

 Navigation

 	
 index

 	
 next |

 	django-dbbackup 3.0.2 documentation

Django Database Backup

This Django application provides management commands to help backup and
restore your project database and media files with various storages such as
Amazon S3, DropBox or local file system.

It is made for:

	Ensure yours backup with GPG signature and encryption

	Archive with compression

	Deal easily with remote archiving

	Use Crontab or Celery to setup automated backups.

	Great to keep your development database up to date.

Warning

Django DBBackup version 3 make great changements see
Upgrade documentation to help to up to date.

Contents:

	Installation

	Configuration

	Database settings

	Storage settings

	Commands

	Integration tutorials

	Contributing guide

	Upgrade from 2.5.x

Compatibility

As we want to ensure a lot of platforms will be able to save data before
upgrading, Django-DBBackup supports PyPy, Python 2.7, 3.2 to 3.5 and Django
greater than 1.6.

Other Resources

	GitHub repository [https://github.com/django-dbbackup/django-dbbackup]

	PyPi project [https://pypi.python.org/pypi/django-dbbackup/]

	Read The Docs [http://django-dbbackup.readthedocs.org/]

	GitHub issues [https://github.com/django-dbbackup/django-dbbackup/issues]

	GitHub pull requests [https://github.com/django-dbbackup/django-dbbackup/pulls]

	Travis CI [https://travis-ci.org/django-dbbackup/django-dbbackup]

	Coveralls [https://coveralls.io/github/django-dbbackup/django-dbbackup]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Installation

Installing on your system

Getting the latest stable release

pip install django-dbbackup

Getting the latest release from trunk

In general, you should not be downloading and installing stuff
directly off repositories – especially not if you are backing
up sensitive data.

Security is important, bypassing PyPi repositories is a bad habbit,
because it will bypass the fragile key signatures authentication
that are at least present when using PyPi repositories.

pip install -e git+https://github.com/mjs7231/django-dbbackup.git#egg=django-dbbackup

Add it in your project

In your settings.py, make sure you have the following things:

INSTALLED_APPS = (
 ...
 'dbbackup', # django-dbbackup
)

DBBACKUP_STORAGE = 'dbbackup.storage.filesystem_storage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/var/backups'}

Create the backup directory:

mkdir /var/backups

Note

This configuration uses filesystem storage, but you can use any storage
supported by Django API. See storage for more information about it.

Testing that everything worked

Now, you should be able to create your first backup by running:

$ python manage.py dbbackup

If your database was called default which is the normal Django behaviour
of a single-database project, you should now see a new file in your backup
directory.

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Configuration

General settings

DBBACKUP_DATABASES

List of key entries for settings.DATABASES which shall be used to
connect and create database backups.

Default: list(settings.DATABASES.keys()) (keys of all entries listed)

DBBACKUP_TMP_DIR

Directory to be used for temporary files.

Default: tempfile.gettempdir()

DBBACKUP_TMP_FILE_MAX_SIZE

Maximum size in bytes for file handling in memory before write a temporary
file on DBBACKUP_TMP_DIR.

Default: 10*1024*1024

DBBACKUP_CLEANUP_KEEP and DBBACKUP_CLEANUP_KEEP_MEDIA

When issueing dbbackup and mediabackup, old backup files are
looked for and removed.

Default: 10 (backups)

DBBACKUP_DATE_FORMAT

Date format to use for naming files. It must contain only alphanumerical
characters, '_', '-' or '%'.

Default: '%Y-%m-%d-%H%M%S'

DBBACKUP_FILENAME_TEMPLATE

The template to use when generating the backup filename. By default this is
'{databasename}-{servername}-{datetime}.{extension}'. This setting can
also be made a function which takes the following keyword arguments:

def backup_filename(databasename, servername, datetime, extension):
 pass

DBBACKUP_FILENAME_TEMPLATE = backup_filename

This allows you to modify the entire format of the filename, for example, if
you want to take advantage of Amazon S3’s automatic expiry feature, you need
to prefix your backups differently based on when you want them to expire.

{datetime} is rendered with DBBACKUP_DATE_FORMAT.

DBBACKUP_MEDIA_FILENAME_TEMPLATE

Same as DBBACKUP_FILENAME_TEMPLATE but for media files backups.

DBBACKUP_SEND_EMAIL

Controls whether or not django-dbbackup sends an error email when an uncaught
exception is received.

Default: True

DBBACKUP_HOSTNAME

Hostname needed by django-dbbackup’s uncaught exception email sender for
well described error reporting. If you are using ALLOWED_HOSTS you should
set DBBACKUP_HOSTNAME to any host from ALLOWED_HOSTS setting. Otherwise
django-dbbackup can not send email to the SERVER_EMAIL.

Default: socket.gethostname()

Encrypting your backups

Considering that you might be putting secured data on external servers and
perhaps untrusted servers where it gets forgotten over time, it’s always a
good idea to encrypt backups.

Just remember to keep the encryption keys safe, too!

PGP

You can encrypt a backup with the --encrypt option. The backup is done
using GPG.

python manage.py dbbackup --encrypt

...or when restoring from an encrypted backup:

python manage.py dbrestore --decrypt

Requirements:

	Install the python package python-gnupg:
pip install python-gnupg.

	You need GPG key. (GPG manual)

	Set the setting DBBACKUP_GPG_RECIPIENT to the name of the GPG key.

DBBACKUP_GPG_ALWAYS_TRUST

The encryption of the backup file fails if GPG does not trust the public
encryption key. The solution is to set the option ‘trust-model’ to ‘always’.
By default this value is False. Set this to True to enable this option.

DBBACKUP_GPG_RECIPIENT

The name of the key that is used for encryption. This setting is only used
when making a backup with the --encrypt or --decrypt option.

Database configuration

By default, DBBackup uses parameters from settings.DATABASES but you can
make an independant configuration, see Database settings

Storage configuration

You have to use a storage for your backups, see Storage settings for more.

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Database settings

The following databases are supported by this application:

	SQLite

	MySQL

	PostgreSQL

	MongoDB

	And the ones you will implement

By default, DBBackup will try to use your database settings in DATABASES
for handle database, but some databases required custom options and you could
want to use different parameters for backup. That why we included a
DBBACKUP_CONNECTORS setting, it act like the DATABASES one:

DBBACKUP_CONNECTORS = {
 'default': {
 'USER': 'backupuser',
 'PASSWORD': 'backuppassword',
 'HOST': 'replica-for-backup'
 }
}

This configuration will allow to use a replica with different host and user,
which is a great pratice if you don’t want to overload your main database.

DBBackup uses Connectors for create and restore backups, below you’ll see
specific parameters for the built-in ones.

Common

All connectors have the following parameters:

CONNECTOR

Absolute path to a connector class by default it is:

	dbbackup.db.sqlite.SqliteConnector for 'django.db.backends.sqlite3'

	dbbackup.db.mysql.MysqlDumpConnector for django.db.backends.mysql

	dbbackup.db.postgresql.PgDumpConnector for django.db.backends.postgresql

	dbbackup.db.postgresql.PgDumpGisConnector for django.contrib.gis.db.backends.postgis

	dbbackup.db.mongodb.MongoDumpConnector for django_mongodb_engine

All supported built-in connectors are listed below.

EXCLUDE

Tables to exclude from backup as list. This option can be unavailable for
connectors making snapshots.

EXTENSION

Extension of backup file name, default 'dump'.

Command connectors

Some connectors use command line tools as dump engine, mysqldump for
example. This kind of tools has common attributes:

DUMP_CMD

Path to the command used for create a backup, default is the appropriate
command supposed to be in your PATH, for example: 'mysqldump' for MySQL.

This setting is useful only for connectors using command line tools (children
of dbbackup.db.base.BaseCommandDBConnector)

RESTORE_CMD

Same as DUMP_CMD but for restoring action.

DUMP_PREFIX and RESTORE_PREFIX

String to include as prefix of dump or restore command. It will be add with
a space between launched command and its prefix.

DUMP_SUFFIX and RESTORE_PREFIX

String to include as suffix of dump or restore command. It will be add with
a space between launched command and its suffix.

ENV, DUMP_ENV and RESTORE_ENV

Environment variables used during command running, default are {}. ENV
is used for every command, DUMP_ENV and RESTORE_ENV override the
values defined in ENV during the dedicated commands.

SQLite

SQLite uses by default dbbackup.db.sqlite.SqliteConnector.

SqliteConnector

It is in pure Python and copy the behavior of .dump command for create a
SQL dump.

SqliteCPConnector

You can also use dbbackup.db.sqlite.SqliteCPConnector for make simple
raw copy of your database file, like a snapshot.

In-memory database aren’t dumpable with it.

MySQL

MySQL uses by default dbbackup.db.mysql.MysqlDumpConnector. It uses
mysqldump and mysql for its job.

PostgreSQL

Postgres uses by default dbbackup.db.postgres.PgDumpConnector. It
allows PostGIS usage, and uses pg_dump and pqsl for its job.
It can also use psql for launch administration command.

SINGLE_TRANSACTION

When doing a restore, wrap everything in a single transaction, so that errors
cause a rollback.

Default: True

DROP

Include tables dropping statements in dump. Default: True

PostGis

Set in dbbackup.db.postgres.PgDumpGisConnector, it does the same than
PostgreSQL but launch CREATE EXTENSION IF NOT EXISTS postgis; before
restore database.

PSQL_CMD

Path to psql command used for administration tasks like enable PostGIS
for example, default is psql.

PASSWORD

If you fill this settings PGPASSWORD environment variable will be used
with every commands. For security reason, we advise to use .pgpass file.

ADMIN_USER

Username used for launch action with privileges, extension creation for
example.

ADMIN_PASSWORD

Password used for launch action with privileges, extension creation for
example.

MongoDB

MongoDB uses by default dbbackup.db.mongodb.MongoDumpConnector. it
uses mongodump and mongorestore for its job.

OBJECT_CHECK

Validate documents before insert in database (option --objcheck in command line), default is True.

DROP

Replace objects that are already in database, (option --drop in command line), default is True.

Custom connector

Create your connector is easy, create a children class from
dbbackup.db.base.BaseDBConnector and create create_dump and
restore_dump. If your connector uses a command line tool heritate from
dbbackup.db.base.BaseCommandDBConnector

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Storage settings

One of the most helpful feature of django-dbbackup is the avaibility to store
and retrieve backups from a local or remote storage. This functionality is
mainly based on Django Storage API and extend its possibilities.

You can choose your backup storage backend by set settings.DBBACKUP_STORAGE,
it must be a full path of a storage class. For example:
django.core.files.storage.FileSystemStorage for use file system storage.
Below, we’ll list some of the available solutions and their options.

Storage’s option are gathered in settings.DBBACKUP_STORAGE_OPTIONS which
is a dictionary of keywords representing how to configure it.

Warning

Do not configure backup storage with the same configuration than your media
files, you’ll risk to share backups inside public directories.

DBBackup uses by default the built-in file system storage [https://docs.djangoproject.com/en/1.8/ref/files/storage/#the-filesystemstorage-class] to manage files on
a local directory. Feel free to use any Django storage, you can find a variety
of them at Django Packages [https://djangopackages.org/grids/g/storage-backends/].

Note

Storing backups to local disk may also be useful for Dropbox if you
already have the offical Dropbox client installed on your system.

File system storage

Setup

To store your backups on the local file system, simply setup the required
settings below.

DBBACKUP_STORAGE = 'django.core.files.storage.FileSystemStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/my/backup/dir/'}

Available settings

location

Absolute path to the directory that will hold the files.

base_url

URL that serves the files stored at this location.

file_permissions_mode

The file system permissions that the file will receive when it is saved.

directory_permissions_mode

The file system permissions that the directory will receive when it is saved.

See FileSystemStorage’s documentation [https://docs.djangoproject.com/en/1.9/ref/files/storage/#the-filesystemstorage-class] for a full list of available settings.

Amazon S3

Our S3 backend uses Django Storages which uses boto [http://docs.pythonboto.org/en/latest/#].

Setup

In order to backup to Amazon S3, you’ll first need to create an Amazon
Webservices Account and setup your Amazon S3 bucket. Once that is
complete, you can follow the required setup below.

pip install boto django-storages

Add the following to your project’s settings:

DBBACKUP_STORAGE = 'storages.backends.s3boto.S3BotoStorage'
DBBACKUP_STORAGE_OPTIONS = {
 'access_key': 'my_id',
 'secret_key': 'my_secret',
 'bucket_name': 'my_bucket_name'
}

Available settings

Note

More settings are available see official documentation [https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html] for get more about.

access_key - Required

Your AWS access key as string. This can be found on your Amazon Account
Security Credentials page [https://console.aws.amazon.com/iam/home#security_credential].

secret_key - Required

Your Amazon Web Services secret access key, as a string.

bucket_name - Required

Your Amazon Web Services storage bucket name, as a string. This directory must
exist before attempting to create your first backup.

host - Default: 's3.amazonaws.com'
(boto.s3.connection.S3Connection.DefaultHost)

Specify the Amazon domain to use when transferring the generated backup files.
For example, this can be set to 's3-eu-west-1.amazonaws.com'.

use_ssl - Default: True

default_acl - Required

See Django Storage S3 storage official documentation [http://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html] for more informations
about available settings.

Dropbox

In order to backup to Dropbox, you’ll first need to create a Dropbox account
and set it up to communicate with the Django-DBBackup application. Don’t
worry, all instructions are below.

Setup your Dropbox account

	Login to Dropbox and navigate to Developers » MyApps.
https://www.dropbox.com/developers/start/setup#python

	Click the button to create a new app and name it whatever you like.
For reference, I named mine ‘Website Backups’.

	After your app is created, note the options button and more
importantly the ‘App Key’ and ‘App Secret’ values inside. You’ll need
those later.

Setup your Django project

pip install dropbox django-storages

...And make sure you have the following required project settings:

DBBACKUP_STORAGE = 'storages.backends.dropbox.DropBoxStorage
DBBACKUP_STORAGE_OPTIONS = {
 'oauth2_access_token': 'my_token',
}

Available settings

Note

See django-storages dropbox official documentation [https://django-storages.readthedocs.io/en/latest/backends/dropbox.html] for get more details about.

oauth2_access_token - Required

Your OAuth access token

root_path

Jail storage to this directory

FTP

To store your database backups on a remote filesystem via [a]FTP, simply
setup the required settings below.

Setup

pip install django-storages

Warning

This storage doesn’t use private connection for communcation, don’t use it
if you’re not sure about the link between client and server.

DBBACKUP_STORAGE = 'storages.backends.ftp.FTPStorage
DBBACKUP_STORAGE_OPTIONS = {
 'location': 'ftp://user:pass@server:21'
}

Settings

location - Required

A FTP URI with optional user, password and port. example: 'ftp://anonymous@myftp.net'

base_url

URL that serves with HTTP(S) the files stored at this location.

Setup

We use FTP backend from Django-Storages (again).

pip install django-storages

Here a simple configuration:

DBBACKUP_STORAGE = 'storages.backends.ftp.FTPStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': ftp://myftpserver/}

SFTP

To store your database backups on a remote filesystem via SFTP, simply
setup the required settings below.

Setup

This backend is from Django-Storages with paramiko [http://www.paramiko.org/] under.

pip install paramiko django-storages

The next configuration admit SSH server grant a the local user:

DBBACKUP_STORAGE = 'storages.backends.sftpstorage.SFTPStorage'
DBBACKUP_STORAGE_OPTIONS = {'host': 'myserver'}

Available settings

host - Required

Hostname or adress of the SSH server

root_path - Default ~/

Jail storage to this directory

params - Default {}

Arugment used by meth:paramikor.SSHClient.connect().
See paramiko SSHClient.connect() documentation [http://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect] for details.

interactive - Default False

A boolean indicating whether to prompt for a password if the connection cannot
be made using keys, and there is not already a password in params.

file_mode

UID of the account that should be set as owner of the files on the remote.

dir_mode

GID of the group that should be set on the files on the remote host.

known_host_file

Absolute path of know host file, if it isn’t set "~/.ssh/known_hosts" will be used.

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Commands

The primary usage of DBBackup is made with command line tools. By default,
commands will create backups and upload to your defined storage or download
and restore the latest.

Commands provide arguments for compress/uncompress and encrypt/decrypt.

dbbackup

Backup of database.

$./manage.py dbbackup
Backing Up Database: /tmp/tmp.x0kN9sYSqk
Backup size: 3.3 KiB
Writing file to tmp-zuluvm-2016-07-29-100954.dump

Help

usage: manage.py dbbackup [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--noinput] [-q] [-c]
 [-d DATABASE] [-s SERVERNAME] [-z] [-e]
 [-o OUTPUT_FILENAME] [-O OUTPUT_PATH]

Backup a database, encrypt and/or compress and write to storage.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --noinput Tells Django to NOT prompt the user for input of any
 kind.
 -q, --quiet Tells Django to NOT output other text than errors.
 -c, --clean Clean up old backup files
 -d DATABASE, --database DATABASE
 Database to backup (default: everything)
 -s SERVERNAME, --servername SERVERNAME
 Specify server name to include in backup filename
 -z, --compress Compress the backup files
 -e, --encrypt Encrypt the backup files
 -o OUTPUT_FILENAME, --output-filename OUTPUT_FILENAME
 Specify filename on storage
 -O OUTPUT_PATH, --output-path OUTPUT_PATH
 Specify where to store on local filesystem

dbrestore

Restore a database.

Restoring backup for database: /tmp/tmp.x0kN9sYSqk
Finding latest backup
Restoring: tmp-zuluvm-2016-07-29-100954.dump
Restore tempfile created: 3.3 KiB

Help

usage: manage.py dbrestore [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--noinput] [-q]
 [-d DATABASE] [-i INPUT_FILENAME] [-I INPUT_PATH]
 [-s SERVERNAME] [-c] [-p PASSPHRASE] [-z]

Restore a database backup from storage, encrypted and/or compressed.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --noinput Tells Django to NOT prompt the user for input of any
 kind.
 -q, --quiet Tells Django to NOT output other text than errors.
 -d DATABASE, --database DATABASE
 Database to restore
 -i INPUT_FILENAME, --input-filename INPUT_FILENAME
 Specify filename to backup from
 -I INPUT_PATH, --input-path INPUT_PATH
 Specify path on local filesystem to backup from
 -s SERVERNAME, --servername SERVERNAME
 Use a different servername backup
 -c, --decrypt Decrypt data before restoring
 -p PASSPHRASE, --passphrase PASSPHRASE
 Passphrase for decrypt file
 -z, --uncompress Uncompress gzip data before restoring

mediabackup

Backup media files, gather all in a tarball and encrypt or compress.

$./manage.py mediabackup
Backup size: 10.0 KiB
Writing file to zuluvm-2016-07-04-081612.tar

Help

usage: manage.py mediabackup [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--noinput] [-q] [-c]
 [-s SERVERNAME] [-z] [-e] [-o OUTPUT_FILENAME]
 [-O OUTPUT_PATH]

Backup media files, gather all in a tarball and encrypt or compress.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --noinput Tells Django to NOT prompt the user for input of any
 kind.
 -q, --quiet Tells Django to NOT output other text than errors.
 -c, --clean Clean up old backup files
 -s SERVERNAME, --servername SERVERNAME
 Specify server name to include in backup filename
 -z, --compress Do not compress the archive
 -e, --encrypt Encrypt the backup files
 -o OUTPUT_FILENAME, --output-filename OUTPUT_FILENAME
 Specify filename on storage
 -O OUTPUT_PATH, --output-path OUTPUT_PATH
 Specify where to store on local filesystem

mediarestore

Restore media files, extract files from archive and put into media storage.

$./manage.py mediarestore
Restoring backup for media files
Finding latest backup
Reading file zuluvm-2016-07-04-082551.tar
Restoring: zuluvm-2016-07-04-082551.tar
Backup size: 10.0 KiB
Are you sure you want to continue? [Y/n]
2 file(s) restored

Help

usage: manage.py mediarestore [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--noinput] [-q]
 [-i INPUT_FILENAME] [-I INPUT_PATH] [-e]
 [-p PASSPHRASE] [-z] [-r]

Restore a media backup from storage, encrypted and/or compressed.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --noinput Tells Django to NOT prompt the user for input of any
 kind.
 -q, --quiet Tells Django to NOT output other text than errors.
 -i INPUT_FILENAME, --input-filename INPUT_FILENAME
 Specify filename to backup from
 -I INPUT_PATH, --input-path INPUT_PATH
 Specify path on local filesystem to backup from
 -e, --decrypt Decrypt data before restoring
 -p PASSPHRASE, --passphrase PASSPHRASE
 Passphrase for decrypt file
 -z, --uncompress Uncompress gzip data before restoring
 -r, --replace Replace existing files

listbackups

This command helps to list backups filtered by type ('media' or 'db'),
by compression or encryption.

Help

usage: manage.py listbackups [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--noinput] [-q]
 [-d DATABASE] [-z] [-Z] [-e] [-E]
 [-c CONTENT_TYPE]

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --noinput Tells Django to NOT prompt the user for input of any
 kind.
 -q, --quiet Tells Django to NOT output other text than errors.
 -d DATABASE, --database DATABASE
 Filter by database name
 -z, --compressed Exclude non-compressed
 -Z, --not-compressed Exclude compressed
 -e, --encrypted Exclude non-encrypted
 -E, --not-encrypted Exclude encrypted
 -c CONTENT_TYPE, --content-type CONTENT_TYPE
 Filter by content type 'db' or 'media'

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Integration tutorials

Note

If you have a custom and/or interesting way of use DBBackup, do not
hesitate to make us a pull request.

Django-cron

Example of cron job with django-cron [https://github.com/Tivix/django-cron] with file system storage:

import os
from django.core import management
from django.conf import settings
from django_cron import CronJobBase, Schedule

class Backup(CronJobBase):
 RUN_AT_TIMES = ['6:00', '18:00']
 schedule = Schedule(run_at_times=RUN_AT_TIMES)
 code = 'my_app.Backup'

 def do(self):
 management.call_command('dbbackup')

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Contributing guide

Dbbackup is a free license software where all help are welcomed. This
documentation aims to help users or developers to bring their contributions
to this project.

Submit a bug, issue or enhancement

All communication are made with GitHub issues [https://github.com/django-dbbackup/django-dbbackup/issues]. Do not hesitate to open a
issue if:

	You have an improvement idea

	You found a bug

	You’ve got a question

	More generaly something seems wrong for you

Make a patch

We use GitHub pull requests [https://github.com/django-dbbackup/django-dbbackup/pulls] for manage all patches. For a better handling
of requests we advise you to:

	Fork the project and make a new branch

	Make your changes with tests if possible and documentation if needed

	Push changes to your fork repository and test it with Travis

	If succeed, open a pull request

	Upset us until we give you an answer

Note

We advise you to launch it with Python 2 & 3 before push and try it in
Travis. DBBackup uses a lot of file operations, so breaks between Python
versions are easy.

Test environment

We provides tools for helps developers to quickly test and dev on DBBackup.
There are 2 majors scripts:

	runtests.py: Unit tests launcher and equivalent of manage.py in
the test project.

	functional.sh: Shell script that use runtests.py to create a
database backup and restore it, the same with media, and test if they are
restored.

runtests.py

You can test code in local machine with the runtests.py script:

python runtests.py

But if argument are provided, it acts as manage.py so you can simply
launch other command to test deeply, example:

Enter in Python shell
python runtests.py shell

Launch a particular test module
python runtests.py test dbbackup.tests.test_utils

All tests are stored in dbbackup.tests.

functional.sh

It tests at the higher level if backup/restore mechanism is alright. It
becomes powerful because of the configuration you can give to it. See the next
chapter for explanation about it.

Configuration

DBBackup contains a test Django project at dbbackup.tests and its
settings module. This configuration takes care of the following
environment variables:

DATABASE_URL - Default: 'sqlite:///%s' % tempfile.mktemp()

A URL representing the used database, see DJ-Database-URL [https://github.com/kennethreitz/dj-database-url] for all the
available format.

MEDIA_ROOT - Default= tempfile.mkdtemp()

Django’s MEDIA_ROOT, useful if you want test media backup from filesystem

STORAGE - Default: dbbackup.tests.utils.FakeStorage

Storage used for backups

STORAGE_OPTIONS

Options for instanciate the chosen storage. It must be in format
"key1=foo,key2=bar" and will be convert into a dict.

Online CI

We use Travis [https://travis-ci.org/django-dbbackup/django-dbbackup] for tests Dbbackup with a matrix of components’ version: Several version of Django and several versions of Python including 2, 3 and PyPy.

 [https://travis-ci.org/django-dbbackup/django-dbbackup]Code coverage is ensured with Coveralls [https://coveralls.io/github/django-dbbackup/django-dbbackup] and has not yet minimum coverage limit.

[image: https://coveralls.io/repos/django-dbbackup/django-dbbackup/badge.svg?branch=master&service=github]
 [https://coveralls.io/github/django-dbbackup/django-dbbackup?branch=master]Code health is checked with Landscape [https://landscape.io/github/django-dbbackup/django-dbbackup/]

[image: Code Health]
 [https://landscape.io/github/django-dbbackup/django-dbbackup/master]

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	django-dbbackup 3.0.2 documentation

Upgrade from 2.5.x

Settings

The following settings are now useless, you can remove them:

	DBBACKUP_BACKUP_ENVIRONMENT: Must be set in CONNECTORS['dbname']['env']

	DBBACKUP_RESTORE_ENVIRONMENT: Same than BACKUP_ENVIRONMENT

	DBBACKUP_FORCE_ENGINE

	DBBACKUP_READ_FILE

	DBBACKUP_WRITE_FILE

	DBBACKUP_BACKUP_DIRECTORY: Was used by Filesystem storage, use
location parameter

	DBBACKUP_SQLITE_BACKUP_COMMANDS: Was used by SQLite database, use
CONNECTORS‘s parameters.

	DBBACKUP_SQLITE_RESTORE_COMMANDS: Same than SQLITE_BACKUP_COMMANDS

	DBBACKUP_MYSQL_BACKUP_COMMANDS: Same than SQLITE_BACKUP_COMMANDS but
for MySQL

	DBBACKUP_MYSQL_RESTORE_COMMANDS: Same than MYSQL_BACKUP_COMMANDS

	DBBACKUP_POSTGRESQL_BACKUP_COMMANDS Same than MYSQL_BACKUP_COMMANDS
but for PostgreSQL

	DBBACKUP_POSTGRESQL_RESTORE_COMMANDS: Same than
DBBACKUP_POSTGRESQL_BACKUP_COMMANDS: Was used for activate PostGIS, use
PgDumpGisConnector connector for enable this option

	DBBACKUP_POSTGRESQL_RESTORE_SINGLE_TRANSACTION: Must be set in
CONNTECTORS['dbname']['single_transaction']

	DBBACKUP_BUILTIN_STORAGE

Commands

dbrestore

--backup-extension has been removed, DBBackup should automaticaly
know the appropriate file.

Listing from this command, --list, has been removed in favor of
listbackups command.

mediabackup

mediabackup‘s --no-compress option has been replaced by --compress
for keep consistency with other commands.

Now this command can backup remote storage, not only filesystem’s
DBBACKUP_BACKUP_DIRECTORY.

mediarestore

You are now able to restore your media files backups. Unfortunately you’ll not
be able to restore old backup files.

Database connector

We made a total refactoring of DBCommands system. It is now easier to use,
configure and implement a custom one.

All database configuration for backups are defined in settings
DBBACKUP_CONNECTORS. By default, the DATABASES
parameters are used but can be overrided in this new constant.

This dictionnary stores configuration about how backups are made,
what is the path of backup command (/bin/mysqldump), add suffix or prefix
to the command line, environment variable, etc.

The system stay pretty simple and can detect alone how to backup your DB.
If it can’t just submit us what is your Django DB Engine and we’ll try to fix
it.

SQLite

Previously backup was made by copy the database file, now you have the choice
between make a raw snaphot or make a real SQL dump. It can be useful to exclude
tables or don’t overwrite data.

If you want to restore your old backups choose
dbbackup.db.sqlite.SqliteCPConnector.

Storage engine

All storage engines has been removed from DBBackup except the basic. Now this
object will use Django storages as driver.

settings.DBBACKUP_STORAGE must now be a full path to a Django storage, for
example 'django.core.files.storage.FileSystemStorage'.
settings.DBBACKUP_STORAGE_OPTIONS hold its function of gather storage’s
options.

If you was using a removed storage backend, don’t worry, we ensure you’ll
have a solution by test and write equivalent in Django-Storages.

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	django-dbbackup 3.0.2 documentation

Index

 Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		django-dbbackup 3.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Michael Shepanski.
 Created using Sphinx 1.3.1.

_static/file.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

