

 Navigation

 	
 index

 	
 next |

 	django-versatileimagefield 1.0 documentation

Welcome to django-versatileimagefield’s documentation!

[image: Travis CI Status]
 [https://travis-ci.org/respondcreate/django-versatileimagefield][image: Coverage Status]
 [https://coveralls.io/github/respondcreate/django-versatileimagefield?branch=master][image: Downloads]
 [https://pypi.python.org/pypi/django-versatileimagefield/][image: Latest Version]
 [https://pypi.python.org/pypi/django-versatileimagefield/]

A drop-in replacement for django’s ImageField that provides a flexible, intuitive and easily-extensible interface for creating new images from the one assigned to the field.

Click here for a quick overview of what it is, how it works and whether or not it’s the right fit for your project.

Compatibility

	Python:
	2.7

	3.4

	3.5

Note

The 1.2 release dropped support for Python 3.3.x.

	Django [https://www.djangoproject.com/]:
	1.7.x

	1.8.x

	1.9.x

	1.10.x

Note

The 1.4 release dropped support for Django 1.5.x & 1.6.x.

	Pillow [https://pillow.readthedocs.io/en/latest/index.html] >=2.4.0,<=3.3.3

	Django REST Framework [http://www.django-rest-framework.org/]:
	2.3.14

	2.4.4

	3.0.x

	3.1.x

	3.2.x

	3.3.x (NOTE: Django REST Framework 3.3.x is not compatible with Django<=1.6.x)

	3.4.x (NOTE: Django REST Framework 3.4.x is not compatible with Django<=1.6.x)

	3.5.x (NOTE: Django REST Framework 3.4.x is not compatible with Django<=1.7.x)

Code

django-versatileimagefield is hosted on github [https://github.com/WGBH/django-versatileimagefield].

Table of Contents

	Overview
	Works just like ImageField

	Create Images Wherever You Need Them
	Crop images at specific sizes

	Custom, Per-Image Cropping

	Filters, too!

	Write your own Sizers & Filters

	Django REST Framework Integration

	Flexible in development, light-weight in production

	Fully Tested & Python 3 Ready

	Get Started

	Installation
	Python Compatibility

	Django Compatibility

	Dependencies

	Settings
	VERSATILEIMAGEFIELD_SETTINGS

	VERSATILEIMAGEFIELD_USE_PLACEHOLDIT

	VERSATILEIMAGEFIELD_RENDITION_KEY_SETS
	Writing Rendition Keys

	Using Rendition Key Sets

	Model Integration
	Specifying Placeholder Images
	OnDiscPlaceholderImage
	Where OnDiscPlaceholderImage saves images to

	OnStoragePlaceholderImage
	Where OnStoragePlaceholderImage saves images to

	Specifying a Primary Point of Interest (PPOI)
	The PPOIField
	How PPOI is Stored in the Database

	Setting PPOI
	Via The Shell

	FormField/Admin Integration
	Django 1.5 Admin Integration for required VersatileImageField fields

	Using Sizers and Filters
	Sizers
	Included Sizers
	thumbnail

	crop

	Filters
	Included Filters
	invert

	Using Sizers with Filters

	How Filtered Image Files are Named/Stored

	Using Sizers / Filters in Templates

	Writing Custom Sizers and Filters
	Writing a Custom Sizer
	Ensuring Sized Images Can Be Deleted

	Writing a Custom Filter

	What process_image should return

	The Pre-processing API
	Pre-processor Naming Convention

	Registering Sizers and Filters
	Unallowed Sizer & Filter Names

	Overriding an existing Sizer or Filter

	Deleting Created Images
	Deleting Individual Renditions
	Clearing The Cache

	Deleting An Image

	Deleting Multiple Renditions
	Deleting All Sized Images

	Deleting All Filtered Images

	Deleting All Filtered + Sized Images

	Deleting ALL Created Images

	Automating Deletion on post_delete

	Django REST Framework Integration
	Example
	Reusing Rendition Key Sets

	Improving Performance
	Turning off on-demand image creation

	Ensuring images are created
	Auto-creating sets of images on post_save

Release Notes

1.6.1

	Logs are now created when thumbnail generation fails (thanks, @artursmet [https://github.com/artursmet]!!!).

	Added support for Django 1.10.x and djangorestframework 3.5.x.

	Fixed a bug that caused delete_all_created_images() to fail on field instances that didn’t have filtered, sized & filtered+sized images.

1.6

	Fixed a bug that prevented sized images from deleting properly when the field they were associated with was using a custom upload_to function. If you are using a custom SizedImage subclass on your project then be sure to check out this section in the docs. (Thanks, @Mortal [https://github.com/Mortal]!)

1.5

	Fixed a bug that was causing placeholder images to serialize incorrectly with VersatileImageFieldSerializer (thanks, @romanosipenko [https://github.com/romanosipenko]!).

	Ensured embedded ICC profiles are preserved when creating new images (thanks, @gbts [https://github.com/gbts]!).

	Added support for progressive JPEGs [https://optimus.io/support/progressive-jpeg/] (more info here).

1.4

	Included JPEG resize quality to sized image keys.

	Added VERSATILEIMAGEFIELD_SETTINGS['image_key_post_processor'] setting for specifying a function that will post-process sized image keys to create simpler/cleaner filenames. django-versatileimagefield ships with two built-in post processors: 'versatileimagefield.processors.md5' and 'versatileimagefield.processors.md5_16' (more info here).

1.3

	Added the ability to delete images & cache entries created by a VersatileImageField both individually and in bulk. Relevant docs here.

1.2.2

	Fixed a critical bug that broke initial project setup (i.e. when django.setup() is run) when an app config [https://docs.djangoproject.com/en/1.9/ref/applications/] path was included in INSTALLED_APPS (as opposed to a ‘vanilla’ python module).

1.2.1

	Fixed a bug that caused collectstatic to fail when using placeholder images with external storage, like Amazon S3 (thanks, @jelko [https://github.com/jelko]!).

	VersatileImageField now returns its placeholder URL if .url is accessed directly (previously only placeholder images were returned if a sizer or filter was accessed). Thanks (again), @jelko [https://github.com/jelko]!

1.2

	Fixed a bug that caused collectstatic to fail when using ManifestStaticFilesStorage (thanks, @theskumar [https://github.com/theskumar]!).

	Dropped support for Python 3.3.x.

	Added support for Django 1.9.x.

1.1

	Re-added support for Django 1.5.x (by request, support for Django 1.5.x was previously dropped in the 0.4 release). If you’re using django-versatileimagefield on a Django 1.5.x project please be sure to read this bit of documentation.

	Added support for Django REST Framework 3.3.x.

1.0.6

	Updated VersatileImageFieldSerializer to serve image URLs as absolute URIs (if its associated field’s storage class isn’t doing so already).
	Formerly: /media/headshots/jane_doe_headshot.jpg

	Now: http://localhost:8000/media/headshots/jane_doe_headshot.jpg

1.0.5

	Fixed image preview on form validation errors (thanks, @securedirective [https://github.com/securedirective]!).

1.0.4

	Finessed/improved widget functionality for both optional and ‘PPOI-less’ fields (thanks, @SebCorbin [https://github.com/SebCorbin]!).

1.0.3

	Addressed Django 1.9 deprecation warnings [https://docs.djangoproject.com/en/1.8/internals/deprecation/#deprecation-removed-in-1-9] (get_cache and importlib)

	Enabled VersatileImageField formfield to be overriden via **kwargs

1.0.2

	Removed clear checkbox from widgets on required fields.

1.0.1

	Squashed a critical bug [https://github.com/WGBH/django-versatileimagefield/issues/13] in OnDiscPlaceholderImage

1.0

	Added support for Django 1.8.

	Numerous documentation edits/improvements.

0.6.2

	Squashed a bug that caused the javascript ‘click’ widget to fail to initialize correctly when multiple VersatileImageFields were displayed on the same page in the admin.

	Added django.contrib.staticfiles [https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/] integration to widgets.

0.6.1

	Squashed a bug that was throwing an AttributeError when uploading new images.

0.6

	Squashed a bug that raised a ValueError in the admin when editing a model instance with a VersatileImageField that specified ppoi_field, width_field and height_field.

	Admin ‘click’ widget now works in Firefox.

	django-versatileimagefield is now available for installation via wheel [https://wheel.readthedocs.io/en/latest/].

0.5.4

	Squashed a bug that was causing the admin ‘click’ widget to intermittently fail

	Simplified requirements installation (which makes django-versatileimagefield installable by pip<=1.6)

0.5.3

	Changed PPOIField to be editable=False by default to address a bug [https://github.com/WGBH/django-versatileimagefield/issues/7] that consistently raised ValidationError in ModelForms and the admin

0.5.2

	Squashed a bug that prevented PPOIField from serializing correctly

0.5.1

	Squashed an installation bug with pip 6+

0.5

	Added Python 3.3 & 3.4 compatibility

	Improved cropping with extreme PPOI values

0.4

	Dropped support for Django 1.5.x

	Introducing per-field placeholder image image support! (Note: global placeholder support has been deprecated.)

	Added the VERSATILEIMAGEFIELD_USE_PLACEHOLDIT setting (docs)

0.3.1

	Squashed a pip installation bug.

0.3

	Added a test suite with Travis CI [https://travis-ci.org/WGBH/django-versatileimagefield] and coveralls [https://coveralls.io/r/WGBH/django-versatileimagefield] integration.

	Introduced support for Django REST Framework 3.0 serialization.

0.2.1

	Ensuring admin widget-dependent thumbnail images are created even if VERSATILEIMAGEFIELD_SETTINGS['create_on_demand'] is set to False

0.2

	Introduced Django REST Framework support!

	Added ability to turn off on-demand image creation and pre-warm images to improve performance.

0.1.5

	Squashed CroppedImage bug that was causing black stripes to appear on crops of images with PPOI values that were to the right and/or bottom of center (greater-than 0.5).

0.1.4

	Overhauled how CroppedImage processes PPOI value when creating cropped images. This new approach yields significantly more accurate results than using the previously utilized ImageOps.fit function, especially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly from the original image.

	Improved PPOI validation

	Squashed unset VERSATILEIMAGEFIELD_SETTINGS['global_placeholder_image'] bug.

	Set crop Sizer default resample to PIL.Image.ANTIALIAS

0.1.3

	Added support for auto-rotation during pre-processing as dictated by ‘Orientation’ EXIF data, if available.

	Added release notes to docs

0.1.2

	Removed redundant javascript from ppoi ‘click’ widget (thanks, @theskumar [https://github.com/theskumar]!)

0.1.1

	Converted giant README into Sphinx-friendly RST

	Docs added to readthedocs

0.1

	Initial open source release

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Overview

You’re probably using an ImageField [https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ImageField].

from django.db import models

class ExampleModel(models.Model):
 image = models.ImageField(
 'Image',
 upload_to='images/'
)

You should swap it out for a VersatileImageField. It’s better!

from django.db import models

from versatileimagefield.fields import VersatileImageField

class ExampleModel(models.Model):
 image = VersatileImageField(
 'Image',
 upload_to='images/'
)

Works just like ImageField

Out-of-the-box, VersatileImageField provides the same functionality as ImageField:

	Template Code
	Image

	
	
[image: An Image]

So what sets it apart?

Create Images Wherever You Need Them

A VersatileImageField can create new images on-demand both in templates and the shell.

Let’s make a thumbnail image that would fit within a 200px by 200px area:

	Template Code
	Image

	
	
[image: An Thumbnail Image]

No crufty templatetags necessary! Here’s how you’d do the same in the shell:

>>> from someapp.models import ExampleModel
>>> instance = ExampleModel.objects.all()[0]
>>> instance.image.thumbnail['200x200'].url
'/media/__sized__/images/test-image-thumbnail-200x200.jpg'
>>> instance.image.thumbnail['200x200'].name
'__sized__/images/test-image-thumbnail-200x200.jpg'

Crop images at specific sizes

You can use it to create cropped images, too:

	Template Code
	Default, Absolutely Centered Crop

	
	
[image: Absolute Center Crop]

Uh-oh. That looks weird.

Custom, Per-Image Cropping

Don’t worry! VersatileImageField ships with a handy admin-compatible widget that you can use to specify an image’s Primary Point of Interest (PPOI) by clicking on it.

Note the translucent red square underneath the mouse cursor in the image within the left column below:

	Admin Widget PPOI Selection Tool
	Resultant Cropped Image

	
[image: Centered PPOI]

	
[image: Custom PPOI Entered]

Ahhhhh, that’s better.

Filters, too!

VersatileImageField has filters, too! Let’s create an inverted image:

	Template Code
	Image

	
	
[image: Inverted Image]

You can chain filters and sizers together:

	Template Code
	Image

	
	
[image: Inverted Thumbnail Image]

Write your own Sizers & Filters

Making new sizers and filters (or overriding existing ones) is super-easy via the Sizer and Filter framework.

Django REST Framework Integration

If you’ve got an API powered by Django REST Framework [http://www.django-rest-framework.org/] you can use VersatileImageField to serve multiple images (in any number of sizes and renditions) from a single field. Learn more here.

Flexible in development, light-weight in production

VersatileImageField‘s on-demand image creation provides maximum flexibility during development but can be easily turned off so your app performs like a champ in production.

Fully Tested & Python 3 Ready

django-versatileimagefield is a rock solid, fully-tested [https://coveralls.io/r/WGBH/django-versatileimagefield] Django app that is compatible with Python 2.7, 3.4 and 3.5 and works with Django 1.5.x thru 1.9.x

Get Started

You should totally try it out! It’s 100% backwards compatible with ImageField so you’ve got nothing to lose!

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Installation

Installation is easy with pip [https://pypi.python.org/pypi/pip]:

$ pip install django-versatileimagefield

Python Compatibility

	2.7.x

	3.3.x

	3.4.x

Django Compatibility

	1.6.x

	1.7.x

	1.8.x

Dependencies

	Pillow >= 2.4.x

django-versatileimagefield depends on the excellent
Pillow [https://pillow.readthedocs.io] fork of PIL. If you
already have PIL installed, it is recommended you uninstall it prior to
installing django-versatileimagefield:

$ pip uninstall PIL
$ pip install django-versatileimagefield

Note

django-versatileimagefield will not install django.

Settings

After installation completes, add 'versatileimagefield' to
INSTALLED_APPS:

INSTALLED_APPS = (
 # All your other apps here
 'versatileimagefield',
)

VERSATILEIMAGEFIELD_SETTINGS

A dictionary that allows you to fine-tune how django-versatileimagefield works:

VERSATILEIMAGEFIELD_SETTINGS = {
 # The amount of time, in seconds, that references to created images
 # should be stored in the cache. Defaults to `2592000` (30 days)
 'cache_length': 2592000,
 # The name of the cache you'd like `django-versatileimagefield` to use.
 # Defaults to 'versatileimagefield_cache'. If no cache exists with the name
 # provided, the 'default' cache will be used instead.
 'cache_name': 'versatileimagefield_cache',
 # The save quality of modified JPEG images. More info here:
 # https://pillow.readthedocs.io/en/latest/handbook/image-file-formats.html#jpeg
 # Defaults to 70
 'jpeg_resize_quality': 70,
 # The name of the top-level folder within storage classes to save all
 # sized images. Defaults to '__sized__'
 'sized_directory_name': '__sized__',
 # The name of the directory to save all filtered images within.
 # Defaults to '__filtered__':
 'filtered_directory_name': '__filtered__',
 # The name of the directory to save placeholder images within.
 # Defaults to '__placeholder__':
 'placeholder_directory_name': '__placeholder__',
 # Whether or not to create new images on-the-fly. Set this to `False` for
 # speedy performance but don't forget to 'pre-warm' to ensure they're
 # created and available at the appropriate URL.
 'create_images_on_demand': True,
 # A dot-notated python path string to a function that processes sized
 # image keys. Typically used to md5-ify the 'image key' portion of the
 # filename, giving each a uniform length.
 # `django-versatileimagefield` ships with two post processors:
 # 1. 'versatileimagefield.processors.md5' Returns a full length (32 char)
 # md5 hash of `image_key`.
 # 2. 'versatileimagefield.processors.md5_16' Returns the first 16 chars
 # of the 32 character md5 hash of `image_key`.
 # By default, image_keys are unprocessed. To write your own processor,
 # just define a function (that can be imported from your project's
 # python path) that takes a single argument, `image_key` and returns
 # a string.
 'image_key_post_processor': None,
 # Whether to create progressive JPEGs. Read more about progressive JPEGs
 # here: https://optimus.io/support/progressive-jpeg/
 'progressive_jpeg': False
}

VERSATILEIMAGEFIELD_USE_PLACEHOLDIT

A boolean that signifies whether optional (blank=True) VersatileImageField fields that do not specify a placeholder image should return placehold.it [http://placehold.it/] URLs.

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS

A dictionary used to specify ‘Rendition Key Sets’ that are used for both serialization or as a way to ‘warm’ image files so they don’t need to be created on demand (i.e. when settings.VERSATILEIMAGEFIELD_SETTINGS['create_images_on_demand'] is set to False) which will greatly improve the overall performance of your app. Here’s an example:

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS = {
 'image_gallery': [
 ('gallery_large', 'crop__800x450'),
 ('gallery_square_small', 'crop__50x50')
],
 'primary_image_detail': [
 ('hero', 'crop__600x283'),
 ('social', 'thumbnail__800x800')
],
 'primary_image_list': [
 ('list', 'crop__400x225'),
],
 'headshot': [
 ('headshot_small', 'crop__150x175'),
]
}

Each key in VERSATILEIMAGEFIELD_RENDITION_KEY_SETS signifies a ‘Rendition Key Set’, a list comprised of 2-tuples wherein the first position is a serialization-friendly name of an image rendition and the second position is a ‘Rendition Key’ (which dictates how the original image should be modified).

Writing Rendition Keys

Rendition Keys are intuitive and easy to write, simply swap in double-underscores for the dot-notated paths you’d use in the shell or in templates. Examples:

	Intended image
	As ‘Rendition Key’
	In the shell
	In templates

	400px by 400px Crop
	'crop__400x400'
	instance.image_field.crop['400x400'].url
	{{ instance.image_field.crop.400x400 }}

	100px by 100px Thumbnail
	'thumbnail__100x100'
	instance.image_field.thumbnail['100x100'].url
	{{ instance.image_field.thumbnail.100x100 }}

	Inverted Image (Full Size)
	'filters__invert'
	instance.image_field.filters.invert.url
	{{ instance.image_field.filters.invert }}

	Inverted Image, 50px by 50px crop
	'filters__invert__crop__50x50'
	instance.image_field.filters.invert.crop['50x50'].url
	{{ instance.image_field.filters.invert.crop.50x50 }}

Using Rendition Key Sets

Rendition Key sets are useful! Read up on how they can help you...

	... serialize VersatileImageField instances with Django REST Framework.

	... ‘pre-warm’ images to improve performance.

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Model Integration

The centerpiece of django-versatileimagefield is its
VersatileImageField which provides a simple, flexible interface for
creating new images from the image you assign to it.

VersatileImageField extends django’s ImageField and can be used
as a drop-in replacement for it. Here’s a simple example model that
depicts a typical usage of django’s ImageField:

models.py with `ImageField`
from django.db import models

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = models.ImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

And here’s that same model using VersatileImageField instead (see highlighted section in the code block below):

models.py with `VersatileImageField`
from django.db import models

from versatileimagefield.fields import VersatileImageField

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

Note

VersatileImageField is fully interchangable with
django.db.models.ImageField [https://docs.djangoproject.com/en/dev/ref/models/fields/#imagefield]
which means you can revert back
anytime you’d like. It’s fully-compatible with
south [https://south.readthedocs.io/en/latest/index.html] so migrate to your heart’s content!

Specifying Placeholder Images

For VersatileImageField fields that are set to blank=True you can optionally specify a placeholder image to be used when its sizers and filters are accessed (like a generic silouette for a non-existant user profile image, for instance).

You have two options for specifying placeholder images:

	OnDiscPlaceholderImage: If you want to use an image stored on the same disc as your project’s codebase.

	OnStoragePlaceholderImage: If you want to use an image that can be accessed directly with a django storage class.

Note

All placeholder images are transferred-to and served-from the storage class of their associated field.

OnDiscPlaceholderImage

A placeholder image that is stored on the same disc as your project’s codebase. Let’s add a new, optional VersatileImageField to our example model to demonstrate:

models.py
import os

from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnDiscPlaceholderImage

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)
 optional_image = VersatileImageField(
 'Optional Image',
 upload_to='images/testimagemodel/optional/',
 blank=True,
 placeholder_image=OnDiscPlaceholderImage(
 path=os.path.join(
 os.path.dirname(os.path.abspath(__file__)),
 'placeholder.gif'
)
)
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

Note

In the above example the os library was used to determine the on-disc path of an image (placeholder.gif) that was stored in the same directory as models.py.

Where OnDiscPlaceholderImage saves images to

All placeholder images are automatically saved into the same storage as the field they are associated with into a top-level-on-storage directory named by the VERSATILEIMAGEFIELD_SETTINGS['placeholder_directory_name'] setting (defaults to '__placeholder__' docs).

Placeholder images defined by OnDiscPlaceholderImage will simply be saved into the placeholder directory (defaults to '__placeholder__' docs). The placeholder image defined in the example above would be saved to '__placeholder__/placeholder.gif'.

OnStoragePlaceholderImage

A placeholder image that can be accessed with a django storage class. Example:

models.py
from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnStoragePlaceholderImage

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)
 optional_image = VersatileImageField(
 'Optional Image',
 upload_to='images/testimagemodel/optional/',
 blank=True,
 placeholder_image=OnStoragePlaceholderImage(
 path='images/placeholder.gif'
)
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

By default, OnStoragePlaceholderImage will look look for this image in your default storage class (as determined by default_storage [https://docs.djangoproject.com/en/dev/topics/files/#file-storage]) but you can explicitly specify a custom storage class with the optional keyword argument storage:

models.py
from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnStoragePlaceholderImage

from .storage import CustomStorageCls

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)
 optional_image = VersatileImageField(
 'Optional Image',
 upload_to='images/testimagemodel/optional/',
 blank=True,
 placeholder_image=OnStoragePlaceholderImage(
 path='images/placeholder.gif',
 storage=CustomStorageCls()
)
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

Where OnStoragePlaceholderImage saves images to

Placeholder images defined by OnStoragePlaceholderImage will be saved into the placeholder directory (defaults to '__placeholder__' docs) within the same folder heirarchy as their original storage class. The placeholder image used in the example above would be saved to '__placeholder__/image/placeholder.gif.

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Specifying a Primary Point of Interest (PPOI)

The crop Sizer is super-useful for creating images at a specific
size/aspect-ratio however, sometimes you want the ‘crop centerpoint’ to
be somewhere other than the center of a particular image. In fact, the
initial inspiration for django-versatileimagefield came as a result
of tackling this very problem.

The crop Sizer’s core functionality (located in the versatileimagefield.versatileimagefield.CroppedImage.crop_on_centerpoint method) was inspired by PIL’s
ImageOps.fit [https://pillow.readthedocs.io/en/latest/reference/ImageOps.html#PIL.ImageOps.fit]
function (by Kevin Cazabon [http://www.cazabon.com/]) which takes an optional
keyword argument, centering, that expects a 2-tuple comprised of
floats which are greater than or equal to 0 and less than or equal to 1. These two values
together form a cartesian coordinate system which dictates the percentage of pixels to ‘trim’ off each of the long sides (i.e. left/right or top/bottom, depending on the aspect ratio of the cropped size vs. the original size):

	
	Left
	Center
	Right

	Top
	(0.0, 0.0)
	(0.0, 0.5)
	(0.0, 1.0)

	Middle
	(0.5, 0.0)
	(0.5, 0.5)
	(0.5, 1.0)

	Bottom
	(1.0, 0.0)
	(1.0, 0.5)
	(1.0, 1.0)

The crop Sizer works in a similar way but converts the 2-tuple into an exact (x, y) pixel coordinate which is then used as the ‘centerpoint’ of the crop. This approach gives significantly more accurate results than using ImageOps.fit, especially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly from the original image.

Note

Even though the PPOI value is used as a crop ‘centerpoint’, the pixel it corresponds to won’t necessarily be in the center of the cropped image, especially if its near the edges of the original image.

Note

At present, only the crop Sizer changes how it creates images
based on PPOI but a VersatileImageField makes its PPOI value
available to ALL its attached Filters and Sizers. Get creative!

The PPOIField

Each image managed by a VersatileImageField can store its own,
unique PPOI in the database via the easy-to-use PPOIField. Here’s
how to integrate it into our example model (relevant lines highlighted in the code block below):

models.py with `VersatileImageField` & `PPOIField`
from django.db import models

from versatileimagefield.fields import VersatileImageField, \
 PPOIField

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height',
 ppoi_field='ppoi'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)
 ppoi = PPOIField(
 'Image PPOI'
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

As you can see, you’ll need to add a new PPOIField field to your
model and then include the name of that field in the
VersatileImageField‘s ppoi_field keyword argument. That’s it!

Note

PPOIField is fully-compatible with
south [https://south.readthedocs.io/en/latest/index.html] so
migrate to your heart’s content!

How PPOI is Stored in the Database

The Primary Point of Interest is stored in the database as a string
with the x and y coordinates limited to two decimal places and separated
by an ‘x’ (for instance: '0.5x0.5' or '0.62x0.28').

Setting PPOI

PPOI is set via the ppoi attribute on a VersatileImageField..

When you save a model instance, VersatileImageField will ensure its
currently-assigned PPOI value is ‘sent’ to the PPOIField associated
with it (if any) prior to writing to the database.

Via The Shell

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Retrieving the current PPOI value associated with the image field
A `VersatileImageField`'s PPOI value is ALWAYS associated with the `ppoi`
attribute, irregardless of what you named the `PPOIField` attribute on your model
>>> example.image.ppoi
(0.5, 0.5)
Creating a cropped image
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg'
Changing the PPOI value
>>> example.image.ppoi = (1, 1)
Creating a new cropped image with the new PPOI value
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c1__1-400x400.jpg'
PPOI values can be set as either a tuple or a string
>>> example.image.ppoi = '0.1x0.55'
>>> example.image.ppoi
(0.1, 0.55)
>>> example.image.ppoi = (0.75, 0.25)
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-75__0-25-400x400.jpg'
u'0.75x0.25' is written to the database in the 'ppoi' column associated with
our example model
>>> example.save()

As you can see, changing an image’s PPOI changes the filename of the
cropped image. This ensures updates to a VersatileImageField‘s PPOI
value will result in unique cache entries for each unique image it
creates.

Note

Each time a field’s PPOI is set, its attached Filters & Sizers will
be immediately updated with the new value.

FormField/Admin Integration

It’s pretty hard to accurately set a particular image’s PPOI when
working in the Python shell so django-versatileimagefield ships with
an admin-ready formfield. Simply add an image, click ‘Save and continue
editing’, click where you’d like the PPOI to be and then save your model
instance again. A helpful translucent red square will indicate where the
PPOI value is currently set to on the image:

[image: django-versatileimagefield PPOI admin widget example]
django-versatileimagefield PPOI admin widget example

Note

PPOIField is not editable so it will be automatically excluded from the admin.

Django 1.5 Admin Integration for required VersatileImageField fields

If you’re using a required (i.e. blank=False) VersatileImageField on a project running Django 1.5 you’ll need a custom form class to circumvent an already-fixed-in-Django-1.6 issue (that has to do with required fields associated with a MultiValueField/MultiWidget used in a ModelForm).

The example below uses an example model YourModel that has a required VersatileImageField as the image attribute.

yourapp/forms.py

from django.forms import ModelForm

from versatileimagefield.fields import SizedImageCenterpointClickDjangoAdminField

from .models import YourModel

class YourModelForm(VersatileImageTestModelForm):
 image = SizedImageCenterpointClickDjangoAdminField(required=False)

 class Meta:
 model = YourModel
 fields = ('image',)

Note the required=False in the formfield definition in the above example.

Integrating the custom form into the admin:

yourapp/admin.py

from django.contrib import admin

from .forms import YourModelForm
from .models import YourModel

class YourModelAdmin(admin.ModelAdmin):
 form = YourModelForm

admin.site.register(YourModel, YourModelAdmin)

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Using Sizers and Filters

Where VersatileImageField shines is in its ability to create new
images on the fly via its Sizer & Filter framework.

Sizers

Sizers provide a way to create new images of differing
sizes from the one assigned to the field. VersatileImageField ships
with two Sizers, thumbnail and crop.

Each Sizer registered to the Sizer registry is available as an attribute
on each VersatileImageField. Sizers are dict subclasses that
only accept precisely formatted keys comprised of two integers –
representing width and height, respectively – separated by an ‘x’ (i.e.
['400x400']). If you send a malformed/invalid key to a Sizer, a
MalformedSizedImageKey exception will raise.

Included Sizers

thumbnail

Here’s how you would create a thumbnail image that would be constrained
to fit within a 400px by 400px area:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Displaying the path-on-storage of the image currently assigned to the field
>>> example.image.name
u'images/testimagemodel/test-image.jpg'
Retrieving the path on the field's storage class to a 400px wide
by 400px tall constrained thumbnail of the image.
>>> example.image.thumbnail['400x400'].name
u'__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg'
Retrieving the URL to the 400px wide by 400px tall thumbnail
>>> example.image.thumbnail['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg'

Note

Images are created on-demand. If no image had yet existed at the location required – by either the path (.name) or URL (.url) shown in the highlighted lines above – one would have been created directly before returning it.

Here’s how you’d open the thumbnail image we just created as an image file
directly in the shell:

>>> thumbnail_image = example.image.field.storage.open(
... example.image.thumbnail['400x400'].name
...)

crop

To create images cropped to a specific size, use the crop Sizer:

Retrieving the URL to a 400px wide by 400px tall crop of the image
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg'

The crop Sizer will first scale an image down to its longest side
and then crop/trim inwards, centered on the Primary Point of
Interest (PPOI, for short). For more info about what PPOI is and how
it’s used see the Specifying a Primary Point of Interest
(PPOI) section.

How Sized Image Files are Named/Stored

All Sizers subclass from
versatileimagefield.datastructures.sizedimage.SizedImage which uses
a unique-to-size-specified string – provided via its
get_filename_key() method – that is included in the filename of each
image it creates.

Note

The thumbnail Sizer simply combines 'thumbnail' with the
size key passed (i.e. '400x400') while the crop Sizer
combines 'crop', the field’s PPOI value (as a string) and the
size key passed; all Sizer ‘filename keys’ begin and end with dashes
'-' for readability.

All images created by a Sizer are stored within the field’s storage
class in a top-level folder named '__sized__', maintaining the same
descendant folder structure as the original image. If you’d like to
change the name of this folder to something other than '__sized__',
adjust the value of
VERSATILEIMAGEFIELD_SETTINGS['sized_directory_name'] within your
settings file.

Sizers are quick and easy to write, for more information about how it’s
done, see the Writing a Custom Sizer
section.

Filters

Filters create new images that are the same size and aspect ratio as the
original image.

Included Filters

invert

The invert filter will invert the color palette of an image:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Returning the path-on-storage to the image currently assigned to the field
>>> example.image.name
u'images/testimagemodel/test-image.jpg'
Displaying the path (within the field's storage class) to an image
with an inverted color pallete from that of the original image
>>> example.image.filters.invert.name
u'images/testimagemodel/__filtered__/test-image__invert__.jpg'
Displaying the URL to the inverted image
>>> example.image.filters.invert.url
u'/media/images/testimagemodel/__filtered__/test-image__invert__.jpg'

As you can see, there’s a filters attribute available on each
VersatileImageField which contains all filters currently registered
to the Filter registry.

Using Sizers with Filters

What makes Filters extra-useful is that they have access to all
registered Sizers:

Creating a thumbnail of a filtered image
>>> example.image.filters.invert.thumbnail['400x400'].url
u'/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-thumbnail-400x400.jpg'
Creating a crop from a filtered image
>>> example.image.filters.invert.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-c0-5__0-5-400x400.jpg'

Note

Filtered images are created the first time they are directly
accessed (by either evaluating their name/url attributes or
by accessing a Sizer attached to it). Once created, a reference is
stored in the cache for each created image which makes for speedy
subsequent retrievals.

How Filtered Image Files are Named/Stored

All Filters subclass from
versatileimagefield.datastructures.filteredimage.FilteredImage which
provides a get_filename_key() method that returns a
unique-to-filter-specified string – surrounded by double underscores,
i.e. '__invert__' – which is appended to the filename of each image
it creates.

All images created by a Filter are stored within a folder named
__filtered__ that sits in the same directory as the original image.
If you’d like to change the name of this folder to something other than
‘filtered‘, adjust the value of
VERSATILEIMAGEFIELD_SETTINGS['filtered_directory_name'] within your
settings file.

Filters are quick and easy to write, for more information about creating
your own, see the Writing a Custom Filter
section.

Using Sizers / Filters in Templates

Template usage is straight forward and easy since both attributes and
dictionary keys can be accessed via dot-notation; no crufty templatetags
necessary:

<!-- Sizers -->

<!-- Filters -->

<!-- Filters + Sizers -->

Note

Using the url attribute on Sizers is optional in templates. Why?
All Sizers return an instance of
versatileimagefield.datastructures.sizedimage.SizedImageInstance
which provides the sized image’s URL via the __unicode__()
method (which django’s templating engine looks for when asked
to render class instances directly).

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Writing Custom Sizers and Filters

It’s quick and easy to create new Sizers and Filters for use on your
project’s VersatileImageField fields or modify already-registered
Sizers and Filters.

Both Sizers and Filters subclass from
versatileimagefield.datastructures.base.ProcessedImage which
provides a preprocessing API as well as all
the business logic necessary to retrieve and save images.

The ‘meat’ of each Sizer & Filter – what actually modifies the
original image – resides within the process_image method which
all subclasses must define (not doing so will raise a
NotImplementedError). Sizers and Filters expect slightly different
keyword arguments (Sizers required width and height, for
example) see below for specifics:

Writing a Custom Sizer

All Sizers should subclass
versatileimagefield.datastructures.sizedimage.SizedImage and, at a
minimum, MUST do two things:

	Define either the filename_key attribute or override the
get_filename_key() method which is necessary for creating
unique-to-Sizer-and-size-specified filenames. If neither of the
aforementioned is done a NotImplementedError exception will be
raised.

	Define a process_image method that accepts the following
arguments:
	image: a PIL Image instance

	image_format: A valid image mime type (e.g. ‘image/jpeg’).
This is provided by the create_resized_image method (which
calls process_image).

	save_kwargs: A dict of any keyword arguments needed by
PIL’s Image.save method (initially provided by the
pre-processing API).

	width: An integer representing the width specified by the user
in the size key.

	height: An integer representing the height specified by the
user in the size key.

For an example, let’s take a look at the thumbnail Sizer (versatileimagefield.versatileimagefield.ThumbnailImage):

import StringIO

from PIL import Image

from .datastructures import SizedImage

class ThumbnailImage(SizedImage):
 """
 Sizes an image down to fit within a bounding box

 See the `process_image()` method for more information
 """

 filename_key = 'thumbnail'

 def process_image(self, image, image_format, save_kwargs,
 width, height):
 """
 Returns a StringIO instance of `image` that will fit
 within a bounding box as specified by `width`x`height`
 """
 imagefile = StringIO.StringIO()
 image.thumbnail(
 (width, height),
 Image.ANTIALIAS
)
 image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Important

process_image should always return a StringIO instance. See What process_image should return for more information.

Ensuring Sized Images Can Be Deleted

If your SizedImage subclass uses more than just filename_key to construct filenames than you’ll also want to define the filename_key_regex attribute.

Confused? Let’s take a look at CroppedImage – which includes individual image PPOI values in the images it creates – as an example:

class CroppedImage(SizedImage):
 """
 A SizedImage subclass that creates a 'cropped' image.

 See the `process_image` method for more details.
 """

 filename_key = 'crop'
 filename_key_regex = r'crop-c[0-9-]+__[0-9-]+'

 def get_filename_key(self):
 """Return the filename key for cropped images."""
 return "{key}-c{ppoi}".format(
 key=self.filename_key,
 ppoi=self.ppoi_as_str()
)

The get_filename_key method above is what is used by the sizer to create a filename fragment when creating images. It combines the filename_key with an individual image’s PPOI value which ensures PPOI changes result in newly created images (which makes sense when you’re cropping in respect to PPOI). The filename_key_regex is a regular expression pattern utilized by the file deletion API in order to find cropped images created from the original image.

Writing a Custom Filter

All Filters should subclass
versatileimagefield.datastructures.filteredimage.FilteredImage and
only need to define a process_image method with following
arguments:

	image: a PIL Image instance

	image_format: A valid image mime type (e.g. ‘image/jpeg’). This
is provided by the create_resized_image() method (which calls
process_image).

	save_kwargs: A dict of any keyword arguments needed by PIL’s
Image.save method (initially provided by the pre-processing API).

For an example, let’s take a look at the invert Filter
(versatileimagefield.versatileimagefield.InvertImage):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage

class InvertImage(FilteredImage):
 """
 Inverts the colors of an image.

 See the `process_image()` for more specifics
 """

 def process_image(self, image, image_format, save_kwargs={}):
 """
 Returns a StringIO instance of `image` with inverted colors
 """
 imagefile = StringIO.StringIO()
 inv_image = ImageOps.invert(image)
 inv_image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Important

process_image should always return a StringIO instance. See What process_image should return for more information.

What process_image should return

Any process_image method you write should always return a
StringIO instance comprised of raw image data. The actual image file
will be written to your field’s storage class via the save_image
method. Note how save_kwargs is passed into PIL’s Image.save
method in the examples above, this ensures PIL knows how to write this
data (based on mime type or any other per-filetype specific options
provided by the preprocessing API).

The Pre-processing API

Both Sizers and Filters have access to a pre-processing API that provides
hooks for doing any per-mime-type processing. This allows your Sizers
and Filters to do one thing for JPEGs and another for GIFs, for
instance. One example of this is in how Sizers ‘know’ how to preserve
transparency for GIFs or save JPEGs as RGB (at the user-defined
quality):

versatileimagefield/datastructures/sizedimage.py
class SizedImage(ProcessedImage, dict):
 "<a bunch of ommited code here>"

 def preprocess_GIF(self, image, **kwargs):
 """
 Receives a PIL Image instance of a GIF and returns 2-tuple:
 * [0]: Original Image instance (passed to `image`)
 * [1]: Dict with a transparency key (to GIF transparency layer)
 """
 return (image, {'transparency': image.info['transparency']})

 def preprocess_JPEG(self, image, **kwargs):
 """
 Receives a PIL Image instance of a JPEG and returns 2-tuple:
 * [0]: Image instance, converted to RGB
 * [1]: Dict with a quality key (mapped to the value of `QUAL` as
 defined by the `VERSATILEIMAGEFIELD_JPEG_RESIZE_QUALITY`
 setting)
 """
 if image.mode != 'RGB':
 image = image.convert('RGB')
 return (image, {'quality': QUAL})

All pre-processors should accept one required argument image (A PIL
Image instance) and **kwargs (for easy extension by subclasses) and
return a 2-tuple of the image and a dict of any additional keyword
arguments to pass along to PIL’s Image.save method.

Pre-processor Naming Convention

In order for preprocessor methods to run, they need to be named
correctly via this simple naming convention: preprocess_FILETYPE.
Here’s a list of all currently-supported file types:

	BMP

	DCX

	EPS

	GIF

	JPEG

	PCD

	PCX

	PDF

	PNG

	PPM

	PSD

	TIFF

	XBM

	XPM

So, if you’d want to write a PNG-specific preprocessor, your Sizer or
Filter would need to define a method named preprocess_PNG.

Note

I’ve only tested VersatileImageField with PNG, GIF and JPEG
files; the list above is what PIL supports, for more information
about per filetype support in PIL visit
here [https://infohost.nmt.edu/tcc/help/pubs/pil/formats.html].

Registering Sizers and Filters

Registering Sizers and Filters is easy and straight-forward; if you’ve
ever registered a model with django’s admin you’ll feel right at
home.

django-versatileimagefield finds Sizers & Filters within modules named
versatileimagefield – (i.e. versatileimagefield.py)
that are available at the ‘top level’ of each app on INSTALLED_APPS.

Here’s an example:

somedjangoapp/
 __init__.py
 models.py # Models
 admin.py # Admin config
 versatilimagefield.py # Custom Sizers and Filters here

After defining your Sizers and Filters you’ll need to register them with
the versatileimagefield_registry. Here’s how the ThumbnailSizer
is registered (see the highlighted lines in the following code block for the relevant bits):

versatileimagefield/versatileimagefield.py
import StringIO

from PIL import Image

from .datastructures import SizedImage
from .registry import versatileimagefield_registry

class ThumbnailImage(SizedImage):
 """
 Sizes an image down to fit within a bounding box

 See the `process_image()` method for more information
 """

 filename_key = 'thumbnail'

 def process_image(self, image, image_format, save_kwargs,
 width, height):
 """
 Returns a StringIO instance of `image` that will fit
 within a bounding box as specified by `width`x`height`
 """
 imagefile = StringIO.StringIO()
 image.thumbnail(
 (width, height),
 Image.ANTIALIAS
)
 image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Registering the ThumbnailSizer to be available on VersatileImageField
via the `thumbnail` attribute
versatileimagefield_registry.register_sizer('thumbnail', ThumbnailImage)]

All Sizers are registered via the versatileimagefield_registry.register_sizer method. The first
argument is the attribute you want to make the Sizer available at and
the second is the SizedImage subclass.

Filters are just as easy. Here’s how the InvertImage filter is registered (see the highlighted lines in the following code block for the relevant bits):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage
from .registry import versatileimagefield_registry

class InvertImage(FilteredImage):
 """
 Inverts the colors of an image.

 See the `process_image()` for more specifics
 """

 def process_image(self, image, image_format, save_kwargs={}):
 """
 Returns a StringIO instance of `image` with inverted colors
 """
 imagefile = StringIO.StringIO()
 inv_image = ImageOps.invert(image)
 inv_image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

versatileimagefield_registry.register_filter('invert', InvertImage)

All Filters are registered via the
versatileimagefield_registry.register_filter method. The first
argument is the attribute you want to make the Filter available at and
the second is the FilteredImage subclass.

Unallowed Sizer & Filter Names

Sizer and Filter names cannot begin with an underscore as it would
prevent them from being accessible within the template layer.
Additionally, since Sizers are available for use directly on a
VersatileImageField, there are some Sizer names that are unallowed;
trying to register a Sizer with one of the following names will result
in a UnallowedSizerName exception:

	build_filters_and_sizers

	chunks

	close

	closed

	create_on_demand

	delete

	encoding

	field

	file

	fileno

	filters

	flush

	height

	instance

	isatty

	multiple_chunks

	name

	newlines

	open

	path

	ppoi

	read

	readinto

	readline

	readlines

	save

	seek

	size

	softspace

	storage

	tell

	truncate

	url

	validate_ppoi

	width

	write

	writelines

	xreadlines

Overriding an existing Sizer or Filter

If you try to register a Sizer or Filter with an attribute name that’s
already in use (like crop or thumbnail or invert), an
AlreadyRegistered exception will raise.

Caution

A Sizer can have the same name as a Filter (since names are only
required to be unique per type) however it’s not recommended.

If you’d like to override an already-registered Sizer or Filter just use
either the unregister_sizer or unregister_filter methods of
versatileimagefield_registry. Here’s how you could ‘override’ the
crop Sizer:

from versatileimagefield.registry import versatileimagefield_registry

Unregistering the 'crop' Sizer
versatileimagefield_registry.unregister_sizer('crop')
Registering a custom 'crop' Sizer
versatileimagefield_registry.register_sizer('crop', SomeCustomSizedImageCls)

The order that Sizers and Filters register corresponds to their
containing app’s position on INSTALLED_APPS. This means that if you
want to override one of the default Sizers or Filters your app needs to
be included after 'versatileimagefield':

settings.py
INSTALLED_APPS = (
 'versatileimagefield',
 'yourcustomapp' # This app can override the default Sizers and Filters
)

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Deleting Created Images

Note

The deletion API was added in version 1.3

VersatileImageField ships with a number of useful methods that make it easy to delete unwanted/stale images and/or clear out their associated cache entries.

The docs below all reference this example model:

someapp/models.py

from django.db import models

from versatileimagefield.fields import VersatileImageField

class ExampleImageModel(models.Model):
 image = VersatileImageField(upload_to='images/')

Deleting Individual Renditions

Clearing The Cache

To delete a cache entry associated with a created image just call its clear_cache() method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes the cache entry associated with the 400px by 400px
crop of instance.image
>>> instance.image.crop['400x400'].clear_cache()
Deletes the cache entry associated with the inverted
filter of instance.image
>>> instance.image.filters.invert.clear_cache()
Deletes the cache entry associated with the inverted + cropped-to
400px by 400px rendition of instance.image
>>> instance.image.filters.invert.crop['400x400'].clear_cache()

Deleting An Image

To delete a created image just call its delete() method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes the image AND cache entry associated with the 400px by 400px
crop of instance.image
>>> instance.image.crop['400x400'].delete()
Deletes the image AND cache entry associated with the inverted
filter of instance.image
>>> instance.image.filters.invert.delete()
Deletes the image AND cache entry associated with the inverted +
cropped-to 400px by 400px rendition of instance.image
>>> instance.image.filters.invert.crop['400x400'].delete()

Note

Deleting an image will also clear its associated cache entry.

Deleting Multiple Renditions

Deleting All Sized Images

To delete all sized images created by a field use its delete_sized_images method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes all sized images and cache entries associated with instance.image
>>> instance.image.delete_sized_images()

Deleting All Filtered Images

To delete all filtered images created by a field use its delete_filtered_images method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes all filtered images and cache entries associated with instance.image
>>> instance.image.delete_filtered_images()

Deleting All Filtered + Sized Images

To delete all filtered + sized images created by a field use its delete_filtered_sized_images method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes all filtered + sized images and cache entries associated with instance.image
>>> instance.image.delete_filtered_sized_images()

Deleting ALL Created Images

To delete ALL images created by a field (sized, filtered & filtered + sized) use its delete_all_created_images method:

>>> from someapp.models import ExampleImageModel
>>> instance = ExampleImageModel.objects.get()
Deletes ALL images and cache entries associated with instance.image
>>> instance.image.delete_all_created_images()

Note

The original image (instance.name on instance.field.storage in the above example) will NOT be deleted.

Automating Deletion on post_delete

The rendition deleting and cache clearing functionality was written to address the need to delete ‘stale’ images (i.e. images created from a VersatileImageField field on a model instance that has since been deleted). Here’s a simple example of how to accomplish that with a post_delete signal receiver:

someapp/models.py

from django.db import models
from django.dispatch import receiver

from versatileimagefield.fields import VersatileImageField

class ExampleImageModel(models.Model):
 image = VersatileImageField(upload_to='images/')

@receiver(models.signals.post_delete, sender=ExampleImageModel)
def delete_ExampleImageModel_images(sender, instance, **kwargs):
 """
 Deletes ExampleImageModel image renditions on post_delete.
 """
 # Deletes Image Renditions
 instance.image.delete_all_created_images()
 # Deletes Original Image
 instance.image.delete(save=False)

Warning

There’s no undo for deleting images off a storage object so proceed at your own risk!

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Django REST Framework Integration

If you’ve got an API powered by Tom Christie [https://twitter.com/_tomchristie]‘s excellent Django REST Framework [http://www.django-rest-framework.org/] and want to serve images in multiple sizes/renditions django-versatileimagefield has you covered with it’s VersatileImageFieldSerializer.

Example

To demonstrate how it works we’ll use this simple model:

myproject/person/models.py

from django.db import models

from versatileimagefield.fields import VersatileImageField, PPOIField

class Person(models.Model):
 """Represents a person."""
 name_first = models.CharField('First Name', max_length=80)
 name_last = models.CharField('Last Name', max_length=100)
 headshot = VersatileImageField(
 'Headshot',
 upload_to='headshots/',
 ppoi_field='headshot_ppoi'
)
 headshot_ppoi = PPOIField()

 class Meta:
 verbose_name = 'Person'
 verbose_name_plural = 'People'

OK, let’s write a simple ModelSerializer subclass to serialize Person instances:

myproject/person/serializers.py

from rest_framework import serializers

from versatileimagefield.serializers import VersatileImageFieldSerializer

from .models import Person

class PersonSerializer(serializers.ModelSerializer):
 """Serializes Person instances"""
 headshot = VersatileImageFieldSerializer(
 sizes=[
 ('full_size', 'url'),
 ('thumbnail', 'thumbnail__100x100'),
 ('medium_square_crop', 'crop__400x400'),
 ('small_square_crop', 'crop__50x50')
]
)

 class Meta:
 model = Person
 fields = (
 'name_first',
 'name_last',
 'headshot'
)

And here’s what it would look like serialized:

>>> from myproject.person.models import Person
>>> john_doe = Person.objects.create(
... name_first='John',
... name_last='Doe',
... headshot='headshots/john_doe_headshot.jpg'
...)
>>> john_doe.save()
>>> from myproject.person.serializers import PersonSerializer
>>> john_doe_serialized = PersonSerializer(john_doe)
>>> john_doe_serialized.data
{
 'name_first': 'John',
 'name_last': 'Doe',
 'headshot': {
 'full_size': 'http://api.yoursite.com/media/headshots/john_doe_headshot.jpg',
 'thumbnail': 'http://api.yoursite.com/media/headshots/john_doe_headshot-thumbnail-400x400.jpg',
 'medium_square_crop': 'http://api.yoursite.com/media/headshots/john_doe_headshot-crop-c0-5__0-5-400x400.jpg',
 'small_square_crop': 'http://api.yoursite.com/media/headshots/john_doe_headshot-crop-c0-5__0-5-50x50.jpg',
 }
}

As you can see, the sizes argument on VersatileImageFieldSerializer simply unpacks the list of 2-tuples using the value in the first position as the attribute of the image and the second position as a ‘Rendition Key’ which dictates how the original image should be modified.

Reusing Rendition Key Sets

It’s common to want to re-use similar sets of images across models and fields so django-versatileimagefield provides a setting, VERSATILEIMAGEFIELD_RENDITION_KEY_SETS for defining them (docs).

Let’s move the Rendition Key Set we used above into our settings file:

myproject/settings.py

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS = {
 'person_headshot': [
 ('full_size', 'url'),
 ('thumbnail', 'thumbnail__100x100'),
 ('medium_square_crop', 'crop__400x400'),
 ('small_square_crop', 'crop__50x50')
]
}

Now, let’s update our serializer to use it:

myproject/person/serializers.py

from rest_framework import serializers

from versatileimagefield.serializers import VersatileImageFieldSerializer

from .models import Person

class PersonSerializer(serializers.ModelSerializer):
 """Serializes Person instances"""
 headshot = VersatileImageFieldSerializer(
 sizes='person_headshot'
)

 class Meta:
 model = Person
 fields = (
 'name_first',
 'name_last',
 'headshot'
)

That’s it! Now that you know how to define Rendition Key Sets, leverage them to improve performance!

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-versatileimagefield 1.0 documentation

Improving Performance

During development, VersatileImageField‘s on-demand image creation enables you to quickly iterate but, once your application is deployed into production, this convenience adds a small bit of overhead that you’ll probably want to turn off.

Turning off on-demand image creation

To turn off on-demand image creation just set the 'create_images_on_demand' key of the VERSATILEIMAGEFIELD_SETTINGS setting to False (docs). Now your VersatileImageField fields will return URLs to images without first checking to see if they’ve actually been created yet.

Note

Once an image has been created by a VersatileImageField, a reference to it is stored in the cache which makes for speedy subsequent retrievals. Setting VERSATILEIMAGEFIELD_SETTINGS['create_images_on_demand'] to False bypasses this entirely making VersatileImageField perform even faster (docs).

Ensuring images are created

This boost in performance is great but now you’ll need to ensure that the images your application links-to actually exist. Luckily, VersatileImageFieldWarmer will help you do just that. Here’s an example in the Python shell using the example model from the Django REST Framework serialization example:

>>> from myproject.person.models import Person
>>> from versatileimagefield.image_warmer import VersatileImageFieldWarmer
>>> person_img_warmer = VersatileImageFieldWarmer(
... instance_or_queryset=Person.objects.all(),
... rendition_key_set='person_headshot',
... image_attr='headshot',
... verbose=True
...)
>>> num_created, failed_to_create = person_img_warmer.warm()

num_created will be an integer of how many images were successfully created and failed_to_create will be a list of paths to images (on the field’s storage class) that could not be created (due to a PIL/Pillow [https://pillow.readthedocs.io/] error, for example).

This technique is useful if you’ve recently converted your project’s models.ImageField fields to use VersatileImageField or if you want to ‘pre warm’ images as part of a Fabric [http://www.fabfile.org/] script.

Note

The above example would create a set of images (as dictated by the 'person_headshot' Rendition Key Set) for the headshot field of each Person instance. rendition_key_set also accepts a valid Rendition Key Set directly:

>>> person_img_warmer = VersatileImageFieldWarmer(
... instance_or_queryset=Person.objects.all(),
... rendition_key_set=[
... ('large_horiz_crop', '1200x600'),
... ('large_vert_crop', '600x1200'),
...],
... image_attr='headshot',
... verbose=True
...)

Note

Setting verbose=True when instantiating a VersatileImageFieldWarmer will display a yum-style progress bar showing the image warming progress:

>>> num_created, failed_to_create = person_img_warmer.warm()
[###########--] 20/100 (20%)

Note

The image_attr argument can be dot-notated in order to follow ForeignKey and OneToOneField relationships. Example: 'related_model.headshot'.

Auto-creating sets of images on post_save

You also might want to create new images immediately after model instances are saved. Here’s how we’d do it with our example model (see highlighted lines below):

myproject/person/models.py

from django.db import models
from django.dispatch import receiver

from versatileimagefield.fields import VersatileImageField, PPOIField
from versatileimagefield.image_warmer import VersatileImageFieldWarmer

class Person(models.Model):
 """Represents a person."""
 name_first = models.CharField('First Name', max_length=80)
 name_last = models.CharField('Last Name', max_length=100)
 headshot = VersatileImageField(
 'Headshot',
 upload_to='headshots/',
 ppoi_field='headshot_ppoi'
)
 headshot_ppoi = PPOIField()

 class Meta:
 verbose_name = 'Person'
 verbose_name_plural = 'People'

@receiver(models.signals.post_save, sender=Person)
def warm_Person_headshot_images(sender, instance, **kwargs):
 """Ensures Person head shots are created post-save"""
 person_img_warmer = VersatileImageFieldWarmer(
 instance_or_queryset=instance,
 rendition_key_set='person_headshot',
 image_attr='headshot'
)
 num_created, failed_to_create = person_img_warmer.warm()

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-versatileimagefield 1.0 documentation

Index

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

 _static/images/the-dowager-countess-thumbnail-200x200.jpg

_static/images/the-dowager-countess-crop-c0-44__0-22-400x400.jpg

_static/up.png

_static/images/the-dowager-countess.jpg

_static/down-pressed.png

_static/images/the-dowager-countess__invert__.jpg

_static/images/the-dowager-countess__invert__-thumbnail-200x200.jpg

_static/comment-close.png

_images/ppoi-admin-example.png
Image: Currently: images testimagemodel da-s4-ivy-slide-08_copy.jpg

Clear

et 2N

Change: Choose File | No file chosen

_static/comment.png

_images/the-dowager-countess-thumbnail-200x200.jpg

_static/ajax-loader.gif

_images/ppoi-adjusted.jpg
Currently: image/the-dowager-countess.jpg

Clear:

Primary Point
of Interest:

Change: Choose File | No file chosen

_static/down.png

_images/the-dowager-countess-crop-c0-5__0-5-400x400.jpg

_static/plus.png

_images/the-dowager-countess__invert__.jpg

search.html

 Navigation

 		
 index

 		django-versatileimagefield 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.3.5.

_images/the-dowager-countess__invert__-thumbnail-200x200.jpg

_images/the-dowager-countess-crop-c0-44__0-22-400x400.jpg

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_images/the-dowager-countess.jpg

_static/minus.png

_static/images/the-dowager-countess-crop-c0-5__0-5-400x400.jpg

_static/images/ppoi-admin-example.png
Image: Currently: images testimagemodel da-s4-ivy-slide-08_copy.jpg

Clear

et 2N

Change: Choose File | No file chosen

_static/images/ppoi-adjusted.jpg
Currently: image/the-dowager-countess.jpg

Clear:

Primary Point
of Interest:

Change: Choose File | No file chosen

_static/images/ppoi-default.jpg
Currently: image/the-dowager-countess.jpg

Clear:

Primary Point
of Interest:

Change: Choose File | No file chosen

