation and
configuration documentation [https://modwsgi.readthedocs.io/en/develop/installation.html].

Basic configuration

Once you’ve got mod_wsgi installed and activated, edit your Apache server’s
httpd.conf [https://wiki.apache.org/httpd/DistrosDefaultLayout] file and add the following.

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonHome /path/to/venv
WSGIPythonPath /path/to/mysite.com

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

The first bit in the WSGIScriptAlias line is the base URL path you want to
serve your application at (/ indicates the root url), and the second is the
location of a “WSGI file” – see below – on your system, usually inside of
your project package (mysite in this example). This tells Apache to serve
any request below the given URL using the WSGI application defined in that
file.

If you install your project’s Python dependencies inside a virtual
environment [https://docs.python.org/3/library/venv.html#module-venv], add the path using WSGIPythonHome. See the mod_wsgi
virtual environment guide [https://modwsgi.readthedocs.io/en/develop/user-guides/virtual-environments.html] for more details.

The WSGIPythonPath line ensures that your project package is available for
import on the Python path; in other words, that import mysite works.

The <Directory> piece ensures that Apache can access your wsgi.py
file.

Next we’ll need to ensure this wsgi.py with a WSGI application object
exists. As of Django version 1.4, startproject will have created one
for you; otherwise, you’ll need to create it. See the WSGI overview
documentation for the default contents you
should put in this file, and what else you can add to it.

Warning

If multiple Django sites are run in a single mod_wsgi process, all of them
will use the settings of whichever one happens to run first. This can be
solved by changing:

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{ project_name }}.settings")

in wsgi.py, to:

os.environ["DJANGO_SETTINGS_MODULE"] = "{{ project_name }}.settings"

or by using mod_wsgi daemon mode and ensuring that each
site runs in its own daemon process.

Fixing UnicodeEncodeError for file uploads

If you get a UnicodeEncodeError when uploading files with file names
that contain non-ASCII characters, make sure Apache is configured to accept
non-ASCII file names:

export LANG='en_US.UTF-8'
export LC_ALL='en_US.UTF-8'

A common location to put this configuration is /etc/apache2/envvars.

See the Files section of the Unicode reference guide for
details.

Using mod_wsgi daemon mode

“Daemon mode” is the recommended mode for running mod_wsgi (on non-Windows
platforms). To create the required daemon process group and delegate the
Django instance to run in it, you will need to add appropriate
WSGIDaemonProcess and WSGIProcessGroup directives. A further change
required to the above configuration if you use daemon mode is that you can’t
use WSGIPythonPath; instead you should use the python-path option to
WSGIDaemonProcess, for example:

WSGIDaemonProcess example.com python-home=/path/to/venv python-path=/path/to/mysite.com
WSGIProcessGroup example.com

If you want to serve your project in a subdirectory
(https://example.com/mysite in this example), you can add WSGIScriptAlias
to the configuration above:

WSGIScriptAlias /mysite /path/to/mysite.com/mysite/wsgi.py process-group=example.com

See the official mod_wsgi documentation for details on setting up daemon
mode [https://modwsgi.readthedocs.io/en/develop/user-guides/quick-configuration-guide.html#delegation-to-daemon-process].

Serving files

Django doesn’t serve files itself; it leaves that job to whichever Web
server you choose.

We recommend using a separate Web server – i.e., one that’s not also running
Django – for serving media. Here are some good choices:

	Nginx [https://nginx.org/en/]

	A stripped-down version of Apache [https://httpd.apache.org/]

If, however, you have no option but to serve media files on the same Apache
VirtualHost as Django, you can set up Apache to serve some URLs as
static media, and others using the mod_wsgi interface to Django.

This example sets up Django at the site root, but serves robots.txt,
favicon.ico, and anything in the /static/ and /media/ URL space as
a static file. All other URLs will be served using mod_wsgi:

Alias /robots.txt /path/to/mysite.com/static/robots.txt
Alias /favicon.ico /path/to/mysite.com/static/favicon.ico

Alias /media/ /path/to/mysite.com/media/
Alias /static/ /path/to/mysite.com/static/

<Directory /path/to/mysite.com/static>
Require all granted
</Directory>

<Directory /path/to/mysite.com/media>
Require all granted
</Directory>

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Serving the admin files

When django.contrib.staticfiles is in INSTALLED_APPS, the
Django development server automatically serves the static files of the
admin app (and any other installed apps). This is however not the case when you
use any other server arrangement. You’re responsible for setting up Apache, or
whichever Web server you’re using, to serve the admin files.

The admin files live in (django/contrib/admin/static/admin) of the
Django distribution.

We strongly recommend using django.contrib.staticfiles to handle the
admin files (along with a Web server as outlined in the previous section; this
means using the collectstatic management command to collect the
static files in STATIC_ROOT, and then configuring your Web server to
serve STATIC_ROOT at STATIC_URL), but here are three
other approaches:

	Create a symbolic link to the admin static files from within your
document root (this may require +FollowSymLinks in your Apache
configuration).

	Use an Alias directive, as demonstrated above, to alias the appropriate
URL (probably STATIC_URL + admin/) to the actual location of
the admin files.

	Copy the admin static files so that they live within your Apache
document root.

Authenticating against Django’s user database from Apache

Django provides a handler to allow Apache to authenticate users directly
against Django’s authentication backends. See the mod_wsgi authentication
documentation.

Authenticating against Django’s user database from Apache

Since keeping multiple authentication databases in sync is a common problem when
dealing with Apache, you can configure Apache to authenticate against Django’s
authentication system directly. This requires Apache
version >= 2.2 and mod_wsgi >= 2.0. For example, you could:

	Serve static/media files directly from Apache only to authenticated users.

	Authenticate access to a Subversion [https://subversion.apache.org/] repository against Django users with
a certain permission.

	Allow certain users to connect to a WebDAV share created with mod_dav [https://httpd.apache.org/docs/2.2/mod/mod_dav.html].

Note

If you have installed a custom user model and
want to use this default auth handler, it must support an is_active
attribute. If you want to use group based authorization, your custom user
must have a relation named ‘groups’, referring to a related object that has
a ‘name’ field. You can also specify your own custom mod_wsgi
auth handler if your custom cannot conform to these requirements.

Authentication with mod_wsgi

Note

The use of WSGIApplicationGroup %{GLOBAL} in the configurations below
presumes that your Apache instance is running only one Django application.
If you are running more than one Django application, please refer to the
Defining Application Groups [https://modwsgi.readthedocs.io/en/develop/user-guides/configuration-guidelines.html#defining-application-groups] section of the mod_wsgi docs for more
information about this setting.

Make sure that mod_wsgi is installed and activated and that you have
followed the steps to setup Apache with mod_wsgi.

Next, edit your Apache configuration to add a location that you want
only authenticated users to be able to view:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
 AuthType Basic
 AuthName "Top Secret"
 Require valid-user
 AuthBasicProvider wsgi
 WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py
</Location>

The WSGIAuthUserScript directive tells mod_wsgi to execute the
check_password function in specified wsgi script, passing the user name and
password that it receives from the prompt. In this example, the
WSGIAuthUserScript is the same as the WSGIScriptAlias that defines your
application that is created by django-admin startproject.

Using Apache 2.2 with authentication

Make sure that mod_auth_basic and mod_authz_user are loaded.

These might be compiled statically into Apache, or you might need to use
LoadModule to load them dynamically in your httpd.conf:

LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authz_user_module modules/mod_authz_user.so

Finally, edit your WSGI script mysite.wsgi to tie Apache’s authentication
to your site’s authentication mechanisms by importing the check_password
function:

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

from django.contrib.auth.handlers.modwsgi import check_password

from django.core.handlers.wsgi import WSGIHandler
application = WSGIHandler()

Requests beginning with /secret/ will now require a user to authenticate.

The mod_wsgi access control mechanisms documentation [https://modwsgi.readthedocs.io/en/develop/user-guides/access-control-mechanisms.html] provides additional
details and information about alternative methods of authentication.

Authorization with mod_wsgi and Django groups

mod_wsgi also provides functionality to restrict a particular location to
members of a group.

In this case, the Apache configuration should look like this:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
 AuthType Basic
 AuthName "Top Secret"
 AuthBasicProvider wsgi
 WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py
 WSGIAuthGroupScript /path/to/mysite.com/mysite/wsgi.py
 Require group secret-agents
 Require valid-user
</Location>

To support the WSGIAuthGroupScript directive, the same WSGI script
mysite.wsgi must also import the groups_for_user function which
returns a list groups the given user belongs to.

from django.contrib.auth.handlers.modwsgi import check_password, groups_for_user

Requests for /secret/ will now also require user to be a member of the
“secret-agents” group.

How to deploy with ASGI

As well as WSGI, Django also supports deploying on ASGI [https://asgi.readthedocs.io/en/latest/], the emerging Python
standard for asynchronous web servers and applications.

Django’s startproject management command sets up a default ASGI
configuration for you, which you can tweak as needed for your project, and
direct any ASGI-compliant application server to use.

Django includes getting-started documentation for the following ASGI servers:

	How to use Django with Daphne

	How to use Django with Uvicorn

The application object

Like WSGI, ASGI has you supply an application callable which
the application server uses to communicate with your code. It’s commonly
provided as an object named application in a Python module accessible to
the server.

The startproject command creates a file
<project_name>/asgi.py that contains such an application callable.

It’s not used by the development server (runserver), but can be used by
any ASGI server either in development or in production.

ASGI servers usually take the path to the application callable as a string;
for most Django projects, this will look like myproject.asgi:application.

Warning

While Django’s default ASGI handler will run all your code in a synchronous
thread, if you choose to run your own async handler you must be aware of
async-safety.

Do not call blocking synchronous functions or libraries in any async code.
Django prevents you from doing this with the parts of Django that are not
async-safe, but the same may not be true of third-party apps or Python
libraries.

Configuring the settings module

When the ASGI server loads your application, Django needs to import the
settings module — that’s where your entire application is defined.

Django uses the DJANGO_SETTINGS_MODULE environment variable to locate
the appropriate settings module. It must contain the dotted path to the
settings module. You can use a different value for development and production;
it all depends on how you organize your settings.

If this variable isn’t set, the default asgi.py sets it to
mysite.settings, where mysite is the name of your project.

Applying ASGI middleware

To apply ASGI middleware, or to embed Django in another ASGI application, you
can wrap Django’s application object in the asgi.py file. For example:

from some_asgi_library import AmazingMiddleware
application = AmazingMiddleware(application)

How to use Django with Daphne

Daphne [https://pypi.org/project/daphne/] is a pure-Python ASGI server for UNIX, maintained by members of the
Django project. It acts as the reference server for ASGI.

Installing Daphne

You can install Daphne with pip:

python -m pip install daphne

Running Django in Daphne

When Daphne is installed, a daphne command is available which starts the
Daphne server process. At its simplest, Daphne needs to be called with the
location of a module containing an ASGI application object, followed by what
the application is called (separated by a colon).

For a typical Django project, invoking Daphne would look like:

daphne myproject.asgi:application

This will start one process listening on 127.0.0.1:8000. It requires that
your project be on the Python path; to ensure that run this command from the
same directory as your manage.py file.

How to use Django with Uvicorn

Uvicorn [https://www.uvicorn.org/] is an ASGI server based on uvloop and httptools, with an
emphasis on speed.

Installing Uvicorn

You can install Uvicorn with pip:

python -m pip install uvicorn

Running Django in Uvicorn

When Uvicorn is installed, a uvicorn command is available which runs ASGI
applications. Uvicorn needs to be called with the location of a module
containing a ASGI application object, followed by what the application is
called (separated by a colon).

For a typical Django project, invoking Uvicorn would look like:

uvicorn myproject.asgi:application

This will start one process listening on 127.0.0.1:8000. It requires that
your project be on the Python path; to ensure that run this command from the
same directory as your manage.py file.

For more advanced usage, please read the Uvicorn documentation [https://www.uvicorn.org/].

Deploying static files

See also

For an introduction to the use of django.contrib.staticfiles, see
Managing static files (e.g. images, JavaScript, CSS).

Serving static files in production

The basic outline of putting static files into production consists of two
steps: run the collectstatic command when static files change, then
arrange for the collected static files directory (STATIC_ROOT) to be
moved to the static file server and served. Depending on
STATICFILES_STORAGE, files may need to be moved to a new location
manually or the post_process method of
the Storage class might take care of that.

Of course, as with all deployment tasks, the devil’s in the details. Every
production setup will be a bit different, so you’ll need to adapt the basic
outline to fit your needs. Below are a few common patterns that might help.

Serving the site and your static files from the same server

If you want to serve your static files from the same server that’s already
serving your site, the process may look something like:

	Push your code up to the deployment server.

	On the server, run collectstatic to copy all the static files
into STATIC_ROOT.

	Configure your web server to serve the files in STATIC_ROOT
under the URL STATIC_URL. For example, here’s
how to do this with Apache and mod_wsgi.

You’ll probably want to automate this process, especially if you’ve got
multiple web servers.

Serving static files from a dedicated server

Most larger Django sites use a separate Web server – i.e., one that’s not also
running Django – for serving static files. This server often runs a different
type of web server – faster but less full-featured. Some common choices are:

	Nginx [https://nginx.org/en/]

	A stripped-down version of Apache [https://httpd.apache.org/]

Configuring these servers is out of scope of this document; check each
server’s respective documentation for instructions.

Since your static file server won’t be running Django, you’ll need to modify
the deployment strategy to look something like:

	When your static files change, run collectstatic locally.

	Push your local STATIC_ROOT up to the static file server into the
directory that’s being served. rsync [https://rsync.samba.org/] is a
common choice for this step since it only needs to transfer the bits of
static files that have changed.

Serving static files from a cloud service or CDN

Another common tactic is to serve static files from a cloud storage provider
like Amazon’s S3 and/or a CDN (content delivery network). This lets you
ignore the problems of serving static files and can often make for
faster-loading Web pages (especially when using a CDN).

When using these services, the basic workflow would look a bit like the above,
except that instead of using rsync to transfer your static files to the
server you’d need to transfer the static files to the storage provider or CDN.

There’s any number of ways you might do this, but if the provider has an API,
you can use a custom file storage backend
to integrate the CDN with your Django project. If you’ve written or are using a
3rd party custom storage backend, you can tell collectstatic to use
it by setting STATICFILES_STORAGE to the storage engine.

For example, if you’ve written an S3 storage backend in
myproject.storage.S3Storage you could use it with:

STATICFILES_STORAGE = 'myproject.storage.S3Storage'

Once that’s done, all you have to do is run collectstatic and your
static files would be pushed through your storage package up to S3. If you
later needed to switch to a different storage provider, you may only have to
change your STATICFILES_STORAGE setting.

For details on how you’d write one of these backends, see
Writing a custom storage system. There are 3rd party apps available that
provide storage backends for many common file storage APIs. A good starting
point is the overview at djangopackages.org [https://djangopackages.org/grids/g/storage-backends/].

Learn more

For complete details on all the settings, commands, template tags, and other
pieces included in django.contrib.staticfiles, see the
staticfiles reference.

Error reporting

When you’re running a public site you should always turn off the
DEBUG setting. That will make your server run much faster, and will
also prevent malicious users from seeing details of your application that can be
revealed by the error pages.

However, running with DEBUG set to False means you’ll never see
errors generated by your site – everyone will instead see your public error
pages. You need to keep track of errors that occur in deployed sites, so Django
can be configured to create reports with details about those errors.

Email reports

Server errors

When DEBUG is False, Django will email the users listed in the
ADMINS setting whenever your code raises an unhandled exception and
results in an internal server error (strictly speaking, for any response with
an HTTP status code of 500 or greater). This gives the administrators immediate
notification of any errors. The ADMINS will get a description of the
error, a complete Python traceback, and details about the HTTP request that
caused the error.

Note

In order to send email, Django requires a few settings telling it
how to connect to your mail server. At the very least, you’ll need
to specify EMAIL_HOST and possibly
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD,
though other settings may be also required depending on your mail
server’s configuration. Consult the Django settings
documentation for a full list of email-related
settings.

By default, Django will send email from root@localhost. However, some mail
providers reject all email from this address. To use a different sender
address, modify the SERVER_EMAIL setting.

To activate this behavior, put the email addresses of the recipients in the
ADMINS setting.

See also

Server error emails are sent using the logging framework, so you can
customize this behavior by customizing your logging configuration.

404 errors

Django can also be configured to email errors about broken links (404 “page
not found” errors). Django sends emails about 404 errors when:

	DEBUG is False;

	Your MIDDLEWARE setting includes
django.middleware.common.BrokenLinkEmailsMiddleware.

If those conditions are met, Django will email the users listed in the
MANAGERS setting whenever your code raises a 404 and the request has
a referer. It doesn’t bother to email for 404s that don’t have a referer –
those are usually people typing in broken URLs or broken Web bots. It also
ignores 404s when the referer is equal to the requested URL, since this
behavior is from broken Web bots too.

Note

BrokenLinkEmailsMiddleware must appear
before other middleware that intercepts 404 errors, such as
LocaleMiddleware or
FlatpageFallbackMiddleware.
Put it towards the top of your MIDDLEWARE setting.

You can tell Django to stop reporting particular 404s by tweaking the
IGNORABLE_404_URLS setting. It should be a list of compiled
regular expression objects. For example:

import re
IGNORABLE_404_URLS = [
 re.compile(r'\.(php|cgi)$'),
 re.compile(r'^/phpmyadmin/'),
]

In this example, a 404 to any URL ending with .php or .cgi will not be
reported. Neither will any URL starting with /phpmyadmin/.

The following example shows how to exclude some conventional URLs that browsers and
crawlers often request:

import re
IGNORABLE_404_URLS = [
 re.compile(r'^/apple-touch-icon.*\.png$'),
 re.compile(r'^/favicon\.ico$'),
 re.compile(r'^/robots\.txt$'),
]

(Note that these are regular expressions, so we put a backslash in front of
periods to escape them.)

If you’d like to customize the behavior of
django.middleware.common.BrokenLinkEmailsMiddleware further (for
example to ignore requests coming from web crawlers), you should subclass it
and override its methods.

See also

404 errors are logged using the logging framework. By default, these log
records are ignored, but you can use them for error reporting by writing a
handler and configuring logging appropriately.

Filtering error reports

Warning

Filtering sensitive data is a hard problem, and it’s nearly impossible to
guarantee that sensitive data won’t leak into an error report. Therefore,
error reports should only be available to trusted team members and you
should avoid transmitting error reports unencrypted over the Internet
(such as through email).

Filtering sensitive information

Error reports are really helpful for debugging errors, so it is generally
useful to record as much relevant information about those errors as possible.
For example, by default Django records the full traceback [https://en.wikipedia.org/wiki/Stack_trace] for the
exception raised, each traceback frame [https://en.wikipedia.org/wiki/Stack_frame]’s local variables, and the
HttpRequest’s attributes.

However, sometimes certain types of information may be too sensitive and thus
may not be appropriate to be kept track of, for example a user’s password or
credit card number. So in addition to filtering out settings that appear to be
sensitive as described in the DEBUG documentation, Django offers a
set of function decorators to help you control which information should be
filtered out of error reports in a production environment (that is, where
DEBUG is set to False): sensitive_variables() and
sensitive_post_parameters().

	
sensitive_variables(*variables)

	If a function (either a view or any regular callback) in your code uses
local variables susceptible to contain sensitive information, you may
prevent the values of those variables from being included in error reports
using the sensitive_variables decorator:

from django.views.decorators.debug import sensitive_variables

@sensitive_variables('user', 'pw', 'cc')
def process_info(user):
 pw = user.pass_word
 cc = user.credit_card_number
 name = user.name
 ...

In the above example, the values for the user, pw and cc
variables will be hidden and replaced with stars (**********) in the
error reports, whereas the value of the name variable will be
disclosed.

To systematically hide all local variables of a function from error logs,
do not provide any argument to the sensitive_variables decorator:

@sensitive_variables()
def my_function():
 ...

When using multiple decorators

If the variable you want to hide is also a function argument (e.g.
‘user’ in the following example), and if the decorated function has
multiple decorators, then make sure to place @sensitive_variables
at the top of the decorator chain. This way it will also hide the
function argument as it gets passed through the other decorators:

@sensitive_variables('user', 'pw', 'cc')
@some_decorator
@another_decorator
def process_info(user):
 ...

	
sensitive_post_parameters(*parameters)

	If one of your views receives an HttpRequest object
with POST parameters susceptible to
contain sensitive information, you may prevent the values of those
parameters from being included in the error reports using the
sensitive_post_parameters decorator:

from django.views.decorators.debug import sensitive_post_parameters

@sensitive_post_parameters('pass_word', 'credit_card_number')
def record_user_profile(request):
 UserProfile.create(
 user=request.user,
 password=request.POST['pass_word'],
 credit_card=request.POST['credit_card_number'],
 name=request.POST['name'],
)
 ...

In the above example, the values for the pass_word and
credit_card_number POST parameters will be hidden and replaced with
stars (**********) in the request’s representation inside the error
reports, whereas the value of the name parameter will be disclosed.

To systematically hide all POST parameters of a request in error reports,
do not provide any argument to the sensitive_post_parameters decorator:

@sensitive_post_parameters()
def my_view(request):
 ...

All POST parameters are systematically filtered out of error reports for
certain django.contrib.auth.views views (login,
password_reset_confirm, password_change, and add_view and
user_change_password in the auth admin) to prevent the leaking of
sensitive information such as user passwords.

Custom error reports

All sensitive_variables() and sensitive_post_parameters() do is,
respectively, annotate the decorated function with the names of sensitive
variables and annotate the HttpRequest object with the names of sensitive
POST parameters, so that this sensitive information can later be filtered out
of reports when an error occurs. The actual filtering is done by Django’s
default error reporter filter:
django.views.debug.SafeExceptionReporterFilter. This filter uses the
decorators’ annotations to replace the corresponding values with stars
(**********) when the error reports are produced. If you wish to override or
customize this default behavior for your entire site, you need to define your
own filter class and tell Django to use it via the
DEFAULT_EXCEPTION_REPORTER_FILTER setting:

DEFAULT_EXCEPTION_REPORTER_FILTER = 'path.to.your.CustomExceptionReporterFilter'

You may also control in a more granular way which filter to use within any
given view by setting the HttpRequest’s exception_reporter_filter
attribute:

def my_view(request):
 if request.user.is_authenticated:
 request.exception_reporter_filter = CustomExceptionReporterFilter()
 ...

Your custom filter class needs to inherit from
django.views.debug.SafeExceptionReporterFilter and may override the
following methods:

	
class SafeExceptionReporterFilter

	

	
SafeExceptionReporterFilter.is_active(request)

	Returns True to activate the filtering operated in the other methods.
By default the filter is active if DEBUG is False.

	
SafeExceptionReporterFilter.get_post_parameters(request)

	Returns the filtered dictionary of POST parameters. By default it replaces
the values of sensitive parameters with stars (**********).

	
SafeExceptionReporterFilter.get_traceback_frame_variables(request, tb_frame)

	Returns the filtered dictionary of local variables for the given traceback
frame. By default it replaces the values of sensitive variables with stars
(**********).

See also

You can also set up custom error reporting by writing a custom piece of
exception middleware. If you do write custom
error handling, it’s a good idea to emulate Django’s built-in error handling
and only report/log errors if DEBUG is False.

Deployment checklist

The Internet is a hostile environment. Before deploying your Django project,
you should take some time to review your settings, with security, performance,
and operations in mind.

Django includes many security features. Some are
built-in and always enabled. Others are optional because they aren’t always
appropriate, or because they’re inconvenient for development. For example,
forcing HTTPS may not be suitable for all websites, and it’s impractical for
local development.

Performance optimizations are another category of trade-offs with convenience.
For instance, caching is useful in production, less so for local development.
Error reporting needs are also widely different.

The following checklist includes settings that:

	must be set properly for Django to provide the expected level of security;

	are expected to be different in each environment;

	enable optional security features;

	enable performance optimizations;

	provide error reporting.

Many of these settings are sensitive and should be treated as confidential. If
you’re releasing the source code for your project, a common practice is to
publish suitable settings for development, and to use a private settings
module for production.

Run manage.py check --deploy

Some of the checks described below can be automated using the check
--deploy option. Be sure to run it against your production settings file as
described in the option’s documentation.

Critical settings

SECRET_KEY

The secret key must be a large random value and it must be kept secret.

Make sure that the key used in production isn’t used anywhere else and avoid
committing it to source control. This reduces the number of vectors from which
an attacker may acquire the key.

Instead of hardcoding the secret key in your settings module, consider loading
it from an environment variable:

import os
SECRET_KEY = os.environ['SECRET_KEY']

or from a file:

with open('/etc/secret_key.txt') as f:
 SECRET_KEY = f.read().strip()

DEBUG

You must never enable debug in production.

You’re certainly developing your project with DEBUG = True,
since this enables handy features like full tracebacks in your browser.

For a production environment, though, this is a really bad idea, because it
leaks lots of information about your project: excerpts of your source code,
local variables, settings, libraries used, etc.

Environment-specific settings

ALLOWED_HOSTS

When DEBUG = False, Django doesn’t work at all without a
suitable value for ALLOWED_HOSTS.

This setting is required to protect your site against some CSRF attacks. If
you use a wildcard, you must perform your own validation of the Host HTTP
header, or otherwise ensure that you aren’t vulnerable to this category of
attacks.

You should also configure the Web server that sits in front of Django to
validate the host. It should respond with a static error page or ignore
requests for incorrect hosts instead of forwarding the request to Django. This
way you’ll avoid spurious errors in your Django logs (or emails if you have
error reporting configured that way). For example, on nginx you might setup a
default server to return “444 No Response” on an unrecognized host:

server {
 listen 80 default_server;
 return 444;
}

CACHES

If you’re using a cache, connection parameters may be different in development
and in production. Django defaults to per-process local-memory caching which may not be desirable.

Cache servers often have weak authentication. Make sure they only accept
connections from your application servers.

DATABASES

Database connection parameters are probably different in development and in
production.

Database passwords are very sensitive. You should protect them exactly like
SECRET_KEY.

For maximum security, make sure database servers only accept connections from
your application servers.

If you haven’t set up backups for your database, do it right now!

EMAIL_BACKEND and related settings

If your site sends emails, these values need to be set correctly.

By default, Django sends email from webmaster@localhost and root@localhost.
However, some mail providers reject email from these addresses. To use
different sender addresses, modify the DEFAULT_FROM_EMAIL and
SERVER_EMAIL settings.

STATIC_ROOT and STATIC_URL

Static files are automatically served by the development server. In
production, you must define a STATIC_ROOT directory where
collectstatic will copy them.

See Managing static files (e.g. images, JavaScript, CSS) for more information.

MEDIA_ROOT and MEDIA_URL

Media files are uploaded by your users. They’re untrusted! Make sure your web
server never attempts to interpret them. For instance, if a user uploads a
.php file, the web server shouldn’t execute it.

Now is a good time to check your backup strategy for these files.

HTTPS

Any website which allows users to log in should enforce site-wide HTTPS to
avoid transmitting access tokens in clear. In Django, access tokens include
the login/password, the session cookie, and password reset tokens. (You can’t
do much to protect password reset tokens if you’re sending them by email.)

Protecting sensitive areas such as the user account or the admin isn’t
sufficient, because the same session cookie is used for HTTP and HTTPS. Your
web server must redirect all HTTP traffic to HTTPS, and only transmit HTTPS
requests to Django.

Once you’ve set up HTTPS, enable the following settings.

CSRF_COOKIE_SECURE

Set this to True to avoid transmitting the CSRF cookie over HTTP
accidentally.

SESSION_COOKIE_SECURE

Set this to True to avoid transmitting the session cookie over HTTP
accidentally.

Performance optimizations

Setting DEBUG = False disables several features that are
only useful in development. In addition, you can tune the following settings.

Sessions

Consider using cached sessions to improve
performance.

If using database-backed sessions, regularly clear old sessions to avoid storing unnecessary data.

CONN_MAX_AGE

Enabling persistent database connections can result in a nice speed-up when
connecting to the database accounts for a significant part of the request
processing time.

This helps a lot on virtualized hosts with limited network performance.

TEMPLATES

Enabling the cached template loader often improves performance drastically, as
it avoids compiling each template every time it needs to be rendered. See the
template loaders docs for more information.

Error reporting

By the time you push your code to production, it’s hopefully robust, but you
can’t rule out unexpected errors. Thankfully, Django can capture errors and
notify you accordingly.

LOGGING

Review your logging configuration before putting your website in production,
and check that it works as expected as soon as you have received some traffic.

See Logging for details on logging.

ADMINS and MANAGERS

ADMINS will be notified of 500 errors by email.

MANAGERS will be notified of 404 errors.
IGNORABLE_404_URLS can help filter out spurious reports.

See Error reporting for details on error reporting by email.

Error reporting by email doesn’t scale very well

Consider using an error monitoring system such as Sentry [https://docs.sentry.io/] before your
inbox is flooded by reports. Sentry can also aggregate logs.

Customize the default error views

Django includes default views and templates for several HTTP error codes. You
may want to override the default templates by creating the following templates
in your root template directory: 404.html, 500.html, 403.html, and
400.html. The default error views that use these
templates should suffice for 99% of Web applications, but you can
customize them as well.

Upgrading Django to a newer version

While it can be a complex process at times, upgrading to the latest Django
version has several benefits:

	New features and improvements are added.

	Bugs are fixed.

	Older version of Django will eventually no longer receive security updates.
(see Supported versions).

	Upgrading as each new Django release is available makes future upgrades less
painful by keeping your code base up to date.

Here are some things to consider to help make your upgrade process as smooth as
possible.

Required Reading

If it’s your first time doing an upgrade, it is useful to read the guide
on the different release processes.

Afterwards, you should familiarize yourself with the changes that were made in
the new Django version(s):

	Read the release notes for each ‘final’ release from
the one after your current Django version, up to and including the version to
which you plan to upgrade.

	Look at the deprecation timeline for the
relevant versions.

Pay particular attention to backwards incompatible changes to get a clear idea
of what will be needed for a successful upgrade.

If you’re upgrading through more than one feature version (e.g. 2.0 to 2.2),
it’s usually easier to upgrade through each feature release incrementally
(2.0 to 2.1 to 2.2) rather than to make all the changes for each feature
release at once. For each feature release, use the latest patch release (e.g.
for 2.1, use 2.1.15).

The same incremental upgrade approach is recommended when upgrading from one
LTS to the next.

Dependencies

In most cases it will be necessary to upgrade to the latest version of your
Django-related dependencies as well. If the Django version was recently
released or if some of your dependencies are not well-maintained, some of your
dependencies may not yet support the new Django version. In these cases you may
have to wait until new versions of your dependencies are released.

Resolving deprecation warnings

Before upgrading, it’s a good idea to resolve any deprecation warnings raised
by your project while using your current version of Django. Fixing these
warnings before upgrading ensures that you’re informed about areas of the code
that need altering.

In Python, deprecation warnings are silenced by default. You must turn them on
using the -Wa Python command line option or the PYTHONWARNINGS [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS]
environment variable. For example, to show warnings while running tests:

$ python -Wa manage.py test

If you’re not using the Django test runner, you may need to also ensure that
any console output is not captured which would hide deprecation warnings. For
example, if you use pytest [https://pytest.org/]:

$ PYTHONWARNINGS=always pytest tests --capture=no

Resolve any deprecation warnings with your current version of Django before
continuing the upgrade process.

Third party applications might use deprecated APIs in order to support multiple
versions of Django, so deprecation warnings in packages you’ve installed don’t
necessarily indicate a problem. If a package doesn’t support the latest version
of Django, consider raising an issue or sending a pull request for it.

Installation

Once you’re ready, it is time to install the new Django version. If you are using a virtual environment [https://docs.python.org/3/library/venv.html#module-venv] and it
is a major upgrade, you might want to set up a new environment with all the
dependencies first.

If you installed Django with pip [https://pip.pypa.io/], you can use the --upgrade or -U flag:

$ python -m pip install -U Django

Testing

When the new environment is set up, run the full test suite for your application. Again, it’s useful to turn
on deprecation warnings on so they’re shown in the test output (you can also
use the flag if you test your app manually using manage.py runserver):

$ python -Wa manage.py test

After you have run the tests, fix any failures. While you have the release
notes fresh in your mind, it may also be a good time to take advantage of new
features in Django by refactoring your code to eliminate any deprecation
warnings.

Deployment

When you are sufficiently confident your app works with the new version of
Django, you’re ready to go ahead and deploy
your upgraded Django project.

If you are using caching provided by Django, you should consider clearing your
cache after upgrading. Otherwise you may run into problems, for example, if you
are caching pickled objects as these objects are not guaranteed to be
pickle-compatible across Django versions. A past instance of incompatibility
was caching pickled HttpResponse objects, either
directly or indirectly via the cache_page()
decorator.

Error reporting

When you’re running a public site you should always turn off the
DEBUG setting. That will make your server run much faster, and will
also prevent malicious users from seeing details of your application that can be
revealed by the error pages.

However, running with DEBUG set to False means you’ll never see
errors generated by your site – everyone will instead see your public error
pages. You need to keep track of errors that occur in deployed sites, so Django
can be configured to create reports with details about those errors.

Email reports

Server errors

When DEBUG is False, Django will email the users listed in the
ADMINS setting whenever your code raises an unhandled exception and
results in an internal server error (strictly speaking, for any response with
an HTTP status code of 500 or greater). This gives the administrators immediate
notification of any errors. The ADMINS will get a description of the
error, a complete Python traceback, and details about the HTTP request that
caused the error.

Note

In order to send email, Django requires a few settings telling it
how to connect to your mail server. At the very least, you’ll need
to specify EMAIL_HOST and possibly
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD,
though other settings may be also required depending on your mail
server’s configuration. Consult the Django settings
documentation for a full list of email-related
settings.

By default, Django will send email from root@localhost. However, some mail
providers reject all email from this address. To use a different sender
address, modify the SERVER_EMAIL setting.

To activate this behavior, put the email addresses of the recipients in the
ADMINS setting.

See also

Server error emails are sent using the logging framework, so you can
customize this behavior by customizing your logging configuration.

404 errors

Django can also be configured to email errors about broken links (404 “page
not found” errors). Django sends emails about 404 errors when:

	DEBUG is False;

	Your MIDDLEWARE setting includes
django.middleware.common.BrokenLinkEmailsMiddleware.

If those conditions are met, Django will email the users listed in the
MANAGERS setting whenever your code raises a 404 and the request has
a referer. It doesn’t bother to email for 404s that don’t have a referer –
those are usually people typing in broken URLs or broken Web bots. It also
ignores 404s when the referer is equal to the requested URL, since this
behavior is from broken Web bots too.

Note

BrokenLinkEmailsMiddleware must appear
before other middleware that intercepts 404 errors, such as
LocaleMiddleware or
FlatpageFallbackMiddleware.
Put it towards the top of your MIDDLEWARE setting.

You can tell Django to stop reporting particular 404s by tweaking the
IGNORABLE_404_URLS setting. It should be a list of compiled
regular expression objects. For example:

import re
IGNORABLE_404_URLS = [
 re.compile(r'\.(php|cgi)$'),
 re.compile(r'^/phpmyadmin/'),
]

In this example, a 404 to any URL ending with .php or .cgi will not be
reported. Neither will any URL starting with /phpmyadmin/.

The following example shows how to exclude some conventional URLs that browsers and
crawlers often request:

import re
IGNORABLE_404_URLS = [
 re.compile(r'^/apple-touch-icon.*\.png$'),
 re.compile(r'^/favicon\.ico$'),
 re.compile(r'^/robots\.txt$'),
]

(Note that these are regular expressions, so we put a backslash in front of
periods to escape them.)

If you’d like to customize the behavior of
django.middleware.common.BrokenLinkEmailsMiddleware further (for
example to ignore requests coming from web crawlers), you should subclass it
and override its methods.

See also

404 errors are logged using the logging framework. By default, these log
records are ignored, but you can use them for error reporting by writing a
handler and configuring logging appropriately.

Filtering error reports

Warning

Filtering sensitive data is a hard problem, and it’s nearly impossible to
guarantee that sensitive data won’t leak into an error report. Therefore,
error reports should only be available to trusted team members and you
should avoid transmitting error reports unencrypted over the Internet
(such as through email).

Filtering sensitive information

Error reports are really helpful for debugging errors, so it is generally
useful to record as much relevant information about those errors as possible.
For example, by default Django records the full traceback [https://en.wikipedia.org/wiki/Stack_trace] for the
exception raised, each traceback frame [https://en.wikipedia.org/wiki/Stack_frame]’s local variables, and the
HttpRequest’s attributes.

However, sometimes certain types of information may be too sensitive and thus
may not be appropriate to be kept track of, for example a user’s password or
credit card number. So in addition to filtering out settings that appear to be
sensitive as described in the DEBUG documentation, Django offers a
set of function decorators to help you control which information should be
filtered out of error reports in a production environment (that is, where
DEBUG is set to False): sensitive_variables() and
sensitive_post_parameters().

	
sensitive_variables(*variables)

	If a function (either a view or any regular callback) in your code uses
local variables susceptible to contain sensitive information, you may
prevent the values of those variables from being included in error reports
using the sensitive_variables decorator:

from django.views.decorators.debug import sensitive_variables

@sensitive_variables('user', 'pw', 'cc')
def process_info(user):
 pw = user.pass_word
 cc = user.credit_card_number
 name = user.name
 ...

In the above example, the values for the user, pw and cc
variables will be hidden and replaced with stars (**********) in the
error reports, whereas the value of the name variable will be
disclosed.

To systematically hide all local variables of a function from error logs,
do not provide any argument to the sensitive_variables decorator:

@sensitive_variables()
def my_function():
 ...

When using multiple decorators

If the variable you want to hide is also a function argument (e.g.
‘user’ in the following example), and if the decorated function has
multiple decorators, then make sure to place @sensitive_variables
at the top of the decorator chain. This way it will also hide the
function argument as it gets passed through the other decorators:

@sensitive_variables('user', 'pw', 'cc')
@some_decorator
@another_decorator
def process_info(user):
 ...

	
sensitive_post_parameters(*parameters)

	If one of your views receives an HttpRequest object
with POST parameters susceptible to
contain sensitive information, you may prevent the values of those
parameters from being included in the error reports using the
sensitive_post_parameters decorator:

from django.views.decorators.debug import sensitive_post_parameters

@sensitive_post_parameters('pass_word', 'credit_card_number')
def record_user_profile(request):
 UserProfile.create(
 user=request.user,
 password=request.POST['pass_word'],
 credit_card=request.POST['credit_card_number'],
 name=request.POST['name'],
)
 ...

In the above example, the values for the pass_word and
credit_card_number POST parameters will be hidden and replaced with
stars (**********) in the request’s representation inside the error
reports, whereas the value of the name parameter will be disclosed.

To systematically hide all POST parameters of a request in error reports,
do not provide any argument to the sensitive_post_parameters decorator:

@sensitive_post_parameters()
def my_view(request):
 ...

All POST parameters are systematically filtered out of error reports for
certain django.contrib.auth.views views (login,
password_reset_confirm, password_change, and add_view and
user_change_password in the auth admin) to prevent the leaking of
sensitive information such as user passwords.

Custom error reports

All sensitive_variables() and sensitive_post_parameters() do is,
respectively, annotate the decorated function with the names of sensitive
variables and annotate the HttpRequest object with the names of sensitive
POST parameters, so that this sensitive information can later be filtered out
of reports when an error occurs. The actual filtering is done by Django’s
default error reporter filter:
django.views.debug.SafeExceptionReporterFilter. This filter uses the
decorators’ annotations to replace the corresponding values with stars
(**********) when the error reports are produced. If you wish to override or
customize this default behavior for your entire site, you need to define your
own filter class and tell Django to use it via the
DEFAULT_EXCEPTION_REPORTER_FILTER setting:

DEFAULT_EXCEPTION_REPORTER_FILTER = 'path.to.your.CustomExceptionReporterFilter'

You may also control in a more granular way which filter to use within any
given view by setting the HttpRequest’s exception_reporter_filter
attribute:

def my_view(request):
 if request.user.is_authenticated:
 request.exception_reporter_filter = CustomExceptionReporterFilter()
 ...

Your custom filter class needs to inherit from
django.views.debug.SafeExceptionReporterFilter and may override the
following methods:

	
class SafeExceptionReporterFilter

	

	
SafeExceptionReporterFilter.is_active(request)

	Returns True to activate the filtering operated in the other methods.
By default the filter is active if DEBUG is False.

	
SafeExceptionReporterFilter.get_post_parameters(request)

	Returns the filtered dictionary of POST parameters. By default it replaces
the values of sensitive parameters with stars (**********).

	
SafeExceptionReporterFilter.get_traceback_frame_variables(request, tb_frame)

	Returns the filtered dictionary of local variables for the given traceback
frame. By default it replaces the values of sensitive variables with stars
(**********).

See also

You can also set up custom error reporting by writing a custom piece of
exception middleware. If you do write custom
error handling, it’s a good idea to emulate Django’s built-in error handling
and only report/log errors if DEBUG is False.

Providing initial data for models

It’s sometimes useful to pre-populate your database with hard-coded data when
you’re first setting up an app. You can provide initial data with migrations or
fixtures.

Providing initial data with migrations

If you want to automatically load initial data for an app, create a
data migration. Migrations are run when setting up the
test database, so the data will be available there, subject to some
limitations.

Providing data with fixtures

You can also provide data using fixtures, however, this data isn’t loaded
automatically, except if you use TransactionTestCase.fixtures.

A fixture is a collection of data that Django knows how to import into a
database. The most straightforward way of creating a fixture if you’ve already
got some data is to use the manage.py dumpdata command.
Or, you can write fixtures by hand; fixtures can be written as JSON, XML or YAML
(with PyYAML [https://pyyaml.org/] installed) documents. The serialization documentation has more details about each of these supported
serialization formats.

As an example, though, here’s what a fixture for a Person model might look
like in JSON:

[
 {
 "model": "myapp.person",
 "pk": 1,
 "fields": {
 "first_name": "John",
 "last_name": "Lennon"
 }
 },
 {
 "model": "myapp.person",
 "pk": 2,
 "fields": {
 "first_name": "Paul",
 "last_name": "McCartney"
 }
 }
]

And here’s that same fixture as YAML:

- model: myapp.person
 pk: 1
 fields:
 first_name: John
 last_name: Lennon
- model: myapp.person
 pk: 2
 fields:
 first_name: Paul
 last_name: McCartney

You’ll store this data in a fixtures directory inside your app.

You can load data by calling manage.py loaddata
<fixturename>, where <fixturename> is the name of the fixture file
you’ve created. Each time you run loaddata, the data will be read
from the fixture and re-loaded into the database. Note this means that if you
change one of the rows created by a fixture and then run loaddata
again, you’ll wipe out any changes you’ve made.

Where Django finds fixture files

By default, Django looks in the fixtures directory inside each app for
fixtures. You can set the FIXTURE_DIRS setting to a list of
additional directories where Django should look.

When running manage.py loaddata, you can also
specify a path to a fixture file, which overrides searching the usual
directories.

See also

Fixtures are also used by the testing framework to help set up a consistent test environment.

Integrating Django with a legacy database

While Django is best suited for developing new applications, it’s quite
possible to integrate it into legacy databases. Django includes a couple of
utilities to automate as much of this process as possible.

This document assumes you know the Django basics, as covered in the
tutorial.

Once you’ve got Django set up, you’ll follow this general process to integrate
with an existing database.

Give Django your database parameters

You’ll need to tell Django what your database connection parameters are, and
what the name of the database is. Do that by editing the DATABASES
setting and assigning values to the following keys for the 'default'
connection:

	NAME

	ENGINE

	USER

	PASSWORD

	HOST

	PORT

Auto-generate the models

Django comes with a utility called inspectdb that can create models
by introspecting an existing database. You can view the output by running this
command:

$ python manage.py inspectdb

Save this as a file by using standard Unix output redirection:

$ python manage.py inspectdb > models.py

This feature is meant as a shortcut, not as definitive model generation. See the
documentation of inspectdb for more information.

Once you’ve cleaned up your models, name the file models.py and put it in
the Python package that holds your app. Then add the app to your
INSTALLED_APPS setting.

By default, inspectdb creates unmanaged models. That is,
managed = False in the model’s Meta class tells Django not to manage
each table’s creation, modification, and deletion:

class Person(models.Model):
 id = models.IntegerField(primary_key=True)
 first_name = models.CharField(max_length=70)
 class Meta:
 managed = False
 db_table = 'CENSUS_PERSONS'

If you do want to allow Django to manage the table’s lifecycle, you’ll need to
change the managed option above to True
(or remove it because True is its default value).

Install the core Django tables

Next, run the migrate command to install any extra needed database
records such as admin permissions and content types:

$ python manage.py migrate

Test and tweak

Those are the basic steps – from here you’ll want to tweak the models Django
generated until they work the way you’d like. Try accessing your data via the
Django database API, and try editing objects via Django’s admin site, and edit
the models file accordingly.

Outputting CSV with Django

This document explains how to output CSV (Comma Separated Values) dynamically
using Django views. To do this, you can either use the Python CSV library or the
Django template system.

Using the Python CSV library

Python comes with a CSV library, csv [https://docs.python.org/3/library/csv.html#module-csv]. The key to using it with Django is
that the csv [https://docs.python.org/3/library/csv.html#module-csv] module’s CSV-creation capability acts on file-like objects,
and Django’s HttpResponse objects are file-like objects.

Here’s an example:

import csv
from django.http import HttpResponse

def some_view(request):
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

 writer = csv.writer(response)
 writer.writerow(['First row', 'Foo', 'Bar', 'Baz'])
 writer.writerow(['Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"])

 return response

The code and comments should be self-explanatory, but a few things deserve a
mention:

	The response gets a special MIME type, text/csv. This tells
browsers that the document is a CSV file, rather than an HTML file. If
you leave this off, browsers will probably interpret the output as HTML,
which will result in ugly, scary gobbledygook in the browser window.

	The response gets an additional Content-Disposition header, which
contains the name of the CSV file. This filename is arbitrary; call it
whatever you want. It’ll be used by browsers in the “Save as…” dialog, etc.

	You can hook into the CSV-generation API by passing response as the first
argument to csv.writer. The csv.writer function expects a file-like
object, and HttpResponse objects fit the bill.

	For each row in your CSV file, call writer.writerow, passing it an
iterable [https://docs.python.org/3/glossary.html#term-iterable].

	The CSV module takes care of quoting for you, so you don’t have to worry
about escaping strings with quotes or commas in them. Pass writerow()
your raw strings, and it’ll do the right thing.

Streaming large CSV files

When dealing with views that generate very large responses, you might want to
consider using Django’s StreamingHttpResponse instead.
For example, by streaming a file that takes a long time to generate you can
avoid a load balancer dropping a connection that might have otherwise timed out
while the server was generating the response.

In this example, we make full use of Python generators to efficiently handle
the assembly and transmission of a large CSV file:

import csv

from django.http import StreamingHttpResponse

class Echo:
 """An object that implements just the write method of the file-like
 interface.
 """
 def write(self, value):
 """Write the value by returning it, instead of storing in a buffer."""
 return value

def some_streaming_csv_view(request):
 """A view that streams a large CSV file."""
 # Generate a sequence of rows. The range is based on the maximum number of
 # rows that can be handled by a single sheet in most spreadsheet
 # applications.
 rows = (["Row {}".format(idx), str(idx)] for idx in range(65536))
 pseudo_buffer = Echo()
 writer = csv.writer(pseudo_buffer)
 response = StreamingHttpResponse((writer.writerow(row) for row in rows),
 content_type="text/csv")
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'
 return response

Using the template system

Alternatively, you can use the Django template system
to generate CSV. This is lower-level than using the convenient Python csv [https://docs.python.org/3/library/csv.html#module-csv]
module, but the solution is presented here for completeness.

The idea here is to pass a list of items to your template, and have the
template output the commas in a for loop.

Here’s an example, which generates the same CSV file as above:

from django.http import HttpResponse
from django.template import loader

def some_view(request):
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

 # The data is hard-coded here, but you could load it from a database or
 # some other source.
 csv_data = (
 ('First row', 'Foo', 'Bar', 'Baz'),
 ('Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"),
)

 t = loader.get_template('my_template_name.txt')
 c = {'data': csv_data}
 response.write(t.render(c))
 return response

The only difference between this example and the previous example is that this
one uses template loading instead of the CSV module. The rest of the code –
such as the content_type='text/csv' – is the same.

Then, create the template my_template_name.txt, with this template code:

{% for row in data %}"{{ row.0|addslashes }}", "{{ row.1|addslashes }}", "{{ row.2|addslashes }}", "{{ row.3|addslashes }}", "{{ row.4|addslashes }}"
{% endfor %}

This short template iterates over the given data and displays a line of CSV for
each row. It uses the addslashes template filter to ensure there
aren’t any problems with quotes.

Other text-based formats

Notice that there isn’t very much specific to CSV here – just the specific
output format. You can use either of these techniques to output any text-based
format you can dream of. You can also use a similar technique to generate
arbitrary binary data; see Outputting PDFs with Django for an example.

Outputting PDFs with Django

This document explains how to output PDF files dynamically using Django views.
This is made possible by the excellent, open-source ReportLab [https://www.reportlab.com/opensource/] Python PDF
library.

The advantage of generating PDF files dynamically is that you can create
customized PDFs for different purposes – say, for different users or different
pieces of content.

For example, Django was used at kusports.com [http://www.kusports.com/] to generate customized,
printer-friendly NCAA tournament brackets, as PDF files, for people
participating in a March Madness contest.

Install ReportLab

The ReportLab library is available on PyPI [https://pypi.org/project/reportlab/]. A user guide [https://www.reportlab.com/docs/reportlab-userguide.pdf] (not
coincidentally, a PDF file) is also available for download.
You can install ReportLab with pip:

$ python -m pip install reportlab

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

Write your view

The key to generating PDFs dynamically with Django is that the ReportLab API
acts on file-like objects, and Django’s FileResponse
objects accept file-like objects.

Here’s a “Hello World” example:

import io
from django.http import FileResponse
from reportlab.pdfgen import canvas

def some_view(request):
 # Create a file-like buffer to receive PDF data.
 buffer = io.BytesIO()

 # Create the PDF object, using the buffer as its "file."
 p = canvas.Canvas(buffer)

 # Draw things on the PDF. Here's where the PDF generation happens.
 # See the ReportLab documentation for the full list of functionality.
 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly, and we're done.
 p.showPage()
 p.save()

 # FileResponse sets the Content-Disposition header so that browsers
 # present the option to save the file.
 buffer.seek(0)
 return FileResponse(buffer, as_attachment=True, filename='hello.pdf')

The code and comments should be self-explanatory, but a few things deserve a
mention:

	The response will automatically set the MIME type application/pdf
based on the filename extension. This tells browsers that the document is a
PDF file, rather than an HTML file or a generic
application/octet-stream binary content.

	When as_attachment=True is passed to FileResponse, it sets the
appropriate Content-Disposition header and that tells Web browsers to
pop-up a dialog box prompting/confirming how to handle the document even if a
default is set on the machine. If the as_attachment parameter is omitted,
browsers will handle the PDF using whatever program/plugin they’ve been
configured to use for PDFs.

	You can provide an arbitrary filename parameter. It’ll be used by browsers
in the “Save as…” dialog.

	You can hook into the ReportLab API: The same buffer passed as the first
argument to canvas.Canvas can be fed to the
FileResponse class.

	Note that all subsequent PDF-generation methods are called on the PDF
object (in this case, p) – not on buffer.

	Finally, it’s important to call showPage() and save() on the PDF
file.

Note

ReportLab is not thread-safe. Some of our users have reported odd issues
with building PDF-generating Django views that are accessed by many people
at the same time.

Other formats

Notice that there isn’t a lot in these examples that’s PDF-specific – just the
bits using reportlab. You can use a similar technique to generate any
arbitrary format that you can find a Python library for. Also see
Outputting CSV with Django for another example and some techniques you can use
when generated text-based formats.

See also

Django Packages provides a comparison of packages [https://djangopackages.org/grids/g/pdf/] that help generate PDF files
from Django.

Overriding templates

In your project, you might want to override a template in another Django
application, whether it be a third-party application or a contrib application
such as django.contrib.admin. You can either put template overrides in your
project’s templates directory or in an application’s templates directory.

If you have app and project templates directories that both contain overrides,
the default Django template loader will try to load the template from the
project-level directory first. In other words, DIRS
is searched before APP_DIRS.

See also

Read Overriding built-in widget templates if you’re looking to
do that.

Overriding from the project’s templates directory

First, we’ll explore overriding templates by creating replacement templates in
your project’s templates directory.

Let’s say you’re trying to override the templates for a third-party application
called blog, which provides the templates blog/post.html and
blog/list.html. The relevant settings for your project would look like:

import os

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

INSTALLED_APPS = [
 ...,
 'blog',
 ...,
]

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'APP_DIRS': True,
 ...
 },
]

The TEMPLATES setting and BASE_DIR will already exist if you
created your project using the default project template. The setting that needs
to be modified is DIRS.

These settings assume you have a templates directory in the root of your
project. To override the templates for the blog app, create a folder
in the templates directory, and add the template files to that folder:

templates/
 blog/
 list.html
 post.html

The template loader first looks for templates in the DIRS directory. When
the views in the blog app ask for the blog/post.html and
blog/list.html templates, the loader will return the files you just created.

Overriding from an app’s template directory

Since you’re overriding templates located outside of one of your project’s
apps, it’s more common to use the first method and put template overrides in a
project’s templates folder. If you prefer, however, it’s also possible to put
the overrides in an app’s template directory.

First, make sure your template settings are checking inside app directories:

TEMPLATES = [
 {
 ...,
 'APP_DIRS': True,
 ...
 },
]

If you want to put the template overrides in an app called myapp and the
templates to override are named blog/list.html and blog/post.html,
then your directory structure will look like:

myapp/
 templates/
 blog/
 list.html
 post.html

With APP_DIRS set to True, the template
loader will look in the app’s templates directory and find the templates.

Managing static files (e.g. images, JavaScript, CSS)

Websites generally need to serve additional files such as images, JavaScript,
or CSS. In Django, we refer to these files as “static files”. Django provides
django.contrib.staticfiles to help you manage them.

This page describes how you can serve these static files.

Configuring static files

	Make sure that django.contrib.staticfiles is included in your
INSTALLED_APPS.

	In your settings file, define STATIC_URL, for example:

STATIC_URL = '/static/'

	In your templates, use the static template tag to build the URL for
the given relative path using the configured STATICFILES_STORAGE.

{% load static %}

	Store your static files in a folder called static in your app. For
example my_app/static/my_app/example.jpg.

Serving the files

In addition to these configuration steps, you’ll also need to actually
serve the static files.

During development, if you use django.contrib.staticfiles, this will
be done automatically by runserver when DEBUG is set
to True (see django.contrib.staticfiles.views.serve()).

This method is grossly inefficient and probably insecure,
so it is unsuitable for production.

See Deploying static files for proper strategies to serve
static files in production environments.

Your project will probably also have static assets that aren’t tied to a
particular app. In addition to using a static/ directory inside your apps,
you can define a list of directories (STATICFILES_DIRS) in your
settings file where Django will also look for static files. For example:

STATICFILES_DIRS = [
 os.path.join(BASE_DIR, "static"),
 '/var/www/static/',
]

See the documentation for the STATICFILES_FINDERS setting for
details on how staticfiles finds your files.

Static file namespacing

Now we might be able to get away with putting our static files directly
in my_app/static/ (rather than creating another my_app
subdirectory), but it would actually be a bad idea. Django will use the
first static file it finds whose name matches, and if you had a static file
with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right
one, and the best way to ensure this is by namespacing them. That is,
by putting those static files inside another directory named for the
application itself.

You can namespace static assets in STATICFILES_DIRS by
specifying prefixes.

Serving static files during development

If you use django.contrib.staticfiles as explained above,
runserver will do this automatically when DEBUG is set
to True. If you don’t have django.contrib.staticfiles in
INSTALLED_APPS, you can still manually serve static files using the
django.views.static.serve() view.

This is not suitable for production use! For some common deployment
strategies, see Deploying static files.

For example, if your STATIC_URL is defined as /static/, you can do
this by adding the following snippet to your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 # ... the rest of your URLconf goes here ...
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

Note

This helper function works only in debug mode and only if
the given prefix is local (e.g. /static/) and not a URL (e.g.
http://static.example.com/).

Also this helper function only serves the actual STATIC_ROOT
folder; it doesn’t perform static files discovery like
django.contrib.staticfiles.

Serving files uploaded by a user during development

During development, you can serve user-uploaded media files from
MEDIA_ROOT using the django.views.static.serve() view.

This is not suitable for production use! For some common deployment
strategies, see Deploying static files.

For example, if your MEDIA_URL is defined as /media/, you can do
this by adding the following snippet to your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 # ... the rest of your URLconf goes here ...
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Note

This helper function works only in debug mode and only if
the given prefix is local (e.g. /media/) and not a URL (e.g.
http://media.example.com/).

Testing

When running tests that use actual HTTP requests instead of the built-in
testing client (i.e. when using the built-in LiveServerTestCase) the static assets need to be served along
the rest of the content so the test environment reproduces the real one as
faithfully as possible, but LiveServerTestCase has only very basic static
file-serving functionality: It doesn’t know about the finders feature of the
staticfiles application and assumes the static content has already been
collected under STATIC_ROOT.

Because of this, staticfiles ships its own
django.contrib.staticfiles.testing.StaticLiveServerTestCase, a subclass
of the built-in one that has the ability to transparently serve all the assets
during execution of these tests in a way very similar to what we get at
development time with DEBUG = True, i.e. without having to collect them
using collectstatic first.

Deployment

django.contrib.staticfiles provides a convenience management command
for gathering static files in a single directory so you can serve them easily.

	Set the STATIC_ROOT setting to the directory from which you’d
like to serve these files, for example:

STATIC_ROOT = "/var/www/example.com/static/"

	Run the collectstatic management command:

$ python manage.py collectstatic

This will copy all files from your static folders into the
STATIC_ROOT directory.

	Use a web server of your choice to serve the
files. Deploying static files covers some common deployment
strategies for static files.

Learn more

This document has covered the basics and some common usage patterns. For
complete details on all the settings, commands, template tags, and other pieces
included in django.contrib.staticfiles, see the staticfiles
reference.

Deploying static files

See also

For an introduction to the use of django.contrib.staticfiles, see
Managing static files (e.g. images, JavaScript, CSS).

Serving static files in production

The basic outline of putting static files into production consists of two
steps: run the collectstatic command when static files change, then
arrange for the collected static files directory (STATIC_ROOT) to be
moved to the static file server and served. Depending on
STATICFILES_STORAGE, files may need to be moved to a new location
manually or the post_process method of
the Storage class might take care of that.

Of course, as with all deployment tasks, the devil’s in the details. Every
production setup will be a bit different, so you’ll need to adapt the basic
outline to fit your needs. Below are a few common patterns that might help.

Serving the site and your static files from the same server

If you want to serve your static files from the same server that’s already
serving your site, the process may look something like:

	Push your code up to the deployment server.

	On the server, run collectstatic to copy all the static files
into STATIC_ROOT.

	Configure your web server to serve the files in STATIC_ROOT
under the URL STATIC_URL. For example, here’s
how to do this with Apache and mod_wsgi.

You’ll probably want to automate this process, especially if you’ve got
multiple web servers.

Serving static files from a dedicated server

Most larger Django sites use a separate Web server – i.e., one that’s not also
running Django – for serving static files. This server often runs a different
type of web server – faster but less full-featured. Some common choices are:

	Nginx [https://nginx.org/en/]

	A stripped-down version of Apache [https://httpd.apache.org/]

Configuring these servers is out of scope of this document; check each
server’s respective documentation for instructions.

Since your static file server won’t be running Django, you’ll need to modify
the deployment strategy to look something like:

	When your static files change, run collectstatic locally.

	Push your local STATIC_ROOT up to the static file server into the
directory that’s being served. rsync [https://rsync.samba.org/] is a
common choice for this step since it only needs to transfer the bits of
static files that have changed.

Serving static files from a cloud service or CDN

Another common tactic is to serve static files from a cloud storage provider
like Amazon’s S3 and/or a CDN (content delivery network). This lets you
ignore the problems of serving static files and can often make for
faster-loading Web pages (especially when using a CDN).

When using these services, the basic workflow would look a bit like the above,
except that instead of using rsync to transfer your static files to the
server you’d need to transfer the static files to the storage provider or CDN.

There’s any number of ways you might do this, but if the provider has an API,
you can use a custom file storage backend
to integrate the CDN with your Django project. If you’ve written or are using a
3rd party custom storage backend, you can tell collectstatic to use
it by setting STATICFILES_STORAGE to the storage engine.

For example, if you’ve written an S3 storage backend in
myproject.storage.S3Storage you could use it with:

STATICFILES_STORAGE = 'myproject.storage.S3Storage'

Once that’s done, all you have to do is run collectstatic and your
static files would be pushed through your storage package up to S3. If you
later needed to switch to a different storage provider, you may only have to
change your STATICFILES_STORAGE setting.

For details on how you’d write one of these backends, see
Writing a custom storage system. There are 3rd party apps available that
provide storage backends for many common file storage APIs. A good starting
point is the overview at djangopackages.org [https://djangopackages.org/grids/g/storage-backends/].

Learn more

For complete details on all the settings, commands, template tags, and other
pieces included in django.contrib.staticfiles, see the
staticfiles reference.

How to install Django on Windows

This document will guide you through installing Python 3.8 and Django on
Windows. It also provides instructions for setting up a virtual environment,
which makes it easier to work on Python projects. This is meant as a beginner’s
guide for users working on Django projects and does not reflect how Django
should be installed when developing patches for Django itself.

The steps in this guide have been tested with Windows 10. In other
versions, the steps would be similar. You will need to be familiar with using
the Windows command prompt.

Install Python

Django is a Python web framework, thus requiring Python to be installed on your
machine. At the time of writing, Python 3.8 is the latest version.

To install Python on your machine go to https://python.org/downloads/. The
website should offer you a download button for the latest Python version.
Download the executable installer and run it. Check the boxes next to “Install
launcher for all users (recommended)” then click “Install Now”.

After installation, open the command prompt and check that the Python version
matches the version you installed by executing:

...\> py --version

See also

For more details, see Using Python on Windows [https://docs.python.org/3/using/windows.html] documentation.

About pip

pip [https://pypi.org/project/pip/] is a package manager for Python and is included by default with the
Python installer. It helps to install and uninstall Python packages
(such as Django!). For the rest of the installation, we’ll use pip to
install Python packages from the command line.

Setting up a virtual environment

It is best practice to provide a dedicated environment for each Django project
you create. There are many options to manage environments and packages within
the Python ecosystem, some of which are recommended in the Python
documentation [https://packaging.python.org/guides/tool-recommendations/].
Python itself comes with venv [https://docs.python.org/3/tutorial/venv.html] for managing
environments which we will use for this guide.

To create a virtual environment for your project, open a new command prompt,
navigate to the folder where you want to create your project and then enter the
following:

...\> py -m venv project-name

This will create a folder called ‘project-name’ if it does not already exist
and setup the virtual environment. To activate the environment, run:

...\> project-name\Scripts\activate.bat

The virtual environment will be activated and you’ll see “(project-name)” next
to the command prompt to designate that. Each time you start a new command
prompt, you’ll need to activate the environment again.

Install Django

Django can be installed easily using pip within your virtual environment.

In the command prompt, ensure your virtual environment is active, and execute
the following command:

...\> py -m pip install Django

This will download and install the latest Django release.

After the installation has completed, you can verify your Django installation
by executing django-admin --version in the command prompt.

See Get your database running for information on database installation
with Django.

Common pitfalls

	If django-admin only displays the help text no matter what arguments
it is given, there is probably a problem with the file association in
Windows. Check if there is more than one environment variable set for
running Python scripts in PATH. This usually occurs when there is more
than one Python version installed.

	If you are connecting to the internet behind a proxy, there might be problems
in running the command py -m pip install Django. Set the environment
variables for proxy configuration in the command prompt as follows:

...\> set http_proxy=http://username:password@proxyserver:proxyport
...\> set https_proxy=https://username:password@proxyserver:proxyport

Writing database migrations

This document explains how to structure and write database migrations for
different scenarios you might encounter. For introductory material on
migrations, see the topic guide.

Data migrations and multiple databases

When using multiple databases, you may need to figure out whether or not to
run a migration against a particular database. For example, you may want to
only run a migration on a particular database.

In order to do that you can check the database connection’s alias inside a
RunPython operation by looking at the schema_editor.connection.alias
attribute:

from django.db import migrations

def forwards(apps, schema_editor):
 if schema_editor.connection.alias != 'default':
 return
 # Your migration code goes here

class Migration(migrations.Migration):

 dependencies = [
 # Dependencies to other migrations
]

 operations = [
 migrations.RunPython(forwards),
]

You can also provide hints that will be passed to the allow_migrate()
method of database routers as **hints:

myapp/dbrouters.py

class MyRouter:

 def allow_migrate(self, db, app_label, model_name=None, **hints):
 if 'target_db' in hints:
 return db == hints['target_db']
 return True

Then, to leverage this in your migrations, do the following:

from django.db import migrations

def forwards(apps, schema_editor):
 # Your migration code goes here
 ...

class Migration(migrations.Migration):

 dependencies = [
 # Dependencies to other migrations
]

 operations = [
 migrations.RunPython(forwards, hints={'target_db': 'default'}),
]

If your RunPython or RunSQL operation only affects one model, it’s good
practice to pass model_name as a hint to make it as transparent as possible
to the router. This is especially important for reusable and third-party apps.

Migrations that add unique fields

Applying a “plain” migration that adds a unique non-nullable field to a table
with existing rows will raise an error because the value used to populate
existing rows is generated only once, thus breaking the unique constraint.

Therefore, the following steps should be taken. In this example, we’ll add a
non-nullable UUIDField with a default value. Modify
the respective field according to your needs.

	Add the field on your model with default=uuid.uuid4 and unique=True
arguments (choose an appropriate default for the type of the field you’re
adding).

	Run the makemigrations command. This should generate a migration
with an AddField operation.

	Generate two empty migration files for the same app by running
makemigrations myapp --empty twice. We’ve renamed the migration files to
give them meaningful names in the examples below.

	Copy the AddField operation from the auto-generated migration (the first
of the three new files) to the last migration, change AddField to
AlterField, and add imports of uuid and models. For example:

0006_remove_uuid_null.py

Generated by Django A.B on YYYY-MM-DD HH:MM
from django.db import migrations, models
import uuid

class Migration(migrations.Migration):

 dependencies = [
 ('myapp', '0005_populate_uuid_values'),
]

 operations = [
 migrations.AlterField(
 model_name='mymodel',
 name='uuid',
 field=models.UUIDField(default=uuid.uuid4, unique=True),
),
]

	Edit the first migration file. The generated migration class should look
similar to this:

0004_add_uuid_field.py

class Migration(migrations.Migration):

 dependencies = [
 ('myapp', '0003_auto_20150129_1705'),
]

 operations = [
 migrations.AddField(
 model_name='mymodel',
 name='uuid',
 field=models.UUIDField(default=uuid.uuid4, unique=True),
),
]

Change unique=True to null=True – this will create the intermediary
null field and defer creating the unique constraint until we’ve populated
unique values on all the rows.

	In the first empty migration file, add a
RunPython or
RunSQL operation to generate a
unique value (UUID in the example) for each existing row. Also add an import
of uuid. For example:

0005_populate_uuid_values.py

Generated by Django A.B on YYYY-MM-DD HH:MM
from django.db import migrations
import uuid

def gen_uuid(apps, schema_editor):
 MyModel = apps.get_model('myapp', 'MyModel')
 for row in MyModel.objects.all():
 row.uuid = uuid.uuid4()
 row.save(update_fields=['uuid'])

class Migration(migrations.Migration):

 dependencies = [
 ('myapp', '0004_add_uuid_field'),
]

 operations = [
 # omit reverse_code=... if you don't want the migration to be reversible.
 migrations.RunPython(gen_uuid, reverse_code=migrations.RunPython.noop),
]

	Now you can apply the migrations as usual with the migrate command.

Note there is a race condition if you allow objects to be created while this
migration is running. Objects created after the AddField and before
RunPython will have their original uuid’s overwritten.

Non-atomic migrations

On databases that support DDL transactions (SQLite and PostgreSQL), migrations
will run inside a transaction by default. For use cases such as performing data
migrations on large tables, you may want to prevent a migration from running in
a transaction by setting the atomic attribute to False:

from django.db import migrations

class Migration(migrations.Migration):
 atomic = False

Within such a migration, all operations are run without a transaction. It’s
possible to execute parts of the migration inside a transaction using
atomic() or by passing atomic=True to
RunPython.

Here’s an example of a non-atomic data migration that updates a large table in
smaller batches:

import uuid

from django.db import migrations, transaction

def gen_uuid(apps, schema_editor):
 MyModel = apps.get_model('myapp', 'MyModel')
 while MyModel.objects.filter(uuid__isnull=True).exists():
 with transaction.atomic():
 for row in MyModel.objects.filter(uuid__isnull=True)[:1000]:
 row.uuid = uuid.uuid4()
 row.save()

class Migration(migrations.Migration):
 atomic = False

 operations = [
 migrations.RunPython(gen_uuid),
]

The atomic attribute doesn’t have an effect on databases that don’t support
DDL transactions (e.g. MySQL, Oracle). (MySQL’s atomic DDL statement support [https://dev.mysql.com/doc/refman/en/atomic-ddl.html] refers to individual
statements rather than multiple statements wrapped in a transaction that can be
rolled back.)

Controlling the order of migrations

Django determines the order in which migrations should be applied not by the
filename of each migration, but by building a graph using two properties on the
Migration class: dependencies and run_before.

If you’ve used the makemigrations command you’ve probably
already seen dependencies in action because auto-created
migrations have this defined as part of their creation process.

The dependencies property is declared like this:

from django.db import migrations

class Migration(migrations.Migration):

 dependencies = [
 ('myapp', '0123_the_previous_migration'),
]

Usually this will be enough, but from time to time you may need to
ensure that your migration runs before other migrations. This is
useful, for example, to make third-party apps’ migrations run after
your AUTH_USER_MODEL replacement.

To achieve this, place all migrations that should depend on yours in
the run_before attribute on your Migration class:

class Migration(migrations.Migration):
 ...

 run_before = [
 ('third_party_app', '0001_do_awesome'),
]

Prefer using dependencies over run_before when possible. You should
only use run_before if it is undesirable or impractical to specify
dependencies in the migration which you want to run after the one you are
writing.

Migrating data between third-party apps

You can use a data migration to move data from one third-party application to
another.

If you plan to remove the old app later, you’ll need to set the dependencies
property based on whether or not the old app is installed. Otherwise, you’ll
have missing dependencies once you uninstall the old app. Similarly, you’ll
need to catch LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] in the apps.get_model() call that
retrieves models from the old app. This approach allows you to deploy your
project anywhere without first installing and then uninstalling the old app.

Here’s a sample migration:

myapp/migrations/0124_move_old_app_to_new_app.py

from django.apps import apps as global_apps
from django.db import migrations

def forwards(apps, schema_editor):
 try:
 OldModel = apps.get_model('old_app', 'OldModel')
 except LookupError:
 # The old app isn't installed.
 return

 NewModel = apps.get_model('new_app', 'NewModel')
 NewModel.objects.bulk_create(
 NewModel(new_attribute=old_object.old_attribute)
 for old_object in OldModel.objects.all()
)

class Migration(migrations.Migration):
 operations = [
 migrations.RunPython(forwards, migrations.RunPython.noop),
]
 dependencies = [
 ('myapp', '0123_the_previous_migration'),
 ('new_app', '0001_initial'),
]

 if global_apps.is_installed('old_app'):
 dependencies.append(('old_app', '0001_initial'))

Also consider what you want to happen when the migration is unapplied. You
could either do nothing (as in the example above) or remove some or all of the
data from the new application. Adjust the second argument of the
RunPython operation accordingly.

Changing a ManyToManyField to use a through model

If you change a ManyToManyField to use a through
model, the default migration will delete the existing table and create a new
one, losing the existing relations. To avoid this, you can use
SeparateDatabaseAndState to rename the existing table to the new
table name whilst telling the migration autodetector that the new model has
been created. You can check the existing table name through
sqlmigrate or dbshell. You can check the new table name
with the through model’s _meta.db_table property. Your new through
model should use the same names for the ForeignKeys as Django did. Also if
it needs any extra fields, they should be added in operations after
SeparateDatabaseAndState.

For example, if we had a Book model with a ManyToManyField linking to
Author, we could add a through model AuthorBook with a new field
is_primary, like so:

from django.db import migrations, models
import django.db.models.deletion

class Migration(migrations.Migration):
 dependencies = [
 ('core', '0001_initial'),
]

 operations = [
 migrations.SeparateDatabaseAndState(
 database_operations=[
 # Old table name from checking with sqlmigrate, new table
 # name from AuthorBook._meta.db_table.
 migrations.RunSQL(
 sql='ALTER TABLE core_book_authors RENAME TO core_authorbook',
 reverse_sql='ALTER TABLE core_authorbook RENAME TO core_book_authors',
),
],
 state_operations=[
 migrations.CreateModel(
 name='AuthorBook',
 fields=[
 (
 'id',
 models.AutoField(
 auto_created=True,
 primary_key=True,
 serialize=False,
 verbose_name='ID',
),
),
 (
 'author',
 models.ForeignKey(
 on_delete=django.db.models.deletion.DO_NOTHING,
 to='core.Author',
),
),
 (
 'book',
 models.ForeignKey(
 on_delete=django.db.models.deletion.DO_NOTHING,
 to='core.Book',
),
),
],
),
 migrations.AlterField(
 model_name='book',
 name='authors',
 field=models.ManyToManyField(
 to='core.Author',
 through='core.AuthorBook',
),
),
],
),
 migrations.AddField(
 model_name='authorbook',
 name='is_primary',
 field=models.BooleanField(default=False),
),
]

Changing an unmanaged model to managed

If you want to change an unmanaged model (managed=False) to managed, you must remove
managed=False and generate a migration before making other schema-related
changes to the model, since schema changes that appear in the migration that
contains the operation to change Meta.managed may not be applied.

Django FAQ

	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	How is Django licensed?

	Why does Django include Python’s license file?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	How do I cite Django?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	What Python version can I use with Django?

	What Python version should I use with Django?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	Does Django support NoSQL databases?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	Some objects aren’t appearing in the admin.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	What browsers are supported for using the admin?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

	Troubleshooting
	Problems running django-admin

	Miscellaneous

FAQ: General

Why does this project exist?

Django grew from a very practical need: World Online, a newspaper Web
operation, is responsible for building intensive Web applications on journalism
deadlines. In the fast-paced newsroom, World Online often has only a matter of
hours to take a complicated Web application from concept to public launch.

At the same time, the World Online Web developers have consistently been
perfectionists when it comes to following best practices of Web development.

In fall 2003, the World Online developers (Adrian Holovaty and Simon Willison)
ditched PHP and began using Python to develop its websites. As they built
intensive, richly interactive sites such as Lawrence.com, they began to extract
a generic Web development framework that let them build Web applications more
and more quickly. They tweaked this framework constantly, adding improvements
over two years.

In summer 2005, World Online decided to open-source the resulting software,
Django. Django would not be possible without a whole host of open-source
projects – Apache [https://httpd.apache.org/], Python [https://www.python.org/], and PostgreSQL [https://www.postgresql.org/] to name a few – and we’re
thrilled to be able to give something back to the open-source community.

What does “Django” mean, and how do you pronounce it?

Django is named after Django Reinhardt [https://en.wikipedia.org/wiki/Django_Reinhardt], a jazz manouche guitarist from the 1930s
to early 1950s. To this day, he’s considered one of the best guitarists of all time.

Listen to his music. You’ll like it.

Django is pronounced JANG-oh. Rhymes with FANG-oh. The “D” is silent.

We’ve also recorded an audio clip of the pronunciation [https://www.red-bean.com/~adrian/django_pronunciation.mp3].

Is Django stable?

Yes, it’s quite stable. Companies like Disqus, Instagram, Pinterest, and
Mozilla have been using Django for many years. Sites built on Django have
weathered traffic spikes of over 50 thousand hits per second.

Does Django scale?

Yes. Compared to development time, hardware is cheap, and so Django is
designed to take advantage of as much hardware as you can throw at it.

Django uses a “shared-nothing” architecture, which means you can add hardware
at any level – database servers, caching servers or Web/application servers.

The framework cleanly separates components such as its database layer and
application layer. And it ships with a simple-yet-powerful
cache framework.

Who’s behind this?

Django was originally developed at World Online, the Web department of a
newspaper in Lawrence, Kansas, USA. Django’s now run by an international
team of volunteers [https://www.djangoproject.com/foundation/teams/].

How is Django licensed?

Django is distributed under the 3-clause BSD license [https://github.com/django/django/blob/master/LICENSE]. This
is an open source license granting broad permissions to modify and redistribute
Django.

Why does Django include Python’s license file?

Django includes code from the Python standard library. Python is distributed
under a permissive open source license. A copy of the Python license [https://github.com/django/django/blob/master/LICENSE.python] is included with Django for compliance with Python’s terms.

Which sites use Django?

DjangoSites.org [https://djangosites.org] features a constantly growing list of Django-powered sites.

Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

Well, the standard names are debatable.

In our interpretation of MVC, the “view” describes the data that gets presented
to the user. It’s not necessarily how the data looks, but which data is
presented. The view describes which data you see, not how you see it. It’s
a subtle distinction.

So, in our case, a “view” is the Python callback function for a particular URL,
because that callback function describes which data is presented.

Furthermore, it’s sensible to separate content from presentation – which is
where templates come in. In Django, a “view” describes which data is presented,
but a view normally delegates to a template, which describes how the data is
presented.

Where does the “controller” fit in, then? In Django’s case, it’s probably the
framework itself: the machinery that sends a request to the appropriate view,
according to the Django URL configuration.

If you’re hungry for acronyms, you might say that Django is a “MTV” framework
– that is, “model”, “template”, and “view.” That breakdown makes much more
sense.

At the end of the day, of course, it comes down to getting stuff done. And,
regardless of how things are named, Django gets stuff done in a way that’s most
logical to us.

<Framework X> does <feature Y> – why doesn’t Django?

We’re well aware that there are other awesome Web frameworks out there, and
we’re not averse to borrowing ideas where appropriate. However, Django was
developed precisely because we were unhappy with the status quo, so please be
aware that “because <Framework X> does it” is not going to be sufficient reason
to add a given feature to Django.

Why did you write all of Django from scratch, instead of using other Python libraries?

When Django was originally written, Adrian and Simon spent quite a bit of time
exploring the various Python Web frameworks available.

In our opinion, none of them were completely up to snuff.

We’re picky. You might even call us perfectionists. (With deadlines.)

Over time, we stumbled across open-source libraries that did things we’d
already implemented. It was reassuring to see other people solving similar
problems in similar ways, but it was too late to integrate outside code: We’d
already written, tested and implemented our own framework bits in several
production settings – and our own code met our needs delightfully.

In most cases, however, we found that existing frameworks/tools inevitably had
some sort of fundamental, fatal flaw that made us squeamish. No tool fit our
philosophies 100%.

Like we said: We’re picky.

We’ve documented our philosophies on the
design philosophies page.

Is Django a content-management-system (CMS)?

No, Django is not a CMS, or any sort of “turnkey product” in and of itself.
It’s a Web framework; it’s a programming tool that lets you build websites.

For example, it doesn’t make much sense to compare Django to something like
Drupal [https://drupal.org/], because Django is something you use to create things like Drupal.

Of course, Django’s automatic admin site is fantastic and timesaving – but
the admin site is one module of Django the framework. Furthermore, although
Django has special conveniences for building “CMS-y” apps, that doesn’t mean
it’s not just as appropriate for building “non-CMS-y” apps (whatever that
means!).

How can I download the Django documentation to read it offline?

The Django docs are available in the docs directory of each Django tarball
release. These docs are in reST (reStructuredText) format, and each text file
corresponds to a Web page on the official Django site.

Because the documentation is stored in revision control [https://github.com/django/django/blob/master/docs], you
can browse documentation changes just like you can browse code changes.

Technically, the docs on Django’s site are generated from the latest development
versions of those reST documents, so the docs on the Django site may offer more
information than the docs that come with the latest Django release.

How do I cite Django?

It’s difficult to give an official citation format, for two reasons: citation
formats can vary wildly between publications, and citation standards for
software are still a matter of some debate.

For example, APA style [https://www.apastyle.org], would dictate something like:

Django (Version 1.5) [Computer Software]. (2013). Retrieved from https://djangoproject.com.

However, the only true guide is what your publisher will accept, so get a copy
of those guidelines and fill in the gaps as best you can.

If your referencing style guide requires a publisher name, use “Django Software
Foundation”.

If you need a publishing location, use “Lawrence, Kansas”.

If you need a web address, use https://djangoproject.com.

If you need a name, just use “Django”, without any tagline.

If you need a publication date, use the year of release of the version you’re
referencing (e.g., 2013 for v1.5)

FAQ: Installation

How do I get started?

	Download the code [https://www.djangoproject.com/download/].

	Install Django (read the installation guide).

	Walk through the tutorial.

	Check out the rest of the documentation, and ask questions [https://www.djangoproject.com/community/] if you
run into trouble.

What are Django’s prerequisites?

Django requires Python. See the table in the next question for the versions of
Python that work with each version of Django. Other Python libraries may be
required for some use cases, but you’ll receive an error about them as they’re
needed.

For a development environment – if you just want to experiment with Django –
you don’t need to have a separate Web server installed or database server.

Django comes with its own lightweight development server.
For a production environment, Django follows the WSGI spec, PEP 3333 [https://www.python.org/dev/peps/pep-3333], which
means it can run on a variety of web servers. See Deploying Django for more information.

Django runs SQLite [https://www.sqlite.org/] by default, which is included in Python installations.
For a production environment, we recommend PostgreSQL [https://www.postgresql.org/]; but we also officially
support MariaDB [https://mariadb.org/], MySQL [https://www.mysql.com/], SQLite [https://www.sqlite.org/], and Oracle [https://www.oracle.com/]. See Supported Databases for more information.

What Python version can I use with Django?

	Django version

	Python versions

	1.11

	2.7, 3.4, 3.5, 3.6, 3.7 (added in 1.11.17)

	2.0

	3.4, 3.5, 3.6, 3.7

	2.1

	3.5, 3.6, 3.7

	2.2

	3.5, 3.6, 3.7, 3.8 (added in 2.2.8), 3.9 (added in 2.2.17)

	3.0

	3.6, 3.7, 3.8, 3.9 (added in 3.0.11)

For each version of Python, only the latest micro release (A.B.C) is officially
supported. You can find the latest micro version for each series on the Python
download page [https://www.python.org/downloads/].

Typically, we will support a Python version up to and including the first
Django LTS release whose security support ends after security support for that
version of Python ends. For example, Python 3.3 security support ended
September 2017 and Django 1.8 LTS security support ended April 2018. Therefore
Django 1.8 is the last version to support Python 3.3.

What Python version should I use with Django?

Python 3 is recommended. Django 1.11 is the last version to support Python 2.7.
Support for Python 2.7 and Django 1.11 ends in 2020.

Since newer versions of Python are often faster, have more features, and are
better supported, the latest version of Python 3 is recommended.

You don’t lose anything in Django by using an older release, but you don’t take
advantage of the improvements and optimizations in newer Python releases.
Third-party applications for use with Django are, of course, free to set their
own version requirements.

Should I use the stable version or development version?

Generally, if you’re using code in production, you should be using a
stable release. The Django project publishes a full stable release
every nine months or so, with bugfix updates in between. These stable
releases contain the API that is covered by our backwards
compatibility guarantees; if you write code against stable releases,
you shouldn’t have any problems upgrading when the next official
version is released.

FAQ: Using Django

Why do I get an error about importing DJANGO_SETTINGS_MODULE?

Make sure that:

	The environment variable DJANGO_SETTINGS_MODULE is set to a
fully-qualified Python module (i.e. “mysite.settings”).

	Said module is on sys.path (import mysite.settings should work).

	The module doesn’t contain syntax errors (of course).

I can’t stand your template language. Do I have to use it?

We happen to think our template engine is the best thing since chunky bacon,
but we recognize that choosing a template language runs close to religion.
There’s nothing about Django that requires using the template language, so
if you’re attached to Jinja2, Mako, or whatever, feel free to use those.

Do I have to use your model/database layer?

Nope. Just like the template system, the model/database layer is decoupled from
the rest of the framework.

The one exception is: If you use a different database library, you won’t get to
use Django’s automatically-generated admin site. That app is coupled to the
Django database layer.

How do I use image and file fields?

Using a FileField or an
ImageField in a model takes a few steps:

	In your settings file, you’ll need to define MEDIA_ROOT as
the full path to a directory where you’d like Django to store uploaded
files. (For performance, these files are not stored in the database.)
Define MEDIA_URL as the base public URL of that directory.
Make sure that this directory is writable by the Web server’s user
account.

	Add the FileField or
ImageField to your model, defining the
upload_to option to specify a
subdirectory of MEDIA_ROOT to use for uploaded files.

	All that will be stored in your database is a path to the file
(relative to MEDIA_ROOT). You’ll most likely want to use the
convenience url attribute
provided by Django. For example, if your
ImageField is called mug_shot, you can get
the absolute path to your image in a template with
{{ object.mug_shot.url }}.

How do I make a variable available to all my templates?

Sometimes your templates all need the same thing. A common example would be
dynamically generated menus. At first glance, it seems logical to add a common
dictionary to the template context.

The best way to do this in Django is to use a RequestContext. Details on
how to do this are here: Using RequestContext.

FAQ: Getting Help

How do I do X? Why doesn’t Y work? Where can I go to get help?

First, please check if your question is answered on the FAQ. Also, search for answers using your favorite search engine, and
in the forum [https://forum.djangoproject.com/].

If you can’t find an answer, please take a few minutes to formulate your
question well. Explaining the problems you are facing clearly will help others
help you. See the StackOverflow guide on asking good questions [https://stackoverflow.com/help/how-to-ask].

Then, please post it in one of the following channels:

	The Django Forum section “Using Django” [https://forum.djangoproject.com/c/users]. This is for web-based
discussions.

	The django-users mailing list. This is for email-based discussions.

	The #django IRC channel on the Freenode IRC network. This is for
chat-based discussions.

In all these channels please abide by the Django Code of Conduct [https://www.djangoproject.com/conduct/]. In
summary, being friendly and patient, considerate, respectful, and careful in
your choice of words.

Why hasn’t my message appeared on django-users?

django-users has a lot of subscribers. This is good for the community, as
it means many people are available to contribute answers to questions.
Unfortunately, it also means that django-users is an attractive target for
spammers.

In order to combat the spam problem, when you join the django-users mailing
list, we manually moderate the first message you send to the list. This means
that spammers get caught, but it also means that your first question to the
list might take a little longer to get answered. We apologize for any
inconvenience that this policy may cause.

Nobody answered my question! What should I do?

Try making your question more specific, or provide a better example of your
problem.

As with most open-source projects, the folks on these channels are volunteers.
If nobody has answered your question, it may be because nobody knows the
answer, it may be because nobody can understand the question, or it may be that
everybody that can help is busy.

You can also try asking on a different channel. But please don’t post your
question in all three channels in quick succession.

You might notice we have a second mailing list, called django-developers.
This list is for discussion of the development of Django itself. Please don’t
email support questions to this mailing list. Asking a tech support question
there is considered impolite, and you will likely be directed to ask on
django-users.

I think I’ve found a bug! What should I do?

Detailed instructions on how to handle a potential bug can be found in our
Guide to contributing to Django.

I think I’ve found a security problem! What should I do?

If you think you’ve found a security problem with Django, please send a message
to security@djangoproject.com. This is a private list only open to long-time,
highly trusted Django developers, and its archives are not publicly readable.

Due to the sensitive nature of security issues, we ask that if you think you
have found a security problem, please don’t post a message on the forum, IRC,
or one of the public mailing lists. Django has a
policy for handling security issues;
while a defect is outstanding, we would like to minimize any damage that
could be inflicted through public knowledge of that defect.

FAQ: Databases and models

How can I see the raw SQL queries Django is running?

Make sure your Django DEBUG setting is set to True.
Then do this:

>>> from django.db import connection
>>> connection.queries
[{'sql': 'SELECT polls_polls.id, polls_polls.question, polls_polls.pub_date FROM polls_polls',
'time': '0.002'}]

connection.queries is only available if DEBUG is True.
It’s a list of dictionaries in order of query execution. Each dictionary has
the following:

``sql`` -- The raw SQL statement
``time`` -- How long the statement took to execute, in seconds.

connection.queries includes all SQL statements – INSERTs, UPDATES,
SELECTs, etc. Each time your app hits the database, the query will be recorded.

If you are using multiple databases, you can use the
same interface on each member of the connections dictionary:

>>> from django.db import connections
>>> connections['my_db_alias'].queries

If you need to clear the query list manually at any point in your functions,
call reset_queries(), like this:

from django.db import reset_queries
reset_queries()

Can I use Django with a pre-existing database?

Yes. See Integrating with a legacy database.

If I make changes to a model, how do I update the database?

Take a look at Django’s support for schema migrations.

If you don’t mind clearing data, your project’s manage.py utility has a
flush option to reset the database to the state it was in
immediately after migrate was executed.

Do Django models support multiple-column primary keys?

No. Only single-column primary keys are supported.

But this isn’t an issue in practice, because there’s nothing stopping you from
adding other constraints (using the unique_together model option or
creating the constraint directly in your database), and enforcing the
uniqueness at that level. Single-column primary keys are needed for things such
as the admin interface to work; e.g., you need a single value to specify
an object to edit or delete.

Does Django support NoSQL databases?

NoSQL databases are not officially supported by Django itself. There are,
however, a number of side projects and forks which allow NoSQL functionality in
Django.

You can take a look on the wiki page [https://code.djangoproject.com/wiki/NoSqlSupport] which discusses some projects.

How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

We try to avoid adding special cases in the Django code to accommodate all the
database-specific options such as table type, etc. If you’d like to use any of
these options, create a migration with a
RunSQL operation that contains
ALTER TABLE statements that do what you want to do.

For example, if you’re using MySQL and want your tables to use the MyISAM table
type, use the following SQL:

ALTER TABLE myapp_mytable ENGINE=MyISAM;

FAQ: The admin

I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

The login cookie isn’t being set correctly, because the domain of the cookie
sent out by Django doesn’t match the domain in your browser. Try setting the
SESSION_COOKIE_DOMAIN setting to match your domain. For example, if
you’re going to “https://www.example.com/admin/” in your browser, set
SESSION_COOKIE_DOMAIN = 'www.example.com'.

I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

If you’re sure your username and password are correct, make sure your user
account has is_active and
is_staff set to True. The admin site
only allows access to users with those two fields both set to True.

How do I automatically set a field’s value to the user who last edited the object in the admin?

The ModelAdmin class provides customization hooks
that allow you to transform an object as it saved, using details from the
request. By extracting the current user from the request, and customizing the
save_model() hook, you can update an
object to reflect the user that edited it. See the documentation on
ModelAdmin methods for an example.

How do I limit admin access so that objects can only be edited by the users who created them?

The ModelAdmin class also provides customization
hooks that allow you to control the visibility and editability of objects in the
admin. Using the same trick of extracting the user from the request, the
get_queryset() and
has_change_permission() can be used to
control the visibility and editability of objects in the admin.

My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

See serving the admin files
in the “How to use Django with mod_wsgi” documentation.

My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

Django won’t bother displaying the filter for a ManyToManyField if there
are fewer than two related objects.

For example, if your list_filter
includes sites, and there’s only one site in your
database, it won’t display a “Site” filter. In that case, filtering by site
would be meaningless.

Some objects aren’t appearing in the admin.

Inconsistent row counts may be caused by missing foreign key values or a
foreign key field incorrectly set to null=False. If you have a record with a
ForeignKey pointing to a nonexistent object and
that foreign key is included is
list_display, the record will not be
shown in the admin changelist because the Django model is declaring an
integrity constraint that is not implemented at the database level.

How can I customize the functionality of the admin interface?

You’ve got several options. If you want to piggyback on top of an add/change
form that Django automatically generates, you can attach arbitrary JavaScript
modules to the page via the model’s class Admin js parameter. That parameter is a list of URLs, as strings,
pointing to JavaScript modules that will be included within the admin form via
a <script> tag.

If you want more flexibility than is feasible by tweaking the auto-generated
forms, feel free to write custom views for the admin. The admin is powered by
Django itself, and you can write custom views that hook into the authentication
system, check permissions and do whatever else they need to do.

If you want to customize the look-and-feel of the admin interface, read the
next question.

The dynamically-generated admin site is ugly! How can I change it?

We like it, but if you don’t agree, you can modify the admin site’s
presentation by editing the CSS stylesheet and/or associated image files. The
site is built using semantic HTML and plenty of CSS hooks, so any changes you’d
like to make should be possible by editing the stylesheet.

What browsers are supported for using the admin?

The admin provides a fully-functional experience to YUI’s A-grade [https://github.com/yui/yui3/wiki/Graded-Browser-Support] browsers,
with the notable exception of IE6, which is not supported.

There may be minor stylistic differences between supported browsers—for
example, some browsers may not support rounded corners. These are considered
acceptable variations in rendering.

FAQ: Contributing code

How can I get started contributing code to Django?

Thanks for asking! We’ve written an entire document devoted to this question.
It’s titled Contributing to Django.

I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

Don’t worry: We’re not ignoring you!

It’s important to understand there is a difference between “a ticket is being
ignored” and “a ticket has not been attended to yet.” Django’s ticket system
contains hundreds of open tickets, of various degrees of impact on end-user
functionality, and Django’s developers have to review and prioritize.

On top of that: the people who work on Django are all volunteers. As a result,
the amount of time that we have to work on the framework is limited and will
vary from week to week depending on our spare time. If we’re busy, we may not
be able to spend as much time on Django as we might want.

The best way to make sure tickets do not get hung up on the way to checkin is
to make it dead easy, even for someone who may not be intimately familiar with
that area of the code, to understand the problem and verify the fix:

	Are there clear instructions on how to reproduce the bug? If this
touches a dependency (such as Pillow), a contrib module, or a specific
database, are those instructions clear enough even for someone not
familiar with it?

	If there are several patches attached to the ticket, is it clear what
each one does, which ones can be ignored and which matter?

	Does the patch include a unit test? If not, is there a very clear
explanation why not? A test expresses succinctly what the problem is,
and shows that the patch actually fixes it.

If your patch stands no chance of inclusion in Django, we won’t ignore it –
we’ll just close the ticket. So if your ticket is still open, it doesn’t mean
we’re ignoring you; it just means we haven’t had time to look at it yet.

When and how might I remind the team of a patch I care about?

A polite, well-timed message to the mailing list is one way to get attention.
To determine the right time, you need to keep an eye on the schedule. If you
post your message right before a release deadline, you’re not likely to get the
sort of attention you require.

Gentle IRC reminders can also work – again, strategically timed if possible.
During a bug sprint would be a very good time, for example.

Another way to get traction is to pull several related tickets together. When
the someone sits down to review a bug in an area they haven’t touched for
a while, it can take a few minutes to remember all the fine details of how
that area of code works. If you collect several minor bug fixes together into
a similarly themed group, you make an attractive target, as the cost of coming
up to speed on an area of code can be spread over multiple tickets.

Please refrain from emailing anyone personally or repeatedly raising the same
issue over and over. This sort of behavior will not gain you any additional
attention – certainly not the attention that you need in order to get your
issue addressed.

But I’ve reminded you several times and you keep ignoring my patch!

Seriously - we’re not ignoring you. If your patch stands no chance of
inclusion in Django, we’ll close the ticket. For all the other tickets, we
need to prioritize our efforts, which means that some tickets will be
addressed before others.

One of the criteria that is used to prioritize bug fixes is the number of
people that will likely be affected by a given bug. Bugs that have the
potential to affect many people will generally get priority over those that
are edge cases.

Another reason that bugs might be ignored for while is if the bug is a symptom
of a larger problem. While we can spend time writing, testing and applying
lots of little patches, sometimes the right solution is to rebuild. If a
rebuild or refactor of a particular component has been proposed or is
underway, you may find that bugs affecting that component will not get as much
attention. Again, this is a matter of prioritizing scarce resources. By
concentrating on the rebuild, we can close all the little bugs at once, and
hopefully prevent other little bugs from appearing in the future.

Whatever the reason, please keep in mind that while you may hit a particular
bug regularly, it doesn’t necessarily follow that every single Django user
will hit the same bug. Different users use Django in different ways, stressing
different parts of the code under different conditions. When we evaluate the
relative priorities, we are generally trying to consider the needs of the
entire community, instead of prioritizing the impact on one particular user.
This doesn’t mean that we think your problem is unimportant – just that in the
limited time we have available, we will always err on the side of making 10
people happy rather than making a single person happy.

Troubleshooting

This page contains some advice about errors and problems commonly encountered
during the development of Django applications.

Problems running django-admin

command not found: django-admin

django-admin should be on your system path if you
installed Django via pip. If it’s not on your path, you can find it in
site-packages/django/bin, where site-packages is a directory within
your Python installation. Consider symlinking to django-admin from some place on your path, such as
/usr/local/bin.

If django-admin doesn’t work but django-admin.py does, you’re probably
using a version of Django that doesn’t match the version of this documentation.
django-admin is new in Django 1.7.

macOS permissions

If you’re using macOS, you may see the message “permission denied” when
you try to run django-admin. This is because, on Unix-based systems like
macOS, a file must be marked as “executable” before it can be run as a program.
To do this, open Terminal.app and navigate (using the cd command) to the
directory where django-admin is installed, then
run the command sudo chmod +x django-admin.

Miscellaneous

I’m getting a UnicodeDecodeError. What am I doing wrong?

This class of errors happen when a bytestring containing non-ASCII sequences is
transformed into a Unicode string and the specified encoding is incorrect. The
output generally looks like this:

UnicodeDecodeError: 'ascii' codec can't decode byte 0x?? in position ?:
ordinal not in range(128)

The resolution mostly depends on the context, however here are two common
pitfalls producing this error:

	Your system locale may be a default ASCII locale, like the “C” locale on
UNIX-like systems (can be checked by the locale command). If it’s the
case, please refer to your system documentation to learn how you can change
this to a UTF-8 locale.

Related resources:

	Unicode in Django

	https://wiki.python.org/moin/UnicodeDecodeError

Applications

Django contains a registry of installed applications that stores configuration
and provides introspection. It also maintains a list of available models.

This registry is called apps and it’s available in
django.apps:

>>> from django.apps import apps
>>> apps.get_app_config('admin').verbose_name
'Administration'

Projects and applications

The term project describes a Django web application. The project Python
package is defined primarily by a settings module, but it usually contains
other things. For example, when you run django-admin startproject mysite
you’ll get a mysite project directory that contains a mysite Python
package with settings.py, urls.py, asgi.py and wsgi.py. The
project package is often extended to include things like fixtures, CSS, and
templates which aren’t tied to a particular application.

A project’s root directory (the one that contains manage.py) is usually
the container for all of a project’s applications which aren’t installed
separately.

The term application describes a Python package that provides some set of
features. Applications may be reused in various
projects.

Applications include some combination of models, views, templates, template
tags, static files, URLs, middleware, etc. They’re generally wired into
projects with the INSTALLED_APPS setting and optionally with other
mechanisms such as URLconfs, the MIDDLEWARE setting, or template
inheritance.

It is important to understand that a Django application is a set of code
that interacts with various parts of the framework. There’s no such thing as
an Application object. However, there’s a few places where Django needs to
interact with installed applications, mainly for configuration and also for
introspection. That’s why the application registry maintains metadata in an
AppConfig instance for each installed application.

There’s no restriction that a project package can’t also be considered an
application and have models, etc. (which would require adding it to
INSTALLED_APPS).

Configuring applications

To configure an application, subclass AppConfig and put
the dotted path to that subclass in INSTALLED_APPS.

When INSTALLED_APPS contains the dotted path to an application
module, Django checks for a default_app_config variable in that module.

If it’s defined, it’s the dotted path to the AppConfig
subclass for that application.

If there is no default_app_config, Django uses the base
AppConfig class.

default_app_config allows applications that predate Django 1.7 such as
django.contrib.admin to opt-in to AppConfig features
without requiring users to update their INSTALLED_APPS.

New applications should avoid default_app_config. Instead they should
require the dotted path to the appropriate AppConfig
subclass to be configured explicitly in INSTALLED_APPS.

For application authors

If you’re creating a pluggable app called “Rock ’n’ roll”, here’s how you
would provide a proper name for the admin:

rock_n_roll/apps.py

from django.apps import AppConfig

class RockNRollConfig(AppConfig):
 name = 'rock_n_roll'
 verbose_name = "Rock ’n’ roll"

You can make your application load this AppConfig
subclass by default as follows:

rock_n_roll/__init__.py

default_app_config = 'rock_n_roll.apps.RockNRollConfig'

That will cause RockNRollConfig to be used when INSTALLED_APPS
contains 'rock_n_roll'. This allows you to make use of
AppConfig features without requiring your users to update
their INSTALLED_APPS setting. Besides this use case, it’s best to
avoid using default_app_config and instead specify the app config class in
INSTALLED_APPS as described next.

Of course, you can also tell your users to put
'rock_n_roll.apps.RockNRollConfig' in their INSTALLED_APPS
setting. You can even provide several different
AppConfig subclasses with different behaviors and allow
your users to choose one via their INSTALLED_APPS setting.

The recommended convention is to put the configuration class in a submodule of
the application called apps. However, this isn’t enforced by Django.

You must include the name attribute for Django
to determine which application this configuration applies to. You can define
any attributes documented in the AppConfig API
reference.

Note

If your code imports the application registry in an application’s
__init__.py, the name apps will clash with the apps submodule.
The best practice is to move that code to a submodule and import it. A
workaround is to import the registry under a different name:

from django.apps import apps as django_apps

For application users

If you’re using “Rock ’n’ roll” in a project called anthology, but you
want it to show up as “Jazz Manouche” instead, you can provide your own
configuration:

anthology/apps.py

from rock_n_roll.apps import RockNRollConfig

class JazzManoucheConfig(RockNRollConfig):
 verbose_name = "Jazz Manouche"

anthology/settings.py

INSTALLED_APPS = [
 'anthology.apps.JazzManoucheConfig',
 # ...
]

Again, defining project-specific configuration classes in a submodule called
apps is a convention, not a requirement.

Application configuration

	
class AppConfig[source]

	Application configuration objects store metadata for an application. Some
attributes can be configured in AppConfig
subclasses. Others are set by Django and read-only.

Configurable attributes

	
AppConfig.name

	Full Python path to the application, e.g. 'django.contrib.admin'.

This attribute defines which application the configuration applies to. It
must be set in all AppConfig subclasses.

It must be unique across a Django project.

	
AppConfig.label

	Short name for the application, e.g. 'admin'

This attribute allows relabeling an application when two applications
have conflicting labels. It defaults to the last component of name.
It should be a valid Python identifier.

It must be unique across a Django project.

	
AppConfig.verbose_name

	Human-readable name for the application, e.g. “Administration”.

This attribute defaults to label.title().

	
AppConfig.path

	Filesystem path to the application directory, e.g.
'/usr/lib/pythonX.Y/dist-packages/django/contrib/admin'.

In most cases, Django can automatically detect and set this, but you can
also provide an explicit override as a class attribute on your
AppConfig subclass. In a few situations this is
required; for instance if the app package is a namespace package with
multiple paths.

Read-only attributes

	
AppConfig.module

	Root module for the application, e.g. <module 'django.contrib.admin' from
'django/contrib/admin/__init__.py'>.

	
AppConfig.models_module

	Module containing the models, e.g. <module 'django.contrib.admin.models'
from 'django/contrib/admin/models.py'>.

It may be None if the application doesn’t contain a models module.
Note that the database related signals such as
pre_migrate and
post_migrate
are only emitted for applications that have a models module.

Methods

	
AppConfig.get_models()[source]

	Returns an iterable of Model classes for this
application.

Requires the app registry to be fully populated.

	
AppConfig.get_model(model_name, require_ready=True)[source]

	Returns the Model with the given
model_name. model_name is case-insensitive.

Raises LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] if no such model exists in this application.

Requires the app registry to be fully populated unless the
require_ready argument is set to False. require_ready behaves
exactly as in apps.get_model().

	
AppConfig.ready()[source]

	Subclasses can override this method to perform initialization tasks such
as registering signals. It is called as soon as the registry is fully
populated.

Although you can’t import models at the module-level where
AppConfig classes are defined, you can import them in
ready(), using either an import statement or
get_model().

If you’re registering model signals, you
can refer to the sender by its string label instead of using the model
class itself.

Example:

from django.apps import AppConfig
from django.db.models.signals import pre_save

class RockNRollConfig(AppConfig):
 # ...

 def ready(self):
 # importing model classes
 from .models import MyModel # or...
 MyModel = self.get_model('MyModel')

 # registering signals with the model's string label
 pre_save.connect(receiver, sender='app_label.MyModel')

Warning

Although you can access model classes as described above, avoid
interacting with the database in your ready() implementation.
This includes model methods that execute queries
(save(),
delete(), manager methods etc.), and
also raw SQL queries via django.db.connection. Your
ready() method will run during startup of every management
command. For example, even though the test database configuration is
separate from the production settings, manage.py test would still
execute some queries against your production database!

Note

In the usual initialization process, the ready method is only called
once by Django. But in some corner cases, particularly in tests which
are fiddling with installed applications, ready might be called more
than once. In that case, either write idempotent methods, or put a flag
on your AppConfig classes to prevent re-running code which should
be executed exactly one time.

Namespace packages as apps

Python packages without an __init__.py file are known as “namespace
packages” and may be spread across multiple directories at different locations
on sys.path (see PEP 420 [https://www.python.org/dev/peps/pep-0420]).

Django applications require a single base filesystem path where Django
(depending on configuration) will search for templates, static assets,
etc. Thus, namespace packages may only be Django applications if one of the
following is true:

	The namespace package actually has only a single location (i.e. is not
spread across more than one directory.)

	The AppConfig class used to configure the application
has a path class attribute, which is the
absolute directory path Django will use as the single base path for the
application.

If neither of these conditions is met, Django will raise
ImproperlyConfigured.

Application registry

	
apps

	The application registry provides the following public API. Methods that
aren’t listed below are considered private and may change without notice.

	
apps.ready

	Boolean attribute that is set to True after the registry is fully
populated and all AppConfig.ready() methods are called.

	
apps.get_app_configs()

	Returns an iterable of AppConfig instances.

	
apps.get_app_config(app_label)

	Returns an AppConfig for the application with the
given app_label. Raises LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] if no such application
exists.

	
apps.is_installed(app_name)

	Checks whether an application with the given name exists in the registry.
app_name is the full name of the app, e.g. 'django.contrib.admin'.

	
apps.get_model(app_label, model_name, require_ready=True)

	Returns the Model with the given app_label
and model_name. As a shortcut, this method also accepts a single
argument in the form app_label.model_name. model_name is
case-insensitive.

Raises LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] if no such application or model exists. Raises
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] when called with a single argument that doesn’t contain
exactly one dot.

Requires the app registry to be fully populated unless the
require_ready argument is set to False.

Setting require_ready to False allows looking up models
while the app registry is being populated,
specifically during the second phase where it imports models. Then
get_model() has the same effect as importing the model. The main use
case is to configure model classes with settings, such as
AUTH_USER_MODEL.

When require_ready is False, get_model() returns a model class
that may not be fully functional (reverse accessors may be missing, for
example) until the app registry is fully populated. For this reason, it’s
best to leave require_ready to the default value of True whenever
possible.

Initialization process

How applications are loaded

When Django starts, django.setup() is responsible for populating the
application registry.

	
setup(set_prefix=True)[source]

	Configures Django by:

	Loading the settings.

	Setting up logging.

	If set_prefix is True, setting the URL resolver script prefix to
FORCE_SCRIPT_NAME if defined, or / otherwise.

	Initializing the application registry.

This function is called automatically:

	When running an HTTP server via Django’s WSGI support.

	When invoking a management command.

It must be called explicitly in other cases, for instance in plain Python
scripts.

The application registry is initialized in three stages. At each stage, Django
processes all applications in the order of INSTALLED_APPS.

	First Django imports each item in INSTALLED_APPS.

If it’s an application configuration class, Django imports the root package
of the application, defined by its name attribute. If
it’s a Python package, Django creates a default application configuration.

At this stage, your code shouldn’t import any models!

In other words, your applications’ root packages and the modules that
define your application configuration classes shouldn’t import any models,
even indirectly.

Strictly speaking, Django allows importing models once their application
configuration is loaded. However, in order to avoid needless constraints on
the order of INSTALLED_APPS, it’s strongly recommended not
import any models at this stage.

Once this stage completes, APIs that operate on application configurations
such as get_app_config() become usable.

	Then Django attempts to import the models submodule of each application,
if there is one.

You must define or import all models in your application’s models.py or
models/__init__.py. Otherwise, the application registry may not be fully
populated at this point, which could cause the ORM to malfunction.

Once this stage completes, APIs that operate on models such as
get_model() become usable.

	Finally Django runs the ready() method of each application
configuration.

Troubleshooting

Here are some common problems that you may encounter during initialization:

	AppRegistryNotReady: This happens when
importing an application configuration or a models module triggers code that
depends on the app registry.

For example, gettext() uses the app
registry to look up translation catalogs in applications. To translate at
import time, you need gettext_lazy()
instead. (Using gettext() would be a bug,
because the translation would happen at import time, rather than at each
request depending on the active language.)

Executing database queries with the ORM at import time in models modules
will also trigger this exception. The ORM cannot function properly until all
models are available.

This exception also happens if you forget to call django.setup() in
a standalone Python script.

	ImportError: cannot import name ... This happens if the import sequence
ends up in a loop.

To eliminate such problems, you should minimize dependencies between your
models modules and do as little work as possible at import time. To avoid
executing code at import time, you can move it into a function and cache its
results. The code will be executed when you first need its results. This
concept is known as “lazy evaluation”.

	django.contrib.admin automatically performs autodiscovery of admin
modules in installed applications. To prevent it, change your
INSTALLED_APPS to contain
'django.contrib.admin.apps.SimpleAdminConfig' instead of
'django.contrib.admin'.

System check framework

The system check framework is a set of static checks for validating Django
projects. It detects common problems and provides hints for how to fix them.
The framework is extensible so you can easily add your own checks.

For details on how to add your own checks and integrate them with Django’s
system checks, see the System check topic guide.

API reference

CheckMessage

	
class CheckMessage(level, msg, hint=None, obj=None, id=None)

	

The warnings and errors raised by system checks must be instances of
CheckMessage. An instance encapsulates a single reportable error or
warning. It also provides context and hints applicable to the message, and a
unique identifier that is used for filtering purposes.

Constructor arguments are:

	level

	The severity of the message. Use one of the predefined values: DEBUG,
INFO, WARNING, ERROR, CRITICAL. If the level is greater or
equal to ERROR, then Django will prevent management commands from
executing. Messages with level lower than ERROR (i.e. warnings) are
reported to the console, but can be silenced.

	msg

	A short (less than 80 characters) string describing the problem. The string
should not contain newlines.

	hint

	A single-line string providing a hint for fixing the problem. If no hint
can be provided, or the hint is self-evident from the error message, the
hint can be omitted, or a value of None can be used.

	obj

	Optional. An object providing context for the message (for example, the
model where the problem was discovered). The object should be a model,
field, or manager or any other object that defines a __str__() method.
The method is used while reporting all messages and its result precedes the
message.

	id

	Optional string. A unique identifier for the issue. Identifiers should
follow the pattern applabel.X001, where X is one of the letters
CEWID, indicating the message severity (C for criticals, E for
errors and so). The number can be allocated by the application, but should
be unique within that application.

There are subclasses to make creating messages with common levels easier. When
using them you can omit the level argument because it is implied by the
class name.

	
class Debug(msg, hint=None, obj=None, id=None)

	

	
class Info(msg, hint=None, obj=None, id=None)

	

	
class Warning(msg, hint=None obj=None, id=None)

	

	
class Error(msg, hint=None, obj=None, id=None)

	

	
class Critical(msg, hint=None, obj=None, id=None)

	

Builtin tags

Django’s system checks are organized using the following tags:

	admin: Checks of any admin site declarations.

	caches: Checks cache related configuration.

	compatibility: Flags potential problems with version upgrades.

	database: Checks database-related configuration issues. Database checks
are not run by default because they do more than static code analysis as
regular checks do. They are only run by the migrate command or if
you specify the database tag when calling the check command.

	models: Checks of model, field, and manager definitions.

	security: Checks security related configuration.

	signals: Checks on signal declarations and handler registrations.

	staticfiles: Checks django.contrib.staticfiles configuration.

	templates: Checks template related configuration.

	translation: Checks translation related configuration.

	urls: Checks URL configuration.

Some checks may be registered with multiple tags.

Core system checks

Backwards compatibility

Compatibility checks warn of potential problems that might occur after
upgrading Django.

	2_0.W001: Your URL pattern <pattern> has a route that contains
(?P<, begins with a ^, or ends with a $. This was likely an
oversight when migrating from url() to path().

Caches

The following checks verify that your CACHES setting is correctly
configured:

	caches.E001: You must define a 'default' cache in your
CACHES setting.

Database

MySQL

If you’re using MySQL, the following checks will be performed:

	mysql.E001: MySQL does not allow unique CharFields to have a
max_length > 255.

	mysql.W002: MySQL Strict Mode is not set for database connection
<alias>. See also Setting sql_mode.

Model fields

	fields.E001: Field names must not end with an underscore.

	fields.E002: Field names must not contain "__".

	fields.E003: pk is a reserved word that cannot be used as a field
name.

	fields.E004: choices must be an iterable (e.g., a list or tuple).

	fields.E005: choices must be an iterable returning (actual value,
human readable name) tuples.

	fields.E006: db_index must be None, True or False.

	fields.E007: Primary keys must not have null=True.

	fields.E008: All validators must be callable.

	fields.E009: max_length is too small to fit the longest value in
choices (<count> characters).

	fields.E100: AutoFields must set primary_key=True.

	fields.E110: BooleanFields do not accept null values. This check
appeared before support for null values was added in Django 2.1.

	fields.E120: CharFields must define a max_length attribute.

	fields.E121: max_length must be a positive integer.

	fields.W122: max_length is ignored when used with
<integer field type>.

	fields.E130: DecimalFields must define a decimal_places attribute.

	fields.E131: decimal_places must be a non-negative integer.

	fields.E132: DecimalFields must define a max_digits attribute.

	fields.E133: max_digits must be a non-negative integer.

	fields.E134: max_digits must be greater or equal to decimal_places.

	fields.E140: FilePathFields must have either allow_files or
allow_folders set to True.

	fields.E150: GenericIPAddressFields cannot accept blank values if
null values are not allowed, as blank values are stored as nulls.

	fields.E160: The options auto_now, auto_now_add, and default
are mutually exclusive. Only one of these options may be present.

	fields.W161: Fixed default value provided.

	fields.W162: <database> does not support a database index on
<field data type> columns.

	fields.E170: BinaryField’s default cannot be a string. Use bytes
content instead.

	fields.E900: IPAddressField has been removed except for support in
historical migrations.

	fields.W900: IPAddressField has been deprecated. Support for it
(except in historical migrations) will be removed in Django 1.9. This check
appeared in Django 1.7 and 1.8.

	fields.W901: CommaSeparatedIntegerField has been deprecated. Support
for it (except in historical migrations) will be removed in Django 2.0. This
check appeared in Django 1.10 and 1.11.

	fields.E901: CommaSeparatedIntegerField is removed except for support
in historical migrations.

	fields.W902: FloatRangeField is deprecated and will be removed in
Django 3.1.

File fields

	fields.E200: unique is not a valid argument for a FileField.
This check is removed in Django 1.11.

	fields.E201: primary_key is not a valid argument for a FileField.

	fields.E202: FileField’s upload_to argument must be a relative
path, not an absolute path.

	fields.E210: Cannot use ImageField because Pillow is not installed.

Related fields

	fields.E300: Field defines a relation with model <model>, which is
either not installed, or is abstract.

	fields.E301: Field defines a relation with the model <model> which
has been swapped out.

	fields.E302: Accessor for field <field name> clashes with field
<field name>.

	fields.E303: Reverse query name for field <field name> clashes with
field <field name>.

	fields.E304: Field name <field name> clashes with accessor for
<field name>.

	fields.E305: Field name <field name> clashes with reverse query name
for <field name>.

	fields.E306: Related name must be a valid Python identifier or end with
a '+'.

	fields.E307: The field <app label>.<model>.<field name> was declared
with a lazy reference to <app label>.<model>, but app <app label>
isn’t installed or doesn’t provide model <model>.

	fields.E308: Reverse query name <related query name> must not end
with an underscore.

	fields.E309: Reverse query name <related query name> must not contain
'__'.

	fields.E310: No subset of the fields <field1>, <field2>, … on
model <model> is unique.

	fields.E311: <model> must set unique=True because it is
referenced by a ForeignKey.

	fields.E312: The to_field <field name> doesn’t exist on the
related model <app label>.<model>.

	fields.E320: Field specifies on_delete=SET_NULL, but cannot be null.

	fields.E321: The field specifies on_delete=SET_DEFAULT, but has no
default value.

	fields.E330: ManyToManyFields cannot be unique.

	fields.E331: Field specifies a many-to-many relation through model
<model>, which has not been installed.

	fields.E332: Many-to-many fields with intermediate tables must not be
symmetrical. This check appeared before Django 3.0.

	fields.E333: The model is used as an intermediate model by <model>,
but it has more than two foreign keys to <model>, which is ambiguous.
You must specify which two foreign keys Django should use via the
through_fields keyword argument.

	fields.E334: The model is used as an intermediate model by <model>,
but it has more than one foreign key from <model>, which is ambiguous.
You must specify which foreign key Django should use via the
through_fields keyword argument.

	fields.E335: The model is used as an intermediate model by <model>,
but it has more than one foreign key to <model>, which is ambiguous.
You must specify which foreign key Django should use via the
through_fields keyword argument.

	fields.E336: The model is used as an intermediary model by <model>,
but it does not have foreign key to <model> or <model>.

	fields.E337: Field specifies through_fields but does not provide the
names of the two link fields that should be used for the relation through
<model>.

	fields.E338: The intermediary model <through model> has no field
<field name>.

	fields.E339: <model>.<field name> is not a foreign key to <model>.

	fields.E340: The field’s intermediary table <table name> clashes with
the table name of <model>/<model>.<field name>.

	fields.W340: null has no effect on ManyToManyField.

	fields.W341: ManyToManyField does not support validators.

	fields.W342: Setting unique=True on a ForeignKey has the same
effect as using a OneToOneField.

	fields.W343: limit_choices_to has no effect on ManyToManyField
with a through model.

Models

	models.E001: <swappable> is not of the form app_label.app_name.

	models.E002: <SETTING> references <model>, which has not been
installed, or is abstract.

	models.E003: The model has two identical many-to-many relations through
the intermediate model <app_label>.<model>.

	models.E004: id can only be used as a field name if the field also
sets primary_key=True.

	models.E005: The field <field name> from parent model <model>
clashes with the field <field name> from parent model <model>.

	models.E006: The field clashes with the field <field name> from model
<model>.

	models.E007: Field <field name> has column name <column name>
that is used by another field.

	models.E008: index_together must be a list or tuple.

	models.E009: All index_together elements must be lists or tuples.

	models.E010: unique_together must be a list or tuple.

	models.E011: All unique_together elements must be lists or tuples.

	models.E012: indexes/index_together/unique_together refers to the
nonexistent field <field name>.

	models.E013: indexes/index_together/unique_together refers to a
ManyToManyField <field name>, but ManyToManyFields are not
supported for that option.

	models.E014: ordering must be a tuple or list (even if you want to
order by only one field).

	models.E015: ordering refers to the nonexistent field, related field,
or lookup <field name>.

	models.E016: indexes/index_together/unique_together refers to field
<field_name> which is not local to model <model>.

	models.E017: Proxy model <model> contains model fields.

	models.E018: Autogenerated column name too long for field <field>.
Maximum length is <maximum length> for database <alias>.

	models.E019: Autogenerated column name too long for M2M field
<M2M field>. Maximum length is <maximum length> for database
<alias>.

	models.E020: The <model>.check() class method is currently overridden.

	models.E021: ordering and order_with_respect_to cannot be used
together.

	models.E022: <function> contains a lazy reference to
<app label>.<model>, but app <app label> isn’t installed or
doesn’t provide model <model>.

	models.E023: The model name <model> cannot start or end with an
underscore as it collides with the query lookup syntax.

	models.E024: The model name <model> cannot contain double underscores
as it collides with the query lookup syntax.

	models.E025: The property <property name> clashes with a related
field accessor.

	models.E026: The model cannot have more than one field with
primary_key=True.

	models.W027: <database> does not support check constraints.

	models.E028: db_table <db_table> is used by multiple models:
<model list>.

	models.E029: index name <index> is not unique for model <model>.

	models.E030: index name <index> is not unique amongst models:
<model list>.

	models.E031: constraint name <constraint> is not unique for model
<model>.

	models.E032: constraint name <constraint> is not unique amongst
models: <model list>.

	models.E033: The index name <index> cannot start with an underscore
or a number.

	models.E034: The index name <index> cannot be longer than
<max_length> characters.

	models.W035: db_table <db_table> is used by multiple models:
<model list>.

Security

The security checks do not make your site secure. They do not audit code, do
intrusion detection, or do anything particularly complex. Rather, they help
perform an automated, low-hanging-fruit checklist, that can help you to improve
your site’s security.

Some of these checks may not be appropriate for your particular deployment
configuration. For instance, if you do your HTTP to HTTPS redirection in a load
balancer, it’d be irritating to be constantly warned about not having enabled
SECURE_SSL_REDIRECT. Use SILENCED_SYSTEM_CHECKS to
silence unneeded checks.

The following checks are run if you use the check --deploy option:

	security.W001: You do not have
django.middleware.security.SecurityMiddleware in your
MIDDLEWARE so the SECURE_HSTS_SECONDS,
SECURE_CONTENT_TYPE_NOSNIFF, SECURE_BROWSER_XSS_FILTER,
SECURE_REFERRER_POLICY, and SECURE_SSL_REDIRECT
settings will have no effect.

	security.W002: You do not have
django.middleware.clickjacking.XFrameOptionsMiddleware in your
MIDDLEWARE, so your pages will not be served with an
'x-frame-options' header. Unless there is a good reason for your
site to be served in a frame, you should consider enabling this
header to help prevent clickjacking attacks.

	security.W003: You don’t appear to be using Django’s built-in cross-site
request forgery protection via the middleware
(django.middleware.csrf.CsrfViewMiddleware is not in your
MIDDLEWARE). Enabling the middleware is the safest
approach to ensure you don’t leave any holes.

	security.W004: You have not set a value for the
SECURE_HSTS_SECONDS setting. If your entire site is served only
over SSL, you may want to consider setting a value and enabling HTTP
Strict Transport Security. Be sure to read
the documentation first; enabling HSTS carelessly can cause serious,
irreversible problems.

	security.W005: You have not set the
SECURE_HSTS_INCLUDE_SUBDOMAINS setting to True. Without this,
your site is potentially vulnerable to attack via an insecure connection to a
subdomain. Only set this to True if you are certain that all subdomains of
your domain should be served exclusively via SSL.

	security.W006: Your SECURE_CONTENT_TYPE_NOSNIFF setting is not
set to True, so your pages will not be served with an
'X-Content-Type-Options: nosniff' header. You should consider enabling
this header to prevent the browser from identifying content types incorrectly.

	security.W007: Your SECURE_BROWSER_XSS_FILTER setting is not
set to True, so your pages will not be served with an
'X-XSS-Protection: 1; mode=block' header. You should consider enabling
this header to activate the browser’s XSS filtering and help prevent XSS
attacks. This check is removed in Django 3.0 as the X-XSS-Protection
header is no longer honored by modern browsers.

	security.W008: Your SECURE_SSL_REDIRECT setting is not set to
True. Unless your site should be available over both SSL and non-SSL
connections, you may want to either set this setting to True or configure
a load balancer or reverse-proxy server to redirect all connections to HTTPS.

	security.W009: Your SECRET_KEY has less than 50 characters or
less than 5 unique characters. Please generate a long and random
SECRET_KEY, otherwise many of Django’s security-critical features will be
vulnerable to attack.

	security.W010: You have django.contrib.sessions in your
INSTALLED_APPS but you have not set
SESSION_COOKIE_SECURE to True. Using a secure-only session
cookie makes it more difficult for network traffic sniffers to hijack user
sessions.

	security.W011: You have
django.contrib.sessions.middleware.SessionMiddleware in your
MIDDLEWARE, but you have not set SESSION_COOKIE_SECURE
to True. Using a secure-only session cookie makes it more difficult for
network traffic sniffers to hijack user sessions.

	security.W012: SESSION_COOKIE_SECURE is not set to True.
Using a secure-only session cookie makes it more difficult for network traffic
sniffers to hijack user sessions.

	security.W013: You have django.contrib.sessions in your
INSTALLED_APPS, but you have not set
SESSION_COOKIE_HTTPONLY to True. Using an HttpOnly session
cookie makes it more difficult for cross-site scripting attacks to hijack user
sessions.

	security.W014: You have
django.contrib.sessions.middleware.SessionMiddleware in your
MIDDLEWARE, but you have not set SESSION_COOKIE_HTTPONLY
to True. Using an HttpOnly session cookie makes it more difficult for
cross-site scripting attacks to hijack user sessions.

	security.W015: SESSION_COOKIE_HTTPONLY is not set to True.
Using an HttpOnly session cookie makes it more difficult for cross-site
scripting attacks to hijack user sessions.

	security.W016: CSRF_COOKIE_SECURE is not set to True.
Using a secure-only CSRF cookie makes it more difficult for network traffic
sniffers to steal the CSRF token.

	security.W017: CSRF_COOKIE_HTTPONLY is not set to True.
Using an HttpOnly CSRF cookie makes it more difficult for cross-site
scripting attacks to steal the CSRF token. This check is removed in Django
1.11 as the CSRF_COOKIE_HTTPONLY setting offers no practical
benefit.

	security.W018: You should not have DEBUG set to True in
deployment.

	security.W019: You have
django.middleware.clickjacking.XFrameOptionsMiddleware in your
MIDDLEWARE, but X_FRAME_OPTIONS is not set to
'DENY'. Unless there is a good reason for your site to serve other parts
of itself in a frame, you should change it to 'DENY'.

	security.W020: ALLOWED_HOSTS must not be empty in deployment.

	security.W021: You have not set the
SECURE_HSTS_PRELOAD setting to True. Without this, your site
cannot be submitted to the browser preload list.

	security.W022: You have not set the SECURE_REFERRER_POLICY
setting. Without this, your site will not send a Referrer-Policy header. You
should consider enabling this header to protect user privacy.

	security.E023: You have set the SECURE_REFERRER_POLICY setting
to an invalid value.

Signals

	signals.E001: <handler> was connected to the <signal> signal with
a lazy reference to the sender <app label>.<model>, but app <app label>
isn’t installed or doesn’t provide model <model>.

Templates

The following checks verify that your TEMPLATES setting is correctly
configured:

	templates.E001: You have 'APP_DIRS': True in your
TEMPLATES but also specify 'loaders' in OPTIONS. Either
remove APP_DIRS or remove the 'loaders' option.

	templates.E002: string_if_invalid in TEMPLATES
OPTIONS must be a string but got: {value}
({type}).

Translation

The following checks are performed on your translation configuration:

	translation.E001: You have provided an invalid value for the
LANGUAGE_CODE setting: <value>.

	translation.E002: You have provided an invalid language code in the
LANGUAGES setting: <value>.

	translation.E003: You have provided an invalid language code in the
LANGUAGES_BIDI setting: <value>.

	translation.E004: You have provided a value for the
LANGUAGE_CODE setting that is not in the LANGUAGES
setting.

URLs

The following checks are performed on your URL configuration:

	urls.W001: Your URL pattern <pattern> uses
include() with a route ending with a $. Remove the
dollar from the route to avoid problems including URLs.

	urls.W002: Your URL pattern <pattern> has a route beginning with
a /. Remove this slash as it is unnecessary. If this pattern is targeted
in an include(), ensure the include()
pattern has a trailing /.

	urls.W003: Your URL pattern <pattern> has a name
including a :. Remove the colon, to avoid ambiguous namespace
references.

	urls.E004: Your URL pattern <pattern> is invalid. Ensure that
urlpatterns is a list of path() and/or
re_path() instances.

	urls.W005: URL namespace <namespace> isn’t unique. You may not be
able to reverse all URLs in this namespace.

	urls.E006: The MEDIA_URL/ STATIC_URL setting must
end with a slash.

	urls.E007: The custom handlerXXX view 'path.to.view' does not
take the correct number of arguments (…).

	urls.E008: The custom handlerXXX view 'path.to.view' could not be
imported.

contrib app checks

admin

Admin checks are all performed as part of the admin tag.

The following checks are performed on any
ModelAdmin (or subclass) that is registered
with the admin site:

	admin.E001: The value of raw_id_fields must be a list or tuple.

	admin.E002: The value of raw_id_fields[n] refers to <field name>,
which is not an attribute of <model>.

	admin.E003: The value of raw_id_fields[n] must be a foreign key or
a many-to-many field.

	admin.E004: The value of fields must be a list or tuple.

	admin.E005: Both fieldsets and fields are specified.

	admin.E006: The value of fields contains duplicate field(s).

	admin.E007: The value of fieldsets must be a list or tuple.

	admin.E008: The value of fieldsets[n] must be a list or tuple.

	admin.E009: The value of fieldsets[n] must be of length 2.

	admin.E010: The value of fieldsets[n][1] must be a dictionary.

	admin.E011: The value of fieldsets[n][1] must contain the key
fields.

	admin.E012: There are duplicate field(s) in fieldsets[n][1].

	admin.E013: fields[n]/fieldsets[n][m] cannot include the
ManyToManyField <field name>, because that field manually specifies a
relationship model.

	admin.E014: The value of exclude must be a list or tuple.

	admin.E015: The value of exclude contains duplicate field(s).

	admin.E016: The value of form must inherit from BaseModelForm.

	admin.E017: The value of filter_vertical must be a list or tuple.

	admin.E018: The value of filter_horizontal must be a list or tuple.

	admin.E019: The value of filter_vertical[n]/filter_vertical[n] refers
to <field name>, which is not an attribute of <model>.

	admin.E020: The value of filter_vertical[n]/filter_vertical[n] must
be a many-to-many field.

	admin.E021: The value of radio_fields must be a dictionary.

	admin.E022: The value of radio_fields refers to <field name>,
which is not an attribute of <model>.

	admin.E023: The value of radio_fields refers to <field name>,
which is not a ForeignKey, and does not have a choices definition.

	admin.E024: The value of radio_fields[<field name>] must be either
admin.HORIZONTAL or admin.VERTICAL.

	admin.E025: The value of view_on_site must be either a callable or a
boolean value.

	admin.E026: The value of prepopulated_fields must be a dictionary.

	admin.E027: The value of prepopulated_fields refers to
<field name>, which is not an attribute of <model>.

	admin.E028: The value of prepopulated_fields refers to
<field name>, which must not be a DateTimeField, a ForeignKey,
a OneToOneField, or a ManyToManyField field.

	admin.E029: The value of prepopulated_fields[<field name>] must be a
list or tuple.

	admin.E030: The value of prepopulated_fields refers to
<field name>, which is not an attribute of <model>.

	admin.E031: The value of ordering must be a list or tuple.

	admin.E032: The value of ordering has the random ordering marker
?, but contains other fields as well.

	admin.E033: The value of ordering refers to <field name>, which
is not an attribute of <model>.

	admin.E034: The value of readonly_fields must be a list or tuple.

	admin.E035: The value of readonly_fields[n] is not a callable, an
attribute of <ModelAdmin class>, or an attribute of <model>.

	admin.E036: The value of autocomplete_fields must be a list or tuple.

	admin.E037: The value of autocomplete_fields[n] refers to
<field name>, which is not an attribute of <model>.

	admin.E038: The value of autocomplete_fields[n] must be a foreign
key or a many-to-many field.

	admin.E039: An admin for model <model> has to be registered to be
referenced by <modeladmin>.autocomplete_fields.

	admin.E040: <modeladmin> must define search_fields, because
it’s referenced by <other_modeladmin>.autocomplete_fields.

ModelAdmin

The following checks are performed on any
ModelAdmin that is registered
with the admin site:

	admin.E101: The value of save_as must be a boolean.

	admin.E102: The value of save_on_top must be a boolean.

	admin.E103: The value of inlines must be a list or tuple.

	admin.E104: <InlineModelAdmin class> must inherit from
InlineModelAdmin.

	admin.E105: <InlineModelAdmin class> must have a model attribute.

	admin.E106: The value of <InlineModelAdmin class>.model must be a
Model.

	admin.E107: The value of list_display must be a list or tuple.

	admin.E108: The value of list_display[n] refers to <label>,
which is not a callable, an attribute of <ModelAdmin class>, or an
attribute or method on <model>.

	admin.E109: The value of list_display[n] must not be a
ManyToManyField field.

	admin.E110: The value of list_display_links must be a list, a tuple,
or None.

	admin.E111: The value of list_display_links[n] refers to <label>,
which is not defined in list_display.

	admin.E112: The value of list_filter must be a list or tuple.

	admin.E113: The value of list_filter[n] must inherit from
ListFilter.

	admin.E114: The value of list_filter[n] must not inherit from
FieldListFilter.

	admin.E115: The value of list_filter[n][1] must inherit from
FieldListFilter.

	admin.E116: The value of list_filter[n] refers to <label>,
which does not refer to a Field.

	admin.E117: The value of list_select_related must be a boolean,
tuple or list.

	admin.E118: The value of list_per_page must be an integer.

	admin.E119: The value of list_max_show_all must be an integer.

	admin.E120: The value of list_editable must be a list or tuple.

	admin.E121: The value of list_editable[n] refers to <label>,
which is not an attribute of <model>.

	admin.E122: The value of list_editable[n] refers to <label>,
which is not contained in list_display.

	admin.E123: The value of list_editable[n] cannot be in both
list_editable and list_display_links.

	admin.E124: The value of list_editable[n] refers to the first field
in list_display (<label>), which cannot be used unless
list_display_links is set.

	admin.E125: The value of list_editable[n] refers to <field name>,
which is not editable through the admin.

	admin.E126: The value of search_fields must be a list or tuple.

	admin.E127: The value of date_hierarchy refers to <field name>,
which does not refer to a Field.

	admin.E128: The value of date_hierarchy must be a DateField or
DateTimeField.

	admin.E129: <modeladmin> must define a has_<foo>_permission()
method for the <action> action.

	admin.E130: __name__ attributes of actions defined in
<modeladmin> must be unique.

InlineModelAdmin

The following checks are performed on any
InlineModelAdmin that is registered as an
inline on a ModelAdmin.

	admin.E201: Cannot exclude the field <field name>, because it is the
foreign key to the parent model <app_label>.<model>.

	admin.E202: <model> has no ForeignKey to <parent model>./
<model> has more than one ForeignKey to <parent model>.

	admin.E203: The value of extra must be an integer.

	admin.E204: The value of max_num must be an integer.

	admin.E205: The value of min_num must be an integer.

	admin.E206: The value of formset must inherit from
BaseModelFormSet.

GenericInlineModelAdmin

The following checks are performed on any
GenericInlineModelAdmin that is
registered as an inline on a ModelAdmin.

	admin.E301: 'ct_field' references <label>, which is not a field
on <model>.

	admin.E302: 'ct_fk_field' references <label>, which is not a
field on <model>.

	admin.E303: <model> has no GenericForeignKey.

	admin.E304: <model> has no GenericForeignKey using content type
field <field name> and object ID field <field name>.

AdminSite

The following checks are performed on the default
AdminSite:

	admin.E401: django.contrib.contenttypes must be in
INSTALLED_APPS in order to use the admin application.

	admin.E402: django.contrib.auth.context_processors.auth
must be enabled in DjangoTemplates
(TEMPLATES) if using the default auth backend in order to use the
admin application.

	admin.E403: A django.template.backends.django.DjangoTemplates
instance must be configured in TEMPLATES in order to use the
admin application.

	admin.E404: django.contrib.messages.context_processors.messages
must be enabled in DjangoTemplates
(TEMPLATES) in order to use the admin application.

	admin.E405: django.contrib.auth must be in
INSTALLED_APPS in order to use the admin application.

	admin.E406: django.contrib.messages must be in
INSTALLED_APPS in order to use the admin application.

	admin.E408:
django.contrib.auth.middleware.AuthenticationMiddleware must be in
MIDDLEWARE in order to use the admin application.

	admin.E409: django.contrib.messages.middleware.MessageMiddleware
must be in MIDDLEWARE in order to use the admin application.

	admin.E410: django.contrib.sessions.middleware.SessionMiddleware
must be in MIDDLEWARE in order to use the admin application.

auth

	auth.E001: REQUIRED_FIELDS must be a list or tuple.

	auth.E002: The field named as the USERNAME_FIELD for a custom user
model must not be included in REQUIRED_FIELDS.

	auth.E003: <field> must be unique because it is named as the
USERNAME_FIELD.

	auth.W004: <field> is named as the USERNAME_FIELD, but it is not
unique.

	auth.E005: The permission codenamed <codename> clashes with a builtin
permission for model <model>.

	auth.E006: The permission codenamed <codename> is duplicated for model
<model>.

	auth.E007: The verbose_name of model <model> must be at most
244 characters for its builtin permission names
to be at most 255 characters.

	auth.E008: The permission named <name> of model <model> is longer
than 255 characters.

	auth.C009: <User model>.is_anonymous must be an attribute or property
rather than a method. Ignoring this is a security issue as anonymous users
will be treated as authenticated!

	auth.C010: <User model>.is_authenticated must be an attribute or
property rather than a method. Ignoring this is a security issue as anonymous
users will be treated as authenticated!

contenttypes

The following checks are performed when a model contains a
GenericForeignKey or
GenericRelation:

	contenttypes.E001: The GenericForeignKey object ID references the
nonexistent field <field>.

	contenttypes.E002: The GenericForeignKey content type references the
nonexistent field <field>.

	contenttypes.E003: <field> is not a ForeignKey.

	contenttypes.E004: <field> is not a ForeignKey to
contenttypes.ContentType.

	contenttypes.E005: Model names must be at most 100 characters.

postgres

The following checks are performed on django.contrib.postgres model
fields:

	postgres.E001: Base field for array has errors: …

	postgres.E002: Base field for array cannot be a related field.

	postgres.E003: <field> default should be a callable instead of an
instance so that it’s not shared between all field instances.

sites

The following checks are performed on any model using a
CurrentSiteManager:

	sites.E001: CurrentSiteManager could not find a field named
<field name>.

	sites.E002: CurrentSiteManager cannot use <field> as it is not a
foreign key or a many-to-many field.

staticfiles

The following checks verify that django.contrib.staticfiles is correctly
configured:

	staticfiles.E001: The STATICFILES_DIRS setting is not a tuple
or list.

	staticfiles.E002: The STATICFILES_DIRS setting should not
contain the STATIC_ROOT setting.

	staticfiles.E003: The prefix <prefix> in the
STATICFILES_DIRS setting must not end with a slash.

Clickjacking Protection

The clickjacking middleware and decorators provide easy-to-use protection
against clickjacking [https://en.wikipedia.org/wiki/Clickjacking]. This type of attack occurs when a malicious site
tricks a user into clicking on a concealed element of another site which they
have loaded in a hidden frame or iframe.

An example of clickjacking

Suppose an online store has a page where a logged in user can click “Buy Now” to
purchase an item. A user has chosen to stay logged into the store all the time
for convenience. An attacker site might create an “I Like Ponies” button on one
of their own pages, and load the store’s page in a transparent iframe such that
the “Buy Now” button is invisibly overlaid on the “I Like Ponies” button. If the
user visits the attacker’s site, clicking “I Like Ponies” will cause an
inadvertent click on the “Buy Now” button and an unknowing purchase of the item.

Preventing clickjacking

Modern browsers honor the X-Frame-Options [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options] HTTP header that indicates whether
or not a resource is allowed to load within a frame or iframe. If the response
contains the header with a value of SAMEORIGIN then the browser will only
load the resource in a frame if the request originated from the same site. If
the header is set to DENY then the browser will block the resource from
loading in a frame no matter which site made the request.

Django provides a few ways to include this header in responses from your site:

	A middleware that sets the header in all responses.

	A set of view decorators that can be used to override the middleware or to
only set the header for certain views.

The X-Frame-Options HTTP header will only be set by the middleware or view
decorators if it is not already present in the response.

How to use it

Setting X-Frame-Options for all responses

To set the same X-Frame-Options value for all responses in your site, put
'django.middleware.clickjacking.XFrameOptionsMiddleware' to
MIDDLEWARE:

MIDDLEWARE = [
 ...
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 ...
]

This middleware is enabled in the settings file generated by
startproject.

By default, the middleware will set the X-Frame-Options header to
DENY for every outgoing HttpResponse. If you want any other value for
this header instead, set the X_FRAME_OPTIONS setting:

X_FRAME_OPTIONS = 'SAMEORIGIN'

The default value of the X_FRAME_OPTIONS setting was changed
from SAMEORIGIN to DENY.

When using the middleware there may be some views where you do not want the
X-Frame-Options header set. For those cases, you can use a view decorator
that tells the middleware not to set the header:

from django.http import HttpResponse
from django.views.decorators.clickjacking import xframe_options_exempt

@xframe_options_exempt
def ok_to_load_in_a_frame(request):
 return HttpResponse("This page is safe to load in a frame on any site.")

Note

If you want to submit a form or access a session cookie within a frame or
iframe, you may need to modify the CSRF_COOKIE_SAMESITE or
SESSION_COOKIE_SAMESITE settings.

Setting X-Frame-Options per view

To set the X-Frame-Options header on a per view basis, Django provides these
decorators:

from django.http import HttpResponse
from django.views.decorators.clickjacking import xframe_options_deny
from django.views.decorators.clickjacking import xframe_options_sameorigin

@xframe_options_deny
def view_one(request):
 return HttpResponse("I won't display in any frame!")

@xframe_options_sameorigin
def view_two(request):
 return HttpResponse("Display in a frame if it's from the same origin as me.")

Note that you can use the decorators in conjunction with the middleware. Use of
a decorator overrides the middleware.

Limitations

The X-Frame-Options header will only protect against clickjacking in a
modern browser. Older browsers will quietly ignore the header and need other
clickjacking prevention techniques [https://en.wikipedia.org/wiki/Clickjacking#Prevention].

Browsers that support X-Frame-Options

	Internet Explorer 8+

	Edge

	Firefox 3.6.9+

	Opera 10.5+

	Safari 4+

	Chrome 4.1+

See also

A complete list [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility] of browsers supporting X-Frame-Options.

Cross Site Request Forgery protection

The CSRF middleware and template tag provides easy-to-use protection against
Cross Site Request Forgeries [https://www.squarefree.com/securitytips/web-developers.html#CSRF]. This type of attack occurs when a malicious
website contains a link, a form button or some JavaScript that is intended to
perform some action on your website, using the credentials of a logged-in user
who visits the malicious site in their browser. A related type of attack,
‘login CSRF’, where an attacking site tricks a user’s browser into logging into
a site with someone else’s credentials, is also covered.

The first defense against CSRF attacks is to ensure that GET requests (and other
‘safe’ methods, as defined by RFC 7231#section-4.2.1 [https://tools.ietf.org/html/rfc7231.html#section-4.2.1]) are side effect free.
Requests via ‘unsafe’ methods, such as POST, PUT, and DELETE, can then be
protected by following the steps below.

How to use it

To take advantage of CSRF protection in your views, follow these steps:

	The CSRF middleware is activated by default in the MIDDLEWARE
setting. If you override that setting, remember that
'django.middleware.csrf.CsrfViewMiddleware' should come before any view
middleware that assume that CSRF attacks have been dealt with.

If you disabled it, which is not recommended, you can use
csrf_protect() on particular views
you want to protect (see below).

	In any template that uses a POST form, use the csrf_token tag inside
the <form> element if the form is for an internal URL, e.g.:

<form method="post">{% csrf_token %}

This should not be done for POST forms that target external URLs, since
that would cause the CSRF token to be leaked, leading to a vulnerability.

	In the corresponding view functions, ensure that
RequestContext is used to render the response so
that {% csrf_token %} will work properly. If you’re using the
render() function, generic views, or contrib apps,
you are covered already since these all use RequestContext.

AJAX

While the above method can be used for AJAX POST requests, it has some
inconveniences: you have to remember to pass the CSRF token in as POST data with
every POST request. For this reason, there is an alternative method: on each
XMLHttpRequest, set a custom X-CSRFToken header (as specified by the
CSRF_HEADER_NAME setting) to the value of the CSRF token. This is
often easier because many JavaScript frameworks provide hooks that allow
headers to be set on every request.

First, you must get the CSRF token. How to do that depends on whether or not
the CSRF_USE_SESSIONS and CSRF_COOKIE_HTTPONLY settings
are enabled.

Acquiring the token if CSRF_USE_SESSIONS and CSRF_COOKIE_HTTPONLY are False

The recommended source for the token is the csrftoken cookie, which will be
set if you’ve enabled CSRF protection for your views as outlined above.

The CSRF token cookie is named csrftoken by default, but you can control
the cookie name via the CSRF_COOKIE_NAME setting.

You can acquire the token like this:

function getCookie(name) {
 let cookieValue = null;
 if (document.cookie && document.cookie !== '') {
 const cookies = document.cookie.split(';');
 for (let i = 0; i < cookies.length; i++) {
 const cookie = cookies[i].trim();
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) === (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
}
const csrftoken = getCookie('csrftoken');

The above code could be simplified by using the JavaScript Cookie library [https://github.com/js-cookie/js-cookie/] to replace getCookie:

const csrftoken = Cookies.get('csrftoken');

Note

The CSRF token is also present in the DOM, but only if explicitly included
using csrf_token in a template. The cookie contains the canonical
token; the CsrfViewMiddleware will prefer the cookie to the token in
the DOM. Regardless, you’re guaranteed to have the cookie if the token is
present in the DOM, so you should use the cookie!

Warning

If your view is not rendering a template containing the csrf_token
template tag, Django might not set the CSRF token cookie. This is common in
cases where forms are dynamically added to the page. To address this case,
Django provides a view decorator which forces setting of the cookie:
ensure_csrf_cookie().

Acquiring the token if CSRF_USE_SESSIONS or CSRF_COOKIE_HTTPONLY is True

If you activate CSRF_USE_SESSIONS or
CSRF_COOKIE_HTTPONLY, you must include the CSRF token in your HTML
and read the token from the DOM with JavaScript:

{% csrf_token %}
<script type="text/javascript">
// using jQuery
const csrftoken = jQuery("[name=csrfmiddlewaretoken]").val();
</script>

Setting the token on the AJAX request

Finally, you’ll have to actually set the header on your AJAX request, while
protecting the CSRF token from being sent to other domains using
settings.crossDomain [https://api.jquery.com/jQuery.ajax/] in jQuery 1.5.1
and newer:

function csrfSafeMethod(method) {
 // these HTTP methods do not require CSRF protection
 return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));
}
$.ajaxSetup({
 beforeSend: function(xhr, settings) {
 if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrftoken);
 }
 }
});

If you’re using AngularJS 1.1.3 and newer, it’s sufficient to configure the
$http provider with the cookie and header names:

$httpProvider.defaults.xsrfCookieName = 'csrftoken';
$httpProvider.defaults.xsrfHeaderName = 'X-CSRFToken';

Using CSRF in Jinja2 templates

Django’s Jinja2 template backend
adds {{ csrf_input }} to the context of all templates which is equivalent
to {% csrf_token %} in the Django template language. For example:

<form method="post">{{ csrf_input }}

The decorator method

Rather than adding CsrfViewMiddleware as a blanket protection, you can use
the csrf_protect decorator, which has exactly the same functionality, on
particular views that need the protection. It must be used both on views
that insert the CSRF token in the output, and on those that accept the POST form
data. (These are often the same view function, but not always).

Use of the decorator by itself is not recommended, since if you forget to
use it, you will have a security hole. The ‘belt and braces’ strategy of using
both is fine, and will incur minimal overhead.

	
csrf_protect(view)

	Decorator that provides the protection of CsrfViewMiddleware to a view.

Usage:

from django.shortcuts import render
from django.views.decorators.csrf import csrf_protect

@csrf_protect
def my_view(request):
 c = {}
 # ...
 return render(request, "a_template.html", c)

If you are using class-based views, you can refer to
Decorating class-based views.

Rejected requests

By default, a ‘403 Forbidden’ response is sent to the user if an incoming
request fails the checks performed by CsrfViewMiddleware. This should
usually only be seen when there is a genuine Cross Site Request Forgery, or
when, due to a programming error, the CSRF token has not been included with a
POST form.

The error page, however, is not very friendly, so you may want to provide your
own view for handling this condition. To do this, set the
CSRF_FAILURE_VIEW setting.

CSRF failures are logged as warnings to the django.security.csrf logger.

How it works

The CSRF protection is based on the following things:

	A CSRF cookie that is based on a random secret value, which other sites
will not have access to.

This cookie is set by CsrfViewMiddleware. It is sent with every
response that has called django.middleware.csrf.get_token() (the
function used internally to retrieve the CSRF token), if it wasn’t already
set on the request.

In order to protect against BREACH [http://breachattack.com/] attacks, the token is not simply the
secret; a random salt is prepended to the secret and used to scramble it.

For security reasons, the value of the secret is changed each time a
user logs in.

	A hidden form field with the name ‘csrfmiddlewaretoken’ present in all
outgoing POST forms. The value of this field is, again, the value of the
secret, with a salt which is both added to it and used to scramble it. The
salt is regenerated on every call to get_token() so that the form field
value is changed in every such response.

This part is done by the template tag.

	For all incoming requests that are not using HTTP GET, HEAD, OPTIONS or
TRACE, a CSRF cookie must be present, and the ‘csrfmiddlewaretoken’ field
must be present and correct. If it isn’t, the user will get a 403 error.

When validating the ‘csrfmiddlewaretoken’ field value, only the secret,
not the full token, is compared with the secret in the cookie value.
This allows the use of ever-changing tokens. While each request may use its
own token, the secret remains common to all.

This check is done by CsrfViewMiddleware.

	In addition, for HTTPS requests, strict referer checking is done by
CsrfViewMiddleware. This means that even if a subdomain can set or
modify cookies on your domain, it can’t force a user to post to your
application since that request won’t come from your own exact domain.

This also addresses a man-in-the-middle attack that’s possible under HTTPS
when using a session independent secret, due to the fact that HTTP
Set-Cookie headers are (unfortunately) accepted by clients even when
they are talking to a site under HTTPS. (Referer checking is not done for
HTTP requests because the presence of the Referer header isn’t reliable
enough under HTTP.)

If the CSRF_COOKIE_DOMAIN setting is set, the referer is compared
against it. This setting supports subdomains. For example,
CSRF_COOKIE_DOMAIN = '.example.com' will allow POST requests from
www.example.com and api.example.com. If the setting is not set, then
the referer must match the HTTP Host header.

Expanding the accepted referers beyond the current host or cookie domain can
be done with the CSRF_TRUSTED_ORIGINS setting.

This ensures that only forms that have originated from trusted domains can be
used to POST data back.

It deliberately ignores GET requests (and other requests that are defined as
‘safe’ by RFC 7231#section-4.2.1 [https://tools.ietf.org/html/rfc7231.html#section-4.2.1]). These requests ought never to have any
potentially dangerous side effects, and so a CSRF attack with a GET request
ought to be harmless. RFC 7231#section-4.2.1 [https://tools.ietf.org/html/rfc7231.html#section-4.2.1] defines POST, PUT, and DELETE
as ‘unsafe’, and all other methods are also assumed to be unsafe, for maximum
protection.

The CSRF protection cannot protect against man-in-the-middle attacks, so use
HTTPS with
HTTP Strict Transport Security. It also assumes validation of
the HOST header and that there aren’t any
cross-site scripting vulnerabilities on your site
(because XSS vulnerabilities already let an attacker do anything a CSRF
vulnerability allows and much worse).

Removing the Referer header

To avoid disclosing the referrer URL to third-party sites, you might want
to disable the referer [https://www.w3.org/TR/referrer-policy/#referrer-policy-delivery] on your site’s <a> tags. For example, you
might use the <meta name="referrer" content="no-referrer"> tag or
include the Referrer-Policy: no-referrer header. Due to the CSRF
protection’s strict referer checking on HTTPS requests, those techniques
cause a CSRF failure on requests with ‘unsafe’ methods. Instead, use
alternatives like " for links to third-party
sites.

Caching

If the csrf_token template tag is used by a template (or the
get_token function is called some other way), CsrfViewMiddleware will
add a cookie and a Vary: Cookie header to the response. This means that the
middleware will play well with the cache middleware if it is used as instructed
(UpdateCacheMiddleware goes before all other middleware).

However, if you use cache decorators on individual views, the CSRF middleware
will not yet have been able to set the Vary header or the CSRF cookie, and the
response will be cached without either one. In this case, on any views that
will require a CSRF token to be inserted you should use the
django.views.decorators.csrf.csrf_protect() decorator first:

from django.views.decorators.cache import cache_page
from django.views.decorators.csrf import csrf_protect

@cache_page(60 * 15)
@csrf_protect
def my_view(request):
 ...

If you are using class-based views, you can refer to Decorating
class-based views.

Testing

The CsrfViewMiddleware will usually be a big hindrance to testing view
functions, due to the need for the CSRF token which must be sent with every POST
request. For this reason, Django’s HTTP client for tests has been modified to
set a flag on requests which relaxes the middleware and the csrf_protect
decorator so that they no longer rejects requests. In every other respect
(e.g. sending cookies etc.), they behave the same.

If, for some reason, you want the test client to perform CSRF
checks, you can create an instance of the test client that enforces
CSRF checks:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

Limitations

Subdomains within a site will be able to set cookies on the client for the whole
domain. By setting the cookie and using a corresponding token, subdomains will
be able to circumvent the CSRF protection. The only way to avoid this is to
ensure that subdomains are controlled by trusted users (or, are at least unable
to set cookies). Note that even without CSRF, there are other vulnerabilities,
such as session fixation, that make giving subdomains to untrusted parties a bad
idea, and these vulnerabilities cannot easily be fixed with current browsers.

Edge cases

Certain views can have unusual requirements that mean they don’t fit the normal
pattern envisaged here. A number of utilities can be useful in these
situations. The scenarios they might be needed in are described in the following
section.

Utilities

The examples below assume you are using function-based views. If you
are working with class-based views, you can refer to Decorating
class-based views.

	
csrf_exempt(view)

	This decorator marks a view as being exempt from the protection ensured by
the middleware. Example:

from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt

@csrf_exempt
def my_view(request):
 return HttpResponse('Hello world')

	
requires_csrf_token(view)

	Normally the csrf_token template tag will not work if
CsrfViewMiddleware.process_view or an equivalent like csrf_protect
has not run. The view decorator requires_csrf_token can be used to
ensure the template tag does work. This decorator works similarly to
csrf_protect, but never rejects an incoming request.

Example:

from django.shortcuts import render
from django.views.decorators.csrf import requires_csrf_token

@requires_csrf_token
def my_view(request):
 c = {}
 # ...
 return render(request, "a_template.html", c)

	
ensure_csrf_cookie(view)

	This decorator forces a view to send the CSRF cookie.

Scenarios

CSRF protection should be disabled for just a few views

Most views requires CSRF protection, but a few do not.

Solution: rather than disabling the middleware and applying csrf_protect to
all the views that need it, enable the middleware and use
csrf_exempt().

CsrfViewMiddleware.process_view not used

There are cases when CsrfViewMiddleware.process_view may not have run
before your view is run - 404 and 500 handlers, for example - but you still
need the CSRF token in a form.

Solution: use requires_csrf_token()

Unprotected view needs the CSRF token

There may be some views that are unprotected and have been exempted by
csrf_exempt, but still need to include the CSRF token.

Solution: use csrf_exempt() followed by
requires_csrf_token(). (i.e. requires_csrf_token
should be the innermost decorator).

View needs protection for one path

A view needs CSRF protection under one set of conditions only, and mustn’t have
it for the rest of the time.

Solution: use csrf_exempt() for the whole
view function, and csrf_protect() for the
path within it that needs protection. Example:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@csrf_exempt
def my_view(request):

 @csrf_protect
 def protected_path(request):
 do_something()

 if some_condition():
 return protected_path(request)
 else:
 do_something_else()

Page uses AJAX without any HTML form

A page makes a POST request via AJAX, and the page does not have an HTML form
with a csrf_token that would cause the required CSRF cookie to be sent.

Solution: use ensure_csrf_cookie() on the
view that sends the page.

Contrib and reusable apps

Because it is possible for the developer to turn off the CsrfViewMiddleware,
all relevant views in contrib apps use the csrf_protect decorator to ensure
the security of these applications against CSRF. It is recommended that the
developers of other reusable apps that want the same guarantees also use the
csrf_protect decorator on their views.

Settings

A number of settings can be used to control Django’s CSRF behavior:

	CSRF_COOKIE_AGE

	CSRF_COOKIE_DOMAIN

	CSRF_COOKIE_HTTPONLY

	CSRF_COOKIE_NAME

	CSRF_COOKIE_PATH

	CSRF_COOKIE_SAMESITE

	CSRF_COOKIE_SECURE

	CSRF_FAILURE_VIEW

	CSRF_HEADER_NAME

	CSRF_TRUSTED_ORIGINS

	CSRF_USE_SESSIONS

Frequently Asked Questions

Is posting an arbitrary CSRF token pair (cookie and POST data) a vulnerability?

No, this is by design. Without a man-in-the-middle attack, there is no way for
an attacker to send a CSRF token cookie to a victim’s browser, so a successful
attack would need to obtain the victim’s browser’s cookie via XSS or similar,
in which case an attacker usually doesn’t need CSRF attacks.

Some security audit tools flag this as a problem but as mentioned before, an
attacker cannot steal a user’s browser’s CSRF cookie. “Stealing” or modifying
your own token using Firebug, Chrome dev tools, etc. isn’t a vulnerability.

Is it a problem that Django’s CSRF protection isn’t linked to a session by default?

No, this is by design. Not linking CSRF protection to a session allows using
the protection on sites such as a pastebin that allow submissions from
anonymous users which don’t have a session.

If you wish to store the CSRF token in the user’s session, use the
CSRF_USE_SESSIONS setting.

Why might a user encounter a CSRF validation failure after logging in?

For security reasons, CSRF tokens are rotated each time a user logs in. Any
page with a form generated before a login will have an old, invalid CSRF token
and need to be reloaded. This might happen if a user uses the back button after
a login or if they log in a different browser tab.

Databases

Django officially supports the following databases:

	PostgreSQL

	MariaDB

	MySQL

	Oracle

	SQLite

There are also a number of database backends provided by third parties.

Django attempts to support as many features as possible on all database
backends. However, not all database backends are alike, and we’ve had to make
design decisions on which features to support and which assumptions we can make
safely.

This file describes some of the features that might be relevant to Django
usage. Of course, it is not intended as a replacement for server-specific
documentation or reference manuals.

General notes

Persistent connections

Persistent connections avoid the overhead of re-establishing a connection to
the database in each request. They’re controlled by the
CONN_MAX_AGE parameter which defines the maximum lifetime of a
connection. It can be set independently for each database.

The default value is 0, preserving the historical behavior of closing the
database connection at the end of each request. To enable persistent
connections, set CONN_MAX_AGE to a positive integer of seconds. For
unlimited persistent connections, set it to None.

Connection management

Django opens a connection to the database when it first makes a database
query. It keeps this connection open and reuses it in subsequent requests.
Django closes the connection once it exceeds the maximum age defined by
CONN_MAX_AGE or when it isn’t usable any longer.

In detail, Django automatically opens a connection to the database whenever it
needs one and doesn’t have one already — either because this is the first
connection, or because the previous connection was closed.

At the beginning of each request, Django closes the connection if it has
reached its maximum age. If your database terminates idle connections after
some time, you should set CONN_MAX_AGE to a lower value, so that
Django doesn’t attempt to use a connection that has been terminated by the
database server. (This problem may only affect very low traffic sites.)

At the end of each request, Django closes the connection if it has reached its
maximum age or if it is in an unrecoverable error state. If any database
errors have occurred while processing the requests, Django checks whether the
connection still works, and closes it if it doesn’t. Thus, database errors
affect at most one request; if the connection becomes unusable, the next
request gets a fresh connection.

Caveats

Since each thread maintains its own connection, your database must support at
least as many simultaneous connections as you have worker threads.

Sometimes a database won’t be accessed by the majority of your views, for
example because it’s the database of an external system, or thanks to caching.
In such cases, you should set CONN_MAX_AGE to a low value or even
0, because it doesn’t make sense to maintain a connection that’s unlikely
to be reused. This will help keep the number of simultaneous connections to
this database small.

The development server creates a new thread for each request it handles,
negating the effect of persistent connections. Don’t enable them during
development.

When Django establishes a connection to the database, it sets up appropriate
parameters, depending on the backend being used. If you enable persistent
connections, this setup is no longer repeated every request. If you modify
parameters such as the connection’s isolation level or time zone, you should
either restore Django’s defaults at the end of each request, force an
appropriate value at the beginning of each request, or disable persistent
connections.

Encoding

Django assumes that all databases use UTF-8 encoding. Using other encodings may
result in unexpected behavior such as “value too long” errors from your
database for data that is valid in Django. See the database specific notes
below for information on how to set up your database correctly.

PostgreSQL notes

Django supports PostgreSQL 9.5 and higher. psycopg2 [https://www.psycopg.org/] 2.5.4 or higher is
required, though the latest release is recommended.

PostgreSQL connection settings

See HOST for details.

Optimizing PostgreSQL’s configuration

Django needs the following parameters for its database connections:

	client_encoding: 'UTF8',

	default_transaction_isolation: 'read committed' by default,
or the value set in the connection options (see below),

	timezone: 'UTC' when USE_TZ is True, value of
TIME_ZONE otherwise.

 Meta-documentation and miscellany

Meta-documentation and miscellany

Documentation that we can’t find a more organized place for. Like that drawer in
your kitchen with the scissors, batteries, duct tape, and other junk.

	API stability
	What “stable” means

	Stable APIs

	Exceptions

	Design philosophies
	Overall

	Models

	Database API

	URL design

	Template system

	Views

	Cache Framework

	Third-party distributions of Django
	For distributors

 API stability

API stability

Django is committed to API stability and forwards-compatibility. In a nutshell,
this means that code you develop against a version of Django will continue to
work with future releases. You may need to make minor changes when upgrading
the version of Django your project uses: see the “Backwards incompatible
changes” section of the release note for the version
or versions to which you are upgrading.

At the same time as making API stability a very high priority, Django is also
committed to continual improvement, along with aiming for “one way to do it”
(eventually) in the APIs we provide. This means that when we discover clearly
superior ways to do things, we will deprecate and eventually remove the old
ways. Our aim is to provide a modern, dependable web framework of the highest
quality that encourages best practices in all projects that use it. By using
incremental improvements, we try to avoid both stagnation and large breaking
upgrades.

What “stable” means

In this context, stable means:

	All the public APIs (everything in this documentation) will not be moved
or renamed without providing backwards-compatible aliases.

	If new features are added to these APIs – which is quite possible –
they will not break or change the meaning of existing methods. In other
words, “stable” does not (necessarily) mean “complete.”

	If, for some reason, an API declared stable must be removed or replaced, it
will be declared deprecated but will remain in the API for at least two
feature releases. Warnings will be issued when the deprecated method is
called.

See Official releases for more details on how Django’s version
numbering scheme works, and how features will be deprecated.

	We’ll only break backwards compatibility of these APIs without a deprecation
process if a bug or security hole makes it completely unavoidable.

Stable APIs

In general, everything covered in the documentation – with the exception of
anything in the internals area is considered stable.

Exceptions

There are a few exceptions to this stability and backwards-compatibility
promise.

Security fixes

If we become aware of a security problem – hopefully by someone following our
security reporting policy – we’ll do
everything necessary to fix it. This might mean breaking backwards
compatibility; security trumps the compatibility guarantee.

APIs marked as internal

Certain APIs are explicitly marked as “internal” in a couple of ways:

	Some documentation refers to internals and mentions them as such. If the
documentation says that something is internal, we reserve the right to
change it.

	Functions, methods, and other objects prefixed by a leading underscore
(_). This is the standard Python way of indicating that something is
private; if any method starts with a single _, it’s an internal API.

 Design philosophies

Design philosophies

This document explains some of the fundamental philosophies Django’s developers
have used in creating the framework. Its goal is to explain the past and guide
the future.

Overall

Loose coupling

A fundamental goal of Django’s stack is loose coupling and tight cohesion [http://wiki.c2.com/?CouplingAndCohesion].
The various layers of the framework shouldn’t “know” about each other unless
absolutely necessary.

For example, the template system knows nothing about Web requests, the database
layer knows nothing about data display and the view system doesn’t care which
template system a programmer uses.

Although Django comes with a full stack for convenience, the pieces of the
stack are independent of another wherever possible.

Less code

Django apps should use as little code as possible; they should lack boilerplate.
Django should take full advantage of Python’s dynamic capabilities, such as
introspection.

Quick development

The point of a Web framework in the 21st century is to make the tedious aspects
of Web development fast. Django should allow for incredibly quick Web
development.

Don’t repeat yourself (DRY)

Every distinct concept and/or piece of data should live in one, and only one,
place. Redundancy is bad. Normalization is good.

The framework, within reason, should deduce as much as possible from as little
as possible.

See also

The discussion of DRY on the Portland Pattern Repository [http://wiki.c2.com/?DontRepeatYourself]

Explicit is better than implicit

This is a core Python principle listed in PEP 20 [https://www.python.org/dev/peps/pep-0020], and it means Django
shouldn’t do too much “magic.” Magic shouldn’t happen unless there’s a really
good reason for it. Magic is worth using only if it creates a huge convenience
unattainable in other ways, and it isn’t implemented in a way that confuses
developers who are trying to learn how to use the feature.

Consistency

The framework should be consistent at all levels. Consistency applies to
everything from low-level (the Python coding style used) to high-level (the
“experience” of using Django).

Models

Explicit is better than implicit

Fields shouldn’t assume certain behaviors based solely on the name of the
field. This requires too much knowledge of the system and is prone to errors.
Instead, behaviors should be based on keyword arguments and, in some cases, on
the type of the field.

Include all relevant domain logic

Models should encapsulate every aspect of an “object,” following Martin
Fowler’s Active Record [https://www.martinfowler.com/eaaCatalog/activeRecord.html] design pattern.

This is why both the data represented by a model and information about
it (its human-readable name, options like default ordering, etc.) are
defined in the model class; all the information needed to understand a
given model should be stored in the model.

Database API

The core goals of the database API are:

SQL efficiency

It should execute SQL statements as few times as possible, and it should
optimize statements internally.

This is why developers need to call save() explicitly, rather than the
framework saving things behind the scenes silently.

This is also why the select_related() QuerySet method exists. It’s an
optional performance booster for the common case of selecting “every related
object.”

Terse, powerful syntax

The database API should allow rich, expressive statements in as little syntax
as possible. It should not rely on importing other modules or helper objects.

Joins should be performed automatically, behind the scenes, when necessary.

Every object should be able to access every related object, systemwide. This
access should work both ways.

Option to drop into raw SQL easily, when needed

The database API should realize it’s a shortcut but not necessarily an
end-all-be-all. The framework should make it easy to write custom SQL – entire
statements, or just custom WHERE clauses as custom parameters to API calls.

URL design

Loose coupling

URLs in a Django app should not be coupled to the underlying Python code. Tying
URLs to Python function names is a Bad And Ugly Thing.

Along these lines, the Django URL system should allow URLs for the same app to
be different in different contexts. For example, one site may put stories at
/stories/, while another may use /news/.

Infinite flexibility

URLs should be as flexible as possible. Any conceivable URL design should be
allowed.

Encourage best practices

The framework should make it just as easy (or even easier) for a developer to
design pretty URLs than ugly ones.

File extensions in Web-page URLs should be avoided.

Vignette-style commas in URLs deserve severe punishment.

Definitive URLs

Technically, foo.com/bar and foo.com/bar/ are two different URLs, and
search-engine robots (and some Web traffic-analyzing tools) would treat them as
separate pages. Django should make an effort to “normalize” URLs so that
search-engine robots don’t get confused.

This is the reasoning behind the APPEND_SLASH setting.

Template system

Separate logic from presentation

We see a template system as a tool that controls presentation and
presentation-related logic – and that’s it. The template system shouldn’t
support functionality that goes beyond this basic goal.

Discourage redundancy

The majority of dynamic websites use some sort of common sitewide design –
a common header, footer, navigation bar, etc. The Django template system should
make it easy to store those elements in a single place, eliminating duplicate
code.

This is the philosophy behind template inheritance.

Be decoupled from HTML

The template system shouldn’t be designed so that it only outputs HTML. It
should be equally good at generating other text-based formats, or just plain
text.

XML should not be used for template languages

Using an XML engine to parse templates introduces a whole new world of human
error in editing templates – and incurs an unacceptable level of overhead in
template processing.

Assume designer competence

The template system shouldn’t be designed so that templates necessarily are
displayed nicely in WYSIWYG editors such as Dreamweaver. That is too severe of
a limitation and wouldn’t allow the syntax to be as nice as it is. Django
expects template authors are comfortable editing HTML directly.

Treat whitespace obviously

The template system shouldn’t do magic things with whitespace. If a template
includes whitespace, the system should treat the whitespace as it treats text
– just display it. Any whitespace that’s not in a template tag should be
displayed.

Don’t invent a programming language

The goal is not to invent a programming language. The goal is to offer just
enough programming-esque functionality, such as branching and looping, that is
essential for making presentation-related decisions. The Django Template
Language (DTL) aims to avoid advanced logic.

The Django template system recognizes that templates are most often written by
designers, not programmers, and therefore should not assume Python
knowledge.

Safety and security

The template system, out of the box, should forbid the inclusion of malicious
code – such as commands that delete database records.

This is another reason the template system doesn’t allow arbitrary Python code.

Extensibility

The template system should recognize that advanced template authors may want
to extend its technology.

This is the philosophy behind custom template tags and filters.

Views

Simplicity

Writing a view should be as simple as writing a Python function. Developers
shouldn’t have to instantiate a class when a function will do.

Use request objects

Views should have access to a request object – an object that stores metadata
about the current request. The object should be passed directly to a view
function, rather than the view function having to access the request data from
a global variable. This makes it light, clean and easy to test views by passing
in “fake” request objects.

Loose coupling

A view shouldn’t care about which template system the developer uses – or even
whether a template system is used at all.

Differentiate between GET and POST

GET and POST are distinct; developers should explicitly use one or the other.
The framework should make it easy to distinguish between GET and POST data.

Cache Framework

The core goals of Django’s cache framework are:

Less code

A cache should be as fast as possible. Hence, all framework code surrounding
the cache backend should be kept to the absolute minimum, especially for
get() operations.

Consistency

The cache API should provide a consistent interface across the different
cache backends.

Extensibility

The cache API should be extensible at the application level based on the
developer’s needs (for example, see Cache key transformation).

 Third-party distributions of Django

Third-party distributions of Django

Many third-party distributors are now providing versions of Django integrated
with their package-management systems. These can make installation and upgrading
much easier for users of Django since the integration includes the ability to
automatically install dependencies (like database adapters) that Django
requires.

Typically, these packages are based on the latest stable release of Django, so
if you want to use the development version of Django you’ll need to follow the
instructions for installing the development version from our Git repository.

If you’re using Linux or a Unix installation, such as OpenSolaris,
check with your distributor to see if they already package Django. If
you’re using a Linux distro and don’t know how to find out if a package
is available, then now is a good time to learn. The Django Wiki contains
a list of Third Party Distributions [https://code.djangoproject.com/wiki/Distributions] to help you out.

For distributors

If you’d like to package Django for distribution, we’d be happy to help out!
Please join the django-developers mailing list and introduce yourself.

We also encourage all distributors to subscribe to the django-announce mailing
list, which is a (very) low-traffic list for announcing new releases of Django
and important bugfixes.

 Glossary

Glossary

	concrete model

	A non-abstract (abstract=False) model.

	field

	An attribute on a model; a given field usually maps directly to
a single database column.

See Models.

	generic view

	A higher-order view function that provides an abstract/generic
implementation of a common idiom or pattern found in view development.

See Class-based views.

	model

	Models store your application’s data.

See Models.

	MTV

	“Model-template-view”; a software pattern, similar in style to MVC, but
a better description of the way Django does things.

See the FAQ entry.

	MVC

	Model-view-controller [https://en.wikipedia.org/wiki/Model-view-controller]; a software pattern. Django follows MVC
to some extent.

	project

	A Python package – i.e. a directory of code – that contains all the
settings for an instance of Django. This would include database
configuration, Django-specific options and application-specific
settings.

	property

	Also known as “managed attributes”, and a feature of Python since
version 2.2. This is a neat way to implement attributes whose usage
resembles attribute access, but whose implementation uses method calls.

See property [https://docs.python.org/3/library/functions.html#property].

	queryset

	An object representing some set of rows to be fetched from the database.

See Making queries.

	slug

	A short label for something, containing only letters, numbers,
underscores or hyphens. They’re generally used in URLs. For
example, in a typical blog entry URL:

https://www.djangoproject.com/weblog/2008/apr/12/spring/

the last bit (spring) is the slug.

	template

	A chunk of text that acts as formatting for representing data. A
template helps to abstract the presentation of data from the data
itself.

See Templates.

	view

	A function responsible for rendering a page.

 Django internals

Django internals

Documentation for people hacking on Django itself. This is the place to go if
you’d like to help improve Django or learn about how Django is managed.

	Contributing to Django
	Advice for new contributors

	Reporting bugs and requesting features

	Triaging tickets

	Writing code

	Writing documentation

	Localizing Django

	Committing code

	Mailing lists
	django-users

	django-core-mentorship

	django-developers

	django-i18n

	django-announce

	django-updates

	Organization of the Django Project
	Principles

	Core team

	Technical board

	Changing the organization

	Django’s security policies
	Reporting security issues

	Supported versions

	How Django discloses security issues

	Who receives advance notification

	Requesting notifications

	Django’s release process
	Official releases

	Release cadence

	Deprecation policy

	Supported versions

	Release process

	Django Deprecation Timeline
	4.0

	3.1

	3.0

	2.1

	2.0

	1.10

	1.9

	1.8

	1.7

	1.6

	1.5

	1.4

	1.3

	The Django source code repository
	High-level overview

	The master branch

	Stable branches

	Tags

	How is Django Formed?
	Overview

	Prerequisites

	Pre-release tasks

	Preparing for release

	Actually rolling the release

	Making the release(s) available to the public

	Post-release

	New stable branch tasks

	Notes on setting the VERSION tuple

 Contributing to Django

Contributing to Django

Django is a community that lives on its volunteers. As it keeps growing, we
always need more people to help others. As soon as you learn Django, you can
contribute in many ways:

	Join the Django forum [https://forum.djangoproject.com/]. This forum is a place for discussing the Django
framework and applications and projects that use it. This is also a good
place to ask and answer any questions related to installing, using, or
contributing to Django.

	Join the django-users mailing list and answer questions. This
mailing list has a huge audience, and we really want to maintain a
friendly and helpful atmosphere. If you’re new to the Django community,
you should read the posting guidelines [https://code.djangoproject.com/wiki/UsingTheMailingList].

	Join the #django IRC channel on Freenode and answer questions. By
explaining Django to other users, you’re going to learn a lot about the
framework yourself.

	Blog about Django. We syndicate all the Django blogs we know about on
the community page [https://www.djangoproject.com/community/]; if you’d like to see your blog on that page you
can register it here [https://www.djangoproject.com/community/add/blogs/].

	Contribute to open-source Django projects, write some documentation, or
release your own code as an open-source pluggable application. The
ecosystem of pluggable applications is a big strength of Django, help us
build it!

If you think working with Django is fun, wait until you start working on
it. We’re passionate about helping Django users make the jump to contributing
members of the community, so there are several ways you can help Django’s
development:

	Report bugs in our ticket tracker [https://code.djangoproject.com/].

	Join the django-developers mailing list and share your ideas for how
to improve Django. We’re always open to suggestions. You can also interact
on the #django-dev IRC channel.

	Submit patches for new and/or
fixed behavior. If you’re looking for a way to get started contributing
to Django read the Writing your first patch for Django tutorial and have a look at the
easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1] tickets. The Patch review checklist will also be
helpful.

	Improve the documentation or
write unit tests.

	Triage tickets and review patches created by
other users.

Really, ANYONE can do something to help make Django better and greater!

Browse the following sections to find out how:

	Advice for new contributors
	First steps

	Guidelines

	FAQ

	Reporting bugs and requesting features
	Reporting bugs

	Reporting user interface bugs and features

	Requesting features

	How we make decisions

	Triaging tickets
	Triage workflow

	Triage stages

	Other triage attributes

	Closing Tickets

	How can I help with triaging?

	Bisecting a regression

	Writing code
	Coding style

	Unit tests

	Submitting patches

	Working with Git and GitHub

	JavaScript

	Writing documentation
	Getting the raw documentation

	Getting started with Sphinx

	How the documentation is organized

	Writing style

	Commonly used terms

	Django-specific terminology

	Guidelines for reStructuredText files

	Django-specific markup

	Documenting new features

	Minimizing images

	An example

	Spelling check

	Translating documentation

	django-admin man page

	Localizing Django
	Translations

	Formats

	Documentation

	Committing code
	Handling pull requests

	Committing guidelines

	Reverting commits

 Advice for new contributors

Advice for new contributors

New contributor and not sure what to do? Want to help but just don’t know how
to get started? This is the section for you.

Basic tools and workflow

If you are new to contributing to Django, the Writing your first patch for Django
tutorial will give you an introduction to the tools and the workflow.

First steps

Start with these steps to discover Django’s development process.

	Triage tickets

If an unreviewed ticket [https://code.djangoproject.com/query?status=!closed&stage=Unreviewed] reports a bug, try and reproduce it. If you
can reproduce it and it seems valid, make a note that you confirmed the bug
and accept the ticket. Make sure the ticket is filed under the correct
component area. Consider writing a patch that adds a test for the bug’s
behavior, even if you don’t fix the bug itself. See more at
How can I help with triaging?

	Look for tickets that are accepted and review patches to build familiarity
with the codebase and the process

Mark the appropriate flags if a patch needs docs or tests. Look through the
changes a patch makes, and keep an eye out for syntax that is incompatible
with older but still supported versions of Python. Run the tests and make sure they pass.
Where possible and relevant, try them out on a database other than SQLite.
Leave comments and feedback!

	Keep old patches up to date

Oftentimes the codebase will change between a patch being submitted and the
time it gets reviewed. Make sure it still applies cleanly and functions as
expected. Updating a patch is both useful and important! See more on
Submitting patches.

	Write some documentation

Django’s documentation is great but it can always be improved. Did you find
a typo? Do you think that something should be clarified? Go ahead and
suggest a documentation patch! See also the guide on
Writing documentation.

Note

The reports page [https://code.djangoproject.com/wiki/Reports] contains links to many useful Trac queries, including
several that are useful for triaging tickets and reviewing patches as
suggested above.

	Sign the Contributor License Agreement

The code that you write belongs to you or your employer. If your
contribution is more than one or two lines of code, you need to sign the
CLA [https://www.djangoproject.com/foundation/cla/]. See the Contributor License Agreement FAQ [https://www.djangoproject.com/foundation/cla/faq/] for a more thorough
explanation.

Guidelines

As a newcomer on a large project, it’s easy to experience frustration. Here’s
some advice to make your work on Django more useful and rewarding.

	Pick a subject area that you care about, that you are familiar with, or
that you want to learn about

You don’t already have to be an expert on the area you want to work on; you
become an expert through your ongoing contributions to the code.

	Analyze tickets’ context and history

Trac isn’t an absolute; the context is just as important as the words.
When reading Trac, you need to take into account who says things, and when
they were said. Support for an idea two years ago doesn’t necessarily mean
that the idea will still have support. You also need to pay attention to who
hasn’t spoken – for example, if an experienced contributor hasn’t been
recently involved in a discussion, then a ticket may not have the support
required to get into Django.

	Start small

It’s easier to get feedback on a little issue than on a big one. See the
easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1].

	If you’re going to engage in a big task, make sure that your idea has
support first

This means getting someone else to confirm that a bug is real before you fix
the issue, and ensuring that there’s consensus on a proposed feature before
you go implementing it.

	Be bold! Leave feedback!

Sometimes it can be scary to put your opinion out to the world and say “this
ticket is correct” or “this patch needs work”, but it’s the only way the
project moves forward. The contributions of the broad Django community
ultimately have a much greater impact than that of any one person. We can’t
do it without you!

	Err on the side of caution when marking things Ready For Check-in

If you’re really not certain if a ticket is ready, don’t mark it as
such. Leave a comment instead, letting others know your thoughts. If you’re
mostly certain, but not completely certain, you might also try asking on IRC
to see if someone else can confirm your suspicions.

	Wait for feedback, and respond to feedback that you receive

Focus on one or two tickets, see them through from start to finish, and
repeat. The shotgun approach of taking on lots of tickets and letting some
fall by the wayside ends up doing more harm than good.

	Be rigorous

When we say “PEP 8 [https://www.python.org/dev/peps/pep-0008], and must have docs and tests”, we mean it. If a patch
doesn’t have docs and tests, there had better be a good reason. Arguments
like “I couldn’t find any existing tests of this feature” don’t carry much
weight–while it may be true, that means you have the extra-important job of
writing the very first tests for that feature, not that you get a pass from
writing tests altogether.

FAQ

	This ticket I care about has been ignored for days/weeks/months! What can
I do to get it committed?

First off, it’s not personal. Django is entirely developed by volunteers
(except the Django fellow), and sometimes folks just don’t have time. The
best thing to do is to send a gentle reminder to the django-developers
mailing list asking for review on the ticket, or to bring it up in the
#django-dev IRC channel.

	I’m sure my ticket is absolutely 100% perfect, can I mark it as RFC
myself?

Short answer: No. It’s always better to get another set of eyes on a
ticket. If you’re having trouble getting that second set of eyes, see
question 1, above.

 Reporting bugs and requesting features

Reporting bugs and requesting features

Important

Please report security issues only to
security@djangoproject.com. This is a private list only open to
long-time, highly trusted Django developers, and its archives are
not public. For further details, please see our security
policies.

Otherwise, before reporting a bug or requesting a new feature on the
ticket tracker [https://code.djangoproject.com/], consider these points:

	Check that someone hasn’t already filed the bug or feature request by
searching [https://code.djangoproject.com/search] or running custom queries [https://code.djangoproject.com/query] in the ticket tracker.

	Don’t use the ticket system to ask support questions. Use the
django-users list or the #django IRC channel for that.

	Don’t reopen issues that have been marked “wontfix” without finding consensus
to do so on django-developers.

	Don’t use the ticket tracker for lengthy discussions, because they’re
likely to get lost. If a particular ticket is controversial, please move the
discussion to django-developers.

Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain
amount of overhead involved in working with any bug tracking system so your
help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

	Do read the FAQ to see if your issue might
be a well-known question.

	Do ask on django-users or #django first if you’re not sure if
what you’re seeing is a bug.

	Do write complete, reproducible, specific bug reports. You must
include a clear, concise description of the problem, and a set of
instructions for replicating it. Add as much debug information as you can:
code snippets, test cases, exception backtraces, screenshots, etc. A nice
small test case is the best way to report a bug, as it gives us a
helpful way to confirm the bug quickly.

	Don’t post to django-developers only to announce that you have filed a
bug report. All the tickets are mailed to another list, django-updates,
which is tracked by developers and interested community members; we see them
as they are filed.

To understand the lifecycle of your ticket once you have created it, refer to
Triaging tickets.

Reporting user interface bugs and features

If your bug or feature request touches on anything visual in nature, there
are a few additional guidelines to follow:

	Include screenshots in your ticket which are the visual equivalent of a
minimal testcase. Show off the issue, not the crazy customizations
you’ve made to your browser.

	If the issue is difficult to show off using a still image, consider
capturing a brief screencast. If your software permits it, capture only
the relevant area of the screen.

	If you’re offering a patch which changes the look or behavior of Django’s
UI, you must attach before and after screenshots/screencasts.
Tickets lacking these are difficult for triagers to assess quickly.

	Screenshots don’t absolve you of other good reporting practices. Make sure
to include URLs, code snippets, and step-by-step instructions on how to
reproduce the behavior visible in the screenshots.

	Make sure to set the UI/UX flag on the ticket so interested parties can
find your ticket.

Requesting features

We’re always trying to make Django better, and your feature requests are a key
part of that. Here are some tips on how to make a request most effectively:

	Make sure the feature actually requires changes in Django’s core. If your
idea can be developed as an independent application or module — for
instance, you want to support another database engine — we’ll probably
suggest that you develop it independently. Then, if your project gathers
sufficient community support, we may consider it for inclusion in Django.

	First request the feature on the django-developers list, not in the
ticket tracker. It’ll get read more closely if it’s on the mailing list.
This is even more important for large-scale feature requests. We like to
discuss any big changes to Django’s core on the mailing list before
actually working on them.

	Describe clearly and concisely what the missing feature is and how you’d
like to see it implemented. Include example code (non-functional is OK)
if possible.

	Explain why you’d like the feature. In some cases this is obvious, but
since Django is designed to help real developers get real work done,
you’ll need to explain it, if it isn’t obvious why the feature would be
useful.

If there’s a consensus agreement on the feature, then it’s appropriate to
create a ticket. Include a link the discussion on django-developers in the
ticket description.

As with most open-source projects, code talks. If you are willing to write the
code for the feature yourself or, even better, if you’ve already written it,
it’s much more likely to be accepted. Fork Django on GitHub, create a feature
branch, and show us your work!

See also: Documenting new features.

How we make decisions

Whenever possible, we strive for a rough consensus. To that end, we’ll often
have informal votes on django-developers about a feature. In these votes we
follow the voting style invented by Apache and used on Python itself, where
votes are given as +1, +0, -0, or -1. Roughly translated, these votes mean:

	+1: “I love the idea and I’m strongly committed to it.”

	+0: “Sounds OK to me.”

	-0: “I’m not thrilled, but I won’t stand in the way.”

	-1: “I strongly disagree and would be very unhappy to see the idea turn
into reality.”

Although these votes on django-developers are informal, they’ll be taken very
seriously. After a suitable voting period, if an obvious consensus arises we’ll
follow the votes.

However, consensus is not always possible. If consensus cannot be reached, or
if the discussion towards a consensus fizzles out without a concrete decision,
the decision may be deferred to the technical board.

Internally, the technical board will use the same voting mechanism. A
proposition will be considered carried if:

	There are at least three “+1” votes from members of the technical board.

	There is no “-1” vote from any member of the technical board.

Votes should be submitted within a week.

Since this process allows any technical board member to veto a proposal, a
“-1” vote should be accompanied by an explanation of what it would take to
convert that “-1” into at least a “+0”.

Votes on technical matters should be announced and held in public on the
django-developers mailing list.

 Triaging tickets

Triaging tickets

Django uses Trac [https://code.djangoproject.com/] for managing the work on the code base. Trac is a
community-tended garden of the bugs people have found and the features people
would like to see added. As in any garden, sometimes there are weeds to be
pulled and sometimes there are flowers and vegetables that need picking. We need
your help to sort out one from the other, and in the end we all benefit
together.

Like all gardens, we can aspire to perfection but in reality there’s no such
thing. Even in the most pristine garden there are still snails and insects.
In a community garden there are also helpful people who – with the best of
intentions – fertilize the weeds and poison the roses. It’s the job of the
community as a whole to self-manage, keep the problems to a minimum, and
educate those coming into the community so that they can become valuable
contributing members.

Similarly, while we aim for Trac to be a perfect representation of the state of
Django’s progress, we acknowledge that this will not happen. By distributing
the load of Trac maintenance to the community, we accept that there will be
mistakes. Trac is “mostly accurate”, and we give allowances for the fact that
sometimes it will be wrong. That’s okay. We’re perfectionists with deadlines.

We rely on the community to keep participating, keep tickets as accurate as
possible, and raise issues for discussion on our mailing lists when there is
confusion or disagreement.

Django is a community project, and every contribution helps. We can’t do this
without you!

Triage workflow

Unfortunately, not all bug reports and feature requests in the ticket tracker
provide all the required details. A number of
tickets have patches, but those patches don’t meet all the requirements of a
good patch.

One way to help out is to triage tickets that have been created by other
users.

Most of the workflow is based around the concept of a ticket’s
triage stages. Each stage describes where in its
lifetime a given ticket is at any time. Along with a handful of flags, this
attribute easily tells us what and who each ticket is waiting on.

Since a picture is worth a thousand words, let’s start there:

[image: Django's ticket triage workflow]We’ve got two roles in this diagram:

	Committers: people with commit access who are responsible for making the
final decision to merge a patch.

	Ticket triagers: anyone in the Django community who chooses to
become involved in Django’s development process. Our Trac installation
is intentionally left open to the public, and anyone can triage tickets.
Django is a community project, and we encourage triage by the
community.

By way of example, here we see the lifecycle of an average ticket:

	Alice creates a ticket and sends an incomplete pull request (no tests,
incorrect implementation).

	Bob reviews the pull request, marks the ticket as “Accepted”, “needs tests”,
and “patch needs improvement”, and leaves a comment telling Alice how the
patch could be improved.

	Alice updates the pull request, adding tests (but not changing the
implementation). She removes the two flags.

	Charlie reviews the pull request and resets the “patch needs improvement”
flag with another comment about improving the implementation.

	Alice updates the pull request, fixing the implementation. She removes the
“patch needs improvement” flag.

	Daisy reviews the pull request and marks the ticket as “Ready for checkin”.

	Jacob, a committer, reviews the pull request and merges it.

Some tickets require much less feedback than this, but then again some tickets
require much much more.

Triage stages

Below we describe in more detail the various stages that a ticket may flow
through during its lifetime.

Unreviewed

The ticket has not been reviewed by anyone who felt qualified to make a
judgment about whether the ticket contained a valid issue, a viable feature,
or ought to be closed for any of the various reasons.

Accepted

The big gray area! The absolute meaning of “accepted” is that the issue
described in the ticket is valid and is in some stage of being worked on.
Beyond that there are several considerations:

	Accepted + No Flags

The ticket is valid, but no one has submitted a patch for it yet. Often this
means you could safely start writing a patch for it. This is generally more
true for the case of accepted bugs than accepted features. A ticket for a bug
that has been accepted means that the issue has been verified by at least one
triager as a legitimate bug - and should probably be fixed if possible. An
accepted new feature may only mean that one triager thought the feature would
be good to have, but this alone does not represent a consensus view or imply
with any certainty that a patch will be accepted for that feature. Seek more
feedback before writing an extensive patch if you are in doubt.

	Accepted + Has Patch

The ticket is waiting for people to review the supplied patch. This means
downloading the patch and trying it out, verifying that it contains tests
and docs, running the test suite with the included patch, and leaving
feedback on the ticket.

	Accepted + Has Patch + Needs …

This means the ticket has been reviewed, and has been found to need further
work. “Needs tests” and “Needs documentation” are self-explanatory. “Patch
needs improvement” will generally be accompanied by a comment on the ticket
explaining what is needed to improve the code.

Ready For Checkin

The ticket was reviewed by any member of the community other than the person
who supplied the patch and found to meet all the requirements for a
commit-ready patch. A committer now needs to give the patch a final
review prior to being committed. See the
New contributors’ FAQ for “My ticket has been in
RFC forever! What should I do?”

Someday/Maybe

This stage isn’t shown on the diagram. It’s used sparingly to keep track of
high-level ideas or long term feature requests.

These tickets are uncommon and overall less useful since they don’t describe
concrete actionable issues. They are enhancement requests that we might
consider adding someday to the framework if an excellent patch is submitted.
They are not a high priority.

Other triage attributes

A number of flags, appearing as checkboxes in Trac, can be set on a ticket:

Has patch

This means the ticket has an associated
patch. These will be reviewed
to see if the patch is “good”.

The following three fields (Needs documentation, Needs tests,
Patch needs improvement) apply only if a patch has been supplied.

Needs documentation

This flag is used for tickets with patches that need associated
documentation. Complete documentation of features is a prerequisite
before we can check them into the codebase.

Needs tests

This flags the patch as needing associated unit tests. Again, this
is a required part of a valid patch.

Patch needs improvement

This flag means that although the ticket has a patch, it’s not quite
ready for checkin. This could mean the patch no longer applies
cleanly, there is a flaw in the implementation, or that the code
doesn’t meet our standards.

Easy pickings

Tickets that would require small, easy, patches.

Type

Tickets should be categorized by type between:

	
	New Feature

	For adding something new.

	
	Bug

	For when an existing thing is broken or not behaving as expected.

	
	Cleanup/optimization

	For when nothing is broken but something could be made cleaner,
better, faster, stronger.

Component

Tickets should be classified into components indicating which area of
the Django codebase they belong to. This makes tickets better organized and
easier to find.

Severity

The severity attribute is used to identify blockers, that is, issues which
should get fixed before releasing the next version of Django. Typically those
issues are bugs causing regressions from earlier versions or potentially
causing severe data losses. This attribute is quite rarely used and the vast
majority of tickets have a severity of “Normal”.

Version

It is possible to use the version attribute to indicate in which
version the reported bug was identified.

UI/UX

This flag is used for tickets that relate to User Interface and User
Experiences questions. For example, this flag would be appropriate for
user-facing features in forms or the admin interface.

Cc

You may add your username or email address to this field to be notified when
new contributions are made to the ticket.

Keywords

With this field you may label a ticket with multiple keywords. This can be
useful, for example, to group several tickets of a same theme. Keywords can
either be comma or space separated. Keyword search finds the keyword string
anywhere in the keywords. For example, clicking on a ticket with the keyword
“form” will yield similar tickets tagged with keywords containing strings such
as “formset”, “modelformset”, and “ManagementForm”.

Closing Tickets

When a ticket has completed its useful lifecycle, it’s time for it to be
closed. Closing a ticket is a big responsibility, though. You have to be sure
that the issue is really resolved, and you need to keep in mind that the
reporter of the ticket may not be happy to have their ticket closed (unless
it’s fixed, of course). If you’re not certain about closing a ticket, leave a
comment with your thoughts instead.

If you do close a ticket, you should always make sure of the following:

	Be certain that the issue is resolved.

	Leave a comment explaining the decision to close the ticket.

	If there is a way they can improve the ticket to reopen it, let them know.

	If the ticket is a duplicate, reference the original ticket. Also
cross-reference the closed ticket by leaving a comment in the original one
– this allows to access more related information about the reported bug
or requested feature.

	Be polite. No one likes having their ticket closed. It can be
frustrating or even discouraging. The best way to avoid turning people
off from contributing to Django is to be polite and friendly and to offer
suggestions for how they could improve this ticket and other tickets in
the future.

A ticket can be resolved in a number of ways:

	
	fixed

	Used once a patch has been rolled into Django and the issue is fixed.

	
	invalid

	Used if the ticket is found to be incorrect. This means that the
issue in the ticket is actually the result of a user error, or
describes a problem with something other than Django, or isn’t
a bug report or feature request at all (for example, some new users
submit support queries as tickets).

	
	wontfix

	Used when a someone decides that the request isn’t appropriate for
consideration in Django. Sometimes a ticket is closed as “wontfix” with a
request for the reporter to start a discussion on the django-developers
mailing list if they feel differently from the rationale provided by the
person who closed the ticket. Other times, a mailing list discussion
precedes the decision to close a ticket. Always use the mailing list to
get a consensus before reopening tickets closed as “wontfix”.

	
	duplicate

	Used when another ticket covers the same issue. By closing duplicate
tickets, we keep all the discussion in one place, which helps
everyone.

	
	worksforme

	Used when the ticket doesn’t contain enough detail to replicate
the original bug.

	
	needsinfo

	Used when the ticket does not contain enough information to replicate
the reported issue but is potentially still valid. The ticket
should be reopened when more information is supplied.

If you believe that the ticket was closed in error – because you’re
still having the issue, or it’s popped up somewhere else, or the triagers have
made a mistake – please reopen the ticket and provide further information.
Again, please do not reopen tickets that have been marked as “wontfix” and
bring the issue to django-developers instead.

How can I help with triaging?

The triage process is primarily driven by community members. Really,
ANYONE can help.

To get involved, start by creating an account on Trac [https://www.djangoproject.com/accounts/register/]. If you have an
account but have forgotten your password, you can reset it using the password
reset page [https://www.djangoproject.com/accounts/password/reset/].

Then, you can help out by:

	Closing “Unreviewed” tickets as “invalid”, “worksforme”, or “duplicate”, or
“wontfix”.

	Closing “Unreviewed” tickets as “needsinfo” when the description is too
sparse to be actionable, or when they’re feature requests requiring a
discussion on django-developers.

	Correcting the “Needs tests”, “Needs documentation”, or “Has patch”
flags for tickets where they are incorrectly set.

	Setting the “Easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1]” flag for tickets that are small and
relatively straightforward.

	Set the type of tickets that are still uncategorized.

	Checking that old tickets are still valid. If a ticket hasn’t seen
any activity in a long time, it’s possible that the problem has been
fixed but the ticket hasn’t yet been closed.

	Identifying trends and themes in the tickets. If there are a lot of bug
reports about a particular part of Django, it may indicate we should
consider refactoring that part of the code. If a trend is emerging,
you should raise it for discussion (referencing the relevant tickets)
on django-developers.

	Verify if patches submitted by other users are correct. If they are correct
and also contain appropriate documentation and tests then move them to the
“Ready for Checkin” stage. If they are not correct then leave a comment to
explain why and set the corresponding flags (“Patch needs improvement”,
“Needs tests” etc.).

Note

The Reports page [https://code.djangoproject.com/wiki/Reports] contains links to many useful Trac queries, including
several that are useful for triaging tickets and reviewing patches as
suggested above.

You can also find more Advice for new contributors.

However, we do ask the following of all general community members working in
the ticket database:

	Please don’t promote your own tickets to “Ready for checkin”. You
may mark other people’s tickets which you’ve reviewed as “Ready for
checkin”, but you should get at minimum one other community member to
review a patch that you submit.

	Please don’t reverse a decision without posting a message to
django-developers to find consensus.

	If you’re unsure if you should be making a change, don’t make the
change but instead leave a comment with your concerns on the ticket,
or post a message to django-developers. It’s okay to be unsure,
but your input is still valuable.

Bisecting a regression

A regression is a bug that’s present in some newer version of Django but not in
an older one. An extremely helpful piece of information is the commit that
introduced the regression. Knowing the commit that caused the change in
behavior helps identify if the change was intentional or if it was an
inadvertent side-effect. Here’s how you can determine this.

Begin by writing a regression test for Django’s test suite for the issue. For
example, we’ll pretend we’re debugging a regression in migrations. After you’ve
written the test and confirmed that it fails on the latest master, put it in a
separate file that you can run standalone. For our example, we’ll pretend we
created tests/migrations/test_regression.py, which can be run with:

$./runtests.py migrations.test_regression

Next, we mark the current point in history as being “bad” since the test fails:

$ git bisect bad
You need to start by "git bisect start"
Do you want me to do it for you [Y/n]? y

Now, we need to find a point in git history before the regression was
introduced (i.e. a point where the test passes). Use something like
git checkout HEAD~100 to checkout an earlier revision (100 commits earlier,
in this case). Check if the test fails. If so, mark that point as “bad”
(git bisect bad), then checkout an earlier revision and recheck. Once you
find a revision where your test passes, mark it as “good”:

$ git bisect good
Bisecting: X revisions left to test after this (roughly Y steps)
...

Now we’re ready for the fun part: using git bisect run to automate the rest
of the process:

$ git bisect run tests/runtests.py migrations.test_regression

You should see git bisect use a binary search to automatically checkout
revisions between the good and bad commits until it finds the first “bad”
commit where the test fails.

Now, report your results on the Trac ticket, and please include the regression
test as an attachment. When someone writes a fix for the bug, they’ll already
have your test as a starting point.

 Writing code

Writing code

So you’d like to write some code to improve Django. Awesome! Browse the
following sections to find out how to give your code patches the best
chances to be included in Django core:

	Coding style

	Unit tests

	Submitting patches

	Working with Git and GitHub

	JavaScript

 Coding style

Coding style

Please follow these coding standards when writing code for inclusion in Django.

Python style

	Please conform to the indentation style dictated in the .editorconfig
file. We recommend using a text editor with EditorConfig [https://editorconfig.org/] support to avoid
indentation and whitespace issues. The Python files use 4 spaces for
indentation and the HTML files use 2 spaces.

	Unless otherwise specified, follow PEP 8 [https://www.python.org/dev/peps/pep-0008].

Use flake8 [https://pypi.org/project/flake8/] to check for problems in this area. Note that our setup.cfg
file contains some excluded files (deprecated modules we don’t care about
cleaning up and some third-party code that Django vendors) as well as some
excluded errors that we don’t consider as gross violations. Remember that
PEP 8 [https://www.python.org/dev/peps/pep-0008] is only a guide, so respect the style of the surrounding code as a
primary goal.

An exception to PEP 8 [https://www.python.org/dev/peps/pep-0008] is our rules on line lengths. Don’t limit lines of
code to 79 characters if it means the code looks significantly uglier or is
harder to read. We allow up to 119 characters as this is the width of GitHub
code review; anything longer requires horizontal scrolling which makes review
more difficult. This check is included when you run flake8. Documentation,
comments, and docstrings should be wrapped at 79 characters, even though
PEP 8 [https://www.python.org/dev/peps/pep-0008] suggests 72.

	Use four spaces for indentation.

	Use four space hanging indentation rather than vertical alignment:

raise AttributeError(
 'Here is a multiline error message '
 'shortened for clarity.'
)

Instead of:

raise AttributeError('Here is a multiline error message '
 'shortened for clarity.')

This makes better use of space and avoids having to realign strings if the
length of the first line changes.

	Use single quotes for strings, or a double quote if the string contains a
single quote. Don’t waste time doing unrelated refactoring of existing code
to conform to this style.

	Avoid use of “we” in comments, e.g. “Loop over” rather than “We loop over”.

	Use underscores, not camelCase, for variable, function and method names
(i.e. poll.get_unique_voters(), not poll.getUniqueVoters()).

	Use InitialCaps for class names (or for factory functions that
return classes).

	In docstrings, follow the style of existing docstrings and PEP 257 [https://www.python.org/dev/peps/pep-0257].

	In tests, use
assertRaisesMessage() and
assertWarnsMessage()
instead of assertRaises() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises] and
assertWarns() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns] so you can check the
exception or warning message. Use assertRaisesRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex]
and assertWarnsRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex] only if you need regular
expression matching.

Use assertIs(…, True/False) [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIs] for testing
boolean values, rather than assertTrue() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue] and
assertFalse() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertFalse], so you can check the actual boolean
value, not the truthiness of the expression.

	In test docstrings, state the expected behavior that each test demonstrates.
Don’t include preambles such as “Tests that” or “Ensures that”.

Reserve ticket references for obscure issues where the ticket has additional
details that can’t be easily described in docstrings or comments. Include the
ticket number at the end of a sentence like this:

def test_foo():
 """
 A test docstring looks like this (#123456).
 """
 ...

Imports

	Use isort [https://github.com/timothycrosley/isort#readme] to automate
import sorting using the guidelines below.

Quick start:

$ python -m pip install isort
$ isort -rc .

This runs isort recursively from your current directory, modifying any
files that don’t conform to the guidelines. If you need to have imports out
of order (to avoid a circular import, for example) use a comment like this:

import module # isort:skip

	Put imports in these groups: future, standard library, third-party libraries,
other Django components, local Django component, try/excepts. Sort lines in
each group alphabetically by the full module name. Place all import module
statements before from module import objects in each section. Use absolute
imports for other Django components and relative imports for local components.

	On each line, alphabetize the items with the upper case items grouped before
the lowercase items.

	Break long lines using parentheses and indent continuation lines by 4 spaces.
Include a trailing comma after the last import and put the closing
parenthesis on its own line.

Use a single blank line between the last import and any module level code,
and use two blank lines above the first function or class.

For example (comments are for explanatory purposes only):

django/contrib/admin/example.py

future
from __future__ import unicode_literals

standard library
import json
from itertools import chain

third-party
import bcrypt

Django
from django.http import Http404
from django.http.response import (
 Http404, HttpResponse, HttpResponseNotAllowed, StreamingHttpResponse,
 cookie,
)

local Django
from .models import LogEntry

try/except
try:
 import yaml
except ImportError:
 yaml = None

CONSTANT = 'foo'

class Example:
 # ...

	Use convenience imports whenever available. For example, do this:

from django.views import View

instead of:

from django.views.generic.base import View

Template style

	In Django template code, put one (and only one) space between the curly
brackets and the tag contents.

Do this:

{{ foo }}

Don’t do this:

{{foo}}

View style

	In Django views, the first parameter in a view function should be called
request.

Do this:

def my_view(request, foo):
 # ...

Don’t do this:

def my_view(req, foo):
 # ...

Model style

	Field names should be all lowercase, using underscores instead of
camelCase.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

Don’t do this:

class Person(models.Model):
 FirstName = models.CharField(max_length=20)
 Last_Name = models.CharField(max_length=40)

	The class Meta should appear after the fields are defined, with
a single blank line separating the fields and the class definition.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

 class Meta:
 verbose_name_plural = 'people'

Don’t do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)
 class Meta:
 verbose_name_plural = 'people'

Don’t do this, either:

class Person(models.Model):
 class Meta:
 verbose_name_plural = 'people'

 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

	The order of model inner classes and standard methods should be as
follows (noting that these are not all required):

	All database fields

	Custom manager attributes

	class Meta

	def __str__()

	def save()

	def get_absolute_url()

	Any custom methods

	If choices is defined for a given model field, define each choice as a
list of tuples, with an all-uppercase name as a class attribute on the model.
Example:

class MyModel(models.Model):
 DIRECTION_UP = 'U'
 DIRECTION_DOWN = 'D'
 DIRECTION_CHOICES = [
 (DIRECTION_UP, 'Up'),
 (DIRECTION_DOWN, 'Down'),
]

Use of django.conf.settings

Modules should not in general use settings stored in django.conf.settings
at the top level (i.e. evaluated when the module is imported). The explanation
for this is as follows:

Manual configuration of settings (i.e. not relying on the
DJANGO_SETTINGS_MODULE environment variable) is allowed and possible as
follows:

from django.conf import settings

settings.configure({}, SOME_SETTING='foo')

However, if any setting is accessed before the settings.configure line,
this will not work. (Internally, settings is a LazyObject which
configures itself automatically when the settings are accessed if it has not
already been configured).

So, if there is a module containing some code as follows:

from django.conf import settings
from django.urls import get_callable

default_foo_view = get_callable(settings.FOO_VIEW)

…then importing this module will cause the settings object to be configured.
That means that the ability for third parties to import the module at the top
level is incompatible with the ability to configure the settings object
manually, or makes it very difficult in some circumstances.

Instead of the above code, a level of laziness or indirection must be used,
such as django.utils.functional.LazyObject,
django.utils.functional.lazy() or lambda.

Miscellaneous

	Mark all strings for internationalization; see the i18n
documentation for details.

	Remove import statements that are no longer used when you change code.
flake8 [https://pypi.org/project/flake8/] will identify these imports for you. If an unused import needs to
remain for backwards-compatibility, mark the end of with # NOQA to
silence the flake8 warning.

	Systematically remove all trailing whitespaces from your code as those
add unnecessary bytes, add visual clutter to the patches and can also
occasionally cause unnecessary merge conflicts. Some IDE’s can be
configured to automatically remove them and most VCS tools can be set to
highlight them in diff outputs.

	Please don’t put your name in the code you contribute. Our policy is to
keep contributors’ names in the AUTHORS file distributed with Django
– not scattered throughout the codebase itself. Feel free to include a
change to the AUTHORS file in your patch if you make more than a
single trivial change.

JavaScript style

For details about the JavaScript code style used by Django, see
JavaScript.

 Unit tests

Unit tests

Django comes with a test suite of its own, in the tests directory of the
code base. It’s our policy to make sure all tests pass at all times.

We appreciate any and all contributions to the test suite!

The Django tests all use the testing infrastructure that ships with Django for
testing applications. See Writing and running tests for an explanation of
how to write new tests.

Running the unit tests

Quickstart

First, fork Django on GitHub [https://github.com/django/django/fork].

Second, create and activate a virtual environment. If you’re not familiar with
how to do that, read our contributing tutorial.

Next, clone your fork, install some requirements, and run the tests:

$ git clone https://github.com/YourGitHubName/django.git django-repo
$ cd django-repo/tests
$ python -m pip install -e ..
$ python -m pip install -r requirements/py3.txt
$./runtests.py

Installing the requirements will likely require some operating system packages
that your computer doesn’t have installed. You can usually figure out which
package to install by doing a Web search for the last line or so of the error
message. Try adding your operating system to the search query if needed.

If you have trouble installing the requirements, you can skip that step. See
Running all the tests for details on installing the optional
test dependencies. If you don’t have an optional dependency installed, the
tests that require it will be skipped.

Running the tests requires a Django settings module that defines the databases
to use. To help you get started, Django provides and uses a sample settings
module that uses the SQLite database. See Using another settings module to
learn how to use a different settings module to run the tests with a different
database.

Having problems? See Troubleshooting for some common issues.

Running tests using tox

Tox [https://tox.readthedocs.io/] is a tool for running tests in different
virtual environments. Django includes a basic tox.ini that automates some
checks that our build server performs on pull requests. To run the unit tests
and other checks (such as import sorting, the
documentation spelling checker, and
code formatting), install and run the tox
command from any place in the Django source tree:

$ python -m pip install tox
$ tox

By default, tox runs the test suite with the bundled test settings file for
SQLite, flake8, isort, and the documentation spelling checker. In
addition to the system dependencies noted elsewhere in this documentation,
the command python3 must be on your path and linked to the appropriate
version of Python. A list of default environments can be seen as follows:

$ tox -l
py3
flake8
docs
isort

Testing other Python versions and database backends

In addition to the default environments, tox supports running unit tests
for other versions of Python and other database backends. Since Django’s test
suite doesn’t bundle a settings file for database backends other than SQLite,
however, you must create and provide your own test settings. For example, to run the tests on Python 3.7
using PostgreSQL:

$ tox -e py37-postgres -- --settings=my_postgres_settings

This command sets up a Python 3.7 virtual environment, installs Django’s
test suite dependencies (including those for PostgreSQL), and calls
runtests.py with the supplied arguments (in this case,
--settings=my_postgres_settings).

The remainder of this documentation shows commands for running tests without
tox, however, any option passed to runtests.py can also be passed to
tox by prefixing the argument list with --, as above.

Tox also respects the DJANGO_SETTINGS_MODULE environment variable, if set.
For example, the following is equivalent to the command above:

$ DJANGO_SETTINGS_MODULE=my_postgres_settings tox -e py35-postgres

Windows users should use:

...\> set DJANGO_SETTINGS_MODULE=my_postgres_settings
...\> tox -e py35-postgres

Running the JavaScript tests

Django includes a set of JavaScript unit tests for
functions in certain contrib apps. The JavaScript tests aren’t run by default
using tox because they require Node.js to be installed and aren’t
necessary for the majority of patches. To run the JavaScript tests using
tox:

$ tox -e javascript

This command runs npm install to ensure test requirements are up to
date and then runs npm test.

Running tests using django-docker-box

django-docker-box [https://github.com/django/django-docker-box] allows you to run the Django’s test suite across all
supported databases and python versions. See the django-docker-box [https://github.com/django/django-docker-box] project
page for installation and usage instructions.

Using another settings module

The included settings module (tests/test_sqlite.py) allows you to run the
test suite using SQLite. If you want to run the tests using a different
database, you’ll need to define your own settings file. Some tests, such as
those for contrib.postgres, are specific to a particular database backend
and will be skipped if run with a different backend.

To run the tests with different settings, ensure that the module is on your
PYTHONPATH and pass the module with --settings.

The DATABASES setting in any test settings module needs to define
two databases:

	A default database. This database should use the backend that
you want to use for primary testing.

	A database with the alias other. The other database is used to test
that queries can be directed to different databases. This database should use
the same backend as the default, and it must have a different name.

If you’re using a backend that isn’t SQLite, you will need to provide other
details for each database:

	The USER option needs to specify an existing user account
for the database. That user needs permission to execute CREATE DATABASE
so that the test database can be created.

	The PASSWORD option needs to provide the password for
the USER that has been specified.

Test databases get their names by prepending test_ to the value of the
NAME settings for the databases defined in DATABASES.
These test databases are deleted when the tests are finished.

You will also need to ensure that your database uses UTF-8 as the default
character set. If your database server doesn’t use UTF-8 as a default charset,
you will need to include a value for CHARSET in the
test settings dictionary for the applicable database.

Running only some of the tests

Django’s entire test suite takes a while to run, and running every single test
could be redundant if, say, you just added a test to Django that you want to
run quickly without running everything else. You can run a subset of the unit
tests by appending the names of the test modules to runtests.py on the
command line.

For example, if you’d like to run tests only for generic relations and
internationalization, type:

$./runtests.py --settings=path.to.settings generic_relations i18n

How do you find out the names of individual tests? Look in tests/ — each
directory name there is the name of a test.

If you want to run only a particular class of tests, you can specify a list of
paths to individual test classes. For example, to run the TranslationTests
of the i18n module, type:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests

Going beyond that, you can specify an individual test method like this:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests.test_lazy_objects

You can run tests starting at a specified top-level module with --start-at
option. For example:

$./runtests.py --start-at=wsgi

You can also run tests starting after a specified top-level module with
--start-after option. For example:

$./runtests.py --start-after=wsgi

Note that the --reverse option doesn’t impact on --start-at or
--start-after options. Moreover these options cannot be used with test
labels.

Running the Selenium tests

Some tests require Selenium and a Web browser. To run these tests, you must
install the selenium [https://pypi.org/project/selenium/] package and run the tests with the
--selenium=<BROWSERS> option. For example, if you have Firefox and Google
Chrome installed:

$./runtests.py --selenium=firefox,chrome

See the selenium.webdriver [https://github.com/SeleniumHQ/selenium/tree/master/py/selenium/webdriver] package for the list of available browsers.

Specifying --selenium automatically sets --tags=selenium to run only
the tests that require selenium.

Some browsers (e.g. Chrome or Firefox) support headless testing, which can be
faster and more stable. Add the --headless option to enable this mode.

Running all the tests

If you want to run the full suite of tests, you’ll need to install a number of
dependencies:

	argon2-cffi [https://pypi.org/project/argon2_cffi/] 16.1.0+

	asgiref [https://pypi.org/project/asgiref/] 3.2+ (required)

	bcrypt [https://pypi.org/project/bcrypt/]

	docutils [https://pypi.org/project/docutils/]

	geoip2 [https://pypi.org/project/geoip2/]

	jinja2 [https://pypi.org/project/jinja2/] 2.7+

	numpy [https://pypi.org/project/numpy/]

	Pillow [https://pypi.org/project/Pillow/] 4.2.0+

	PyYAML [https://pyyaml.org/wiki/PyYAML]

	pytz [https://pypi.org/project/pytz/] (required)

	pywatchman [https://pypi.org/project/pywatchman/]

	setuptools [https://pypi.org/project/setuptools/]

	memcached [https://memcached.org/], plus a supported Python binding

	gettext [https://www.gnu.org/software/gettext/manual/gettext.html] (gettext on Windows)

	selenium [https://pypi.org/project/selenium/]

	sqlparse [https://pypi.org/project/sqlparse/] 0.2.2+ (required)

	tblib [https://pypi.org/project/tblib/] 1.5.0+

You can find these dependencies in pip requirements files [https://pip.pypa.io/en/latest/user_guide/#requirements-files] inside the
tests/requirements directory of the Django source tree and install them
like so:

$ python -m pip install -r tests/requirements/py3.txt

If you encounter an error during the installation, your system might be missing
a dependency for one or more of the Python packages. Consult the failing
package’s documentation or search the Web with the error message that you
encounter.

You can also install the database adapter(s) of your choice using
oracle.txt, mysql.txt, or postgres.txt.

If you want to test the memcached cache backend, you’ll also need to define
a CACHES setting that points at your memcached instance.

To run the GeoDjango tests, you will need to setup a spatial database
and install the Geospatial libraries.

Each of these dependencies is optional. If you’re missing any of them, the
associated tests will be skipped.

To run some of the autoreload tests, you’ll need to install the Watchman [https://facebook.github.io/watchman/]
service.

Code coverage

Contributors are encouraged to run coverage on the test suite to identify areas
that need additional tests. The coverage tool installation and use is described
in testing code coverage.

Coverage should be run in a single process to obtain accurate statistics. To
run coverage on the Django test suite using the standard test settings:

$ coverage run ./runtests.py --settings=test_sqlite --parallel=1

After running coverage, generate the html report by running:

$ coverage html

When running coverage for the Django tests, the included .coveragerc
settings file defines coverage_html as the output directory for the report
and also excludes several directories not relevant to the results
(test code or external code included in Django).

Contrib apps

Tests for contrib apps can be found in the tests/ directory, typically
under <app_name>_tests. For example, tests for contrib.auth are located
in tests/auth_tests.

Troubleshooting

Test suite hangs or shows failures on master branch

Ensure you have the latest point release of a supported Python version, since there are often bugs in earlier versions
that may cause the test suite to fail or hang.

On macOS (High Sierra and newer versions), you might see this message
logged, after which the tests hang:

objc[42074]: +[__NSPlaceholderDate initialize] may have been in progress in
another thread when fork() was called.

To avoid this set a OBJC_DISABLE_INITIALIZE_FORK_SAFETY environment
variable, for example:

$ OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES ./runtests.py

Or add export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES to your shell’s
startup file (e.g. ~/.profile).

Many test failures with UnicodeEncodeError

If the locales package is not installed, some tests will fail with a
UnicodeEncodeError.

You can resolve this on Debian-based systems, for example, by running:

$ apt-get install locales
$ dpkg-reconfigure locales

You can resolve this for macOS systems by configuring your shell’s locale:

$ export LANG="en_US.UTF-8"
$ export LC_ALL="en_US.UTF-8"

Run the locale command to confirm the change. Optionally, add those export
commands to your shell’s startup file (e.g. ~/.bashrc for Bash) to avoid
having to retype them.

Tests that only fail in combination

In case a test passes when run in isolation but fails within the whole suite,
we have some tools to help analyze the problem.

The --bisect option of runtests.py will run the failing test while
halving the test set it is run together with on each iteration, often making
it possible to identify a small number of tests that may be related to the
failure.

For example, suppose that the failing test that works on its own is
ModelTest.test_eq, then using:

$./runtests.py --bisect basic.tests.ModelTest.test_eq

will try to determine a test that interferes with the given one. First, the
test is run with the first half of the test suite. If a failure occurs, the
first half of the test suite is split in two groups and each group is then run
with the specified test. If there is no failure with the first half of the test
suite, the second half of the test suite is run with the specified test and
split appropriately as described earlier. The process repeats until the set of
failing tests is minimized.

The --pair option runs the given test alongside every other test from the
suite, letting you check if another test has side-effects that cause the
failure. So:

$./runtests.py --pair basic.tests.ModelTest.test_eq

will pair test_eq with every test label.

With both --bisect and --pair, if you already suspect which cases
might be responsible for the failure, you may limit tests to be cross-analyzed
by specifying further test labels after
the first one:

$./runtests.py --pair basic.tests.ModelTest.test_eq queries transactions

You can also try running any set of tests in reverse using the --reverse
option in order to verify that executing tests in a different order does not
cause any trouble:

$./runtests.py basic --reverse

Seeing the SQL queries run during a test

If you wish to examine the SQL being run in failing tests, you can turn on
SQL logging using the --debug-sql option. If you
combine this with --verbosity=2, all SQL queries will be output:

$./runtests.py basic --debug-sql

Seeing the full traceback of a test failure

By default tests are run in parallel with one process per core. When the tests
are run in parallel, however, you’ll only see a truncated traceback for any
test failures. You can adjust this behavior with the --parallel option:

$./runtests.py basic --parallel=1

You can also use the DJANGO_TEST_PROCESSES environment variable for this
purpose.

Tips for writing tests

Isolating model registration

To avoid polluting the global apps registry and prevent
unnecessary table creation, models defined in a test method should be bound to
a temporary Apps instance:

from django.apps.registry import Apps
from django.db import models
from django.test import SimpleTestCase

class TestModelDefinition(SimpleTestCase):
 def test_model_definition(self):
 test_apps = Apps(['app_label'])

 class TestModel(models.Model):
 class Meta:
 apps = test_apps
 ...

	
django.test.utils.isolate_apps(*app_labels, attr_name=None, kwarg_name=None)

	

Since this pattern involves a lot of boilerplate, Django provides the
isolate_apps() decorator. It’s used like this:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
 @isolate_apps('app_label')
 def test_model_definition(self):
 class TestModel(models.Model):
 pass
 ...

Setting app_label

Models defined in a test method with no explicit
app_label are automatically assigned the
label of the app in which their test class is located.

In order to make sure the models defined within the context of
isolate_apps() instances are correctly
installed, you should pass the set of targeted app_label as arguments:

tests/app_label/tests.py

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
 @isolate_apps('app_label', 'other_app_label')
 def test_model_definition(self):
 # This model automatically receives app_label='app_label'
 class TestModel(models.Model):
 pass

 class OtherAppModel(models.Model):
 class Meta:
 app_label = 'other_app_label'
 ...

The decorator can also be applied to classes:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

@isolate_apps('app_label')
class TestModelDefinition(SimpleTestCase):
 def test_model_definition(self):
 class TestModel(models.Model):
 pass
 ...

The temporary Apps instance used to isolate model registration can be
retrieved as an attribute when used as a class decorator by using the
attr_name parameter:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

@isolate_apps('app_label', attr_name='apps')
class TestModelDefinition(SimpleTestCase):
 def test_model_definition(self):
 class TestModel(models.Model):
 pass
 self.assertIs(self.apps.get_model('app_label', 'TestModel'), TestModel)

Or as an argument on the test method when used as a method decorator by using
the kwarg_name parameter:

from django.db import models
from django.test import SimpleTestCase
from django.test.utils import isolate_apps

class TestModelDefinition(SimpleTestCase):
 @isolate_apps('app_label', kwarg_name='apps')
 def test_model_definition(self, apps):
 class TestModel(models.Model):
 pass
 self.assertIs(apps.get_model('app_label', 'TestModel'), TestModel)

 Submitting patches

Submitting patches

We’re always grateful for patches to Django’s code. Indeed, bug reports
with associated patches will get fixed far more quickly than those
without patches.

Typo fixes and trivial documentation changes

If you are fixing a really trivial issue, for example changing a word in the
documentation, the preferred way to provide the patch is using GitHub pull
requests without a Trac ticket.

See the Working with Git and GitHub for more details on how to use pull requests.

“Claiming” tickets

In an open-source project with hundreds of contributors around the world, it’s
important to manage communication efficiently so that work doesn’t get
duplicated and contributors can be as effective as possible.

Hence, our policy is for contributors to “claim” tickets in order to let other
developers know that a particular bug or feature is being worked on.

If you have identified a contribution you want to make and you’re capable of
fixing it (as measured by your coding ability, knowledge of Django internals
and time availability), claim it by following these steps:

	Login using your GitHub account [https://code.djangoproject.com/github/login] or create an account [https://www.djangoproject.com/accounts/register/] in our ticket
system. If you have an account but have forgotten your password, you can
reset it using the password reset page [https://www.djangoproject.com/accounts/password/reset/].

	If a ticket for this issue doesn’t exist yet, create one in our
ticket tracker [https://code.djangoproject.com/].

	If a ticket for this issue already exists, make sure nobody else has
claimed it. To do this, look at the “Owned by” section of the ticket.
If it’s assigned to “nobody,” then it’s available to be claimed.
Otherwise, somebody else may be working on this ticket. Either find another
bug/feature to work on, or contact the developer working on the ticket to
offer your help. If a ticket has been assigned for weeks or months without
any activity, it’s probably safe to reassign it to yourself.

	Log into your account, if you haven’t already, by clicking “GitHub Login”
or “DjangoProject Login” in the upper left of the ticket page.

	Claim the ticket by clicking the “assign to myself” radio button under
“Action” near the bottom of the page, then click “Submit changes.”

Note

The Django software foundation requests that anyone contributing more than
a trivial patch to Django sign and submit a Contributor License
Agreement [https://www.djangoproject.com/foundation/cla/], this ensures that the Django Software Foundation has clear
license to all contributions allowing for a clear license for all users.

Ticket claimers’ responsibility

Once you’ve claimed a ticket, you have a responsibility to work on that ticket
in a reasonably timely fashion. If you don’t have time to work on it, either
unclaim it or don’t claim it in the first place!

If there’s no sign of progress on a particular claimed ticket for a week or
two, another developer may ask you to relinquish the ticket claim so that it’s
no longer monopolized and somebody else can claim it.

If you’ve claimed a ticket and it’s taking a long time (days or weeks) to code,
keep everybody updated by posting comments on the ticket. If you don’t provide
regular updates, and you don’t respond to a request for a progress report,
your claim on the ticket may be revoked.

As always, more communication is better than less communication!

Which tickets should be claimed?

Of course, going through the steps of claiming tickets is overkill in some
cases.

In the case of small changes, such as typos in the documentation or small bugs
that will only take a few minutes to fix, you don’t need to jump through the
hoops of claiming tickets. Submit your patch directly and you’re done!

Of course, it is always acceptable, regardless whether someone has claimed it
or not, to submit patches to a ticket if you happen to have a patch ready.

Patch style

Make sure that any contribution you do fulfills at least the following
requirements:

	The code required to fix a problem or add a feature is an essential part
of a patch, but it is not the only part. A good patch should also include a
regression test to validate the behavior that has been
fixed and to prevent the problem from arising again. Also, if some tickets
are relevant to the code that you’ve written, mention the ticket numbers in
some comments in the test so that one can easily trace back the relevant
discussions after your patch gets committed, and the tickets get closed.

	If the code associated with a patch adds a new feature, or modifies
behavior of an existing feature, the patch should also contain
documentation.

When you think your work is ready to be reviewed, send a GitHub pull
request. Please review the patch yourself using our
patch review checklist first.

If you can’t send a pull request for some reason, you can also use patches in
Trac. When using this style, follow these guidelines.

	Submit patches in the format returned by the git diff command.

	Attach patches to a ticket in the ticket tracker [https://code.djangoproject.com/], using the “attach
file” button. Please don’t put the patch in the ticket description
or comment unless it’s a single line patch.

	Name the patch file with a .diff extension; this will let the ticket
tracker apply correct syntax highlighting, which is quite helpful.

Regardless of the way you submit your work, follow these steps.

	Make sure your code fulfills the requirements in our patch review
checklist.

	Check the “Has patch” box on the ticket and make sure the “Needs
documentation”, “Needs tests”, and “Patch needs improvement” boxes aren’t
checked. This makes the ticket appear in the “Patches needing review” queue
on the Development dashboard [https://dashboard.djangoproject.com/].

Non-trivial patches

A “non-trivial” patch is one that is more than a small bug fix. It’s a patch
that introduces Django functionality and makes some sort of design decision.

If you provide a non-trivial patch, include evidence that alternatives have
been discussed on django-developers.

If you’re not sure whether your patch should be considered non-trivial, ask on
the ticket for opinions.

Deprecating a feature

There are a couple of reasons that code in Django might be deprecated:

	If a feature has been improved or modified in a backwards-incompatible way,
the old feature or behavior will be deprecated.

	Sometimes Django will include a backport of a Python library that’s not
included in a version of Python that Django currently supports. When Django
no longer needs to support the older version of Python that doesn’t include
the library, the library will be deprecated in Django.

As the deprecation policy describes,
the first release of Django that deprecates a feature (A.B) should raise a
RemovedInDjangoXXWarning (where XX is the Django version where the feature
will be removed) when the deprecated feature is invoked. Assuming we have good
test coverage, these warnings are converted to errors when running the
test suite with warnings enabled:
python -Wa runtests.py. Thus, when adding a RemovedInDjangoXXWarning
you need to eliminate or silence any warnings generated when running the tests.

The first step is to remove any use of the deprecated behavior by Django itself.
Next you can silence warnings in tests that actually test the deprecated
behavior by using the ignore_warnings decorator, either at the test or class
level:

	In a particular test:

from django.test import ignore_warnings
from django.utils.deprecation import RemovedInDjangoXXWarning

@ignore_warnings(category=RemovedInDjangoXXWarning)
def test_foo(self):
 ...

	For an entire test case:

from django.test import ignore_warnings
from django.utils.deprecation import RemovedInDjangoXXWarning

@ignore_warnings(category=RemovedInDjangoXXWarning)
class MyDeprecatedTests(unittest.TestCase):
 ...

You can also add a test for the deprecation warning:

from django.utils.deprecation import RemovedInDjangoXXWarning

def test_foo_deprecation_warning(self):
 msg = 'Expected deprecation message'
 with self.assertWarnsMessage(RemovedInDjangoXXWarning, msg):
 # invoke deprecated behavior

Finally, there are a couple of updates to Django’s documentation to make:

	If the existing feature is documented, mark it deprecated in documentation
using the .. deprecated:: A.B annotation. Include a short description
and a note about the upgrade path if applicable.

	Add a description of the deprecated behavior, and the upgrade path if
applicable, to the current release notes (docs/releases/A.B.txt) under
the “Features deprecated in A.B” heading.

	Add an entry in the deprecation timeline (docs/internals/deprecation.txt)
under the appropriate version describing what code will be removed.

Once you have completed these steps, you are finished with the deprecation.
In each feature release, all
RemovedInDjangoXXWarnings matching the new version are removed.

JavaScript patches

For information on JavaScript patches, see the JavaScript patches
documentation.

Patch review checklist

Use this checklist to review a pull request. If you are reviewing a pull
request that is not your own and it passes all the criteria below, please set
the “Triage Stage” on the corresponding Trac ticket to “Ready for checkin”.
If you’ve left comments for improvement on the pull request, please tick the
appropriate flags on the Trac ticket based on the results of your review:
“Patch needs improvement”, “Needs documentation”, and/or “Needs tests”. As time
and interest permits, committers do final reviews of “Ready for checkin”
tickets and will either commit the patch or bump it back to “Accepted” if
further works need to be done. If you’re looking to become a committer,
doing thorough reviews of patches is a great way to earn trust.

Looking for a patch to review? Check out the “Patches needing review” section
of the Django Development Dashboard [https://dashboard.djangoproject.com/].
Looking to get your patch reviewed? Ensure the Trac flags on the ticket are
set so that the ticket appears in that queue.

Documentation

	Does the documentation build without any errors (make html, or
make.bat html on Windows, from the docs directory)?

	Does the documentation follow the writing style guidelines in
Writing documentation?

	Are there any spelling errors?

Bugs

	Is there a proper regression test (the test should fail before the fix
is applied)?

	If it’s a bug that qualifies for a backport
to the stable version of Django, is there a release note in
docs/releases/A.B.C.txt? Bug fixes that will be applied only to the
master branch don’t need a release note.

New Features

	Are there tests to “exercise” all of the new code?

	Is there a release note in docs/releases/A.B.txt?

	Is there documentation for the feature and is it annotated
appropriately with
.. versionadded:: A.B or .. versionchanged:: A.B?

Deprecating a feature

See the Deprecating a feature guide.

All code changes

	Does the coding style conform to our
guidelines? Are there any flake8 errors?

	If the change is backwards incompatible in any way, is there a note
in the release notes (docs/releases/A.B.txt)?

	Is Django’s test suite passing?

All tickets

	Is the pull request a single squashed commit with a message that follows our
commit message format?

	Are you the patch author and a new contributor? Please add yourself to the
AUTHORS file and submit a Contributor License Agreement [https://www.djangoproject.com/foundation/cla/].

 Working with Git and GitHub

Working with Git and GitHub

This section explains how the community can contribute code to Django via pull
requests. If you’re interested in how committers handle them, see
Committing code.

Below, we are going to show how to create a GitHub pull request containing the
changes for Trac ticket #xxxxx. By creating a fully-ready pull request, you
will make the reviewer’s job easier, meaning that your work is more likely to
be merged into Django.

You could also upload a traditional patch to Trac, but it’s less practical for
reviews.

Installing Git

Django uses Git [https://git-scm.com/] for its source control. You can download [https://git-scm.com/download] Git, but it’s often easier to install with
your operating system’s package manager.

Django’s Git repository [https://github.com/django/django/] is hosted on GitHub [https://github.com/], and it is recommended
that you also work using GitHub.

After installing Git, the first thing you should do is setup your name and
email:

$ git config --global user.name "Your Real Name"
$ git config --global user.email "you@email.com"

Note that user.name should be your real name, not your GitHub nick. GitHub
should know the email you use in the user.email field, as this will be
used to associate your commits with your GitHub account.

Setting up local repository

When you have created your GitHub account, with the nick “GitHub_nick”, and
forked Django’s repository [https://github.com/django/django/fork],
create a local copy of your fork:

git clone https://github.com/GitHub_nick/django.git

This will create a new directory “django”, containing a clone of your GitHub
repository. The rest of the git commands on this page need to be run within the
cloned directory, so switch to it now:

cd django

Your GitHub repository will be called “origin” in Git.

You should also setup django/django as an “upstream” remote (that is, tell
git that the reference Django repository was the source of your fork of it):

git remote add upstream git@github.com:django/django.git
git fetch upstream

You can add other remotes similarly, for example:

git remote add akaariai git@github.com:akaariai/django.git

Working on a ticket

When working on a ticket, create a new branch for the work, and base that work
on upstream/master:

git checkout -b ticket_xxxxx upstream/master

The -b flag creates a new branch for you locally. Don’t hesitate to create new
branches even for the smallest things - that’s what they are there for.

If instead you were working for a fix on the 1.4 branch, you would do:

git checkout -b ticket_xxxxx_1_4 upstream/stable/1.4.x

Assume the work is carried on the ticket_xxxxx branch. Make some changes and
commit them:

git commit

When writing the commit message, follow the commit message
guidelines to ease the work of the committer. If
you’re uncomfortable with English, try at least to describe precisely what the
commit does.

If you need to do additional work on your branch, commit as often as
necessary:

git commit -m 'Added two more tests for edge cases'

Publishing work

You can publish your work on GitHub by running:

git push origin ticket_xxxxx

When you go to your GitHub page, you will notice a new branch has been created.

If you are working on a Trac ticket, you should mention in the ticket that
your work is available from branch ticket_xxxxx of your GitHub repo. Include a
link to your branch.

Note that the above branch is called a “topic branch” in Git parlance. You are
free to rewrite the history of this branch, by using git rebase for
example. Other people shouldn’t base their work on such a branch, because
their clone would become corrupt when you edit commits.

There are also “public branches”. These are branches other people are supposed
to fork, so the history of these branches should never change. Good examples
of public branches are the master and stable/A.B.x branches in the
django/django repository.

When you think your work is ready to be pulled into Django, you should create
a pull request at GitHub. A good pull request means:

	commits with one logical change in each, following the
coding style,

	well-formed messages for each commit: a summary line and then paragraphs
wrapped at 72 characters thereafter – see the committing guidelines for more details,

	documentation and tests, if needed – actually tests are always needed,
except for documentation changes.

The test suite must pass and the documentation must build without warnings.

Once you have created your pull request, you should add a comment in the
related Trac ticket explaining what you’ve done. In particular, you should note
the environment in which you ran the tests, for instance: “all tests pass
under SQLite and MySQL”.

Pull requests at GitHub have only two states: open and closed. The committer
who will deal with your pull request has only two options: merge it or close
it. For this reason, it isn’t useful to make a pull request until the code is
ready for merging – or sufficiently close that a committer will finish it
himself.

Rebasing branches

In the example above, you created two commits, the “Fixed ticket_xxxxx” commit
and “Added two more tests” commit.

We do not want to have the entire history of your working process in your
repository. Your commit “Added two more tests” would be unhelpful noise.
Instead, we would rather only have one commit containing all your work.

To rework the history of your branch you can squash the commits into one by
using interactive rebase:

git rebase -i HEAD~2

The HEAD~2 above is shorthand for two latest commits. The above command
will open an editor showing the two commits, prefixed with the word “pick”.

Change “pick” on the second line to “squash” instead. This will keep the
first commit, and squash the second commit into the first one. Save and quit
the editor. A second editor window should open, so you can reword the
commit message for the commit now that it includes both your steps.

You can also use the “edit” option in rebase. This way you can change a single
commit, for example to fix a typo in a docstring:

git rebase -i HEAD~3
Choose edit, pick, pick for the commits
Now you are able to rework the commit (use git add normally to add changes)
When finished, commit work with "--amend" and continue
git commit --amend
Reword the commit message if needed
git rebase --continue
The second and third commits should be applied.

If your topic branch is already published at GitHub, for example if you’re
making minor changes to take into account a review, you will need to force-push
the changes:

git push -f origin ticket_xxxxx

Note that this will rewrite history of ticket_xxxxx - if you check the commit
hashes before and after the operation at GitHub you will notice that the commit
hashes do not match anymore. This is acceptable, as the branch is a topic
branch, and nobody should be basing their work on it.

After upstream has changed

When upstream (django/django) has changed, you should rebase your work. To
do this, use:

git fetch upstream
git rebase

The work is automatically rebased using the branch you forked on, in the
example case using upstream/master.

The rebase command removes all your local commits temporarily, applies the
upstream commits, and then applies your local commits again on the work.

If there are merge conflicts, you will need to resolve them and then use git
rebase --continue. At any point you can use git rebase --abort to return
to the original state.

Note that you want to rebase on upstream, not merge the upstream.

The reason for this is that by rebasing, your commits will always be on
top of the upstream’s work, not mixed in with the changes in the upstream.
This way your branch will contain only commits related to its topic, which
makes squashing easier.

After review

It is unusual to get any non-trivial amount of code into core without changes
requested by reviewers. In this case, it is often a good idea to add the
changes as one incremental commit to your work. This allows the reviewer to
easily check what changes you have done.

In this case, do the changes required by the reviewer. Commit as often as
necessary. Before publishing the changes, rebase your work. If you added two
commits, you would run:

git rebase -i HEAD~2

Squash the second commit into the first. Write a commit message along the lines
of:

Made changes asked in review by <reviewer>

- Fixed whitespace errors in foobar
- Reworded the docstring of bar()

Finally, push your work back to your GitHub repository. Since you didn’t touch
the public commits during the rebase, you should not need to force-push:

git push origin ticket_xxxxx

Your pull request should now contain the new commit too.

Note that the committer is likely to squash the review commit into the previous
commit when committing the code.

Working on a patch

One of the ways that developers can contribute to Django is by reviewing
patches. Those patches will typically exist as pull requests on GitHub and
can be easily integrated into your local repository:

git checkout -b pull_xxxxx upstream/master
curl https://github.com/django/django/pull/xxxxx.patch | git am

This will create a new branch and then apply the changes from the pull request
to it. At this point you can run the tests or do anything else you need to
do to investigate the quality of the patch.

For more detail on working with pull requests see the
guidelines for committers.

Summary

	Work on GitHub if you can.

	Announce your work on the Trac ticket by linking to your GitHub branch.

	When you have something ready, make a pull request.

	Make your pull requests as good as you can.

	When doing fixes to your work, use git rebase -i to squash the commits.

	When upstream has changed, do git fetch upstream; git rebase.

 JavaScript

JavaScript

While most of Django core is Python, the admin and gis contrib apps
contain JavaScript code.

Please follow these coding standards when writing JavaScript code for inclusion
in Django.

Code style

	Please conform to the indentation style dictated in the .editorconfig
file. We recommend using a text editor with EditorConfig [https://editorconfig.org/] support to avoid
indentation and whitespace issues. Most of the JavaScript files use 4 spaces
for indentation, but there are some exceptions.

	When naming variables, use camelCase instead of underscore_case.
Different JavaScript files sometimes use a different code style. Please try to
conform to the code style of each file.

	Use the ESLint [https://eslint.org/] code linter to check your code for bugs and style errors.
ESLint will be run when you run the JavaScript tests. We also recommended
installing a ESLint plugin in your text editor.

	Where possible, write code that will work even if the page structure is later
changed with JavaScript. For instance, when binding a click handler, use
$('body').on('click', selector, func) instead of
$(selector).click(func). This makes it easier for projects to extend
Django’s default behavior with JavaScript.

JavaScript patches

Django’s admin system leverages the jQuery framework to increase the
capabilities of the admin interface. In conjunction, there is an emphasis on
admin JavaScript performance and minimizing overall admin media file size.
Serving compressed or “minified” versions of JavaScript files is considered
best practice in this regard.

To that end, patches for JavaScript files should include both the original
code for future development (e.g. foo.js), and a compressed version for
production use (e.g. foo.min.js). Any links to the file in the codebase
should point to the compressed version.

Compressing JavaScript

To simplify the process of providing optimized JavaScript code, Django
includes a handy Python script which should be used to create a “minified”
version. To run it:

$ python -m pip install closure
$ python django/contrib/admin/bin/compress.py

Behind the scenes, compress.py is a front-end for Google’s
Closure Compiler [https://developers.google.com/closure/compiler/] which is written in Java. The Closure Compiler library is
not bundled with Django, but you can install it using pip as done above. The
Closure Compiler library requires Java [https://www.java.com] 7 or higher.

Please don’t forget to run compress.py and include the diff of the
minified scripts when submitting patches for Django’s JavaScript.

JavaScript tests

Django’s JavaScript tests can be run in a browser or from the command line.
The tests are located in a top level js_tests directory.

Writing tests

Django’s JavaScript tests use QUnit [https://qunitjs.com/]. Here is an example test module:

QUnit.module('magicTricks', {
 beforeEach: function() {
 const $ = django.jQuery;
 $('#qunit-fixture').append('<button class="button"></button>');
 }
});

QUnit.test('removeOnClick removes button on click', function(assert) {
 const $ = django.jQuery;
 removeOnClick('.button');
 assert.equal($('.button').length, 1);
 $('.button').click();
 assert.equal($('.button').length, 0);
});

QUnit.test('copyOnClick adds button on click', function(assert) {
 const $ = django.jQuery;
 copyOnClick('.button');
 assert.equal($('.button').length, 1);
 $('.button').click();
 assert.equal($('.button').length, 2);
});

Please consult the QUnit documentation for information on the types of
assertions supported by QUnit [https://api.qunitjs.com/assert/].

Running tests

The JavaScript tests may be run from a web browser or from the command line.

Testing from a web browser

To run the tests from a web browser, open up js_tests/tests.html in your
browser.

To measure code coverage when running the tests, you need to view that file
over HTTP. To view code coverage:

	Execute python -m http.server from the root directory (not from inside
js_tests).

	Open http://localhost:8000/js_tests/tests.html in your web browser.

Testing from the command line

To run the tests from the command line, you need to have Node.js [https://nodejs.org/] installed.

After installing Node.js, install the JavaScript test dependencies by
running the following from the root of your Django checkout:

$ npm install

Then run the tests with:

$ npm test

 Writing documentation

Writing documentation

We place a high importance on consistency and readability of documentation.
After all, Django was created in a journalism environment! So we treat our
documentation like we treat our code: we aim to improve it as often as
possible.

Documentation changes generally come in two forms:

	General improvements: typo corrections, error fixes and better
explanations through clearer writing and more examples.

	New features: documentation of features that have been added to the
framework since the last release.

This section explains how writers can craft their documentation changes
in the most useful and least error-prone ways.

Getting the raw documentation

Though Django’s documentation is intended to be read as HTML at
https://docs.djangoproject.com/, we edit it as a collection of text files for
maximum flexibility. These files live in the top-level docs/ directory of a
Django release.

If you’d like to start contributing to our docs, get the development version of
Django from the source code repository
(see Installing the development version). The development version has the
latest-and-greatest documentation, just as it has latest-and-greatest code.
We also backport documentation fixes and improvements, at the discretion of the
committer, to the last release branch. That’s because it’s highly advantageous
to have the docs for the last release be up-to-date and correct (see
Differences between versions).

Getting started with Sphinx

Django’s documentation uses the Sphinx [https://www.sphinx-doc.org/] documentation system, which in turn
is based on docutils [https://docutils.sourceforge.io/]. The basic idea is that lightly-formatted plain-text
documentation is transformed into HTML, PDF, and any other output format.

To build the documentation locally, install Sphinx:

$ python -m pip install Sphinx

Then from the docs directory, build the HTML:

$ make html

To get started contributing, you’ll want to read the reStructuredText
reference [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html#rst-index].

Your locally-built documentation will be themed differently than the
documentation at docs.djangoproject.com [https://docs.djangoproject.com].
This is OK! If your changes look good on your local machine, they’ll look good
on the website.

How the documentation is organized

The documentation is organized into several categories:

	Tutorials take the reader by the hand through a series
of steps to create something.

The important thing in a tutorial is to help the reader achieve something
useful, preferably as early as possible, in order to give them confidence.

Explain the nature of the problem we’re solving, so that the reader
understands what we’re trying to achieve. Don’t feel that you need to begin
with explanations of how things work - what matters is what the reader does,
not what you explain. It can be helpful to refer back to what you’ve done and
explain afterwards.

	Topic guides aim to explain a concept or subject at a
fairly high level.

Link to reference material rather than repeat it. Use examples and don’t be
reluctant to explain things that seem very basic to you - it might be the
explanation someone else needs.

Providing background context helps a newcomer connect the topic to things
that they already know.

	Reference guides contain technical reference for APIs.
They describe the functioning of Django’s internal machinery and instruct in
its use.

Keep reference material tightly focused on the subject. Assume that the
reader already understands the basic concepts involved but needs to know or
be reminded of how Django does it.

Reference guides aren’t the place for general explanation. If you find
yourself explaining basic concepts, you may want to move that material to a
topic guide.

	How-to guides are recipes that take the reader through
steps in key subjects.

What matters most in a how-to guide is what a user wants to achieve.
A how-to should always be result-oriented rather than focused on internal
details of how Django implements whatever is being discussed.

These guides are more advanced than tutorials and assume some knowledge about
how Django works. Assume that the reader has followed the tutorials and don’t
hesitate to refer the reader back to the appropriate tutorial rather than
repeat the same material.

Writing style

When using pronouns in reference to a hypothetical person, such as “a user with
a session cookie”, gender neutral pronouns (they/their/them) should be used.
Instead of:

	he or she… use they.

	him or her… use them.

	his or her… use their.

	his or hers… use theirs.

	himself or herself… use themselves.

Try to avoid using words that minimize the difficulty involved in a task or
operation, such as “easily”, “simply”, “just”, “merely”, “straightforward”, and
so on. People’s experience may not match your expectations, and they may become
frustrated when they do not find a step as “straightforward” or “simple” as it
is implied to be.

Commonly used terms

Here are some style guidelines on commonly used terms throughout the
documentation:

	Django – when referring to the framework, capitalize Django. It is
lowercase only in Python code and in the djangoproject.com logo.

	email – no hyphen.

	MySQL, PostgreSQL, SQLite

	SQL – when referring to SQL, the expected pronunciation should be
“Ess Queue Ell” and not “sequel”. Thus in a phrase like “Returns an
SQL expression”, “SQL” should be preceded by “an” and not “a”.

	Python – when referring to the language, capitalize Python.

	realize, customize, initialize, etc. – use the American
“ize” suffix, not “ise.”

	subclass – it’s a single word without a hyphen, both as a verb
(“subclass that model”) and as a noun (“create a subclass”).

	Web, World Wide Web, the Web – note Web is always
capitalized when referring to the World Wide Web.

	website – use one word, without capitalization.

Django-specific terminology

	model – it’s not capitalized.

	template – it’s not capitalized.

	URLconf – use three capitalized letters, with no space before
“conf.”

	view – it’s not capitalized.

Guidelines for reStructuredText files

These guidelines regulate the format of our reST (reStructuredText)
documentation:

	In section titles, capitalize only initial words and proper nouns.

	Wrap the documentation at 80 characters wide, unless a code example
is significantly less readable when split over two lines, or for another
good reason.

	The main thing to keep in mind as you write and edit docs is that the
more semantic markup you can add the better. So:

Add ``django.contrib.auth`` to your ``INSTALLED_APPS``...

Isn’t nearly as helpful as:

Add :mod:`django.contrib.auth` to your :setting:`INSTALLED_APPS`...

This is because Sphinx will generate proper links for the latter, which
greatly helps readers.

You can prefix the target with a ~ (that’s a tilde) to get only the
“last bit” of that path. So :mod:`~django.contrib.auth` will
display a link with the title “auth”.

	Use intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html#module-sphinx.ext.intersphinx] to reference Python’s and Sphinx’
documentation.

	Add .. code-block:: <lang> to literal blocks so that they get
highlighted. Prefer relying on automatic highlighting using ::
(two colons). This has the benefit that if the code contains some invalid
syntax, it won’t be highlighted. Adding .. code-block:: python, for
example, will force highlighting despite invalid syntax.

	To improve readability, use .. admonition:: Descriptive title rather than
.. note::. Use these boxes sparingly.

	Use these heading styles:

===
One
===

Two
===

Three

Four
~~~~

Five
^^^^







	Use :rfc: [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-rfc] to reference RFC and try to link to the relevant
section if possible. For example, use :rfc:`2324#section-2.3.2` or
:rfc:`Custom link text <2324#section-2.3.2>`.






Django-specific markup

Besides Sphinx’s built-in markup [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html#rst-index], Django’s docs
define some extra description units:


	Settings:

.. setting:: INSTALLED_APPS





To link to a setting, use :setting:`INSTALLED_APPS`.



	Template tags:

.. templatetag:: regroup





To link, use :ttag:`regroup`.



	Template filters:

.. templatefilter:: linebreaksbr





To link, use :tfilter:`linebreaksbr`.



	Field lookups (i.e. Foo.objects.filter(bar__exact=whatever)):

.. fieldlookup:: exact





To link, use :lookup:`exact`.



	django-admin commands:

.. django-admin:: migrate





To link, use :djadmin:`migrate`.



	django-admin command-line options:

.. django-admin-option:: --traceback





To link, use :option:`command_name --traceback` (or omit command_name
for the options shared by all commands like --verbosity).



	Links to Trac tickets (typically reserved for patch release notes):

:ticket:`12345`









Django’s documentation uses a custom console directive for documenting
command-line examples involving django-admin.py, manage.py, python,
etc.). In the HTML documentation, it renders a two-tab UI, with one tab showing
a Unix-style command prompt and a second tab showing a Windows prompt.

For example, you can replace this fragment:

use this command:

.. code-block:: console

    $ python manage.py shell





with this one:

use this command:

.. console::

    $ python manage.py shell





Notice two things:


	You usually will replace occurrences of the .. code-block:: console
directive.


	You don’t need to change the actual content of the code example. You still
write it assuming a Unix-y environment (i.e. a '$' prompt symbol,
'/' as filesystem path components separator, etc.)




The example above will render a code example block with two tabs. The first
one will show:

$ python manage.py shell





(No changes from what .. code-block:: console would have rendered).

The second one will show:

...\> py manage.py shell







Documenting new features

Our policy for new features is:


All documentation of new features should be written in a way that
clearly designates the features are only available in the Django
development version. Assume documentation readers are using the latest
release, not the development version.




Our preferred way for marking new features is by prefacing the features’
documentation with: “.. versionadded:: X.Y”, followed by a mandatory
blank line and an optional description (indented).

General improvements, or other changes to the APIs that should be emphasized
should use the “.. versionchanged:: X.Y” directive (with the same format
as the versionadded mentioned above.

These versionadded and versionchanged blocks should be “self-contained.”
In other words, since we only keep these annotations around for two releases,
it’s nice to be able to remove the annotation and its contents without having
to reflow, reindent, or edit the surrounding text. For example, instead of
putting the entire description of a new or changed feature in a block, do
something like this:

.. class:: Author(first_name, last_name, middle_name=None)

    A person who writes books.

    ``first_name`` is ...

    ...

    ``middle_name`` is ...

    .. versionchanged:: A.B

        The ``middle_name`` argument was added.





Put the changed annotation notes at the bottom of a section, not the top.

Also, avoid referring to a specific version of Django outside a
versionadded or versionchanged block. Even inside a block, it’s often
redundant to do so as these annotations render as “New in Django A.B:” and
“Changed in Django A.B”, respectively.

If a function, attribute, etc. is added, it’s also okay to use a
versionadded annotation like this:

.. attribute:: Author.middle_name

    .. versionadded:: A.B

    An author's middle name.





We can remove the .. versionadded:: A.B annotation without any indentation
changes when the time comes.



Minimizing images

Optimize image compression where possible. For PNG files, use OptiPNG and
AdvanceCOMP’s advpng:

$ cd docs
$ optipng -o7 -zm1-9 -i0 -strip all `find . -type f -not -path "./_build/*" -name "*.png"`
$ advpng -z4 `find . -type f -not -path "./_build/*" -name "*.png"`





This is based on OptiPNG version 0.7.5. Older versions may complain about the
--strip all option being lossy.



An example

For a quick example of how it all fits together, consider this hypothetical
example:


	First, the ref/settings.txt document could have an overall layout
like this:

========
Settings
========

...

.. _available-settings:

Available settings
==================

...

.. _deprecated-settings:

Deprecated settings
===================

...







	Next, the topics/settings.txt document could contain something like
this:

You can access a :ref:`listing of all available settings
<available-settings>`. For a list of deprecated settings see
:ref:`deprecated-settings`.

You can find both in the :doc:`settings reference document
</ref/settings>`.





We use the Sphinx doc [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-doc] cross reference element when we want to
link to another document as a whole and the ref [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-ref] element when
we want to link to an arbitrary location in a document.



	Next, notice how the settings are annotated:

.. setting:: ADMINS

ADMINS
======

Default: ``[]`` (Empty list)

A list of all the people who get code error notifications. When
``DEBUG=False`` and a view raises an exception, Django will email these people
with the full exception information. Each member of the list should be a tuple
of (Full name, email address). Example::

    [('John', 'john@example.com'), ('Mary', 'mary@example.com')]

Note that Django will email *all* of these people whenever an error happens.
See :doc:`/howto/error-reporting` for more information.





This marks up the following header as the “canonical” target for the
setting ADMINS. This means any time I talk about ADMINS,
I can reference it using :setting:`ADMINS`.





That’s basically how everything fits together.



Spelling check

Before you commit your docs, it’s a good idea to run the spelling checker.
You’ll need to install sphinxcontrib-spelling [https://pypi.org/project/sphinxcontrib-spelling/] first. Then from the
docs directory, run make spelling. Wrong words (if any) along with the
file and line number where they occur will be saved to
_build/spelling/output.txt.

If you encounter false-positives (error output that actually is correct), do
one of the following:


	Surround inline code or brand/technology names with grave accents (`).


	Find synonyms that the spell checker recognizes.


	If, and only if, you are sure the word you are using is correct - add it
to docs/spelling_wordlist (please keep the list in alphabetical order).






Translating documentation

See Localizing the Django documentation if
you’d like to help translate the documentation into another language.



django-admin man page

Sphinx can generate a manual page for the
django-admin command. This is configured in
docs/conf.py. Unlike other documentation output, this man page should be
included in the Django repository and the releases as
docs/man/django-admin.1. There isn’t a need to update this file when
updating the documentation, as it’s updated once as part of the release process.

To generate an updated version of the man page, run make man in the
docs directory. The new man page will be written in
docs/_build/man/django-admin.1.





          

      

      

    

  

  
    

    Localizing Django
    

    
 
  

    
      
          
            
  
Localizing Django

Various parts of Django, such as the admin site and validation error messages,
are internationalized. This means they display differently depending on each
user’s language or country. For this, Django uses the same internationalization
and localization infrastructure available to Django applications, described in
the i18n documentation.


Translations

Translations are contributed by Django users worldwide. The translation work is
coordinated at Transifex [https://www.transifex.com/].

If you find an incorrect translation or want to discuss specific translations,
go to the Django project page [https://www.transifex.com/django/django/]. If you would like to help out with
translating or add a language that isn’t yet translated, here’s what to do:


	Join the Django i18n mailing list and
introduce yourself.


	Make sure you read the notes about Specialties of Django translation.


	Sign up at Transifex [https://www.transifex.com/] and visit the Django project page [https://www.transifex.com/django/django/].


	On the Django project page [https://www.transifex.com/django/django/], choose the language you want to work on,
or – in case the language doesn’t exist yet –
request a new language team by clicking on the “Request language” link
and selecting the appropriate language.


	Then, click the “Join this Team” button to become a member of this team.
Every team has at least one coordinator who is responsible to review
your membership request. You can of course also contact the team
coordinator to clarify procedural problems and handle the actual
translation process.


	Once you are a member of a team choose the translation resource you
want to update on the team page. For example the “core” resource refers
to the translation catalog that contains all non-contrib translations.
Each of the contrib apps also have a resource (prefixed with “contrib”).


Note

For more information about how to use Transifex, read the
Transifex User Guide [https://docs.transifex.com/].







Translations from Transifex are only integrated into the Django repository at
the time of a new feature release. We try to update
them a second time during one of the following patch releases, but that depends on the translation manager’s availability.
So don’t miss the string freeze period (between the release candidate and the
feature release) to take the opportunity to complete and fix the translations
for your language!



Formats

You can also review conf/locale/<locale>/formats.py. This file describes
the date, time and numbers formatting particularities of your locale. See
Format localization for details.

The format files aren’t managed by the use of Transifex. To change them, you
must create a patch against the
Django source tree, as for any code change:


	Create a diff against the current Git master branch.


	Open a ticket in Django’s ticket system, set its Component field to
Translations, and attach the patch to it.






Documentation

There is also an opportunity to translate the documentation, though this is a
huge undertaking to complete entirely (you have been warned!). We use the same
Transifex tool [https://www.transifex.com/django/django-docs/]. The
translations will appear at https://docs.djangoproject.com/<language_code>/
when at least the docs/intro/* files are fully translated in your language.

Once translations are published, updated versions from Transifex will be
irregularly ported to the django/django-docs-translations [https://github.com/django/django-docs-translations] repository and to the
documentation website. Only translations for the latest stable Django release
are updated.





          

      

      

    

  

  
    

    Committing code
    

    
 
  

    
      
          
            
  
Committing code

This section is addressed to the committers and to anyone interested in knowing
how code gets committed into Django. If you’re a community member who wants to
contribute code to Django, look at Working with Git and GitHub instead.


Handling pull requests

Since Django is hosted on GitHub, patches are provided in the form of pull
requests.

When committing a pull request, make sure each individual commit matches the
commit guidelines described below. Contributors are expected to provide the
best pull requests possible. In practice however, committers - who will likely
be more familiar with the commit guidelines - may decide to bring a commit up
to standard themselves.

You may want to have Jenkins test the pull request with one of the pull request
builders that doesn’t run automatically, such as Oracle or Selenium. See the
Jenkins wiki page [https://code.djangoproject.com/wiki/Jenkins] for instructions.

If you find yourself checking out pull requests locally more often, this git
alias will be helpful:

[alias]
    pr = !sh -c \"git fetch upstream pull/${1}/head:pr/${1} && git checkout pr/${1}\"





Add it to your ~/.gitconfig, and set upstream to be django/django.
Then you can run git pr #### to checkout the corresponding pull request.

At this point, you can work on the code. Use git rebase -i and git
commit --amend to make sure the commits have the expected level of quality.
Once you’re ready:

$ # Pull in the latest changes from master.
$ git checkout master
$ git pull upstream master
$ # Rebase the pull request on master.
$ git checkout pr/####
$ git rebase master
$ git checkout master
$ # Merge the work as "fast-forward" to master to avoid a merge commit.
$ # (in practice, you can omit "--ff-only" since you just rebased)
$ git merge --ff-only pr/XXXX
$ # If you're not sure if you did things correctly, check that only the
$ # changes you expect will be pushed to upstream.
$ git push --dry-run upstream master
$ # Push!
$ git push upstream master
$ # Delete the pull request branch.
$ git branch -d pr/xxxx





Force push to the branch after rebasing on master but before merging and
pushing to upstream. This allows the commit hashes on master and the branch to
match which automatically closes the pull request.

If a pull request doesn’t need to be merged as multiple commits, you can use
GitHub’s “Squash and merge” button on the website. Edit the commit message as
needed to conform to the guidelines and remove
the pull request number that’s automatically appended to the message’s first
line.

When rewriting the commit history of a pull request, the goal is to make
Django’s commit history as usable as possible:


	If a patch contains back-and-forth commits, then rewrite those into one.
For example, if a commit adds some code and a second commit fixes stylistic
issues introduced in the first commit, those commits should be squashed
before merging.


	Separate changes to different commits by logical grouping: if you do a
stylistic cleanup at the same time as you do other changes to a file,
separating the changes into two different commits will make reviewing
history easier.


	Beware of merges of upstream branches in the pull requests.


	Tests should pass and docs should build after each commit. Neither the
tests nor the docs should emit warnings.


	Trivial and small patches usually are best done in one commit. Medium to
large work may be split into multiple commits if it makes sense.




Practicality beats purity, so it is up to each committer to decide how much
history mangling to do for a pull request. The main points are engaging the
community, getting work done, and having a usable commit history.



Committing guidelines

In addition, please follow the following guidelines when committing code to
Django’s Git repository:


	Never change the published history of django/django branches by force
pushing. If you absolutely must (for security reasons for example), first
discuss the situation with the team.


	For any medium-to-big changes, where “medium-to-big” is according to
your judgment, please bring things up on the django-developers
mailing list before making the change.

If you bring something up on django-developers and nobody responds,
please don’t take that to mean your idea is great and should be
implemented immediately because nobody contested it. Everyone doesn’t always
have a lot of time to read mailing list discussions immediately, so you may
have to wait a couple of days before getting a response.



	Write detailed commit messages in the past tense, not present tense.


	Good: “Fixed Unicode bug in RSS API.”


	Bad: “Fixes Unicode bug in RSS API.”


	Bad: “Fixing Unicode bug in RSS API.”




The commit message should be in lines of 72 chars maximum. There should be
a subject line, separated by a blank line and then paragraphs of 72 char
lines. The limits are soft. For the subject line, shorter is better. In the
body of the commit message more detail is better than less:

Fixed #18307 -- Added git workflow guidelines.

Refactored the Django's documentation to remove mentions of SVN
specific tasks. Added guidelines of how to use Git, GitHub, and
how to use pull request together with Trac instead.





Credit the contributors in the commit message: “Thanks A for the report and B
for review.” Use git’s Co-Authored-By [https://help.github.com/articles/creating-a-commit-with-multiple-authors/] as appropriate.



	For commits to a branch, prefix the commit message with the branch name.
For example: “[1.4.x] Fixed #xxxxx – Added support for mind reading.”


	Limit commits to the most granular change that makes sense. This means,
use frequent small commits rather than infrequent large commits. For
example, if implementing feature X requires a small change to library Y,
first commit the change to library Y, then commit feature X in a separate
commit. This goes a long way in helping everyone follow your changes.


	Separate bug fixes from feature changes. Bugfixes may need to be backported
to the stable branch, according to Supported versions.


	If your commit closes a ticket in the Django ticket tracker [https://code.djangoproject.com/], begin
your commit message with the text “Fixed #xxxxx”, where “xxxxx” is the
number of the ticket your commit fixes. Example: “Fixed #123 – Added
whizbang feature.”. We’ve rigged Trac so that any commit message in that
format will automatically close the referenced ticket and post a comment
to it with the full commit message.

For the curious, we’re using a Trac plugin [https://github.com/trac-hacks/trac-github] for this.






Note

Note that the Trac integration doesn’t know anything about pull requests.
So if you try to close a pull request with the phrase “closes #400” in your
commit message, GitHub will close the pull request, but the Trac plugin
will also close the same numbered ticket in Trac.




	If your commit references a ticket in the Django ticket tracker [https://code.djangoproject.com/] but
does not close the ticket, include the phrase “Refs #xxxxx”, where “xxxxx”
is the number of the ticket your commit references. This will automatically
post a comment to the appropriate ticket.


	Write commit messages for backports using this pattern:

[<Django version>] Fixed <ticket> -- <description>

Backport of <revision> from <branch>.





For example:

[1.3.x] Fixed #17028 -- Changed diveintopython.org -> diveintopython.net.

Backport of 80c0cbf1c97047daed2c5b41b296bbc56fe1d7e3 from master.





There’s a script on the wiki [https://code.djangoproject.com/wiki/CommitterTips#AutomatingBackports]
to automate this.

If the commit fixes a regression, include this in the commit message:

Regression in 6ecccad711b52f9273b1acb07a57d3f806e93928.





(use the commit hash where the regression was introduced).







Reverting commits

Nobody’s perfect; mistakes will be committed.

But try very hard to ensure that mistakes don’t happen. Just because we have a
reversion policy doesn’t relax your responsibility to aim for the highest
quality possible. Really: double-check your work, or have it checked by
another committer, before you commit it in the first place!

When a mistaken commit is discovered, please follow these guidelines:


	If possible, have the original author revert their own commit.


	Don’t revert another author’s changes without permission from the
original author.


	Use git revert – this will make a reverse commit, but the original
commit will still be part of the commit history.


	If the original author can’t be reached (within a reasonable amount
of time – a day or so) and the problem is severe – crashing bug,
major test failures, etc. – then ask for objections on the
django-developers mailing list then revert if there are none.


	If the problem is small (a feature commit after feature freeze,
say), wait it out.


	If there’s a disagreement between the committer and the
reverter-to-be then try to work it out on the django-developers
mailing list. If an agreement can’t be reached then it should
be put to a vote.


	If the commit introduced a confirmed, disclosed security
vulnerability then the commit may be reverted immediately without
permission from anyone.


	The release branch maintainer may back out commits to the release
branch without permission if the commit breaks the release branch.


	If you mistakenly push a topic branch to django/django, delete it.
For instance, if you did: git push upstream feature_antigravity,
do a reverse push: git push upstream :feature_antigravity.








          

      

      

    

  

  
    

    Mailing lists
    

    
 
  

    
      
          
            
  
Mailing lists


Important

Please report security issues only to
security@djangoproject.com.  This is a private list only open to
long-time, highly trusted Django developers, and its archives are
not public. For further details, please see our security
policies.



Django has several official mailing lists on Google Groups that are open to
anyone.


django-users

This is the right place if you are looking to ask any question regarding the
installation, usage, or debugging of Django.


Note

If it’s the first time you send an email to this list, your email must be
accepted first so don’t worry if your message does not appear instantly.




	django-users mailing archive [https://groups.google.com/d/forum/django-users]


	django-users subscription email address


	django-users posting email






django-core-mentorship

The Django Core Mentorship list is intended to provide a welcoming
introductory environment for community members interested in contributing to
the Django Project.


	django-core-mentorship mailing archive [https://groups.google.com/d/forum/django-core-mentorship]


	django-core-mentorship subscription email address


	django-core-mentorship posting email






django-developers

The discussion about the development of Django itself takes place here.

Before asking a question about how to contribute, read
Contributing to Django. Many frequently asked questions are
answered there.


Note

Please make use of
django-users mailing list if you want
to ask for tech support, doing so in this list is inappropriate.




	django-developers mailing archive [https://groups.google.com/d/forum/django-developers]


	django-developers subscription email address


	django-developers posting email






django-i18n

This is the place to discuss the internationalization and localization of
Django’s components.


	django-i18n mailing archive [https://groups.google.com/d/forum/django-i18n]


	django-i18n subscription email address


	django-i18n posting email






django-announce

A (very) low-traffic list for announcing upcoming security releases, new releases of Django, and security advisories.


	django-announce mailing archive [https://groups.google.com/d/forum/django-announce]


	django-announce subscription email address


	django-announce posting email






django-updates

All the ticket updates are mailed automatically to this list, which is tracked
by developers and interested community members.


	django-updates mailing archive [https://groups.google.com/d/forum/django-updates]


	django-updates subscription email address


	django-updates posting email








          

      

      

    

  

  
    

    Organization of the Django Project
    

    
 
  

    
      
          
            
  
Organization of the Django Project


Principles

The Django Project is managed by a team of volunteers pursuing three goals:


	Driving the development of the Django Web Framework,


	Fostering the ecosystem of Django-related software,


	Leading the Django community in accordance with the values described in the
Django Code of Conduct [https://www.djangoproject.com/conduct/].




The Django Project isn’t a legal entity. The Django Software Foundation [https://www.djangoproject.com/foundation/], a
non-profit organization, handles financial and legal matters related to the
Django Project. Other than that, the Django Software Foundation lets the
Django Project manage the development of the Django framework, its ecosystem
and its community.

The Django core team makes the decisions, nominates its new members, and
elects its technical board. While it holds decision power in theory, it aims
at using it as rarely as possible in practice. Rough consensus should be the
norm and formal voting an exception.



Core team


Role

The core team is the group of trusted volunteers who manage the Django
Project. They assume many roles required to achieve the project’s goals,
especially those that require a high level of trust. They make the decisions
that shape the future of the project.

Core team members are expected to act as role models for the community and
custodians of the project, on behalf of the community and all those who rely
on Django.

They will intervene, where necessary, in online discussions or at official
Django events on the rare occasions that a situation arises that requires
intervention.

They have authority over the Django Project infrastructure, including the
Django Project website itself, the Django GitHub organization and
repositories, the Trac bug tracker, the mailing lists, IRC channels, etc.



Prerogatives

Core team members may participate in formal votes, typically to nominate new
team members and to elect the technical board.

Some contributions don’t require commit access. Depending on the reasons why a
contributor joins the team, they may or may not have commit permissions to the
Django code repository.

However, should the need arise, any team member may ask for commit access by
writing to the core team’s mailing list. Access will be granted unless the
person withdraws their request or the technical board vetoes the proposal.

Core team members who have commit access are referred to as “committers” or
“core developers”.

Other permissions, such as access to the servers, are granted to those who
need them through the same process.



Membership

Django team members [https://www.djangoproject.com/foundation/teams/]
demonstrate:


	a good grasp of the philosophy of the Django Project


	a solid track record of being constructive and helpful


	significant contributions to the project’s goals, in any form


	willingness to dedicate some time to improving Django




As the project matures, contributions go way beyond code. Here’s an incomplete
list of areas where contributions may be considered for joining the core team,
in no particular order:


	Working on community management and outreach


	Providing support on the mailing-lists and on IRC


	Triaging tickets


	Writing patches (code, docs, or tests)


	Reviewing patches (code, docs, or tests)


	Participating in design decisions


	Providing expertise in a particular domain (security, i18n, etc.)


	Managing the continuous integration infrastructure


	Managing the servers (website, tracker, documentation, etc.)


	Maintaining related projects (djangoproject.com site, ex-contrib apps, etc.)


	Creating visual designs




Very few areas are reserved to core team members:


	Reviewing security reports


	Merging patches (code, docs, or tests)


	Packaging releases




Core team membership acknowledges sustained and valuable efforts that align
well with the philosophy and the goals of the Django Project.

It is granted by a four fifths majority of votes cast in a core team vote and
no veto by the technical board.

Core team members are always looking for promising contributors, teaching them
how the project is managed, and submitting their names to the core team’s vote
when they’re ready. If you would like to join the core team, you can contact a
core team member privately or ask for guidance on the Django Core
Mentorship mailing-list.

There’s no time limit on core team membership. However, in order to provide
the general public with a reasonable idea of how many people maintain Django,
core team members who have stopped contributing are encouraged to declare
themselves as “past team members”. Those who haven’t made any non-trivial
contribution in two years may be asked to move themselves to this category,
and moved there if they don’t respond. Past team members lose their privileges
such as voting rights and commit access.




Technical board


Role

The technical board is a group of experienced and active committers who steer
technical choices. Their main concern is to maintain the quality and stability
of the Django Web Framework.



Prerogatives

The technical board holds two prerogatives:


	Making major technical decisions when no consensus is found otherwise. This
happens on the django-developers mailing-list.


	Veto a grant of commit access or remove commit access. This happens on the
django-core mailing-list.




In both cases, the technical board is a last resort. In these matters, it
fulfills a similar function to the former Benevolent Dictators For Life.

When the board wants to exercise one of these prerogatives, it must hold a
private, simple majority vote on the resolution. The quorum is the full
committee — each member must cast a vote or abstain explicitly. Then the board
communicates the result, and if possible the reasons, on the appropriate
mailing-list. There’s no appeal for such decisions.

In addition, at its discretion, the technical board may act in an advisory
capacity on non-technical decisions.



Membership

The technical board [https://www.djangoproject.com/foundation/teams/#technical-board-team] is an elected group of five committers. They’re expected
to be experienced but there’s no formal seniority requirement.

A new board is elected after each feature release of Django. The election
process is managed by a returns officer nominated by the outgoing technical
board. The election process works as follows:


	Candidates advertise their application for the technical board to the team.

They must be committers already. There’s no term limit for technical board
members.



	Each team member can vote for zero to five people among the candidates.
Candidates are ranked by the total number of votes they received.

In case of a tie, the person who joined the core team earlier wins.





Both the application and the voting period last between one and two weeks, at
the outgoing board’s discretion.




Changing the organization

Changes to this document require a four fifths majority of votes cast in a
core team vote and no veto by the technical board.





          

      

      

    

  

  
    

    Django’s security policies
    

    
 
  

    
      
          
            
  
Django’s security policies

Django’s development team is strongly committed to responsible
reporting and disclosure of security-related issues. As such, we’ve
adopted and follow a set of policies which conform to that ideal and
are geared toward allowing us to deliver timely security updates to
the official distribution of Django, as well as to third-party
distributions.


Reporting security issues

Short version: please report security issues by emailing
security@djangoproject.com.

Most normal bugs in Django are reported to our public Trac instance [https://code.djangoproject.com/query], but
due to the sensitive nature of security issues, we ask that they not be
publicly reported in this fashion.

Instead, if you believe you’ve found something in Django which has security
implications, please send a description of the issue via email to
security@djangoproject.com. Mail sent to that address reaches the security
team [https://www.djangoproject.com/foundation/teams/#security-team].

Once you’ve submitted an issue via email, you should receive an acknowledgment
from a member of the security team within 48 hours, and depending on the
action to be taken, you may receive further followup emails.


Sending encrypted reports

If you want to send an encrypted email (optional), the public key ID for
security@djangoproject.com is 0xfcb84b8d1d17f80b, and this public
key is available from most commonly-used keyservers.





Supported versions

At any given time, the Django team provides official security support
for several versions of Django:


	The master development branch [https://github.com/django/django/], hosted on GitHub, which will become the
next major release of Django, receives security support. Security issues that
only affect the master development branch and not any stable released versions
are fixed in public without going through the disclosure process.


	The two most recent Django release series receive security
support. For example, during the development cycle leading to the
release of Django 1.5, support will be provided for Django 1.4 and
Django 1.3. Upon the release of Django 1.5, Django 1.3’s security
support will end.


	Long-term support releases will receive security updates for a
specified period.




When new releases are issued for security reasons, the accompanying
notice will include a list of affected versions. This list is
comprised solely of supported versions of Django: older versions may
also be affected, but we do not investigate to determine that, and
will not issue patches or new releases for those versions.



How Django discloses security issues

Our process for taking a security issue from private discussion to
public disclosure involves multiple steps.

Approximately one week before public disclosure, we send two notifications:

First, we notify django-announce of the date and approximate time of the
upcoming security release, as well as the severity of the issues. This is to
aid organizations that need to ensure they have staff available to handle
triaging our announcement and upgrade Django as needed. Severity levels are:

High:


	Remote code execution


	SQL injection




Moderate:


	Cross site scripting (XSS)


	Cross site request forgery (CSRF)


	Denial-of-service attacks


	Broken authentication




Low:


	Sensitive data exposure


	Broken session management


	Unvalidated redirects/forwards


	Issues requiring an uncommon configuration option




Second, we notify a list of people and organizations, primarily composed of operating-system vendors and
other distributors of Django. This email is signed with the PGP key of someone
from Django’s release team [https://www.djangoproject.com/foundation/teams/#releasers-team] and consists of:


	A full description of the issue and the affected versions of Django.


	The steps we will be taking to remedy the issue.


	The patch(es), if any, that will be applied to Django.


	The date on which the Django team will apply these patches, issue
new releases and publicly disclose the issue.




On the day of disclosure, we will take the following steps:


	Apply the relevant patch(es) to Django’s codebase.


	Issue the relevant release(s), by placing new packages on the
Python Package Index [https://pypi.org/] and on the Django website, and tagging the
new release(s) in Django’s git repository.


	Post a public entry on the official Django development blog [https://www.djangoproject.com/weblog/],
describing the issue and its resolution in detail, pointing to the
relevant patches and new releases, and crediting the reporter of
the issue (if the reporter wishes to be publicly identified).


	Post a notice to the django-announce and oss-security@lists.openwall.com
mailing lists that links to the blog post.




If a reported issue is believed to be particularly time-sensitive –
due to a known exploit in the wild, for example – the time between
advance notification and public disclosure may be shortened
considerably.

Additionally, if we have reason to believe that an issue reported to
us affects other frameworks or tools in the Python/web ecosystem, we
may privately contact and discuss those issues with the appropriate
maintainers, and coordinate our own disclosure and resolution with
theirs.

The Django team also maintains an archive of security issues
disclosed in Django.



Who receives advance notification

The full list of people and organizations who receive advance
notification of security issues is not and will not be made public.

We also aim to keep this list as small as effectively possible, in
order to better manage the flow of confidential information prior to
disclosure. As such, our notification list is not simply a list of
users of Django, and being a user of Django is not sufficient reason
to be placed on the notification list.

In broad terms, recipients of security notifications fall into three
groups:


	Operating-system vendors and other distributors of Django who
provide a suitably-generic (i.e., not an individual’s personal
email address) contact address for reporting issues with their
Django package, or for general security reporting. In either case,
such addresses must not forward to public mailing lists or bug
trackers. Addresses which forward to the private email of an
individual maintainer or security-response contact are acceptable,
although private security trackers or security-response groups are
strongly preferred.


	On a case-by-case basis, individual package maintainers who have
demonstrated a commitment to responding to and responsibly acting
on these notifications.


	On a case-by-case basis, other entities who, in the judgment of the
Django development team, need to be made aware of a pending
security issue. Typically, membership in this group will consist of
some of the largest and/or most likely to be severely impacted
known users or distributors of Django, and will require a
demonstrated ability to responsibly receive, keep confidential and
act on these notifications.





Security audit and scanning entities

As a policy, we do not add these types of entities to the notification
list.





Requesting notifications

If you believe that you, or an organization you are authorized to
represent, fall into one of the groups listed above, you can ask to be
added to Django’s notification list by emailing
security@djangoproject.com. Please use the subject line “Security
notification request”.

Your request must include the following information:


	Your full, real name and the name of the organization you represent,
if applicable, as well as your role within that organization.


	A detailed explanation of how you or your organization fit at least
one set of criteria listed above.


	A detailed explanation of why you are requesting security notifications.
Again, please keep in mind that this is not simply a list for users of
Django, and the overwhelming majority of users should subscribe to
django-announce to receive advanced notice of when a security release will
happen, without the details of the issues, rather than request detailed
notifications.


	The email address you would like to have added to our notification
list.


	An explanation of who will be receiving/reviewing mail sent to that
address, as well as information regarding any automated actions that
will be taken (i.e., filing of a confidential issue in a bug
tracker).


	For individuals, the ID of a public key associated with your address
which can be used to verify email received from you and encrypt
email sent to you, as needed.




Once submitted, your request will be considered by the Django
development team; you will receive a reply notifying you of the result
of your request within 30 days.

Please also bear in mind that for any individual or organization,
receiving security notifications is a privilege granted at the sole
discretion of the Django development team, and that this privilege can
be revoked at any time, with or without explanation.


Provide all required information

A failure to provide the required information in your initial contact
will count against you when making the decision on whether or not to
approve your request.







          

      

      

    

  

  
    

    Django’s release process
    

    
 
  

    
      
          
            
  
Django’s release process


Official releases

Since version 1.0, Django’s release numbering works as follows:


	Versions are numbered in the form A.B or A.B.C.


	A.B is the feature release version number. Each version will be mostly
backwards compatible with the previous release. Exceptions to this rule will
be listed in the release notes.


	C is the patch release version number, which is incremented for bugfix
and security releases. These releases will be 100% backwards-compatible with
the previous patch release. The only exception is when a security or data
loss issue can’t be fixed without breaking backwards-compatibility. If this
happens, the release notes will provide detailed upgrade instructions.


	Before a new feature release, we’ll make alpha, beta, and release candidate
releases. These are of the form A.B alpha/beta/rc N, which means the
Nth alpha/beta/release candidate of version A.B.




In git, each Django release will have a tag indicating its version number,
signed with the Django release key. Additionally, each release series has its
own branch, called stable/A.B.x, and bugfix/security releases will be
issued from those branches.

For more information about how the Django project issues new releases for
security purposes, please see our security policies.


	Feature release

	Feature releases (A.B, A.B+1, etc.) will happen roughly every eight months
– see release process for details. These releases will contain new
features, improvements to existing features, and such.



	Patch release

	Patch releases (A.B.C, A.B.C+1, etc.) will be issued as needed, to fix
bugs and/or security issues.

These releases will be 100% compatible with the associated feature release,
unless this is impossible for security reasons or to prevent data loss.
So the answer to “should I upgrade to the latest patch release?” will always
be “yes.”



	Long-term support release

	Certain feature releases will be designated as long-term support (LTS)
releases. These releases will get security and data loss fixes applied for
a guaranteed period of time, typically three years.

See the download page [https://www.djangoproject.com/download/] for the releases that have been designated for
long-term support.







Release cadence

Starting with Django 2.0, version numbers will use a loose form of semantic
versioning [https://semver.org/] such that each version following an LTS will
bump to the next “dot zero” version. For example: 2.0, 2.1, 2.2 (LTS), 3.0,
3.1, 3.2 (LTS), etc.

SemVer makes it easier to see at a glance how compatible releases are with each
other. It also helps to anticipate when compatibility shims will be removed.
It’s not a pure form of SemVer as each feature release will continue to have a
few documented backwards incompatibilities where a deprecation path isn’t
possible or not worth the cost. Also, deprecations started in an LTS release
(X.2) will be dropped in a non-dot-zero release (Y.1) to accommodate our policy
of keeping deprecation shims for at least two feature releases. Read on to the
next section for an example.



Deprecation policy

A feature release may deprecate certain features from previous releases. If a
feature is deprecated in feature release A.x, it will continue to work in all
A.x versions (for all versions of x) but raise warnings. Deprecated features
will be removed in the B.0 release, or B.1 for features deprecated in the last
A.x feature release to ensure deprecations are done over at least 2 feature
releases.

So, for example, if we decided to start the deprecation of a function in
Django 4.2:


	Django 4.2 will contain a backwards-compatible replica of the function which
will raise a RemovedInDjango51Warning.


	Django 5.0 (the version that follows 4.2) will still contain the
backwards-compatible replica.


	Django 5.1 will remove the feature outright.




The warnings are silent by default. You can turn on display of these warnings
with the python -Wd option.

A more generic example:


	X.0


	X.1


	X.2 LTS


	Y.0: Drop deprecation shims added in X.0 and X.1.


	Y.1: Drop deprecation shims added in X.2.


	Y.2 LTS: No deprecation shims dropped (while Y.0 is no longer supported,
third-party apps need to maintain compatibility back to X.2 LTS to ease
LTS to LTS upgrades).


	Z.0: Drop deprecation shims added in Y.0 and Y.1.




See also the Deprecating a feature guide.



Supported versions

At any moment in time, Django’s developer team will support a set of releases to
varying levels. See the supported versions section [https://www.djangoproject.com/download/#supported-versions] of the download
page for the current state of support for each version.


	The current development master will get new features and bug fixes
requiring non-trivial refactoring.


	Patches applied to the master branch must also be applied to the last feature
release branch, to be released in the next patch release of that feature
series, when they fix critical problems:


	Security issues.


	Data loss bugs.


	Crashing bugs.


	Major functionality bugs in new features of the latest stable release.


	Regressions from older versions of Django introduced in the current release
series.




The rule of thumb is that fixes will be backported to the last feature
release for bugs that would have prevented a release in the first place
(release blockers).



	Security fixes and data loss bugs will be applied to the current master, the
last two feature release branches, and any other supported long-term
support release branches.


	Documentation fixes generally will be more freely backported to the last
release branch. That’s because it’s highly advantageous to have the docs for
the last release be up-to-date and correct, and the risk of introducing
regressions is much less of a concern.




As a concrete example, consider a moment in time halfway between the release of
Django 5.1 and 5.2. At this point in time:


	Features will be added to development master, to be released as Django 5.2.


	Critical bug fixes will be applied to the stable/5.1.x branch, and
released as 5.1.1, 5.1.2, etc.


	Security fixes and bug fixes for data loss issues will be applied to
master and to the stable/5.1.x, stable/5.0.x, and
stable/4.2.x (LTS) branches. They will trigger the release of 5.1.1,
5.0.5, 4.2.8, etc.


	Documentation fixes will be applied to master, and, if easily backported, to
the latest stable branch, 5.1.x.






Release process

Django uses a time-based release schedule, with feature releases every eight
months or so.

After each feature release, the release manager will announce a timeline for
the next feature release.


Release cycle

Each release cycle consists of three parts:


Phase one: feature proposal

The first phase of the release process will include figuring out what major
features to include in the next version. This should include a good deal of
preliminary work on those features – working code trumps grand design.

Major features for an upcoming release will be added to the wiki roadmap page,
e.g. https://code.djangoproject.com/wiki/Version1.11Roadmap.



Phase two: development

The second part of the release schedule is the “heads-down” working period.
Using the roadmap produced at the end of phase one, we’ll all work very hard to
get everything on it done.

At the end of phase two, any unfinished features will be postponed until the
next release.

Phase two will culminate with an alpha release. At this point, the
stable/A.B.x branch will be forked from master.



Phase three: bugfixes

The last part of a release cycle is spent fixing bugs – no new features will
be accepted during this time. We’ll try to release a beta release one month
after the alpha and a release candidate one month after the beta.

The release candidate marks the string freeze, and it happens at least two
weeks before the final release. After this point, new translatable strings
must not be added.

During this phase, committers will be more and more conservative with
backports, to avoid introducing regressions. After the release candidate, only
release blockers and documentation fixes should be backported.

In parallel to this phase, master can receive new features, to be released
in the A.B+1 cycle.




Bug-fix releases

After a feature release (e.g. A.B), the previous release will go into bugfix
mode.

The branch for the previous feature release (e.g. stable/A.B-1.x) will
include bugfixes. Critical bugs fixed on master must also be fixed on the
bugfix branch; this means that commits need to cleanly separate bug fixes from
feature additions. The developer who commits a fix to master will be
responsible for also applying the fix to the current bugfix branch.






          

      

      

    

  

  
    

    Django Deprecation Timeline
    

    
 
  

    
      
          
            
  
Django Deprecation Timeline

This document outlines when various pieces of Django will be removed or altered
in a backward incompatible way, following their deprecation, as per the
deprecation policy. More details
about each item can often be found in the release notes of two versions prior.


4.0

See the Django 3.0 release notes for more
details on these changes.


	django.utils.http.urlquote(), urlquote_plus(), urlunquote(), and
urlunquote_plus() will be removed.


	django.utils.encoding.force_text() and smart_text() will be removed.


	django.utils.translation.ugettext(), ugettext_lazy(),
ugettext_noop(), ungettext(), and ungettext_lazy() will be
removed.


	django.views.i18n.set_language() will no longer set the user language in
request.session (key django.utils.translation.LANGUAGE_SESSION_KEY).


	alias=None will be required in the signature of
django.db.models.Expression.get_group_by_cols() subclasses.


	django.utils.text.unescape_entities() will be removed.


	django.utils.http.is_safe_url() will be removed.






3.1

See the Django 2.2 release notes for more
details on these changes.


	django.utils.timezone.FixedOffset will be removed.


	django.core.paginator.QuerySetPaginator will be removed.


	A model’s Meta.ordering will no longer affect GROUP BY queries.


	django.contrib.postgres.fields.FloatRangeField and
django.contrib.postgres.forms.FloatRangeField will be removed.


	The FILE_CHARSET setting will be removed.


	django.contrib.staticfiles.storage.CachedStaticFilesStorage will be
removed.


	RemoteUserBackend.configure_user() will require request as the first
positional argument.


	Support for SimpleTestCase.allow_database_queries and
TransactionTestCase.multi_db will be removed.






3.0

See the Django 2.0 release notes for more
details on these changes.


	The django.db.backends.postgresql_psycopg2 module will be removed.


	django.shortcuts.render_to_response() will be removed.


	The DEFAULT_CONTENT_TYPE setting will be removed.


	HttpRequest.xreadlines() will be removed.


	Support for the context argument of Field.from_db_value() and
Expression.convert_value() will be removed.


	The field_name keyword argument of QuerySet.earliest() and
latest() will be removed.




See the Django 2.1 release notes for more
details on these changes.


	django.contrib.gis.db.models.functions.ForceRHR will be removed.


	django.utils.http.cookie_date() will be removed.


	The staticfiles and admin_static template tag libraries will be
removed.


	django.contrib.staticfiles.templatetags.static() will be removed.


	The shim to allow InlineModelAdmin.has_add_permission() to be defined
without an obj argument will be removed.






2.1

See the Django 1.11 release notes for more
details on these changes.


	contrib.auth.views.login(), logout(), password_change(),
password_change_done(), password_reset(), password_reset_done(),
password_reset_confirm(), and password_reset_complete() will be
removed.


	The extra_context parameter of contrib.auth.views.logout_then_login()
will be removed.


	django.test.runner.setup_databases() will be removed.


	django.utils.translation.string_concat() will be removed.


	django.core.cache.backends.memcached.PyLibMCCache will no longer support
passing pylibmc behavior settings as top-level attributes of OPTIONS.


	The host parameter of django.utils.http.is_safe_url() will be
removed.


	Silencing of exceptions raised while rendering the {% include %} template
tag will be removed.


	DatabaseIntrospection.get_indexes() will be removed.


	The authenticate() method of authentication backends will require
request as the first positional argument.


	The django.db.models.permalink() decorator will be removed.


	The USE_ETAGS setting will be removed. CommonMiddleware and
django.utils.cache.patch_response_headers() will no longer set ETags.


	The Model._meta.has_auto_field attribute will be removed.


	url()’s support for inline flags in regular expression groups ((?i),
(?L), (?m), (?s), and (?u)) will be removed.


	Support for Widget.render() methods without the renderer argument
will be removed.






2.0

See the Django 1.9 release notes for more
details on these changes.


	The weak argument to django.dispatch.signals.Signal.disconnect() will
be removed.


	django.db.backends.base.BaseDatabaseOperations.check_aggregate_support()
will be removed.


	The django.forms.extras package will be removed.


	The assignment_tag helper will be removed.


	The host argument to assertsRedirects will be removed. The
compatibility layer which allows absolute URLs to be considered equal to
relative ones when the path is identical will also be removed.


	Field.rel will be removed.


	Field.remote_field.to attribute will be removed.


	The on_delete argument for ForeignKey and OneToOneField  will be
required.


	django.db.models.fields.add_lazy_relation() will be removed.


	When time zone support is enabled, database backends that don’t support time
zones won’t convert aware datetimes to naive values in UTC anymore when such
values are passed as parameters to SQL queries executed outside of the ORM,
e.g. with cursor.execute().


	The django.contrib.auth.tests.utils.skipIfCustomUser() decorator will be
removed.


	The GeoManager and GeoQuerySet classes will be removed.


	The django.contrib.gis.geoip module will be removed.


	The supports_recursion check for template loaders will be removed from:


	django.template.engine.Engine.find_template()


	django.template.loader_tags.ExtendsNode.find_template()


	django.template.loaders.base.Loader.supports_recursion()


	django.template.loaders.cached.Loader.supports_recursion()






	The load_template() and load_template_sources() template loader
methods will be removed.


	The template_dirs argument for template loaders will be removed:


	django.template.loaders.base.Loader.get_template()


	django.template.loaders.cached.Loader.cache_key()


	django.template.loaders.cached.Loader.get_template()


	django.template.loaders.cached.Loader.get_template_sources()


	django.template.loaders.filesystem.Loader.get_template_sources()






	The django.template.loaders.base.Loader.__call__() method will be
removed.


	Support for custom error views with a single positional parameter will be
dropped.


	The mime_type attribute of django.utils.feedgenerator.Atom1Feed and
django.utils.feedgenerator.RssFeed will be removed in favor of
content_type.


	The app_name argument to django.conf.urls.include() will be
removed.


	Support for passing a 3-tuple as the first argument to include() will
be removed.


	Support for setting a URL instance namespace without an application
namespace will be removed.


	Field._get_val_from_obj() will be removed in favor of
Field.value_from_object().


	django.template.loaders.eggs.Loader will be removed.


	The current_app parameter to the contrib.auth views will be removed.


	The callable_obj keyword argument to
SimpleTestCase.assertRaisesMessage() will be removed.


	Support for the allow_tags attribute on ModelAdmin methods will be
removed.


	The enclosure keyword argument to SyndicationFeed.add_item() will be
removed.


	The django.template.loader.LoaderOrigin and
django.template.base.StringOrigin aliases for
django.template.base.Origin will be removed.




See the Django 1.10 release notes for more
details on these changes.


	The makemigrations --exit option will be removed.


	Support for direct assignment to a reverse foreign key or many-to-many
relation will be removed.


	The get_srid() and set_srid() methods of
django.contrib.gis.geos.GEOSGeometry will be removed.


	The get_x(), set_x(), get_y(), set_y(), get_z(), and
set_z() methods of django.contrib.gis.geos.Point will be removed.


	The get_coords() and set_coords() methods of
django.contrib.gis.geos.Point will be removed.


	The cascaded_union property of django.contrib.gis.geos.MultiPolygon
will be removed.


	django.utils.functional.allow_lazy() will be removed.


	The shell --plain option will be removed.


	The django.core.urlresolvers module will be removed.


	The model CommaSeparatedIntegerField will be removed. A stub field will
remain for compatibility with historical migrations.


	Support for the template Context.has_key() method will be removed.


	Support for the django.core.files.storage.Storage.accessed_time(),
created_time(), and modified_time() methods will be removed.


	Support for query lookups using the model name when
Meta.default_related_name is set will be removed.


	The __search query lookup and the
DatabaseOperations.fulltext_search_sql() method will be removed.


	The shim for supporting custom related manager classes without a
_apply_rel_filters() method will be removed.


	Using User.is_authenticated() and User.is_anonymous() as methods
will no longer be supported.


	The private attribute virtual_fields of Model._meta will be removed.


	The private keyword arguments virtual_only in
Field.contribute_to_class() and virtual in
Model._meta.add_field() will be removed.


	The javascript_catalog() and json_catalog() views will be removed.


	The django.contrib.gis.utils.precision_wkt() function will be removed.


	In multi-table inheritance, implicit promotion of a OneToOneField to a
parent_link will be removed.


	Support for Widget._format_value() will be removed.


	FileField methods get_directory_name() and get_filename() will be
removed.


	The mark_for_escaping() function and the classes it uses: EscapeData,
EscapeBytes, EscapeText, EscapeString, and EscapeUnicode will
be removed.


	The escape filter will change to use
django.utils.html.conditional_escape().


	Manager.use_for_related_fields will be removed.


	Model Manager inheritance will follow MRO inheritance rules and the
Meta.manager_inheritance_from_future to opt-in to this behavior will be
removed.


	Support for old-style middleware using settings.MIDDLEWARE_CLASSES will
be removed.






1.10

See the Django 1.8 release notes for more
details on these changes.


	Support for calling a SQLCompiler directly as an alias for calling its
quote_name_unless_alias method will be removed.


	cycle and firstof template tags will be removed from the future
template tag library (used during the 1.6/1.7 deprecation period).


	django.conf.urls.patterns() will be removed.


	Support for the prefix argument to
django.conf.urls.i18n.i18n_patterns() will be removed.


	SimpleTestCase.urls will be removed.


	Using an incorrect count of unpacked values in the for template tag
will raise an exception rather than fail silently.


	The ability to reverse URLs using a dotted Python path will be removed.


	The ability to use a dotted Python path for the LOGIN_URL and
LOGIN_REDIRECT_URL settings will be removed.


	Support for optparse [https://docs.python.org/3/library/optparse.html#module-optparse] will be dropped for custom management commands
(replaced by argparse [https://docs.python.org/3/library/argparse.html#module-argparse]).


	The class django.core.management.NoArgsCommand will be removed. Use
BaseCommand instead, which takes no arguments
by default.


	django.core.context_processors module will be removed.


	django.db.models.sql.aggregates module will be removed.


	django.contrib.gis.db.models.sql.aggregates module will be removed.


	The following methods and properties of django.db.sql.query.Query will
be removed:


	Properties: aggregates and aggregate_select


	Methods: add_aggregate, set_aggregate_mask, and
append_aggregate_mask.






	django.template.resolve_variable will be removed.


	The following private APIs will be removed from
django.db.models.options.Options (Model._meta):


	get_field_by_name()


	get_all_field_names()


	get_fields_with_model()


	get_concrete_fields_with_model()


	get_m2m_with_model()


	get_all_related_objects()


	get_all_related_objects_with_model()


	get_all_related_many_to_many_objects()


	get_all_related_m2m_objects_with_model()






	The error_message argument of django.forms.RegexField will be removed.


	The unordered_list filter will no longer support old style lists.


	Support for string view arguments to url() will be removed.


	The backward compatible shim  to rename django.forms.Form._has_changed()
to has_changed() will be removed.


	The removetags template filter will be removed.


	The remove_tags() and strip_entities() functions in
django.utils.html will be removed.


	The is_admin_site argument to
django.contrib.auth.views.password_reset() will be removed.


	django.db.models.field.subclassing.SubfieldBase will be removed.


	django.utils.checksums will be removed; its functionality is included
in django-localflavor 1.1+.


	The original_content_type_id attribute on
django.contrib.admin.helpers.InlineAdminForm will be removed.


	The backwards compatibility shim to allow FormMixin.get_form() to be
defined with no default value for its form_class argument will be removed.


	The following settings will be removed:


	ALLOWED_INCLUDE_ROOTS


	TEMPLATE_CONTEXT_PROCESSORS


	TEMPLATE_DEBUG


	TEMPLATE_DIRS


	TEMPLATE_LOADERS


	TEMPLATE_STRING_IF_INVALID






	The backwards compatibility alias django.template.loader.BaseLoader will
be removed.


	Django template objects returned by
get_template() and
select_template() won’t accept a
Context in their
render() method anymore.


	Template response APIs will enforce the use
of dict [https://docs.python.org/3/library/stdtypes.html#dict] and backend-dependent template objects instead of
Context and Template
respectively.


	The current_app parameter for the following function and classes will be
removed:


	django.shortcuts.render()


	django.template.Context()


	django.template.RequestContext()


	django.template.response.TemplateResponse()






	The dictionary and context_instance parameters for the following
functions will be removed:


	django.shortcuts.render()


	django.shortcuts.render_to_response()


	django.template.loader.render_to_string()






	The dirs parameter for the following functions will be removed:


	django.template.loader.get_template()


	django.template.loader.select_template()


	django.shortcuts.render()


	django.shortcuts.render_to_response()






	Session verification will be enabled regardless of whether or not
'django.contrib.auth.middleware.SessionAuthenticationMiddleware' is in
MIDDLEWARE_CLASSES.


	Private attribute django.db.models.Field.related will be removed.


	The --list option of the migrate management command will be removed.


	The ssi template tag will be removed.


	Support for the = comparison operator in the if template tag will be
removed.


	The backwards compatibility shims to allow Storage.get_available_name()
and Storage.save() to be defined without a max_length argument will
be removed.


	Support for the legacy %(<foo>)s syntax in ModelFormMixin.success_url
will be removed.


	GeoQuerySet aggregate methods collect(), extent(), extent3d(),
make_line(), and unionagg() will be removed.


	Ability to specify ContentType.name when creating a content type instance
will be removed.


	Support for the old signature of allow_migrate will be removed. It changed
from allow_migrate(self, db, model) to
allow_migrate(self, db, app_label, model_name=None, **hints).


	Support for the syntax of {% cycle %} that uses comma-separated arguments
will be removed.


	The warning that Signer issues when given an
invalid separator will become an exception.






1.9

See the Django 1.7 release notes for more
details on these changes.


	django.utils.dictconfig will be removed.


	django.utils.importlib will be removed.


	django.utils.tzinfo will be removed.


	django.utils.unittest will be removed.


	The syncdb command will be removed.


	django.db.models.signals.pre_syncdb and
django.db.models.signals.post_syncdb will be removed.


	allow_syncdb on database routers will no longer automatically become
allow_migrate.


	Automatic syncing of apps without migrations will be removed. Migrations will
become compulsory for all apps unless you pass the --run-syncdb option to
migrate.


	The SQL management commands for apps without migrations, sql, sqlall,
sqlclear, sqldropindexes, and sqlindexes, will be removed.


	Support for automatic loading of initial_data fixtures and initial SQL
data will be removed.


	All models will need to be defined inside an installed application or
declare an explicit app_label.
Furthermore, it won’t be possible to import them before their application
is loaded. In particular, it won’t be possible to import models inside
the root package of their application.


	The model and form IPAddressField will be removed. A stub field will
remain for compatibility with historical migrations.


	AppCommand.handle_app() will no longer be supported.


	RequestSite and get_current_site() will no longer be importable from
django.contrib.sites.models.


	FastCGI support via the runfcgi management command will be
removed. Please deploy your project using WSGI.


	django.utils.datastructures.SortedDict will be removed. Use
collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] from the Python standard library instead.


	ModelAdmin.declared_fieldsets will be removed.


	Instances of util.py in the Django codebase have been renamed to
utils.py in an effort to unify all util and utils references.
The modules that provided backwards compatibility will be removed:


	django.contrib.admin.util


	django.contrib.gis.db.backends.util


	django.db.backends.util


	django.forms.util






	ModelAdmin.get_formsets will be removed.


	The backward compatibility shim introduced to rename the
BaseMemcachedCache._get_memcache_timeout() method to
get_backend_timeout() will be removed.


	The --natural and -n options for dumpdata will be removed.


	The use_natural_keys argument for serializers.serialize() will be
removed.


	Private API django.forms.forms.get_declared_fields() will be removed.


	The ability to use a SplitDateTimeWidget with DateTimeField will be
removed.


	The WSGIRequest.REQUEST property will be removed.


	The class django.utils.datastructures.MergeDict will be removed.


	The zh-cn and zh-tw language codes will be removed and have been
replaced by the zh-hans and zh-hant language code respectively.


	The internal django.utils.functional.memoize will be removed.


	django.core.cache.get_cache will be removed. Add suitable entries
to CACHES and use django.core.cache.caches instead.


	django.db.models.loading will be removed.


	Passing callable arguments to querysets will no longer be possible.


	BaseCommand.requires_model_validation will be removed in favor of
requires_system_checks. Admin validators will be replaced by admin
checks.


	The ModelAdmin.validator_class and default_validator_class attributes
will be removed.


	ModelAdmin.validate() will be removed.


	django.db.backends.DatabaseValidation.validate_field will be removed in
favor of the check_field method.


	The validate management command will be removed.


	django.utils.module_loading.import_by_path will be removed in favor of
django.utils.module_loading.import_string.


	ssi and url template tags will be removed from the future template
tag library (used during the 1.3/1.4 deprecation period).


	django.utils.text.javascript_quote will be removed.


	Database test settings as independent entries in the database settings,
prefixed by TEST_, will no longer be supported.


	The cache_choices option to ModelChoiceField and
ModelMultipleChoiceField will be removed.


	The default value of the
RedirectView.permanent
attribute will change from True to False.


	django.contrib.sitemaps.FlatPageSitemap will be removed in favor of
django.contrib.flatpages.sitemaps.FlatPageSitemap.


	Private API django.test.utils.TestTemplateLoader will be removed.


	The django.contrib.contenttypes.generic module will be removed.


	Private APIs django.db.models.sql.where.WhereNode.make_atom() and
django.db.models.sql.where.Constraint will be removed.






1.8

See the Django 1.6 release notes for more
details on these changes.


	django.contrib.comments will be removed.


	The following transaction management APIs will be removed:


	TransactionMiddleware,


	the decorators and context managers autocommit, commit_on_success,
and commit_manually, defined in django.db.transaction,


	the functions commit_unless_managed and rollback_unless_managed,
also defined in django.db.transaction,


	the TRANSACTIONS_MANAGED setting.






	The cycle and firstof template tags will auto-escape their
arguments. In 1.6 and 1.7, this behavior is provided by the version of these
tags in the future template tag library.


	The SEND_BROKEN_LINK_EMAILS setting will be removed. Add the
django.middleware.common.BrokenLinkEmailsMiddleware middleware to
your MIDDLEWARE_CLASSES setting instead.


	django.middleware.doc.XViewMiddleware will be removed. Use
django.contrib.admindocs.middleware.XViewMiddleware instead.


	Model._meta.module_name was renamed to model_name.


	Remove the backward compatible shims introduced to rename get_query_set
and similar queryset methods. This affects the following classes:
BaseModelAdmin, ChangeList, BaseCommentNode,
GenericForeignKey, Manager, SingleRelatedObjectDescriptor and
ReverseSingleRelatedObjectDescriptor.


	Remove the backward compatible shims introduced to rename the attributes
ChangeList.root_query_set and ChangeList.query_set.


	django.views.defaults.shortcut will be removed, as part of the
goal of removing all django.contrib references from the core
Django codebase. Instead use
django.contrib.contenttypes.views.shortcut. django.conf.urls.shortcut
will also be removed.


	Support for the Python Imaging Library (PIL) module will be removed, as it
no longer appears to be actively maintained & does not work on Python 3.


	The following private APIs will be removed:


	django.db.backend


	django.db.close_connection()


	django.db.backends.creation.BaseDatabaseCreation.set_autocommit()


	django.db.transaction.is_managed()


	django.db.transaction.managed()






	django.forms.widgets.RadioInput will be removed in favor of
django.forms.widgets.RadioChoiceInput.


	The module django.test.simple and the class
django.test.simple.DjangoTestSuiteRunner will be removed. Instead use
django.test.runner.DiscoverRunner.


	The module django.test._doctest will be removed. Instead use the doctest
module from the Python standard library.


	The CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting will be removed.


	Usage of the hard-coded Hold down “Control”, or “Command” on a Mac, to select
more than one. string to override or append to user-provided help_text in
forms for ManyToMany model fields will not be performed by Django anymore
either at the model or forms layer.


	The Model._meta.get_(add|change|delete)_permission methods will
be removed.


	The session key django_language will no longer be read for backwards
compatibility.


	Geographic Sitemaps will be removed
(django.contrib.gis.sitemaps.views.index and
django.contrib.gis.sitemaps.views.sitemap).


	django.utils.html.fix_ampersands, the fix_ampersands template filter and
django.utils.html.clean_html will be removed following an accelerated deprecation.






1.7

See the Django 1.5 release notes for more
details on these changes.


	The module django.utils.simplejson will be removed. The standard library
provides json [https://docs.python.org/3/library/json.html#module-json] which should be used instead.


	The function django.utils.itercompat.product will be removed. The Python
builtin version should be used instead.


	Auto-correction of INSTALLED_APPS and TEMPLATE_DIRS settings when they are
specified as a plain string instead of a tuple will be removed and raise an
exception.


	The mimetype argument to the __init__ methods of
HttpResponse,
SimpleTemplateResponse, and
TemplateResponse, will be removed.
content_type should be used instead. This also applies to the
render_to_response() shortcut and the sitemap views,
index() and
sitemap().


	When HttpResponse is instantiated with an iterator,
or when content is set to an iterator,
that iterator will be immediately consumed.


	The AUTH_PROFILE_MODULE setting, and the get_profile() method on
the User model, will be removed.


	The cleanup management command will be removed. It’s replaced by
clearsessions.


	The daily_cleanup.py script will be removed.


	The depth keyword argument will be removed from
select_related().


	The undocumented get_warnings_state()/restore_warnings_state()
functions from django.test.utils and the save_warnings_state()/
restore_warnings_state()
django.test.*TestCase methods are
deprecated. Use the warnings.catch_warnings [https://docs.python.org/3/library/warnings.html#warnings.catch_warnings] context manager
available starting with Python 2.6 instead.


	The undocumented check_for_test_cookie method in
AuthenticationForm will be removed
following an accelerated deprecation. Users subclassing this form should
remove calls to this method, and instead ensure that their auth related views
are CSRF protected, which ensures that cookies are enabled.


	The version of django.contrib.auth.views.password_reset_confirm() that
supports base36 encoded user IDs
(django.contrib.auth.views.password_reset_confirm_uidb36) will be
removed. If your site has been running Django 1.6 for more than
PASSWORD_RESET_TIMEOUT_DAYS, this change will have no effect. If
not, then any password reset links generated before you upgrade to Django 1.7
won’t work after the upgrade.


	The django.utils.encoding.StrAndUnicode mix-in will be removed.






1.6

See the Django 1.4 release notes for more
details on these changes.


	django.contrib.databrowse will be removed.


	django.contrib.localflavor will be removed following an accelerated
deprecation.


	django.contrib.markup will be removed following an accelerated
deprecation.


	The compatibility modules django.utils.copycompat and
django.utils.hashcompat as well as the functions
django.utils.itercompat.all and django.utils.itercompat.any will
be removed. The Python builtin versions should be used instead.


	The csrf_response_exempt and csrf_view_exempt decorators will
be removed. Since 1.4 csrf_response_exempt has been a no-op (it
returns the same function), and csrf_view_exempt has been a
synonym for django.views.decorators.csrf.csrf_exempt, which should
be used to replace it.


	The django.core.cache.backends.memcached.CacheClass backend
was split into two in Django 1.3 in order to introduce support for
PyLibMC. The historical CacheClass will be removed in favor of
django.core.cache.backends.memcached.MemcachedCache.


	The UK-prefixed objects of django.contrib.localflavor.uk will only
be accessible through their GB-prefixed names (GB is the correct
ISO 3166 code for United Kingdom).


	The IGNORABLE_404_STARTS and IGNORABLE_404_ENDS settings have been
superseded by IGNORABLE_404_URLS in the 1.4 release. They will be
removed.


	The form wizard has been refactored to use class-based views with pluggable
backends in 1.4. The previous implementation will be removed.


	Legacy ways of calling
cache_page() will be removed.


	The backward-compatibility shim to automatically add a debug-false
filter to the 'mail_admins' logging handler will be removed. The
LOGGING setting should include this filter explicitly if
it is desired.


	The builtin truncation functions django.utils.text.truncate_words()
and django.utils.text.truncate_html_words() will be removed in
favor of the django.utils.text.Truncator class.


	The django.contrib.gis.geoip.GeoIP class was moved to
django.contrib.gis.geoip in 1.4 – the shortcut in
django.contrib.gis.utils will be removed.


	django.conf.urls.defaults will be removed. The functions
include(), patterns(), and url(), plus
handler404 and handler500
are now available through django.conf.urls.


	The functions setup_environ() and execute_manager() will be removed
from django.core.management. This also means that the old (pre-1.4)
style of manage.py file will no longer work.


	Setting the is_safe and needs_autoescape flags as attributes of
template filter functions will no longer be supported.


	The attribute HttpRequest.raw_post_data was renamed to HttpRequest.body
in 1.4. The backward compatibility will be removed –
HttpRequest.raw_post_data will no longer work.


	The value for the post_url_continue parameter in
ModelAdmin.response_add() will have to be either None (to redirect
to the newly created object’s edit page) or a pre-formatted url. String
formats, such as the previous default '../%s/', will not be accepted any
more.






1.5

See the Django 1.3 release notes for more
details on these changes.


	Starting Django without a SECRET_KEY will result in an exception
rather than a DeprecationWarning. (This is accelerated from the usual
deprecation path; see the Django 1.4 release notes.)


	The mod_python request handler will be removed. The mod_wsgi
handler should be used instead.


	The template attribute on django.test.client.Response
objects returned by the test client will be removed.
The templates attribute should be
used instead.


	The django.test.simple.DjangoTestRunner will be removed.
Instead use a unittest-native class. The features of the
django.test.simple.DjangoTestRunner (including fail-fast and
Ctrl-C test termination) can be provided by unittest.TextTestRunner [https://docs.python.org/3/library/unittest.html#unittest.TextTestRunner].


	The undocumented function
django.contrib.formtools.utils.security_hash will be removed,
instead use django.contrib.formtools.utils.form_hmac


	The function-based generic view modules will be removed in favor of their
class-based equivalents, outlined here.


	The django.core.servers.basehttp.AdminMediaHandler will be
removed.  In its place use
django.contrib.staticfiles.handlers.StaticFilesHandler.


	The template tags library adminmedia and the template tag {%
admin_media_prefix %} will be removed in favor of the generic static files
handling. (This is faster than the usual deprecation path; see the
Django 1.4 release notes.)


	The url and ssi template tags will be modified so that the first
argument to each tag is a template variable, not an implied string. In 1.4,
this behavior is provided by a version of the tag in the future template
tag library.


	The reset and sqlreset management commands will be removed.


	Authentication backends will need to support an inactive user
being passed to all methods dealing with permissions.
The supports_inactive_user attribute will no longer be checked
and can be removed from custom backends.


	transform() will raise
a GEOSException when called
on a geometry with no SRID value.


	django.http.CompatCookie will be removed in favor of
django.http.SimpleCookie.


	django.core.context_processors.PermWrapper and
django.core.context_processors.PermLookupDict will be removed in
favor of the corresponding
django.contrib.auth.context_processors.PermWrapper and
django.contrib.auth.context_processors.PermLookupDict, respectively.


	The MEDIA_URL or STATIC_URL settings will be
required to end with a trailing slash to ensure there is a consistent
way to combine paths in templates.


	django.db.models.fields.URLField.verify_exists will be removed. The
feature was deprecated in 1.3.1 due to intractable security and
performance issues and will follow a slightly accelerated deprecation
timeframe.


	Translations located under the so-called project path will be ignored during
the translation building process performed at runtime. The
LOCALE_PATHS setting can be used for the same task by including the
filesystem path to a locale directory containing non-app-specific
translations in its value.


	The Markup contrib app will no longer support versions of Python-Markdown
library earlier than 2.1. An accelerated timeline was used as this was
a security related deprecation.


	The CACHE_BACKEND setting will be removed. The cache backend(s) should be
specified in the CACHES setting.






1.4

See the Django 1.2 release notes for more
details on these changes.


	CsrfResponseMiddleware and CsrfMiddleware will be removed.  Use
the {% csrf_token %} template tag inside forms to enable CSRF
protection. CsrfViewMiddleware remains and is enabled by default.


	The old imports for CSRF functionality (django.contrib.csrf.*),
which moved to core in 1.2, will be removed.


	The django.contrib.gis.db.backend module will be removed in favor
of the specific backends.


	SMTPConnection will be removed in favor of a generic Email backend API.


	The many to many SQL generation functions on the database backends
will be removed.


	The ability to use the DATABASE_* family of top-level settings to
define database connections will be removed.


	The ability to use shorthand notation to specify a database backend
(i.e., sqlite3 instead of django.db.backends.sqlite3) will be
removed.


	The get_db_prep_save, get_db_prep_value and
get_db_prep_lookup methods will have to support multiple databases.


	The Message model (in django.contrib.auth), its related
manager in the User model (user.message_set), and the
associated methods (user.message_set.create() and
user.get_and_delete_messages()), will be removed.  The
messages framework should be used
instead. The related messages variable returned by the
auth context processor will also be removed. Note that this
means that the admin application will depend on the messages
context processor.


	Authentication backends will need to support the obj parameter for
permission checking. The supports_object_permissions attribute
will no longer be checked and can be removed from custom backends.


	Authentication backends will need to support the AnonymousUser class
being passed to all methods dealing with permissions.  The
supports_anonymous_user variable will no longer be checked and can be
removed from custom backends.


	The ability to specify a callable template loader rather than a
Loader class will be removed, as will the load_template_source
functions that are included with the built in template loaders for
backwards compatibility.


	django.utils.translation.get_date_formats() and
django.utils.translation.get_partial_date_formats(). These functions
will be removed; use the locale-aware
django.utils.formats.get_format() to get the appropriate formats.


	In django.forms.fields, the constants: DEFAULT_DATE_INPUT_FORMATS,
DEFAULT_TIME_INPUT_FORMATS and
DEFAULT_DATETIME_INPUT_FORMATS will be removed. Use
django.utils.formats.get_format() to get the appropriate
formats.


	The ability to use a function-based test runner will be removed,
along with the django.test.simple.run_tests() test runner.


	The views.feed() view and feeds.Feed class in
django.contrib.syndication will be removed. The class-based view
views.Feed should be used instead.


	django.core.context_processors.auth.  This release will
remove the old method in favor of the new method in
django.contrib.auth.context_processors.auth.


	The postgresql database backend will be removed, use the
postgresql_psycopg2 backend instead.


	The no language code will be removed and has been replaced by the
nb language code.


	Authentication backends will need to define the boolean attribute
supports_inactive_user until version 1.5 when it will be assumed that
all backends will handle inactive users.


	django.db.models.fields.XMLField will be removed. This was
deprecated as part of the 1.3 release. An accelerated deprecation
schedule has been used because the field hasn’t performed any role
beyond that of a simple TextField since the removal of oldforms.
All uses of XMLField can be replaced with TextField.


	The undocumented mixin parameter to the open() method of
django.core.files.storage.Storage (and subclasses) will be removed.






1.3

See the Django 1.1 release notes for more
details on these changes.


	AdminSite.root().  This method of hooking up the admin URLs will be
removed in favor of including admin.site.urls.


	Authentication backends need to define the boolean attributes
supports_object_permissions and supports_anonymous_user until
version 1.4, at which point it will be assumed that all backends will
support these options.








          

      

      

    

  

  
    

    The Django source code repository
    

    
 
  

    
      
          
            
  
The Django source code repository

When deploying a Django application into a real production environment, you
will almost always want to use an official packaged release of Django [https://www.djangoproject.com/download/].

However, if you’d like to try out in-development code from an upcoming release
or contribute to the development of Django, you’ll need to obtain a clone of
Django’s source code repository.

This document covers the way the code repository is laid out and how to work
with and find things in it.


High-level overview

The Django source code repository uses Git [https://git-scm.com/] to track changes to the code
over time, so you’ll need a copy of the Git client (a program called git)
on your computer, and you’ll want to familiarize yourself with the basics of
how Git works.

Git’s website offers downloads for various operating systems. The site also
contains vast amounts of documentation [https://git-scm.com/documentation].

The Django Git repository is located online at github.com/django/django [https://github.com/django/django]. It contains the full source code for all
Django releases, which you can browse online.

The Git repository includes several branches [https://github.com/django/django/branches]:


	master contains the main in-development code which will become
the next packaged release of Django. This is where most development
activity is focused.


	stable/A.B.x are the branches where release preparation work happens.
They are also used for bugfix and security releases which occur as necessary
after the initial release of a feature version.




The Git repository also contains tags [https://github.com/django/django/tags]. These are the exact revisions from
which packaged Django releases were produced, since version 1.0.

A number of tags also exist under the archive/ prefix for archived
work.

The source code for the Djangoproject.com [https://www.djangoproject.com/]
website can be found at github.com/django/djangoproject.com [https://github.com/django/djangoproject.com].



The master branch

If you’d like to try out the in-development code for the next release of
Django, or if you’d like to contribute to Django by fixing bugs or developing
new features, you’ll want to get the code from the master branch.

Note that this will get all of Django: in addition to the top-level
django module containing Python code, you’ll also get a copy of Django’s
documentation, test suite, packaging scripts and other miscellaneous bits.
Django’s code will be present in your clone as a directory named
django.

To try out the in-development code with your own applications, place the
directory containing your clone on your Python import path. Then import
statements which look for Django will find the django module within your
clone.

If you’re going to be working on Django’s code (say, to fix a bug or
develop a new feature), you can probably stop reading here and move
over to the documentation for contributing to Django, which covers things like the preferred
coding style and how to generate and submit a patch.



Stable branches

Django uses branches to prepare for releases of Django. Each major release
series has its own stable branch.

These branches can be found in the repository as stable/A.B.x
branches and will be created right after the first alpha is tagged.

For example, immediately after Django 1.5 alpha 1 was tagged, the branch
stable/1.5.x was created and all further work on preparing the code for the
final 1.5 release was done there.

These branches also provide bugfix and security support as described in
Supported versions.

For example, after the release of Django 1.5, the branch stable/1.5.x
receives only fixes for security and critical stability bugs, which are
eventually released as Django 1.5.1 and so on, stable/1.4.x receives only
security and data loss fixes, and stable/1.3.x no longer receives any
updates.


Historical information

This policy for handling stable/A.B.x branches was adopted starting
with the Django 1.5 release cycle.

Previously, these branches weren’t created until right after the releases
and the stabilization work occurred on the main repository branch. Thus,
no new feature development work for the next release of Django could be
committed until the final release happened.

For example, shortly after the release of Django 1.3 the branch
stable/1.3.x was created. Official support for that release has expired,
and so it no longer receives direct maintenance from the Django project.
However, that and all other similarly named branches continue to exist, and
interested community members have occasionally used them to provide
unofficial support for old Django releases.





Tags

Each Django release is tagged and signed by the releaser.

The tags can be found on GitHub’s tags [https://github.com/django/django/tags] page.


Archived feature-development work


Historical information

Since Django moved to Git in 2012, anyone can clone the repository and
create their own branches, alleviating the need for official branches in
the source code repository.

The following section is mostly useful if you’re exploring the repository’s
history, for example if you’re trying to understand how some features were
designed.



Feature-development branches tend by their nature to be temporary. Some
produce successful features which are merged back into Django’s master to
become part of an official release, but others do not; in either case, there
comes a time when the branch is no longer being actively worked on by any
developer. At this point the branch is considered closed.

Django used to be maintained with the Subversion revision control system, that
has no standard way of indicating this. As a workaround, branches of Django
which are closed and no longer maintained were moved into attic.

A number of tags exist under the archive/ prefix to maintain a reference to
this and other work of historical interest.

The following tags under the archive/attic/ prefix reference the tip of
branches whose code eventually became part of Django itself:


	boulder-oracle-sprint: Added support for Oracle databases to
Django’s object-relational mapper. This has been part of Django
since the 1.0 release.


	gis: Added support for geographic/spatial queries to Django’s
object-relational mapper. This has been part of Django since the 1.0
release, as the bundled application django.contrib.gis.


	i18n: Added internationalization support to
Django. This has been part of Django since the 0.90 release.


	magic-removal: A major refactoring of both the internals and
public APIs of Django’s object-relational mapper. This has been part
of Django since the 0.95 release.


	multi-auth: A refactoring of Django’s bundled
authentication framework which added support for
authentication backends. This has
been part of Django since the 0.95 release.


	new-admin: A refactoring of Django’s bundled
administrative application. This became part of
Django as of the 0.91 release, but was superseded by another
refactoring (see next listing) prior to the Django 1.0 release.


	newforms-admin: The second refactoring of Django’s bundled
administrative application. This became part of Django as of the 1.0
release, and is the basis of the current incarnation of
django.contrib.admin.


	queryset-refactor: A refactoring of the internals of Django’s
object-relational mapper. This became part of Django as of the 1.0
release.


	unicode: A refactoring of Django’s internals to consistently use
Unicode-based strings in most places within Django and Django
applications. This became part of Django as of the 1.0 release.




Additionally, the following tags under the archive/attic/ prefix reference
the tips of branches that were closed, but whose code was never merged into
Django, and the features they aimed to implement were never finished:


	full-history


	generic-auth


	multiple-db-support


	per-object-permissions


	schema-evolution


	schema-evolution-ng


	search-api


	sqlalchemy




Finally, under the archive/ prefix, the repository contains
soc20XX/<project> tags referencing the tip of branches that were used by
students who worked on Django during the 2009 and 2010 Google Summer of Code
programs.






          

      

      

    

  

  
    

    How is Django Formed?
    

    
 
  

    
      
          
            
  
How is Django Formed?

This document explains how to release Django.

Please, keep these instructions up-to-date if you make changes! The point
here is to be descriptive, not prescriptive, so feel free to streamline or
otherwise make changes, but update this document accordingly!


Overview

There are three types of releases that you might need to make:


	Security releases: disclosing and fixing a vulnerability. This’ll
generally involve two or three simultaneous releases – e.g.
1.5.x, 1.6.x, and, depending on timing, perhaps a 1.7 alpha/beta/rc.


	Regular version releases: either a final release (e.g. 1.5) or a
bugfix update (e.g. 1.5.1).


	Pre-releases: e.g. 1.6 alpha, beta, or rc.




The short version of the steps involved is:


	If this is a security release, pre-notify the security distribution list
one week before the actual release.


	Proofread the release notes, looking for organization and writing errors.
Draft a blog post and email announcement.


	Update version numbers and create the release package(s).


	Upload the package(s) to the djangoproject.com server.


	Upload the new version(s) to PyPI.


	Declare the new version in the admin on djangoproject.com.


	Post the blog entry and send out the email announcements.


	Update version numbers post-release.




There are a lot of details, so please read on.



Prerequisites

You’ll need a few things before getting started:


	A GPG key. If the key you want to use is not your default signing key, you’ll
need to add -u you@example.com to every GPG signing command below, where
you@example.com is the email address associated with the key you want to
use.


	An install of some required Python packages:

$ python -m pip install wheel twine







	Access to Django’s record on PyPI. Create a file with your credentials:


~/.pypirc

[pypi]
username:YourUsername
password:YourPassword









	Access to the djangoproject.com server to upload files.


	Access to the admin on djangoproject.com as a “Site maintainer”.


	Access to post to django-announce.


	If this is a security release, access to the pre-notification distribution
list.




If this is your first release, you’ll need to coordinate with another releaser
to get all these things lined up.



Pre-release tasks

A few items need to be taken care of before even beginning the release process.
This stuff starts about a week before the release; most of it can be done
any time leading up to the actual release:


	If this is a security release, send out pre-notification one week before
the release. The template for that email and a list of the recipients are in
the private django-security GitHub wiki. BCC the pre-notification
recipients. Sign the email with the key you’ll use for the release and
include CVE IDs [https://cveform.mitre.org/] (requested with Vendor:
djangoproject, Product: django) and patches for each issue being fixed.
Also, notify django-announce of the upcoming
security release.


	As the release approaches, watch Trac to make sure no release blockers
are left for the upcoming release.


	Check with the other committers to make sure they don’t have any
uncommitted changes for the release.


	Proofread the release notes, including looking at the online
version to catch any broken links or reST errors, and make sure the
release notes contain the correct date.


	Double-check that the release notes mention deprecation timelines
for any APIs noted as deprecated, and that they mention any changes
in Python version support.


	Double-check that the release notes index has a link to the notes
for the new release; this will be in docs/releases/index.txt.


	If this is a feature release, ensure translations from Transifex have been
integrated. This is typically done by a separate translation’s manager
rather than the releaser, but here are the steps. Provided you have an
account on Transifex:

$ python scripts/manage_translations.py fetch





and then commit the changed/added files (both .po and .mo). Sometimes there
are validation errors which need to be debugged, so avoid doing this task
immediately before a release is needed.



	Update the django-admin manual page:

$ cd docs
$ make man
$ man _build/man/django-admin.1  # do a quick sanity check
$ cp _build/man/django-admin.1 man/django-admin.1





and then commit the changed man page.



	If this is the alpha release of a new series, create a new stable branch
from master. For example, when releasing Django 3.1:

$ git checkout -b stable/3.1.x origin/master
$ git push origin -u stable/3.1.x:stable/3.1.x







	If this is the “dot zero” release of a new series, create a new branch from
the current stable branch in the django-docs-translations [https://github.com/django/django-docs-translations] repository. For
example, when releasing Django 2.2:

$ git checkout -b stable/2.2.x origin/stable/2.1.x
$ git push origin stable/2.2.x:stable/2.2.x











Preparing for release

Write the announcement blog post for the release. You can enter it into the
admin at any time and mark it as inactive. Here are a few examples: example
security release announcement [https://www.djangoproject.com/weblog/2013/feb/19/security/], example regular release announcement [https://www.djangoproject.com/weblog/2012/mar/23/14/],
example pre-release announcement [https://www.djangoproject.com/weblog/2012/nov/27/15-beta-1/].



Actually rolling the release

OK, this is the fun part, where we actually push out a release!


	Check Jenkins [https://djangoci.com] is green for the version(s) you’re putting out. You
probably shouldn’t issue a release until it’s green.



	A release always begins from a release branch, so you should make sure
you’re on a stable branch and up-to-date. For example:

$ git checkout stable/1.5.x
$ git pull







	If this is a security release, merge the appropriate patches from
django-security. Rebase these patches as necessary to make each one a
plain commit on the release branch rather than a merge commit. To ensure
this, merge them with the --ff-only flag; for example:

$ git checkout stable/1.5.x
$ git merge --ff-only security/1.5.x





(This assumes security/1.5.x is a branch in the django-security repo
containing the necessary security patches for the next release in the 1.5
series.)

If git refuses to merge with --ff-only, switch to the security-patch
branch and rebase it on the branch you are about to merge it into (git
checkout security/1.5.x; git rebase stable/1.5.x) and then switch back and
do the merge. Make sure the commit message for each security fix explains
that the commit is a security fix and that an announcement will follow
(example security commit [https://github.com/django/django/commit/bf39978a53f117ca02e9a0c78b76664a41a54745]).



	For a feature release, remove the UNDER DEVELOPMENT header at the
top of the release notes and add the release date on the next line. For a
patch release, replace *Under Development* with the release date. Make
this change on all branches where the release notes for a particular version
are located.


	Update the version number in django/__init__.py for the release.
Please see notes on setting the VERSION tuple below for details
on VERSION.


	If this is a pre-release package, update the “Development Status” trove
classifier in setup.py to reflect this. Otherwise, make sure the
classifier is set to Development Status :: 5 - Production/Stable.


	Tag the release using git tag. For example:

$ git tag --sign --message="Tag 1.5.1" 1.5.1





You can check your work by running git tag --verify <tag>.



	Push your work, including the tag: git push --tags.


	Make sure you have an absolutely clean tree by running git clean -dfx.


	Run make -f extras/Makefile to generate the release packages. This will
create the release packages in a dist/ directory.


	Generate the hashes of the release packages:

$ cd dist
$ md5sum *
$ sha1sum *
$ sha256sum *







	Create a “checksums” file, Django-<<VERSION>>.checksum.txt containing
the hashes and release information. Start with this template and insert the
correct version, date, GPG key ID (from
gpg --list-keys --keyid-format LONG), release URL, and checksums:

This file contains MD5, SHA1, and SHA256 checksums for the source-code
tarball and wheel files of Django <<VERSION>>, released <<DATE>>.

To use this file, you will need a working install of PGP or other
compatible public-key encryption software. You will also need to have
the Django release manager's public key in your keyring; this key has
the ID ``XXXXXXXXXXXXXXXX`` and can be imported from the MIT
keyserver. For example, if using the open-source GNU Privacy Guard
implementation of PGP:

    gpg --keyserver pgp.mit.edu --recv-key XXXXXXXXXXXXXXXX

Once the key is imported, verify this file::

    gpg --verify <<THIS FILENAME>>

Once you have verified this file, you can use normal MD5, SHA1, or SHA256
checksumming applications to generate the checksums of the Django
package and compare them to the checksums listed below.

Release packages:
=================

https://www.djangoproject.com/m/releases/<<RELEASE TAR.GZ FILENAME>>
https://www.djangoproject.com/m/releases/<<RELEASE WHL FILENAME>>

MD5 checksums:
==============

<<MD5SUM>>  <<RELEASE TAR.GZ FILENAME>>
<<MD5SUM>>  <<RELEASE WHL FILENAME>>

SHA1 checksums:
===============

<<SHA1SUM>>  <<RELEASE TAR.GZ FILENAME>>
<<SHA1SUM>>  <<RELEASE WHL FILENAME>>

SHA256 checksums:
=================

<<SHA256SUM>>  <<RELEASE TAR.GZ FILENAME>>
<<SHA256SUM>>  <<RELEASE WHL FILENAME>>







	Sign the checksum file (gpg --clearsign --digest-algo SHA256
Django-<version>.checksum.txt). This generates a signed document,
Django-<version>.checksum.txt.asc which you can then verify using gpg
--verify Django-<version>.checksum.txt.asc.




If you’re issuing multiple releases, repeat these steps for each release.



Making the release(s) available to the public

Now you’re ready to actually put the release out there. To do this:


	Upload the release package(s) to the djangoproject server, replacing
A.B. with the appropriate version number, e.g. 1.5 for a 1.5.x release:

$ scp Django-* djangoproject.com:/home/www/www/media/releases/A.B





If this is the alpha release of a new series, you will need to create the
directory A.B.



	Upload the checksum file(s):

$ scp Django-A.B.C.checksum.txt.asc djangoproject.com:/home/www/www/media/pgp/Django-A.B.C.checksum.txt







	Test that the release packages install correctly using easy_install
and pip. Here’s one method:

$ RELEASE_VERSION='1.7.2'
$ MAJOR_VERSION=`echo $RELEASE_VERSION| cut -c 1-3`

$ python -m venv django-easy-install
$ . django-easy-install/bin/activate
$ easy_install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-$RELEASE_VERSION.tar.gz
$ deactivate
$ python -m venv django-pip
$ . django-pip/bin/activate
$ python -m pip install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-$RELEASE_VERSION.tar.gz
$ deactivate
$ python -m venv django-pip-wheel
$ . django-pip-wheel/bin/activate
$ python -m pip install https://www.djangoproject.com/m/releases/$MAJOR_VERSION/Django-$RELEASE_VERSION-py3-none-any.whl
$ deactivate





This just tests that the tarballs are available (i.e. redirects are up) and
that they install correctly, but it’ll catch silly mistakes.



	Ask a few people on IRC to verify the checksums by visiting the checksums
file (e.g. https://www.djangoproject.com/m/pgp/Django-1.5b1.checksum.txt)
and following the instructions in it. For bonus points, they can also unpack
the downloaded release tarball and verify that its contents appear to be
correct (proper version numbers, no stray .pyc or other undesirable
files).


	Upload the release packages to PyPI (for pre-releases, only upload the wheel
file):

$ twine upload -s dist/*







	Go to the Add release page in the admin [https://www.djangoproject.com/admin/releases/release/add/], enter the new release number
exactly as it appears in the name of the tarball (Django-<version>.tar.gz).
So for example enter “1.5.1” or “1.4c2”, etc. If the release is part of
an LTS branch, mark it so.

If this is the alpha release of a new series, also create a Release object
for the final release, ensuring that the Release date field is blank,
thus marking it as unreleased. For example, when creating the Release
object for 3.1a1, also create 3.1 with the Release date field blank.



	Make the blog post announcing the release live.


	For a new version release (e.g. 1.5, 1.6), update the default stable version
of the docs by flipping the is_default flag to True on the
appropriate DocumentRelease object in the docs.djangoproject.com
database (this will automatically flip it to False for all
others); you can do this using the site’s admin.

Create new DocumentRelease objects for each language that has an entry
for the previous release. Update djangoproject.com’s robots.docs.txt [https://github.com/django/djangoproject.com/blob/master/djangoproject/static/robots.docs.txt]
file by copying entries from manage_translations.py robots_txt from the
current stable branch in the django-docs-translations repository. For
example, when releasing Django 2.2:

$ git checkout stable/2.2.x
$ git pull
$ python manage_translations.py robots_txt







	Post the release announcement to the django-announce, django-developers,
and django-users mailing lists. This should include a link to the
announcement blog post.


	If this is a security release, send a separate email to
oss-security@lists.openwall.com. Provide a descriptive subject, for example,
“Django” plus the issue title from the release notes (including CVE ID). The
message body should include the vulnerability details, for example, the
announcement blog post text. Include a link to the announcement blog post.


	Add a link to the blog post in the topic of the #django IRC channel:
/msg chanserv TOPIC #django new topic goes here.






Post-release

You’re almost done! All that’s left to do now is:


	Update the VERSION tuple in django/__init__.py again,
incrementing to whatever the next expected release will be. For
example, after releasing 1.5.1, update VERSION to
VERSION = (1, 5, 2, 'alpha', 0).


	Add the release in Trac’s versions list [https://code.djangoproject.com/admin/ticket/versions] if necessary (and make it the
default by changing the default_version setting in the
code.djangoproject.com’s trac.ini [https://github.com/django/code.djangoproject.com/blob/master/trac-env/conf/trac.ini], if it’s a final release). The new X.Y
version should be added after the alpha release and the default version
should be updated after “dot zero” release.



	If this was a security release, update Archive of security issues with
details of the issues addressed.






New stable branch tasks

There are several items to do in the time following the creation of a new
stable branch (often following an alpha release). Some of these tasks don’t
need to be done by the releaser.


	Create a new DocumentRelease object in the docs.djangoproject.com
database for the new version’s docs, and update the
docs/fixtures/doc_releases.json JSON fixture, so people without access
to the production DB can still run an up-to-date copy of the docs site.


	Create a stub release note for the new feature version. Use the stub from
the previous feature release version or copy the contents from the previous
feature version and delete most of the contents leaving only the headings.


	Increase the default PBKDF2 iterations in
django.contrib.auth.hashers.PBKDF2PasswordHasher by about 20%
(pick a round number). Run the tests, and update the 3 failing
hasher tests with the new values. Make sure this gets noted in the
release notes (see the 1.8 release notes for an example).


	Remove features that have reached the end of their deprecation cycle. Each
removal should be done in a separate commit for clarity. In the commit
message, add a “refs #XXXX” to the original ticket where the deprecation
began if possible.


	Remove .. versionadded::, .. versionadded::, and .. deprecated::
annotations in the documentation from two releases ago. For example, in
Django 1.9, notes for 1.7 will be removed.


	Add the new branch to Read the Docs [https://readthedocs.org/projects/django/]. Since the automatically
generated version names (“stable-A.B.x”) differ from the version names
used in Read the Docs (“A.B.x”), create a ticket [https://github.com/rtfd/readthedocs.org/issues/5537] requesting the new
version.






Notes on setting the VERSION tuple

Django’s version reporting is controlled by the VERSION tuple in
django/__init__.py. This is a five-element tuple, whose elements
are:


	Major version.


	Minor version.


	Micro version.


	Status – can be one of “alpha”, “beta”, “rc” or “final”.


	Series number, for alpha/beta/RC packages which run in sequence
(allowing, for example, “beta 1”, “beta 2”, etc.).




For a final release, the status is always “final” and the series
number is always 0. A series number of 0 with an “alpha” status will
be reported as “pre-alpha”.

Some examples:


	(1, 2, 1, 'final', 0) → “1.2.1”


	(1, 3, 0, 'alpha', 0) → “1.3 pre-alpha”


	(1, 3, 0, 'beta', 2) → “1.3 beta 2”








          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   a | 
   c | 
   d | 
   f | 
   h | 
   m | 
   s | 
   t | 
   u | 
   v
   


   
     		 	

     		
       a	

     
       	
       	
       django.apps	
       

     		 	

     		
       c	

     
       	[image: -]
       	
       django.conf	
       

     
       	
       	   
       django.conf.urls	
       

     
       	
       	   
       django.conf.urls.i18n	
       

     
       	[image: -]
       	
       django.contrib	
       

     
       	
       	   
       django.contrib.admin	
       Django's admin site.

     
       	
       	   
       django.contrib.admindocs	
       Django's admin documentation generator.

     
       	
       	   
       django.contrib.auth	
       Django's authentication framework.

     
       	
       	   
       django.contrib.auth.backends	
       Django's built-in authentication backend classes.

     
       	
       	   
       django.contrib.auth.forms	
       

     
       	
       	   
       django.contrib.auth.hashers	
       

     
       	
       	   
       django.contrib.auth.middleware	
       Authentication middleware.

     
       	
       	   
       django.contrib.auth.password_validation	
       

     
       	
       	   
       django.contrib.auth.signals	
       

     
       	
       	   
       django.contrib.auth.views	
       

     
       	
       	   
       django.contrib.contenttypes	
       Provides generic interface to installed models.

     
       	
       	   
       django.contrib.contenttypes.admin	
       

     
       	
       	   
       django.contrib.contenttypes.fields	
       

     
       	
       	   
       django.contrib.contenttypes.forms	
       

     
       	
       	   
       django.contrib.flatpages	
       A framework for managing simple ?flat? HTML content in a database.

     
       	
       	   
       django.contrib.gis	
       Geographic Information System (GIS) extensions for Django

     
       	
       	   
       django.contrib.gis.admin	
       GeoDjango's extensions to the admin site.

     
       	
       	   
       django.contrib.gis.db.backends	
       GeoDjango's spatial database backends.

     
       	
       	   
       django.contrib.gis.db.models	
       GeoDjango model and field API.

     
       	
       	   
       django.contrib.gis.db.models.functions	
       Geographic Database Functions

     
       	
       	   
       django.contrib.gis.feeds	
       GeoDjango's framework for generating spatial feeds.

     
       	
       	   
       django.contrib.gis.forms	
       GeoDjango forms API.

     
       	
       	   
       django.contrib.gis.forms.widgets	
       GeoDjango widgets API.

     
       	
       	   
       django.contrib.gis.gdal	
       GeoDjango's high-level interface to the GDAL library.

     
       	
       	   
       django.contrib.gis.geoip2	
       Python interface for MaxMind's GeoIP2 databases.

     
       	
       	   
       django.contrib.gis.geos	
       GeoDjango's high-level interface to the GEOS library.

     
       	
       	   
       django.contrib.gis.measure	
       GeoDjango's distance and area measurement objects.

     
       	
       	   
       django.contrib.gis.serializers.geojson	
       Serialization of GeoDjango models in the GeoJSON format.

     
       	
       	   
       django.contrib.gis.utils	
       GeoDjango's collection of utilities.

     
       	
       	   
       django.contrib.gis.utils.layermapping	
       Spatial data import utility for GeoDjango models.

     
       	
       	   
       django.contrib.gis.utils.ogrinspect	
       Utilities for inspecting OGR data sources.

     
       	
       	   
       django.contrib.humanize	
       A set of Django template filters useful for adding a "human
touch" to data.

     
       	
       	   
       django.contrib.messages	
       Provides cookie- and session-based temporary message storage.

     
       	
       	   
       django.contrib.messages.middleware	
       Message middleware.

     
       	
       	   
       django.contrib.postgres	
       PostgreSQL-specific fields and features

     
       	
       	   
       django.contrib.postgres.aggregates	
       PostgreSQL specific aggregation functions

     
       	
       	   
       django.contrib.postgres.constraints	
       PostgreSQL specific database constraint

     
       	
       	   
       django.contrib.postgres.indexes	
       

     
       	
       	   
       django.contrib.postgres.validators	
       

     
       	
       	   
       django.contrib.redirects	
       A framework for managing redirects.

     
       	
       	   
       django.contrib.sessions	
       Provides session management for Django projects.

     
       	
       	   
       django.contrib.sessions.middleware	
       Session middleware.

     
       	
       	   
       django.contrib.sitemaps	
       A framework for generating Google sitemap XML files.

     
       	
       	   
       django.contrib.sites	
       Lets you operate multiple websites from the same database and
Django project

     
       	
       	   
       django.contrib.sites.middleware	
       Site middleware.

     
       	
       	   
       django.contrib.staticfiles	
       An app for handling static files.

     
       	
       	   
       django.contrib.syndication	
       A framework for generating syndication feeds, in RSS and Atom,
quite easily.

     
       	[image: -]
       	
       django.core	
       

     
       	
       	   
       django.core.checks	
       

     
       	
       	   
       django.core.exceptions	
       Django core exceptions

     
       	
       	   
       django.core.files	
       File handling and storage

     
       	
       	   
       django.core.files.storage	
       

     
       	
       	   
       django.core.files.uploadedfile	
       Classes representing uploaded files.

     
       	
       	   
       django.core.files.uploadhandler	
       Django's handlers for file uploads.

     
       	
       	   
       django.core.mail	
       Helpers to easily send email.

     
       	
       	   
       django.core.management	
       

     
       	
       	   
       django.core.paginator	
       Classes to help you easily manage paginated data.

     
       	
       	   
       django.core.signals	
       Core signals sent by the request/response system.

     
       	
       	   
       django.core.signing	
       Django's signing framework.

     
       	
       	   
       django.core.validators	
       Validation utilities and base classes

     		 	

     		
       d	

     
       	[image: -]
       	
       django.db	
       

     
       	
       	   
       django.db.backends	
       Core signals sent by the database wrapper.

     
       	
       	   
       django.db.backends.base.schema	
       

     
       	
       	   
       django.db.migrations	
       Schema migration support for Django models

     
       	
       	   
       django.db.migrations.operations	
       

     
       	
       	   
       django.db.models	
       

     
       	
       	   
       django.db.models.constraints	
       

     
       	
       	   
       django.db.models.fields	
       Built-in field types.

     
       	
       	   
       django.db.models.fields.related	
       Related field types

     
       	
       	   
       django.db.models.functions	
       Database Functions

     
       	
       	   
       django.db.models.indexes	
       

     
       	
       	   
       django.db.models.lookups	
       Lookups API

     
       	
       	   
       django.db.models.options	
       Model meta-class layer

     
       	
       	   
       django.db.models.signals	
       Signals sent by the model system.

     
       	
       	   
       django.db.transaction	
       

     
       	
       	
       django.dispatch	
       Signal dispatch

     		 	

     		
       f	

     
       	[image: -]
       	
       django.forms	
       

     
       	
       	   
       django.forms.fields	
       Django's built-in form fields.

     
       	
       	   
       django.forms.formsets	
       Django's functions for building formsets.

     
       	
       	   
       django.forms.models	
       Django's functions for building model forms and formsets.

     
       	
       	   
       django.forms.renderers	
       Built-in form renderers.

     
       	
       	   
       django.forms.widgets	
       Django's built-in form widgets.

     		 	

     		
       h	

     
       	
       	
       django.http	
       Classes dealing with HTTP requests and responses.

     		 	

     		
       m	

     
       	[image: -]
       	
       django.middleware	
       Django's built-in middleware classes.

     
       	
       	   
       django.middleware.cache	
       Middleware for the site-wide cache.

     
       	
       	   
       django.middleware.clickjacking	
       Protects against Clickjacking

     
       	
       	   
       django.middleware.common	
       Middleware adding "common" conveniences for perfectionists.

     
       	
       	   
       django.middleware.csrf	
       Protects against Cross Site Request Forgeries

     
       	
       	   
       django.middleware.gzip	
       Middleware to serve GZipped content for performance.

     
       	
       	   
       django.middleware.http	
       Middleware handling advanced HTTP features.

     
       	
       	   
       django.middleware.locale	
       Middleware to enable language selection based on the request.

     
       	
       	   
       django.middleware.security	
       Security middleware.

     		 	

     		
       s	

     
       	
       	
       django.shortcuts	
       Convenience shortcuts that span multiple levels of Django's MVC stack.

     		 	

     		
       t	

     
       	[image: -]
       	
       django.template	
       Django's template system

     
       	
       	   
       django.template.backends	
       

     
       	
       	   
       django.template.backends.django	
       

     
       	
       	   
       django.template.backends.jinja2	
       

     
       	
       	   
       django.template.loader	
       

     
       	
       	   
       django.template.response	
       Classes dealing with lazy-rendered HTTP responses.

     
       	[image: -]
       	
       django.test	
       Testing tools for Django applications.

     
       	
       	   
       django.test.signals	
       Signals sent during testing.

     
       	
       	   
       django.test.utils	
       Helpers to write custom test runners.

     		 	

     		
       u	

     
       	[image: -]
       	
       django.urls	
       

     
       	
       	   
       django.urls.conf	
       Functions for use in URLconfs.

     
       	[image: -]
       	
       django.utils	
       Django's built-in utilities.

     
       	
       	   
       django.utils.cache	
       Helper functions for controlling caching.

     
       	
       	   
       django.utils.dateparse	
       Functions to parse strings to datetime objects.

     
       	
       	   
       django.utils.decorators	
       Functions that help with creating decorators for views.

     
       	
       	   
       django.utils.encoding	
       A series of helper functions to manage character encoding.

     
       	
       	   
       django.utils.feedgenerator	
       Syndication feed generation library -- used for generating RSS, etc.

     
       	
       	   
       django.utils.functional	
       Functional programming tools.

     
       	
       	   
       django.utils.html	
       HTML helper functions

     
       	
       	   
       django.utils.http	
       HTTP helper functions. (URL encoding, cookie handling, ...)

     
       	
       	   
       django.utils.log	
       Logging tools for Django applications

     
       	
       	   
       django.utils.module_loading	
       Functions for working with Python modules.

     
       	
       	   
       django.utils.safestring	
       Functions and classes for working with strings that can be displayed safely without further escaping in HTML.

     
       	
       	   
       django.utils.text	
       Text manipulation.

     
       	
       	   
       django.utils.timezone	
       Timezone support.

     
       	
       	   
       django.utils.translation	
       Internationalization support.

     		 	

     		
       v	

     
       	[image: -]
       	
       django.views	
       Django's built-in views.

     
       	
       	   
       django.views.decorators.cache	
       

     
       	
       	   
       django.views.decorators.csrf	
       

     
       	
       	   
       django.views.decorators.gzip	
       

     
       	
       	   
       django.views.decorators.http	
       

     
       	
       	   
       django.views.decorators.vary	
       

     
       	
       	   
       django.views.generic.dates	
       

     
       	
       	   
       django.views.i18n	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z
 


Symbols


  	
      	
    --add-location [{full,file,never}]

      
        	makemessages command line option


      


      	
    --addrport ADDRPORT

      
        	testserver command line option


      


      	
    --admins

      
        	sendtestemail command line option


      


      	
    --all

      
        	diffsettings command line option


      


      	
    --all, -a

      
        	dumpdata command line option


        	makemessages command line option


      


      	
    --app APP_LABEL

      
        	loaddata command line option


      


      	
    --backwards

      
        	sqlmigrate command line option


      


      	
    --blank BLANK

      
        	ogrinspect command line option


      


      	
    --check

      
        	makemigrations command line option


      


      	
    --clear, -c

      
        	collectstatic command line option


      


      	
    --command COMMAND, -c COMMAND

      
        	shell command line option


      


      	
    --database DATABASE

      
        	changepassword command line option


        	createcachetable command line option


        	createsuperuser command line option


        	dbshell command line option


        	dumpdata command line option


        	flush command line option


        	inspectdb command line option


        	loaddata command line option


        	migrate command line option


        	remove_stale_contenttypes command line option


        	showmigrations command line option


        	sqlflush command line option


        	sqlmigrate command line option


        	sqlsequencereset command line option


      


      	
    --debug-mode

      
        	test command line option


      


      	
    --debug-sql, -d

      
        	test command line option


      


      	
    --decimal DECIMAL

      
        	ogrinspect command line option


      


      	
    --default MODULE

      
        	diffsettings command line option


      


      	
    --deploy

      
        	check command line option


      


      	
    --domain DOMAIN, -d DOMAIN

      
        	makemessages command line option


      


      	
    --dry-run

      
        	createcachetable command line option


        	makemigrations command line option


      


      	
    --dry-run, -n

      
        	collectstatic command line option


      


      	
    --email EMAIL

      
        	createsuperuser command line option


      


      	
    --empty

      
        	makemigrations command line option


      


      	
    --exclude EXCLUDE, -e EXCLUDE

      
        	dumpdata command line option


        	loaddata command line option


      


      	
    --exclude EXCLUDE, -x EXCLUDE

      
        	compilemessages command line option


        	makemessages command line option


      


      	
    --exclude-tag EXCLUDE_TAGS

      
        	test command line option


      


      	
    --extension EXTENSIONS, -e EXTENSIONS

      
        	makemessages command line option


        	startapp command line option


        	startproject command line option


      


      	
    --fail-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}

      
        	check command line option


      


      	
    --failfast

      
        	test command line option


      


      	
    --fake

      
        	migrate command line option


      


      	
    --fake-initial

      
        	migrate command line option


      


      	
    --force-color

      
        	command line option


      


      	
    --format FORMAT

      
        	dumpdata command line option


        	loaddata command line option


      


      	
    --geom-name GEOM_NAME

      
        	ogrinspect command line option


      


      	
    --ignore PATTERN, -i PATTERN

      
        	collectstatic command line option


        	compilemessages command line option


        	makemessages command line option


      


      	
    --ignorenonexistent, -i

      
        	loaddata command line option


      


      	
    --include-partitions

      
        	inspectdb command line option


      


      	
    --include-views

      
        	inspectdb command line option


      


      	
    --indent INDENT

      
        	dumpdata command line option


      


      	
    --insecure

      
        	runserver command line option


      


      	
    --interface {ipython,bpython,python}, -i {ipython,bpython,python}

      
        	shell command line option


      


      	
    --ipv6, -6

      
        	runserver command line option


      


      	
    --keep-pot

      
        	makemessages command line option


      


      	
    --keepdb

      
        	test command line option


      


      	
    --layer LAYER_KEY

      
        	ogrinspect command line option


      


      	
    --link, -l

      
        	collectstatic command line option


      


      	
    --list, -l

      
        	showmigrations command line option


      


  

  	
      	
    --list-tags

      
        	check command line option


      


      	
    --locale LOCALE, -l LOCALE

      
        	compilemessages command line option


        	makemessages command line option


      


      	
    --managers

      
        	sendtestemail command line option


      


      	
    --mapping

      
        	ogrinspect command line option


      


      	
    --merge

      
        	makemigrations command line option


      


      	
    --multi-geom

      
        	ogrinspect command line option


      


      	
    --name FILES, -n FILES

      
        	startapp command line option


        	startproject command line option


      


      	
    --name NAME, -n NAME

      
        	makemigrations command line option


      


      	
    --name-field NAME_FIELD

      
        	ogrinspect command line option


      


      	
    --natural-foreign

      
        	dumpdata command line option


      


      	
    --natural-primary

      
        	dumpdata command line option


      


      	
    --no-color

      
        	command line option


      


      	
    --no-default-ignore

      
        	collectstatic command line option


        	makemessages command line option


      


      	
    --no-header

      
        	makemigrations command line option


        	squashmigrations command line option


      


      	
    --no-imports

      
        	ogrinspect command line option


      


      	
    --no-location

      
        	makemessages command line option


      


      	
    --no-optimize

      
        	squashmigrations command line option


      


      	
    --no-post-process

      
        	collectstatic command line option


      


      	
    --no-wrap

      
        	makemessages command line option


      


      	
    --noinput, --no-input

      
        	collectstatic command line option


        	createsuperuser command line option


        	flush command line option


        	makemigrations command line option


        	migrate command line option


        	squashmigrations command line option


        	test command line option


        	testserver command line option


      


      	
    --noreload

      
        	runserver command line option


      


      	
    --nostartup

      
        	shell command line option


      


      	
    --nostatic

      
        	runserver command line option


      


      	
    --nothreading

      
        	runserver command line option


      


      	
    --null NULL

      
        	ogrinspect command line option


      


      	
    --output OUTPUT, -o OUTPUT

      
        	dumpdata command line option


      


      	
    --output {hash,unified}

      
        	diffsettings command line option


      


      	
    --parallel [N]

      
        	test command line option


      


      	
    --pdb

      
        	test command line option


      


      	
    --pks PRIMARY_KEYS

      
        	dumpdata command line option


      


      	
    --plan

      
        	migrate command line option


      


      	
    --plan, -p

      
        	showmigrations command line option


      


      	
    --pythonpath PYTHONPATH

      
        	command line option


      


      	
    --reverse, -r

      
        	test command line option


      


      	
    --run-syncdb

      
        	migrate command line option


      


      	
    --settings SETTINGS

      
        	command line option


      


      	
    --sitemap-uses-http

      
        	ping_google command line option


      


      	
    --skip-checks

      
        	command line option


      


      	
    --squashed-name SQUASHED_NAME

      
        	squashmigrations command line option


      


      	
    --srid SRID

      
        	ogrinspect command line option


      


      	
    --symlinks, -s

      
        	makemessages command line option


      


      	
    --tag TAGS

      
        	test command line option


      


      	
    --tag TAGS, -t TAGS

      
        	check command line option


      


      	
    --template TEMPLATE

      
        	startapp command line option


        	startproject command line option


      


      	
    --testrunner TESTRUNNER

      
        	test command line option


      


      	
    --traceback

      
        	command line option


      


      	
    --use-fuzzy, -f

      
        	compilemessages command line option


      


      	
    --username USERNAME

      
        	createsuperuser command line option


      


      	
    --verbosity {0,1,2,3}, -v {0,1,2,3}

      
        	command line option


      


      	
    -k TEST_NAME_PATTERNS

      
        	test command line option


      


  





_


  	
      	__contains__() (backends.base.SessionBase method)

      
        	(QueryDict method)


      


      	__delitem__() (backends.base.SessionBase method)

      
        	(HttpResponse method)


      


      	__eq__() (Model method)


      	__getattr__() (Area method)

      
        	(Distance method)


      


      	__getitem__() (backends.base.SessionBase method)

      
        	(HttpResponse method)


        	(OGRGeometry method)


        	(QueryDict method)


        	(SpatialReference method)


      


      	__hash__() (Model method)


      	__init__() (HttpResponse method)

      
        	(QueryDict method)


        	(SimpleTemplateResponse method)


        	(SyndicationFeed method)


        	(TemplateResponse method)


        	(requests.RequestSite method)


      


  

  	
      	__iter__() (File method)

      
        	(HttpRequest method)


        	(OGRGeometry method)


      


      	__len__() (OGRGeometry method)


      	__setitem__() (backends.base.SessionBase method)

      
        	(HttpResponse method)


        	(QueryDict method)


      


      	__str__() (Model method)


      	_base_manager (Model attribute)


      	_default_manager (Model attribute)


      	_open() (in module django.core.files.storage)


      	_save() (in module django.core.files.storage)


      	_state (Model attribute)


  





A


  	
      	A (class in django.contrib.gis.measure)


      	Abs (class in django.db.models.functions)


      	
    ABSOLUTE_URL_OVERRIDES

      
        	setting


      


      	abstract (Options attribute)


      	AccessMixin (class in django.contrib.auth.mixins)


      	ACos (class in django.db.models.functions)


      	action_flag (LogEntry attribute)


      	action_time (LogEntry attribute)


      	actions (ModelAdmin attribute)


      	actions_on_bottom (ModelAdmin attribute)


      	actions_on_top (ModelAdmin attribute)


      	actions_selection_counter (ModelAdmin attribute)


      	activate() (in module django.utils.timezone)

      
        	(in module django.utils.translation)


      


      	
    add

      
        	template filter


      


      	add() (cache method)

      
        	(GeometryCollection method)


        	(RelatedManager method)


      


      	add_action() (AdminSite method)


      	add_arguments() (BaseCommand method)

      
        	(django.test.runner.DiscoverRunner class method)


      


      	add_constraint() (BaseDatabaseSchemaEditor method)


      	add_error() (Form method)


      	add_field() (BaseDatabaseSchemaEditor method)


      	add_form_template (ModelAdmin attribute)


      	add_index() (BaseDatabaseSchemaEditor method)


      	add_item() (SyndicationFeed method)


      	add_item_elements() (SyndicationFeed method)


      	add_message() (in module django.contrib.messages)


      	add_never_cache_headers() (in module django.utils.cache)


      	add_post_render_callback() (SimpleTemplateResponse method)


      	add_root_elements() (SyndicationFeed method)


      	add_view() (ModelAdmin method)


      	AddConstraint (class in django.db.migrations.operations)


      	AddField (class in django.db.migrations.operations)


      	AddIndex (class in django.db.migrations.operations)


      	AddIndexConcurrently (class in django.contrib.postgres.operations)


      	
    addslashes

      
        	template filter


      


      	AdminEmailHandler (class in django.utils.log)


      	AdminPasswordChangeForm (class in django.contrib.auth.forms)


      	
    ADMINS

      
        	setting


      


      	AdminSite (class in django.contrib.admin)


      	Aggregate (class in django.db.models)


      	aggregate() (in module django.db.models.query.QuerySet)


      	all() (in module django.db.models.query.QuerySet)


      	allow_database_queries (SimpleTestCase attribute)


      	allow_distinct (Aggregate attribute)


      	allow_empty (BaseDateListView attribute)

      
        	(django.views.generic.list.MultipleObjectMixin attribute)


      


      	allow_empty_first_page (Paginator attribute)


      	allow_files (FilePathField attribute), [1]


      	allow_folders (FilePathField attribute), [1]


      	allow_future (DateMixin attribute)


      	allow_migrate()


      	allow_relation()


      	allow_unicode (SlugField attribute), [1]


      	AllowAllUsersModelBackend (class in django.contrib.auth.backends)


      	AllowAllUsersRemoteUserBackend (class in django.contrib.auth.backends)


      	
    ALLOWED_HOSTS

      
        	setting


      


      	alter_db_table() (BaseDatabaseSchemaEditor method)


      	alter_db_tablespace() (BaseDatabaseSchemaEditor method)


      	alter_field() (BaseDatabaseSchemaEditor method)


      	alter_index_together() (BaseDatabaseSchemaEditor method)


      	alter_unique_together() (BaseDatabaseSchemaEditor method)


      	AlterField (class in django.db.migrations.operations)


      	AlterIndexTogether (class in django.db.migrations.operations)


      	AlterModelManagers (class in django.db.migrations.operations)


      	AlterModelOptions (class in django.db.migrations.operations)


      	AlterModelTable (class in django.db.migrations.operations)


      	AlterOrderWithRespectTo (class in django.db.migrations.operations)


      	AlterUniqueTogether (class in django.db.migrations.operations)


      	angular_name (SpatialReference attribute)


      	angular_units (SpatialReference attribute)


      	annotate() (in module django.db.models.query.QuerySet)


      	
    apnumber

      
        	template filter


      


      	app_directories.Loader (class in django.template.loaders)


      	app_index_template (AdminSite attribute)


      	app_label (ContentType attribute)

      
        	(Options attribute)


      


      	app_name (ResolverMatch attribute)


      	app_names (ResolverMatch attribute)


      	AppCommand (class in django.core.management)


      	AppConfig (class in django.apps)


      	
    APPEND_SLASH

      
        	setting


      


      	appendlist() (QueryDict method)


      	application namespace


      	AppRegistryNotReady


      	apps (in module django.apps)


      	apps.AdminConfig (class in django.contrib.admin)


      	apps.SimpleAdminConfig (class in django.contrib.admin)


      	ArchiveIndexView (built-in class)

      
        	(class in django.views.generic.dates)


      


  

  	
      	Area (class in django.contrib.gis.db.models.functions)

      
        	(class in django.contrib.gis.measure)


      


      	area (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	arg_joiner (Func attribute)


      	args (ResolverMatch attribute)


      	arity (Func attribute)


      	ArrayAgg (class in django.contrib.postgres.aggregates)


      	ArrayField (class in django.contrib.postgres.fields)


      	
    arrayfield.contained_by

      
        	field lookup type


      


      	
    arrayfield.contains

      
        	field lookup type


      


      	
    arrayfield.index

      
        	field lookup type


      


      	
    arrayfield.len

      
        	field lookup type


      


      	
    arrayfield.overlap

      
        	field lookup type


      


      	
    arrayfield.slice

      
        	field lookup type


      


      	as_data() (Form.errors method)


      	as_datetime() (Field method)


      	as_double() (Field method)


      	as_hidden() (BoundField method)


      	as_int() (Field method)


      	as_json() (Form.errors method)


      	as_manager() (in module django.db.models.query.QuerySet)


      	as_p() (Form method)


      	as_sql() (Func method)

      
        	(in module django.db.models)


      


      	as_string() (Field method)


      	as_table() (Form method)


      	as_ul() (Form method)


      	as_vendorname() (in module django.db.models)


      	as_view() (django.views.generic.base.View class method)


      	as_widget() (BoundField method)


      	asc() (Expression method)


      	AsGeoJSON (class in django.contrib.gis.db.models.functions)


      	AsGML (class in django.contrib.gis.db.models.functions)


      	ASin (class in django.db.models.functions)


      	AsKML (class in django.contrib.gis.db.models.functions)


      	assertContains() (SimpleTestCase method)


      	assertFieldOutput() (SimpleTestCase method)


      	assertFormError() (SimpleTestCase method)


      	assertFormsetError() (SimpleTestCase method)


      	assertHTMLEqual() (SimpleTestCase method)


      	assertHTMLNotEqual() (SimpleTestCase method)


      	assertInHTML() (SimpleTestCase method)


      	assertJSONEqual() (SimpleTestCase method)


      	assertJSONNotEqual() (SimpleTestCase method)


      	assertNotContains() (SimpleTestCase method)


      	assertNumQueries() (TransactionTestCase method)


      	assertQuerysetEqual() (TransactionTestCase method)


      	assertRaisesMessage() (SimpleTestCase method)


      	assertRedirects() (SimpleTestCase method)


      	assertTemplateNotUsed() (SimpleTestCase method)


      	assertTemplateUsed() (SimpleTestCase method)


      	assertURLEqual() (SimpleTestCase method)


      	assertWarnsMessage() (SimpleTestCase method)


      	assertXMLEqual() (SimpleTestCase method)


      	assertXMLNotEqual() (SimpleTestCase method)


      	AsSVG (class in django.contrib.gis.db.models.functions)


      	async_to_sync() (in module asgiref.sync)


      	ATan (class in django.db.models.functions)


      	ATan2 (class in django.db.models.functions)


      	Atom1Feed (class in django.utils.feedgenerator)


      	atomic() (in module django.db.transaction)


      	attr_value() (SpatialReference method)


      	attrs (Widget attribute)


      	auth() (in module django.contrib.auth.context_processors)


      	auth_code() (SpatialReference method)


      	auth_name() (SpatialReference method)


      	
    AUTH_PASSWORD_VALIDATORS

      
        	setting


      


      	
    AUTH_USER_MODEL

      
        	setting


      


      	authenticate() (in module django.contrib.auth)

      
        	(ModelBackend method)


        	(RemoteUserBackend method)


      


      	
    AUTHENTICATION_BACKENDS

      
        	setting


      


      	AuthenticationForm (class in django.contrib.auth.forms)


      	AuthenticationMiddleware (class in django.contrib.auth.middleware)


      	auto_created (Field attribute)


      	auto_id (BoundField attribute)

      
        	(Form attribute)


      


      	auto_now (DateField attribute)


      	auto_now_add (DateField attribute)


      	autocomplete_fields (ModelAdmin attribute)


      	autodiscover() (in module django.contrib.admin)


      	
    autoescape

      
        	template tag


      


      	AutoField (class in django.db.models)


      	available_apps (TransactionTestCase attribute)


      	Avg (class in django.db.models)


      	Azimuth (class in django.contrib.gis.db.models.functions)


  





B


  	
      	backends.base.SessionBase (class in django.contrib.sessions)


      	backends.cached_db.SessionStore (class in django.contrib.sessions)


      	backends.db.SessionStore (class in django.contrib.sessions)


      	backends.smtp.EmailBackend (class in django.core.mail)


      	bands (GDALRaster attribute)


      	base36_to_int() (in module django.utils.http)


      	base_field (ArrayField attribute)

      
        	(RangeField attribute)


        	(SimpleArrayField attribute)


        	(SplitArrayField attribute)


        	(django.contrib.postgres.forms.BaseRangeField attribute)


      


      	base_manager_name (Options attribute)


      	base_session.AbstractBaseSession (class in django.contrib.sessions)


      	base_session.BaseSessionManager (class in django.contrib.sessions)


      	base_url (FileSystemStorage attribute)


      	base_widget (RangeWidget attribute)


      	BaseArchiveIndexView (class in django.views.generic.dates)


      	BaseBackend (class in django.contrib.auth.backends)


      	BaseCommand (class in django.core.management)


      	BaseDatabaseSchemaEditor (class in django.db.backends.base.schema)


      	BaseDateDetailView (class in django.views.generic.dates)


      	BaseDateListView (class in django.views.generic.dates)


      	BaseDayArchiveView (class in django.views.generic.dates)


      	BaseFormSet (class in django.forms.formsets)


      	BaseGenericInlineFormSet (class in django.contrib.contenttypes.forms)


      	BaseGeometryWidget (class in django.contrib.gis.forms.widgets)


      	BaseMonthArchiveView (class in django.views.generic.dates)


      	BaseTodayArchiveView (class in django.views.generic.dates)


      	BaseWeekArchiveView (class in django.views.generic.dates)


      	BaseYearArchiveView (class in django.views.generic.dates)


      	
    bbcontains

      
        	field lookup type


      


      	
    bboverlaps

      
        	field lookup type


      


  

  	
      	BigAutoField (class in django.db.models)


      	BigIntegerField (class in django.db.models)


      	BigIntegerRangeField (class in django.contrib.postgres.fields)


      	bilateral (Transform attribute)


      	BinaryField (class in django.db.models)


      	BitAnd (class in django.contrib.postgres.aggregates)


      	BitOr (class in django.contrib.postgres.aggregates)


      	blank (Field attribute)


      	
    block

      
        	template tag


      


      	
    blocktrans

      
        	template tag


      


      	body (HttpRequest attribute)


      	BoolAnd (class in django.contrib.postgres.aggregates)


      	BooleanField (class in django.db.models)

      
        	(class in django.forms)


      


      	BoolOr (class in django.contrib.postgres.aggregates)


      	boundary (GEOSGeometry attribute)


      	boundary() (OGRGeometry method)


      	BoundField (class in django.forms)


      	BoundingCircle (class in django.contrib.gis.db.models.functions)


      	BrinIndex (class in django.contrib.postgres.indexes)


      	BrokenLinkEmailsMiddleware (class in django.middleware.common)


      	BtreeGinExtension (class in django.contrib.postgres.operations)


      	BtreeGistExtension (class in django.contrib.postgres.operations)


      	BTreeIndex (class in django.contrib.postgres.indexes)


      	buffer() (GEOSGeometry method)


      	buffer_with_style() (GEOSGeometry method)


      	build_absolute_uri() (HttpRequest method)


      	build_suite() (DiscoverRunner method)


      	bulk_create() (in module django.db.models.query.QuerySet)


      	bulk_update() (in module django.db.models.query.QuerySet)


      	byteorder (WKBWriter attribute)


  





C


  	
      	
    cache

      
        	template tag


      


      	cache_control() (in module django.views.decorators.cache)


      	cache_key_prefix (backends.cached_db.SessionStore attribute)


      	
    CACHE_MIDDLEWARE_ALIAS

      
        	setting


      


      	
    CACHE_MIDDLEWARE_KEY_PREFIX

      
        	setting


      


      	
    CACHE_MIDDLEWARE_SECONDS

      
        	setting


      


      	cached.Loader (class in django.template.loaders)


      	cached_property (class in django.utils.functional)


      	
    CACHES

      
        	setting


      


      	
    CACHES-BACKEND

      
        	setting


      


      	
    CACHES-KEY_FUNCTION

      
        	setting


      


      	
    CACHES-KEY_PREFIX

      
        	setting


      


      	
    CACHES-LOCATION

      
        	setting


      


      	
    CACHES-OPTIONS

      
        	setting


      


      	
    CACHES-TIMEOUT

      
        	setting


      


      	
    CACHES-VERSION

      
        	setting


      


      	CallbackFilter (class in django.utils.log)


      	callproc() (CursorWrapper method)


      	can_delete (BaseFormSet attribute)

      
        	(InlineModelAdmin attribute)


      


      	can_order (BaseFormSet attribute)


      	
    capfirst

      
        	template filter


      


      	CASCADE (in module django.db.models)


      	Case (class in django.db.models.expressions)


      	Cast (class in django.db.models.functions)


      	Ceil (class in django.db.models.functions)


      	
    center

      
        	template filter


      


      	Centroid (class in django.contrib.gis.db.models.functions)


      	centroid (GEOSGeometry attribute)

      
        	(Polygon attribute)


      


      	change_form_template (ModelAdmin attribute)


      	change_list_template (ModelAdmin attribute)


      	change_message (LogEntry attribute)


      	change_view() (ModelAdmin method)


      	changed_data (Form attribute)


      	changed_objects (models.BaseModelFormSet attribute)


      	changefreq (Sitemap attribute)


      	changelist_view() (ModelAdmin method)


      	
    changepassword

      
        	django-admin command


      


      	
    changepassword command line option

      
        	--database DATABASE


      


      	CharField (class in django.db.models)

      
        	(class in django.forms)


      


      	charset (HttpResponse attribute)

      
        	(UploadedFile attribute)


      


      	
    check

      
        	django-admin command


      


      	check (CheckConstraint attribute)


      	
    check command line option

      
        	--deploy


        	--fail-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}


        	--list-tags


        	--tag TAGS, -t TAGS


      


      	check() (BaseCommand method)


      	check_for_language() (in module django.utils.translation)


      	check_password() (in module django.contrib.auth.hashers)

      
        	(models.AbstractBaseUser method)


        	(models.User method)


      


      	check_test (CheckboxInput attribute)


      	CheckboxInput (class in django.forms)


      	CheckboxSelectMultiple (class in django.forms)


      	CheckConstraint (class in django.db.models)


      	CheckMessage (class in django.core.checks)


      	ChoiceField (class in django.forms)


      	choices (ChoiceField attribute)

      
        	(Field attribute)


        	(Select attribute)


      


      	Chr (class in django.db.models.functions)


      	chunk_size (FileUploadHandler attribute)


      	chunks() (File method)

      
        	(UploadedFile method)


      


      	CICharField (class in django.contrib.postgres.fields)


      	CIEmailField (class in django.contrib.postgres.fields)


      	CIText (class in django.contrib.postgres.fields)


      	CITextExtension (class in django.contrib.postgres.operations)


      	CITextField (class in django.contrib.postgres.fields)


      	city() (GeoIP2 method)


      	classes (InlineModelAdmin attribute)


      	clean() (Field method)

      
        	(Form method)


        	(Model method)


        	(models.AbstractBaseUser method)


        	(models.AbstractUser method)


      


      	clean_fields() (Model method)


      	clean_savepoints() (in module django.db.transaction)


      	clean_username() (RemoteUserBackend method)


      	cleaned_data (Form attribute)


      	clear() (backends.base.SessionBase method)

      
        	(RelatedManager method)


        	(cache method)


      


      	clear_cache() (ContentTypeManager method)


      	clear_expired() (backends.base.SessionBase method)


      	ClearableFileInput (class in django.forms)


      	
    clearsessions

      
        	django-admin command


      


      	Client (class in django.test)


      	client (Response attribute)

      
        	(SimpleTestCase attribute)


      


      	client.RedirectCycleError


      	client_class (SimpleTestCase attribute)


      	clone() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(SpatialReference method)


      


      	close() (cache method)

      
        	(FieldFile method)


        	(File method)


        	(HttpResponse method)


      


      	close_rings() (OGRGeometry method)


      	closed (HttpResponse attribute)

      
        	(LineString attribute)


        	(MultiLineString attribute)


      


      	Coalesce (class in django.db.models.functions)


      	code (EmailValidator attribute)

      
        	(ProhibitNullCharactersValidator attribute)


        	(RegexValidator attribute)


      


      	codename (models.Permission attribute)


      	coerce (TypedChoiceField attribute)


      	Collect (class in django.contrib.gis.db.models)


      	
    collectstatic

      
        	django-admin command


      


      	
    collectstatic command line option

      
        	--clear, -c


        	--dry-run, -n


        	--ignore PATTERN, -i PATTERN


        	--link, -l


        	--no-default-ignore


        	--no-post-process


        	--noinput, --no-input


      


      	color_interp() (GDALBand method)


      	ComboField (class in django.forms)


      	
    command line option

      
        	--force-color


        	--no-color


        	--pythonpath PYTHONPATH


        	--settings SETTINGS


        	--skip-checks


        	--traceback


        	--verbosity {0,1,2,3}, -v {0,1,2,3}


      


      	CommandError


      	
    comment

      
        	template tag


      


      	commit() (in module django.db.transaction)


  

  	
      	CommonMiddleware (class in django.middleware.common)


      	CommonPasswordValidator (class in django.contrib.auth.password_validation)


      	
    compilemessages

      
        	django-admin command


      


      	
    compilemessages command line option

      
        	--exclude EXCLUDE, -x EXCLUDE


        	--ignore PATTERN, -i PATTERN


        	--locale LOCALE, -l LOCALE


        	--use-fuzzy, -f


      


      	compress() (MultiValueField method)


      	Concat (class in django.db.models.functions)


      	concrete (Field attribute)


      	concrete model


      	condition (ExclusionConstraint attribute)

      
        	(FilteredRelation attribute)


        	(Index attribute)


        	(UniqueConstraint attribute)


      


      	condition() (in module django.views.decorators.http)


      	conditional_escape() (in module django.utils.html)


      	ConditionalGetMiddleware (class in django.middleware.http)


      	configure_user() (RemoteUserBackend method)


      	confirm_login_allowed() (AuthenticationForm method)


      	
    CONN_MAX_AGE

      
        	setting


      


      	connect() (Signal method)


      	connection (SchemaEditor attribute)


      	constraints (Options attribute)


      	
    contained

      
        	field lookup type


      


      	
    contains

      
        	field lookup type


      


      	contains() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	contains_aggregate (Expression attribute)


      	contains_over_clause (Expression attribute)


      	
    contains_properly

      
        	field lookup type


      


      	contains_properly() (PreparedGeometry method)


      	content (HttpResponse attribute)

      
        	(Response attribute)


      


      	content_params (HttpRequest attribute)


      	content_type (django.views.generic.base.TemplateResponseMixin attribute)

      
        	(HttpRequest attribute)


        	(LogEntry attribute)


        	(UploadedFile attribute)


        	(models.Permission attribute)


      


      	content_type_extra (UploadedFile attribute)


      	ContentFile (class in django.core.files.base)


      	ContentType (class in django.contrib.contenttypes.models)


      	ContentTypeManager (class in django.contrib.contenttypes.models)


      	Context (class in django.template)


      	context (Response attribute)


      	context_data (SimpleTemplateResponse attribute)


      	context_object_name (django.views.generic.detail.SingleObjectMixin attribute)

      
        	(django.views.generic.list.MultipleObjectMixin attribute)


      


      	ContextPopException


      	convert_value() (Expression method)


      	convex_hull (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	cookies (Client attribute)


      	COOKIES (HttpRequest attribute)


      	coord_dim (OGRGeometry attribute)


      	coords (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	coords() (GeoIP2 method)


      	CoordTransform (class in django.contrib.gis.gdal)


      	copy() (QueryDict method)


      	Corr (class in django.contrib.postgres.aggregates)


      	Cos (class in django.db.models.functions)


      	Cot (class in django.db.models.functions)


      	Count (class in django.db.models)


      	count (Paginator attribute)


      	count() (in module django.db.models.query.QuerySet)


      	country() (GeoIP2 method)


      	country_code() (GeoIP2 method)


      	country_name() (GeoIP2 method)


      	
    coupling

      
        	loose


      


      	CovarPop (class in django.contrib.postgres.aggregates)


      	
    coveredby

      
        	field lookup type


      


      	
    covers

      
        	field lookup type


      


      	covers() (GEOSGeometry method)

      
        	(PreparedGeometry method)


      


      	create() (in module django.db.models.query.QuerySet)

      
        	(RelatedManager method)


      


      	create_model() (BaseDatabaseSchemaEditor method)


      	create_model_instance() (backends.db.SessionStore method)


      	create_parser() (BaseCommand method)


      	create_superuser() (models.CustomUserManager method)

      
        	(models.UserManager method)


      


      	create_test_db() (in module django.db.connection.creation)


      	create_unknown_user (RemoteUserBackend attribute)


      	create_user() (models.CustomUserManager method)

      
        	(models.UserManager method)


      


      	
    createcachetable

      
        	django-admin command


      


      	
    createcachetable command line option

      
        	--database DATABASE


        	--dry-run


      


      	CreateExtension (class in django.contrib.postgres.operations)


      	CreateModel (class in django.db.migrations.operations)


      	
    createsuperuser

      
        	django-admin command


      


      	
    createsuperuser command line option

      
        	--database DATABASE


        	--email EMAIL


        	--noinput, --no-input


        	--username USERNAME


      


      	CreateView (built-in class)


      	Critical (class in django.core.checks)


      	
    crosses

      
        	field lookup type


      


      	crosses() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	CryptoExtension (class in django.contrib.postgres.operations)


      	
    CSRF_COOKIE_AGE

      
        	setting


      


      	
    CSRF_COOKIE_DOMAIN

      
        	setting


      


      	
    CSRF_COOKIE_HTTPONLY

      
        	setting


      


      	
    CSRF_COOKIE_NAME

      
        	setting


      


      	
    CSRF_COOKIE_PATH

      
        	setting


      


      	
    CSRF_COOKIE_SAMESITE

      
        	setting


      


      	
    CSRF_COOKIE_SECURE

      
        	setting


      


      	csrf_exempt() (in module django.views.decorators.csrf)


      	
    CSRF_FAILURE_VIEW

      
        	setting


      


      	
    CSRF_HEADER_NAME

      
        	setting


      


      	csrf_protect() (in module django.views.decorators.csrf)


      	
    csrf_token

      
        	template tag


      


      	
    CSRF_TRUSTED_ORIGINS

      
        	setting


      


      	
    CSRF_USE_SESSIONS

      
        	setting


      


      	CsrfViewMiddleware (class in django.middleware.csrf)


      	css_classes() (BoundField method)


      	ct_field (GenericInlineModelAdmin attribute)


      	ct_fk_field (GenericInlineModelAdmin attribute)


      	CumeDist (class in django.db.models.functions)


      	current_app (HttpRequest attribute)


      	CurrentSiteMiddleware (class in django.contrib.sites.middleware)


      	
    cut

      
        	template filter


      


      	
    cycle

      
        	template tag


      


      	cycle_key() (backends.base.SessionBase method)


  





D


  	
      	D (class in django.contrib.gis.measure)


      	data (BoundField attribute)


      	data() (GDALBand method)


      	
    DATA_UPLOAD_MAX_MEMORY_SIZE

      
        	setting


      


      	
    DATA_UPLOAD_MAX_NUMBER_FIELDS

      
        	setting


      


      	
    DATABASE-ATOMIC_REQUESTS

      
        	setting


      


      	
    DATABASE-AUTOCOMMIT

      
        	setting


      


      	
    DATABASE-DISABLE_SERVER_SIDE_CURSORS

      
        	setting


      


      	
    DATABASE-ENGINE

      
        	setting


      


      	
    DATABASE-TEST

      
        	setting


      


      	
    DATABASE-TIME_ZONE

      
        	setting


      


      	
    DATABASE_ROUTERS

      
        	setting


      


      	DatabaseError


      	
    DATABASES

      
        	setting


      


      	databases (SimpleTestCase attribute)

      
        	(TestCase attribute)


        	(TransactionTestCase attribute)


      


      	DataError


      	
    DATAFILE

      
        	setting


      


      	
    DATAFILE_EXTSIZE

      
        	setting


      


      	
    DATAFILE_MAXSIZE

      
        	setting


      


      	
    DATAFILE_SIZE

      
        	setting


      


      	
    DATAFILE_TMP

      
        	setting


      


      	
    DATAFILE_TMP_EXTSIZE

      
        	setting


      


      	
    DATAFILE_TMP_MAXSIZE

      
        	setting


      


      	
    DATAFILE_TMP_SIZE

      
        	setting


      


      	DataSource (class in django.contrib.gis.gdal)


      	datatype() (GDALBand method)


      	
    date

      
        	field lookup type


        	template filter


      


      	date_attrs (SplitDateTimeWidget attribute)


      	date_field (DateMixin attribute)


      	
    DATE_FORMAT

      
        	setting


      


      	date_format (SplitDateTimeWidget attribute)


      	date_hierarchy (ModelAdmin attribute)


      	
    DATE_INPUT_FORMATS

      
        	setting


      


      	date_joined (models.User attribute)


      	date_list_period (BaseDateListView attribute)


      	DateDetailView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	DateField (class in django.db.models)

      
        	(class in django.forms)


      


      	DateInput (class in django.forms)


      	DateMixin (class in django.views.generic.dates)


      	DateRangeField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	dates() (in module django.db.models.query.QuerySet)


      	
    DATETIME_FORMAT

      
        	setting


      


      	
    DATETIME_INPUT_FORMATS

      
        	setting


      


      	DateTimeField (class in django.db.models)

      
        	(class in django.forms)


      


      	DateTimeInput (class in django.forms)


      	DateTimeRangeField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	datetimes() (in module django.db.models.query.QuerySet)


      	
    day

      
        	field lookup type


      


      	day (DayMixin attribute)


      	day_format (DayMixin attribute)


      	DayArchiveView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	DayMixin (class in django.views.generic.dates)


      	db (QuerySet attribute)


      	db_column (Field attribute)


      	db_constraint (ForeignKey attribute)

      
        	(ManyToManyField attribute)


      


      	db_for_read()


      	db_for_write()


      	db_index (Field attribute)


      	db_table (ManyToManyField attribute)

      
        	(Options attribute)


      


      	db_tablespace (Field attribute)

      
        	(Index attribute)


        	(Options attribute)


      


      	db_type() (Field method)


      	
    dbshell

      
        	django-admin command


      


      	
    dbshell command line option

      
        	--database DATABASE


      


      	deactivate() (in module django.utils.timezone)

      
        	(in module django.utils.translation)


      


      	deactivate_all() (in module django.utils.translation)


      	
    DEBUG

      
        	setting


      


      	
    debug

      
        	template tag


      


      	Debug (class in django.core.checks)


      	debug() (in module django.template.context_processors)


      	
    DEBUG_PROPAGATE_EXCEPTIONS

      
        	setting


      


      	decimal_places (DecimalField attribute), [1]


      	
    DECIMAL_SEPARATOR

      
        	setting


      


      	DecimalField (class in django.db.models)

      
        	(class in django.forms)


      


      	DecimalRangeField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	DecimalValidator (class in django.core.validators)


      	decompress() (MultiWidget method)

      
        	(RangeWidget method)


      


      	deconstruct() (Field method)


      	decorator_from_middleware() (in module django.utils.decorators)


      	decorator_from_middleware_with_args() (in module django.utils.decorators)


      	decr() (cache method)


      	
    default

      
        	template filter


      


      	default (Field attribute)


      	
    DEFAULT_CHARSET

      
        	setting


      


      	
    DEFAULT_EXCEPTION_REPORTER_FILTER

      
        	setting


      


      	
    DEFAULT_FILE_STORAGE

      
        	setting


      


      	
    DEFAULT_FROM_EMAIL

      
        	setting


      


      	
    default_if_none

      
        	template filter


      


      	
    DEFAULT_INDEX_TABLESPACE

      
        	setting


      


      	default_lat (GeoModelAdmin attribute)

      
        	(OSMWidget attribute)


      


      	default_lon (GeoModelAdmin attribute)

      
        	(OSMWidget attribute)


      


      	default_manager_name (Options attribute)


      	default_permissions (Options attribute)


      	default_related_name (Options attribute)


      	default_renderer (Form attribute)


      	default_site (apps.SimpleAdminConfig attribute)


      	
    DEFAULT_TABLESPACE

      
        	setting


      


      	default_zoom (GeoModelAdmin attribute)

      
        	(OSMWidget attribute)


      


      	defaults.bad_request() (in module django.views)


      	defaults.page_not_found() (in module django.views)


      	defaults.permission_denied() (in module django.views)


      	defaults.server_error() (in module django.views)


      	DefaultStorage (class in django.core.files.storage)


      	defer() (in module django.db.models.query.QuerySet)


      	Degrees (class in django.db.models.functions)


      	delete() (cache method)

      
        	(Client method)


        	(FieldFile method)


        	(File method)


        	(Model method)


        	(Storage method)


        	(django.views.generic.edit.DeletionMixin method)


        	(in module django.db.models.query.QuerySet)


      


      	delete_confirmation_template (ModelAdmin attribute)


      	delete_cookie() (HttpResponse method)


      	delete_many() (cache method)


      	delete_model() (BaseDatabaseSchemaEditor method)

      
        	(ModelAdmin method)


      


      	delete_queryset() (ModelAdmin method)


      	delete_selected_confirmation_template (ModelAdmin attribute)


      	delete_test_cookie() (backends.base.SessionBase method)


      	delete_view() (ModelAdmin method)


      	deleted_objects (models.BaseModelFormSet attribute)


      	DeleteModel (class in django.db.migrations.operations)


      	DeleteView (built-in class)


      	delimiter (SimpleArrayField attribute)

      
        	(StringAgg attribute)


      


      	DenseRank (class in django.db.models.functions)


      	desc() (Expression method)


      	description (Field attribute)

      
        	(GDALBand attribute)


      


      	descriptor_class (Field attribute)


      	destroy_test_db() (in module django.db.connection.creation)


      	DetailView (built-in class)


      	dict() (QueryDict method)


      	
    dictsort

      
        	template filter


      


      	
    dictsortreversed

      
        	template filter


      


      	Difference (class in django.contrib.gis.db.models.functions)


      	difference() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(in module django.db.models.query.QuerySet)


      


      	
    diffsettings

      
        	django-admin command


      


      	
    diffsettings command line option

      
        	--all


        	--default MODULE


        	--output {hash,unified}


      


      	dim (GeometryField attribute)


      	dimension (OGRGeometry attribute)


      	dims (GEOSGeometry attribute)


      	directory_permissions_mode (FileSystemStorage attribute)


      	disable_action() (AdminSite method)


      	disabled (Field attribute)


      	
    DISALLOWED_USER_AGENTS

      
        	setting


      


      	disconnect() (Signal method)


      	DiscoverRunner (class in django.test.runner)


      	
    disjoint

      
        	field lookup type


      


      	disjoint() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	dispatch() (django.views.generic.base.View method)


      	display_raw (BaseGeometryWidget attribute)


      	Distance (class in django.contrib.gis.db.models.functions)

      
        	(class in django.contrib.gis.measure)


      


      	distance() (GEOSGeometry method)


      	
    distance_gt

      
        	field lookup type


      


      	
    distance_gte

      
        	field lookup type


      


      	
    distance_lt

      
        	field lookup type


      


      	
    distance_lte

      
        	field lookup type


      


      	distinct (ArrayAgg attribute)

      
        	(Avg attribute)


        	(Count attribute)


        	(StringAgg attribute)


        	(Sum attribute)


      


      	distinct() (in module django.db.models.query.QuerySet)


      	
    divisibleby

      
        	template filter


      


  

  	
      	django (OGRGeomType attribute)


      	
    django-admin command

      
        	changepassword


        	check


        	clearsessions


        	collectstatic


        	compilemessages


        	createcachetable


        	createsuperuser


        	dbshell


        	diffsettings


        	dumpdata


        	findstatic


        	flush


        	help


        	inspectdb


        	loaddata


        	makemessages


        	makemigrations


        	migrate


        	ogrinspect


        	ping_google


        	remove_stale_contenttypes


        	runserver


        	sendtestemail


        	shell


        	showmigrations


        	sqlflush


        	sqlmigrate


        	sqlsequencereset


        	squashmigrations


        	startapp


        	startproject


        	test


        	testserver


        	version


      


      	django.apps (module)


      	django.conf.settings.configure() (built-in function)


      	django.conf.urls (module)


      	django.conf.urls.i18n (module)


      	django.contrib.admin (module)


      	django.contrib.admindocs (module)


      	django.contrib.auth (module)


      	django.contrib.auth.backends (module)


      	django.contrib.auth.forms (module)


      	django.contrib.auth.hashers (module)


      	django.contrib.auth.middleware (module)


      	django.contrib.auth.password_validation (module)


      	django.contrib.auth.signals (module)


      	django.contrib.auth.views (module)


      	django.contrib.contenttypes (module)


      	django.contrib.contenttypes.admin (module)


      	django.contrib.contenttypes.fields (module)


      	django.contrib.contenttypes.forms (module)


      	django.contrib.flatpages (module)


      	django.contrib.gis (module)


      	django.contrib.gis.admin (module)


      	django.contrib.gis.db.backends (module)


      	django.contrib.gis.db.models (module)


      	django.contrib.gis.db.models.functions (module)


      	django.contrib.gis.feeds (module)


      	django.contrib.gis.forms (module)


      	django.contrib.gis.forms.widgets (module)


      	django.contrib.gis.gdal (module)


      	django.contrib.gis.geoip2 (module)


      	django.contrib.gis.geos (module)


      	django.contrib.gis.measure (module)


      	django.contrib.gis.serializers.geojson (module)


      	django.contrib.gis.utils (module)


      	django.contrib.gis.utils.layermapping (module)


      	django.contrib.gis.utils.ogrinspect (module)


      	django.contrib.humanize (module)


      	django.contrib.messages (module)


      	django.contrib.messages.middleware (module)


      	django.contrib.postgres (module)


      	django.contrib.postgres.aggregates (module)


      	django.contrib.postgres.constraints (module)


      	django.contrib.postgres.forms.BaseRangeField (class in django.contrib.postgres.fields)


      	django.contrib.postgres.indexes (module)


      	django.contrib.postgres.validators (module)


      	django.contrib.redirects (module)


      	django.contrib.sessions (module)


      	django.contrib.sessions.middleware (module)


      	django.contrib.sitemaps (module)


      	django.contrib.sites (module)


      	django.contrib.sites.middleware (module)


      	django.contrib.staticfiles (module)


      	django.contrib.syndication (module)


      	django.core.cache.cache (built-in variable)


      	django.core.cache.caches (built-in variable)


      	django.core.cache.utils.make_template_fragment_key() (built-in function)


      	django.core.checks (module)


      	django.core.exceptions (module)


      	django.core.files (module)


      	django.core.files.storage (module)


      	django.core.files.uploadedfile (module)


      	django.core.files.uploadhandler (module)


      	django.core.mail (module)


      	django.core.mail.outbox (in module django.core.mail)


      	django.core.management (module)


      	django.core.management.call_command() (built-in function)


      	django.core.paginator (module)


      	django.core.serializers.get_serializer() (built-in function)


      	django.core.serializers.json.DjangoJSONEncoder (built-in class)


      	django.core.signals (module)


      	django.core.signals.got_request_exception (built-in variable)


      	django.core.signals.request_finished (built-in variable)


      	django.core.signals.request_started (built-in variable)


      	django.core.signing (module)


      	django.core.validators (module)


      	django.db (module)


      	django.db.backends (module)


      	django.db.backends.base.schema (module)


      	django.db.backends.signals.connection_created (built-in variable)


      	django.db.migrations (module)


      	django.db.migrations.operations (module)


      	django.db.models (module)


      	django.db.models.constraints (module)


      	django.db.models.fields (module)


      	django.db.models.fields.related (module)


      	django.db.models.functions (module)


      	django.db.models.indexes (module)


      	django.db.models.lookups (module)


      	django.db.models.options (module)


      	django.db.models.signals (module)


      	django.db.models.signals.class_prepared (built-in variable)


      	django.db.models.signals.m2m_changed (built-in variable)


      	django.db.models.signals.post_delete (built-in variable)


      	django.db.models.signals.post_init (built-in variable)


      	django.db.models.signals.post_migrate (built-in variable)


      	django.db.models.signals.post_save (built-in variable)


      	django.db.models.signals.pre_delete (built-in variable)


      	django.db.models.signals.pre_migrate (built-in variable)


      	django.db.models.signals.pre_save (built-in variable)


      	django.db.transaction (module)


      	django.dispatch (module)


      	django.forms (module)


      	django.forms.fields (module)


      	django.forms.formsets (module)


      	django.forms.models (module)


      	django.forms.renderers (module)


      	django.forms.widgets (module)


      	django.http (module)


      	django.http.Http404 (built-in class)


      	django.middleware (module)


      	django.middleware.cache (module)


      	django.middleware.clickjacking (module)


      	django.middleware.common (module)


      	django.middleware.csrf (module)


      	django.middleware.gzip (module)


      	django.middleware.http (module)


      	django.middleware.locale (module)


      	django.middleware.security (module)


      	django.shortcuts (module)


      	django.template (module)


      	django.template.backends (module)


      	django.template.backends.django (module)


      	django.template.backends.jinja2 (module)


      	django.template.loader (module)


      	django.template.response (module)


      	django.test (module)


      	django.test.signals (module)


      	django.test.signals.setting_changed (built-in variable)


      	django.test.signals.template_rendered (built-in variable)


      	django.test.utils (module)


      	django.test.utils.isolate_apps() (built-in function)


      	django.urls (module)


      	django.urls.conf (module)


      	django.utils (module)


      	django.utils.cache (module)


      	django.utils.dateparse (module)


      	django.utils.decorators (module)


      	django.utils.deprecation.MiddlewareMixin (built-in class)


      	django.utils.encoding (module)


      	django.utils.feedgenerator (module)


      	django.utils.functional (module)


      	django.utils.html (module)


      	django.utils.http (module)


      	django.utils.log (module)


      	django.utils.module_loading (module)


      	django.utils.safestring (module)


      	django.utils.text (module)


      	django.utils.timezone (module)


      	django.utils.translation (module)


      	django.views (module)


      	django.views.decorators.cache (module)


      	django.views.decorators.cache.cache_page() (built-in function)


      	django.views.decorators.csrf (module)


      	django.views.decorators.gzip (module)


      	django.views.decorators.http (module)


      	django.views.decorators.vary (module)


      	django.views.generic.base.ContextMixin (built-in class)


      	django.views.generic.base.RedirectView (built-in class)


      	django.views.generic.base.TemplateResponseMixin (built-in class)


      	django.views.generic.base.TemplateView (built-in class)


      	django.views.generic.base.View (built-in class)


      	django.views.generic.dates (module)


      	django.views.generic.detail.DetailView (built-in class)


      	django.views.generic.detail.SingleObjectMixin (built-in class)


      	django.views.generic.detail.SingleObjectTemplateResponseMixin (built-in class)


      	django.views.generic.edit.CreateView (built-in class)


      	django.views.generic.edit.DeleteView (built-in class)


      	django.views.generic.edit.DeletionMixin (built-in class)


      	django.views.generic.edit.FormMixin (built-in class)


      	django.views.generic.edit.FormView (built-in class)


      	django.views.generic.edit.ModelFormMixin (built-in class)


      	django.views.generic.edit.ProcessFormView (built-in class)


      	django.views.generic.edit.UpdateView (built-in class)


      	django.views.generic.list.BaseListView (built-in class)


      	django.views.generic.list.ListView (built-in class)


      	django.views.generic.list.MultipleObjectMixin (built-in class)


      	django.views.generic.list.MultipleObjectTemplateResponseMixin (built-in class)


      	django.views.i18n (module)


      	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4], [5], [6]


      	DjangoTemplates (class in django.forms.renderers)

      
        	(class in django.template.backends.django)


      


      	DO_NOTHING (in module django.db.models)


      	domain (JavaScriptCatalog attribute)

      
        	(models.Site attribute)


      


      	Don't repeat yourself


      	Driver (class in django.contrib.gis.gdal)


      	driver (GDALRaster attribute)


      	driver_count (Driver attribute)


      	DRY


      	
    dumpdata

      
        	django-admin command


      


      	
    dumpdata command line option

      
        	--all, -a


        	--database DATABASE


        	--exclude EXCLUDE, -e EXCLUDE


        	--format FORMAT


        	--indent INDENT


        	--natural-foreign


        	--natural-primary


        	--output OUTPUT, -o OUTPUT


        	--pks PRIMARY_KEYS


      


      	dumps() (in module django.core.signing)


      	DurationField (class in django.db.models)

      
        	(class in django.forms)


      


      	
    dwithin

      
        	field lookup type


      


  





E


  	
      	each_context() (AdminSite method)


      	earliest() (in module django.db.models.query.QuerySet)


      	editable (Field attribute)


      	ellipsoid (SpatialReference attribute)


      	email (models.User attribute)


      	
    EMAIL_BACKEND

      
        	setting


      


      	EMAIL_FIELD (models.CustomUser attribute)


      	
    EMAIL_FILE_PATH

      
        	setting


      


      	
    EMAIL_HOST

      
        	setting


      


      	
    EMAIL_HOST_PASSWORD

      
        	setting


      


      	
    EMAIL_HOST_USER

      
        	setting


      


      	
    EMAIL_PORT

      
        	setting


      


      	
    EMAIL_SSL_CERTFILE

      
        	setting


      


      	
    EMAIL_SSL_KEYFILE

      
        	setting


      


      	
    EMAIL_SUBJECT_PREFIX

      
        	setting


      


      	
    EMAIL_TIMEOUT

      
        	setting


      


      	
    EMAIL_USE_LOCALTIME

      
        	setting


      


      	
    EMAIL_USE_SSL

      
        	setting


      


      	
    EMAIL_USE_TLS

      
        	setting


      


      	email_user() (models.User method)


      	EmailField (class in django.db.models)

      
        	(class in django.forms)


      


      	EmailInput (class in django.forms)


      	EmailMessage (class in django.core.mail)


      	EmailValidator (class in django.core.validators)


      	empty (GEOSGeometry attribute)


      	empty_label (ModelChoiceField attribute)

      
        	(SelectDateWidget attribute)


      


      	empty_value (CharField attribute)

      
        	(TypedChoiceField attribute)


      


      	empty_value_display (AdminSite attribute)

      
        	(ModelAdmin attribute)


      


      	EmptyPage


      	EmptyResultSet


      	Enclosure (class in django.utils.feedgenerator)


      	encode() (base_session.BaseSessionManager method)


      	encoder (JSONField attribute)


      	encoding (HttpRequest attribute)


      	end_index() (Page method)


      	
    endswith

      
        	field lookup type


      


      	Engine (class in django.template)


      	engines (in module django.template.loader)


      	ensure_csrf_cookie() (in module django.views.decorators.csrf)


      	Envelope (class in django.contrib.gis.db.models.functions)

      
        	(class in django.contrib.gis.gdal)


      


      	envelope (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	
    environment variable

      
        	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4], [5], [6], [7]


        	PYTHONPATH


        	PYTHONSTARTUP


        	PYTHONWARNINGS


      


  

  	
      	
    equals

      
        	field lookup type


      


      	equals() (GEOSGeometry method)

      
        	(OGRGeometry method)


      


      	equals_exact() (GEOSGeometry method)


      	Error

      
        	(class in django.core.checks)


      


      	error_css_class (Form attribute)


      	error_messages (Field attribute), [1]


      	errors (BoundField attribute)

      
        	(Form attribute)


      


      	
    escape

      
        	template filter


      


      	escape() (in module django.utils.html)


      	escape_uri_path() (in module django.utils.encoding)


      	
    escapejs

      
        	template filter


      


      	etag() (in module django.views.decorators.http)


      	ewkb (GEOSGeometry attribute)


      	ewkt (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	
    exact

      
        	field lookup type


      


      	
    exact :noindex:

      
        	field lookup type


      


      	exc_info (Response attribute)


      	exclude (ModelAdmin attribute)


      	exclude() (in module django.db.models.query.QuerySet)


      	ExclusionConstraint (class in django.contrib.postgres.constraints)


      	execute() (BaseCommand method)

      
        	(BaseDatabaseSchemaEditor method)


      


      	execute_wrapper() (in module django.db.backends.base.DatabaseWrapper)


      	Exists (class in django.db.models)


      	exists() (in module django.db.models.query.QuerySet)

      
        	(Storage method)


      


      	Exp (class in django.db.models.functions)


      	expand_to_include() (Envelope method)


      	expire_date (base_session.AbstractBaseSession attribute)


      	explain() (in module django.db.models.query.QuerySet)


      	Expression (class in django.db.models)


      	expressions (ExclusionConstraint attribute)


      	ExpressionWrapper (class in django.db.models)


      	
    extends

      
        	template tag


      


      	Extent (class in django.contrib.gis.db.models)


      	extent (GDALRaster attribute)

      
        	(GEOSGeometry attribute)


        	(Layer attribute)


        	(OGRGeometry attribute)


      


      	Extent3D (class in django.contrib.gis.db.models)


      	exterior_ring (Polygon attribute)


      	extra (InlineModelAdmin attribute)


      	extra() (in module django.db.models.query.QuerySet)


      	extra_context (django.views.generic.base.ContextMixin attribute)


      	extra_js (GeoModelAdmin attribute)


      	Extract (class in django.db.models.functions)


      	ExtractDay (class in django.db.models.functions)


      	ExtractHour (class in django.db.models.functions)


      	ExtractIsoYear (class in django.db.models.functions)


      	ExtractMinute (class in django.db.models.functions)


      	ExtractMonth (class in django.db.models.functions)


      	ExtractQuarter (class in django.db.models.functions)


      	ExtractSecond (class in django.db.models.functions)


      	ExtractWeek (class in django.db.models.functions)


      	ExtractWeekDay (class in django.db.models.functions)


      	ExtractYear (class in django.db.models.functions)


  





F


  	
      	F (class in django.db.models)


      	Feature (class in django.contrib.gis.gdal)


      	Feature release


      	Feed (class in django.contrib.gis.feeds)


      	FetchFromCacheMiddleware (class in django.middleware.cache)


      	fid (Feature attribute)


      	field

      
        	(BoundField attribute)


      


      	Field (class in django.contrib.gis.gdal)

      
        	(class in django.db.models)


        	(class in django.forms)


      


      	
    field lookup type

      
        	arrayfield.contained_by


        	arrayfield.contains


        	arrayfield.index


        	arrayfield.len


        	arrayfield.overlap


        	arrayfield.slice


        	bbcontains


        	bboverlaps


        	contained


        	contains


        	contains_properly


        	coveredby


        	covers


        	crosses


        	date


        	day


        	disjoint


        	distance_gt


        	distance_gte


        	distance_lt


        	distance_lte


        	dwithin


        	endswith


        	equals


        	exact


        	exact :noindex:


        	gis-contains


        	gt


        	gte


        	hour


        	hstorefield.contained_by


        	hstorefield.contains


        	hstorefield.has_any_keys


        	hstorefield.has_key


        	hstorefield.has_keys


        	hstorefield.key


        	hstorefield.keys


        	hstorefield.values


        	icontains


        	iendswith


        	iexact


        	in


        	intersects


        	iregex


        	isnull


        	iso_year


        	istartswith


        	isvalid


        	jsonfield.contained_by


        	jsonfield.contains


        	jsonfield.has_any_keys


        	jsonfield.has_key


        	jsonfield.has_keys


        	jsonfield.key


        	left


        	lt


        	lte


        	minute


        	month


        	overlaps


        	overlaps_above


        	overlaps_below


        	overlaps_left


        	overlaps_right


        	quarter


        	range


        	rangefield.adjacent_to


        	rangefield.contained_by


        	rangefield.contains


        	rangefield.endswith


        	rangefield.fully_gt


        	rangefield.fully_lt


        	rangefield.isempty


        	rangefield.not_gt


        	rangefield.not_lt


        	rangefield.overlap


        	rangefield.startswith


        	regex


        	relate


        	right


        	same_as


        	search


        	second


        	startswith


        	strictly_above


        	strictly_below


        	time


        	touches


        	trigram_similar


        	unaccent


        	week


        	week_day


        	within


        	year


      


      	field_order (Form attribute)


      	field_precisions (Layer attribute)


      	field_widths (Layer attribute)


      	FieldDoesNotExist


      	FieldError


      	FieldFile (class in django.db.models.fields.files)


      	fields (ComboField attribute)

      
        	(Feature attribute)


        	(Form attribute)


        	(Index attribute)


        	(Layer attribute)


        	(ModelAdmin attribute)


        	(MultiValueField attribute)


        	(UniqueConstraint attribute)


        	(django.views.generic.edit.ModelFormMixin attribute)


      


      	fieldsets (ModelAdmin attribute)


      	File (class in django.core.files)


      	file (File attribute)


      	
    FILE_CHARSET

      
        	setting


      


      	file_complete() (FileUploadHandler method)


      	file_hash() (storage.ManifestStaticFilesStorage method)


      	file_permissions_mode (FileSystemStorage attribute)


      	
    FILE_UPLOAD_DIRECTORY_PERMISSIONS

      
        	setting


      


  

  	
      	
    FILE_UPLOAD_HANDLERS

      
        	setting


      


      	
    FILE_UPLOAD_MAX_MEMORY_SIZE

      
        	setting


      


      	
    FILE_UPLOAD_PERMISSIONS

      
        	setting


      


      	
    FILE_UPLOAD_TEMP_DIR

      
        	setting


      


      	FileExtensionValidator (class in django.core.validators)


      	FileField (class in django.db.models)

      
        	(class in django.forms)


      


      	FileInput (class in django.forms)


      	filepath_to_uri() (in module django.utils.encoding)


      	FilePathField (class in django.db.models)

      
        	(class in django.forms)


      


      	FileResponse (class in django.http)


      	FILES (HttpRequest attribute)


      	
    filesizeformat

      
        	template filter


      


      	filesystem.Loader (class in django.template.loaders)


      	FileSystemStorage (class in django.core.files.storage)


      	FileUploadHandler (class in django.core.files.uploadhandler)


      	
    filter

      
        	template tag


      


      	filter() (django.template.Library method)

      
        	(in module django.db.models.query.QuerySet)


      


      	filter_horizontal (ModelAdmin attribute)


      	filter_vertical (ModelAdmin attribute)


      	filterable (Expression attribute)

      
        	(Window attribute)


      


      	FilteredRelation (class in django.db.models)


      	
    findstatic

      
        	django-admin command


      


      	
    findstatic --first

      
        	findstatic command line option


      


      	
    findstatic command line option

      
        	findstatic --first


      


      	
    first

      
        	template filter


      


      	first() (in module django.db.models.query.QuerySet)


      	
    FIRST_DAY_OF_WEEK

      
        	setting


      


      	first_name (models.User attribute)


      	
    firstof

      
        	template tag


      


      	FirstValue (class in django.db.models.functions)


      	FixedOffset (class in django.utils.timezone)


      	
    FIXTURE_DIRS

      
        	setting


      


      	fixtures (TransactionTestCase attribute)


      	fk_name (InlineModelAdmin attribute)


      	flags (RegexValidator attribute)


      	FlatPage (class in django.contrib.flatpages.models)


      	FlatpageFallbackMiddleware (class in django.contrib.flatpages.middleware)


      	FlatPageSitemap (class in django.contrib.flatpages.sitemaps)


      	flatten() (Context method)


      	FloatField (class in django.db.models)

      
        	(class in django.forms)


      


      	
    floatformat

      
        	template filter


      


      	FloatRangeField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	Floor (class in django.db.models.functions)


      	
    flush

      
        	django-admin command


      


      	
    flush command line option

      
        	--database DATABASE


        	--noinput, --no-input


      


      	flush() (backends.base.SessionBase method)

      
        	(HttpResponse method)


      


      	
    for

      
        	template tag


      


      	for_concrete_model (GenericForeignKey attribute)


      	force_bytes() (in module django.utils.encoding)


      	
    force_escape

      
        	template filter


      


      	force_login() (Client method)


      	
    FORCE_SCRIPT_NAME

      
        	setting


      


      	force_str() (in module django.utils.encoding)


      	force_text() (in module django.utils.encoding)


      	ForcePolygonCW (class in django.contrib.gis.db.models.functions)


      	ForeignKey (class in django.db.models)


      	form (BoundField attribute)


      	Form (class in django.forms)


      	form (InlineModelAdmin attribute)

      
        	(ModelAdmin attribute)


      


      	form_class (django.views.generic.edit.FormMixin attribute)


      	form_field (RangeField attribute)


      	form_invalid() (django.views.generic.edit.FormMixin method)

      
        	(django.views.generic.edit.ModelFormMixin method)


      


      	
    FORM_RENDERER

      
        	setting


      


      	form_valid() (django.views.generic.edit.FormMixin method)

      
        	(django.views.generic.edit.ModelFormMixin method)


      


      	format (DateInput attribute)

      
        	(DateTimeInput attribute)


        	(TimeInput attribute)


      


      	format file


      	format_html() (in module django.utils.html)


      	format_html_join() (in module django.utils.html)


      	format_lazy() (in module django.utils.text)


      	
    FORMAT_MODULE_PATH

      
        	setting


      


      	format_value() (Widget method)


      	formfield() (Field method)


      	formfield_for_choice_field() (ModelAdmin method)


      	formfield_for_foreignkey() (ModelAdmin method)


      	formfield_for_manytomany() (ModelAdmin method)


      	formfield_overrides (ModelAdmin attribute)


      	formset (InlineModelAdmin attribute)


      	formset_factory() (in module django.forms.formsets)


      	FormView (built-in class)


      	frame_type (RowRange attribute)

      
        	(ValueRange attribute)


      


      	from_bbox() (django.contrib.gis.gdal.OGRGeometry class method)

      
        	(django.contrib.gis.geos.Polygon class method)


      


      	from_db() (django.db.models.Model class method)


      	from_db_value() (Field method)


      	from_esri() (SpatialReference method)


      	from_gml() (django.contrib.gis.gdal.OGRGeometry class method)

      
        	(django.contrib.gis.geos.GEOSGeometry class method)


      


      	from_queryset() (in module django.db.models)


      	from_string() (Engine method)


      	fromfile() (in module django.contrib.gis.geos)


      	fromkeys() (django.http.QueryDict class method)


      	fromstr() (in module django.contrib.gis.geos)


      	full_clean() (Model method)


      	Func (class in django.db.models)


      	func (ResolverMatch attribute)


      	function (Aggregate attribute)

      
        	(Func attribute)


      


  





G


  	
      	
    GDAL_LIBRARY_PATH

      
        	setting


      


      	GDALBand (class in django.contrib.gis.gdal)


      	GDALException


      	GDALRaster (class in django.contrib.gis.gdal)


      	generate_filename() (Storage method)


      	generic view


      	generic_inlineformset_factory() (in module django.contrib.contenttypes.forms)


      	GenericForeignKey (class in django.contrib.contenttypes.fields)


      	GenericInlineModelAdmin (class in django.contrib.contenttypes.admin)


      	GenericIPAddressField (class in django.db.models)

      
        	(class in django.forms)


      


      	GenericRelation (class in django.contrib.contenttypes.fields)


      	GenericSitemap (class in django.contrib.sitemaps)


      	GenericStackedInline (class in django.contrib.contenttypes.admin)


      	GenericTabularInline (class in django.contrib.contenttypes.admin)


      	GeoAtom1Feed (class in django.contrib.gis.feeds)


      	geographic (SpatialReference attribute)


      	geography (GeometryField attribute)


      	GeoHash (class in django.contrib.gis.db.models.functions)


      	GeoIP2 (class in django.contrib.gis.geoip2)


      	GeoIP2Exception


      	
    GEOIP_CITY

      
        	setting


      


      	
    GEOIP_COUNTRY

      
        	setting


      


      	
    GEOIP_PATH

      
        	setting


      


      	geojson (GEOSGeometry attribute)


      	geom (Feature attribute)


      	geom_count (OGRGeometry attribute)


      	geom_name (OGRGeometry attribute)


      	geom_type (BaseGeometryWidget attribute)

      
        	(Feature attribute)


        	(Field attribute)


        	(GEOSGeometry attribute)


        	(Layer attribute)


        	(OGRGeometry attribute)


      


      	geom_typeid (GEOSGeometry attribute)


      	geometry() (Feed method)


      	GeometryCollection (class in django.contrib.gis.gdal)

      
        	(class in django.contrib.gis.geos)


      


      	GeometryCollectionField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	GeometryDistance (class in django.contrib.gis.db.models.functions)


      	GeometryField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	GeoModelAdmin (class in django.contrib.gis.admin)


      	GeoRSSFeed (class in django.contrib.gis.feeds)


      	geos (OGRGeometry attribute)


      	geos() (GeoIP2 method)


      	
    GEOS_LIBRARY_PATH

      
        	setting


      


      	GEOSException


      	GEOSGeometry (class in django.contrib.gis.geos)


      	geotransform (GDALRaster attribute)


      	get (Feature attribute)


      	GET (HttpRequest attribute)


      	get() (backends.base.SessionBase method)

      
        	(Client method)


        	(Context method)


        	(QueryDict method)


        	(cache method)


        	(django.views.generic.edit.ProcessFormView method)


        	(django.views.generic.list.BaseListView method)


        	(in module django.db.models.query.QuerySet)


      


      	get_absolute_url() (Model method)


      	get_accessed_time() (Storage method)


      	get_actions() (ModelAdmin method)


      	get_all_permissions() (BaseBackend method)

      
        	(ModelBackend method)


        	(models.PermissionsMixin method)


        	(models.User method)


      


      	get_allow_empty() (django.views.generic.list.MultipleObjectMixin method)


      	get_allow_future() (DateMixin method)


      	get_alternative_name() (in module django.core.files.storage)

      
        	(Storage method)


      


      	get_app_config() (apps method)


      	get_app_configs() (apps method)


      	get_autocommit() (in module django.db.transaction)


      	get_autocomplete_fields() (ModelAdmin method)


      	
    get_available_languages

      
        	template tag


      


      	get_available_name() (in module django.core.files.storage)

      
        	(Storage method)


      


      	get_bound_field() (Field method)


      	get_by_natural_key() (ContentTypeManager method)

      
        	(models.BaseUserManager method)


      


      	get_cache_key() (in module django.utils.cache)


      	get_change_message() (LogEntry method)


      	get_changeform_initial_data() (ModelAdmin method)


      	get_changelist() (ModelAdmin method)


      	get_changelist_form() (ModelAdmin method)


      	get_changelist_formset() (ModelAdmin method)


      	get_connection() (in module django.core.mail)


      	get_contents() (Loader method)


      	get_context() (MultiWidget method)

      
        	(Widget method)


      


      	get_context_data() (django.views.generic.base.ContextMixin method)

      
        	(Feed method)


        	(django.views.generic.detail.SingleObjectMixin method)


        	(django.views.generic.edit.FormMixin method)


        	(django.views.generic.list.MultipleObjectMixin method)


      


      	get_context_object_name() (django.views.generic.detail.SingleObjectMixin method)

      
        	(django.views.generic.list.MultipleObjectMixin method)


      


      	get_created_time() (FileSystemStorage method)

      
        	(Storage method)


      


      	
    get_current_language

      
        	template tag


      


      	
    get_current_language_bidi

      
        	template tag


      


      	
    get_current_timezone

      
        	template tag


      


      	get_current_timezone() (in module django.utils.timezone)


      	get_current_timezone_name() (in module django.utils.timezone)


      	get_date_field() (DateMixin method)


      	get_date_list() (BaseDateListView method)


      	get_date_list_period() (BaseDateListView method)


      	get_dated_items() (BaseDateListView method)


      	get_dated_queryset() (BaseDateListView method)


      	get_day() (DayMixin method)


      	get_day_format() (DayMixin method)


      	get_db_prep_save() (Field method)


      	get_db_prep_value() (Field method)


      	get_decoded() (base_session.AbstractBaseSession method)


      	get_default() (Engine static method)


      	get_default_timezone() (in module django.utils.timezone)


      	get_default_timezone_name() (in module django.utils.timezone)


      	get_deferred_fields() (Model method)


      	get_deleted_objects() (ModelAdmin method)


      	
    get_digit

      
        	template filter


      


      	get_edited_object() (LogEntry method)


      	get_email_field_name() (django.contrib.auth.models.AbstractBaseUser class method)


      	get_exclude() (ModelAdmin method)


      	get_expire_at_browser_close() (backends.base.SessionBase method)


      	get_expiry_age() (backends.base.SessionBase method)


      	get_expiry_date() (backends.base.SessionBase method)


      	get_extra() (InlineModelAdmin method)


      	get_field() (Options method)


      	get_fields() (Layer method)

      
        	(ModelAdmin method)


        	(Options method)


      


      	get_fieldsets() (ModelAdmin method)


      	get_fixed_timezone() (in module django.utils.timezone)


      	
    get_flatpages

      
        	template tag


      


      	get_FOO_display() (Model method)


      	get_for_id() (ContentTypeManager method)


      	get_for_model() (ContentTypeManager method)


      	get_for_models() (ContentTypeManager method)


      	get_form() (django.views.generic.edit.FormMixin method)

      
        	(ModelAdmin method)


      


      	get_form_class() (django.views.generic.edit.FormMixin method)

      
        	(django.views.generic.edit.ModelFormMixin method)


      


      	get_form_kwargs() (django.views.generic.edit.FormMixin method)

      
        	(django.views.generic.edit.ModelFormMixin method)


      


  

  	
      	get_formset() (InlineModelAdmin method)


      	get_formsets_with_inlines() (ModelAdmin method)


      	get_full_name() (models.CustomUser method)

      
        	(models.User method)


      


      	get_full_path() (HttpRequest method)


      	get_full_path_info() (HttpRequest method)


      	get_geoms() (Layer method)


      	get_group_by_cols() (Expression method)


      	get_group_permissions() (BaseBackend method)

      
        	(ModelBackend method)


        	(models.PermissionsMixin method)


        	(models.User method)


      


      	get_host() (HttpRequest method)


      	get_initial() (django.views.generic.edit.FormMixin method)


      	get_initial_for_field() (Form method)


      	get_inline_instances() (ModelAdmin method)


      	get_inlines() (ModelAdmin method)


      	get_internal_type() (Field method)


      	get_json_data() (Form.errors method)


      	get_language() (in module django.utils.translation)


      	get_language_bidi() (in module django.utils.translation)


      	get_language_from_request() (in module django.utils.translation)


      	
    get_language_info

      
        	template tag


      


      	get_language_info() (in module django.utils.translation)


      	
    get_language_info_list

      
        	template tag


      


      	get_latest_by (Options attribute)


      	get_list_display() (ModelAdmin method)


      	get_list_display_links() (ModelAdmin method)


      	get_list_filter() (ModelAdmin method)


      	get_list_or_404() (in module django.shortcuts)


      	get_list_select_related() (ModelAdmin method)


      	get_login_url() (AccessMixin method)


      	get_lookup() (in module django.db.models)

      
        	(lookups.RegisterLookupMixin method)


      


      	get_lookups() (lookups.RegisterLookupMixin method)


      	get_make_object_list() (YearArchiveView method)


      	get_many() (cache method)


      	get_max_age() (in module django.utils.cache)


      	get_max_num() (InlineModelAdmin method)


      	
    get_media_prefix

      
        	template tag


      


      	get_messages() (in module django.contrib.messages)


      	get_min_num() (InlineModelAdmin method)


      	get_model() (AppConfig method)

      
        	(apps method)


      


      	get_model_class() (django.contrib.sessions.backends.db.SessionStore class method)


      	get_models() (AppConfig method)


      	get_modified_time() (Storage method)


      	get_month() (MonthMixin method)


      	get_month_format() (MonthMixin method)


      	get_next_by_FOO() (Model method)


      	get_next_day() (DayMixin method)


      	get_next_month() (MonthMixin method)


      	get_next_week() (WeekMixin method)


      	get_next_year() (YearMixin method)


      	get_object() (django.views.generic.detail.SingleObjectMixin method)


      	get_object_for_this_type() (ContentType method)


      	get_object_or_404() (in module django.shortcuts)


      	get_or_create() (in module django.db.models.query.QuerySet)


      	get_or_set() (cache method)


      	get_ordering() (django.views.generic.list.MultipleObjectMixin method)

      
        	(ModelAdmin method)


      


      	get_ordering_widget() (BaseFormSet method)


      	get_page() (Paginator method)


      	get_paginate_by() (django.views.generic.list.MultipleObjectMixin method)


      	get_paginate_orphans() (django.views.generic.list.MultipleObjectMixin method)


      	get_paginator() (django.views.generic.list.MultipleObjectMixin method)

      
        	(ModelAdmin method)


      


      	get_password_validators() (in module django.contrib.auth.password_validation)


      	get_permission_denied_message() (AccessMixin method)


      	get_permission_required() (PermissionRequiredMixin method)


      	get_port() (HttpRequest method)


      	get_post_parameters() (SafeExceptionReporterFilter method)


      	get_prefix() (django.views.generic.edit.FormMixin method)


      	get_prep_value() (Field method)


      	get_prepopulated_fields() (ModelAdmin method)


      	get_prev_week() (WeekMixin method)


      	get_previous_by_FOO() (Model method)


      	get_previous_day() (DayMixin method)


      	get_previous_month() (MonthMixin method)


      	get_previous_year() (YearMixin method)


      	get_queryset() (django.views.generic.detail.SingleObjectMixin method)

      
        	(ModelAdmin method)


        	(django.views.generic.list.MultipleObjectMixin method)


      


      	get_readonly_fields() (ModelAdmin method)


      	get_redirect_field_name() (AccessMixin method)


      	get_redirect_url() (django.views.generic.base.RedirectView method)


      	get_rollback() (in module django.db.transaction)


      	get_script_prefix() (in module django.urls)


      	get_search_fields() (ModelAdmin method)


      	get_search_results() (ModelAdmin method)


      	get_session_auth_hash() (models.AbstractBaseUser method)


      	get_session_cookie_age() (backends.base.SessionBase method)


      	get_session_store_class() (django.contrib.sessions.base_session.AbstractBaseSession class method)


      	get_short_name() (models.CustomUser method)

      
        	(models.User method)


      


      	get_signed_cookie() (HttpRequest method)


      	get_slug_field() (django.views.generic.detail.SingleObjectMixin method)


      	get_sortable_by() (ModelAdmin method)


      	get_source_expressions() (Expression method)


      	
    get_static_prefix

      
        	template tag


      


      	get_storage_class() (in module django.core.files.storage)


      	get_success_message() (views.SuccessMessageMixin method)


      	get_success_url() (django.views.generic.edit.DeletionMixin method)

      
        	(django.views.generic.edit.FormMixin method)


        	(django.views.generic.edit.ModelFormMixin method)


      


      	get_supported_language_variant() (in module django.utils.translation)


      	get_tag_uri() (in module django.utils.feedgenerator)


      	get_template() (Engine method)

      
        	(Loader method)


        	(in module django.template.loader)


      


      	get_template_names() (django.views.generic.base.TemplateResponseMixin method)

      
        	(django.views.generic.detail.SingleObjectTemplateResponseMixin method)


        	(django.views.generic.list.MultipleObjectTemplateResponseMixin method)


      


      	get_template_sources() (Loader method)


      	get_test_func() (UserPassesTestMixin method)


      	get_test_runner_kwargs() (DiscoverRunner method)


      	get_traceback_frame_variables() (SafeExceptionReporterFilter method)


      	get_transform() (in module django.db.models)

      
        	(lookups.RegisterLookupMixin method)


      


      	get_urls() (ModelAdmin method)


      	get_user() (in module django.contrib.auth)


      	get_user_model() (in module django.contrib.auth)


      	get_user_permissions() (BaseBackend method)

      
        	(ModelBackend method)


        	(models.PermissionsMixin method)


        	(models.User method)


      


      	get_username() (models.AbstractBaseUser method)

      
        	(models.User method)


      


      	get_valid_name() (in module django.core.files.storage)

      
        	(Storage method)


      


      	get_version() (BaseCommand method)


      	get_week() (WeekMixin method)


      	get_week_format() (WeekMixin method)


      	get_year() (YearMixin method)


      	get_year_format() (YearMixin method)


      	getlist() (QueryDict method)


      	gettext() (in module django.utils.translation)


      	gettext_lazy() (in module django.utils.translation)


      	gettext_noop() (in module django.utils.translation)


      	getvalue() (HttpResponse method)


      	GinIndex (class in django.contrib.postgres.indexes)


      	
    gis-contains

      
        	field lookup type


      


      	GistIndex (class in django.contrib.postgres.indexes)


      	gml (OGRGeometry attribute)


      	Greatest (class in django.db.models.functions)


      	groups (models.User attribute)


      	
    gt

      
        	field lookup type


      


      	
    gte

      
        	field lookup type


      


      	gzip_page() (in module django.views.decorators.gzip)


      	GZipMiddleware (class in django.middleware.gzip)


  





H


  	
      	handle() (BaseCommand method)


      	handle_app_config() (AppCommand method)


      	handle_label() (LabelCommand method)


      	handle_no_permission() (AccessMixin method)


      	handle_raw_input() (FileUploadHandler method)


      	handler400 (in module django.conf.urls)


      	handler403 (in module django.conf.urls)


      	handler404 (in module django.conf.urls)


      	handler500 (in module django.conf.urls)


      	has_add_permission() (InlineModelAdmin method)

      
        	(ModelAdmin method)


      


      	has_change_permission() (InlineModelAdmin method)

      
        	(ModelAdmin method)


      


      	has_changed() (Field method)

      
        	(Form method)


      


      	has_delete_permission() (InlineModelAdmin method)

      
        	(ModelAdmin method)


      


      	has_error() (Form method)


      	has_header() (HttpResponse method)


      	has_module_permission() (ModelAdmin method)


      	has_module_perms() (ModelBackend method)

      
        	(models.PermissionsMixin method)


        	(models.User method)


      


      	has_next() (Page method)


      	has_other_pages() (Page method)


      	has_perm() (BaseBackend method)

      
        	(ModelBackend method)


        	(models.PermissionsMixin method)


        	(models.User method)


      


      	has_permission() (AdminSite method)

      
        	(PermissionRequiredMixin method)


      


      	has_perms() (models.PermissionsMixin method)

      
        	(models.User method)


      


      	has_previous() (Page method)


      	has_usable_password() (models.AbstractBaseUser method)

      
        	(models.User method)


      


      	has_view_permission() (ModelAdmin method)


      	HashIndex (class in django.contrib.postgres.indexes)


      	hasz (GEOSGeometry attribute)


      	head() (Client method)


      	headers (HttpRequest attribute)


      	height (GDALBand attribute)

      
        	(GDALRaster attribute)


        	(ImageFile attribute)


      


      	height_field (ImageField attribute)


      	
    help

      
        	django-admin command


      


  

  	
      	help (BaseCommand attribute)


      	help_text (BoundField attribute)

      
        	(Field attribute), [1]


      


      	hex (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	hexewkb (GEOSGeometry attribute)


      	hidden (Field attribute)


      	HiddenInput (class in django.forms)


      	history_view() (ModelAdmin method)


      	
    HOST

      
        	setting


      


      	
    hour

      
        	field lookup type


      


      	HStoreExtension (class in django.contrib.postgres.operations)


      	HStoreField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	
    hstorefield.contained_by

      
        	field lookup type


      


      	
    hstorefield.contains

      
        	field lookup type


      


      	
    hstorefield.has_any_keys

      
        	field lookup type


      


      	
    hstorefield.has_key

      
        	field lookup type


      


      	
    hstorefield.has_keys

      
        	field lookup type


      


      	
    hstorefield.key

      
        	field lookup type


      


      	
    hstorefield.keys

      
        	field lookup type


      


      	
    hstorefield.values

      
        	field lookup type


      


      	html_name (BoundField attribute)


      	html_safe() (in module django.utils.html)


      	http_date() (in module django.utils.http)


      	http_method_names (django.views.generic.base.View attribute)


      	http_method_not_allowed() (django.views.generic.base.View method)


      	HttpRequest (class in django.http)


      	HttpResponse (class in django.http)


      	HttpResponseBadRequest (class in django.http)


      	HttpResponseForbidden (class in django.http)


      	HttpResponseGone (class in django.http)


      	HttpResponseNotAllowed (class in django.http)


      	HttpResponseNotFound (class in django.http)


      	HttpResponseNotModified (class in django.http)


      	HttpResponsePermanentRedirect (class in django.http)


      	HttpResponseRedirect (class in django.http)


      	HttpResponseServerError (class in django.http)


  





I


  	
      	i18n (Sitemap attribute)


      	i18n() (in module django.template.context_processors)


      	i18n_patterns() (in module django.conf.urls.i18n)


      	
    icontains

      
        	field lookup type


      


      	id_for_label (BoundField attribute)


      	id_for_label() (Widget method)


      	identify_epsg() (SpatialReference method)


      	
    iendswith

      
        	field lookup type


      


      	
    iexact

      
        	field lookup type


      


      	
    if

      
        	template tag


      


      	
    ifchanged

      
        	template tag


      


      	
    IGNORABLE_404_URLS

      
        	setting


      


      	ImageField (class in django.db.models)

      
        	(class in django.forms)


      


      	ImageFile (class in django.core.files.images)


      	import_epsg() (SpatialReference method)


      	import_proj() (SpatialReference method)


      	import_string() (in module django.utils.module_loading)


      	import_user_input() (SpatialReference method)


      	import_wkt() (SpatialReference method)


      	import_xml() (SpatialReference method)


      	ImproperlyConfigured


      	
    in

      
        	field lookup type


      


      	in_bulk() (in module django.db.models.query.QuerySet)


      	
    include

      
        	template tag


      


      	include() (in module django.urls)


      	inclusion_tag() (django.template.Library method)


      	inclusive_lower (RangeBoundary attribute)


      	inclusive_upper (RangeBoundary attribute)


      	incr() (cache method)


      	Index (class in django.db.models)


      	index (Feature attribute)


      	index_template (AdminSite attribute)


      	index_title (AdminSite attribute)


      	index_together (Options attribute)


      	index_type (ExclusionConstraint attribute)


      	indexes (Options attribute)


      	Info (class in django.core.checks)


      	info (GDALRaster attribute)


      	initial (django.views.generic.edit.FormMixin attribute)

      
        	(Field attribute)


        	(Form attribute)


        	(Migration attribute)


      


      	inlineformset_factory() (in module django.forms.models)


      	InlineModelAdmin (class in django.contrib.admin)


      	inlines (ModelAdmin attribute)


      	InMemoryUploadedFile (class in django.core.files.uploadedfile)


      	input_date_formats (SplitDateTimeField attribute)


      	input_formats (DateField attribute)

      
        	(DateTimeField attribute)


        	(TimeField attribute)


      


      	input_time_formats (SplitDateTimeField attribute)


      	
    inspectdb

      
        	django-admin command


      


      	
    inspectdb command line option

      
        	--database DATABASE


        	--include-partitions


        	--include-views


      


      	
    INSTALLED_APPS

      
        	setting


      


      	instance namespace


      	int_list_validator() (in module django.core.validators)


      	int_to_base36() (in module django.utils.http)


      	
    intcomma

      
        	template filter


      


  

  	
      	IntegerField (class in django.db.models)

      
        	(class in django.forms)


      


      	IntegerRangeField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


      	IntegrityError


      	InterfaceError


      	
    INTERNAL_IPS

      
        	setting


      


      	InternalError


      	internationalization


      	interpolate() (GEOSGeometry method)


      	interpolate_normalized() (GEOSGeometry method)


      	Intersection (class in django.contrib.gis.db.models.functions)


      	intersection() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(in module django.db.models.query.QuerySet)


      


      	
    intersects

      
        	field lookup type


      


      	intersects() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	
    intword

      
        	template filter


      


      	InvalidPage


      	inverse_flattening (SpatialReference attribute)


      	inverse_match (RegexValidator attribute)


      	
    iregex

      
        	field lookup type


      


      	iri_to_uri() (in module django.utils.encoding)


      	
    iriencode

      
        	template filter


      


      	is_active (in module django.contrib.auth)

      
        	(models.CustomUser attribute)


        	(models.User attribute)


      


      	is_active() (SafeExceptionReporterFilter method)


      	is_ajax() (HttpRequest method)


      	is_anonymous (models.AbstractBaseUser attribute)

      
        	(models.User attribute)


      


      	is_authenticated (models.AbstractBaseUser attribute)

      
        	(models.User attribute)


      


      	is_aware() (in module django.utils.timezone)


      	is_bound (Form attribute)


      	is_hidden (BoundField attribute)


      	is_installed() (apps method)


      	is_multipart() (Form method)


      	is_naive() (in module django.utils.timezone)


      	is_password_usable() (in module django.contrib.auth.hashers)


      	is_protected_type() (in module django.utils.encoding)


      	is_relation (Field attribute)


      	is_rendered (SimpleTemplateResponse attribute)


      	is_secure() (HttpRequest method)


      	is_staff (in module django.contrib.auth)

      
        	(models.User attribute)


      


      	is_superuser (models.PermissionsMixin attribute)

      
        	(models.User attribute)


      


      	is_valid() (Form method)


      	is_vsi_based (GDALRaster attribute)


      	
    isnull

      
        	field lookup type


      


      	
    iso_year

      
        	field lookup type


      


      	
    istartswith

      
        	field lookup type


      


      	
    isvalid

      
        	field lookup type


      


      	IsValid (class in django.contrib.gis.db.models.functions)


      	item_attributes() (SyndicationFeed method)


      	item_geometry() (Feed method)


      	items (Sitemap attribute)


      	items() (backends.base.SessionBase method)

      
        	(QueryDict method)


      


      	iterator() (in module django.db.models.query.QuerySet)


  





J


  	
      	JavaScriptCatalog (class in django.views.i18n)


      	Jinja2 (class in django.forms.renderers)

      
        	(class in django.template.backends.jinja2)


      


      	
    join

      
        	template filter


      


      	json (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	json() (Response method)


      	
    json_script

      
        	template filter


      


      	JSONBAgg (class in django.contrib.postgres.aggregates)


      	JSONCatalog (class in django.views.i18n)


      	JSONField (class in django.contrib.postgres.fields)

      
        	(class in django.contrib.postgres.forms)


      


  

  	
      	
    jsonfield.contained_by

      
        	field lookup type


      


      	
    jsonfield.contains

      
        	field lookup type


      


      	
    jsonfield.has_any_keys

      
        	field lookup type


      


      	
    jsonfield.has_key

      
        	field lookup type


      


      	
    jsonfield.has_keys

      
        	field lookup type


      


      	
    jsonfield.key

      
        	field lookup type


      


      	JsonResponse (class in django.http)


  





K


  	
      	keep_lazy() (in module django.utils.functional)


      	keep_lazy_text() (in module django.utils.functional)


      	keys() (backends.base.SessionBase method)


  

  	
      	KeysValidator (class in django.contrib.postgres.validators)


      	kml (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	kwargs (ResolverMatch attribute)


  





L


  	
      	label (AppConfig attribute)

      
        	(BoundField attribute)


        	(Field attribute)


        	(LabelCommand attribute)


        	(Options attribute)


      


      	label_lower (Options attribute)


      	label_suffix (Field attribute)

      
        	(Form attribute)


      


      	label_tag() (BoundField method)


      	LabelCommand (class in django.core.management)


      	Lag (class in django.db.models.functions)


      	
    language

      
        	template tag


      


      	language code


      	
    language_bidi

      
        	template filter


      


      	
    LANGUAGE_CODE

      
        	setting


      


      	
    LANGUAGE_COOKIE_AGE

      
        	setting


      


      	
    LANGUAGE_COOKIE_DOMAIN

      
        	setting


      


      	
    LANGUAGE_COOKIE_HTTPONLY

      
        	setting


      


      	
    LANGUAGE_COOKIE_NAME

      
        	setting


      


      	
    LANGUAGE_COOKIE_PATH

      
        	setting


      


      	
    LANGUAGE_COOKIE_SAMESITE

      
        	setting


      


      	
    LANGUAGE_COOKIE_SECURE

      
        	setting


      


      	
    language_name

      
        	template filter


      


      	
    language_name_local

      
        	template filter


      


      	
    language_name_translated

      
        	template filter


      


      	LANGUAGE_SESSION_KEY (in module django.utils.translation)


      	
    LANGUAGES

      
        	setting


      


      	
    LANGUAGES_BIDI

      
        	setting


      


      	
    last

      
        	template filter


      


      	last() (in module django.db.models.query.QuerySet)


      	last_login (models.User attribute)


      	last_modified() (in module django.views.decorators.http)


      	last_name (models.User attribute)


      	lastmod (Sitemap attribute)


      	LastValue (class in django.db.models.functions)


      	lat_lon() (GeoIP2 method)


      	latest() (in module django.db.models.query.QuerySet)


      	latest_post_date() (SyndicationFeed method)


      	Layer (class in django.contrib.gis.gdal)


      	layer_count (DataSource attribute)


      	layer_name (Feature attribute)


      	LayerMapping (class in django.contrib.gis.utils)


      	Lead (class in django.db.models.functions)


      	learn_cache_key() (in module django.utils.cache)


      	Least (class in django.db.models.functions)


      	
    left

      
        	field lookup type


      


      	Left (class in django.db.models.functions)


      	
    length

      
        	template filter


      


      	Length (class in django.contrib.gis.db.models.functions)

      
        	(class in django.db.models.functions)


      


      	length (GEOSGeometry attribute)


      	
    length_is

      
        	template filter


      


      	lhs (Lookup attribute)

      
        	(Transform attribute)


      


      	limit (Sitemap attribute)


      	limit_choices_to (ForeignKey attribute)

      
        	(ManyToManyField attribute)


      


      	linear_name (SpatialReference attribute)


      	linear_units (SpatialReference attribute)


      	LinearRing (class in django.contrib.gis.geos)


      	
    linebreaks

      
        	template filter


      


      	
    linebreaksbr

      
        	template filter


      


      	LineLocatePoint (class in django.contrib.gis.db.models.functions)


      	
    linenumbers

      
        	template filter


      


      	LineString (class in django.contrib.gis.gdal)

      
        	(class in django.contrib.gis.geos)


      


      	LineStringField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


  

  	
      	list_display (ModelAdmin attribute)


      	list_display_links (ModelAdmin attribute)


      	list_editable (ModelAdmin attribute)


      	list_filter (ModelAdmin attribute)


      	list_max_show_all (ModelAdmin attribute)


      	list_per_page (ModelAdmin attribute)


      	list_select_related (ModelAdmin attribute)


      	listdir() (Storage method)


      	lists() (QueryDict method)


      	ListView (built-in class)


      	LiveServerTestCase (class in django.test)


      	
    ljust

      
        	template filter


      


      	ll (Envelope attribute)


      	Ln (class in django.db.models.functions)


      	
    load

      
        	template tag


      


      	
    loaddata

      
        	django-admin command


      


      	
    loaddata command line option

      
        	--app APP_LABEL


        	--database DATABASE


        	--exclude EXCLUDE, -e EXCLUDE


        	--format FORMAT


        	--ignorenonexistent, -i


      


      	Loader (class in django.template.loaders.base)


      	loader (Origin attribute)


      	loads() (in module django.core.signing)


      	local (SpatialReference attribute)


      	localdate() (in module django.utils.timezone)


      	locale name


      	
    LOCALE_PATHS

      
        	setting


      


      	LocaleMiddleware (class in django.middleware.locale)


      	localization


      	
    localize

      
        	template filter


        	template tag


      


      	localize (Field attribute)


      	
    localtime

      
        	template filter


        	template tag


      


      	localtime() (in module django.utils.timezone)


      	location (FileSystemStorage attribute)

      
        	(Sitemap attribute)


      


      	locmem.Loader (class in django.template.loaders)


      	Log (class in django.db.models.functions)


      	
    LOGGING

      
        	setting


      


      	
    LOGGING_CONFIG

      
        	setting


      


      	login() (Client method)

      
        	(in module django.contrib.auth)


      


      	login_form (AdminSite attribute)


      	
    LOGIN_REDIRECT_URL

      
        	setting


      


      	login_required() (in module django.contrib.auth.decorators)


      	login_template (AdminSite attribute)


      	
    LOGIN_URL

      
        	setting


      


      	login_url (AccessMixin attribute)


      	LoginRequiredMixin (class in django.contrib.auth.mixins)


      	LoginView (class in django.contrib.auth.views)


      	logout() (Client method)

      
        	(in module django.contrib.auth)


      


      	
    LOGOUT_REDIRECT_URL

      
        	setting


      


      	logout_template (AdminSite attribute)


      	logout_then_login() (in module django.contrib.auth.views)


      	LogoutView (class in django.contrib.auth.views)


      	lon_lat() (GeoIP2 method)


      	Long-term support release


      	Lookup (class in django.db.models)


      	lookup_allowed() (ModelAdmin method)


      	lookup_name (Lookup attribute)

      
        	(Transform attribute)


      


      	lookups.RegisterLookupMixin (class in django.db.models)


      	
    lorem

      
        	template tag


      


      	
    lower

      
        	template filter


      


      	Lower (class in django.db.models.functions)


      	LPad (class in django.db.models.functions)


      	
    lt

      
        	field lookup type


      


      	
    lte

      
        	field lookup type


      


      	LTrim (class in django.db.models.functions)


  





M


  	
      	mail_admins() (in module django.core.mail)


      	mail_managers() (in module django.core.mail)


      	make_aware() (in module django.utils.timezone)


      	
    make_list

      
        	template filter


      


      	make_naive() (in module django.utils.timezone)


      	make_object_list (YearArchiveView attribute)


      	make_password() (in module django.contrib.auth.hashers)


      	make_random_password() (models.BaseUserManager method)


      	MakeLine (class in django.contrib.gis.db.models)


      	
    makemessages

      
        	django-admin command


      


      	
    makemessages command line option

      
        	--add-location [{full,file,never}]


        	--all, -a


        	--domain DOMAIN, -d DOMAIN


        	--exclude EXCLUDE, -x EXCLUDE


        	--extension EXTENSIONS, -e EXTENSIONS


        	--ignore PATTERN, -i PATTERN


        	--keep-pot


        	--locale LOCALE, -l LOCALE


        	--no-default-ignore


        	--no-location


        	--no-wrap


        	--symlinks, -s


      


      	
    makemigrations

      
        	django-admin command


      


      	
    makemigrations command line option

      
        	--check


        	--dry-run


        	--empty


        	--merge


        	--name NAME, -n NAME


        	--no-header


        	--noinput, --no-input


      


      	MakeValid (class in django.contrib.gis.db.models.functions)


      	managed (Options attribute)


      	Manager (class in django.db.models)


      	
    MANAGERS

      
        	setting


      


      	managers.CurrentSiteManager (class in django.contrib.sites)


      	manifest_strict (storage.ManifestStaticFilesStorage attribute)


      	many_to_many (Field attribute)


      	many_to_one (Field attribute)


      	ManyToManyField (class in django.db.models)


      	map_height (BaseGeometryWidget attribute)

      
        	(GeoModelAdmin attribute)


      


      	map_srid (BaseGeometryWidget attribute)


      	map_template (GeoModelAdmin attribute)


      	map_width (BaseGeometryWidget attribute)

      
        	(GeoModelAdmin attribute)


      


      	mapping() (in module django.contrib.gis.utils)


      	mark_safe() (in module django.utils.safestring)


      	match (FilePathField attribute), [1]


      	Max (class in django.db.models)


      	max (GDALBand attribute)


      	max_digits (DecimalField attribute), [1]


      	max_length (BinaryField attribute)

      
        	(CharField attribute), [1]


        	(SimpleArrayField attribute)


        	(URLField attribute)


      


      	max_num (InlineModelAdmin attribute)


      	max_post_process_passes (storage.ManifestStaticFilesStorage attribute)


      	max_value (DecimalField attribute)

      
        	(IntegerField attribute)


      


      	max_x (Envelope attribute)


      	max_y (Envelope attribute)


      	MaxLengthValidator (class in django.core.validators)


      	MaxValueValidator (class in django.core.validators)


      	MD5 (class in django.db.models.functions)


      	mean (GDALBand attribute)


      	
    MEDIA_ROOT

      
        	setting


      


      	
    MEDIA_URL

      
        	setting


      


      	MemoryFileUploadHandler (class in django.core.files.uploadhandler)


      	MemSize (class in django.contrib.gis.db.models.functions)


      	merged (MultiLineString attribute)


      	message (EmailValidator attribute)

      
        	(ProhibitNullCharactersValidator attribute)


        	(RegexValidator attribute)


      


      	message file


      	
    MESSAGE_LEVEL

      
        	setting


      


      	
    MESSAGE_STORAGE

      
        	setting


      


      	
    MESSAGE_TAGS

      
        	setting


      


      	message_user() (ModelAdmin method)


      	MessageMiddleware (class in django.contrib.messages.middleware)


      	META (HttpRequest attribute)


      	metadata (GDALBand attribute)

      
        	(GDALRaster attribute)


      


      	method (HttpRequest attribute)


      	method_decorator() (in module django.utils.decorators)


      	
    MIDDLEWARE

      
        	setting


      


      	middleware.RedirectFallbackMiddleware (class in django.contrib.redirects)


      	MiddlewareNotUsed


  

  	
      	
    migrate

      
        	django-admin command


      


      	
    migrate command line option

      
        	--database DATABASE


        	--fake


        	--fake-initial


        	--noinput, --no-input


        	--plan


        	--run-syncdb


      


      	
    MIGRATION_MODULES

      
        	setting


      


      	Min (class in django.db.models)


      	min (GDALBand attribute)


      	min_length (CharField attribute)

      
        	(SimpleArrayField attribute)


        	(URLField attribute)


      


      	min_num (InlineModelAdmin attribute)


      	min_value (DecimalField attribute)

      
        	(IntegerField attribute)


      


      	min_x (Envelope attribute)


      	min_y (Envelope attribute)


      	MinimumLengthValidator (class in django.contrib.auth.password_validation)


      	MinLengthValidator (class in django.core.validators)


      	
    minute

      
        	field lookup type


      


      	MinValueValidator (class in django.core.validators)


      	missing_args_message (BaseCommand attribute)


      	Mod (class in django.db.models.functions)


      	mode (File attribute)


      	model


      	Model (class in django.db.models)


      	model (ContentType attribute)

      
        	(Field attribute)


        	(InlineModelAdmin attribute)


        	(django.views.generic.detail.SingleObjectMixin attribute)


        	(django.views.generic.edit.ModelFormMixin attribute)


        	(django.views.generic.list.MultipleObjectMixin attribute)


      


      	Model.DoesNotExist


      	Model.MultipleObjectsReturned


      	model_class() (ContentType method)


      	ModelAdmin (class in django.contrib.admin)


      	ModelBackend (class in django.contrib.auth.backends)


      	ModelChoiceField (class in django.forms)


      	ModelForm (class in django.forms)


      	modelform_factory() (in module django.forms.models)


      	modelformset_factory() (in module django.forms.models)


      	ModelMultipleChoiceField (class in django.forms)


      	models.AbstractBaseUser (class in django.contrib.auth)


      	models.AbstractUser (class in django.contrib.auth)


      	models.AnonymousUser (class in django.contrib.auth)


      	models.BaseInlineFormSet (class in django.forms)


      	models.BaseModelFormSet (class in django.forms)


      	models.BaseUserManager (class in django.contrib.auth)


      	models.CustomUser (class in django.contrib.auth)


      	models.CustomUserManager (class in django.contrib.auth)


      	models.Group (class in django.contrib.auth)


      	models.LogEntry (class in django.contrib.admin)


      	models.Permission (class in django.contrib.auth)


      	models.PermissionsMixin (class in django.contrib.auth)


      	models.ProtectedError


      	models.Redirect (class in django.contrib.redirects)


      	models.Site (class in django.contrib.sites)


      	models.User (class in django.contrib.auth)


      	models.UserManager (class in django.contrib.auth)


      	models_module (AppConfig attribute)


      	modifiable (GeoModelAdmin attribute)


      	modify_settings() (in module django.test)

      
        	(SimpleTestCase method)


      


      	module (AppConfig attribute)


      	
    month

      
        	field lookup type


      


      	month (MonthMixin attribute)


      	
    MONTH_DAY_FORMAT

      
        	setting


      


      	month_format (MonthMixin attribute)


      	MonthArchiveView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	MonthMixin (class in django.views.generic.dates)


      	months (SelectDateWidget attribute)


      	MTV


      	multi_db (TestCase attribute)

      
        	(TransactionTestCase attribute)


      


      	MultiLineString (class in django.contrib.gis.geos)


      	MultiLineStringField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	multiple_chunks() (File method)

      
        	(UploadedFile method)


      


      	MultipleChoiceField (class in django.forms)


      	MultipleHiddenInput (class in django.forms)


      	MultipleObjectsReturned


      	MultiPoint (class in django.contrib.gis.geos)


      	MultiPointField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	MultiPolygon (class in django.contrib.gis.geos)


      	MultiPolygonField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	MultiValueField (class in django.forms)


      	MultiWidget (class in django.forms)


      	MVC


  





N


  	
      	
    NAME

      
        	setting


      


      	name (AppConfig attribute)

      
        	(BoundField attribute)


        	(CheckConstraint attribute)


        	(ContentType attribute)


        	(CreateExtension attribute)


        	(DataSource attribute)


        	(ExclusionConstraint attribute)


        	(Field attribute)


        	(FieldFile attribute)


        	(File attribute)


        	(GDALRaster attribute)


        	(Index attribute)


        	(Layer attribute)


        	(OGRGeomType attribute)


        	(Origin attribute)


        	(SpatialReference attribute)


        	(UniqueConstraint attribute)


        	(UploadedFile attribute)


        	(models.Group attribute)


        	(models.Permission attribute)


        	(models.Site attribute)


      


      	namespace (ResolverMatch attribute)


      	namespaces (ResolverMatch attribute)


      	
    naturalday

      
        	template filter


      


      	
    naturaltime

      
        	template filter


      


      	never_cache() (in module django.views.decorators.cache)


      	new_file() (FileUploadHandler method)


      	new_objects (models.BaseModelFormSet attribute)


      	next_page_number() (Page method)


      	ngettext() (in module django.utils.translation)


      	ngettext_lazy() (in module django.utils.translation)


      	nodata_value (GDALBand attribute)


      	non_atomic_requests() (in module django.db.transaction)


      	NON_FIELD_ERRORS (in module django.core.exceptions)


      	non_field_errors() (Form method)


  

  	
      	none() (in module django.db.models.query.QuerySet)


      	noop (RunSQL attribute)


      	noop() (RunPython static method)


      	NoReverseMatch


      	normalize() (GEOSGeometry method)


      	normalize_email() (django.contrib.auth.models.BaseUserManager class method)


      	normalize_username() (django.contrib.auth.models.AbstractBaseUser class method)


      	NotSupportedError


      	
    now

      
        	template tag


      


      	Now (class in django.db.models.functions)


      	now() (in module django.utils.timezone)


      	npgettext() (in module django.utils.translation)


      	npgettext_lazy() (in module django.utils.translation)


      	NthValue (class in django.db.models.functions)


      	Ntile (class in django.db.models.functions)


      	null (Field attribute)


      	NullBooleanField (class in django.db.models)

      
        	(class in django.forms)


      


      	NullBooleanSelect (class in django.forms)


      	NullIf (class in django.db.models.functions)


      	num (OGRGeomType attribute)


      	num_coords (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	num_feat (Layer attribute)


      	num_fields (Feature attribute)

      
        	(Layer attribute)


      


      	num_geom (GEOSGeometry attribute)


      	num_interior_rings (Polygon attribute)


      	num_items() (SyndicationFeed method)


      	num_pages (Paginator attribute)


      	num_points (OGRGeometry attribute)


      	number (Page attribute)


      	
    NUMBER_GROUPING

      
        	setting


      


      	NumberInput (class in django.forms)


      	NumericPasswordValidator (class in django.contrib.auth.password_validation)


      	NumGeometries (class in django.contrib.gis.db.models.functions)


      	NumPoints (class in django.contrib.gis.db.models.functions)


  





O


  	
      	object (django.views.generic.edit.CreateView attribute)

      
        	(django.views.generic.edit.UpdateView attribute)


      


      	object_history_template (ModelAdmin attribute)


      	object_id (LogEntry attribute)


      	object_list (Page attribute)

      
        	(Paginator attribute)


      


      	object_repr (LogEntry attribute)


      	ObjectDoesNotExist


      	objects (Model attribute)


      	ogr (GEOSGeometry attribute)


      	OGRGeometry (class in django.contrib.gis.gdal)


      	OGRGeomType (class in django.contrib.gis.gdal)


      	
    ogrinspect

      
        	django-admin command


      


      	
    ogrinspect command line option

      
        	--blank BLANK


        	--decimal DECIMAL


        	--geom-name GEOM_NAME


        	--layer LAYER_KEY


        	--mapping


        	--multi-geom


        	--name-field NAME_FIELD


        	--no-imports


        	--null NULL


        	--srid SRID


      


      	on_commit() (in module django.db.transaction)


      	on_delete (ForeignKey attribute)


      	one_to_many (Field attribute)


      	one_to_one (Field attribute)


      	OneToOneField (class in django.db.models)


      	only() (in module django.db.models.query.QuerySet)


      	opclasses (Index attribute)


      	open() (django.contrib.gis.geoip2.GeoIP2 class method)

      
        	(FieldFile method)


        	(File method)


        	(Storage method)


      


      	openlayers_url (GeoModelAdmin attribute)


      	OpenLayersWidget (class in django.contrib.gis.forms.widgets)


      	OperationalError


      	
    OPTIONS

      
        	setting


      


      	Options (class in django.db.models.options)


  

  	
      	options() (Client method)

      
        	(django.views.generic.base.View method)


      


      	Ord (class in django.db.models.functions)


      	order_by() (in module django.db.models.query.QuerySet)


      	order_fields() (Form method)


      	order_with_respect_to (Options attribute)


      	ordered (QuerySet attribute)


      	ordering (ArrayAgg attribute)

      
        	(ModelAdmin attribute)


        	(Options attribute)


        	(StringAgg attribute)


        	(django.views.generic.list.MultipleObjectMixin attribute)


      


      	ordering_widget (BaseFormSet attribute)


      	
    ordinal

      
        	template filter


      


      	Origin (class in django.template.base)


      	origin (GDALRaster attribute)


      	orphans (Paginator attribute)


      	OSMGeoAdmin (class in django.contrib.gis.admin)


      	OSMWidget (class in django.contrib.gis.forms.widgets)


      	outdim (WKBWriter attribute)

      
        	(WKTWriter attribute)


      


      	OuterRef (class in django.db.models)


      	output_field (in module django.db.models)

      
        	(Transform attribute)


      


      	output_transaction (BaseCommand attribute)


      	
    overlaps

      
        	field lookup type


      


      	overlaps() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	
    overlaps_above

      
        	field lookup type


      


      	
    overlaps_below

      
        	field lookup type


      


      	
    overlaps_left

      
        	field lookup type


      


      	
    overlaps_right

      
        	field lookup type


      


      	override() (in module django.utils.timezone)

      
        	(in module django.utils.translation)


      


      	override_settings() (in module django.test)


  





P


  	
      	packages (JavaScriptCatalog attribute)


      	Page (class in django.core.paginator)


      	page() (Paginator method)


      	page_kwarg (django.views.generic.list.MultipleObjectMixin attribute)


      	page_range (Paginator attribute)


      	PageNotAnInteger


      	paginate_by (django.views.generic.list.MultipleObjectMixin attribute)


      	paginate_orphans (django.views.generic.list.MultipleObjectMixin attribute)


      	paginate_queryset() (django.views.generic.list.MultipleObjectMixin method)


      	Paginator (class in django.core.paginator)


      	paginator (ModelAdmin attribute)

      
        	(Page attribute)


      


      	paginator_class (django.views.generic.list.MultipleObjectMixin attribute)


      	parent_link (OneToOneField attribute)


      	parse_date() (in module django.utils.dateparse)


      	parse_datetime() (in module django.utils.dateparse)


      	parse_duration() (in module django.utils.dateparse)


      	parse_time() (in module django.utils.dateparse)


      	
    PASSWORD

      
        	setting


      


      	password (models.User attribute)


      	password_change_done_template (AdminSite attribute)


      	password_change_template (AdminSite attribute)


      	password_changed() (in module django.contrib.auth.password_validation)


      	
    PASSWORD_HASHERS

      
        	setting


      


      	
    PASSWORD_RESET_TIMEOUT_DAYS

      
        	setting


      


      	password_validators_help_text_html() (in module django.contrib.auth.password_validation)


      	password_validators_help_texts() (in module django.contrib.auth.password_validation)


      	PasswordChangeDoneView (class in django.contrib.auth.views)


      	PasswordChangeForm (class in django.contrib.auth.forms)


      	PasswordChangeView (class in django.contrib.auth.views)


      	PasswordInput (class in django.forms)


      	PasswordResetCompleteView (class in django.contrib.auth.views)


      	PasswordResetConfirmView (class in django.contrib.auth.views)


      	PasswordResetDoneView (class in django.contrib.auth.views)


      	PasswordResetForm (class in django.contrib.auth.forms)


      	PasswordResetView (class in django.contrib.auth.views)


      	Patch release


      	patch() (Client method)


      	patch_cache_control() (in module django.utils.cache)


      	patch_response_headers() (in module django.utils.cache)


      	patch_vary_headers() (in module django.utils.cache)


      	path (AppConfig attribute)

      
        	(FilePathField attribute), [1]


        	(HttpRequest attribute)


      


      	path() (in module django.urls)

      
        	(Storage method)


      


      	path_info (HttpRequest attribute)


      	pattern_name (django.views.generic.base.RedirectView attribute)


      	per_page (Paginator attribute)


      	PercentRank (class in django.db.models.functions)


      	Perimeter (class in django.contrib.gis.db.models.functions)


      	permanent (django.views.generic.base.RedirectView attribute)


      	permission_denied_message (AccessMixin attribute)


      	permission_required() (in module django.contrib.auth.decorators)


      	PermissionDenied


      	PermissionRequiredMixin (class in django.contrib.auth.mixins)


      	permissions (models.Group attribute)

      
        	(Options attribute)


      


      	PersistentRemoteUserMiddleware (class in django.contrib.auth.middleware)


      	pgettext() (in module django.utils.translation)


      	pgettext_lazy() (in module django.utils.translation)


      	
    phone2numeric

      
        	template filter


      


      	Pi (class in django.db.models.functions)


      	
    ping_google

      
        	django-admin command


      


      	
    ping_google command line option

      
        	--sitemap-uses-http


      


      	ping_google() (in module django.contrib.sitemaps)


      	pixel_count (GDALBand attribute)


      	pk (Model attribute)


      	pk_url_kwarg (django.views.generic.detail.SingleObjectMixin attribute)


      	
    pluralize

      
        	template filter


      


      	Point (class in django.contrib.gis.gdal)

      
        	(class in django.contrib.gis.geos)


      


      	point_count (OGRGeometry attribute)


      	point_on_surface (GEOSGeometry attribute)


  

  	
      	PointField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	PointOnSurface (class in django.contrib.gis.db.models.functions)


      	Polygon (class in django.contrib.gis.gdal)

      
        	(class in django.contrib.gis.geos)


      


      	PolygonField (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.forms)


      


      	pop() (backends.base.SessionBase method)

      
        	(Context method)


        	(QueryDict method)


      


      	popitem() (QueryDict method)


      	popup_response_template (ModelAdmin attribute)


      	
    PORT

      
        	setting


      


      	PositiveIntegerField (class in django.db.models)


      	PositiveSmallIntegerField (class in django.db.models)


      	POST (HttpRequest attribute)


      	post() (Client method)

      
        	(django.views.generic.edit.ProcessFormView method)


      


      	post_process() (storage.StaticFilesStorage method)


      	
    POSTGIS_VERSION

      
        	setting


      


      	Power (class in django.db.models.functions)


      	
    pprint

      
        	template filter


      


      	pre_init (django.db.models.signals attribute)


      	pre_save() (Field method)


      	precision (Field attribute)

      
        	(WKTWriter attribute)


      


      	Prefetch (class in django.db.models)


      	prefetch_related() (in module django.db.models.query.QuerySet)


      	prefetch_related_objects() (in module django.db.models)


      	prefix (django.views.generic.edit.FormMixin attribute)

      
        	(Form attribute)


      


      	prepared (GEOSGeometry attribute)


      	PreparedGeometry (class in django.contrib.gis.geos)


      	
    PREPEND_WWW

      
        	setting


      


      	prepopulated_fields (ModelAdmin attribute)


      	preserve_filters (ModelAdmin attribute)


      	pretty_wkt (SpatialReference attribute)


      	previous_page_number() (Page method)


      	primary_key (Field attribute)


      	priority (Sitemap attribute)


      	process_exception()


      	process_lhs() (Lookup method)


      	process_rhs() (Lookup method)


      	process_template_response()


      	process_view()


      	ProgrammingError


      	ProhibitNullCharactersValidator (class in django.core.validators)


      	proj (SpatialReference attribute)


      	proj4 (SpatialReference attribute)


      	project


      	project() (GEOSGeometry method)


      	project_normalized() (GEOSGeometry method)


      	projected (SpatialReference attribute)


      	property


      	PROTECT (in module django.db.models)


      	protocol (GenericIPAddressField attribute), [1]

      
        	(Sitemap attribute)


      


      	proxy (Options attribute)


      	push() (Context method)


      	put() (Client method)

      
        	(django.views.generic.edit.ProcessFormView method)


      


      	
    Python Enhancement Proposals

      
        	PEP 20


        	PEP 234


        	PEP 249, [1], [2], [3], [4], [5], [6]


        	PEP 257


        	PEP 3134


        	PEP 318


        	PEP 3333, [1], [2]


        	PEP 343


        	PEP 420


        	PEP 440, [1]


        	PEP 487


        	PEP 8, [1], [2], [3], [4]


      


      	PYTHONPATH


      	PYTHONSTARTUP


      	PYTHONWARNINGS


  





Q


  	
      	Q (class in django.db.models)


      	
    quarter

      
        	field lookup type


      


      	query_pk_and_slug (django.views.generic.detail.SingleObjectMixin attribute)


      	query_string (django.views.generic.base.RedirectView attribute)


      	QueryDict (class in django.http)


  

  	
      	queryset


      	QuerySet (class in django.db.models.query)


      	queryset (django.views.generic.detail.SingleObjectMixin attribute)

      
        	(ModelChoiceField attribute)


        	(ModelMultipleChoiceField attribute)


        	(django.views.generic.list.MultipleObjectMixin attribute)


      


  





R


  	
      	Radians (class in django.db.models.functions)


      	radio_fields (ModelAdmin attribute)


      	RadioSelect (class in django.forms)


      	raise_exception (AccessMixin attribute)


      	
    random

      
        	template filter


      


      	RandomUUID (class in django.contrib.postgres.functions)


      	
    range

      
        	field lookup type


      


      	range_type (django.contrib.postgres.forms.BaseRangeField attribute)

      
        	(RangeField attribute)


      


      	RangeBoundary (class in django.contrib.postgres.fields)


      	RangeField (class in django.contrib.postgres.fields)


      	
    rangefield.adjacent_to

      
        	field lookup type


      


      	
    rangefield.contained_by

      
        	field lookup type


      


      	
    rangefield.contains

      
        	field lookup type


      


      	
    rangefield.endswith

      
        	field lookup type


      


      	
    rangefield.fully_gt

      
        	field lookup type


      


      	
    rangefield.fully_lt

      
        	field lookup type


      


      	
    rangefield.isempty

      
        	field lookup type


      


      	
    rangefield.not_gt

      
        	field lookup type


      


      	
    rangefield.not_lt

      
        	field lookup type


      


      	
    rangefield.overlap

      
        	field lookup type


      


      	
    rangefield.startswith

      
        	field lookup type


      


      	RangeMaxValueValidator (class in django.contrib.postgres.validators)


      	RangeMinValueValidator (class in django.contrib.postgres.validators)


      	RangeOperators (class in django.contrib.postgres.fields)


      	RangeWidget (class in django.contrib.postgres.forms)


      	Rank (class in django.db.models.functions)


      	RasterField (class in django.contrib.gis.db.models)


      	raw() (in module django.db.models.query.QuerySet)

      
        	(Manager method)


      


      	raw_id_fields (InlineModelAdmin attribute)

      
        	(ModelAdmin attribute)


      


      	RawSQL (class in django.db.models.expressions)


      	re_path() (in module django.urls)


      	read() (HttpRequest method)

      
        	(UploadedFile method)


      


      	readable() (HttpResponse method)


      	readline() (HttpRequest method)


      	readlines() (HttpRequest method)


      	readonly_fields (ModelAdmin attribute)


      	ready (apps attribute)


      	ready() (AppConfig method)


      	reason_phrase (HttpResponse attribute)

      
        	(StreamingHttpResponse attribute)


      


      	receive_data_chunk() (FileUploadHandler method)


      	receiver() (in module django.dispatch)


      	recursive (FilePathField attribute), [1]


      	redirect() (in module django.shortcuts)


      	redirect_field_name (AccessMixin attribute)


      	redirect_to_login() (in module django.contrib.auth.views)


      	RedirectView (built-in class)


      	refresh_from_db() (Model method)


      	
    regex

      
        	field lookup type


      


      	regex (RegexField attribute)

      
        	(RegexValidator attribute)


      


      	RegexField (class in django.forms)


      	RegexValidator (class in django.core.validators)


      	register() (AdminSite method)

      
        	(in module django.contrib.admin)


        	(in module django.core.checks)


      


      	register_converter() (in module django.urls)


      	register_lookup() (django.db.models.lookups.RegisterLookupMixin class method)


      	RegrAvgX (class in django.contrib.postgres.aggregates)


      	RegrAvgY (class in django.contrib.postgres.aggregates)


      	RegrCount (class in django.contrib.postgres.aggregates)


      	RegrIntercept (class in django.contrib.postgres.aggregates)


      	
    regroup

      
        	template tag


      


      	RegrR2 (class in django.contrib.postgres.aggregates)


      	RegrSlope (class in django.contrib.postgres.aggregates)


      	RegrSXX (class in django.contrib.postgres.aggregates)


      	RegrSXY (class in django.contrib.postgres.aggregates)


      	RegrSYY (class in django.contrib.postgres.aggregates)


      	rel_db_type() (Field method)


      	relabeled_clone() (Expression method)


      	
    relate

      
        	field lookup type


      


      	relate() (GEOSGeometry method)


      	relate_pattern() (GEOSGeometry method)


      	related_model (Field attribute)


      	related_name (ForeignKey attribute)

      
        	(ManyToManyField attribute)


      


      	related_query_name (ForeignKey attribute)

      
        	(GenericRelation attribute)


        	(ManyToManyField attribute)


      


      	RelatedManager (class in django.db.models.fields.related)


      	relation_name (FilteredRelation attribute)


      	RemoteUserBackend (class in django.contrib.auth.backends)


      	RemoteUserMiddleware (class in django.contrib.auth.middleware)


      	remove() (RelatedManager method)


      	remove_constraint() (BaseDatabaseSchemaEditor method)


      	remove_field() (BaseDatabaseSchemaEditor method)


      	remove_index() (BaseDatabaseSchemaEditor method)


      	
    remove_stale_contenttypes

      
        	django-admin command


      


      	
    remove_stale_contenttypes command line option

      
        	--database DATABASE


      


      	remove_trailing_nulls (SplitArrayField attribute)


      	RemoveConstraint (class in django.db.migrations.operations)


      	RemoveField (class in django.db.migrations.operations)


      	RemoveIndex (class in django.db.migrations.operations)


      	RemoveIndexConcurrently (class in django.contrib.postgres.operations)


      	RenameField (class in django.db.migrations.operations)


      	RenameModel (class in django.db.migrations.operations)


      	render() (in module django.shortcuts)

      
        	(SimpleTemplateResponse method)


        	(Template method), [1]


        	(Widget method)


      


      	render_to_response() (django.views.generic.base.TemplateResponseMixin method)


      	render_to_string() (in module django.template.loader)


  

  	
      	render_value (PasswordInput attribute)


      	rendered_content (SimpleTemplateResponse attribute)


      	Repeat (class in django.db.models.functions)


      	Replace (class in django.db.models.functions)


      	request (Response attribute)


      	RequestAborted


      	RequestContext (class in django.template)


      	RequestFactory (class in django.test)


      	requests.RequestSite (class in django.contrib.sites)


      	require_all_fields (MultiValueField attribute)


      	require_GET() (in module django.views.decorators.http)


      	require_http_methods() (in module django.views.decorators.http)


      	require_POST() (in module django.views.decorators.http)


      	require_safe() (in module django.views.decorators.http)


      	required (Field attribute)


      	required_css_class (Form attribute)


      	required_db_features (Options attribute)


      	required_db_vendor (Options attribute)


      	REQUIRED_FIELDS (models.CustomUser attribute)


      	RequireDebugFalse (class in django.utils.log)


      	RequireDebugTrue (class in django.utils.log)


      	requires_csrf_token() (in module django.views.decorators.csrf)


      	requires_migrations_checks (BaseCommand attribute)


      	requires_system_checks (BaseCommand attribute)


      	reset_sequences (TransactionTestCase attribute)


      	
    resetcycle

      
        	template tag


      


      	resolve() (in module django.urls)


      	resolve_context() (SimpleTemplateResponse method)


      	resolve_expression() (Expression method)


      	resolve_template() (SimpleTemplateResponse method)


      	Resolver404


      	resolver_match (HttpRequest attribute)

      
        	(Response attribute)


      


      	ResolverMatch (class in django.urls)


      	Response (class in django.test)


      	response_add() (ModelAdmin method)


      	response_change() (ModelAdmin method)


      	response_class (django.views.generic.base.TemplateResponseMixin attribute)


      	response_delete() (ModelAdmin method)


      	response_gone_class (middleware.RedirectFallbackMiddleware attribute)


      	response_redirect_class (CommonMiddleware attribute)

      
        	(LocaleMiddleware attribute)


        	(middleware.RedirectFallbackMiddleware attribute)


      


      	Reverse (class in django.contrib.gis.db.models.functions)

      
        	(class in django.db.models.functions)


      


      	reverse() (in module django.db.models.query.QuerySet)

      
        	(in module django.urls)


      


      	reverse_lazy() (in module django.urls)


      	reverse_ordering() (Expression method)


      	
    RFC

      
        	RFC 1034, [1]


        	RFC 1123#section-5.2.14


        	RFC 2046#section-5.2.1


        	RFC 2388#section-5.3


        	RFC 2396


        	RFC 2396#section-2


        	RFC 2616, [1], [2]


        	RFC 2965#section-5.3


        	RFC 3986#section-3.2.2


        	RFC 3987


        	RFC 3987#section-3.1, [1]


        	RFC 3987#section-3.2, [1]


        	RFC 4287, [1]


        	RFC 4291#section-2.2, [1]


        	RFC 4648#section-5


        	RFC 5322#section-3.3


        	RFC 6265, [1], [2]


        	RFC 6265#section-4.1.2.6, [1]


        	RFC 6265#section-6.1


        	RFC 7231


        	RFC 7231#section-4.2.1, [1], [2], [3]


        	RFC 7231#section-4.3.4


        	RFC 7231#section-4.3.8


        	RFC 7231#section-6, [1], [2]


        	RFC 7231#section-6.1, [1]


        	RFC 7231#section-6.5.3


        	RFC 7231#section-7.1.1.1, [1]


        	RFC 7231#section-7.1.4, [1], [2], [3]


        	RFC 7232


        	RFC 7232#section-2.1


        	RFC 7232#section-3.1


        	RFC 7232#section-3.2


        	RFC 7232#section-3.3


        	RFC 7232#section-3.4


        	RFC 7232#section-4.1


        	RFC 7234


        	RFC 7234#section-4.2.2


        	RFC 7234#section-5.2.2.8


        	RFC 7239#section-5.3


        	RFC 7946, [1]


      


      	rhs (Lookup attribute)


      	
    right

      
        	field lookup type


      


      	Right (class in django.db.models.functions)


      	ring (GEOSGeometry attribute)


      	
    rjust

      
        	template filter


      


      	rollback() (in module django.db.transaction)


      	root_attributes() (SyndicationFeed method)


      	
    ROOT_URLCONF

      
        	setting


      


      	Round (class in django.db.models.functions)


      	route (ResolverMatch attribute)


      	RowNumber (class in django.db.models.functions)


      	RowRange (class in django.db.models.expressions)


      	RPad (class in django.db.models.functions)


      	Rss201rev2Feed (class in django.utils.feedgenerator)


      	RssFeed (class in django.utils.feedgenerator)


      	RssUserland091Feed (class in django.utils.feedgenerator)


      	RTrim (class in django.db.models.functions)


      	run_checks() (DiscoverRunner method)


      	run_suite() (DiscoverRunner method)


      	run_tests() (DiscoverRunner method)


      	RunPython (class in django.db.migrations.operations)


      	
    runserver

      
        	django-admin command


      


      	
    runserver command line option

      
        	--insecure


        	--ipv6, -6


        	--noreload


        	--nostatic


        	--nothreading


      


      	RunSQL (class in django.db.migrations.operations)


  





S


  	
      	
    safe

      
        	template filter


      


      	SafeExceptionReporterFilter (class in django.views.debug)


      	
    safeseq

      
        	template filter


      


      	SafeString (class in django.utils.safestring)


      	
    same_as

      
        	field lookup type


      


      	sample (CovarPop attribute)

      
        	(StdDev attribute)


        	(Variance attribute)


      


      	save() (base_session.BaseSessionManager method)

      
        	(FieldFile method)


        	(File method)


        	(LayerMapping method)


        	(Model method)


        	(Storage method)


      


      	save_as (ModelAdmin attribute)


      	save_as_continue (ModelAdmin attribute)


      	save_formset() (ModelAdmin method)


      	save_model() (ModelAdmin method)


      	save_on_top (ModelAdmin attribute)


      	save_related() (ModelAdmin method)


      	savepoint() (in module django.db.transaction)


      	savepoint_commit() (in module django.db.transaction)


      	savepoint_rollback() (in module django.db.transaction)


      	Scale (class in django.contrib.gis.db.models.functions)


      	scale (GDALRaster attribute)


      	scheme (HttpRequest attribute)


      	schemes (URLValidator attribute)


      	
    search

      
        	field lookup type


      


      	search_fields (ModelAdmin attribute)


      	SearchQuery (class in django.contrib.postgres.search)


      	SearchRank (class in django.contrib.postgres.search)


      	SearchVector (class in django.contrib.postgres.search)


      	SearchVectorField (class in django.contrib.postgres.search)


      	
    second

      
        	field lookup type


      


      	
    SECRET_KEY

      
        	setting


      


      	
    SECURE_BROWSER_XSS_FILTER

      
        	setting


      


      	
    SECURE_CONTENT_TYPE_NOSNIFF

      
        	setting


      


      	
    SECURE_HSTS_INCLUDE_SUBDOMAINS

      
        	setting


      


      	
    SECURE_HSTS_PRELOAD

      
        	setting


      


      	
    SECURE_HSTS_SECONDS

      
        	setting


      


      	
    SECURE_PROXY_SSL_HEADER

      
        	setting


      


      	
    SECURE_REDIRECT_EXEMPT

      
        	setting


      


      	
    SECURE_REFERRER_POLICY

      
        	setting


      


      	
    SECURE_SSL_HOST

      
        	setting


      


      	
    SECURE_SSL_REDIRECT

      
        	setting


      


      	SecurityMiddleware (class in django.middleware.security)


      	seekable() (HttpResponse method)


      	Select (class in django.forms)


      	select_for_update() (in module django.db.models.query.QuerySet)


      	select_on_save (Options attribute)


      	select_related() (in module django.db.models.query.QuerySet)


      	select_template() (Engine method)

      
        	(in module django.template.loader)


      


      	SelectDateWidget (class in django.forms)


      	SelectMultiple (class in django.forms)


      	semi_major (SpatialReference attribute)


      	semi_minor (SpatialReference attribute)


      	send() (Signal method)


      	send_mail() (AdminEmailHandler method)

      
        	(PasswordResetForm method)


        	(in module django.core.mail)


      


      	send_mass_mail() (in module django.core.mail)


      	send_robust() (Signal method)


      	
    sendtestemail

      
        	django-admin command


      


      	
    sendtestemail command line option

      
        	--admins


        	--managers


      


      	sensitive_post_parameters() (in module django.views.decorators.debug)


      	sensitive_variables() (in module django.views.decorators.debug)


      	SeparateDatabaseAndState (class in django.db.migrations.operations)


      	
    SERIALIZATION_MODULES

      
        	setting


      


      	serializers.JSONSerializer (class in django.contrib.sessions)


      	serializers.PickleSerializer (class in django.contrib.sessions)


      	
    SERVER_EMAIL

      
        	setting


      


      	session (Client attribute)

      
        	(HttpRequest attribute)


      


      	
    SESSION_CACHE_ALIAS

      
        	setting


      


      	
    SESSION_COOKIE_AGE

      
        	setting


      


      	
    SESSION_COOKIE_DOMAIN

      
        	setting


      


      	
    SESSION_COOKIE_HTTPONLY

      
        	setting


      


      	
    SESSION_COOKIE_NAME

      
        	setting


      


      	
    SESSION_COOKIE_PATH

      
        	setting


      


      	
    SESSION_COOKIE_SAMESITE

      
        	setting


      


      	
    SESSION_COOKIE_SECURE

      
        	setting


      


      	session_data (base_session.AbstractBaseSession attribute)


      	
    SESSION_ENGINE

      
        	setting


      


      	
    SESSION_EXPIRE_AT_BROWSER_CLOSE

      
        	setting


      


      	
    SESSION_FILE_PATH

      
        	setting


      


      	session_key (base_session.AbstractBaseSession attribute)


      	
    SESSION_SAVE_EVERY_REQUEST

      
        	setting


      


      	
    SESSION_SERIALIZER

      
        	setting


      


      	SessionMiddleware (class in django.contrib.sessions.middleware)


      	set() (cache method)


      	SET() (in module django.db.models)


      	set() (RelatedManager method)


      	set_autocommit() (in module django.db.transaction)


      	set_cookie() (HttpResponse method)


      	SET_DEFAULT (in module django.db.models)


      	set_expiry() (backends.base.SessionBase method)


      	set_headers() (FileResponse method)


      	set_language() (in module django.views.i18n)


      	set_many() (cache method)


      	SET_NULL (in module django.db.models)


      	set_password() (models.AbstractBaseUser method)

      
        	(models.User method)


      


      	set_rollback() (in module django.db.transaction)


      	set_signed_cookie() (HttpResponse method)


      	set_source_expressions() (Expression method)


      	set_test_cookie() (backends.base.SessionBase method)


      	set_unusable_password() (models.AbstractBaseUser method)

      
        	(models.User method)


      


      	setdefault() (backends.base.SessionBase method)

      
        	(Context method)


        	(HttpResponse method)


        	(QueryDict method)


      


      	setlist() (QueryDict method)


      	setlistdefault() (QueryDict method)


      	SetPasswordForm (class in django.contrib.auth.forms)


      	
    setting

      
        	ABSOLUTE_URL_OVERRIDES


        	ADMINS


        	ALLOWED_HOSTS


        	APPEND_SLASH


        	AUTHENTICATION_BACKENDS


        	AUTH_PASSWORD_VALIDATORS


        	AUTH_USER_MODEL


        	CACHES


        	CACHES-BACKEND


        	CACHES-KEY_FUNCTION


        	CACHES-KEY_PREFIX


        	CACHES-LOCATION


        	CACHES-OPTIONS


        	CACHES-TIMEOUT


        	CACHES-VERSION


        	CACHE_MIDDLEWARE_ALIAS


        	CACHE_MIDDLEWARE_KEY_PREFIX


        	CACHE_MIDDLEWARE_SECONDS


        	CONN_MAX_AGE


        	CSRF_COOKIE_AGE


        	CSRF_COOKIE_DOMAIN


        	CSRF_COOKIE_HTTPONLY


        	CSRF_COOKIE_NAME


        	CSRF_COOKIE_PATH


        	CSRF_COOKIE_SAMESITE


        	CSRF_COOKIE_SECURE


        	CSRF_FAILURE_VIEW


        	CSRF_HEADER_NAME


        	CSRF_TRUSTED_ORIGINS


        	CSRF_USE_SESSIONS


        	DATABASE-ATOMIC_REQUESTS


        	DATABASE-AUTOCOMMIT


        	DATABASE-DISABLE_SERVER_SIDE_CURSORS


        	DATABASE-ENGINE


        	DATABASE-TEST


        	DATABASE-TIME_ZONE


        	DATABASES


        	DATABASE_ROUTERS


        	DATAFILE


        	DATAFILE_EXTSIZE


        	DATAFILE_MAXSIZE


        	DATAFILE_SIZE


        	DATAFILE_TMP


        	DATAFILE_TMP_EXTSIZE


        	DATAFILE_TMP_MAXSIZE


        	DATAFILE_TMP_SIZE


        	DATA_UPLOAD_MAX_MEMORY_SIZE


        	DATA_UPLOAD_MAX_NUMBER_FIELDS


        	DATETIME_FORMAT


        	DATETIME_INPUT_FORMATS


        	DATE_FORMAT


        	DATE_INPUT_FORMATS


        	DEBUG


        	DEBUG_PROPAGATE_EXCEPTIONS


        	DECIMAL_SEPARATOR


        	DEFAULT_CHARSET


        	DEFAULT_EXCEPTION_REPORTER_FILTER


        	DEFAULT_FILE_STORAGE


        	DEFAULT_FROM_EMAIL


        	DEFAULT_INDEX_TABLESPACE


        	DEFAULT_TABLESPACE


        	DISALLOWED_USER_AGENTS


        	EMAIL_BACKEND


        	EMAIL_FILE_PATH


        	EMAIL_HOST


        	EMAIL_HOST_PASSWORD


        	EMAIL_HOST_USER


        	EMAIL_PORT


        	EMAIL_SSL_CERTFILE


        	EMAIL_SSL_KEYFILE


        	EMAIL_SUBJECT_PREFIX


        	EMAIL_TIMEOUT


        	EMAIL_USE_LOCALTIME


        	EMAIL_USE_SSL


        	EMAIL_USE_TLS


        	FILE_CHARSET


        	FILE_UPLOAD_DIRECTORY_PERMISSIONS


        	FILE_UPLOAD_HANDLERS


        	FILE_UPLOAD_MAX_MEMORY_SIZE


        	FILE_UPLOAD_PERMISSIONS


        	FILE_UPLOAD_TEMP_DIR


        	FIRST_DAY_OF_WEEK


        	FIXTURE_DIRS


        	FORCE_SCRIPT_NAME


        	FORMAT_MODULE_PATH


        	FORM_RENDERER


        	GDAL_LIBRARY_PATH


        	GEOIP_CITY


        	GEOIP_COUNTRY


        	GEOIP_PATH


        	GEOS_LIBRARY_PATH


        	HOST


        	IGNORABLE_404_URLS


        	INSTALLED_APPS


        	INTERNAL_IPS


        	LANGUAGES


        	LANGUAGES_BIDI


        	LANGUAGE_CODE


        	LANGUAGE_COOKIE_AGE


        	LANGUAGE_COOKIE_DOMAIN


        	LANGUAGE_COOKIE_HTTPONLY


        	LANGUAGE_COOKIE_NAME


        	LANGUAGE_COOKIE_PATH


        	LANGUAGE_COOKIE_SAMESITE


        	LANGUAGE_COOKIE_SECURE


        	LOCALE_PATHS


        	LOGGING


        	LOGGING_CONFIG


        	LOGIN_REDIRECT_URL


        	LOGIN_URL


        	LOGOUT_REDIRECT_URL


        	MANAGERS


        	MEDIA_ROOT


        	MEDIA_URL


        	MESSAGE_LEVEL


        	MESSAGE_STORAGE


        	MESSAGE_TAGS


        	MIDDLEWARE


        	MIGRATION_MODULES


        	MONTH_DAY_FORMAT


        	NAME


        	NUMBER_GROUPING


        	OPTIONS


        	PASSWORD


        	PASSWORD_HASHERS


        	PASSWORD_RESET_TIMEOUT_DAYS


        	PORT


        	POSTGIS_VERSION


        	PREPEND_WWW


        	ROOT_URLCONF


        	SECRET_KEY


        	SECURE_BROWSER_XSS_FILTER


        	SECURE_CONTENT_TYPE_NOSNIFF


        	SECURE_HSTS_INCLUDE_SUBDOMAINS


        	SECURE_HSTS_PRELOAD


        	SECURE_HSTS_SECONDS


        	SECURE_PROXY_SSL_HEADER


        	SECURE_REDIRECT_EXEMPT


        	SECURE_REFERRER_POLICY


        	SECURE_SSL_HOST


        	SECURE_SSL_REDIRECT


        	SERIALIZATION_MODULES


        	SERVER_EMAIL


        	SESSION_CACHE_ALIAS


        	SESSION_COOKIE_AGE


        	SESSION_COOKIE_DOMAIN


        	SESSION_COOKIE_HTTPONLY


        	SESSION_COOKIE_NAME


        	SESSION_COOKIE_PATH


        	SESSION_COOKIE_SAMESITE


        	SESSION_COOKIE_SECURE


        	SESSION_ENGINE


        	SESSION_EXPIRE_AT_BROWSER_CLOSE


        	SESSION_FILE_PATH


        	SESSION_SAVE_EVERY_REQUEST


        	SESSION_SERIALIZER


        	SHORT_DATETIME_FORMAT


        	SHORT_DATE_FORMAT


        	SIGNING_BACKEND


        	SILENCED_SYSTEM_CHECKS


        	SITE_ID


        	STATICFILES_DIRS


        	STATICFILES_FINDERS


        	STATICFILES_STORAGE


        	STATIC_ROOT


        	STATIC_URL


        	TEMPLATES


        	TEMPLATES-APP_DIRS


        	TEMPLATES-BACKEND


        	TEMPLATES-DIRS


        	TEMPLATES-NAME


        	TEMPLATES-OPTIONS


        	TEST_CHARSET


        	TEST_COLLATION


        	TEST_CREATE


        	TEST_DEPENDENCIES


        	TEST_MIRROR


        	TEST_NAME


        	TEST_NON_SERIALIZED_APPS


        	TEST_ORACLE_MANAGED_FILES


        	TEST_PASSWD


        	TEST_RUNNER


        	TEST_SERIALIZE


        	TEST_TBLSPACE


        	TEST_TBLSPACE_TMP


        	TEST_TEMPLATE


        	TEST_USER


        	TEST_USER_CREATE


        	THOUSAND_SEPARATOR


        	TIME_FORMAT


        	TIME_INPUT_FORMATS


        	TIME_ZONE


        	USER


        	USE_I18N


        	USE_L10N


        	USE_THOUSAND_SEPARATOR


        	USE_TZ


        	USE_X_FORWARDED_HOST


        	USE_X_FORWARDED_PORT


        	WSGI_APPLICATION


        	X_FRAME_OPTIONS


        	YEAR_MONTH_FORMAT


      


  

  	
      	settings() (SimpleTestCase method)


      	setup() (django.views.generic.base.View method)

      
        	(in module django)


      


      	setup_databases() (DiscoverRunner method)

      
        	(in module django.test.utils)


      


      	setup_test_environment() (DiscoverRunner method)

      
        	(in module django.test.utils)


      


      	setUpTestData() (django.test.TestCase class method)


      	SHA1 (class in django.db.models.functions)


      	SHA224 (class in django.db.models.functions)


      	SHA256 (class in django.db.models.functions)


      	SHA384 (class in django.db.models.functions)


      	SHA512 (class in django.db.models.functions)


      	
    shell

      
        	django-admin command


      


      	shell (Polygon attribute)


      	
    shell command line option

      
        	--command COMMAND, -c COMMAND


        	--interface {ipython,bpython,python}, -i {ipython,bpython,python}


        	--nostartup


      


      	
    SHORT_DATE_FORMAT

      
        	setting


      


      	
    SHORT_DATETIME_FORMAT

      
        	setting


      


      	shortcuts


      	shortcuts.get_current_site() (in module django.contrib.sites)


      	show_change_link (InlineModelAdmin attribute)


      	show_full_result_count (ModelAdmin attribute)


      	
    showmigrations

      
        	django-admin command


      


      	
    showmigrations command line option

      
        	--database DATABASE


        	--list, -l


        	--plan, -p


      


      	Sign (class in django.db.models.functions)


      	sign() (TimestampSigner method)


      	Signal (class in django.dispatch)


      	Signer (class in django.core.signing)


      	
    SIGNING_BACKEND

      
        	setting


      


      	
    SILENCED_SYSTEM_CHECKS

      
        	setting


      


      	simple (GEOSGeometry attribute)


      	simple_tag() (django.template.Library method)


      	SimpleArrayField (class in django.contrib.postgres.forms)


      	SimpleTemplateResponse (class in django.template.response)


      	SimpleTestCase (class in django.test)


      	simplify() (GEOSGeometry method)


      	Sin (class in django.db.models.functions)


      	site (HttpRequest attribute)


      	site_header (AdminSite attribute)


      	
    SITE_ID

      
        	setting


      


      	site_title (AdminSite attribute)


      	site_url (AdminSite attribute)


      	Sitemap (class in django.contrib.sitemaps)


      	size (ArrayField attribute)

      
        	(FieldFile attribute)


        	(File attribute)


        	(SplitArrayField attribute)


        	(UploadedFile attribute)


      


      	size() (Storage method)


      	skew (GDALRaster attribute)


      	skipIfDBFeature() (in module django.test)


      	skipUnlessDBFeature() (in module django.test)


      	
    slice

      
        	template filter


      


      	slug


      	slug_field (django.views.generic.detail.SingleObjectMixin attribute)


      	slug_url_kwarg (django.views.generic.detail.SingleObjectMixin attribute)


      	SlugField (class in django.db.models)

      
        	(class in django.forms)


      


      	
    slugify

      
        	template filter


      


      	slugify() (in module django.utils.text)


      	SmallAutoField (class in django.db.models)


      	SmallIntegerField (class in django.db.models)


      	smart_bytes() (in module django.utils.encoding)


      	smart_str() (in module django.utils.encoding)


      	smart_text() (in module django.utils.encoding)


      	SnapToGrid (class in django.contrib.gis.db.models.functions)


      	sortable_by (ModelAdmin attribute)


      	
    spaceless

      
        	template tag


      


      	spatial_filter (Layer attribute)


      	spatial_index (BaseSpatialField attribute)


      	SpatialReference (class in django.contrib.gis.gdal)


      	SpGistIndex (class in django.contrib.postgres.indexes)


      	SplitArrayField (class in django.contrib.postgres.forms)


      	SplitDateTimeField (class in django.forms)


      	SplitDateTimeWidget (class in django.forms)


      	SplitHiddenDateTimeWidget (class in django.forms)


      	
    sqlflush

      
        	django-admin command


      


      	
    sqlflush command line option

      
        	--database DATABASE


      


      	
    sqlmigrate

      
        	django-admin command


      


      	
    sqlmigrate command line option

      
        	--backwards


        	--database DATABASE


      


      	
    sqlsequencereset

      
        	django-admin command


      


      	
    sqlsequencereset command line option

      
        	--database DATABASE


      


      	Sqrt (class in django.db.models.functions)


      	
    squashmigrations

      
        	django-admin command


      


      	
    squashmigrations command line option

      
        	--no-header


        	--no-optimize


        	--noinput, --no-input


        	--squashed-name SQUASHED_NAME


      


      	srid (BaseSpatialField attribute)

      
        	(Field attribute)


        	(GDALRaster attribute)


        	(GEOSGeometry attribute)


        	(OGRGeometry attribute)


        	(SpatialReference attribute)


        	(WKBWriter attribute)


      


      	srs (GDALRaster attribute)

      
        	(GEOSGeometry attribute)


        	(Layer attribute)


        	(OGRGeometry attribute)


      


      	SRSException


      	StackedInline (class in django.contrib.admin)


      	staff_member_required() (in module django.contrib.admin.views.decorators)


      	start_index() (Page method)


      	
    startapp

      
        	django-admin command


      


      	
    startapp command line option

      
        	--extension EXTENSIONS, -e EXTENSIONS


        	--name FILES, -n FILES


        	--template TEMPLATE


      


      	
    startproject

      
        	django-admin command


      


      	
    startproject command line option

      
        	--extension EXTENSIONS, -e EXTENSIONS


        	--name FILES, -n FILES


        	--template TEMPLATE


      


      	
    startswith

      
        	field lookup type


      


      	
    static

      
        	template tag


      


      	static() (in module django.template.context_processors)


      	static.serve() (in module django.views)


      	static.static() (in module django.conf.urls)


      	
    STATIC_ROOT

      
        	setting


      


      	
    STATIC_URL

      
        	setting


      


      	
    STATICFILES_DIRS

      
        	setting


      


      	
    STATICFILES_FINDERS

      
        	setting


      


      	
    STATICFILES_STORAGE

      
        	setting


      


      	statistics() (GDALBand method)


      	status_code (HttpResponse attribute)

      
        	(Response attribute)


        	(StreamingHttpResponse attribute)


      


      	std (GDALBand attribute)


      	StdDev (class in django.db.models)


      	Storage (class in django.core.files.storage)


      	storage (FileField attribute)


      	storage.base.BaseStorage (class in django.contrib.messages)


      	storage.base.Message (class in django.contrib.messages)


      	storage.CachedStaticFilesStorage (class in django.contrib.staticfiles)


      	storage.cookie.CookieStorage (class in django.contrib.messages)


      	storage.fallback.FallbackStorage (class in django.contrib.messages)


      	storage.ManifestFilesMixin (class in django.contrib.staticfiles)


      	storage.ManifestStaticFilesStorage (class in django.contrib.staticfiles)


      	storage.session.SessionStorage (class in django.contrib.messages)


      	storage.StaticFilesStorage (class in django.contrib.staticfiles)


      	streaming (HttpResponse attribute)

      
        	(StreamingHttpResponse attribute)


      


      	streaming_content (StreamingHttpResponse attribute)


      	StreamingHttpResponse (class in django.http)


      	
    strictly_above

      
        	field lookup type


      


      	
    strictly_below

      
        	field lookup type


      


      	StrIndex (class in django.db.models.functions)


      	StringAgg (class in django.contrib.postgres.aggregates)


      	stringfilter() (django.template.defaultfilters method)


      	
    stringformat

      
        	template filter


      


      	strip (CharField attribute)

      
        	(RegexField attribute)


      


      	strip_tags() (in module django.utils.html)


      	
    striptags

      
        	template filter


      


      	style (BaseCommand attribute)


      	Subquery (class in django.db.models)


      	Substr (class in django.db.models.functions)


      	success_url (django.views.generic.edit.DeletionMixin attribute)

      
        	(django.views.generic.edit.FormMixin attribute)


        	(django.views.generic.edit.ModelFormMixin attribute)


      


      	suite_result() (DiscoverRunner method)


      	Sum (class in django.db.models)


      	supports_3d (BaseGeometryWidget attribute)


      	supports_microseconds (Widget attribute)


      	SuspiciousOperation


      	swappable (ForeignKey attribute)

      
        	(ManyToManyField attribute)


      


      	sym_difference() (GEOSGeometry method)

      
        	(OGRGeometry method)


      


      	SymDifference (class in django.contrib.gis.db.models.functions)


      	symmetrical (ManyToManyField attribute)


      	sync_to_async() (in module asgiref.sync)


      	SynchronousOnlyOperation


      	SyndicationFeed (class in django.utils.feedgenerator)


  





T


  	
      	TabularInline (class in django.contrib.admin)


      	Tan (class in django.db.models.functions)


      	teardown_databases() (DiscoverRunner method)

      
        	(in module django.test.utils)


      


      	teardown_test_environment() (DiscoverRunner method)

      
        	(in module django.test.utils)


      


      	tell() (HttpResponse method)


      	template

      
        	(Aggregate attribute)


      


      	Template (class in django.template)


      	template (Func attribute)

      
        	(InlineModelAdmin attribute)


        	(Window attribute)


      


      	
    template filter

      
        	add


        	addslashes


        	apnumber


        	capfirst


        	center


        	cut


        	date


        	default


        	default_if_none


        	dictsort


        	dictsortreversed


        	divisibleby


        	escape


        	escapejs


        	filesizeformat


        	first


        	floatformat


        	force_escape


        	get_digit


        	intcomma


        	intword


        	iriencode


        	join


        	json_script


        	language_bidi


        	language_name


        	language_name_local


        	language_name_translated


        	last


        	length


        	length_is


        	linebreaks


        	linebreaksbr


        	linenumbers


        	ljust


        	localize


        	localtime


        	lower


        	make_list


        	naturalday


        	naturaltime


        	ordinal


        	phone2numeric


        	pluralize


        	pprint


        	random


        	rjust


        	safe


        	safeseq


        	slice


        	slugify


        	stringformat


        	striptags


        	time


        	timesince


        	timeuntil


        	timezone


        	title


        	truncatechars


        	truncatechars_html


        	truncatewords


        	truncatewords_html


        	unlocalize


        	unordered_list


        	upper


        	urlencode


        	urlize


        	urlizetrunc


        	utc


        	wordcount


        	wordwrap


        	yesno


      


      	
    template tag

      
        	autoescape


        	block


        	blocktrans


        	cache


        	comment


        	csrf_token


        	cycle


        	debug


        	extends


        	filter


        	firstof


        	for


        	get_available_languages


        	get_current_language


        	get_current_language_bidi


        	get_current_timezone


        	get_flatpages


        	get_language_info


        	get_language_info_list


        	get_media_prefix


        	get_static_prefix


        	if


        	ifchanged


        	include


        	language


        	load


        	localize


        	localtime


        	lorem


        	now


        	regroup


        	resetcycle


        	spaceless


        	static


        	templatetag


        	timezone


        	trans


        	url


        	verbatim


        	widthratio


        	with


      


      	template_engine (django.views.generic.base.TemplateResponseMixin attribute)


      	template_name (BaseGeometryWidget attribute)

      
        	(OSMWidget attribute)


        	(Origin attribute)


        	(SimpleTemplateResponse attribute)


        	(django.views.generic.base.TemplateResponseMixin attribute)


      


      	template_name_field (django.views.generic.detail.SingleObjectTemplateResponseMixin attribute)


      	template_name_suffix (django.views.generic.detail.SingleObjectTemplateResponseMixin attribute)

      
        	(django.views.generic.edit.CreateView attribute)


        	(django.views.generic.edit.DeleteView attribute)


        	(django.views.generic.edit.UpdateView attribute)


        	(django.views.generic.list.MultipleObjectTemplateResponseMixin attribute)


      


      	TemplateDoesNotExist


      	TemplateResponse (class in django.template.response)


      	
    TEMPLATES

      
        	setting


      


      	templates (Response attribute)


      	
    TEMPLATES-APP_DIRS

      
        	setting


      


      	
    TEMPLATES-BACKEND

      
        	setting


      


      	
    TEMPLATES-DIRS

      
        	setting


      


      	
    TEMPLATES-NAME

      
        	setting


      


      	
    TEMPLATES-OPTIONS

      
        	setting


      


      	TemplatesSetting (class in django.forms.renderers)


      	TemplateSyntaxError


      	
    templatetag

      
        	template tag


      


  

  	
      	TemplateView (built-in class)


      	templatize() (in module django.utils.translation)


      	temporary_file_path() (TemporaryUploadedFile method)


      	TemporaryFileUploadHandler (class in django.core.files.uploadhandler)


      	TemporaryUploadedFile (class in django.core.files.uploadedfile)


      	
    test

      
        	django-admin command


      


      	
    test command line option

      
        	--debug-mode


        	--debug-sql, -d


        	--exclude-tag EXCLUDE_TAGS


        	--failfast


        	--keepdb


        	--noinput, --no-input


        	--parallel [N]


        	--pdb


        	--reverse, -r


        	--tag TAGS


        	--testrunner TESTRUNNER


        	-k TEST_NAME_PATTERNS


      


      	test_capability() (Layer method)


      	
    TEST_CHARSET

      
        	setting


      


      	
    TEST_COLLATION

      
        	setting


      


      	test_cookie_worked() (backends.base.SessionBase method)


      	
    TEST_CREATE

      
        	setting


      


      	
    TEST_DEPENDENCIES

      
        	setting


      


      	test_func() (UserPassesTestMixin method)


      	test_loader (DiscoverRunner attribute)


      	
    TEST_MIRROR

      
        	setting


      


      	
    TEST_NAME

      
        	setting


      


      	
    TEST_NON_SERIALIZED_APPS

      
        	setting


      


      	
    TEST_ORACLE_MANAGED_FILES

      
        	setting


      


      	
    TEST_PASSWD

      
        	setting


      


      	
    TEST_RUNNER

      
        	setting


      


      	test_runner (DiscoverRunner attribute)


      	
    TEST_SERIALIZE

      
        	setting


      


      	test_suite (DiscoverRunner attribute)


      	
    TEST_TBLSPACE

      
        	setting


      


      	
    TEST_TBLSPACE_TMP

      
        	setting


      


      	
    TEST_TEMPLATE

      
        	setting


      


      	
    TEST_USER

      
        	setting


      


      	
    TEST_USER_CREATE

      
        	setting


      


      	TestCase (class in django.test)


      	testing.StaticLiveServerTestCase (class in django.contrib.staticfiles)


      	
    testserver

      
        	django-admin command


      


      	
    testserver command line option

      
        	--addrport ADDRPORT


        	--noinput, --no-input


      


      	Textarea (class in django.forms)


      	TextField (class in django.db.models)


      	TextInput (class in django.forms)


      	
    THOUSAND_SEPARATOR

      
        	setting


      


      	through (ManyToManyField attribute)


      	through_fields (ManyToManyField attribute)


      	
    time

      
        	field lookup type


        	template filter


      


      	time_attrs (SplitDateTimeWidget attribute)


      	
    TIME_FORMAT

      
        	setting


      


      	time_format (SplitDateTimeWidget attribute)


      	
    TIME_INPUT_FORMATS

      
        	setting


      


      	
    TIME_ZONE

      
        	setting


      


      	TimeField (class in django.db.models)

      
        	(class in django.forms)


      


      	TimeInput (class in django.forms)


      	
    timesince

      
        	template filter


      


      	TimestampSigner (class in django.core.signing)


      	
    timeuntil

      
        	template filter


      


      	
    timezone

      
        	template filter


        	template tag


      


      	
    title

      
        	template filter


      


      	to_esri() (SpatialReference method)


      	to_field (ForeignKey attribute)


      	to_field_name (ModelChoiceField attribute)

      
        	(ModelMultipleChoiceField attribute)


      


      	to_locale() (in module django.utils.translation)


      	to_python() (Field method)


      	TodayArchiveView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	total_error_count() (BaseFormSet method)


      	touch() (cache method)


      	
    touches

      
        	field lookup type


      


      	touches() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	trace() (Client method)


      	
    trans

      
        	template tag


      


      	TransactionManagementError


      	TransactionNow (class in django.contrib.postgres.functions)


      	TransactionTestCase (class in django.test)


      	Transform (class in django.contrib.gis.db.models.functions)

      
        	(class in django.db.models)


      


      	transform() (GDALRaster method)

      
        	(GEOSGeometry method)


        	(OGRGeometry method)


      


      	Translate (class in django.contrib.gis.db.models.functions)


      	translation string


      	
    trigram_similar

      
        	field lookup type


      


      	TrigramDistance (class in django.contrib.postgres.search)


      	TrigramExtension (class in django.contrib.postgres.operations)


      	TrigramSimilarity (class in django.contrib.postgres.search)


      	Trim (class in django.db.models.functions)


      	trim (WKTWriter attribute)


      	Trunc (class in django.db.models.functions)


      	
    truncatechars

      
        	template filter


      


      	
    truncatechars_html

      
        	template filter


      


      	
    truncatewords

      
        	template filter


      


      	
    truncatewords_html

      
        	template filter


      


      	TruncDate (class in django.db.models.functions)


      	TruncDay (class in django.db.models.functions)


      	TruncHour (class in django.db.models.functions)


      	TruncMinute (class in django.db.models.functions)


      	TruncMonth (class in django.db.models.functions)


      	TruncQuarter (class in django.db.models.functions)


      	TruncSecond (class in django.db.models.functions)


      	TruncTime (class in django.db.models.functions)


      	TruncWeek (class in django.db.models.functions)


      	TruncYear (class in django.db.models.functions)


      	tuple (Envelope attribute)

      
        	(OGRGeometry attribute)


      


      	type (Field attribute)


      	type_name (Field attribute)


      	TypedChoiceField (class in django.forms)


      	TypedMultipleChoiceField (class in django.forms)


      	tz() (in module django.template.context_processors)


  





U


  	
      	
    unaccent

      
        	field lookup type


      


      	UnaccentExtension (class in django.contrib.postgres.operations)


      	unary_union (GEOSGeometry attribute)


      	Union (class in django.contrib.gis.db.models)

      
        	(class in django.contrib.gis.db.models.functions)


      


      	union() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(in module django.db.models.query.QuerySet)


      


      	unique (Field attribute)


      	unique_for_date (Field attribute)


      	unique_for_month (Field attribute)


      	unique_for_year (Field attribute)


      	unique_together (Options attribute)


      	UniqueConstraint (class in django.db.models)


      	unit_attname() (django.contrib.gis.measure.Area class method)

      
        	(django.contrib.gis.measure.Distance class method)


      


      	units (SpatialReference attribute)


      	
    unlocalize

      
        	template filter


      


      	
    unordered_list

      
        	template filter


      


      	unpack_ipv4 (GenericIPAddressField attribute), [1]


      	UnreadablePostError


      	unsign() (TimestampSigner method)


      	update() (Context method)

      
        	(QueryDict method)


        	(in module django.db.models.query.QuerySet)


      


      	update_or_create() (in module django.db.models.query.QuerySet)


      	update_session_auth_hash() (in module django.contrib.auth)


      	UpdateCacheMiddleware (class in django.middleware.cache)


      	UpdateView (built-in class)


      	upload_complete() (FileUploadHandler method)


      	upload_to (FileField attribute)


      	UploadedFile (class in django.core.files.uploadedfile)


      	
    upper

      
        	template filter


      


      	Upper (class in django.db.models.functions)


      	ur (Envelope attribute)


      	uri_to_iri() (in module django.utils.encoding)


      	
    url

      
        	template tag


      


      	url (django.views.generic.base.RedirectView attribute)

      
        	(FieldFile attribute)


        	(HttpResponseRedirect attribute)


      


      	url() (in module django.conf.urls)

      
        	(Storage method)


      


      	url_name (ResolverMatch attribute)


      	urlconf (HttpRequest attribute)


      	
    urlencode

      
        	template filter


      


  

  	
      	urlencode() (in module django.utils.http)

      
        	(QueryDict method)


      


      	URLField (class in django.db.models)

      
        	(class in django.forms)


      


      	URLInput (class in django.forms)


      	
    urlize

      
        	template filter


      


      	
    urlizetrunc

      
        	template filter


      


      	
    urls

      
        	definitive


      


      	urls.staticfiles_urlpatterns() (in module django.contrib.staticfiles)


      	urlsafe_base64_decode() (in module django.utils.http)


      	urlsafe_base64_encode() (in module django.utils.http)


      	URLValidator (class in django.core.validators)


      	
    USE_I18N

      
        	setting


      


      	
    USE_L10N

      
        	setting


      


      	use_required_attribute (Form attribute)


      	use_required_attribute() (Widget method)


      	
    USE_THOUSAND_SEPARATOR

      
        	setting


      


      	
    USE_TZ

      
        	setting


      


      	
    USE_X_FORWARDED_HOST

      
        	setting


      


      	
    USE_X_FORWARDED_PORT

      
        	setting


      


      	
    USER

      
        	setting


      


      	user (HttpRequest attribute)

      
        	(LogEntry attribute)


      


      	user_can_authenticate() (ModelBackend method)

      
        	(RemoteUserBackend method)


      


      	user_logged_in() (in module django.contrib.auth.signals)


      	user_logged_out() (in module django.contrib.auth.signals)


      	user_login_failed() (in module django.contrib.auth.signals)


      	user_passes_test() (in module django.contrib.auth.decorators)


      	user_permissions (models.User attribute)


      	UserAttributeSimilarityValidator (class in django.contrib.auth.password_validation)


      	UserChangeForm (class in django.contrib.auth.forms)


      	UserCreationForm (class in django.contrib.auth.forms)


      	username (models.User attribute)


      	USERNAME_FIELD (models.CustomUser attribute)


      	UserPassesTestMixin (class in django.contrib.auth.mixins)


      	using() (in module django.db.models.query.QuerySet)


      	
    utc

      
        	template filter


      


      	utc (in module django.utils.timezone)


      	UUIDField (class in django.db.models)

      
        	(class in django.forms)


      


  





V


  	
      	valid (GEOSGeometry attribute)


      	valid_reason (GEOSGeometry attribute)


      	validate() (SpatialReference method)


      	validate_comma_separated_integer_list (in module django.core.validators)


      	validate_email (in module django.core.validators)


      	validate_image_file_extension (in module django.core.validators)


      	validate_ipv46_address (in module django.core.validators)


      	validate_ipv4_address (in module django.core.validators)


      	validate_ipv6_address (in module django.core.validators)


      	validate_password() (in module django.contrib.auth.password_validation)


      	validate_slug (in module django.core.validators)


      	validate_unicode_slug (in module django.core.validators)


      	validate_unique() (Model method)


      	ValidationError


      	validators (Field attribute), [1]


      	validators.ASCIIUsernameValidator (class in django.contrib.auth)


      	validators.UnicodeUsernameValidator (class in django.contrib.auth)


      	Value (class in django.db.models)


      	value (Field attribute)


      	value() (BoundField method)


      	value_from_datadict() (Widget method)


      	value_from_object() (Field method)


      	value_omitted_from_data() (Widget method)


      	value_to_string() (Field method)


      	ValueRange (class in django.db.models.expressions)


      	values() (in module django.db.models.query.QuerySet)

      
        	(QueryDict method)


      


  

  	
      	values_list() (in module django.db.models.query.QuerySet)


      	Variance (class in django.db.models)


      	vary_on_cookie() (in module django.views.decorators.vary)


      	vary_on_headers() (in module django.views.decorators.vary)


      	
    verbatim

      
        	template tag


      


      	verbose_name (AppConfig attribute)

      
        	(Field attribute)


        	(InlineModelAdmin attribute)


        	(Options attribute)


      


      	verbose_name_plural (InlineModelAdmin attribute)

      
        	(Options attribute)


      


      	
    version

      
        	django-admin command


      


      	view


      	View (built-in class)


      	view_name (ResolverMatch attribute)


      	view_on_site (ModelAdmin attribute)


      	ViewDoesNotExist


      	views.Feed (class in django.contrib.syndication)


      	views.index() (in module django.contrib.sitemaps)


      	views.serve() (in module django.contrib.staticfiles)


      	views.sitemap() (in module django.contrib.sitemaps)


      	views.SuccessMessageMixin (class in django.contrib.messages)


      	vsi_buffer (GDALRaster attribute)


  





W


  	
      	W3CGeoFeed (class in django.contrib.gis.feeds)


      	Warning (class in django.core.checks)


      	warp() (GDALRaster method)


      	
    week

      
        	field lookup type


      


      	week (WeekMixin attribute)


      	
    week_day

      
        	field lookup type


      


      	week_format (WeekMixin attribute)


      	WeekArchiveView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	WeekMixin (class in django.views.generic.dates)


      	When (class in django.db.models.expressions)


      	whitelist (EmailValidator attribute)


      	Widget (class in django.forms)


      	widget (Field attribute)

      
        	(MultiValueField attribute)


      


      	widgets (MultiWidget attribute)


      	width (Field attribute)

      
        	(GDALBand attribute)


        	(GDALRaster attribute)


        	(ImageFile attribute)


      


      	width_field (ImageField attribute)


      	
    widthratio

      
        	template tag


      


      	Window (class in django.db.models.expressions)


      	window_compatible (Aggregate attribute)

      
        	(Expression attribute)


      


      	
    with

      
        	template tag


      


      	with_perm() (ModelBackend method)

      
        	(models.UserManager method)


      


  

  	
      	
    within

      
        	field lookup type


      


      	within() (GEOSGeometry method)

      
        	(OGRGeometry method)


        	(PreparedGeometry method)


      


      	wkb (GEOSGeometry attribute)

      
        	(OGRGeometry attribute)


      


      	wkb_size (OGRGeometry attribute)


      	WKBReader (class in django.contrib.gis.geos)


      	WKBWriter (class in django.contrib.gis.geos)


      	wkt (Envelope attribute)

      
        	(GEOSGeometry attribute)


        	(OGRGeometry attribute)


        	(SpatialReference attribute)


      


      	WKTReader (class in django.contrib.gis.geos)


      	WKTWriter (class in django.contrib.gis.geos)


      	
    wordcount

      
        	template filter


      


      	
    wordwrap

      
        	template filter


      


      	writable() (HttpResponse method)


      	write() (HttpResponse method)

      
        	(SyndicationFeed method)


        	(WKBWriter method)


        	(WKTWriter method)


      


      	write_hex() (WKBWriter method)


      	writelines() (HttpResponse method)


      	writeString() (SyndicationFeed method)


      	
    WSGI_APPLICATION

      
        	setting


      


      	wsgi_request (Response attribute)


  





X


  	
      	x (LineString attribute)

      
        	(Point attribute)


      


      	
    X_FRAME_OPTIONS

      
        	setting


      


  

  	
      	XFrameOptionsMiddleware (class in django.middleware.clickjacking)


      	
    xml

      
        	suckiness of


      


      	xml (SpatialReference attribute)


  





Y


  	
      	y (LineString attribute)

      
        	(Point attribute)


      


      	
    year

      
        	field lookup type


      


      	year (YearMixin attribute)


      	year_format (YearMixin attribute)


      	
    YEAR_MONTH_FORMAT

      
        	setting


      


  

  	
      	YearArchiveView (built-in class)

      
        	(class in django.views.generic.dates)


      


      	YearMixin (class in django.views.generic.dates)


      	years (SelectDateWidget attribute)


      	
    yesno

      
        	template filter


      


  





Z


  	
      	z (LineString attribute)

      
        	(Point attribute)


      


  







          

      

      

    

  

  
    
    django
    

    
 
  

    
      
          
            
  Source code for django

from django.utils.version import get_version

VERSION = (3, 0, 15, 'alpha', 0)

__version__ = get_version(VERSION)


[docs]def setup(set_prefix=True):
    """
    Configure the settings (this happens as a side effect of accessing the
    first setting), configure logging and populate the app registry.
    Set the thread-local urlresolvers script prefix if `set_prefix` is True.
    """
    from django.apps import apps
    from django.conf import settings
    from django.urls import set_script_prefix
    from django.utils.log import configure_logging

    configure_logging(settings.LOGGING_CONFIG, settings.LOGGING)
    if set_prefix:
        set_script_prefix(
            '/' if settings.FORCE_SCRIPT_NAME is None else settings.FORCE_SCRIPT_NAME
        )
    apps.populate(settings.INSTALLED_APPS)





          

      

      

    

  

  
    
    Overview: module code
    

    
 
  

    
      
          
            
  All modules for which code is available

	django

	django.apps.config

	django.apps.registry

	django.contrib.gis.measure

	django.contrib.messages.api

	django.contrib.messages.middleware

	django.contrib.postgres.validators

	django.contrib.sites.middleware

	django.contrib.sites.shortcuts

	django.core.exceptions

	django.core.files.base

	django.core.files.images

	django.core.files.uploadedfile

	django.core.files.uploadhandler

	django.core.mail

	django.core.mail.message


	django.core.paginator

	django.core.signing

	django.core.validators

	django.dispatch.dispatcher

	django.middleware.clickjacking

	django.utils.decorators

	django.utils.encoding

	django.utils.functional

	django.utils.html

	django.utils.http

	django.utils.module_loading

	django.utils.safestring

	django.utils.text

	django.utils.translation





          

      

      

    

  

  
    
    django.apps.config
    

    
 
  

    
      
          
            
  Source code for django.apps.config

import os
from importlib import import_module

from django.core.exceptions import ImproperlyConfigured
from django.utils.module_loading import module_has_submodule

MODELS_MODULE_NAME = 'models'


[docs]class AppConfig:
    """Class representing a Django application and its configuration."""

    def __init__(self, app_name, app_module):
        # Full Python path to the application e.g. 'django.contrib.admin'.
        self.name = app_name

        # Root module for the application e.g. <module 'django.contrib.admin'
        # from 'django/contrib/admin/__init__.py'>.
        self.module = app_module

        # Reference to the Apps registry that holds this AppConfig. Set by the
        # registry when it registers the AppConfig instance.
        self.apps = None

        # The following attributes could be defined at the class level in a
        # subclass, hence the test-and-set pattern.

        # Last component of the Python path to the application e.g. 'admin'.
        # This value must be unique across a Django project.
        if not hasattr(self, 'label'):
            self.label = app_name.rpartition(".")[2]

        # Human-readable name for the application e.g. "Admin".
        if not hasattr(self, 'verbose_name'):
            self.verbose_name = self.label.title()

        # Filesystem path to the application directory e.g.
        # '/path/to/django/contrib/admin'.
        if not hasattr(self, 'path'):
            self.path = self._path_from_module(app_module)

        # Module containing models e.g. <module 'django.contrib.admin.models'
        # from 'django/contrib/admin/models.py'>. Set by import_models().
        # None if the application doesn't have a models module.
        self.models_module = None

        # Mapping of lowercase model names to model classes. Initially set to
        # None to prevent accidental access before import_models() runs.
        self.models = None

    def __repr__(self):
        return '<%s: %s>' % (self.__class__.__name__, self.label)

    def _path_from_module(self, module):
        """Attempt to determine app's filesystem path from its module."""
        # See #21874 for extended discussion of the behavior of this method in
        # various cases.
        # Convert paths to list because Python's _NamespacePath doesn't support
        # indexing.
        paths = list(getattr(module, '__path__', []))
        if len(paths) != 1:
            filename = getattr(module, '__file__', None)
            if filename is not None:
                paths = [os.path.dirname(filename)]
            else:
                # For unknown reasons, sometimes the list returned by __path__
                # contains duplicates that must be removed (#25246).
                paths = list(set(paths))
        if len(paths) > 1:
            raise ImproperlyConfigured(
                "The app module %r has multiple filesystem locations (%r); "
                "you must configure this app with an AppConfig subclass "
                "with a 'path' class attribute." % (module, paths))
        elif not paths:
            raise ImproperlyConfigured(
                "The app module %r has no filesystem location, "
                "you must configure this app with an AppConfig subclass "
                "with a 'path' class attribute." % (module,))
        return paths[0]

    @classmethod
    def create(cls, entry):
        """
        Factory that creates an app config from an entry in INSTALLED_APPS.
        """
        try:
            # If import_module succeeds, entry is a path to an app module,
            # which may specify an app config class with default_app_config.
            # Otherwise, entry is a path to an app config class or an error.
            module = import_module(entry)

        except ImportError:
            # Track that importing as an app module failed. If importing as an
            # app config class fails too, we'll trigger the ImportError again.
            module = None

            mod_path, _, cls_name = entry.rpartition('.')

            # Raise the original exception when entry cannot be a path to an
            # app config class.
            if not mod_path:
                raise

        else:
            try:
                # If this works, the app module specifies an app config class.
                entry = module.default_app_config
            except AttributeError:
                # Otherwise, it simply uses the default app config class.
                return cls(entry, module)
            else:
                mod_path, _, cls_name = entry.rpartition('.')

        # If we're reaching this point, we must attempt to load the app config
        # class located at <mod_path>.<cls_name>
        mod = import_module(mod_path)
        try:
            cls = getattr(mod, cls_name)
        except AttributeError:
            if module is None:
                # If importing as an app module failed, check if the module
                # contains any valid AppConfigs and show them as choices.
                # Otherwise, that error probably contains the most informative
                # traceback, so trigger it again.
                candidates = sorted(
                    repr(name) for name, candidate in mod.__dict__.items()
                    if isinstance(candidate, type) and
                    issubclass(candidate, AppConfig) and
                    candidate is not AppConfig
                )
                if candidates:
                    raise ImproperlyConfigured(
                        "'%s' does not contain a class '%s'. Choices are: %s."
                        % (mod_path, cls_name, ', '.join(candidates))
                    )
                import_module(entry)
            else:
                raise

        # Check for obvious errors. (This check prevents duck typing, but
        # it could be removed if it became a problem in practice.)
        if not issubclass(cls, AppConfig):
            raise ImproperlyConfigured(
                "'%s' isn't a subclass of AppConfig." % entry)

        # Obtain app name here rather than in AppClass.__init__ to keep
        # all error checking for entries in INSTALLED_APPS in one place.
        try:
            app_name = cls.name
        except AttributeError:
            raise ImproperlyConfigured(
                "'%s' must supply a name attribute." % entry)

        # Ensure app_name points to a valid module.
        try:
            app_module = import_module(app_name)
        except ImportError:
            raise ImproperlyConfigured(
                "Cannot import '%s'. Check that '%s.%s.name' is correct." % (
                    app_name, mod_path, cls_name,
                )
            )

        # Entry is a path to an app config class.
        return cls(app_name, app_module)

[docs]    def get_model(self, model_name, require_ready=True):
        """
        Return the model with the given case-insensitive model_name.

        Raise LookupError if no model exists with this name.
        """
        if require_ready:
            self.apps.check_models_ready()
        else:
            self.apps.check_apps_ready()
        try:
            return self.models[model_name.lower()]
        except KeyError:
            raise LookupError(
                "App '%s' doesn't have a '%s' model." % (self.label, model_name))


[docs]    def get_models(self, include_auto_created=False, include_swapped=False):
        """
        Return an iterable of models.

        By default, the following models aren't included:

        - auto-created models for many-to-many relations without
          an explicit intermediate table,
        - models that have been swapped out.

        Set the corresponding keyword argument to True to include such models.
        Keyword arguments aren't documented; they're a private API.
        """
        self.apps.check_models_ready()
        for model in self.models.values():
            if model._meta.auto_created and not include_auto_created:
                continue
            if model._meta.swapped and not include_swapped:
                continue
            yield model


    def import_models(self):
        # Dictionary of models for this app, primarily maintained in the
        # 'all_models' attribute of the Apps this AppConfig is attached to.
        self.models = self.apps.all_models[self.label]

        if module_has_submodule(self.module, MODELS_MODULE_NAME):
            models_module_name = '%s.%s' % (self.name, MODELS_MODULE_NAME)
            self.models_module = import_module(models_module_name)

[docs]    def ready(self):
        """
        Override this method in subclasses to run code when Django starts.
        """






          

      

      

    

  

  
    
    django.apps.registry
    

    
 
  

    
      
          
            
  Source code for django.apps.registry

import functools
import sys
import threading
import warnings
from collections import Counter, defaultdict
from functools import partial

from django.core.exceptions import AppRegistryNotReady, ImproperlyConfigured

from .config import AppConfig


class Apps:
    """
    A registry that stores the configuration of installed applications.

    It also keeps track of models, e.g. to provide reverse relations.
    """

    def __init__(self, installed_apps=()):
        # installed_apps is set to None when creating the master registry
        # because it cannot be populated at that point. Other registries must
        # provide a list of installed apps and are populated immediately.
        if installed_apps is None and hasattr(sys.modules[__name__], 'apps'):
            raise RuntimeError("You must supply an installed_apps argument.")

        # Mapping of app labels => model names => model classes. Every time a
        # model is imported, ModelBase.__new__ calls apps.register_model which
        # creates an entry in all_models. All imported models are registered,
        # regardless of whether they're defined in an installed application
        # and whether the registry has been populated. Since it isn't possible
        # to reimport a module safely (it could reexecute initialization code)
        # all_models is never overridden or reset.
        self.all_models = defaultdict(dict)

        # Mapping of labels to AppConfig instances for installed apps.
        self.app_configs = {}

        # Stack of app_configs. Used to store the current state in
        # set_available_apps and set_installed_apps.
        self.stored_app_configs = []

        # Whether the registry is populated.
        self.apps_ready = self.models_ready = self.ready = False
        # For the autoreloader.
        self.ready_event = threading.Event()

        # Lock for thread-safe population.
        self._lock = threading.RLock()
        self.loading = False

        # Maps ("app_label", "modelname") tuples to lists of functions to be
        # called when the corresponding model is ready. Used by this class's
        # `lazy_model_operation()` and `do_pending_operations()` methods.
        self._pending_operations = defaultdict(list)

        # Populate apps and models, unless it's the master registry.
        if installed_apps is not None:
            self.populate(installed_apps)

    def populate(self, installed_apps=None):
        """
        Load application configurations and models.

        Import each application module and then each model module.

        It is thread-safe and idempotent, but not reentrant.
        """
        if self.ready:
            return

        # populate() might be called by two threads in parallel on servers
        # that create threads before initializing the WSGI callable.
        with self._lock:
            if self.ready:
                return

            # An RLock prevents other threads from entering this section. The
            # compare and set operation below is atomic.
            if self.loading:
                # Prevent reentrant calls to avoid running AppConfig.ready()
                # methods twice.
                raise RuntimeError("populate() isn't reentrant")
            self.loading = True

            # Phase 1: initialize app configs and import app modules.
            for entry in installed_apps:
                if isinstance(entry, AppConfig):
                    app_config = entry
                else:
                    app_config = AppConfig.create(entry)
                if app_config.label in self.app_configs:
                    raise ImproperlyConfigured(
                        "Application labels aren't unique, "
                        "duplicates: %s" % app_config.label)

                self.app_configs[app_config.label] = app_config
                app_config.apps = self

            # Check for duplicate app names.
            counts = Counter(
                app_config.name for app_config in self.app_configs.values())
            duplicates = [
                name for name, count in counts.most_common() if count > 1]
            if duplicates:
                raise ImproperlyConfigured(
                    "Application names aren't unique, "
                    "duplicates: %s" % ", ".join(duplicates))

            self.apps_ready = True

            # Phase 2: import models modules.
            for app_config in self.app_configs.values():
                app_config.import_models()

            self.clear_cache()

            self.models_ready = True

            # Phase 3: run ready() methods of app configs.
            for app_config in self.get_app_configs():
                app_config.ready()

            self.ready = True
            self.ready_event.set()

    def check_apps_ready(self):
        """Raise an exception if all apps haven't been imported yet."""
        if not self.apps_ready:
            from django.conf import settings
            # If "not ready" is due to unconfigured settings, accessing
            # INSTALLED_APPS raises a more helpful ImproperlyConfigured
            # exception.
            settings.INSTALLED_APPS
            raise AppRegistryNotReady("Apps aren't loaded yet.")

    def check_models_ready(self):
        """Raise an exception if all models haven't been imported yet."""
        if not self.models_ready:
            raise AppRegistryNotReady("Models aren't loaded yet.")

    def get_app_configs(self):
        """Import applications and return an iterable of app configs."""
        self.check_apps_ready()
        return self.app_configs.values()

    def get_app_config(self, app_label):
        """
        Import applications and returns an app config for the given label.

        Raise LookupError if no application exists with this label.
        """
        self.check_apps_ready()
        try:
            return self.app_configs[app_label]
        except KeyError:
            message = "No installed app with label '%s'." % app_label
            for app_config in self.get_app_configs():
                if app_config.name == app_label:
                    message += " Did you mean '%s'?" % app_config.label
                    break
            raise LookupError(message)

    # This method is performance-critical at least for Django's test suite.
    @functools.lru_cache(maxsize=None)
    def get_models(self, include_auto_created=False, include_swapped=False):
        """
        Return a list of all installed models.

        By default, the following models aren't included:

        - auto-created models for many-to-many relations without
          an explicit intermediate table,
        - models that have been swapped out.

        Set the corresponding keyword argument to True to include such models.
        """
        self.check_models_ready()

        result = []
        for app_config in self.app_configs.values():
            result.extend(app_config.get_models(include_auto_created, include_swapped))
        return result

    def get_model(self, app_label, model_name=None, require_ready=True):
        """
        Return the model matching the given app_label and model_name.

        As a shortcut, app_label may be in the form <app_label>.<model_name>.

        model_name is case-insensitive.

        Raise LookupError if no application exists with this label, or no
        model exists with this name in the application. Raise ValueError if
        called with a single argument that doesn't contain exactly one dot.
        """
        if require_ready:
            self.check_models_ready()
        else:
            self.check_apps_ready()

        if model_name is None:
            app_label, model_name = app_label.split('.')

        app_config = self.get_app_config(app_label)

        if not require_ready and app_config.models is None:
            app_config.import_models()

        return app_config.get_model(model_name, require_ready=require_ready)

    def register_model(self, app_label, model):
        # Since this method is called when models are imported, it cannot
        # perform imports because of the risk of import loops. It mustn't
        # call get_app_config().
        model_name = model._meta.model_name
        app_models = self.all_models[app_label]
        if model_name in app_models:
            if (model.__name__ == app_models[model_name].__name__ and
                    model.__module__ == app_models[model_name].__module__):
                warnings.warn(
                    "Model '%s.%s' was already registered. "
                    "Reloading models is not advised as it can lead to inconsistencies, "
                    "most notably with related models." % (app_label, model_name),
                    RuntimeWarning, stacklevel=2)
            else:
                raise RuntimeError(
                    "Conflicting '%s' models in application '%s': %s and %s." %
                    (model_name, app_label, app_models[model_name], model))
        app_models[model_name] = model
        self.do_pending_operations(model)
        self.clear_cache()

    def is_installed(self, app_name):
        """
        Check whether an application with this name exists in the registry.

        app_name is the full name of the app e.g. 'django.contrib.admin'.
        """
        self.check_apps_ready()
        return any(ac.name == app_name for ac in self.app_configs.values())

    def get_containing_app_config(self, object_name):
        """
        Look for an app config containing a given object.

        object_name is the dotted Python path to the object.

        Return the app config for the inner application in case of nesting.
        Return None if the object isn't in any registered app config.
        """
        self.check_apps_ready()
        candidates = []
        for app_config in self.app_configs.values():
            if object_name.startswith(app_config.name):
                subpath = object_name[len(app_config.name):]
                if subpath == '' or subpath[0] == '.':
                    candidates.append(app_config)
        if candidates:
            return sorted(candidates, key=lambda ac: -len(ac.name))[0]

    def get_registered_model(self, app_label, model_name):
        """
        Similar to get_model(), but doesn't require that an app exists with
        the given app_label.

        It's safe to call this method at import time, even while the registry
        is being populated.
        """
        model = self.all_models[app_label].get(model_name.lower())
        if model is None:
            raise LookupError(
                "Model '%s.%s' not registered." % (app_label, model_name))
        return model

    @functools.lru_cache(maxsize=None)
    def get_swappable_settings_name(self, to_string):
        """
        For a given model string (e.g. "auth.User"), return the name of the
        corresponding settings name if it refers to a swappable model. If the
        referred model is not swappable, return None.

        This method is decorated with lru_cache because it's performance
        critical when it comes to migrations. Since the swappable settings don't
        change after Django has loaded the settings, there is no reason to get
        the respective settings attribute over and over again.
        """
        for model in self.get_models(include_swapped=True):
            swapped = model._meta.swapped
            # Is this model swapped out for the model given by to_string?
            if swapped and swapped == to_string:
                return model._meta.swappable
            # Is this model swappable and the one given by to_string?
            if model._meta.swappable and model._meta.label == to_string:
                return model._meta.swappable
        return None

    def set_available_apps(self, available):
        """
        Restrict the set of installed apps used by get_app_config[s].

        available must be an iterable of application names.

        set_available_apps() must be balanced with unset_available_apps().

        Primarily used for performance optimization in TransactionTestCase.

        This method is safe in the sense that it doesn't trigger any imports.
        """
        available = set(available)
        installed = {app_config.name for app_config in self.get_app_configs()}
        if not available.issubset(installed):
            raise ValueError(
                "Available apps isn't a subset of installed apps, extra apps: %s"
                % ", ".join(available - installed)
            )

        self.stored_app_configs.append(self.app_configs)
        self.app_configs = {
            label: app_config
            for label, app_config in self.app_configs.items()
            if app_config.name in available
        }
        self.clear_cache()

    def unset_available_apps(self):
        """Cancel a previous call to set_available_apps()."""
        self.app_configs = self.stored_app_configs.pop()
        self.clear_cache()

    def set_installed_apps(self, installed):
        """
        Enable a different set of installed apps for get_app_config[s].

        installed must be an iterable in the same format as INSTALLED_APPS.

        set_installed_apps() must be balanced with unset_installed_apps(),
        even if it exits with an exception.

        Primarily used as a receiver of the setting_changed signal in tests.

        This method may trigger new imports, which may add new models to the
        registry of all imported models. They will stay in the registry even
        after unset_installed_apps(). Since it isn't possible to replay
        imports safely (e.g. that could lead to registering listeners twice),
        models are registered when they're imported and never removed.
        """
        if not self.ready:
            raise AppRegistryNotReady("App registry isn't ready yet.")
        self.stored_app_configs.append(self.app_configs)
        self.app_configs = {}
        self.apps_ready = self.models_ready = self.loading = self.ready = False
        self.clear_cache()
        self.populate(installed)

    def unset_installed_apps(self):
        """Cancel a previous call to set_installed_apps()."""
        self.app_configs = self.stored_app_configs.pop()
        self.apps_ready = self.models_ready = self.ready = True
        self.clear_cache()

    def clear_cache(self):
        """
        Clear all internal caches, for methods that alter the app registry.

        This is mostly used in tests.
        """
        # Call expire cache on each model. This will purge
        # the relation tree and the fields cache.
        self.get_models.cache_clear()
        if self.ready:
            # Circumvent self.get_models() to prevent that the cache is refilled.
            # This particularly prevents that an empty value is cached while cloning.
            for app_config in self.app_configs.values():
                for model in app_config.get_models(include_auto_created=True):
                    model._meta._expire_cache()

    def lazy_model_operation(self, function, *model_keys):
        """
        Take a function and a number of ("app_label", "modelname") tuples, and
        when all the corresponding models have been imported and registered,
        call the function with the model classes as its arguments.

        The function passed to this method must accept exactly n models as
        arguments, where n=len(model_keys).
        """
        # Base case: no arguments, just execute the function.
        if not model_keys:
            function()
        # Recursive case: take the head of model_keys, wait for the
        # corresponding model class to be imported and registered, then apply
        # that argument to the supplied function. Pass the resulting partial
        # to lazy_model_operation() along with the remaining model args and
        # repeat until all models are loaded and all arguments are applied.
        else:
            next_model, *more_models = model_keys

            # This will be executed after the class corresponding to next_model
            # has been imported and registered. The `func` attribute provides
            # duck-type compatibility with partials.
            def apply_next_model(model):
                next_function = partial(apply_next_model.func, model)
                self.lazy_model_operation(next_function, *more_models)
            apply_next_model.func = function

            # If the model has already been imported and registered, partially
            # apply it to the function now. If not, add it to the list of
            # pending operations for the model, where it will be executed with
            # the model class as its sole argument once the model is ready.
            try:
                model_class = self.get_registered_model(*next_model)
            except LookupError:
                self._pending_operations[next_model].append(apply_next_model)
            else:
                apply_next_model(model_class)

    def do_pending_operations(self, model):
        """
        Take a newly-prepared model and pass it to each function waiting for
        it. This is called at the very end of Apps.register_model().
        """
        key = model._meta.app_label, model._meta.model_name
        for function in self._pending_operations.pop(key, []):
            function(model)


apps = Apps(installed_apps=None)




          

      

      

    

  

  
    
    django.contrib.gis.measure
    

    
 
  

    
      
          
            
  Source code for django.contrib.gis.measure

# Copyright (c) 2007, Robert Coup <robert.coup@onetrackmind.co.nz>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
#   1. Redistributions of source code must retain the above copyright notice,
#      this list of conditions and the following disclaimer.
#
#   2. Redistributions in binary form must reproduce the above copyright
#      notice, this list of conditions and the following disclaimer in the
#      documentation and/or other materials provided with the distribution.
#
#   3. Neither the name of Distance nor the names of its contributors may be used
#      to endorse or promote products derived from this software without
#      specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
"""
Distance and Area objects to allow for sensible and convenient calculation
and conversions.

Authors: Robert Coup, Justin Bronn, Riccardo Di Virgilio

Inspired by GeoPy (https://github.com/geopy/geopy)
and Geoff Biggs' PhD work on dimensioned units for robotics.
"""
from decimal import Decimal
from functools import total_ordering

__all__ = ['A', 'Area', 'D', 'Distance']

NUMERIC_TYPES = (int, float, Decimal)
AREA_PREFIX = "sq_"


def pretty_name(obj):
    return obj.__name__ if obj.__class__ == type else obj.__class__.__name__


@total_ordering
class MeasureBase:
    STANDARD_UNIT = None
    ALIAS = {}
    UNITS = {}
    LALIAS = {}

    def __init__(self, default_unit=None, **kwargs):
        value, self._default_unit = self.default_units(kwargs)
        setattr(self, self.STANDARD_UNIT, value)
        if default_unit and isinstance(default_unit, str):
            self._default_unit = default_unit

    def _get_standard(self):
        return getattr(self, self.STANDARD_UNIT)

    def _set_standard(self, value):
        setattr(self, self.STANDARD_UNIT, value)

    standard = property(_get_standard, _set_standard)

    def __getattr__(self, name):
        if name in self.UNITS:
            return self.standard / self.UNITS[name]
        else:
            raise AttributeError('Unknown unit type: %s' % name)

    def __repr__(self):
        return '%s(%s=%s)' % (pretty_name(self), self._default_unit, getattr(self, self._default_unit))

    def __str__(self):
        return '%s %s' % (getattr(self, self._default_unit), self._default_unit)

    # **** Comparison methods ****

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.standard == other.standard
        else:
            return NotImplemented

    def __lt__(self, other):
        if isinstance(other, self.__class__):
            return self.standard < other.standard
        else:
            return NotImplemented

    # **** Operators methods ****

    def __add__(self, other):
        if isinstance(other, self.__class__):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard + other.standard)}
            )
        else:
            raise TypeError('%(class)s must be added with %(class)s' % {"class": pretty_name(self)})

    def __iadd__(self, other):
        if isinstance(other, self.__class__):
            self.standard += other.standard
            return self
        else:
            raise TypeError('%(class)s must be added with %(class)s' % {"class": pretty_name(self)})

    def __sub__(self, other):
        if isinstance(other, self.__class__):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard - other.standard)}
            )
        else:
            raise TypeError('%(class)s must be subtracted from %(class)s' % {"class": pretty_name(self)})

    def __isub__(self, other):
        if isinstance(other, self.__class__):
            self.standard -= other.standard
            return self
        else:
            raise TypeError('%(class)s must be subtracted from %(class)s' % {"class": pretty_name(self)})

    def __mul__(self, other):
        if isinstance(other, NUMERIC_TYPES):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard * other)}
            )
        else:
            raise TypeError('%(class)s must be multiplied with number' % {"class": pretty_name(self)})

    def __imul__(self, other):
        if isinstance(other, NUMERIC_TYPES):
            self.standard *= float(other)
            return self
        else:
            raise TypeError('%(class)s must be multiplied with number' % {"class": pretty_name(self)})

    def __rmul__(self, other):
        return self * other

    def __truediv__(self, other):
        if isinstance(other, self.__class__):
            return self.standard / other.standard
        if isinstance(other, NUMERIC_TYPES):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard / other)}
            )
        else:
            raise TypeError('%(class)s must be divided with number or %(class)s' % {"class": pretty_name(self)})

    def __itruediv__(self, other):
        if isinstance(other, NUMERIC_TYPES):
            self.standard /= float(other)
            return self
        else:
            raise TypeError('%(class)s must be divided with number' % {"class": pretty_name(self)})

    def __bool__(self):
        return bool(self.standard)

    def default_units(self, kwargs):
        """
        Return the unit value and the default units specified
        from the given keyword arguments dictionary.
        """
        val = 0.0
        default_unit = self.STANDARD_UNIT
        for unit, value in kwargs.items():
            if not isinstance(value, float):
                value = float(value)
            if unit in self.UNITS:
                val += self.UNITS[unit] * value
                default_unit = unit
            elif unit in self.ALIAS:
                u = self.ALIAS[unit]
                val += self.UNITS[u] * value
                default_unit = u
            else:
                lower = unit.lower()
                if lower in self.UNITS:
                    val += self.UNITS[lower] * value
                    default_unit = lower
                elif lower in self.LALIAS:
                    u = self.LALIAS[lower]
                    val += self.UNITS[u] * value
                    default_unit = u
                else:
                    raise AttributeError('Unknown unit type: %s' % unit)
        return val, default_unit

    @classmethod
    def unit_attname(cls, unit_str):
        """
        Retrieve the unit attribute name for the given unit string.
        For example, if the given unit string is 'metre', return 'm'.
        Raise an exception if an attribute cannot be found.
        """
        lower = unit_str.lower()
        if unit_str in cls.UNITS:
            return unit_str
        elif lower in cls.UNITS:
            return lower
        elif lower in cls.LALIAS:
            return cls.LALIAS[lower]
        else:
            raise Exception('Could not find a unit keyword associated with "%s"' % unit_str)


[docs]class Distance(MeasureBase):
    STANDARD_UNIT = "m"
    UNITS = {
        'chain': 20.1168,
        'chain_benoit': 20.116782,
        'chain_sears': 20.1167645,
        'british_chain_benoit': 20.1167824944,
        'british_chain_sears': 20.1167651216,
        'british_chain_sears_truncated': 20.116756,
        'cm': 0.01,
        'british_ft': 0.304799471539,
        'british_yd': 0.914398414616,
        'clarke_ft': 0.3047972654,
        'clarke_link': 0.201166195164,
        'fathom': 1.8288,
        'ft': 0.3048,
        'furlong': 201.168,
        'german_m': 1.0000135965,
        'gold_coast_ft': 0.304799710181508,
        'indian_yd': 0.914398530744,
        'inch': 0.0254,
        'km': 1000.0,
        'link': 0.201168,
        'link_benoit': 0.20116782,
        'link_sears': 0.20116765,
        'm': 1.0,
        'mi': 1609.344,
        'mm': 0.001,
        'nm': 1852.0,
        'nm_uk': 1853.184,
        'rod': 5.0292,
        'sears_yd': 0.91439841,
        'survey_ft': 0.304800609601,
        'um': 0.000001,
        'yd': 0.9144,
    }

    # Unit aliases for `UNIT` terms encountered in Spatial Reference WKT.
    ALIAS = {
        'centimeter': 'cm',
        'foot': 'ft',
        'inches': 'inch',
        'kilometer': 'km',
        'kilometre': 'km',
        'meter': 'm',
        'metre': 'm',
        'micrometer': 'um',
        'micrometre': 'um',
        'millimeter': 'mm',
        'millimetre': 'mm',
        'mile': 'mi',
        'yard': 'yd',
        'British chain (Benoit 1895 B)': 'british_chain_benoit',
        'British chain (Sears 1922)': 'british_chain_sears',
        'British chain (Sears 1922 truncated)': 'british_chain_sears_truncated',
        'British foot (Sears 1922)': 'british_ft',
        'British foot': 'british_ft',
        'British yard (Sears 1922)': 'british_yd',
        'British yard': 'british_yd',
        "Clarke's Foot": 'clarke_ft',
        "Clarke's link": 'clarke_link',
        'Chain (Benoit)': 'chain_benoit',
        'Chain (Sears)': 'chain_sears',
        'Foot (International)': 'ft',
        'Furrow Long': 'furlong',
        'German legal metre': 'german_m',
        'Gold Coast foot': 'gold_coast_ft',
        'Indian yard': 'indian_yd',
        'Link (Benoit)': 'link_benoit',
        'Link (Sears)': 'link_sears',
        'Nautical Mile': 'nm',
        'Nautical Mile (UK)': 'nm_uk',
        'US survey foot': 'survey_ft',
        'U.S. Foot': 'survey_ft',
        'Yard (Indian)': 'indian_yd',
        'Yard (Sears)': 'sears_yd'
    }
    LALIAS = {k.lower(): v for k, v in ALIAS.items()}

    def __mul__(self, other):
        if isinstance(other, self.__class__):
            return Area(
                default_unit=AREA_PREFIX + self._default_unit,
                **{AREA_PREFIX + self.STANDARD_UNIT: (self.standard * other.standard)}
            )
        elif isinstance(other, NUMERIC_TYPES):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard * other)}
            )
        else:
            raise TypeError('%(distance)s must be multiplied with number or %(distance)s' % {
                "distance": pretty_name(self.__class__),
            })



[docs]class Area(MeasureBase):
    STANDARD_UNIT = AREA_PREFIX + Distance.STANDARD_UNIT
    # Getting the square units values and the alias dictionary.
    UNITS = {'%s%s' % (AREA_PREFIX, k): v ** 2 for k, v in Distance.UNITS.items()}
    ALIAS = {k: '%s%s' % (AREA_PREFIX, v) for k, v in Distance.ALIAS.items()}
    LALIAS = {k.lower(): v for k, v in ALIAS.items()}

    def __truediv__(self, other):
        if isinstance(other, NUMERIC_TYPES):
            return self.__class__(
                default_unit=self._default_unit,
                **{self.STANDARD_UNIT: (self.standard / other)}
            )
        else:
            raise TypeError('%(class)s must be divided by a number' % {"class": pretty_name(self)})



# Shortcuts
D = Distance
A = Area




          

      

      

    

  

  
    
    django.contrib.messages.api
    

    
 
  

    
      
          
            
  Source code for django.contrib.messages.api

from django.contrib.messages import constants
from django.contrib.messages.storage import default_storage

__all__ = (
    'add_message', 'get_messages',
    'get_level', 'set_level',
    'debug', 'info', 'success', 'warning', 'error',
    'MessageFailure',
)


class MessageFailure(Exception):
    pass


[docs]def add_message(request, level, message, extra_tags='', fail_silently=False):
    """
    Attempt to add a message to the request using the 'messages' app.
    """
    try:
        messages = request._messages
    except AttributeError:
        if not hasattr(request, 'META'):
            raise TypeError(
                "add_message() argument must be an HttpRequest object, not "
                "'%s'." % request.__class__.__name__
            )
        if not fail_silently:
            raise MessageFailure(
                'You cannot add messages without installing '
                'django.contrib.messages.middleware.MessageMiddleware'
            )
    else:
        return messages.add(level, message, extra_tags)



[docs]def get_messages(request):
    """
    Return the message storage on the request if it exists, otherwise return
    an empty list.
    """
    return getattr(request, '_messages', [])



def get_level(request):
    """
    Return the minimum level of messages to be recorded.

    The default level is the ``MESSAGE_LEVEL`` setting. If this is not found,
    use the ``INFO`` level.
    """
    storage = getattr(request, '_messages', default_storage(request))
    return storage.level


def set_level(request, level):
    """
    Set the minimum level of messages to be recorded, and return ``True`` if
    the level was recorded successfully.

    If set to ``None``, use the default level (see the get_level() function).
    """
    if not hasattr(request, '_messages'):
        return False
    request._messages.level = level
    return True


def debug(request, message, extra_tags='', fail_silently=False):
    """Add a message with the ``DEBUG`` level."""
    add_message(request, constants.DEBUG, message, extra_tags=extra_tags,
                fail_silently=fail_silently)


def info(request, message, extra_tags='', fail_silently=False):
    """Add a message with the ``INFO`` level."""
    add_message(request, constants.INFO, message, extra_tags=extra_tags,
                fail_silently=fail_silently)


def success(request, message, extra_tags='', fail_silently=False):
    """Add a message with the ``SUCCESS`` level."""
    add_message(request, constants.SUCCESS, message, extra_tags=extra_tags,
                fail_silently=fail_silently)


def warning(request, message, extra_tags='', fail_silently=False):
    """Add a message with the ``WARNING`` level."""
    add_message(request, constants.WARNING, message, extra_tags=extra_tags,
                fail_silently=fail_silently)


def error(request, message, extra_tags='', fail_silently=False):
    """Add a message with the ``ERROR`` level."""
    add_message(request, constants.ERROR, message, extra_tags=extra_tags,
                fail_silently=fail_silently)




          

      

      

    

  

  
    
    django.contrib.messages.middleware
    

    
 
  

    
      
          
            
  Source code for django.contrib.messages.middleware

from django.conf import settings
from django.contrib.messages.storage import default_storage
from django.utils.deprecation import MiddlewareMixin


[docs]class MessageMiddleware(MiddlewareMixin):
    """
    Middleware that handles temporary messages.
    """

    def process_request(self, request):
        request._messages = default_storage(request)

    def process_response(self, request, response):
        """
        Update the storage backend (i.e., save the messages).

        Raise ValueError if not all messages could be stored and DEBUG is True.
        """
        # A higher middleware layer may return a request which does not contain
        # messages storage, so make no assumption that it will be there.
        if hasattr(request, '_messages'):
            unstored_messages = request._messages.update(response)
            if unstored_messages and settings.DEBUG:
                raise ValueError('Not all temporary messages could be stored.')
        return response





          

      

      

    

  

  
    
    django.contrib.postgres.validators
    

    
 
  

    
      
          
            
  Source code for django.contrib.postgres.validators

from django.core.exceptions import ValidationError
from django.core.validators import (
    MaxLengthValidator, MaxValueValidator, MinLengthValidator,
    MinValueValidator,
)
from django.utils.deconstruct import deconstructible
from django.utils.translation import gettext_lazy as _, ngettext_lazy


class ArrayMaxLengthValidator(MaxLengthValidator):
    message = ngettext_lazy(
        'List contains %(show_value)d item, it should contain no more than %(limit_value)d.',
        'List contains %(show_value)d items, it should contain no more than %(limit_value)d.',
        'limit_value')


class ArrayMinLengthValidator(MinLengthValidator):
    message = ngettext_lazy(
        'List contains %(show_value)d item, it should contain no fewer than %(limit_value)d.',
        'List contains %(show_value)d items, it should contain no fewer than %(limit_value)d.',
        'limit_value')


[docs]@deconstructible
class KeysValidator:
    """A validator designed for HStore to require/restrict keys."""

    messages = {
        'missing_keys': _('Some keys were missing: %(keys)s'),
        'extra_keys': _('Some unknown keys were provided: %(keys)s'),
    }
    strict = False

    def __init__(self, keys, strict=False, messages=None):
        self.keys = set(keys)
        self.strict = strict
        if messages is not None:
            self.messages = {**self.messages, **messages}

    def __call__(self, value):
        keys = set(value)
        missing_keys = self.keys - keys
        if missing_keys:
            raise ValidationError(
                self.messages['missing_keys'],
                code='missing_keys',
                params={'keys': ', '.join(missing_keys)},
            )
        if self.strict:
            extra_keys = keys - self.keys
            if extra_keys:
                raise ValidationError(
                    self.messages['extra_keys'],
                    code='extra_keys',
                    params={'keys': ', '.join(extra_keys)},
                )

    def __eq__(self, other):
        return (
            isinstance(other, self.__class__) and
            self.keys == other.keys and
            self.messages == other.messages and
            self.strict == other.strict
        )



[docs]class RangeMaxValueValidator(MaxValueValidator):
    def compare(self, a, b):
        return a.upper is None or a.upper > b
    message = _('Ensure that this range is completely less than or equal to %(limit_value)s.')



[docs]class RangeMinValueValidator(MinValueValidator):
    def compare(self, a, b):
        return a.lower is None or a.lower < b
    message = _('Ensure that this range is completely greater than or equal to %(limit_value)s.')





          

      

      

    

  

  
    
    django.contrib.sites.middleware
    

    
 
  

    
      
          
            
  Source code for django.contrib.sites.middleware

from django.utils.deprecation import MiddlewareMixin

from .shortcuts import get_current_site


[docs]class CurrentSiteMiddleware(MiddlewareMixin):
    """
    Middleware that sets `site` attribute to request object.
    """

    def process_request(self, request):
        request.site = get_current_site(request)





          

      

      

    

  

  
    
    django.contrib.sites.shortcuts
    

    
 
  

    
      
          
            
  Source code for django.contrib.sites.shortcuts

from django.apps import apps


def get_current_site(request):
    """
    Check if contrib.sites is installed and return either the current
    ``Site`` object or a ``RequestSite`` object based on the request.
    """
    # Imports are inside the function because its point is to avoid importing
    # the Site models when django.contrib.sites isn't installed.
    if apps.is_installed('django.contrib.sites'):
        from .models import Site
        return Site.objects.get_current(request)
    else:
        from .requests import RequestSite
        return RequestSite(request)




          

      

      

    

  

  
    
    django.core.exceptions
    

    
 
  

    
      
          
            
  Source code for django.core.exceptions

"""
Global Django exception and warning classes.
"""


[docs]class FieldDoesNotExist(Exception):
    """The requested model field does not exist"""
    pass



[docs]class AppRegistryNotReady(Exception):
    """The django.apps registry is not populated yet"""
    pass



[docs]class ObjectDoesNotExist(Exception):
    """The requested object does not exist"""
    silent_variable_failure = True



[docs]class MultipleObjectsReturned(Exception):
    """The query returned multiple objects when only one was expected."""
    pass



[docs]class SuspiciousOperation(Exception):
    """The user did something suspicious"""



class SuspiciousMultipartForm(SuspiciousOperation):
    """Suspect MIME request in multipart form data"""
    pass


class SuspiciousFileOperation(SuspiciousOperation):
    """A Suspicious filesystem operation was attempted"""
    pass


class DisallowedHost(SuspiciousOperation):
    """HTTP_HOST header contains invalid value"""
    pass


class DisallowedRedirect(SuspiciousOperation):
    """Redirect to scheme not in allowed list"""
    pass


class TooManyFieldsSent(SuspiciousOperation):
    """
    The number of fields in a GET or POST request exceeded
    settings.DATA_UPLOAD_MAX_NUMBER_FIELDS.
    """
    pass


class RequestDataTooBig(SuspiciousOperation):
    """
    The size of the request (excluding any file uploads) exceeded
    settings.DATA_UPLOAD_MAX_MEMORY_SIZE.
    """
    pass


[docs]class RequestAborted(Exception):
    """The request was closed before it was completed, or timed out."""
    pass



[docs]class PermissionDenied(Exception):
    """The user did not have permission to do that"""
    pass



[docs]class ViewDoesNotExist(Exception):
    """The requested view does not exist"""
    pass



[docs]class MiddlewareNotUsed(Exception):
    """This middleware is not used in this server configuration"""
    pass



[docs]class ImproperlyConfigured(Exception):
    """Django is somehow improperly configured"""
    pass



[docs]class FieldError(Exception):
    """Some kind of problem with a model field."""
    pass



NON_FIELD_ERRORS = '__all__'


[docs]class ValidationError(Exception):
    """An error while validating data."""
    def __init__(self, message, code=None, params=None):
        """
        The `message` argument can be a single error, a list of errors, or a
        dictionary that maps field names to lists of errors. What we define as
        an "error" can be either a simple string or an instance of
        ValidationError with its message attribute set, and what we define as
        list or dictionary can be an actual `list` or `dict` or an instance
        of ValidationError with its `error_list` or `error_dict` attribute set.
        """
        super().__init__(message, code, params)

        if isinstance(message, ValidationError):
            if hasattr(message, 'error_dict'):
                message = message.error_dict
            elif not hasattr(message, 'message'):
                message = message.error_list
            else:
                message, code, params = message.message, message.code, message.params

        if isinstance(message, dict):
            self.error_dict = {}
            for field, messages in message.items():
                if not isinstance(messages, ValidationError):
                    messages = ValidationError(messages)
                self.error_dict[field] = messages.error_list

        elif isinstance(message, list):
            self.error_list = []
            for message in message:
                # Normalize plain strings to instances of ValidationError.
                if not isinstance(message, ValidationError):
                    message = ValidationError(message)
                if hasattr(message, 'error_dict'):
                    self.error_list.extend(sum(message.error_dict.values(), []))
                else:
                    self.error_list.extend(message.error_list)

        else:
            self.message = message
            self.code = code
            self.params = params
            self.error_list = [self]

    @property
    def message_dict(self):
        # Trigger an AttributeError if this ValidationError
        # doesn't have an error_dict.
        getattr(self, 'error_dict')

        return dict(self)

    @property
    def messages(self):
        if hasattr(self, 'error_dict'):
            return sum(dict(self).values(), [])
        return list(self)

    def update_error_dict(self, error_dict):
        if hasattr(self, 'error_dict'):
            for field, error_list in self.error_dict.items():
                error_dict.setdefault(field, []).extend(error_list)
        else:
            error_dict.setdefault(NON_FIELD_ERRORS, []).extend(self.error_list)
        return error_dict

    def __iter__(self):
        if hasattr(self, 'error_dict'):
            for field, errors in self.error_dict.items():
                yield field, list(ValidationError(errors))
        else:
            for error in self.error_list:
                message = error.message
                if error.params:
                    message %= error.params
                yield str(message)

    def __str__(self):
        if hasattr(self, 'error_dict'):
            return repr(dict(self))
        return repr(list(self))

    def __repr__(self):
        return 'ValidationError(%s)' % self



[docs]class EmptyResultSet(Exception):
    """A database query predicate is impossible."""
    pass



[docs]class SynchronousOnlyOperation(Exception):
    """The user tried to call a sync-only function from an async context."""
    pass





          

      

      

    

  

  
    
    django.core.mail
    

    
 
  

    
      
          
            
  Source code for django.core.mail

"""
Tools for sending email.
"""
from django.conf import settings
# Imported for backwards compatibility and for the sake
# of a cleaner namespace. These symbols used to be in
# django/core/mail.py before the introduction of email
# backends and the subsequent reorganization (See #10355)
from django.core.mail.message import (
    DEFAULT_ATTACHMENT_MIME_TYPE, BadHeaderError, EmailMessage,
    EmailMultiAlternatives, SafeMIMEMultipart, SafeMIMEText,
    forbid_multi_line_headers, make_msgid,
)
from django.core.mail.utils import DNS_NAME, CachedDnsName
from django.utils.module_loading import import_string

__all__ = [
    'CachedDnsName', 'DNS_NAME', 'EmailMessage', 'EmailMultiAlternatives',
    'SafeMIMEText', 'SafeMIMEMultipart', 'DEFAULT_ATTACHMENT_MIME_TYPE',
    'make_msgid', 'BadHeaderError', 'forbid_multi_line_headers',
    'get_connection', 'send_mail', 'send_mass_mail', 'mail_admins',
    'mail_managers',
]


[docs]def get_connection(backend=None, fail_silently=False, **kwds):
    """Load an email backend and return an instance of it.

    If backend is None (default), use settings.EMAIL_BACKEND.

    Both fail_silently and other keyword arguments are used in the
    constructor of the backend.
    """
    klass = import_string(backend or settings.EMAIL_BACKEND)
    return klass(fail_silently=fail_silently, **kwds)



[docs]def send_mail(subject, message, from_email, recipient_list,
              fail_silently=False, auth_user=None, auth_password=None,
              connection=None, html_message=None):
    """
    Easy wrapper for sending a single message to a recipient list. All members
    of the recipient list will see the other recipients in the 'To' field.

    If auth_user is None, use the EMAIL_HOST_USER setting.
    If auth_password is None, use the EMAIL_HOST_PASSWORD setting.

    Note: The API for this method is frozen. New code wanting to extend the
    functionality should use the EmailMessage class directly.
    """
    connection = connection or get_connection(
        username=auth_user,
        password=auth_password,
        fail_silently=fail_silently,
    )
    mail = EmailMultiAlternatives(subject, message, from_email, recipient_list, connection=connection)
    if html_message:
        mail.attach_alternative(html_message, 'text/html')

    return mail.send()



[docs]def send_mass_mail(datatuple, fail_silently=False, auth_user=None,
                   auth_password=None, connection=None):
    """
    Given a datatuple of (subject, message, from_email, recipient_list), send
    each message to each recipient list. Return the number of emails sent.

    If from_email is None, use the DEFAULT_FROM_EMAIL setting.
    If auth_user and auth_password are set, use them to log in.
    If auth_user is None, use the EMAIL_HOST_USER setting.
    If auth_password is None, use the EMAIL_HOST_PASSWORD setting.

    Note: The API for this method is frozen. New code wanting to extend the
    functionality should use the EmailMessage class directly.
    """
    connection = connection or get_connection(
        username=auth_user,
        password=auth_password,
        fail_silently=fail_silently,
    )
    messages = [
        EmailMessage(subject, message, sender, recipient, connection=connection)
        for subject, message, sender, recipient in datatuple
    ]
    return connection.send_messages(messages)



[docs]def mail_admins(subject, message, fail_silently=False, connection=None,
                html_message=None):
    """Send a message to the admins, as defined by the ADMINS setting."""
    if not settings.ADMINS:
        return
    if not all(isinstance(a, (list, tuple)) and len(a) == 2 for a in settings.ADMINS):
        raise ValueError('The ADMINS setting must be a list of 2-tuples.')
    mail = EmailMultiAlternatives(
        '%s%s' % (settings.EMAIL_SUBJECT_PREFIX, subject), message,
        settings.SERVER_EMAIL, [a[1] for a in settings.ADMINS],
        connection=connection,
    )
    if html_message:
        mail.attach_alternative(html_message, 'text/html')
    mail.send(fail_silently=fail_silently)



[docs]def mail_managers(subject, message, fail_silently=False, connection=None,
                  html_message=None):
    """Send a message to the managers, as defined by the MANAGERS setting."""
    if not settings.MANAGERS:
        return
    if not all(isinstance(a, (list, tuple)) and len(a) == 2 for a in settings.MANAGERS):
        raise ValueError('The MANAGERS setting must be a list of 2-tuples.')
    mail = EmailMultiAlternatives(
        '%s%s' % (settings.EMAIL_SUBJECT_PREFIX, subject), message,
        settings.SERVER_EMAIL, [a[1] for a in settings.MANAGERS],
        connection=connection,
    )
    if html_message:
        mail.attach_alternative(html_message, 'text/html')
    mail.send(fail_silently=fail_silently)





          

      

      

    

  

  
    
    django.core.paginator
    

    
 
  

    
      
          
            
  Source code for django.core.paginator

import collections.abc
import inspect
import warnings
from math import ceil

from django.utils.deprecation import RemovedInDjango31Warning
from django.utils.functional import cached_property
from django.utils.inspect import method_has_no_args
from django.utils.translation import gettext_lazy as _


class UnorderedObjectListWarning(RuntimeWarning):
    pass


[docs]class InvalidPage(Exception):
    pass



[docs]class PageNotAnInteger(InvalidPage):
    pass



[docs]class EmptyPage(InvalidPage):
    pass



[docs]class Paginator:

    def __init__(self, object_list, per_page, orphans=0,
                 allow_empty_first_page=True):
        self.object_list = object_list
        self._check_object_list_is_ordered()
        self.per_page = int(per_page)
        self.orphans = int(orphans)
        self.allow_empty_first_page = allow_empty_first_page

    def validate_number(self, number):
        """Validate the given 1-based page number."""
        try:
            if isinstance(number, float) and not number.is_integer():
                raise ValueError
            number = int(number)
        except (TypeError, ValueError):
            raise PageNotAnInteger(_('That page number is not an integer'))
        if number < 1:
            raise EmptyPage(_('That page number is less than 1'))
        if number > self.num_pages:
            if number == 1 and self.allow_empty_first_page:
                pass
            else:
                raise EmptyPage(_('That page contains no results'))
        return number

[docs]    def get_page(self, number):
        """
        Return a valid page, even if the page argument isn't a number or isn't
        in range.
        """
        try:
            number = self.validate_number(number)
        except PageNotAnInteger:
            number = 1
        except EmptyPage:
            number = self.num_pages
        return self.page(number)


[docs]    def page(self, number):
        """Return a Page object for the given 1-based page number."""
        number = self.validate_number(number)
        bottom = (number - 1) * self.per_page
        top = bottom + self.per_page
        if top + self.orphans >= self.count:
            top = self.count
        return self._get_page(self.object_list[bottom:top], number, self)


    def _get_page(self, *args, **kwargs):
        """
        Return an instance of a single page.

        This hook can be used by subclasses to use an alternative to the
        standard :cls:`Page` object.
        """
        return Page(*args, **kwargs)

    @cached_property
    def count(self):
        """Return the total number of objects, across all pages."""
        c = getattr(self.object_list, 'count', None)
        if callable(c) and not inspect.isbuiltin(c) and method_has_no_args(c):
            return c()
        return len(self.object_list)

    @cached_property
    def num_pages(self):
        """Return the total number of pages."""
        if self.count == 0 and not self.allow_empty_first_page:
            return 0
        hits = max(1, self.count - self.orphans)
        return ceil(hits / self.per_page)

    @property
    def page_range(self):
        """
        Return a 1-based range of pages for iterating through within
        a template for loop.
        """
        return range(1, self.num_pages + 1)

    def _check_object_list_is_ordered(self):
        """
        Warn if self.object_list is unordered (typically a QuerySet).
        """
        ordered = getattr(self.object_list, 'ordered', None)
        if ordered is not None and not ordered:
            obj_list_repr = (
                '{} {}'.format(self.object_list.model, self.object_list.__class__.__name__)
                if hasattr(self.object_list, 'model')
                else '{!r}'.format(self.object_list)
            )
            warnings.warn(
                'Pagination may yield inconsistent results with an unordered '
                'object_list: {}.'.format(obj_list_repr),
                UnorderedObjectListWarning,
                stacklevel=3
            )



class QuerySetPaginator(Paginator):

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'The QuerySetPaginator alias of Paginator is deprecated.',
            RemovedInDjango31Warning, stacklevel=2,
        )
        super().__init__(*args, **kwargs)


[docs]class Page(collections.abc.Sequence):

    def __init__(self, object_list, number, paginator):
        self.object_list = object_list
        self.number = number
        self.paginator = paginator

    def __repr__(self):
        return '<Page %s of %s>' % (self.number, self.paginator.num_pages)

    def __len__(self):
        return len(self.object_list)

    def __getitem__(self, index):
        if not isinstance(index, (int, slice)):
            raise TypeError(
                'Page indices must be integers or slices, not %s.'
                % type(index).__name__
            )
        # The object_list is converted to a list so that if it was a QuerySet
        # it won't be a database hit per __getitem__.
        if not isinstance(self.object_list, list):
            self.object_list = list(self.object_list)
        return self.object_list[index]

[docs]    def has_next(self):
        return self.number < self.paginator.num_pages


[docs]    def has_previous(self):
        return self.number > 1


[docs]    def has_other_pages(self):
        return self.has_previous() or self.has_next()


[docs]    def next_page_number(self):
        return self.paginator.validate_number(self.number + 1)


[docs]    def previous_page_number(self):
        return self.paginator.validate_number(self.number - 1)


[docs]    def start_index(self):
        """
        Return the 1-based index of the first object on this page,
        relative to total objects in the paginator.
        """
        # Special case, return zero if no items.
        if self.paginator.count == 0:
            return 0
        return (self.paginator.per_page * (self.number - 1)) + 1


[docs]    def end_index(self):
        """
        Return the 1-based index of the last object on this page,
        relative to total objects found (hits).
        """
        # Special case for the last page because there can be orphans.
        if self.number == self.paginator.num_pages:
            return self.paginator.count
        return self.number * self.paginator.per_page






          

      

      

    

  

  
    
    django.core.signing
    

    
 
  

    
      
          
            
  Source code for django.core.signing

"""
Functions for creating and restoring url-safe signed JSON objects.

The format used looks like this:

>>> signing.dumps("hello")
'ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk'

There are two components here, separated by a ':'. The first component is a
URLsafe base64 encoded JSON of the object passed to dumps(). The second
component is a base64 encoded hmac/SHA1 hash of "$first_component:$secret"

signing.loads(s) checks the signature and returns the deserialized object.
If the signature fails, a BadSignature exception is raised.

>>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk")
'hello'
>>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified")
...
BadSignature: Signature failed: ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified

You can optionally compress the JSON prior to base64 encoding it to save
space, using the compress=True argument. This checks if compression actually
helps and only applies compression if the result is a shorter string:

>>> signing.dumps(list(range(1, 20)), compress=True)
'.eJwFwcERACAIwLCF-rCiILN47r-GyZVJsNgkxaFxoDgxcOHGxMKD_T7vhAml:1QaUaL:BA0thEZrp4FQVXIXuOvYJtLJSrQ'

The fact that the string is compressed is signalled by the prefixed '.' at the
start of the base64 JSON.

There are 65 url-safe characters: the 64 used by url-safe base64 and the ':'.
These functions make use of all of them.
"""

import base64
import datetime
import json
import re
import time
import zlib

from django.conf import settings
from django.utils import baseconv
from django.utils.crypto import constant_time_compare, salted_hmac
from django.utils.encoding import force_bytes
from django.utils.module_loading import import_string

_SEP_UNSAFE = re.compile(r'^[A-z0-9-_=]*$')


class BadSignature(Exception):
    """Signature does not match."""
    pass


class SignatureExpired(BadSignature):
    """Signature timestamp is older than required max_age."""
    pass


def b64_encode(s):
    return base64.urlsafe_b64encode(s).strip(b'=')


def b64_decode(s):
    pad = b'=' * (-len(s) % 4)
    return base64.urlsafe_b64decode(s + pad)


def base64_hmac(salt, value, key):
    return b64_encode(salted_hmac(salt, value, key).digest()).decode()


def get_cookie_signer(salt='django.core.signing.get_cookie_signer'):
    Signer = import_string(settings.SIGNING_BACKEND)
    key = force_bytes(settings.SECRET_KEY)  # SECRET_KEY may be str or bytes.
    return Signer(b'django.http.cookies' + key, salt=salt)


class JSONSerializer:
    """
    Simple wrapper around json to be used in signing.dumps and
    signing.loads.
    """
    def dumps(self, obj):
        return json.dumps(obj, separators=(',', ':')).encode('latin-1')

    def loads(self, data):
        return json.loads(data.decode('latin-1'))


[docs]def dumps(obj, key=None, salt='django.core.signing', serializer=JSONSerializer, compress=False):
    """
    Return URL-safe, hmac/SHA1 signed base64 compressed JSON string. If key is
    None, use settings.SECRET_KEY instead.

    If compress is True (not the default), check if compressing using zlib can
    save some space. Prepend a '.' to signify compression. This is included
    in the signature, to protect against zip bombs.

    Salt can be used to namespace the hash, so that a signed string is
    only valid for a given namespace. Leaving this at the default
    value or re-using a salt value across different parts of your
    application without good cause is a security risk.

    The serializer is expected to return a bytestring.
    """
    data = serializer().dumps(obj)

    # Flag for if it's been compressed or not
    is_compressed = False

    if compress:
        # Avoid zlib dependency unless compress is being used
        compressed = zlib.compress(data)
        if len(compressed) < (len(data) - 1):
            data = compressed
            is_compressed = True
    base64d = b64_encode(data).decode()
    if is_compressed:
        base64d = '.' + base64d
    return TimestampSigner(key, salt=salt).sign(base64d)



[docs]def loads(s, key=None, salt='django.core.signing', serializer=JSONSerializer, max_age=None):
    """
    Reverse of dumps(), raise BadSignature if signature fails.

    The serializer is expected to accept a bytestring.
    """
    # TimestampSigner.unsign() returns str but base64 and zlib compression
    # operate on bytes.
    base64d = TimestampSigner(key, salt=salt).unsign(s, max_age=max_age).encode()
    decompress = base64d[:1] == b'.'
    if decompress:
        # It's compressed; uncompress it first
        base64d = base64d[1:]
    data = b64_decode(base64d)
    if decompress:
        data = zlib.decompress(data)
    return serializer().loads(data)



[docs]class Signer:

    def __init__(self, key=None, sep=':', salt=None):
        # Use of native strings in all versions of Python
        self.key = key or settings.SECRET_KEY
        self.sep = sep
        if _SEP_UNSAFE.match(self.sep):
            raise ValueError(
                'Unsafe Signer separator: %r (cannot be empty or consist of '
                'only A-z0-9-_=)' % sep,
            )
        self.salt = salt or '%s.%s' % (self.__class__.__module__, self.__class__.__name__)

    def signature(self, value):
        return base64_hmac(self.salt + 'signer', value, self.key)

    def sign(self, value):
        return '%s%s%s' % (value, self.sep, self.signature(value))

    def unsign(self, signed_value):
        if self.sep not in signed_value:
            raise BadSignature('No "%s" found in value' % self.sep)
        value, sig = signed_value.rsplit(self.sep, 1)
        if constant_time_compare(sig, self.signature(value)):
            return value
        raise BadSignature('Signature "%s" does not match' % sig)



[docs]class TimestampSigner(Signer):

    def timestamp(self):
        return baseconv.base62.encode(int(time.time()))

[docs]    def sign(self, value):
        value = '%s%s%s' % (value, self.sep, self.timestamp())
        return super().sign(value)


[docs]    def unsign(self, value, max_age=None):
        """
        Retrieve original value and check it wasn't signed more
        than max_age seconds ago.
        """
        result = super().unsign(value)
        value, timestamp = result.rsplit(self.sep, 1)
        timestamp = baseconv.base62.decode(timestamp)
        if max_age is not None:
            if isinstance(max_age, datetime.timedelta):
                max_age = max_age.total_seconds()
            # Check timestamp is not older than max_age
            age = time.time() - timestamp
            if age > max_age:
                raise SignatureExpired(
                    'Signature age %s > %s seconds' % (age, max_age))
        return value






          

      

      

    

  

  
    
    django.core.validators
    

    
 
  

    
      
          
            
  Source code for django.core.validators

import ipaddress
import re
from pathlib import Path
from urllib.parse import urlsplit, urlunsplit

from django.core.exceptions import ValidationError
from django.utils.deconstruct import deconstructible
from django.utils.encoding import punycode
from django.utils.functional import SimpleLazyObject
from django.utils.ipv6 import is_valid_ipv6_address
from django.utils.translation import gettext_lazy as _, ngettext_lazy

# These values, if given to validate(), will trigger the self.required check.
EMPTY_VALUES = (None, '', [], (), {})


def _lazy_re_compile(regex, flags=0):
    """Lazily compile a regex with flags."""
    def _compile():
        # Compile the regex if it was not passed pre-compiled.
        if isinstance(regex, str):
            return re.compile(regex, flags)
        else:
            assert not flags, "flags must be empty if regex is passed pre-compiled"
            return regex
    return SimpleLazyObject(_compile)


[docs]@deconstructible
class RegexValidator:
    regex = ''
    message = _('Enter a valid value.')
    code = 'invalid'
    inverse_match = False
    flags = 0

    def __init__(self, regex=None, message=None, code=None, inverse_match=None, flags=None):
        if regex is not None:
            self.regex = regex
        if message is not None:
            self.message = message
        if code is not None:
            self.code = code
        if inverse_match is not None:
            self.inverse_match = inverse_match
        if flags is not None:
            self.flags = flags
        if self.flags and not isinstance(self.regex, str):
            raise TypeError("If the flags are set, regex must be a regular expression string.")

        self.regex = _lazy_re_compile(self.regex, self.flags)

    def __call__(self, value):
        """
        Validate that the input contains (or does *not* contain, if
        inverse_match is True) a match for the regular expression.
        """
        regex_matches = self.regex.search(str(value))
        invalid_input = regex_matches if self.inverse_match else not regex_matches
        if invalid_input:
            raise ValidationError(self.message, code=self.code)

    def __eq__(self, other):
        return (
            isinstance(other, RegexValidator) and
            self.regex.pattern == other.regex.pattern and
            self.regex.flags == other.regex.flags and
            (self.message == other.message) and
            (self.code == other.code) and
            (self.inverse_match == other.inverse_match)
        )



[docs]@deconstructible
class URLValidator(RegexValidator):
    ul = '\u00a1-\uffff'  # unicode letters range (must not be a raw string)

    # IP patterns
    ipv4_re = r'(?:25[0-5]|2[0-4]\d|[0-1]?\d?\d)(?:\.(?:25[0-5]|2[0-4]\d|[0-1]?\d?\d)){3}'
    ipv6_re = r'\[[0-9a-f:\.]+\]'  # (simple regex, validated later)

    # Host patterns
    hostname_re = r'[a-z' + ul + r'0-9](?:[a-z' + ul + r'0-9-]{0,61}[a-z' + ul + r'0-9])?'
    # Max length for domain name labels is 63 characters per RFC 1034 sec. 3.1
    domain_re = r'(?:\.(?!-)[a-z' + ul + r'0-9-]{1,63}(?<!-))*'
    tld_re = (
        r'\.'                                # dot
        r'(?!-)'                             # can't start with a dash
        r'(?:[a-z' + ul + '-]{2,63}'         # domain label
        r'|xn--[a-z0-9]{1,59})'              # or punycode label
        r'(?<!-)'                            # can't end with a dash
        r'\.?'                               # may have a trailing dot
    )
    host_re = '(' + hostname_re + domain_re + tld_re + '|localhost)'

    regex = _lazy_re_compile(
        r'^(?:[a-z0-9\.\-\+]*)://'  # scheme is validated separately
        r'(?:[^\s:@/]+(?::[^\s:@/]*)?@)?'  # user:pass authentication
        r'(?:' + ipv4_re + '|' + ipv6_re + '|' + host_re + ')'
        r'(?::\d{2,5})?'  # port
        r'(?:[/?#][^\s]*)?'  # resource path
        r'\Z', re.IGNORECASE)
    message = _('Enter a valid URL.')
    schemes = ['http', 'https', 'ftp', 'ftps']

    def __init__(self, schemes=None, **kwargs):
        super().__init__(**kwargs)
        if schemes is not None:
            self.schemes = schemes

    def __call__(self, value):
        # Check first if the scheme is valid
        scheme = value.split('://')[0].lower()
        if scheme not in self.schemes:
            raise ValidationError(self.message, code=self.code)

        # Then check full URL
        try:
            super().__call__(value)
        except ValidationError as e:
            # Trivial case failed. Try for possible IDN domain
            if value:
                try:
                    scheme, netloc, path, query, fragment = urlsplit(value)
                except ValueError:  # for example, "Invalid IPv6 URL"
                    raise ValidationError(self.message, code=self.code)
                try:
                    netloc = punycode(netloc)  # IDN -> ACE
                except UnicodeError:  # invalid domain part
                    raise e
                url = urlunsplit((scheme, netloc, path, query, fragment))
                super().__call__(url)
            else:
                raise
        else:
            # Now verify IPv6 in the netloc part
            host_match = re.search(r'^\[(.+)\](?::\d{2,5})?$', urlsplit(value).netloc)
            if host_match:
                potential_ip = host_match.groups()[0]
                try:
                    validate_ipv6_address(potential_ip)
                except ValidationError:
                    raise ValidationError(self.message, code=self.code)

        # The maximum length of a full host name is 253 characters per RFC 1034
        # section 3.1. It's defined to be 255 bytes or less, but this includes
        # one byte for the length of the name and one byte for the trailing dot
        # that's used to indicate absolute names in DNS.
        if len(urlsplit(value).netloc) > 253:
            raise ValidationError(self.message, code=self.code)



integer_validator = RegexValidator(
    _lazy_re_compile(r'^-?\d+\Z'),
    message=_('Enter a valid integer.'),
    code='invalid',
)


def validate_integer(value):
    return integer_validator(value)


[docs]@deconstructible
class EmailValidator:
    message = _('Enter a valid email address.')
    code = 'invalid'
    user_regex = _lazy_re_compile(
        r"(^[-!#$%&'*+/=?^_`{}|~0-9A-Z]+(\.[-!#$%&'*+/=?^_`{}|~0-9A-Z]+)*\Z"  # dot-atom
        r'|^"([\001-\010\013\014\016-\037!#-\[\]-\177]|\\[\001-\011\013\014\016-\177])*"\Z)',  # quoted-string
        re.IGNORECASE)
    domain_regex = _lazy_re_compile(
        # max length for domain name labels is 63 characters per RFC 1034
        r'((?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+)(?:[A-Z0-9-]{2,63}(?<!-))\Z',
        re.IGNORECASE)
    literal_regex = _lazy_re_compile(
        # literal form, ipv4 or ipv6 address (SMTP 4.1.3)
        r'\[([A-f0-9:\.]+)\]\Z',
        re.IGNORECASE)
    domain_whitelist = ['localhost']

    def __init__(self, message=None, code=None, whitelist=None):
        if message is not None:
            self.message = message
        if code is not None:
            self.code = code
        if whitelist is not None:
            self.domain_whitelist = whitelist

    def __call__(self, value):
        if not value or '@' not in value:
            raise ValidationError(self.message, code=self.code)

        user_part, domain_part = value.rsplit('@', 1)

        if not self.user_regex.match(user_part):
            raise ValidationError(self.message, code=self.code)

        if (domain_part not in self.domain_whitelist and
                not self.validate_domain_part(domain_part)):
            # Try for possible IDN domain-part
            try:
                domain_part = punycode(domain_part)
            except UnicodeError:
                pass
            else:
                if self.validate_domain_part(domain_part):
                    return
            raise ValidationError(self.message, code=self.code)

    def validate_domain_part(self, domain_part):
        if self.domain_regex.match(domain_part):
            return True

        literal_match = self.literal_regex.match(domain_part)
        if literal_match:
            ip_address = literal_match.group(1)
            try:
                validate_ipv46_address(ip_address)
                return True
            except ValidationError:
                pass
        return False

    def __eq__(self, other):
        return (
            isinstance(other, EmailValidator) and
            (self.domain_whitelist == other.domain_whitelist) and
            (self.message == other.message) and
            (self.code == other.code)
        )



validate_email = EmailValidator()

slug_re = _lazy_re_compile(r'^[-a-zA-Z0-9_]+\Z')
validate_slug = RegexValidator(
    slug_re,
    # Translators: "letters" means latin letters: a-z and A-Z.
    _('Enter a valid “slug” consisting of letters, numbers, underscores or hyphens.'),
    'invalid'
)

slug_unicode_re = _lazy_re_compile(r'^[-\w]+\Z')
validate_unicode_slug = RegexValidator(
    slug_unicode_re,
    _('Enter a valid “slug” consisting of Unicode letters, numbers, underscores, or hyphens.'),
    'invalid'
)


[docs]def validate_ipv4_address(value):
    try:
        ipaddress.IPv4Address(value)
    except ValueError:
        raise ValidationError(_('Enter a valid IPv4 address.'), code='invalid')



[docs]def validate_ipv6_address(value):
    if not is_valid_ipv6_address(value):
        raise ValidationError(_('Enter a valid IPv6 address.'), code='invalid')



[docs]def validate_ipv46_address(value):
    try:
        validate_ipv4_address(value)
    except ValidationError:
        try:
            validate_ipv6_address(value)
        except ValidationError:
            raise ValidationError(_('Enter a valid IPv4 or IPv6 address.'), code='invalid')



ip_address_validator_map = {
    'both': ([validate_ipv46_address], _('Enter a valid IPv4 or IPv6 address.')),
    'ipv4': ([validate_ipv4_address], _('Enter a valid IPv4 address.')),
    'ipv6': ([validate_ipv6_address], _('Enter a valid IPv6 address.')),
}


def ip_address_validators(protocol, unpack_ipv4):
    """
    Depending on the given parameters, return the appropriate validators for
    the GenericIPAddressField.
    """
    if protocol != 'both' and unpack_ipv4:
        raise ValueError(
            "You can only use `unpack_ipv4` if `protocol` is set to 'both'")
    try:
        return ip_address_validator_map[protocol.lower()]
    except KeyError:
        raise ValueError("The protocol '%s' is unknown. Supported: %s"
                         % (protocol, list(ip_address_validator_map)))


[docs]def int_list_validator(sep=',', message=None, code='invalid', allow_negative=False):
    regexp = _lazy_re_compile(r'^%(neg)s\d+(?:%(sep)s%(neg)s\d+)*\Z' % {
        'neg': '(-)?' if allow_negative else '',
        'sep': re.escape(sep),
    })
    return RegexValidator(regexp, message=message, code=code)



validate_comma_separated_integer_list = int_list_validator(
    message=_('Enter only digits separated by commas.'),
)


@deconstructible
class BaseValidator:
    message = _('Ensure this value is %(limit_value)s (it is %(show_value)s).')
    code = 'limit_value'

    def __init__(self, limit_value, message=None):
        self.limit_value = limit_value
        if message:
            self.message = message

    def __call__(self, value):
        cleaned = self.clean(value)
        limit_value = self.limit_value() if callable(self.limit_value) else self.limit_value
        params = {'limit_value': limit_value, 'show_value': cleaned, 'value': value}
        if self.compare(cleaned, limit_value):
            raise ValidationError(self.message, code=self.code, params=params)

    def __eq__(self, other):
        return (
            isinstance(other, self.__class__) and
            self.limit_value == other.limit_value and
            self.message == other.message and
            self.code == other.code
        )

    def compare(self, a, b):
        return a is not b

    def clean(self, x):
        return x


[docs]@deconstructible
class MaxValueValidator(BaseValidator):
    message = _('Ensure this value is less than or equal to %(limit_value)s.')
    code = 'max_value'

    def compare(self, a, b):
        return a > b



[docs]@deconstructible
class MinValueValidator(BaseValidator):
    message = _('Ensure this value is greater than or equal to %(limit_value)s.')
    code = 'min_value'

    def compare(self, a, b):
        return a < b



[docs]@deconstructible
class MinLengthValidator(BaseValidator):
    message = ngettext_lazy(
        'Ensure this value has at least %(limit_value)d character (it has %(show_value)d).',
        'Ensure this value has at least %(limit_value)d characters (it has %(show_value)d).',
        'limit_value')
    code = 'min_length'

    def compare(self, a, b):
        return a < b

    def clean(self, x):
        return len(x)



[docs]@deconstructible
class MaxLengthValidator(BaseValidator):
    message = ngettext_lazy(
        'Ensure this value has at most %(limit_value)d character (it has %(show_value)d).',
        'Ensure this value has at most %(limit_value)d characters (it has %(show_value)d).',
        'limit_value')
    code = 'max_length'

    def compare(self, a, b):
        return a > b

    def clean(self, x):
        return len(x)



[docs]@deconstructible
class DecimalValidator:
    """
    Validate that the input does not exceed the maximum number of digits
    expected, otherwise raise ValidationError.
    """
    messages = {
        'invalid': _('Enter a number.'),
        'max_digits': ngettext_lazy(
            'Ensure that there are no more than %(max)s digit in total.',
            'Ensure that there are no more than %(max)s digits in total.',
            'max'
        ),
        'max_decimal_places': ngettext_lazy(
            'Ensure that there are no more than %(max)s decimal place.',
            'Ensure that there are no more than %(max)s decimal places.',
            'max'
        ),
        'max_whole_digits': ngettext_lazy(
            'Ensure that there are no more than %(max)s digit before the decimal point.',
            'Ensure that there are no more than %(max)s digits before the decimal point.',
            'max'
        ),
    }

    def __init__(self, max_digits, decimal_places):
        self.max_digits = max_digits
        self.decimal_places = decimal_places

    def __call__(self, value):
        digit_tuple, exponent = value.as_tuple()[1:]
        if exponent in {'F', 'n', 'N'}:
            raise ValidationError(self.messages['invalid'])
        if exponent >= 0:
            # A positive exponent adds that many trailing zeros.
            digits = len(digit_tuple) + exponent
            decimals = 0
        else:
            # If the absolute value of the negative exponent is larger than the
            # number of digits, then it's the same as the number of digits,
            # because it'll consume all of the digits in digit_tuple and then
            # add abs(exponent) - len(digit_tuple) leading zeros after the
            # decimal point.
            if abs(exponent) > len(digit_tuple):
                digits = decimals = abs(exponent)
            else:
                digits = len(digit_tuple)
                decimals = abs(exponent)
        whole_digits = digits - decimals

        if self.max_digits is not None and digits > self.max_digits:
            raise ValidationError(
                self.messages['max_digits'],
                code='max_digits',
                params={'max': self.max_digits},
            )
        if self.decimal_places is not None and decimals > self.decimal_places:
            raise ValidationError(
                self.messages['max_decimal_places'],
                code='max_decimal_places',
                params={'max': self.decimal_places},
            )
        if (self.max_digits is not None and self.decimal_places is not None and
                whole_digits > (self.max_digits - self.decimal_places)):
            raise ValidationError(
                self.messages['max_whole_digits'],
                code='max_whole_digits',
                params={'max': (self.max_digits - self.decimal_places)},
            )

    def __eq__(self, other):
        return (
            isinstance(other, self.__class__) and
            self.max_digits == other.max_digits and
            self.decimal_places == other.decimal_places
        )



[docs]@deconstructible
class FileExtensionValidator:
    message = _(
        'File extension “%(extension)s” is not allowed. '
        'Allowed extensions are: %(allowed_extensions)s.'
    )
    code = 'invalid_extension'

    def __init__(self, allowed_extensions=None, message=None, code=None):
        if allowed_extensions is not None:
            allowed_extensions = [allowed_extension.lower() for allowed_extension in allowed_extensions]
        self.allowed_extensions = allowed_extensions
        if message is not None:
            self.message = message
        if code is not None:
            self.code = code

    def __call__(self, value):
        extension = Path(value.name).suffix[1:].lower()
        if self.allowed_extensions is not None and extension not in self.allowed_extensions:
            raise ValidationError(
                self.message,
                code=self.code,
                params={
                    'extension': extension,
                    'allowed_extensions': ', '.join(self.allowed_extensions)
                }
            )

    def __eq__(self, other):
        return (
            isinstance(other, self.__class__) and
            self.allowed_extensions == other.allowed_extensions and
            self.message == other.message and
            self.code == other.code
        )



def get_available_image_extensions():
    try:
        from PIL import Image
    except ImportError:
        return []
    else:
        Image.init()
        return [ext.lower()[1:] for ext in Image.EXTENSION]


[docs]def validate_image_file_extension(value):
    return FileExtensionValidator(allowed_extensions=get_available_image_extensions())(value)



[docs]@deconstructible
class ProhibitNullCharactersValidator:
    """Validate that the string doesn't contain the null character."""
    message = _('Null characters are not allowed.')
    code = 'null_characters_not_allowed'

    def __init__(self, message=None, code=None):
        if message is not None:
            self.message = message
        if code is not None:
            self.code = code

    def __call__(self, value):
        if '\x00' in str(value):
            raise ValidationError(self.message, code=self.code)

    def __eq__(self, other):
        return (
            isinstance(other, self.__class__) and
            self.message == other.message and
            self.code == other.code
        )





          

      

      

    

  

  
    
    django.core.files.base
    

    
 
  

    
      
          
            
  Source code for django.core.files.base

import os
from io import BytesIO, StringIO, UnsupportedOperation

from django.core.files.utils import FileProxyMixin
from django.utils.functional import cached_property


[docs]class File(FileProxyMixin):
    DEFAULT_CHUNK_SIZE = 64 * 2 ** 10

    def __init__(self, file, name=None):
        self.file = file
        if name is None:
            name = getattr(file, 'name', None)
        self.name = name
        if hasattr(file, 'mode'):
            self.mode = file.mode

    def __str__(self):
        return self.name or ''

    def __repr__(self):
        return "<%s: %s>" % (self.__class__.__name__, self or "None")

    def __bool__(self):
        return bool(self.name)

    def __len__(self):
        return self.size

    @cached_property
    def size(self):
        if hasattr(self.file, 'size'):
            return self.file.size
        if hasattr(self.file, 'name'):
            try:
                return os.path.getsize(self.file.name)
            except (OSError, TypeError):
                pass
        if hasattr(self.file, 'tell') and hasattr(self.file, 'seek'):
            pos = self.file.tell()
            self.file.seek(0, os.SEEK_END)
            size = self.file.tell()
            self.file.seek(pos)
            return size
        raise AttributeError("Unable to determine the file's size.")

[docs]    def chunks(self, chunk_size=None):
        """
        Read the file and yield chunks of ``chunk_size`` bytes (defaults to
        ``File.DEFAULT_CHUNK_SIZE``).
        """
        chunk_size = chunk_size or self.DEFAULT_CHUNK_SIZE
        try:
            self.seek(0)
        except (AttributeError, UnsupportedOperation):
            pass

        while True:
            data = self.read(chunk_size)
            if not data:
                break
            yield data


[docs]    def multiple_chunks(self, chunk_size=None):
        """
        Return ``True`` if you can expect multiple chunks.

        NB: If a particular file representation is in memory, subclasses should
        always return ``False`` -- there's no good reason to read from memory in
        chunks.
        """
        return self.size > (chunk_size or self.DEFAULT_CHUNK_SIZE)


[docs]    def __iter__(self):
        # Iterate over this file-like object by newlines
        buffer_ = None
        for chunk in self.chunks():
            for line in chunk.splitlines(True):
                if buffer_:
                    if endswith_cr(buffer_) and not equals_lf(line):
                        # Line split after a \r newline; yield buffer_.
                        yield buffer_
                        # Continue with line.
                    else:
                        # Line either split without a newline (line
                        # continues after buffer_) or with \r\n
                        # newline (line == b'\n').
                        line = buffer_ + line
                    # buffer_ handled, clear it.
                    buffer_ = None

                # If this is the end of a \n or \r\n line, yield.
                if endswith_lf(line):
                    yield line
                else:
                    buffer_ = line

        if buffer_ is not None:
            yield buffer_


    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, tb):
        self.close()

[docs]    def open(self, mode=None):
        if not self.closed:
            self.seek(0)
        elif self.name and os.path.exists(self.name):
            self.file = open(self.name, mode or self.mode)
        else:
            raise ValueError("The file cannot be reopened.")
        return self


[docs]    def close(self):
        self.file.close()




[docs]class ContentFile(File):
    """
    A File-like object that takes just raw content, rather than an actual file.
    """
    def __init__(self, content, name=None):
        stream_class = StringIO if isinstance(content, str) else BytesIO
        super().__init__(stream_class(content), name=name)
        self.size = len(content)

    def __str__(self):
        return 'Raw content'

    def __bool__(self):
        return True

    def open(self, mode=None):
        self.seek(0)
        return self

    def close(self):
        pass

    def write(self, data):
        self.__dict__.pop('size', None)  # Clear the computed size.
        return self.file.write(data)



def endswith_cr(line):
    """Return True if line (a text or bytestring) ends with '\r'."""
    return line.endswith('\r' if isinstance(line, str) else b'\r')


def endswith_lf(line):
    """Return True if line (a text or bytestring) ends with '\n'."""
    return line.endswith('\n' if isinstance(line, str) else b'\n')


def equals_lf(line):
    """Return True if line (a text or bytestring) equals '\n'."""
    return line == ('\n' if isinstance(line, str) else b'\n')




          

      

      

    

  

  
    
    django.core.files.images
    

    
 
  

    
      
          
            
  Source code for django.core.files.images

"""
Utility functions for handling images.

Requires Pillow as you might imagine.
"""
import struct
import zlib

from django.core.files import File


[docs]class ImageFile(File):
    """
    A mixin for use alongside django.core.files.base.File, which provides
    additional features for dealing with images.
    """
    @property
    def width(self):
        return self._get_image_dimensions()[0]

    @property
    def height(self):
        return self._get_image_dimensions()[1]

    def _get_image_dimensions(self):
        if not hasattr(self, '_dimensions_cache'):
            close = self.closed
            self.open()
            self._dimensions_cache = get_image_dimensions(self, close=close)
        return self._dimensions_cache



def get_image_dimensions(file_or_path, close=False):
    """
    Return the (width, height) of an image, given an open file or a path.  Set
    'close' to True to close the file at the end if it is initially in an open
    state.
    """
    from PIL import ImageFile as PillowImageFile

    p = PillowImageFile.Parser()
    if hasattr(file_or_path, 'read'):
        file = file_or_path
        file_pos = file.tell()
        file.seek(0)
    else:
        file = open(file_or_path, 'rb')
        close = True
    try:
        # Most of the time Pillow only needs a small chunk to parse the image
        # and get the dimensions, but with some TIFF files Pillow needs to
        # parse the whole file.
        chunk_size = 1024
        while 1:
            data = file.read(chunk_size)
            if not data:
                break
            try:
                p.feed(data)
            except zlib.error as e:
                # ignore zlib complaining on truncated stream, just feed more
                # data to parser (ticket #19457).
                if e.args[0].startswith("Error -5"):
                    pass
                else:
                    raise
            except struct.error:
                # Ignore PIL failing on a too short buffer when reads return
                # less bytes than expected. Skip and feed more data to the
                # parser (ticket #24544).
                pass
            except RuntimeError:
                # e.g. "RuntimeError: could not create decoder object" for
                # WebP files. A different chunk_size may work.
                pass
            if p.image:
                return p.image.size
            chunk_size *= 2
        return (None, None)
    finally:
        if close:
            file.close()
        else:
            file.seek(file_pos)




          

      

      

    

  

  
    
    django.core.files.uploadedfile
    

    
 
  

    
      
          
            
  Source code for django.core.files.uploadedfile

"""
Classes representing uploaded files.
"""

import os
from io import BytesIO

from django.conf import settings
from django.core.files import temp as tempfile
from django.core.files.base import File

__all__ = ('UploadedFile', 'TemporaryUploadedFile', 'InMemoryUploadedFile',
           'SimpleUploadedFile')


[docs]class UploadedFile(File):
    """
    An abstract uploaded file (``TemporaryUploadedFile`` and
    ``InMemoryUploadedFile`` are the built-in concrete subclasses).

    An ``UploadedFile`` object behaves somewhat like a file object and
    represents some file data that the user submitted with a form.
    """

    def __init__(self, file=None, name=None, content_type=None, size=None, charset=None, content_type_extra=None):
        super().__init__(file, name)
        self.size = size
        self.content_type = content_type
        self.charset = charset
        self.content_type_extra = content_type_extra

    def __repr__(self):
        return "<%s: %s (%s)>" % (self.__class__.__name__, self.name, self.content_type)

    def _get_name(self):
        return self._name

    def _set_name(self, name):
        # Sanitize the file name so that it can't be dangerous.
        if name is not None:
            # Just use the basename of the file -- anything else is dangerous.
            name = os.path.basename(name)

            # File names longer than 255 characters can cause problems on older OSes.
            if len(name) > 255:
                name, ext = os.path.splitext(name)
                ext = ext[:255]
                name = name[:255 - len(ext)] + ext

        self._name = name

    name = property(_get_name, _set_name)



[docs]class TemporaryUploadedFile(UploadedFile):
    """
    A file uploaded to a temporary location (i.e. stream-to-disk).
    """
    def __init__(self, name, content_type, size, charset, content_type_extra=None):
        _, ext = os.path.splitext(name)
        file = tempfile.NamedTemporaryFile(suffix='.upload' + ext, dir=settings.FILE_UPLOAD_TEMP_DIR)
        super().__init__(file, name, content_type, size, charset, content_type_extra)

[docs]    def temporary_file_path(self):
        """Return the full path of this file."""
        return self.file.name


    def close(self):
        try:
            return self.file.close()
        except FileNotFoundError:
            # The file was moved or deleted before the tempfile could unlink
            # it. Still sets self.file.close_called and calls
            # self.file.file.close() before the exception.
            pass



[docs]class InMemoryUploadedFile(UploadedFile):
    """
    A file uploaded into memory (i.e. stream-to-memory).
    """
    def __init__(self, file, field_name, name, content_type, size, charset, content_type_extra=None):
        super().__init__(file, name, content_type, size, charset, content_type_extra)
        self.field_name = field_name

    def open(self, mode=None):
        self.file.seek(0)
        return self

    def chunks(self, chunk_size=None):
        self.file.seek(0)
        yield self.read()

    def multiple_chunks(self, chunk_size=None):
        # Since it's in memory, we'll never have multiple chunks.
        return False



class SimpleUploadedFile(InMemoryUploadedFile):
    """
    A simple representation of a file, which just has content, size, and a name.
    """
    def __init__(self, name, content, content_type='text/plain'):
        content = content or b''
        super().__init__(BytesIO(content), None, name, content_type, len(content), None, None)

    @classmethod
    def from_dict(cls, file_dict):
        """
        Create a SimpleUploadedFile object from a dictionary with keys:
           - filename
           - content-type
           - content
        """
        return cls(file_dict['filename'],
                   file_dict['content'],
                   file_dict.get('content-type', 'text/plain'))




          

      

      

    

  

  
    
    django.core.files.uploadhandler
    

    
 
  

    
      
          
            
  Source code for django.core.files.uploadhandler

"""
Base file upload handler classes, and the built-in concrete subclasses
"""

from io import BytesIO

from django.conf import settings
from django.core.files.uploadedfile import (
    InMemoryUploadedFile, TemporaryUploadedFile,
)
from django.utils.module_loading import import_string

__all__ = [
    'UploadFileException', 'StopUpload', 'SkipFile', 'FileUploadHandler',
    'TemporaryFileUploadHandler', 'MemoryFileUploadHandler', 'load_handler',
    'StopFutureHandlers'
]


class UploadFileException(Exception):
    """
    Any error having to do with uploading files.
    """
    pass


class StopUpload(UploadFileException):
    """
    This exception is raised when an upload must abort.
    """
    def __init__(self, connection_reset=False):
        """
        If ``connection_reset`` is ``True``, Django knows will halt the upload
        without consuming the rest of the upload. This will cause the browser to
        show a "connection reset" error.
        """
        self.connection_reset = connection_reset

    def __str__(self):
        if self.connection_reset:
            return 'StopUpload: Halt current upload.'
        else:
            return 'StopUpload: Consume request data, then halt.'


class SkipFile(UploadFileException):
    """
    This exception is raised by an upload handler that wants to skip a given file.
    """
    pass


class StopFutureHandlers(UploadFileException):
    """
    Upload handlers that have handled a file and do not want future handlers to
    run should raise this exception instead of returning None.
    """
    pass


[docs]class FileUploadHandler:
    """
    Base class for streaming upload handlers.
    """
    chunk_size = 64 * 2 ** 10  # : The default chunk size is 64 KB.

    def __init__(self, request=None):
        self.file_name = None
        self.content_type = None
        self.content_length = None
        self.charset = None
        self.content_type_extra = None
        self.request = request

[docs]    def handle_raw_input(self, input_data, META, content_length, boundary, encoding=None):
        """
        Handle the raw input from the client.

        Parameters:

            :input_data:
                An object that supports reading via .read().
            :META:
                ``request.META``.
            :content_length:
                The (integer) value of the Content-Length header from the
                client.
            :boundary: The boundary from the Content-Type header. Be sure to
                prepend two '--'.
        """
        pass


[docs]    def new_file(self, field_name, file_name, content_type, content_length, charset=None, content_type_extra=None):
        """
        Signal that a new file has been started.

        Warning: As with any data from the client, you should not trust
        content_length (and sometimes won't even get it).
        """
        self.field_name = field_name
        self.file_name = file_name
        self.content_type = content_type
        self.content_length = content_length
        self.charset = charset
        self.content_type_extra = content_type_extra


[docs]    def receive_data_chunk(self, raw_data, start):
        """
        Receive data from the streamed upload parser. ``start`` is the position
        in the file of the chunk.
        """
        raise NotImplementedError('subclasses of FileUploadHandler must provide a receive_data_chunk() method')


[docs]    def file_complete(self, file_size):
        """
        Signal that a file has completed. File size corresponds to the actual
        size accumulated by all the chunks.

        Subclasses should return a valid ``UploadedFile`` object.
        """
        raise NotImplementedError('subclasses of FileUploadHandler must provide a file_complete() method')


[docs]    def upload_complete(self):
        """
        Signal that the upload is complete. Subclasses should perform cleanup
        that is necessary for this handler.
        """
        pass




[docs]class TemporaryFileUploadHandler(FileUploadHandler):
    """
    Upload handler that streams data into a temporary file.
    """
    def new_file(self, *args, **kwargs):
        """
        Create the file object to append to as data is coming in.
        """
        super().new_file(*args, **kwargs)
        self.file = TemporaryUploadedFile(self.file_name, self.content_type, 0, self.charset, self.content_type_extra)

    def receive_data_chunk(self, raw_data, start):
        self.file.write(raw_data)

    def file_complete(self, file_size):
        self.file.seek(0)
        self.file.size = file_size
        return self.file



[docs]class MemoryFileUploadHandler(FileUploadHandler):
    """
    File upload handler to stream uploads into memory (used for small files).
    """

    def handle_raw_input(self, input_data, META, content_length, boundary, encoding=None):
        """
        Use the content_length to signal whether or not this handler should be
        used.
        """
        # Check the content-length header to see if we should
        # If the post is too large, we cannot use the Memory handler.
        self.activated = content_length <= settings.FILE_UPLOAD_MAX_MEMORY_SIZE

    def new_file(self, *args, **kwargs):
        super().new_file(*args, **kwargs)
        if self.activated:
            self.file = BytesIO()
            raise StopFutureHandlers()

    def receive_data_chunk(self, raw_data, start):
        """Add the data to the BytesIO file."""
        if self.activated:
            self.file.write(raw_data)
        else:
            return raw_data

    def file_complete(self, file_size):
        """Return a file object if this handler is activated."""
        if not self.activated:
            return

        self.file.seek(0)
        return InMemoryUploadedFile(
            file=self.file,
            field_name=self.field_name,
            name=self.file_name,
            content_type=self.content_type,
            size=file_size,
            charset=self.charset,
            content_type_extra=self.content_type_extra
        )



def load_handler(path, *args, **kwargs):
    """
    Given a path to a handler, return an instance of that handler.

    E.g.::
        >>> from django.http import HttpRequest
        >>> request = HttpRequest()
        >>> load_handler('django.core.files.uploadhandler.TemporaryFileUploadHandler', request)
        <TemporaryFileUploadHandler object at 0x...>
    """
    return import_string(path)(*args, **kwargs)




          

      

      

    

  

  
    
    django.core.mail.message
    

    
 
  

    
      
          
            
  Source code for django.core.mail.message

import mimetypes
from email import (
    charset as Charset, encoders as Encoders, generator, message_from_string,
)
from email.errors import HeaderParseError
from email.header import Header
from email.headerregistry import Address, parser
from email.message import Message
from email.mime.base import MIMEBase
from email.mime.message import MIMEMessage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.utils import formataddr, formatdate, getaddresses, make_msgid
from io import BytesIO, StringIO
from pathlib import Path

from django.conf import settings
from django.core.mail.utils import DNS_NAME
from django.utils.encoding import force_str, punycode

# Don't BASE64-encode UTF-8 messages so that we avoid unwanted attention from
# some spam filters.
utf8_charset = Charset.Charset('utf-8')
utf8_charset.body_encoding = None  # Python defaults to BASE64
utf8_charset_qp = Charset.Charset('utf-8')
utf8_charset_qp.body_encoding = Charset.QP

# Default MIME type to use on attachments (if it is not explicitly given
# and cannot be guessed).
DEFAULT_ATTACHMENT_MIME_TYPE = 'application/octet-stream'

RFC5322_EMAIL_LINE_LENGTH_LIMIT = 998


class BadHeaderError(ValueError):
    pass


# Header names that contain structured address data (RFC #5322)
ADDRESS_HEADERS = {
    'from',
    'sender',
    'reply-to',
    'to',
    'cc',
    'bcc',
    'resent-from',
    'resent-sender',
    'resent-to',
    'resent-cc',
    'resent-bcc',
}


def forbid_multi_line_headers(name, val, encoding):
    """Forbid multi-line headers to prevent header injection."""
    encoding = encoding or settings.DEFAULT_CHARSET
    val = str(val)  # val may be lazy
    if '\n' in val or '\r' in val:
        raise BadHeaderError("Header values can't contain newlines (got %r for header %r)" % (val, name))
    try:
        val.encode('ascii')
    except UnicodeEncodeError:
        if name.lower() in ADDRESS_HEADERS:
            val = ', '.join(sanitize_address(addr, encoding) for addr in getaddresses((val,)))
        else:
            val = Header(val, encoding).encode()
    else:
        if name.lower() == 'subject':
            val = Header(val).encode()
    return name, val


def sanitize_address(addr, encoding):
    """
    Format a pair of (name, address) or an email address string.
    """
    address = None
    if not isinstance(addr, tuple):
        addr = force_str(addr)
        try:
            token, rest = parser.get_mailbox(addr)
        except (HeaderParseError, ValueError, IndexError):
            raise ValueError('Invalid address "%s"' % addr)
        else:
            if rest:
                # The entire email address must be parsed.
                raise ValueError(
                    'Invalid address; only %s could be parsed from "%s"'
                    % (token, addr)
                )
            nm = token.display_name or ''
            localpart = token.local_part
            domain = token.domain or ''
    else:
        nm, address = addr
        localpart, domain = address.rsplit('@', 1)

    address_parts = nm + localpart + domain
    if '\n' in address_parts or '\r' in address_parts:
        raise ValueError('Invalid address; address parts cannot contain newlines.')

    # Avoid UTF-8 encode, if it's possible.
    try:
        nm.encode('ascii')
        nm = Header(nm).encode()
    except UnicodeEncodeError:
        nm = Header(nm, encoding).encode()
    try:
        localpart.encode('ascii')
    except UnicodeEncodeError:
        localpart = Header(localpart, encoding).encode()
    domain = punycode(domain)

    parsed_address = Address(username=localpart, domain=domain)
    return formataddr((nm, parsed_address.addr_spec))


class MIMEMixin:
    def as_string(self, unixfrom=False, linesep='\n'):
        """Return the entire formatted message as a string.
        Optional `unixfrom' when True, means include the Unix From_ envelope
        header.

        This overrides the default as_string() implementation to not mangle
        lines that begin with 'From '. See bug #13433 for details.
        """
        fp = StringIO()
        g = generator.Generator(fp, mangle_from_=False)
        g.flatten(self, unixfrom=unixfrom, linesep=linesep)
        return fp.getvalue()

    def as_bytes(self, unixfrom=False, linesep='\n'):
        """Return the entire formatted message as bytes.
        Optional `unixfrom' when True, means include the Unix From_ envelope
        header.

        This overrides the default as_bytes() implementation to not mangle
        lines that begin with 'From '. See bug #13433 for details.
        """
        fp = BytesIO()
        g = generator.BytesGenerator(fp, mangle_from_=False)
        g.flatten(self, unixfrom=unixfrom, linesep=linesep)
        return fp.getvalue()


class SafeMIMEMessage(MIMEMixin, MIMEMessage):

    def __setitem__(self, name, val):
        # message/rfc822 attachments must be ASCII
        name, val = forbid_multi_line_headers(name, val, 'ascii')
        MIMEMessage.__setitem__(self, name, val)


class SafeMIMEText(MIMEMixin, MIMEText):

    def __init__(self, _text, _subtype='plain', _charset=None):
        self.encoding = _charset
        MIMEText.__init__(self, _text, _subtype=_subtype, _charset=_charset)

    def __setitem__(self, name, val):
        name, val = forbid_multi_line_headers(name, val, self.encoding)
        MIMEText.__setitem__(self, name, val)

    def set_payload(self, payload, charset=None):
        if charset == 'utf-8' and not isinstance(charset, Charset.Charset):
            has_long_lines = any(
                len(line.encode()) > RFC5322_EMAIL_LINE_LENGTH_LIMIT
                for line in payload.splitlines()
            )
            # Quoted-Printable encoding has the side effect of shortening long
            # lines, if any (#22561).
            charset = utf8_charset_qp if has_long_lines else utf8_charset
        MIMEText.set_payload(self, payload, charset=charset)


class SafeMIMEMultipart(MIMEMixin, MIMEMultipart):

    def __init__(self, _subtype='mixed', boundary=None, _subparts=None, encoding=None, **_params):
        self.encoding = encoding
        MIMEMultipart.__init__(self, _subtype, boundary, _subparts, **_params)

    def __setitem__(self, name, val):
        name, val = forbid_multi_line_headers(name, val, self.encoding)
        MIMEMultipart.__setitem__(self, name, val)


[docs]class EmailMessage:
    """A container for email information."""
    content_subtype = 'plain'
    mixed_subtype = 'mixed'
    encoding = None     # None => use settings default

    def __init__(self, subject='', body='', from_email=None, to=None, bcc=None,
                 connection=None, attachments=None, headers=None, cc=None,
                 reply_to=None):
        """
        Initialize a single email message (which can be sent to multiple
        recipients).
        """
        if to:
            if isinstance(to, str):
                raise TypeError('"to" argument must be a list or tuple')
            self.to = list(to)
        else:
            self.to = []
        if cc:
            if isinstance(cc, str):
                raise TypeError('"cc" argument must be a list or tuple')
            self.cc = list(cc)
        else:
            self.cc = []
        if bcc:
            if isinstance(bcc, str):
                raise TypeError('"bcc" argument must be a list or tuple')
            self.bcc = list(bcc)
        else:
            self.bcc = []
        if reply_to:
            if isinstance(reply_to, str):
                raise TypeError('"reply_to" argument must be a list or tuple')
            self.reply_to = list(reply_to)
        else:
            self.reply_to = []
        self.from_email = from_email or settings.DEFAULT_FROM_EMAIL
        self.subject = subject
        self.body = body or ''
        self.attachments = []
        if attachments:
            for attachment in attachments:
                if isinstance(attachment, MIMEBase):
                    self.attach(attachment)
                else:
                    self.attach(*attachment)
        self.extra_headers = headers or {}
        self.connection = connection

    def get_connection(self, fail_silently=False):
        from django.core.mail import get_connection
        if not self.connection:
            self.connection = get_connection(fail_silently=fail_silently)
        return self.connection

    def message(self):
        encoding = self.encoding or settings.DEFAULT_CHARSET
        msg = SafeMIMEText(self.body, self.content_subtype, encoding)
        msg = self._create_message(msg)
        msg['Subject'] = self.subject
        msg['From'] = self.extra_headers.get('From', self.from_email)
        self._set_list_header_if_not_empty(msg, 'To', self.to)
        self._set_list_header_if_not_empty(msg, 'Cc', self.cc)
        self._set_list_header_if_not_empty(msg, 'Reply-To', self.reply_to)

        # Email header names are case-insensitive (RFC 2045), so we have to
        # accommodate that when doing comparisons.
        header_names = [key.lower() for key in self.extra_headers]
        if 'date' not in header_names:
            # formatdate() uses stdlib methods to format the date, which use
            # the stdlib/OS concept of a timezone, however, Django sets the
            # TZ environment variable based on the TIME_ZONE setting which
            # will get picked up by formatdate().
            msg['Date'] = formatdate(localtime=settings.EMAIL_USE_LOCALTIME)
        if 'message-id' not in header_names:
            # Use cached DNS_NAME for performance
            msg['Message-ID'] = make_msgid(domain=DNS_NAME)
        for name, value in self.extra_headers.items():
            if name.lower() != 'from':  # From is already handled
                msg[name] = value
        return msg

    def recipients(self):
        """
        Return a list of all recipients of the email (includes direct
        addressees as well as Cc and Bcc entries).
        """
        return [email for email in (self.to + self.cc + self.bcc) if email]

    def send(self, fail_silently=False):
        """Send the email message."""
        if not self.recipients():
            # Don't bother creating the network connection if there's nobody to
            # send to.
            return 0
        return self.get_connection(fail_silently).send_messages([self])

    def attach(self, filename=None, content=None, mimetype=None):
        """
        Attach a file with the given filename and content. The filename can
        be omitted and the mimetype is guessed, if not provided.

        If the first parameter is a MIMEBase subclass, insert it directly
        into the resulting message attachments.

        For a text/* mimetype (guessed or specified), when a bytes object is
        specified as content, decode it as UTF-8. If that fails, set the
        mimetype to DEFAULT_ATTACHMENT_MIME_TYPE and don't decode the content.
        """
        if isinstance(filename, MIMEBase):
            assert content is None
            assert mimetype is None
            self.attachments.append(filename)
        else:
            assert content is not None
            mimetype = mimetype or mimetypes.guess_type(filename)[0] or DEFAULT_ATTACHMENT_MIME_TYPE
            basetype, subtype = mimetype.split('/', 1)

            if basetype == 'text':
                if isinstance(content, bytes):
                    try:
                        content = content.decode()
                    except UnicodeDecodeError:
                        # If mimetype suggests the file is text but it's
                        # actually binary, read() raises a UnicodeDecodeError.
                        mimetype = DEFAULT_ATTACHMENT_MIME_TYPE

            self.attachments.append((filename, content, mimetype))

    def attach_file(self, path, mimetype=None):
        """
        Attach a file from the filesystem.

        Set the mimetype to DEFAULT_ATTACHMENT_MIME_TYPE if it isn't specified
        and cannot be guessed.

        For a text/* mimetype (guessed or specified), decode the file's content
        as UTF-8. If that fails, set the mimetype to
        DEFAULT_ATTACHMENT_MIME_TYPE and don't decode the content.
        """
        path = Path(path)
        with path.open('rb') as file:
            content = file.read()
            self.attach(path.name, content, mimetype)

    def _create_message(self, msg):
        return self._create_attachments(msg)

    def _create_attachments(self, msg):
        if self.attachments:
            encoding = self.encoding or settings.DEFAULT_CHARSET
            body_msg = msg
            msg = SafeMIMEMultipart(_subtype=self.mixed_subtype, encoding=encoding)
            if self.body or body_msg.is_multipart():
                msg.attach(body_msg)
            for attachment in self.attachments:
                if isinstance(attachment, MIMEBase):
                    msg.attach(attachment)
                else:
                    msg.attach(self._create_attachment(*attachment))
        return msg

    def _create_mime_attachment(self, content, mimetype):
        """
        Convert the content, mimetype pair into a MIME attachment object.

        If the mimetype is message/rfc822, content may be an
        email.Message or EmailMessage object, as well as a str.
        """
        basetype, subtype = mimetype.split('/', 1)
        if basetype == 'text':
            encoding = self.encoding or settings.DEFAULT_CHARSET
            attachment = SafeMIMEText(content, subtype, encoding)
        elif basetype == 'message' and subtype == 'rfc822':
            # Bug #18967: per RFC2046 s5.2.1, message/rfc822 attachments
            # must not be base64 encoded.
            if isinstance(content, EmailMessage):
                # convert content into an email.Message first
                content = content.message()
            elif not isinstance(content, Message):
                # For compatibility with existing code, parse the message
                # into an email.Message object if it is not one already.
                content = message_from_string(force_str(content))

            attachment = SafeMIMEMessage(content, subtype)
        else:
            # Encode non-text attachments with base64.
            attachment = MIMEBase(basetype, subtype)
            attachment.set_payload(content)
            Encoders.encode_base64(attachment)
        return attachment

    def _create_attachment(self, filename, content, mimetype=None):
        """
        Convert the filename, content, mimetype triple into a MIME attachment
        object.
        """
        attachment = self._create_mime_attachment(content, mimetype)
        if filename:
            try:
                filename.encode('ascii')
            except UnicodeEncodeError:
                filename = ('utf-8', '', filename)
            attachment.add_header('Content-Disposition', 'attachment', filename=filename)
        return attachment

    def _set_list_header_if_not_empty(self, msg, header, values):
        """
        Set msg's header, either from self.extra_headers, if present, or from
        the values argument.
        """
        if values:
            try:
                value = self.extra_headers[header]
            except KeyError:
                value = ', '.join(str(v) for v in values)
            msg[header] = value



class EmailMultiAlternatives(EmailMessage):
    """
    A version of EmailMessage that makes it easy to send multipart/alternative
    messages. For example, including text and HTML versions of the text is
    made easier.
    """
    alternative_subtype = 'alternative'

    def __init__(self, subject='', body='', from_email=None, to=None, bcc=None,
                 connection=None, attachments=None, headers=None, alternatives=None,
                 cc=None, reply_to=None):
        """
        Initialize a single email message (which can be sent to multiple
        recipients).
        """
        super().__init__(
            subject, body, from_email, to, bcc, connection, attachments,
            headers, cc, reply_to,
        )
        self.alternatives = alternatives or []

    def attach_alternative(self, content, mimetype):
        """Attach an alternative content representation."""
        assert content is not None
        assert mimetype is not None
        self.alternatives.append((content, mimetype))

    def _create_message(self, msg):
        return self._create_attachments(self._create_alternatives(msg))

    def _create_alternatives(self, msg):
        encoding = self.encoding or settings.DEFAULT_CHARSET
        if self.alternatives:
            body_msg = msg
            msg = SafeMIMEMultipart(_subtype=self.alternative_subtype, encoding=encoding)
            if self.body:
                msg.attach(body_msg)
            for alternative in self.alternatives:
                msg.attach(self._create_mime_attachment(*alternative))
        return msg




          

      

      

    

  

  
    
    django.dispatch.dispatcher
    

    
 
  

    
      
          
            
  Source code for django.dispatch.dispatcher

import threading
import weakref

from django.utils.inspect import func_accepts_kwargs


def _make_id(target):
    if hasattr(target, '__func__'):
        return (id(target.__self__), id(target.__func__))
    return id(target)


NONE_ID = _make_id(None)

# A marker for caching
NO_RECEIVERS = object()


[docs]class Signal:
    """
    Base class for all signals

    Internal attributes:

        receivers
            { receiverkey (id) : weakref(receiver) }
    """
    def __init__(self, providing_args=None, use_caching=False):
        """
        Create a new signal.

        providing_args
            A list of the arguments this signal can pass along in a send() call.
        """
        self.receivers = []
        if providing_args is None:
            providing_args = []
        self.providing_args = set(providing_args)
        self.lock = threading.Lock()
        self.use_caching = use_caching
        # For convenience we create empty caches even if they are not used.
        # A note about caching: if use_caching is defined, then for each
        # distinct sender we cache the receivers that sender has in
        # 'sender_receivers_cache'. The cache is cleaned when .connect() or
        # .disconnect() is called and populated on send().
        self.sender_receivers_cache = weakref.WeakKeyDictionary() if use_caching else {}
        self._dead_receivers = False

[docs]    def connect(self, receiver, sender=None, weak=True, dispatch_uid=None):
        """
        Connect receiver to sender for signal.

        Arguments:

            receiver
                A function or an instance method which is to receive signals.
                Receivers must be hashable objects.

                If weak is True, then receiver must be weak referenceable.

                Receivers must be able to accept keyword arguments.

                If a receiver is connected with a dispatch_uid argument, it
                will not be added if another receiver was already connected
                with that dispatch_uid.

            sender
                The sender to which the receiver should respond. Must either be
                a Python object, or None to receive events from any sender.

            weak
                Whether to use weak references to the receiver. By default, the
                module will attempt to use weak references to the receiver
                objects. If this parameter is false, then strong references will
                be used.

            dispatch_uid
                An identifier used to uniquely identify a particular instance of
                a receiver. This will usually be a string, though it may be
                anything hashable.
        """
        from django.conf import settings

        # If DEBUG is on, check that we got a good receiver
        if settings.configured and settings.DEBUG:
            assert callable(receiver), "Signal receivers must be callable."

            # Check for **kwargs
            if not func_accepts_kwargs(receiver):
                raise ValueError("Signal receivers must accept keyword arguments (**kwargs).")

        if dispatch_uid:
            lookup_key = (dispatch_uid, _make_id(sender))
        else:
            lookup_key = (_make_id(receiver), _make_id(sender))

        if weak:
            ref = weakref.ref
            receiver_object = receiver
            # Check for bound methods
            if hasattr(receiver, '__self__') and hasattr(receiver, '__func__'):
                ref = weakref.WeakMethod
                receiver_object = receiver.__self__
            receiver = ref(receiver)
            weakref.finalize(receiver_object, self._remove_receiver)

        with self.lock:
            self._clear_dead_receivers()
            if not any(r_key == lookup_key for r_key, _ in self.receivers):
                self.receivers.append((lookup_key, receiver))
            self.sender_receivers_cache.clear()


[docs]    def disconnect(self, receiver=None, sender=None, dispatch_uid=None):
        """
        Disconnect receiver from sender for signal.

        If weak references are used, disconnect need not be called. The receiver
        will be removed from dispatch automatically.

        Arguments:

            receiver
                The registered receiver to disconnect. May be none if
                dispatch_uid is specified.

            sender
                The registered sender to disconnect

            dispatch_uid
                the unique identifier of the receiver to disconnect
        """
        if dispatch_uid:
            lookup_key = (dispatch_uid, _make_id(sender))
        else:
            lookup_key = (_make_id(receiver), _make_id(sender))

        disconnected = False
        with self.lock:
            self._clear_dead_receivers()
            for index in range(len(self.receivers)):
                (r_key, _) = self.receivers[index]
                if r_key == lookup_key:
                    disconnected = True
                    del self.receivers[index]
                    break
            self.sender_receivers_cache.clear()
        return disconnected


    def has_listeners(self, sender=None):
        return bool(self._live_receivers(sender))

[docs]    def send(self, sender, **named):
        """
        Send signal from sender to all connected receivers.

        If any receiver raises an error, the error propagates back through send,
        terminating the dispatch loop. So it's possible that all receivers
        won't be called if an error is raised.

        Arguments:

            sender
                The sender of the signal. Either a specific object or None.

            named
                Named arguments which will be passed to receivers.

        Return a list of tuple pairs [(receiver, response), ... ].
        """
        if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
            return []

        return [
            (receiver, receiver(signal=self, sender=sender, **named))
            for receiver in self._live_receivers(sender)
        ]


[docs]    def send_robust(self, sender, **named):
        """
        Send signal from sender to all connected receivers catching errors.

        Arguments:

            sender
                The sender of the signal. Can be any Python object (normally one
                registered with a connect if you actually want something to
                occur).

            named
                Named arguments which will be passed to receivers. These
                arguments must be a subset of the argument names defined in
                providing_args.

        Return a list of tuple pairs [(receiver, response), ... ].

        If any receiver raises an error (specifically any subclass of
        Exception), return the error instance as the result for that receiver.
        """
        if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
            return []

        # Call each receiver with whatever arguments it can accept.
        # Return a list of tuple pairs [(receiver, response), ... ].
        responses = []
        for receiver in self._live_receivers(sender):
            try:
                response = receiver(signal=self, sender=sender, **named)
            except Exception as err:
                responses.append((receiver, err))
            else:
                responses.append((receiver, response))
        return responses


    def _clear_dead_receivers(self):
        # Note: caller is assumed to hold self.lock.
        if self._dead_receivers:
            self._dead_receivers = False
            self.receivers = [
                r for r in self.receivers
                if not(isinstance(r[1], weakref.ReferenceType) and r[1]() is None)
            ]

    def _live_receivers(self, sender):
        """
        Filter sequence of receivers to get resolved, live receivers.

        This checks for weak references and resolves them, then returning only
        live receivers.
        """
        receivers = None
        if self.use_caching and not self._dead_receivers:
            receivers = self.sender_receivers_cache.get(sender)
            # We could end up here with NO_RECEIVERS even if we do check this case in
            # .send() prior to calling _live_receivers() due to concurrent .send() call.
            if receivers is NO_RECEIVERS:
                return []
        if receivers is None:
            with self.lock:
                self._clear_dead_receivers()
                senderkey = _make_id(sender)
                receivers = []
                for (receiverkey, r_senderkey), receiver in self.receivers:
                    if r_senderkey == NONE_ID or r_senderkey == senderkey:
                        receivers.append(receiver)
                if self.use_caching:
                    if not receivers:
                        self.sender_receivers_cache[sender] = NO_RECEIVERS
                    else:
                        # Note, we must cache the weakref versions.
                        self.sender_receivers_cache[sender] = receivers
        non_weak_receivers = []
        for receiver in receivers:
            if isinstance(receiver, weakref.ReferenceType):
                # Dereference the weak reference.
                receiver = receiver()
                if receiver is not None:
                    non_weak_receivers.append(receiver)
            else:
                non_weak_receivers.append(receiver)
        return non_weak_receivers

    def _remove_receiver(self, receiver=None):
        # Mark that the self.receivers list has dead weakrefs. If so, we will
        # clean those up in connect, disconnect and _live_receivers while
        # holding self.lock. Note that doing the cleanup here isn't a good
        # idea, _remove_receiver() will be called as side effect of garbage
        # collection, and so the call can happen while we are already holding
        # self.lock.
        self._dead_receivers = True



[docs]def receiver(signal, **kwargs):
    """
    A decorator for connecting receivers to signals. Used by passing in the
    signal (or list of signals) and keyword arguments to connect::

        @receiver(post_save, sender=MyModel)
        def signal_receiver(sender, **kwargs):
            ...

        @receiver([post_save, post_delete], sender=MyModel)
        def signals_receiver(sender, **kwargs):
            ...
    """
    def _decorator(func):
        if isinstance(signal, (list, tuple)):
            for s in signal:
                s.connect(func, **kwargs)
        else:
            signal.connect(func, **kwargs)
        return func
    return _decorator





          

      

      

    

  

  
    
    django.middleware.clickjacking
    

    
 
  

    
      
          
            
  Source code for django.middleware.clickjacking

"""
Clickjacking Protection Middleware.

This module provides a middleware that implements protection against a
malicious site loading resources from your site in a hidden frame.
"""

from django.conf import settings
from django.utils.deprecation import MiddlewareMixin


[docs]class XFrameOptionsMiddleware(MiddlewareMixin):
    """
    Set the X-Frame-Options HTTP header in HTTP responses.

    Do not set the header if it's already set or if the response contains
    a xframe_options_exempt value set to True.

    By default, set the X-Frame-Options header to 'SAMEORIGIN', meaning the
    response can only be loaded on a frame within the same site. To prevent the
    response from being loaded in a frame in any site, set X_FRAME_OPTIONS in
    your project's Django settings to 'DENY'.
    """
    def process_response(self, request, response):
        # Don't set it if it's already in the response
        if response.get('X-Frame-Options') is not None:
            return response

        # Don't set it if they used @xframe_options_exempt
        if getattr(response, 'xframe_options_exempt', False):
            return response

        response['X-Frame-Options'] = self.get_xframe_options_value(request,
                                                                    response)
        return response

    def get_xframe_options_value(self, request, response):
        """
        Get the value to set for the X_FRAME_OPTIONS header. Use the value from
        the X_FRAME_OPTIONS setting, or 'DENY' if not set.

        This method can be overridden if needed, allowing it to vary based on
        the request or response.
        """
        return getattr(settings, 'X_FRAME_OPTIONS', 'DENY').upper()





          

      

      

    

  

  
    
    django.utils.decorators
    

    
 
  

    
      
          
            
  Source code for django.utils.decorators

"Functions that help with dynamically creating decorators for views."

from functools import partial, update_wrapper, wraps


class classonlymethod(classmethod):
    def __get__(self, instance, cls=None):
        if instance is not None:
            raise AttributeError("This method is available only on the class, not on instances.")
        return super().__get__(instance, cls)


def _update_method_wrapper(_wrapper, decorator):
    # _multi_decorate()'s bound_method isn't available in this scope. Cheat by
    # using it on a dummy function.
    @decorator
    def dummy(*args, **kwargs):
        pass
    update_wrapper(_wrapper, dummy)


def _multi_decorate(decorators, method):
    """
    Decorate `method` with one or more function decorators. `decorators` can be
    a single decorator or an iterable of decorators.
    """
    if hasattr(decorators, '__iter__'):
        # Apply a list/tuple of decorators if 'decorators' is one. Decorator
        # functions are applied so that the call order is the same as the
        # order in which they appear in the iterable.
        decorators = decorators[::-1]
    else:
        decorators = [decorators]

    def _wrapper(self, *args, **kwargs):
        # bound_method has the signature that 'decorator' expects i.e. no
        # 'self' argument, but it's a closure over self so it can call
        # 'func'. Also, wrap method.__get__() in a function because new
        # attributes can't be set on bound method objects, only on functions.
        bound_method = partial(method.__get__(self, type(self)))
        for dec in decorators:
            bound_method = dec(bound_method)
        return bound_method(*args, **kwargs)

    # Copy any attributes that a decorator adds to the function it decorates.
    for dec in decorators:
        _update_method_wrapper(_wrapper, dec)
    # Preserve any existing attributes of 'method', including the name.
    update_wrapper(_wrapper, method)
    return _wrapper


[docs]def method_decorator(decorator, name=''):
    """
    Convert a function decorator into a method decorator
    """
    # 'obj' can be a class or a function. If 'obj' is a function at the time it
    # is passed to _dec,  it will eventually be a method of the class it is
    # defined on. If 'obj' is a class, the 'name' is required to be the name
    # of the method that will be decorated.
    def _dec(obj):
        if not isinstance(obj, type):
            return _multi_decorate(decorator, obj)
        if not (name and hasattr(obj, name)):
            raise ValueError(
                "The keyword argument `name` must be the name of a method "
                "of the decorated class: %s. Got '%s' instead." % (obj, name)
            )
        method = getattr(obj, name)
        if not callable(method):
            raise TypeError(
                "Cannot decorate '%s' as it isn't a callable attribute of "
                "%s (%s)." % (name, obj, method)
            )
        _wrapper = _multi_decorate(decorator, method)
        setattr(obj, name, _wrapper)
        return obj

    # Don't worry about making _dec look similar to a list/tuple as it's rather
    # meaningless.
    if not hasattr(decorator, '__iter__'):
        update_wrapper(_dec, decorator)
    # Change the name to aid debugging.
    obj = decorator if hasattr(decorator, '__name__') else decorator.__class__
    _dec.__name__ = 'method_decorator(%s)' % obj.__name__
    return _dec



[docs]def decorator_from_middleware_with_args(middleware_class):
    """
    Like decorator_from_middleware, but return a function
    that accepts the arguments to be passed to the middleware_class.
    Use like::

         cache_page = decorator_from_middleware_with_args(CacheMiddleware)
         # ...

         @cache_page(3600)
         def my_view(request):
             # ...
    """
    return make_middleware_decorator(middleware_class)



[docs]def decorator_from_middleware(middleware_class):
    """
    Given a middleware class (not an instance), return a view decorator. This
    lets you use middleware functionality on a per-view basis. The middleware
    is created with no params passed.
    """
    return make_middleware_decorator(middleware_class)()



def make_middleware_decorator(middleware_class):
    def _make_decorator(*m_args, **m_kwargs):
        middleware = middleware_class(*m_args, **m_kwargs)

        def _decorator(view_func):
            @wraps(view_func)
            def _wrapped_view(request, *args, **kwargs):
                if hasattr(middleware, 'process_request'):
                    result = middleware.process_request(request)
                    if result is not None:
                        return result
                if hasattr(middleware, 'process_view'):
                    result = middleware.process_view(request, view_func, args, kwargs)
                    if result is not None:
                        return result
                try:
                    response = view_func(request, *args, **kwargs)
                except Exception as e:
                    if hasattr(middleware, 'process_exception'):
                        result = middleware.process_exception(request, e)
                        if result is not None:
                            return result
                    raise
                if hasattr(response, 'render') and callable(response.render):
                    if hasattr(middleware, 'process_template_response'):
                        response = middleware.process_template_response(request, response)
                    # Defer running of process_response until after the template
                    # has been rendered:
                    if hasattr(middleware, 'process_response'):
                        def callback(response):
                            return middleware.process_response(request, response)
                        response.add_post_render_callback(callback)
                else:
                    if hasattr(middleware, 'process_response'):
                        return middleware.process_response(request, response)
                return response
            return _wrapped_view
        return _decorator
    return _make_decorator


class classproperty:
    def __init__(self, method=None):
        self.fget = method

    def __get__(self, instance, cls=None):
        return self.fget(cls)

    def getter(self, method):
        self.fget = method
        return self




          

      

      

    

  

  
    
    django.utils.encoding
    

    
 
  

    
      
          
            
  Source code for django.utils.encoding

import codecs
import datetime
import locale
import warnings
from decimal import Decimal
from urllib.parse import quote

from django.utils.deprecation import RemovedInDjango40Warning
from django.utils.functional import Promise


class DjangoUnicodeDecodeError(UnicodeDecodeError):
    def __init__(self, obj, *args):
        self.obj = obj
        super().__init__(*args)

    def __str__(self):
        return '%s. You passed in %r (%s)' % (super().__str__(), self.obj, type(self.obj))


[docs]def smart_str(s, encoding='utf-8', strings_only=False, errors='strict'):
    """
    Return a string representing 's'. Treat bytestrings using the 'encoding'
    codec.

    If strings_only is True, don't convert (some) non-string-like objects.
    """
    if isinstance(s, Promise):
        # The input is the result of a gettext_lazy() call.
        return s
    return force_str(s, encoding, strings_only, errors)



_PROTECTED_TYPES = (
    type(None), int, float, Decimal, datetime.datetime, datetime.date, datetime.time,
)


[docs]def is_protected_type(obj):
    """Determine if the object instance is of a protected type.

    Objects of protected types are preserved as-is when passed to
    force_str(strings_only=True).
    """
    return isinstance(obj, _PROTECTED_TYPES)



[docs]def force_str(s, encoding='utf-8', strings_only=False, errors='strict'):
    """
    Similar to smart_str(), except that lazy instances are resolved to
    strings, rather than kept as lazy objects.

    If strings_only is True, don't convert (some) non-string-like objects.
    """
    # Handle the common case first for performance reasons.
    if issubclass(type(s), str):
        return s
    if strings_only and is_protected_type(s):
        return s
    try:
        if isinstance(s, bytes):
            s = str(s, encoding, errors)
        else:
            s = str(s)
    except UnicodeDecodeError as e:
        raise DjangoUnicodeDecodeError(s, *e.args)
    return s



[docs]def smart_bytes(s, encoding='utf-8', strings_only=False, errors='strict'):
    """
    Return a bytestring version of 's', encoded as specified in 'encoding'.

    If strings_only is True, don't convert (some) non-string-like objects.
    """
    if isinstance(s, Promise):
        # The input is the result of a gettext_lazy() call.
        return s
    return force_bytes(s, encoding, strings_only, errors)



[docs]def force_bytes(s, encoding='utf-8', strings_only=False, errors='strict'):
    """
    Similar to smart_bytes, except that lazy instances are resolved to
    strings, rather than kept as lazy objects.

    If strings_only is True, don't convert (some) non-string-like objects.
    """
    # Handle the common case first for performance reasons.
    if isinstance(s, bytes):
        if encoding == 'utf-8':
            return s
        else:
            return s.decode('utf-8', errors).encode(encoding, errors)
    if strings_only and is_protected_type(s):
        return s
    if isinstance(s, memoryview):
        return bytes(s)
    return str(s).encode(encoding, errors)



[docs]def smart_text(s, encoding='utf-8', strings_only=False, errors='strict'):
    warnings.warn(
        'smart_text() is deprecated in favor of smart_str().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return smart_str(s, encoding, strings_only, errors)



[docs]def force_text(s, encoding='utf-8', strings_only=False, errors='strict'):
    warnings.warn(
        'force_text() is deprecated in favor of force_str().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return force_str(s, encoding, strings_only, errors)



[docs]def iri_to_uri(iri):
    """
    Convert an Internationalized Resource Identifier (IRI) portion to a URI
    portion that is suitable for inclusion in a URL.

    This is the algorithm from section 3.1 of RFC 3987, slightly simplified
    since the input is assumed to be a string rather than an arbitrary byte
    stream.

    Take an IRI (string or UTF-8 bytes, e.g. '/I ♥ Django/' or
    b'/I \xe2\x99\xa5 Django/') and return a string containing the encoded
    result with ASCII chars only (e.g. '/I%20%E2%99%A5%20Django/').
    """
    # The list of safe characters here is constructed from the "reserved" and
    # "unreserved" characters specified in sections 2.2 and 2.3 of RFC 3986:
    #     reserved    = gen-delims / sub-delims
    #     gen-delims  = ":" / "/" / "?" / "#" / "[" / "]" / "@"
    #     sub-delims  = "!" / "$" / "&" / "'" / "(" / ")"
    #                   / "*" / "+" / "," / ";" / "="
    #     unreserved  = ALPHA / DIGIT / "-" / "." / "_" / "~"
    # Of the unreserved characters, urllib.parse.quote() already considers all
    # but the ~ safe.
    # The % character is also added to the list of safe characters here, as the
    # end of section 3.1 of RFC 3987 specifically mentions that % must not be
    # converted.
    if iri is None:
        return iri
    elif isinstance(iri, Promise):
        iri = str(iri)
    return quote(iri, safe="/#%[]=:;$&()+,!?*@'~")



# List of byte values that uri_to_iri() decodes from percent encoding.
# First, the unreserved characters from RFC 3986:
_ascii_ranges = [[45, 46, 95, 126], range(65, 91), range(97, 123)]
_hextobyte = {
    (fmt % char).encode(): bytes((char,))
    for ascii_range in _ascii_ranges
    for char in ascii_range
    for fmt in ['%02x', '%02X']
}
# And then everything above 128, because bytes ≥ 128 are part of multibyte
# unicode characters.
_hexdig = '0123456789ABCDEFabcdef'
_hextobyte.update({
    (a + b).encode(): bytes.fromhex(a + b)
    for a in _hexdig[8:] for b in _hexdig
})


[docs]def uri_to_iri(uri):
    """
    Convert a Uniform Resource Identifier(URI) into an Internationalized
    Resource Identifier(IRI).

    This is the algorithm from section 3.2 of RFC 3987, excluding step 4.

    Take an URI in ASCII bytes (e.g. '/I%20%E2%99%A5%20Django/') and return
    a string containing the encoded result (e.g. '/I%20♥%20Django/').
    """
    if uri is None:
        return uri
    uri = force_bytes(uri)
    # Fast selective unqote: First, split on '%' and then starting with the
    # second block, decode the first 2 bytes if they represent a hex code to
    # decode. The rest of the block is the part after '%AB', not containing
    # any '%'. Add that to the output without further processing.
    bits = uri.split(b'%')
    if len(bits) == 1:
        iri = uri
    else:
        parts = [bits[0]]
        append = parts.append
        hextobyte = _hextobyte
        for item in bits[1:]:
            hex = item[:2]
            if hex in hextobyte:
                append(hextobyte[item[:2]])
                append(item[2:])
            else:
                append(b'%')
                append(item)
        iri = b''.join(parts)
    return repercent_broken_unicode(iri).decode()



[docs]def escape_uri_path(path):
    """
    Escape the unsafe characters from the path portion of a Uniform Resource
    Identifier (URI).
    """
    # These are the "reserved" and "unreserved" characters specified in
    # sections 2.2 and 2.3 of RFC 2396:
    #   reserved    = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | ","
    #   unreserved  = alphanum | mark
    #   mark        = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
    # The list of safe characters here is constructed subtracting ";", "=",
    # and "?" according to section 3.3 of RFC 2396.
    # The reason for not subtracting and escaping "/" is that we are escaping
    # the entire path, not a path segment.
    return quote(path, safe="/:@&+$,-_.!~*'()")



def punycode(domain):
    """Return the Punycode of the given domain if it's non-ASCII."""
    return domain.encode('idna').decode('ascii')


def repercent_broken_unicode(path):
    """
    As per section 3.2 of RFC 3987, step three of converting a URI into an IRI,
    repercent-encode any octet produced that is not part of a strictly legal
    UTF-8 octet sequence.
    """
    while True:
        try:
            path.decode()
        except UnicodeDecodeError as e:
            # CVE-2019-14235: A recursion shouldn't be used since the exception
            # handling uses massive amounts of memory
            repercent = quote(path[e.start:e.end], safe=b"/#%[]=:;$&()+,!?*@'~")
            path = path[:e.start] + repercent.encode() + path[e.end:]
        else:
            return path


[docs]def filepath_to_uri(path):
    """Convert a file system path to a URI portion that is suitable for
    inclusion in a URL.

    Encode certain chars that would normally be recognized as special chars
    for URIs. Do not encode the ' character, as it is a valid character
    within URIs. See the encodeURIComponent() JavaScript function for details.
    """
    if path is None:
        return path
    # I know about `os.sep` and `os.altsep` but I want to leave
    # some flexibility for hardcoding separators.
    return quote(path.replace("\\", "/"), safe="/~!*()'")



def get_system_encoding():
    """
    The encoding of the default system locale. Fallback to 'ascii' if the
    #encoding is unsupported by Python or could not be determined. See tickets
    #10335 and #5846.
    """
    try:
        encoding = locale.getdefaultlocale()[1] or 'ascii'
        codecs.lookup(encoding)
    except Exception:
        encoding = 'ascii'
    return encoding


DEFAULT_LOCALE_ENCODING = get_system_encoding()




          

      

      

    

  

  
    
    django.utils.functional
    

    
 
  

    
      
          
            
  Source code for django.utils.functional

import copy
import itertools
import operator
from functools import total_ordering, wraps


[docs]class cached_property:
    """
    Decorator that converts a method with a single self argument into a
    property cached on the instance.

    A cached property can be made out of an existing method:
    (e.g. ``url = cached_property(get_absolute_url)``).
    The optional ``name`` argument is obsolete as of Python 3.6 and will be
    deprecated in Django 4.0 (#30127).
    """
    name = None

    @staticmethod
    def func(instance):
        raise TypeError(
            'Cannot use cached_property instance without calling '
            '__set_name__() on it.'
        )

    def __init__(self, func, name=None):
        self.real_func = func
        self.__doc__ = getattr(func, '__doc__')

    def __set_name__(self, owner, name):
        if self.name is None:
            self.name = name
            self.func = self.real_func
        elif name != self.name:
            raise TypeError(
                "Cannot assign the same cached_property to two different names "
                "(%r and %r)." % (self.name, name)
            )

    def __get__(self, instance, cls=None):
        """
        Call the function and put the return value in instance.__dict__ so that
        subsequent attribute access on the instance returns the cached value
        instead of calling cached_property.__get__().
        """
        if instance is None:
            return self
        res = instance.__dict__[self.name] = self.func(instance)
        return res



class Promise:
    """
    Base class for the proxy class created in the closure of the lazy function.
    It's used to recognize promises in code.
    """
    pass


def lazy(func, *resultclasses):
    """
    Turn any callable into a lazy evaluated callable. result classes or types
    is required -- at least one is needed so that the automatic forcing of
    the lazy evaluation code is triggered. Results are not memoized; the
    function is evaluated on every access.
    """

    @total_ordering
    class __proxy__(Promise):
        """
        Encapsulate a function call and act as a proxy for methods that are
        called on the result of that function. The function is not evaluated
        until one of the methods on the result is called.
        """
        __prepared = False

        def __init__(self, args, kw):
            self.__args = args
            self.__kw = kw
            if not self.__prepared:
                self.__prepare_class__()
            self.__class__.__prepared = True

        def __reduce__(self):
            return (
                _lazy_proxy_unpickle,
                (func, self.__args, self.__kw) + resultclasses
            )

        def __repr__(self):
            return repr(self.__cast())

        @classmethod
        def __prepare_class__(cls):
            for resultclass in resultclasses:
                for type_ in resultclass.mro():
                    for method_name in type_.__dict__:
                        # All __promise__ return the same wrapper method, they
                        # look up the correct implementation when called.
                        if hasattr(cls, method_name):
                            continue
                        meth = cls.__promise__(method_name)
                        setattr(cls, method_name, meth)
            cls._delegate_bytes = bytes in resultclasses
            cls._delegate_text = str in resultclasses
            assert not (cls._delegate_bytes and cls._delegate_text), (
                "Cannot call lazy() with both bytes and text return types.")
            if cls._delegate_text:
                cls.__str__ = cls.__text_cast
            elif cls._delegate_bytes:
                cls.__bytes__ = cls.__bytes_cast

        @classmethod
        def __promise__(cls, method_name):
            # Builds a wrapper around some magic method
            def __wrapper__(self, *args, **kw):
                # Automatically triggers the evaluation of a lazy value and
                # applies the given magic method of the result type.
                res = func(*self.__args, **self.__kw)
                return getattr(res, method_name)(*args, **kw)
            return __wrapper__

        def __text_cast(self):
            return func(*self.__args, **self.__kw)

        def __bytes_cast(self):
            return bytes(func(*self.__args, **self.__kw))

        def __bytes_cast_encoded(self):
            return func(*self.__args, **self.__kw).encode()

        def __cast(self):
            if self._delegate_bytes:
                return self.__bytes_cast()
            elif self._delegate_text:
                return self.__text_cast()
            else:
                return func(*self.__args, **self.__kw)

        def __str__(self):
            # object defines __str__(), so __prepare_class__() won't overload
            # a __str__() method from the proxied class.
            return str(self.__cast())

        def __eq__(self, other):
            if isinstance(other, Promise):
                other = other.__cast()
            return self.__cast() == other

        def __lt__(self, other):
            if isinstance(other, Promise):
                other = other.__cast()
            return self.__cast() < other

        def __hash__(self):
            return hash(self.__cast())

        def __mod__(self, rhs):
            if self._delegate_text:
                return str(self) % rhs
            return self.__cast() % rhs

        def __deepcopy__(self, memo):
            # Instances of this class are effectively immutable. It's just a
            # collection of functions. So we don't need to do anything
            # complicated for copying.
            memo[id(self)] = self
            return self

    @wraps(func)
    def __wrapper__(*args, **kw):
        # Creates the proxy object, instead of the actual value.
        return __proxy__(args, kw)

    return __wrapper__


def _lazy_proxy_unpickle(func, args, kwargs, *resultclasses):
    return lazy(func, *resultclasses)(*args, **kwargs)


def lazystr(text):
    """
    Shortcut for the common case of a lazy callable that returns str.
    """
    return lazy(str, str)(text)


[docs]def keep_lazy(*resultclasses):
    """
    A decorator that allows a function to be called with one or more lazy
    arguments. If none of the args are lazy, the function is evaluated
    immediately, otherwise a __proxy__ is returned that will evaluate the
    function when needed.
    """
    if not resultclasses:
        raise TypeError("You must pass at least one argument to keep_lazy().")

    def decorator(func):
        lazy_func = lazy(func, *resultclasses)

        @wraps(func)
        def wrapper(*args, **kwargs):
            if any(isinstance(arg, Promise) for arg in itertools.chain(args, kwargs.values())):
                return lazy_func(*args, **kwargs)
            return func(*args, **kwargs)
        return wrapper
    return decorator



[docs]def keep_lazy_text(func):
    """
    A decorator for functions that accept lazy arguments and return text.
    """
    return keep_lazy(str)(func)



empty = object()


def new_method_proxy(func):
    def inner(self, *args):
        if self._wrapped is empty:
            self._setup()
        return func(self._wrapped, *args)
    return inner


class LazyObject:
    """
    A wrapper for another class that can be used to delay instantiation of the
    wrapped class.

    By subclassing, you have the opportunity to intercept and alter the
    instantiation. If you don't need to do that, use SimpleLazyObject.
    """

    # Avoid infinite recursion when tracing __init__ (#19456).
    _wrapped = None

    def __init__(self):
        # Note: if a subclass overrides __init__(), it will likely need to
        # override __copy__() and __deepcopy__() as well.
        self._wrapped = empty

    __getattr__ = new_method_proxy(getattr)

    def __setattr__(self, name, value):
        if name == "_wrapped":
            # Assign to __dict__ to avoid infinite __setattr__ loops.
            self.__dict__["_wrapped"] = value
        else:
            if self._wrapped is empty:
                self._setup()
            setattr(self._wrapped, name, value)

    def __delattr__(self, name):
        if name == "_wrapped":
            raise TypeError("can't delete _wrapped.")
        if self._wrapped is empty:
            self._setup()
        delattr(self._wrapped, name)

    def _setup(self):
        """
        Must be implemented by subclasses to initialize the wrapped object.
        """
        raise NotImplementedError('subclasses of LazyObject must provide a _setup() method')

    # Because we have messed with __class__ below, we confuse pickle as to what
    # class we are pickling. We're going to have to initialize the wrapped
    # object to successfully pickle it, so we might as well just pickle the
    # wrapped object since they're supposed to act the same way.
    #
    # Unfortunately, if we try to simply act like the wrapped object, the ruse
    # will break down when pickle gets our id(). Thus we end up with pickle
    # thinking, in effect, that we are a distinct object from the wrapped
    # object, but with the same __dict__. This can cause problems (see #25389).
    #
    # So instead, we define our own __reduce__ method and custom unpickler. We
    # pickle the wrapped object as the unpickler's argument, so that pickle
    # will pickle it normally, and then the unpickler simply returns its
    # argument.
    def __reduce__(self):
        if self._wrapped is empty:
            self._setup()
        return (unpickle_lazyobject, (self._wrapped,))

    def __copy__(self):
        if self._wrapped is empty:
            # If uninitialized, copy the wrapper. Use type(self), not
            # self.__class__, because the latter is proxied.
            return type(self)()
        else:
            # If initialized, return a copy of the wrapped object.
            return copy.copy(self._wrapped)

    def __deepcopy__(self, memo):
        if self._wrapped is empty:
            # We have to use type(self), not self.__class__, because the
            # latter is proxied.
            result = type(self)()
            memo[id(self)] = result
            return result
        return copy.deepcopy(self._wrapped, memo)

    __bytes__ = new_method_proxy(bytes)
    __str__ = new_method_proxy(str)
    __bool__ = new_method_proxy(bool)

    # Introspection support
    __dir__ = new_method_proxy(dir)

    # Need to pretend to be the wrapped class, for the sake of objects that
    # care about this (especially in equality tests)
    __class__ = property(new_method_proxy(operator.attrgetter("__class__")))
    __eq__ = new_method_proxy(operator.eq)
    __lt__ = new_method_proxy(operator.lt)
    __gt__ = new_method_proxy(operator.gt)
    __ne__ = new_method_proxy(operator.ne)
    __hash__ = new_method_proxy(hash)

    # List/Tuple/Dictionary methods support
    __getitem__ = new_method_proxy(operator.getitem)
    __setitem__ = new_method_proxy(operator.setitem)
    __delitem__ = new_method_proxy(operator.delitem)
    __iter__ = new_method_proxy(iter)
    __len__ = new_method_proxy(len)
    __contains__ = new_method_proxy(operator.contains)


def unpickle_lazyobject(wrapped):
    """
    Used to unpickle lazy objects. Just return its argument, which will be the
    wrapped object.
    """
    return wrapped


class SimpleLazyObject(LazyObject):
    """
    A lazy object initialized from any function.

    Designed for compound objects of unknown type. For builtins or objects of
    known type, use django.utils.functional.lazy.
    """
    def __init__(self, func):
        """
        Pass in a callable that returns the object to be wrapped.

        If copies are made of the resulting SimpleLazyObject, which can happen
        in various circumstances within Django, then you must ensure that the
        callable can be safely run more than once and will return the same
        value.
        """
        self.__dict__['_setupfunc'] = func
        super().__init__()

    def _setup(self):
        self._wrapped = self._setupfunc()

    # Return a meaningful representation of the lazy object for debugging
    # without evaluating the wrapped object.
    def __repr__(self):
        if self._wrapped is empty:
            repr_attr = self._setupfunc
        else:
            repr_attr = self._wrapped
        return '<%s: %r>' % (type(self).__name__, repr_attr)

    def __copy__(self):
        if self._wrapped is empty:
            # If uninitialized, copy the wrapper. Use SimpleLazyObject, not
            # self.__class__, because the latter is proxied.
            return SimpleLazyObject(self._setupfunc)
        else:
            # If initialized, return a copy of the wrapped object.
            return copy.copy(self._wrapped)

    def __deepcopy__(self, memo):
        if self._wrapped is empty:
            # We have to use SimpleLazyObject, not self.__class__, because the
            # latter is proxied.
            result = SimpleLazyObject(self._setupfunc)
            memo[id(self)] = result
            return result
        return copy.deepcopy(self._wrapped, memo)


def partition(predicate, values):
    """
    Split the values into two sets, based on the return value of the function
    (True/False). e.g.:

        >>> partition(lambda x: x > 3, range(5))
        [0, 1, 2, 3], [4]
    """
    results = ([], [])
    for item in values:
        results[predicate(item)].append(item)
    return results




          

      

      

    

  

  
    
    django.utils.html
    

    
 
  

    
      
          
            
  Source code for django.utils.html

"""HTML utilities suitable for global use."""

import html
import json
import re
from html.parser import HTMLParser
from urllib.parse import (
    parse_qsl, quote, unquote, urlencode, urlsplit, urlunsplit,
)

from django.utils.encoding import punycode
from django.utils.functional import Promise, keep_lazy, keep_lazy_text
from django.utils.http import RFC3986_GENDELIMS, RFC3986_SUBDELIMS
from django.utils.safestring import SafeData, SafeString, mark_safe
from django.utils.text import normalize_newlines

# Configuration for urlize() function.
TRAILING_PUNCTUATION_CHARS = '.,:;!'
WRAPPING_PUNCTUATION = [('(', ')'), ('[', ']')]

# List of possible strings used for bullets in bulleted lists.
DOTS = ['&middot;', '*', '\u2022', '&#149;', '&bull;', '&#8226;']

unencoded_ampersands_re = re.compile(r'&(?!(\w+|#\d+);)')
word_split_re = re.compile(r'''([\s<>"']+)''')
simple_url_re = re.compile(r'^https?://\[?\w', re.IGNORECASE)
simple_url_2_re = re.compile(r'^www\.|^(?!http)\w[^@]+\.(com|edu|gov|int|mil|net|org)($|/.*)$', re.IGNORECASE)


[docs]@keep_lazy(str, SafeString)
def escape(text):
    """
    Return the given text with ampersands, quotes and angle brackets encoded
    for use in HTML.

    Always escape input, even if it's already escaped and marked as such.
    This may result in double-escaping. If this is a concern, use
    conditional_escape() instead.
    """
    return mark_safe(html.escape(str(text)))



_js_escapes = {
    ord('\\'): '\\u005C',
    ord('\''): '\\u0027',
    ord('"'): '\\u0022',
    ord('>'): '\\u003E',
    ord('<'): '\\u003C',
    ord('&'): '\\u0026',
    ord('='): '\\u003D',
    ord('-'): '\\u002D',
    ord(';'): '\\u003B',
    ord('`'): '\\u0060',
    ord('\u2028'): '\\u2028',
    ord('\u2029'): '\\u2029'
}

# Escape every ASCII character with a value less than 32.
_js_escapes.update((ord('%c' % z), '\\u%04X' % z) for z in range(32))


@keep_lazy(str, SafeString)
def escapejs(value):
    """Hex encode characters for use in JavaScript strings."""
    return mark_safe(str(value).translate(_js_escapes))


_json_script_escapes = {
    ord('>'): '\\u003E',
    ord('<'): '\\u003C',
    ord('&'): '\\u0026',
}


def json_script(value, element_id):
    """
    Escape all the HTML/XML special characters with their unicode escapes, so
    value is safe to be output anywhere except for inside a tag attribute. Wrap
    the escaped JSON in a script tag.
    """
    from django.core.serializers.json import DjangoJSONEncoder
    json_str = json.dumps(value, cls=DjangoJSONEncoder).translate(_json_script_escapes)
    return format_html(
        '<script id="{}" type="application/json">{}</script>',
        element_id, mark_safe(json_str)
    )


[docs]def conditional_escape(text):
    """
    Similar to escape(), except that it doesn't operate on pre-escaped strings.

    This function relies on the __html__ convention used both by Django's
    SafeData class and by third-party libraries like markupsafe.
    """
    if isinstance(text, Promise):
        text = str(text)
    if hasattr(text, '__html__'):
        return text.__html__()
    else:
        return escape(text)



[docs]def format_html(format_string, *args, **kwargs):
    """
    Similar to str.format, but pass all arguments through conditional_escape(),
    and call mark_safe() on the result. This function should be used instead
    of str.format or % interpolation to build up small HTML fragments.
    """
    args_safe = map(conditional_escape, args)
    kwargs_safe = {k: conditional_escape(v) for (k, v) in kwargs.items()}
    return mark_safe(format_string.format(*args_safe, **kwargs_safe))



[docs]def format_html_join(sep, format_string, args_generator):
    """
    A wrapper of format_html, for the common case of a group of arguments that
    need to be formatted using the same format string, and then joined using
    'sep'. 'sep' is also passed through conditional_escape.

    'args_generator' should be an iterator that returns the sequence of 'args'
    that will be passed to format_html.

    Example:

      format_html_join('\n', "<li>{} {}</li>", ((u.first_name, u.last_name)
                                                  for u in users))
    """
    return mark_safe(conditional_escape(sep).join(
        format_html(format_string, *args)
        for args in args_generator
    ))



@keep_lazy_text
def linebreaks(value, autoescape=False):
    """Convert newlines into <p> and <br>s."""
    value = normalize_newlines(value)
    paras = re.split('\n{2,}', str(value))
    if autoescape:
        paras = ['<p>%s</p>' % escape(p).replace('\n', '<br>') for p in paras]
    else:
        paras = ['<p>%s</p>' % p.replace('\n', '<br>') for p in paras]
    return '\n\n'.join(paras)


class MLStripper(HTMLParser):
    def __init__(self):
        super().__init__(convert_charrefs=False)
        self.reset()
        self.fed = []

    def handle_data(self, d):
        self.fed.append(d)

    def handle_entityref(self, name):
        self.fed.append('&%s;' % name)

    def handle_charref(self, name):
        self.fed.append('&#%s;' % name)

    def get_data(self):
        return ''.join(self.fed)


def _strip_once(value):
    """
    Internal tag stripping utility used by strip_tags.
    """
    s = MLStripper()
    s.feed(value)
    s.close()
    return s.get_data()


[docs]@keep_lazy_text
def strip_tags(value):
    """Return the given HTML with all tags stripped."""
    # Note: in typical case this loop executes _strip_once once. Loop condition
    # is redundant, but helps to reduce number of executions of _strip_once.
    value = str(value)
    while '<' in value and '>' in value:
        new_value = _strip_once(value)
        if value.count('<') == new_value.count('<'):
            # _strip_once wasn't able to detect more tags.
            break
        value = new_value
    return value



@keep_lazy_text
def strip_spaces_between_tags(value):
    """Return the given HTML with spaces between tags removed."""
    return re.sub(r'>\s+<', '><', str(value))


def smart_urlquote(url):
    """Quote a URL if it isn't already quoted."""
    def unquote_quote(segment):
        segment = unquote(segment)
        # Tilde is part of RFC3986 Unreserved Characters
        # https://tools.ietf.org/html/rfc3986#section-2.3
        # See also https://bugs.python.org/issue16285
        return quote(segment, safe=RFC3986_SUBDELIMS + RFC3986_GENDELIMS + '~')

    # Handle IDN before quoting.
    try:
        scheme, netloc, path, query, fragment = urlsplit(url)
    except ValueError:
        # invalid IPv6 URL (normally square brackets in hostname part).
        return unquote_quote(url)

    try:
        netloc = punycode(netloc)  # IDN -> ACE
    except UnicodeError:  # invalid domain part
        return unquote_quote(url)

    if query:
        # Separately unquoting key/value, so as to not mix querystring separators
        # included in query values. See #22267.
        query_parts = [(unquote(q[0]), unquote(q[1]))
                       for q in parse_qsl(query, keep_blank_values=True)]
        # urlencode will take care of quoting
        query = urlencode(query_parts)

    path = unquote_quote(path)
    fragment = unquote_quote(fragment)

    return urlunsplit((scheme, netloc, path, query, fragment))


@keep_lazy_text
def urlize(text, trim_url_limit=None, nofollow=False, autoescape=False):
    """
    Convert any URLs in text into clickable links.

    Works on http://, https://, www. links, and also on links ending in one of
    the original seven gTLDs (.com, .edu, .gov, .int, .mil, .net, and .org).
    Links can have trailing punctuation (periods, commas, close-parens) and
    leading punctuation (opening parens) and it'll still do the right thing.

    If trim_url_limit is not None, truncate the URLs in the link text longer
    than this limit to trim_url_limit - 1 characters and append an ellipsis.

    If nofollow is True, give the links a rel="nofollow" attribute.

    If autoescape is True, autoescape the link text and URLs.
    """
    safe_input = isinstance(text, SafeData)

    def trim_url(x, limit=trim_url_limit):
        if limit is None or len(x) <= limit:
            return x
        return '%s…' % x[:max(0, limit - 1)]

    def trim_punctuation(lead, middle, trail):
        """
        Trim trailing and wrapping punctuation from `middle`. Return the items
        of the new state.
        """
        # Continue trimming until middle remains unchanged.
        trimmed_something = True
        while trimmed_something:
            trimmed_something = False
            # Trim wrapping punctuation.
            for opening, closing in WRAPPING_PUNCTUATION:
                if middle.startswith(opening):
                    middle = middle[len(opening):]
                    lead += opening
                    trimmed_something = True
                # Keep parentheses at the end only if they're balanced.
                if (middle.endswith(closing) and
                        middle.count(closing) == middle.count(opening) + 1):
                    middle = middle[:-len(closing)]
                    trail = closing + trail
                    trimmed_something = True
            # Trim trailing punctuation (after trimming wrapping punctuation,
            # as encoded entities contain ';'). Unescape entities to avoid
            # breaking them by removing ';'.
            middle_unescaped = html.unescape(middle)
            stripped = middle_unescaped.rstrip(TRAILING_PUNCTUATION_CHARS)
            if middle_unescaped != stripped:
                trail = middle[len(stripped):] + trail
                middle = middle[:len(stripped) - len(middle_unescaped)]
                trimmed_something = True
        return lead, middle, trail

    def is_email_simple(value):
        """Return True if value looks like an email address."""
        # An @ must be in the middle of the value.
        if '@' not in value or value.startswith('@') or value.endswith('@'):
            return False
        try:
            p1, p2 = value.split('@')
        except ValueError:
            # value contains more than one @.
            return False
        # Dot must be in p2 (e.g. example.com)
        if '.' not in p2 or p2.startswith('.'):
            return False
        return True

    words = word_split_re.split(str(text))
    for i, word in enumerate(words):
        if '.' in word or '@' in word or ':' in word:
            # lead: Current punctuation trimmed from the beginning of the word.
            # middle: Current state of the word.
            # trail: Current punctuation trimmed from the end of the word.
            lead, middle, trail = '', word, ''
            # Deal with punctuation.
            lead, middle, trail = trim_punctuation(lead, middle, trail)

            # Make URL we want to point to.
            url = None
            nofollow_attr = ' rel="nofollow"' if nofollow else ''
            if simple_url_re.match(middle):
                url = smart_urlquote(html.unescape(middle))
            elif simple_url_2_re.match(middle):
                url = smart_urlquote('http://%s' % html.unescape(middle))
            elif ':' not in middle and is_email_simple(middle):
                local, domain = middle.rsplit('@', 1)
                try:
                    domain = punycode(domain)
                except UnicodeError:
                    continue
                url = 'mailto:%s@%s' % (local, domain)
                nofollow_attr = ''

            # Make link.
            if url:
                trimmed = trim_url(middle)
                if autoescape and not safe_input:
                    lead, trail = escape(lead), escape(trail)
                    trimmed = escape(trimmed)
                middle = '<a href="%s"%s>%s</a>' % (escape(url), nofollow_attr, trimmed)
                words[i] = mark_safe('%s%s%s' % (lead, middle, trail))
            else:
                if safe_input:
                    words[i] = mark_safe(word)
                elif autoescape:
                    words[i] = escape(word)
        elif safe_input:
            words[i] = mark_safe(word)
        elif autoescape:
            words[i] = escape(word)
    return ''.join(words)


def avoid_wrapping(value):
    """
    Avoid text wrapping in the middle of a phrase by adding non-breaking
    spaces where there previously were normal spaces.
    """
    return value.replace(" ", "\xa0")


[docs]def html_safe(klass):
    """
    A decorator that defines the __html__ method. This helps non-Django
    templates to detect classes whose __str__ methods return SafeString.
    """
    if '__html__' in klass.__dict__:
        raise ValueError(
            "can't apply @html_safe to %s because it defines "
            "__html__()." % klass.__name__
        )
    if '__str__' not in klass.__dict__:
        raise ValueError(
            "can't apply @html_safe to %s because it doesn't "
            "define __str__()." % klass.__name__
        )
    klass_str = klass.__str__
    klass.__str__ = lambda self: mark_safe(klass_str(self))
    klass.__html__ = lambda self: str(self)
    return klass





          

      

      

    

  

  
    
    django.utils.http
    

    
 
  

    
      
          
            
  Source code for django.utils.http

import base64
import calendar
import datetime
import re
import unicodedata
import warnings
from binascii import Error as BinasciiError
from email.utils import formatdate
from urllib.parse import (
    ParseResult, SplitResult, _coerce_args, _splitnetloc, _splitparams, quote,
    quote_plus, scheme_chars, unquote, unquote_plus,
    urlencode as original_urlencode, uses_params,
)

from django.core.exceptions import TooManyFieldsSent
from django.utils.datastructures import MultiValueDict
from django.utils.deprecation import RemovedInDjango40Warning
from django.utils.functional import keep_lazy_text

# based on RFC 7232, Appendix C
ETAG_MATCH = re.compile(r'''
    \A(      # start of string and capture group
    (?:W/)?  # optional weak indicator
    "        # opening quote
    [^"]*    # any sequence of non-quote characters
    "        # end quote
    )\Z      # end of string and capture group
''', re.X)

MONTHS = 'jan feb mar apr may jun jul aug sep oct nov dec'.split()
__D = r'(?P<day>\d{2})'
__D2 = r'(?P<day>[ \d]\d)'
__M = r'(?P<mon>\w{3})'
__Y = r'(?P<year>\d{4})'
__Y2 = r'(?P<year>\d{2})'
__T = r'(?P<hour>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2})'
RFC1123_DATE = re.compile(r'^\w{3}, %s %s %s %s GMT$' % (__D, __M, __Y, __T))
RFC850_DATE = re.compile(r'^\w{6,9}, %s-%s-%s %s GMT$' % (__D, __M, __Y2, __T))
ASCTIME_DATE = re.compile(r'^\w{3} %s %s %s %s$' % (__M, __D2, __T, __Y))

RFC3986_GENDELIMS = ":/?#[]@"
RFC3986_SUBDELIMS = "!$&'()*+,;="

FIELDS_MATCH = re.compile('&')


@keep_lazy_text
def urlquote(url, safe='/'):
    """
    A legacy compatibility wrapper to Python's urllib.parse.quote() function.
    (was used for unicode handling on Python 2)
    """
    warnings.warn(
        'django.utils.http.urlquote() is deprecated in favor of '
        'urllib.parse.quote().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return quote(url, safe)


@keep_lazy_text
def urlquote_plus(url, safe=''):
    """
    A legacy compatibility wrapper to Python's urllib.parse.quote_plus()
    function. (was used for unicode handling on Python 2)
    """
    warnings.warn(
        'django.utils.http.urlquote_plus() is deprecated in favor of '
        'urllib.parse.quote_plus(),',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return quote_plus(url, safe)


@keep_lazy_text
def urlunquote(quoted_url):
    """
    A legacy compatibility wrapper to Python's urllib.parse.unquote() function.
    (was used for unicode handling on Python 2)
    """
    warnings.warn(
        'django.utils.http.urlunquote() is deprecated in favor of '
        'urllib.parse.unquote().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return unquote(quoted_url)


@keep_lazy_text
def urlunquote_plus(quoted_url):
    """
    A legacy compatibility wrapper to Python's urllib.parse.unquote_plus()
    function. (was used for unicode handling on Python 2)
    """
    warnings.warn(
        'django.utils.http.urlunquote_plus() is deprecated in favor of '
        'urllib.parse.unquote_plus().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return unquote_plus(quoted_url)


[docs]def urlencode(query, doseq=False):
    """
    A version of Python's urllib.parse.urlencode() function that can operate on
    MultiValueDict and non-string values.
    """
    if isinstance(query, MultiValueDict):
        query = query.lists()
    elif hasattr(query, 'items'):
        query = query.items()
    query_params = []
    for key, value in query:
        if value is None:
            raise TypeError(
                "Cannot encode None for key '%s' in a query string. Did you "
                "mean to pass an empty string or omit the value?" % key
            )
        elif not doseq or isinstance(value, (str, bytes)):
            query_val = value
        else:
            try:
                itr = iter(value)
            except TypeError:
                query_val = value
            else:
                # Consume generators and iterators, when doseq=True, to
                # work around https://bugs.python.org/issue31706.
                query_val = []
                for item in itr:
                    if item is None:
                        raise TypeError(
                            "Cannot encode None for key '%s' in a query "
                            "string. Did you mean to pass an empty string or "
                            "omit the value?" % key
                        )
                    elif not isinstance(item, bytes):
                        item = str(item)
                    query_val.append(item)
        query_params.append((key, query_val))
    return original_urlencode(query_params, doseq)



[docs]def http_date(epoch_seconds=None):
    """
    Format the time to match the RFC1123 date format as specified by HTTP
    RFC7231 section 7.1.1.1.

    `epoch_seconds` is a floating point number expressed in seconds since the
    epoch, in UTC - such as that outputted by time.time(). If set to None, it
    defaults to the current time.

    Output a string in the format 'Wdy, DD Mon YYYY HH:MM:SS GMT'.
    """
    return formatdate(epoch_seconds, usegmt=True)



def parse_http_date(date):
    """
    Parse a date format as specified by HTTP RFC7231 section 7.1.1.1.

    The three formats allowed by the RFC are accepted, even if only the first
    one is still in widespread use.

    Return an integer expressed in seconds since the epoch, in UTC.
    """
    # email.utils.parsedate() does the job for RFC1123 dates; unfortunately
    # RFC7231 makes it mandatory to support RFC850 dates too. So we roll
    # our own RFC-compliant parsing.
    for regex in RFC1123_DATE, RFC850_DATE, ASCTIME_DATE:
        m = regex.match(date)
        if m is not None:
            break
    else:
        raise ValueError("%r is not in a valid HTTP date format" % date)
    try:
        year = int(m.group('year'))
        if year < 100:
            current_year = datetime.datetime.utcnow().year
            current_century = current_year - (current_year % 100)
            if year - (current_year % 100) > 50:
                # year that appears to be more than 50 years in the future are
                # interpreted as representing the past.
                year += current_century - 100
            else:
                year += current_century
        month = MONTHS.index(m.group('mon').lower()) + 1
        day = int(m.group('day'))
        hour = int(m.group('hour'))
        min = int(m.group('min'))
        sec = int(m.group('sec'))
        result = datetime.datetime(year, month, day, hour, min, sec)
        return calendar.timegm(result.utctimetuple())
    except Exception as exc:
        raise ValueError("%r is not a valid date" % date) from exc


def parse_http_date_safe(date):
    """
    Same as parse_http_date, but return None if the input is invalid.
    """
    try:
        return parse_http_date(date)
    except Exception:
        pass


# Base 36 functions: useful for generating compact URLs

[docs]def base36_to_int(s):
    """
    Convert a base 36 string to an int. Raise ValueError if the input won't fit
    into an int.
    """
    # To prevent overconsumption of server resources, reject any
    # base36 string that is longer than 13 base36 digits (13 digits
    # is sufficient to base36-encode any 64-bit integer)
    if len(s) > 13:
        raise ValueError("Base36 input too large")
    return int(s, 36)



[docs]def int_to_base36(i):
    """Convert an integer to a base36 string."""
    char_set = '0123456789abcdefghijklmnopqrstuvwxyz'
    if i < 0:
        raise ValueError("Negative base36 conversion input.")
    if i < 36:
        return char_set[i]
    b36 = ''
    while i != 0:
        i, n = divmod(i, 36)
        b36 = char_set[n] + b36
    return b36



[docs]def urlsafe_base64_encode(s):
    """
    Encode a bytestring to a base64 string for use in URLs. Strip any trailing
    equal signs.
    """
    return base64.urlsafe_b64encode(s).rstrip(b'\n=').decode('ascii')



[docs]def urlsafe_base64_decode(s):
    """
    Decode a base64 encoded string. Add back any trailing equal signs that
    might have been stripped.
    """
    s = s.encode()
    try:
        return base64.urlsafe_b64decode(s.ljust(len(s) + len(s) % 4, b'='))
    except (LookupError, BinasciiError) as e:
        raise ValueError(e)



def parse_etags(etag_str):
    """
    Parse a string of ETags given in an If-None-Match or If-Match header as
    defined by RFC 7232. Return a list of quoted ETags, or ['*'] if all ETags
    should be matched.
    """
    if etag_str.strip() == '*':
        return ['*']
    else:
        # Parse each ETag individually, and return any that are valid.
        etag_matches = (ETAG_MATCH.match(etag.strip()) for etag in etag_str.split(','))
        return [match.group(1) for match in etag_matches if match]


def quote_etag(etag_str):
    """
    If the provided string is already a quoted ETag, return it. Otherwise, wrap
    the string in quotes, making it a strong ETag.
    """
    if ETAG_MATCH.match(etag_str):
        return etag_str
    else:
        return '"%s"' % etag_str


def is_same_domain(host, pattern):
    """
    Return ``True`` if the host is either an exact match or a match
    to the wildcard pattern.

    Any pattern beginning with a period matches a domain and all of its
    subdomains. (e.g. ``.example.com`` matches ``example.com`` and
    ``foo.example.com``). Anything else is an exact string match.
    """
    if not pattern:
        return False

    pattern = pattern.lower()
    return (
        pattern[0] == '.' and (host.endswith(pattern) or host == pattern[1:]) or
        pattern == host
    )


def url_has_allowed_host_and_scheme(url, allowed_hosts, require_https=False):
    """
    Return ``True`` if the url uses an allowed host and a safe scheme.

    Always return ``False`` on an empty url.

    If ``require_https`` is ``True``, only 'https' will be considered a valid
    scheme, as opposed to 'http' and 'https' with the default, ``False``.

    Note: "True" doesn't entail that a URL is "safe". It may still be e.g.
    quoted incorrectly. Ensure to also use django.utils.encoding.iri_to_uri()
    on the path component of untrusted URLs.
    """
    if url is not None:
        url = url.strip()
    if not url:
        return False
    if allowed_hosts is None:
        allowed_hosts = set()
    elif isinstance(allowed_hosts, str):
        allowed_hosts = {allowed_hosts}
    # Chrome treats \ completely as / in paths but it could be part of some
    # basic auth credentials so we need to check both URLs.
    return (
        _url_has_allowed_host_and_scheme(url, allowed_hosts, require_https=require_https) and
        _url_has_allowed_host_and_scheme(url.replace('\\', '/'), allowed_hosts, require_https=require_https)
    )


def is_safe_url(url, allowed_hosts, require_https=False):
    warnings.warn(
        'django.utils.http.is_safe_url() is deprecated in favor of '
        'url_has_allowed_host_and_scheme().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return url_has_allowed_host_and_scheme(url, allowed_hosts, require_https)


# Copied from urllib.parse.urlparse() but uses fixed urlsplit() function.
def _urlparse(url, scheme='', allow_fragments=True):
    """Parse a URL into 6 components:
    <scheme>://<netloc>/<path>;<params>?<query>#<fragment>
    Return a 6-tuple: (scheme, netloc, path, params, query, fragment).
    Note that we don't break the components up in smaller bits
    (e.g. netloc is a single string) and we don't expand % escapes."""
    url, scheme, _coerce_result = _coerce_args(url, scheme)
    splitresult = _urlsplit(url, scheme, allow_fragments)
    scheme, netloc, url, query, fragment = splitresult
    if scheme in uses_params and ';' in url:
        url, params = _splitparams(url)
    else:
        params = ''
    result = ParseResult(scheme, netloc, url, params, query, fragment)
    return _coerce_result(result)


# Copied from urllib.parse.urlsplit() with
# https://github.com/python/cpython/pull/661 applied.
def _urlsplit(url, scheme='', allow_fragments=True):
    """Parse a URL into 5 components:
    <scheme>://<netloc>/<path>?<query>#<fragment>
    Return a 5-tuple: (scheme, netloc, path, query, fragment).
    Note that we don't break the components up in smaller bits
    (e.g. netloc is a single string) and we don't expand % escapes."""
    url, scheme, _coerce_result = _coerce_args(url, scheme)
    netloc = query = fragment = ''
    i = url.find(':')
    if i > 0:
        for c in url[:i]:
            if c not in scheme_chars:
                break
        else:
            scheme, url = url[:i].lower(), url[i + 1:]

    if url[:2] == '//':
        netloc, url = _splitnetloc(url, 2)
        if (('[' in netloc and ']' not in netloc) or
                (']' in netloc and '[' not in netloc)):
            raise ValueError("Invalid IPv6 URL")
    if allow_fragments and '#' in url:
        url, fragment = url.split('#', 1)
    if '?' in url:
        url, query = url.split('?', 1)
    v = SplitResult(scheme, netloc, url, query, fragment)
    return _coerce_result(v)


def _url_has_allowed_host_and_scheme(url, allowed_hosts, require_https=False):
    # Chrome considers any URL with more than two slashes to be absolute, but
    # urlparse is not so flexible. Treat any url with three slashes as unsafe.
    if url.startswith('///'):
        return False
    try:
        url_info = _urlparse(url)
    except ValueError:  # e.g. invalid IPv6 addresses
        return False
    # Forbid URLs like http:///example.com - with a scheme, but without a hostname.
    # In that URL, example.com is not the hostname but, a path component. However,
    # Chrome will still consider example.com to be the hostname, so we must not
    # allow this syntax.
    if not url_info.netloc and url_info.scheme:
        return False
    # Forbid URLs that start with control characters. Some browsers (like
    # Chrome) ignore quite a few control characters at the start of a
    # URL and might consider the URL as scheme relative.
    if unicodedata.category(url[0])[0] == 'C':
        return False
    scheme = url_info.scheme
    # Consider URLs without a scheme (e.g. //example.com/p) to be http.
    if not url_info.scheme and url_info.netloc:
        scheme = 'http'
    valid_schemes = ['https'] if require_https else ['http', 'https']
    return ((not url_info.netloc or url_info.netloc in allowed_hosts) and
            (not scheme or scheme in valid_schemes))


def limited_parse_qsl(qs, keep_blank_values=False, encoding='utf-8',
                      errors='replace', fields_limit=None):
    """
    Return a list of key/value tuples parsed from query string.

    Copied from urlparse with an additional "fields_limit" argument.
    Copyright (C) 2013 Python Software Foundation (see LICENSE.python).

    Arguments:

    qs: percent-encoded query string to be parsed

    keep_blank_values: flag indicating whether blank values in
        percent-encoded queries should be treated as blank strings. A
        true value indicates that blanks should be retained as blank
        strings. The default false value indicates that blank values
        are to be ignored and treated as if they were  not included.

    encoding and errors: specify how to decode percent-encoded sequences
        into Unicode characters, as accepted by the bytes.decode() method.

    fields_limit: maximum number of fields parsed or an exception
        is raised. None means no limit and is the default.
    """
    if fields_limit:
        pairs = FIELDS_MATCH.split(qs, fields_limit)
        if len(pairs) > fields_limit:
            raise TooManyFieldsSent(
                'The number of GET/POST parameters exceeded '
                'settings.DATA_UPLOAD_MAX_NUMBER_FIELDS.'
            )
    else:
        pairs = FIELDS_MATCH.split(qs)
    r = []
    for name_value in pairs:
        if not name_value:
            continue
        nv = name_value.split('=', 1)
        if len(nv) != 2:
            # Handle case of a control-name with no equal sign
            if keep_blank_values:
                nv.append('')
            else:
                continue
        if nv[1] or keep_blank_values:
            name = nv[0].replace('+', ' ')
            name = unquote(name, encoding=encoding, errors=errors)
            value = nv[1].replace('+', ' ')
            value = unquote(value, encoding=encoding, errors=errors)
            r.append((name, value))
    return r


def escape_leading_slashes(url):
    """
    If redirecting to an absolute path (two leading slashes), a slash must be
    escaped to prevent browsers from handling the path as schemaless and
    redirecting to another host.
    """
    if url.startswith('//'):
        url = '/%2F{}'.format(url[2:])
    return url




          

      

      

    

  

  
    
    django.utils.module_loading
    

    
 
  

    
      
          
            
  Source code for django.utils.module_loading

import copy
import os
from importlib import import_module
from importlib.util import find_spec as importlib_find


[docs]def import_string(dotted_path):
    """
    Import a dotted module path and return the attribute/class designated by the
    last name in the path. Raise ImportError if the import failed.
    """
    try:
        module_path, class_name = dotted_path.rsplit('.', 1)
    except ValueError as err:
        raise ImportError("%s doesn't look like a module path" % dotted_path) from err

    module = import_module(module_path)

    try:
        return getattr(module, class_name)
    except AttributeError as err:
        raise ImportError('Module "%s" does not define a "%s" attribute/class' % (
            module_path, class_name)
        ) from err



def autodiscover_modules(*args, **kwargs):
    """
    Auto-discover INSTALLED_APPS modules and fail silently when
    not present. This forces an import on them to register any admin bits they
    may want.

    You may provide a register_to keyword parameter as a way to access a
    registry. This register_to object must have a _registry instance variable
    to access it.
    """
    from django.apps import apps

    register_to = kwargs.get('register_to')
    for app_config in apps.get_app_configs():
        for module_to_search in args:
            # Attempt to import the app's module.
            try:
                if register_to:
                    before_import_registry = copy.copy(register_to._registry)

                import_module('%s.%s' % (app_config.name, module_to_search))
            except Exception:
                # Reset the registry to the state before the last import
                # as this import will have to reoccur on the next request and
                # this could raise NotRegistered and AlreadyRegistered
                # exceptions (see #8245).
                if register_to:
                    register_to._registry = before_import_registry

                # Decide whether to bubble up this error. If the app just
                # doesn't have the module in question, we can ignore the error
                # attempting to import it, otherwise we want it to bubble up.
                if module_has_submodule(app_config.module, module_to_search):
                    raise


def module_has_submodule(package, module_name):
    """See if 'module' is in 'package'."""
    try:
        package_name = package.__name__
        package_path = package.__path__
    except AttributeError:
        # package isn't a package.
        return False

    full_module_name = package_name + '.' + module_name
    try:
        return importlib_find(full_module_name, package_path) is not None
    except (ModuleNotFoundError, AttributeError):
        # When module_name is an invalid dotted path, Python raises
        # ModuleNotFoundError. AttributeError is raised on PY36 (fixed in PY37)
        # if the penultimate part of the path is not a package.
        return False


def module_dir(module):
    """
    Find the name of the directory that contains a module, if possible.

    Raise ValueError otherwise, e.g. for namespace packages that are split
    over several directories.
    """
    # Convert to list because _NamespacePath does not support indexing.
    paths = list(getattr(module, '__path__', []))
    if len(paths) == 1:
        return paths[0]
    else:
        filename = getattr(module, '__file__', None)
        if filename is not None:
            return os.path.dirname(filename)
    raise ValueError("Cannot determine directory containing %s" % module)




          

      

      

    

  

  
    
    django.utils.safestring
    

    
 
  

    
      
          
            
  Source code for django.utils.safestring

"""
Functions for working with "safe strings": strings that can be displayed safely
without further escaping in HTML. Marking something as a "safe string" means
that the producer of the string has already turned characters that should not
be interpreted by the HTML engine (e.g. '<') into the appropriate entities.
"""

from django.utils.functional import wraps


class SafeData:
    def __html__(self):
        """
        Return the html representation of a string for interoperability.

        This allows other template engines to understand Django's SafeData.
        """
        return self


[docs]class SafeString(str, SafeData):
    """
    A str subclass that has been specifically marked as "safe" for HTML output
    purposes.
    """
    def __add__(self, rhs):
        """
        Concatenating a safe string with another safe bytestring or
        safe string is safe. Otherwise, the result is no longer safe.
        """
        t = super().__add__(rhs)
        if isinstance(rhs, SafeData):
            return SafeString(t)
        return t

    def __str__(self):
        return self



SafeText = SafeString  # For backwards compatibility since Django 2.0.


def _safety_decorator(safety_marker, func):
    @wraps(func)
    def wrapped(*args, **kwargs):
        return safety_marker(func(*args, **kwargs))
    return wrapped


[docs]def mark_safe(s):
    """
    Explicitly mark a string as safe for (HTML) output purposes. The returned
    object can be used everywhere a string is appropriate.

    If used on a method as a decorator, mark the returned data as safe.

    Can be called multiple times on a single string.
    """
    if hasattr(s, '__html__'):
        return s
    if callable(s):
        return _safety_decorator(mark_safe, s)
    return SafeString(s)





          

      

      

    

  

  
    
    django.utils.text
    

    
 
  

    
      
          
            
  Source code for django.utils.text

import html.entities
import re
import unicodedata
import warnings
from gzip import GzipFile
from io import BytesIO

from django.utils.deprecation import RemovedInDjango40Warning
from django.utils.functional import SimpleLazyObject, keep_lazy_text, lazy
from django.utils.translation import gettext as _, gettext_lazy, pgettext


@keep_lazy_text
def capfirst(x):
    """Capitalize the first letter of a string."""
    return x and str(x)[0].upper() + str(x)[1:]


# Set up regular expressions
re_words = re.compile(r'<[^>]+?>|([^<>\s]+)', re.S)
re_chars = re.compile(r'<[^>]+?>|(.)', re.S)
re_tag = re.compile(r'<(/)?(\S+?)(?:(\s*/)|\s.*?)?>', re.S)
re_newlines = re.compile(r'\r\n|\r')  # Used in normalize_newlines
re_camel_case = re.compile(r'(((?<=[a-z])[A-Z])|([A-Z](?![A-Z]|$)))')


@keep_lazy_text
def wrap(text, width):
    """
    A word-wrap function that preserves existing line breaks. Expects that
    existing line breaks are posix newlines.

    Preserve all white space except added line breaks consume the space on
    which they break the line.

    Don't wrap long words, thus the output text may have lines longer than
    ``width``.
    """
    def _generator():
        for line in text.splitlines(True):  # True keeps trailing linebreaks
            max_width = min((line.endswith('\n') and width + 1 or width), width)
            while len(line) > max_width:
                space = line[:max_width + 1].rfind(' ') + 1
                if space == 0:
                    space = line.find(' ') + 1
                    if space == 0:
                        yield line
                        line = ''
                        break
                yield '%s\n' % line[:space - 1]
                line = line[space:]
                max_width = min((line.endswith('\n') and width + 1 or width), width)
            if line:
                yield line
    return ''.join(_generator())


class Truncator(SimpleLazyObject):
    """
    An object used to truncate text, either by characters or words.
    """
    def __init__(self, text):
        super().__init__(lambda: str(text))

    def add_truncation_text(self, text, truncate=None):
        if truncate is None:
            truncate = pgettext(
                'String to return when truncating text',
                '%(truncated_text)s…')
        if '%(truncated_text)s' in truncate:
            return truncate % {'truncated_text': text}
        # The truncation text didn't contain the %(truncated_text)s string
        # replacement argument so just append it to the text.
        if text.endswith(truncate):
            # But don't append the truncation text if the current text already
            # ends in this.
            return text
        return '%s%s' % (text, truncate)

    def chars(self, num, truncate=None, html=False):
        """
        Return the text truncated to be no longer than the specified number
        of characters.

        `truncate` specifies what should be used to notify that the string has
        been truncated, defaulting to a translatable string of an ellipsis.
        """
        self._setup()
        length = int(num)
        text = unicodedata.normalize('NFC', self._wrapped)

        # Calculate the length to truncate to (max length - end_text length)
        truncate_len = length
        for char in self.add_truncation_text('', truncate):
            if not unicodedata.combining(char):
                truncate_len -= 1
                if truncate_len == 0:
                    break
        if html:
            return self._truncate_html(length, truncate, text, truncate_len, False)
        return self._text_chars(length, truncate, text, truncate_len)

    def _text_chars(self, length, truncate, text, truncate_len):
        """Truncate a string after a certain number of chars."""
        s_len = 0
        end_index = None
        for i, char in enumerate(text):
            if unicodedata.combining(char):
                # Don't consider combining characters
                # as adding to the string length
                continue
            s_len += 1
            if end_index is None and s_len > truncate_len:
                end_index = i
            if s_len > length:
                # Return the truncated string
                return self.add_truncation_text(text[:end_index or 0],
                                                truncate)

        # Return the original string since no truncation was necessary
        return text

    def words(self, num, truncate=None, html=False):
        """
        Truncate a string after a certain number of words. `truncate` specifies
        what should be used to notify that the string has been truncated,
        defaulting to ellipsis.
        """
        self._setup()
        length = int(num)
        if html:
            return self._truncate_html(length, truncate, self._wrapped, length, True)
        return self._text_words(length, truncate)

    def _text_words(self, length, truncate):
        """
        Truncate a string after a certain number of words.

        Strip newlines in the string.
        """
        words = self._wrapped.split()
        if len(words) > length:
            words = words[:length]
            return self.add_truncation_text(' '.join(words), truncate)
        return ' '.join(words)

    def _truncate_html(self, length, truncate, text, truncate_len, words):
        """
        Truncate HTML to a certain number of chars (not counting tags and
        comments), or, if words is True, then to a certain number of words.
        Close opened tags if they were correctly closed in the given HTML.

        Preserve newlines in the HTML.
        """
        if words and length <= 0:
            return ''

        html4_singlets = (
            'br', 'col', 'link', 'base', 'img',
            'param', 'area', 'hr', 'input'
        )

        # Count non-HTML chars/words and keep note of open tags
        pos = 0
        end_text_pos = 0
        current_len = 0
        open_tags = []

        regex = re_words if words else re_chars

        while current_len <= length:
            m = regex.search(text, pos)
            if not m:
                # Checked through whole string
                break
            pos = m.end(0)
            if m.group(1):
                # It's an actual non-HTML word or char
                current_len += 1
                if current_len == truncate_len:
                    end_text_pos = pos
                continue
            # Check for tag
            tag = re_tag.match(m.group(0))
            if not tag or current_len >= truncate_len:
                # Don't worry about non tags or tags after our truncate point
                continue
            closing_tag, tagname, self_closing = tag.groups()
            # Element names are always case-insensitive
            tagname = tagname.lower()
            if self_closing or tagname in html4_singlets:
                pass
            elif closing_tag:
                # Check for match in open tags list
                try:
                    i = open_tags.index(tagname)
                except ValueError:
                    pass
                else:
                    # SGML: An end tag closes, back to the matching start tag,
                    # all unclosed intervening start tags with omitted end tags
                    open_tags = open_tags[i + 1:]
            else:
                # Add it to the start of the open tags list
                open_tags.insert(0, tagname)

        if current_len <= length:
            return text
        out = text[:end_text_pos]
        truncate_text = self.add_truncation_text('', truncate)
        if truncate_text:
            out += truncate_text
        # Close any tags still open
        for tag in open_tags:
            out += '</%s>' % tag
        # Return string
        return out


@keep_lazy_text
def get_valid_filename(s):
    """
    Return the given string converted to a string that can be used for a clean
    filename. Remove leading and trailing spaces; convert other spaces to
    underscores; and remove anything that is not an alphanumeric, dash,
    underscore, or dot.
    >>> get_valid_filename("john's portrait in 2004.jpg")
    'johns_portrait_in_2004.jpg'
    """
    s = str(s).strip().replace(' ', '_')
    return re.sub(r'(?u)[^-\w.]', '', s)


@keep_lazy_text
def get_text_list(list_, last_word=gettext_lazy('or')):
    """
    >>> get_text_list(['a', 'b', 'c', 'd'])
    'a, b, c or d'
    >>> get_text_list(['a', 'b', 'c'], 'and')
    'a, b and c'
    >>> get_text_list(['a', 'b'], 'and')
    'a and b'
    >>> get_text_list(['a'])
    'a'
    >>> get_text_list([])
    ''
    """
    if not list_:
        return ''
    if len(list_) == 1:
        return str(list_[0])
    return '%s %s %s' % (
        # Translators: This string is used as a separator between list elements
        _(', ').join(str(i) for i in list_[:-1]), str(last_word), str(list_[-1])
    )


@keep_lazy_text
def normalize_newlines(text):
    """Normalize CRLF and CR newlines to just LF."""
    return re_newlines.sub('\n', str(text))


@keep_lazy_text
def phone2numeric(phone):
    """Convert a phone number with letters into its numeric equivalent."""
    char2number = {
        'a': '2', 'b': '2', 'c': '2', 'd': '3', 'e': '3', 'f': '3', 'g': '4',
        'h': '4', 'i': '4', 'j': '5', 'k': '5', 'l': '5', 'm': '6', 'n': '6',
        'o': '6', 'p': '7', 'q': '7', 'r': '7', 's': '7', 't': '8', 'u': '8',
        'v': '8', 'w': '9', 'x': '9', 'y': '9', 'z': '9',
    }
    return ''.join(char2number.get(c, c) for c in phone.lower())


# From http://www.xhaus.com/alan/python/httpcomp.html#gzip
# Used with permission.
def compress_string(s):
    zbuf = BytesIO()
    with GzipFile(mode='wb', compresslevel=6, fileobj=zbuf, mtime=0) as zfile:
        zfile.write(s)
    return zbuf.getvalue()


class StreamingBuffer(BytesIO):
    def read(self):
        ret = self.getvalue()
        self.seek(0)
        self.truncate()
        return ret


# Like compress_string, but for iterators of strings.
def compress_sequence(sequence):
    buf = StreamingBuffer()
    with GzipFile(mode='wb', compresslevel=6, fileobj=buf, mtime=0) as zfile:
        # Output headers...
        yield buf.read()
        for item in sequence:
            zfile.write(item)
            data = buf.read()
            if data:
                yield data
    yield buf.read()


# Expression to match some_token and some_token="with spaces" (and similarly
# for single-quoted strings).
smart_split_re = re.compile(r"""
    ((?:
        [^\s'"]*
        (?:
            (?:"(?:[^"\\]|\\.)*" | '(?:[^'\\]|\\.)*')
            [^\s'"]*
        )+
    ) | \S+)
""", re.VERBOSE)


def smart_split(text):
    r"""
    Generator that splits a string by spaces, leaving quoted phrases together.
    Supports both single and double quotes, and supports escaping quotes with
    backslashes. In the output, strings will keep their initial and trailing
    quote marks and escaped quotes will remain escaped (the results can then
    be further processed with unescape_string_literal()).

    >>> list(smart_split(r'This is "a person\'s" test.'))
    ['This', 'is', '"a person\\\'s"', 'test.']
    >>> list(smart_split(r"Another 'person\'s' test."))
    ['Another', "'person\\'s'", 'test.']
    >>> list(smart_split(r'A "\"funky\" style" test.'))
    ['A', '"\\"funky\\" style"', 'test.']
    """
    for bit in smart_split_re.finditer(str(text)):
        yield bit.group(0)


def _replace_entity(match):
    text = match.group(1)
    if text[0] == '#':
        text = text[1:]
        try:
            if text[0] in 'xX':
                c = int(text[1:], 16)
            else:
                c = int(text)
            return chr(c)
        except ValueError:
            return match.group(0)
    else:
        try:
            return chr(html.entities.name2codepoint[text])
        except KeyError:
            return match.group(0)


_entity_re = re.compile(r"&(#?[xX]?(?:[0-9a-fA-F]+|\w{1,8}));")


@keep_lazy_text
def unescape_entities(text):
    warnings.warn(
        'django.utils.text.unescape_entities() is deprecated in favor of '
        'html.unescape().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return _entity_re.sub(_replace_entity, str(text))


@keep_lazy_text
def unescape_string_literal(s):
    r"""
    Convert quoted string literals to unquoted strings with escaped quotes and
    backslashes unquoted::

        >>> unescape_string_literal('"abc"')
        'abc'
        >>> unescape_string_literal("'abc'")
        'abc'
        >>> unescape_string_literal('"a \"bc\""')
        'a "bc"'
        >>> unescape_string_literal("'\'ab\' c'")
        "'ab' c"
    """
    if s[0] not in "\"'" or s[-1] != s[0]:
        raise ValueError("Not a string literal: %r" % s)
    quote = s[0]
    return s[1:-1].replace(r'\%s' % quote, quote).replace(r'\\', '\\')


[docs]@keep_lazy_text
def slugify(value, allow_unicode=False):
    """
    Convert to ASCII if 'allow_unicode' is False. Convert spaces to hyphens.
    Remove characters that aren't alphanumerics, underscores, or hyphens.
    Convert to lowercase. Also strip leading and trailing whitespace.
    """
    value = str(value)
    if allow_unicode:
        value = unicodedata.normalize('NFKC', value)
    else:
        value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
    value = re.sub(r'[^\w\s-]', '', value).strip().lower()
    return re.sub(r'[-\s]+', '-', value)



def camel_case_to_spaces(value):
    """
    Split CamelCase and convert to lowercase. Strip surrounding whitespace.
    """
    return re_camel_case.sub(r' \1', value).strip().lower()


def _format_lazy(format_string, *args, **kwargs):
    """
    Apply str.format() on 'format_string' where format_string, args,
    and/or kwargs might be lazy.
    """
    return format_string.format(*args, **kwargs)


format_lazy = lazy(_format_lazy, str)




          

      

      

    

  

  
    
    django.utils.translation
    

    
 
  

    
      
          
            
  Source code for django.utils.translation

"""
Internationalization support.
"""
import re
import warnings
from contextlib import ContextDecorator
from decimal import ROUND_UP, Decimal

from django.utils.autoreload import autoreload_started, file_changed
from django.utils.deprecation import RemovedInDjango40Warning
from django.utils.functional import lazy

__all__ = [
    'activate', 'deactivate', 'override', 'deactivate_all',
    'get_language', 'get_language_from_request',
    'get_language_info', 'get_language_bidi',
    'check_for_language', 'to_language', 'to_locale', 'templatize',
    'gettext', 'gettext_lazy', 'gettext_noop',
    'ugettext', 'ugettext_lazy', 'ugettext_noop',
    'ngettext', 'ngettext_lazy',
    'ungettext', 'ungettext_lazy',
    'pgettext', 'pgettext_lazy',
    'npgettext', 'npgettext_lazy',
    'LANGUAGE_SESSION_KEY',
]

LANGUAGE_SESSION_KEY = '_language'


class TranslatorCommentWarning(SyntaxWarning):
    pass


# Here be dragons, so a short explanation of the logic won't hurt:
# We are trying to solve two problems: (1) access settings, in particular
# settings.USE_I18N, as late as possible, so that modules can be imported
# without having to first configure Django, and (2) if some other code creates
# a reference to one of these functions, don't break that reference when we
# replace the functions with their real counterparts (once we do access the
# settings).

class Trans:
    """
    The purpose of this class is to store the actual translation function upon
    receiving the first call to that function. After this is done, changes to
    USE_I18N will have no effect to which function is served upon request. If
    your tests rely on changing USE_I18N, you can delete all the functions
    from _trans.__dict__.

    Note that storing the function with setattr will have a noticeable
    performance effect, as access to the function goes the normal path,
    instead of using __getattr__.
    """

    def __getattr__(self, real_name):
        from django.conf import settings
        if settings.USE_I18N:
            from django.utils.translation import trans_real as trans
            from django.utils.translation.reloader import watch_for_translation_changes, translation_file_changed
            autoreload_started.connect(watch_for_translation_changes, dispatch_uid='translation_file_changed')
            file_changed.connect(translation_file_changed, dispatch_uid='translation_file_changed')
        else:
            from django.utils.translation import trans_null as trans
        setattr(self, real_name, getattr(trans, real_name))
        return getattr(trans, real_name)


_trans = Trans()

# The Trans class is no more needed, so remove it from the namespace.
del Trans


[docs]def gettext_noop(message):
    return _trans.gettext_noop(message)



def ugettext_noop(message):
    """
    A legacy compatibility wrapper for Unicode handling on Python 2.
    Alias of gettext_noop() since Django 2.0.
    """
    warnings.warn(
        'django.utils.translation.ugettext_noop() is deprecated in favor of '
        'django.utils.translation.gettext_noop().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return gettext_noop(message)


[docs]def gettext(message):
    return _trans.gettext(message)



def ugettext(message):
    """
    A legacy compatibility wrapper for Unicode handling on Python 2.
    Alias of gettext() since Django 2.0.
    """
    warnings.warn(
        'django.utils.translation.ugettext() is deprecated in favor of '
        'django.utils.translation.gettext().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return gettext(message)


[docs]def ngettext(singular, plural, number):
    return _trans.ngettext(singular, plural, number)



def ungettext(singular, plural, number):
    """
    A legacy compatibility wrapper for Unicode handling on Python 2.
    Alias of ngettext() since Django 2.0.
    """
    warnings.warn(
        'django.utils.translation.ungettext() is deprecated in favor of '
        'django.utils.translation.ngettext().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return ngettext(singular, plural, number)


[docs]def pgettext(context, message):
    return _trans.pgettext(context, message)



[docs]def npgettext(context, singular, plural, number):
    return _trans.npgettext(context, singular, plural, number)



gettext_lazy = lazy(gettext, str)
pgettext_lazy = lazy(pgettext, str)


def ugettext_lazy(message):
    """
    A legacy compatibility wrapper for Unicode handling on Python 2. Has been
    Alias of gettext_lazy since Django 2.0.
    """
    warnings.warn(
        'django.utils.translation.ugettext_lazy() is deprecated in favor of '
        'django.utils.translation.gettext_lazy().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return gettext_lazy(message)


def lazy_number(func, resultclass, number=None, **kwargs):
    if isinstance(number, int):
        kwargs['number'] = number
        proxy = lazy(func, resultclass)(**kwargs)
    else:
        original_kwargs = kwargs.copy()

        class NumberAwareString(resultclass):
            def __bool__(self):
                return bool(kwargs['singular'])

            def _get_number_value(self, values):
                try:
                    return values[number]
                except KeyError:
                    raise KeyError(
                        "Your dictionary lacks key '%s\'. Please provide "
                        "it, because it is required to determine whether "
                        "string is singular or plural." % number
                    )

            def _translate(self, number_value):
                kwargs['number'] = number_value
                return func(**kwargs)

            def format(self, *args, **kwargs):
                number_value = self._get_number_value(kwargs) if kwargs and number else args[0]
                return self._translate(number_value).format(*args, **kwargs)

            def __mod__(self, rhs):
                if isinstance(rhs, dict) and number:
                    number_value = self._get_number_value(rhs)
                else:
                    number_value = rhs
                translated = self._translate(number_value)
                try:
                    translated = translated % rhs
                except TypeError:
                    # String doesn't contain a placeholder for the number.
                    pass
                return translated

        proxy = lazy(lambda **kwargs: NumberAwareString(), NumberAwareString)(**kwargs)
        proxy.__reduce__ = lambda: (_lazy_number_unpickle, (func, resultclass, number, original_kwargs))
    return proxy


def _lazy_number_unpickle(func, resultclass, number, kwargs):
    return lazy_number(func, resultclass, number=number, **kwargs)


[docs]def ngettext_lazy(singular, plural, number=None):
    return lazy_number(ngettext, str, singular=singular, plural=plural, number=number)



def ungettext_lazy(singular, plural, number=None):
    """
    A legacy compatibility wrapper for Unicode handling on Python 2.
    An alias of ungettext_lazy() since Django 2.0.
    """
    warnings.warn(
        'django.utils.translation.ungettext_lazy() is deprecated in favor of '
        'django.utils.translation.ngettext_lazy().',
        RemovedInDjango40Warning, stacklevel=2,
    )
    return ngettext_lazy(singular, plural, number)


[docs]def npgettext_lazy(context, singular, plural, number=None):
    return lazy_number(npgettext, str, context=context, singular=singular, plural=plural, number=number)



[docs]def activate(language):
    return _trans.activate(language)



[docs]def deactivate():
    return _trans.deactivate()



[docs]class override(ContextDecorator):
    def __init__(self, language, deactivate=False):
        self.language = language
        self.deactivate = deactivate

    def __enter__(self):
        self.old_language = get_language()
        if self.language is not None:
            activate(self.language)
        else:
            deactivate_all()

    def __exit__(self, exc_type, exc_value, traceback):
        if self.old_language is None:
            deactivate_all()
        elif self.deactivate:
            deactivate()
        else:
            activate(self.old_language)



[docs]def get_language():
    return _trans.get_language()



[docs]def get_language_bidi():
    return _trans.get_language_bidi()



[docs]def check_for_language(lang_code):
    return _trans.check_for_language(lang_code)



def to_language(locale):
    """Turn a locale name (en_US) into a language name (en-us)."""
    p = locale.find('_')
    if p >= 0:
        return locale[:p].lower() + '-' + locale[p + 1:].lower()
    else:
        return locale.lower()


[docs]def to_locale(language):
    """Turn a language name (en-us) into a locale name (en_US)."""
    language, _, country = language.lower().partition('-')
    if not country:
        return language
    # A language with > 2 characters after the dash only has its first
    # character after the dash capitalized; e.g. sr-latn becomes sr_Latn.
    # A language with 2 characters after the dash has both characters
    # capitalized; e.g. en-us becomes en_US.
    country, _, tail = country.partition('-')
    country = country.title() if len(country) > 2 else country.upper()
    if tail:
        country += '-' + tail
    return language + '_' + country



[docs]def get_language_from_request(request, check_path=False):
    return _trans.get_language_from_request(request, check_path)



def get_language_from_path(path):
    return _trans.get_language_from_path(path)


[docs]def get_supported_language_variant(lang_code, *, strict=False):
    return _trans.get_supported_language_variant(lang_code, strict)



[docs]def templatize(src, **kwargs):
    from .template import templatize
    return templatize(src, **kwargs)



[docs]def deactivate_all():
    return _trans.deactivate_all()



[docs]def get_language_info(lang_code):
    from django.conf.locale import LANG_INFO
    try:
        lang_info = LANG_INFO[lang_code]
        if 'fallback' in lang_info and 'name' not in lang_info:
            info = get_language_info(lang_info['fallback'][0])
        else:
            info = lang_info
    except KeyError:
        if '-' not in lang_code:
            raise KeyError("Unknown language code %s." % lang_code)
        generic_lang_code 