

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-la-facebook 0.1.beta documentation

Welcome to django-la-facebook’s documentation!

Contents:

	Usage
	Settings

	Using the default authentication flow

	Templates

	Changing the display layout of the login page

	Template Tags

	Settings

	Callbacks
	What the default implementation does

	Callback Reference

	Running The Test Project
	Logging

	Test Coverage

	Background

	Goals

	Credits
	django-la-facebook team

	django-oauth-access team

	TODO
	Code

	Docs

External Links

Project homepage:

https://github.com/cartwheelweb/django-la-facebook

PyPI:

http://pypi.python.org/pypi/django-la-facebook

Django Packages:

http://djangopackages.com/packages/p/django-la-facebook/

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Usage

Get django-la-facebook into your python path:

pip install django-la-facebook

Add la_facebook to your INSTALLED_APPS in settings.py:

INSTALLED_APPS = (
 ...
 'la_facebook',
 ...
)

Add la_facebook to your root urlconf (urls.py):

urlpatterns = patterns('',
 ...,
 url(r"^la_facebook/", include("la_facebook.urls")),
 ...,
)

Settings

In order to authenticate your site’s users with Facebook, you need a unique
identifier for Facebook to associate your site with. Facebook considers your
site an “app” and so you must acquire an FACEBOOK_APP_ID and
FACEBOOK_APP_SECRET from the
Facebook Developer app [http://www.facebook.com/developers].

You will need to enter your sites domain into the Facebook developer app, and
the site will restrict authentication requests to that domain. For initial
testing and experiments, you will want to enter “http://localhost/” for the
website URL. For later testing, you will probably want create a staging or
testing subdomain. The domain set here must match the domain entered into
Django’s sites framework.

See the documentation for Settings about how to enter these values in your
Django settings file.

Using the default authentication flow

By default, the la_facebook application:

	provides a method of creating a django.contrib.auth user model for an
authenticated facebook user

	Updates fields in the model pointed to by the AUTH_PROFILE_MODULE
setting that match available fields in Facebook’s user data.

	Creates and manages an association object that stores the user’s associated
facebook id, authentication token (which is used to access the information
in the users facebook profile as authorized by the user), and the expiration
date of that token.

These steps are handled by directing a user to the la_facebook login view. By
default this view, like Django’s login url LOGIN_URL, will use a next
querystring parameter to redirect the browser to a page after user
authenticates with Facebook.

If an error occurs during authentication, or the user denies to authenticate,
the browser is redirected to a template located at
la_facebook/fb_error.html (see the provided template for some information
about what context variables may be provided in the case of an error).

If you wish a more customized behavior for Facebook authentication, see the
Callbacks documentation.

Templates

In your login page, or as part of your login form, you should include a link to
the Facebook login view, which will then redirect the user to facebook to login
and authenticate to your site. A simple example might look like this:

<p>Login with FaceBook</p>

You can used the following image provided by facebook as a graphical link:

http://static.ak.fbcdn.net/images/fbconnect/login-buttons/connect_light_medium_long.gif

Other than the error template mentioned above, no particular templates are used
or customized.

Changing the display layout of the login page

By default the login flow redirects you to facebook for login in your main
browser window, and the layout of this page is suited to be a complete page.
Facebook also supports an alternate “popup” display style, which is better
suited for popup windows. This can reduce the feeling that the user is leaving
your site. You must pass the display:popup option to the login view in your
own project urls.py, and you must handle the creation and destruction of the
actual popup window yourself.

Template Tags

TODO

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Settings

This document describes the settings needed by la_facebook.

FACEBOOK_ACCESS_SETTINGS this is the only setting required. It is a dictionary
of app specific settings as follows:

FACEBOOK_APP_ID - this is a key that uniquely identifies your Facebook app, in
the common case, the Facebook app will be your project or site.

FACEBOOK_APP_SECRET - This secret is used in generating the authenticated
token. Both the key and the secret are available through the Facebook’s Developer app [http://www.facebook.com/developers].

CALLBACK (optional) - this is a dotted module path string (similar to using a string for
a view) that points to a subclass of la_facebook.callbacks.default. The default
value is “la_facebook.callbacks.default.default_facebook_callback”

PROVIDER_SCOPE (optional) - a list, of strings, of permissions to ask for.
The list of these is here [http://developers.facebook.com/docs/authentication/permissions/]

LOG_LEVEL (optional) - A string value containing one of standard python logging
levels of DEBUG, INFO, WARNING, ERROR or CRITICAL. Defaults to “ERROR”, which
should be relatively quiet.

LOG_FILE (optional) - The path to a file that will received appended logging
information. By default, logged messages will print to stdout.

Example:

FACEBOOK_ACCESS_SETTINGS = {
 "FACEBOOK_APP_ID": FACEBOOK_APP_ID,
 "FACEBOOK_APP_SECRET": FACEBOOK_APP_SECRET,
 # The following keys are optional
 # "CALLBACK": "la_facebook.callbacks.default.default_facebook_callback",
 # "PROVIDER_SCOPE": ['email','read_stream'],
 # "LOG_LEVEL": "DEBUG",
 # "LOG_FILE": "/tmp/la_facebook.log",
}

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Callbacks

In the context of la_facebook, callbacks are a subclass of
la_facebook.callbacks.base.BaseFacebookCallback.

The callback is called after the user authenticates with Facebook, either for
the first time, or when returning after authentication expiration. The callback
determines what happens next, whether that be a user being created, or the
browser being redirected.

la_facebook ships with two callbacks. BaseFacebookCallback defines the key
steps that any response to a facebook auth should include, but is largely an
abstract class. DefaultFacebookCallback is a working callback that addresses
the most common use case for basic user auth. Most projects will
probably be fine to just use this default implementation.

What the default implementation does

When a new user comes to your site, and clicks on a link that calls the
la_facebook.views.facebook_login view, they are redirected to facebook
where they are authenticated and approve your app. They are then redirected
to your site and the default callback is executed. This callback fist checks
whether there is already an authenticated Django user in the session. If not
the Facebook id of the user is examined and it is determined whether they have
previously authenticated to the site by looking for database model that stores
an association between a Django user and a Facebook user.

If there exists a prior association, the expiration of that users Facebook
authentication token is updated, the Django session expiration is set to match,
and the user is logged and redirected.

If no prior association is present, a django user and its association object
are created. The default Django username consists of the facebook user’s name
sluggified and concatenated with their facebook id. Any profile object, as
defined in Django’s settings, is updated with any matching fields in the users
Facebook data.

Callback Reference

A callback is a view like object is called with instances of a Django request,
OAuthAccess, and OAuth20Token.

	
class BaseFacebookCallback

	Provides a largely abstract class defining an auth interaction with
Facebook.

	
__call__(request, access, token)

	is called by the view and handles the basic check of whether the user
is authenticated and dispatches to the other methods as nessasary and then
returns the response to the view and thus to the browser (usually a redirect)

	
fetch_user_data(request, access, token)

	Not implemented.

	
lookup_user(request, access, token)

	Not implemented.

	
redirect_url(request, access, token)

	Checks in order: the request GET params, the session, settings for
a url to redirect to.

	
handle_no_user(request, access, token, user_data)

	Not implemented.

	
handle_unauthenticated_user(request, access, token, user_data)

	Not implemented.

	
identifier_from_data(data)

	Concatenates a sluggified facebook name and user id

	
class la_facebook.callbacks.default.DefaultFacebookCallback

	Provides the default implementation.

	
fetch_user_data(self, request, access, token):

	Uses the authorized token and makes an API call to Facebook to retrieve the
user graph data.

	
lookup_user(self, request, access, user_data):

	Based on the Facebook user ID in the :param user_data:, will attempt to
lookup a an associated Django user. If one is not found, returns None.

	
persist(self, user, token, user_data):

	Creates or updates the user association object, and if available updates
the Django user’s email from the Facebook user’s data.

	
handle_no_user(self, request, access, token, user_data):

	The default implementation simply returns create_user().

	
login_user(self, request, user):

	The default implementation assumes Django’s model backend, and will log the
user in via that backend’s login method.

	
handle_unauthenticated_user(self, request, user, access, token, user_data):

	Given a valid user, the user is first logged in, and then their Facebook
data is created or updated through persist. Finally the session’s
expiration is set to match the expiration of the Facebook auth token.

	
update_profile_from_graph(self, request, access, token, profile):

	Given a profile object, will try to update any fields whose names match the
Facebook usergraph object.

	
create_profile(self, request, access, token, user):

	if AUTH_PROFILE_MODULE is set, will attempt to create and then update
a profile object for the given user.

	
create_user(self, request, access, token, user_data):

	If the user does not already exist, creates a user, a profile if available,
and logs the user in.

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Running The Test Project

	Make sure you have Django 1.2 or greater and oauth2 at 1.5.163 or greater installed

	Change directory to la_facebook/test_project

	python manage.py syncdb

	python manage.py runserver localhost:8000

	Open a browser and point to that URL

	Manually do the tests via your browser

Logging

By default the project will print debug level logging info both to stdout and
to a log file located at /tmp/la_facebook.log.

Test Coverage

The test project supports coverage via django-coverage. To enable it you will need on your python path:

coverage==3.4
django-coverage==1.1.1

To run coverage at the command-line:

python manage.py test_coverage la_facebook

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Background

This documents provides a quick overview of the events involved in
authenticating a user against facebook.

Facebook has had various authentication methods in the past (Facebook Connect),
but has currently standardized on using OAuth 2 Protocol [http://tools.ietf.org/pdf/draft-ietf-oauth-v2-12.pdf].

Facebook’s own documentation [http://developers.facebook.com/docs/authentication] does a reasonable job of
explaining the process, but it is summarized here. Facebook offers two
workflows for user authentication, client (javascript) based, and server side.
This project aims to provide a Python based, server side option.

There are three parts to Facebook’s authentication:

	user authentication (ensures that the user is who they say they are)

	app authorization (ensures that the user knows exactly what data and capabilities they are providing to your site)

	app authentication (ensures that the user is giving their information to your app and not someone else)

Facebook will only authenticate a user in relation to a specific app, there is
no “just authorize the user” option. In our case, the “app” that is
authenticated is your entire Django project or site, not a specific Django app.
For Facebook to associate your site with the authentication, you will need an
app ID from Facebook’s Developer app [http://www.facebook.com/developers],
which is placed in your Django settings file.

A user is authenticated to facebook, and your app in one step. The first time
this happens, the user will be prompted to approve the level of access you are
asking for. By default and at a minimum this includes the basic info that is
publicly available about the user on Facebook. (for additional permissions, see
the documentation for settings). The permissions approved will be global to all
your Django apps in your Django project.

Once your site is authorized by Facebook, an authorization token is stored in
a model associated with a Django user (which by default is created if needed).
That user that will then be the authenticated user for subsequent requests
(request.user).

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Goals

Security is HARD.
Security is DANGEROUS.
Doing authentication via a third-party JavaScript library is STUPID.

Yet authentication via Facebook’s JavaScript library is all over the place.

The better way would be to do authentication via Facebook-flavored OAUTH on the backend. With a well documented, testable project complete with working code examples. The working code examples should be in a dirt simple test project. The test project allows a developer to quickly analyze why facebook auth is failing without the complications of working in their entire system stack.

Our goals:

	Good documentation that will build on readthedocs.org.

	Proper logging for debug and intrusion analysis

	Working test projects.

	Working tests

	Formal releases on PyPI

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

Credits

django-la-facebook team

	Alexandros Bantis

	Daniel Greenfeld

	David Peters

	Jacob Burch

	Preston Holmes

django-oauth-access team

A lot of the core code of this project was liberally lifted from django-oauth-access. We want to extend all gratitude and thanks to the guys who made that excellent project.

	Brian Rosner

	Patrick Altman

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-la-facebook 0.1.beta documentation

TODO

Code

	User name determination rules

	more examples of callbacks

Docs

	Core readme

	docs/usage.txt (finish)

	access

	callbacks

	exceptions

	our settings

	views

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-la-facebook 0.1.beta documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 la_facebook	

 	
 	
 la_facebook.callbacks.default	

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-la-facebook 0.1.beta documentation

Index

 _
 | B
 | D
 | F
 | H
 | I
 | L
 | R

_

 	

 	__call__()

B

 	

 	BaseFacebookCallback (built-in class)

D

 	

 	DefaultFacebookCallback (class in la_facebook.callbacks.default)

F

 	

 	fetch_user_data()

H

 	

 	handle_no_user()

 	

 	handle_unauthenticated_user()

I

 	

 	identifier_from_data()

L

 	

 	la_facebook.callbacks.default (module)

 	

 	lookup_user()

R

 	

 	redirect_url()

 Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-la-facebook 0.1.beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Daniel Greenfeld and contributors.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

