

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

title: Django Zero
lang: en-US

Django Zero

Django Zero helps creating and maintaining fully-featured, modern and maintainable django applications.

It preinstalls dependencies and provides reasonable defaults, to let you focus on features and business value.

[image: _images/hello-world.png]Hello, Django Zero

Out of the box, you get a Django project with:

	Default settings to start working now.

	Debug Toolbar and Django Extensions.

	Allauth with Jinja2 templates.

	Whitenoise.

	Jinja2 (with django-like filters) and/or Django Template Language (DTL)

	Webpack 4 & Babel for scripts and styles bundling/transpilation (ES6, JSX, SASS).

	Bootstrap 4.1 (easy to remove if you don’t want it).

	Build pipeline (various options).

Note that this documentation does not explain the underlying tools, like how to develop using django, we only focus
on what is django-zero and it gives links to the other tools.

Quick start

You need Node.js 8+ with Yarn and a python 3.5+ environment (user should have write permissions).

$ pip install django-zero[dev]

Create and run a project:

$ django-zero create project acme
$ cd acme
$ django-zero install --dev
$ django-zero manage migrate
$ django-zero start

Open http://localhost:8000/, enjoy!

Table of Content

	Installation

	Getting started

	Guides

	Command line

	Development

	Templating

	Frontend

	Users

	Tests

	Deployments

	How-to…

	Contribute

License

Django-Zero is released under Apache License Version 2.0.

Dependencies have their own licenses.

Status

This is an early preview. We use it on multiple production websites at Makersquad [https://makersquad.fr/], and we
know a few more people using it, but you should be aware that things can be a bit rusty here and there, changes are
sometimes necessary, etc.

Use at your own risks, and take the time to understand how it works.

Contributions

Contributions from all goodwills are welcome.

	Use the issue tracker to discuss.

	Is there a simpler way?

	Is it easy to explain?

	Does it bring value to 95% of projects?

	How can we make that feature more accessible?

	How can we better test it?

	How can we better document it?

Fork the project, create pull requests. It does not have to be perfect, just send a pull request early and it will be
the beginning of a new conversation.

:green_heart: :green_heart: :green_heart: :green_heart: :green_heart: :green_heart:

Getting Started

Create a project:

$ django-zero create project zero-to-one
$ cd zero-to-one

Install the python and javascript dependencies (requires yarn), with developement dependencies:

$ django-zero install --dev

Run django migrations:

$ django-zero manage migrate

Launch both django development server and webpack in “watch” mode.

$ djando-zero start

You’re there.

You created a django-zero project, now what? →

Installation

You need python 3.5+ installed, with pip.

You also need Node.js (LTS or Current), with yarn.

Please note that django-zero will need permissions to write files in its own package, you really should install it in userland, for example in a nice and shiny virtual environment (yes, it is important).

$ pip install django-zero[dev]

That’s it, you can jump to the getting started → guide.

::: tip
Django-zero write in its own package, because it contains javascript dependencies in package.json and yarn.lock
files, and the associated package manager (yarn) will need to expand the packages into a node_modules directory
there.

This is necessary so that the javascript dependencies are treated like a python dependency, while keeping the release
process simple. We publish the package.json/yarn.lock files within the python egg on PyPI, you get the freezed
javascript dependencies (but you still download them from NPM, the Node.js package repository).
:::

 Hello

	Project created

Your application was created

Contratulations, you created a new application.

What next?

Jump in the Guide →

Your project was created

Contratulations, you created a brand new django-zero project.
It’s basically a standard django project with superpowers.

Getting started

$ cd /path/to/your/project

Before the project is ready, you need to install some dependencies, including JavaScript dependencies.

$ django-zero install

It will use yarn to install javascript dependencies both in django-zero package and in your project.

Install python dependencies and run django migrations:

$ make install-dev
$ django-zero manage migrate

To start the django development server, run:

$ django-zero start

Or alternativelly:

$ make

Directory structure

As a default, django-zero projects contains the following directory structure:

Apps

This is an empty directory ready to welcome your project-specific django applications. You can create a new application
running:

$ django-zero create app hello

Config

This contains all configuration-related files. Most importantly, you’ll find here:

	settings.py: your django settings

	urls.py: your root urls configuration

	jinja2.py: your jinja2 environment

	wsgi.py: your wsgi application

	webpack.js: your webpack build configuration

All those files import their defaults from django-zero. You can override whatever you feel to, but you won’t
repeat yourself when it comes to reasonable defaults.

Resources

This contains all the non-python code and assets that are global to your project.

	assets: your source scripts (ES6 out of the box) and styles (SASS out of the box)

	jinja2: your jinja2 templates

	static: your static files

	templates: your DTL templates

Each app will have an optional resources directory that can contains the same subdirectories, so don’t feel like
you have to make it global. It’s just there so things that does not really belongs to an app can find a place to live.

What next?

A project is great, but your django code should usually mostly live in applications.

	Create a django (zero) application

Already a pro?

	Jump in the Guide

Features

	Bootstrap — Frontend

	Cookiecutter — Scaffolding

	Django Allauth — Authentication

	Django Debug Toolbar — Tooling

	Django Extensions — Tooling

	Docker — Packaging

	Gunicorn — Production Server

	Honcho — Process Manager

	Jinja2 — Templatind

	Mondrian — Logging

	Pytest — Testing

	Webpack — Assets management

	Whitenoise — Assets

Django Allauth

	Django Allauth’s website [https://www.intenct.nl/projects/django-allauth/]

	Django Allauth’s documentation [https://django-allauth.readthedocs.io/]

	Django Allauth’s source code [https://github.com/pennersr/django-allauth]

User management is pre-configured, with matching views. Adding OAuth providers is a matter of pasting your keys.

TODO: write this document.

Bootstrap 4

	Bootstrap’s website [https://getbootstrap.com/]

	Bootstrap’s documentation [https://getbootstrap.com/docs/4.1/]

The modern frontend framework.

Either use the default version or customize its build.

TODO: write this document.

Cookiecutter

	Cookiecutter’s documentation [https://cookiecutter.readthedocs.io/]

	Cookiecutter’s source code [https://github.com/audreyr/cookiecutter]

Create projects and applications in seconds, using the interactive cookiecutter templates.

TODO: write this document.

Docker

	Docker’s website [https://www.docker.com/]

	Docker’s documentation [https://docs.docker.com/]

Build production ready images using docker.

TODO: write this document.

Django Extensions

	Django Extensions’s documentation [https://django-extensions.readthedocs.io/]

	Django Extensions’s source code [https://github.com/django-extensions/django-extensions]

Django Extensions adds a lot of goodies you’ll love to have at hand.

TODO: write this document.

Gunicorn

	Gunicorn’s website [https://gunicorn.org/]

	Gunicorn’s documentation [http://docs.gunicorn.org/]

	Gunicorn’s source code [https://github.com/benoitc/gunicorn]

Battle-tested production server at your fingertips, packaged for take-away.

TODO: write this document.

Honcho

	Honcho’s source code [https://github.com/nickstenning/honcho]

Honcho is a Python port of Foreman, a tool for managing Procfile-based applications.

TODO: write this document.

Jinja2

Jinja2 templating engine is installed and configured, with django-friendly filters and globals.

TODO: write this document.

Mondrian

	Mondrian’s website [https://python-mondrian.github.io/]

	Mondrian’s documentation [https://python-mondrian.github.io/#documentation]

	Mondrian’s source code [https://github.com/python-mondrian/mondrian]

Configure and extend the python logging facilities without even thinking about it.

TODO: write this document.

Pytest

	Pytest’s documentation [https://docs.pytest.org/]

	Pytest’s source code [https://github.com/pytest-dev/pytest/]

Write tests for your code and make sure you are dead serious about output quality!

TODO: write this document.

Django Debug Toolbar

	Django Debug Toolbar’s documentation [https://django-debug-toolbar.readthedocs.io/]

	Django Debug Toolbar’s source code [https://github.com/jazzband/django-debug-toolbar]

Django Debug Toolbar helps developers understand what happens on their projects, and keep you superproductive with
performance in mind.

TODO: write this document.

Webpack

	Webpack’s website [https://webpack.js.org/]

	Webpack’s documentation [https://webpack.js.org/concepts/]

	Webpack’s source code [https://github.com/webpack/webpack]

Assets are compiled using webpack. Default configuration provides Babel and Sass, tuneable at will.

TODO: write this document.

Whitenoise

	Whitenoise’s documentation [http://whitenoise.evans.io/]

	Whitenoise’s source code [https://github.com/evansd/whitenoise]

Radically simplified static file serving for Python web apps. Like staticfiles, but better.

TODO: write this document.

Guides

	Command line — The django-zero command

	Development — Tools and candies

	Templating — Jinja2, Django Template Language (DTL)

	Frontend — Webpack, Node.js, Babel, ECMAScript 6 (ES6), SASS

	Tests — Treatment is not always quicker

	Users — Registration, authentication and authorization (Allauth)

	Deployments — The hitchhiker’s guide to Production

Command Line

The django-zero command line tool will help you manage your project. It is not the django-admin or manage.py
script that is available in usual django projects, although you can run the django management tool from the CLI.

General considerations

You can run the CLI either from the console script, or by executing the module. The two following commands are
equivalent:

$ django-zero

$ python -m django_zero

The CLI consists of “subcommands”, available from the entrypoint command described above. You can obtain more
informations by setting python’s logging level to DEBUG, using the --debug flag (or -D).

$ django-zero [--debug|-D] <subcommand>

or using the module…

$ python -m django_zero [--debug|-D] <subcommand>

Scaffolding commands

django-zero contains some cookiecutter templates to help you scaffold your projects.

Project creation

To create a new django-zero project:

$ django-zero create project <project-name>

Command will create a new directory with the provided name, ready to roll.

App creation

Once you’re in a project, you can use the app creation script:

$ django-zero create app <app-name>

By convention, the application will live in apps/<app-name>.

Lifecycle commands

Lifecycle commands will help you during development and deployment.

Install

Updates project dependencies, both local (to your project) and global (to one django-zero install, in a virtualenv
for example). Python package install is not enough, as this will also install Node.js modules.

$ django-zero install

Uninstall

Cleanup Node.js modules.

$ django-zero uninstall

Start

Starts a honcho manager with the necessary subprocesses to have de development server. This will launch django’s
development server, but also webpack in “watch” mode (so your ES6/SCSS assets are recompiled when they change) and
maybe some more processes (for example, if you enable celery, it will run both celery beat and a celery worker).

$ django-zero start

Path

Output django-zero’s library path.

$ django-zero path

Delegation commands

Most things done by the CLI requires to delegate work to subprocesses, after a bit of environment setup. Instead of
running webpack, gunicorn, django-admin, daphne, celery, etc. you should prefer the delegate subcommands so
you’re certain the environment is correct.

::: tip
One of the trickiest parts is that instead of just relying on the project’s node_modules directory, we setup the
environment so that Node.js will use both your project’s node_modules directory but also django-zero’s
node_modules.

It allows to bundle javascript dependencies with the library, while giving you the freedom of depending on whatever you
want and not requiring to bundle the actual javascript files into django-zero’s releases.
:::

::: tip
All delegates commands allow to pass arbitrary parameters to the actual binary handler. For example, if you want to
pass the --wonderfull flag to webpack, just run django-zero webpack --wonderfull.
:::

Manage (django-admin)

$ django-zero manage ...

Gunicorn

$ django-zero gunicorn ...

(requires gunicorn to be installed)

Daphne

$ django-zero daphne ...

(requires channels and daphne to be installed)

Celery

$ django-zero celery ...

(requires celery to be installed and enabled)

Webpack

$ django-zero webpack ...

Deployment

We’re working on this part.

Here is a minimal docker recipe that you can use:

FROM okdocker/pynode:3.6-8.x

Work directory
RUN mkdir /usr/local/project
WORKDIR /usr/local/project

COPY . ./
RUN pip install -r requirements-prod.txt gunicorn==19.9.0
RUN django-zero install
RUN django-zero webpack -p
RUN django-zero manage collectstatic --noinput
RUN django-zero manage migrate
CMD django-zero gunicorn --bind 0.0.0.0

Stay tuned for more options, or better written recipes.

Development

Debug

For development environments, django-zero is bundled with django-debug-toolbar and django-extensions.

This is not something you’d want in a production environment, so you must install the dependencies using the dev
extra.

Even if installed, the dependencies are only activated if DEBUG==True.

.. code-block:: shell-session

$ pip install django-zero[dev]
$ django-zero start

Django Debug Toolbar
::::::::::::::::::::

Django Debug Toolbar is a django applications that adds debug information to the HTML output of Django. You’ll see it
on the right of your browser.

	Read django-debug-toolbar's documentation <https://django-debug-toolbar.readthedocs.io/>_

Django Extensions
:::::::::::::::::

Django Extensions adds a bunch of features to the django framework, but mostly, a bunch of commands to help you
develop faster, and an integration of an alternate development server based on Werkzeug that enables the “Don’t Panic”
debugger, a better exception output that allows to interract with exception frames directly from your browser.

	Read django-extensions' documentation <https://django-extensions.readthedocs.io/>_

	Read werkzeug's debugger documentation <http://werkzeug.pocoo.org/docs/0.14/debug/>_

Frontend

Adding javascript dependencies

To add javascript dependencies that are specific to your project, you can simply:

$ yarn add --dev some-package

If you want to add a package that will be required as runtime (a.k.a your webserver needs to serve it to your
visitors), don’t mark it as dev:

$ yarn add jquery

Templating

Although django template language has been around since forever in django, we find it more convenient to use jinja2
for a lot of tasks.

Projects comes bundled with both DTL and Jinja2 installed and configured, so you can leverage the best of both
worlds.

Just place your DTL templates in your application’s templates directories (or your project’s resources/templates
directory) and your Jinja2 templates in your application’s jinja2 directories (or your project’s resources/jinja2
directory).

Testing

We use pytest with pytest-django plugin.

$ make test

Users

Your project’s comes with allauth preinstalled. It’s one of the rare exception we make to “no user-facing features”
rule in django-zero, but we feel it’s necessary as 90% of projects will need it, and it’s way easier to remove it than
set it up.

We also provide jinja2 templates with a default layout / design that allows to get started in seconds.

How-to

How to create an app?

Creating a django-zero application is easy, and can be done in a few different ways.

The easy way: use the CLI

Change your working directory to your django-zero project’s root directory, and run:

$ django-zero create app hello

It will create a hello application in apps/hello.

» You created a django-zero app, now what?

The expert way: it’s just django, stupid

Of course, django-zero applications are just django applications.
Any way that would work with django will work here.

» Django reuseable apps [https://docs.djangoproject.com/en/2.1/intro/reusable-apps/]

How to install Celery

Install the extra

To install celery related dependencies, django-zero provides an extra dependency.

$ pip install django-zero[celery]

You can combine extra dependencies, for example

$ pip install django-zero[celery,dev]

Of course, you can also setup the celery dependencies yourself, if you prefer to
have more fine-grained control over the requirements.

Create the celery configuration

import os

from celery import Celery

import django_zero

django_zero.configure(os.path.dirname(os.path.dirname(__file__)))

app = Celery("config")
app.config_from_object("django.conf:settings", namespace="CELERY")
app.autodiscover_tasks()

@app.task(bind=True)
def debug_task(self):
 print("Request: {0!r}".format(self.request))

Tune django settings

You can tune celery settings in config/settings.py, uppercasing and prefixing the celery settings
with CELERY_.

...

Celery
CELERY_BEAT_SCHEDULE = {}
CELERY_BEAT_SCHEDULER = "django_celery_beat.schedulers:DatabaseScheduler"
CELERY_RESULT_BACKEND = "django-db"
CELERY_TIMEZONE = TIME_ZONE

Enable the feature

Open config/__init__.py and add:

import os

Celery
os.environ["ENABLE_CELERY"] = os.environ.get('ENABLE_CELERY', 'true')
from config.celery import app

	Ensure celery app is loaded.

	Adds celery processes to django-zero managed processes.

Running in development

Now, by default, running the django-zero development server will spawn two more processes.

	Celery worker: to actually do things

	Celery beat: to schedule things

If you don’t want those processes to run, you can always disable the feature temporarily:

$ ENABLE_CELERY=false django-zero start

Or using make…

$ ENABLE_CELERY=false make

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/hello-world.png
® O ® / § piango zero Application x Romain

€« C Y @ localhost:8000 *

Django Zero
Create pre-configured Django projects.
Customize anything.

Deploy.

I

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

