

 Navigation

 	
 index

 	
 next |

 	cutadapt 1.9.1 documentation

 [image: https://travis-ci.org/marcelm/cutadapt.svg?branch=master]
 [https://travis-ci.org/marcelm/cutadapt][image: https://img.shields.io/pypi/v/cutadapt.svg?branch=master]
 [https://pypi.python.org/pypi/cutadapt]
cutadapt

Cutadapt finds and removes adapter sequences, primers, poly-A tails and other
types of unwanted sequence from your high-throughput sequencing reads.

Cleaning your data in this way is often required: Reads from small-RNA
sequencing contain the 3’ sequencing adapter because the read is longer than
the molecule that is sequenced. Amplicon reads start with a primer sequence.
Poly-A tails are useful for pulling out RNA from your sample, but often you
don’t want them to be in your reads.

Cutadapt helps with these trimming tasks by finding the adapter or primer
sequences in an error-tolerant way. It can also modify and filter reads in
various ways. Adapter sequences can contain IUPAC wildcard characters. Also,
paired-end reads and even colorspace data is supported. If you want, you can
also just demultiplex your input data, without removing adapter sequences at all.

Cutadapt comes with an extensive suite of automated tests and is available under
the terms of the MIT license.

If you use cutadapt, please cite
DOI:10.14806/ej.17.1.200 [http://dx.doi.org/10.14806/ej.17.1.200] .

Links

	Documentation [https://cutadapt.readthedocs.org/]

	Source code [https://github.com/marcelm/cutadapt/]

	Report an issue [https://github.com/marcelm/cutadapt/issues]

	Project page on PyPI (Python package index) [https://pypi.python.org/pypi/cutadapt/]

	Follow @marcelm_ on Twitter [https://twitter.com/marcelm_]

	Wrapper for the Galaxy platform [https://bitbucket.org/lance_parsons/cutadapt_galaxy_wrapper]

Table of contents

	Installation
	Quickstart

	Dependencies

	Installation

	System-wide installation

	Use without installation

	User guide
	Basic usage

	Read processing

	Removing adapters

	Modifying reads

	Filtering reads

	Trimming paired-end reads

	Multiple adapters

	Illumina TruSeq

	Dealing with N bases

	Bisulfite sequencing (RRBS)

	Cutadapt’s output

	The alignment algorithm

	Colorspace reads
	Ambiguity in colorspace

	Double-encoding, BWA and MAQ

	Colorspace examples

	Bowtie

	Recipes
	Forcing matches to be at the end of the read

	Removing more than one adapter

	Trimming poly-A tails

	Other things (unfinished)

	Ideas/To Do
	Specifying adapters

	Paired-end trimming

	Available/used letters for command-line options

	Changes
	v1.9.1

	v1.9

	v1.8.3

	v1.8.1

	v1.8

	v1.7

	v1.6

	v1.5

	v1.4

	v1.3

	v1.2

	v1.1

	v1.0

	v0.9.5

	v0.9.4

	v0.9.2

	v0.9

	v0.8

	v0.7

	v0.6

	v0.5

	v0.4

	v0.3

	v0.2

	v0.1

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cutadapt 1.9.1 documentation

Installation

Quickstart

The easiest way to install cutadapt is to use pip on the command line:

pip install --user --upgrade cutadapt

This will download the software from PyPI (the Python packaging
index) [https://pypi.python.org/pypi/cutadapt/], and
install the cutadapt binary into $HOME/.local/bin. If an old version of
cutadapt exists on your system, the --upgrade parameter is required in order
to install a newer version. You can then run the program like this:

~/.local/bin/cutadapt --help

If you want to avoid typing the full path, add the directory
$HOME/.local/bin to your $PATH environment variable.

If the above does not work, keep reading.

Dependencies

Cutadapt requires this software to be installed:

	One of Python 2.6, 2.7, 3.3 or 3.4. Python 2.7 is a bit faster than the other
versions.

	A C compiler.

Under Ubuntu, you may need to install the packages build-essential and
python-dev.

Installation

If you have already downloaded and unpacked the .tar.gz file, then
installation is done like this (replace “python” with “python3” to
install the Python 3 version):

python setup.py install --user

If you get an error message:

error: command 'gcc' failed with exit status 1

Then check the entire error message. If it says something about a missing Python.h
file, then you need to install the Python development packages. The
appropriate package is called python-dev in Ubuntu (or python3-dev
for Python 3).

System-wide installation

If you have root access, then you can install cutadapt system-wide by running:

sudo pip install cutadapt

This installs cutadapt into /usr/local/bin.

If you want to upgrade from an older version, use this command instead:

sudo pip install --upgrade cutadapt

Use without installation

Build the C extension module (you can try to skip this step – a
compiled version of the module for Linux x86_64 is already included):

python setup.py build_ext -i

Then simply run the script from where it is, similar to this:

bin/cutadapt --help

If you get any errors, first try to explicitly request a specific Python
version by running cutadapt like this:

python2.7 bin/cutadapt --help

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cutadapt 1.9.1 documentation

User guide

Basic usage

If you just want to trim a 3’ adapter, the basic command-line for cutadapt is:

cutadapt -a AACCGGTT -o output.fastq input.fastq

The sequence of the adapter is given with the -a option. Of course, you
need to replace AACCGGTT with your actual adapter sequence. Reads are read
from the input file input.fastq and written to the output file
output.fastq.

Cutadapt searches for the adapter in all reads and removes it when it finds it.
All reads that were present in the input file will also be present in the output
file, some of them trimmed, some of them not. Even reads that were trimmed
entirely (because the adapter was found in the very beginning) are output. All
of this can be changed with command-line options, explained further down.

A report is printed after cutadapt has finished processing the reads.

Input and output file formats

Input files for cutadapt need to be in one the these formats:

	FASTA (file name extensions: .fasta, .fa, .fna, .csfasta, .csfa)

	FASTQ (extensions: .fastq, .fq)

	A pair of a FASTA file and a .(cs)qual file

The latter format is (or was) used for colorspace data from the SOLiD
instruments.

The input file format is recognized from the file name extension (given in
parentheses in the list above). You can also explicitly specify which format
the input has by using the --format option.

The output format is the same as the input format, except for the FASTA/QUAL
pairs – those will always be converted to FASTQ. Also, cutadapt does not check
the output file name: If you input FASTQ data, but use -o output.fasta, then
the output file will actually be in FASTQ format.

Compressed files

Cutadapt supports compressed input and output files. Whether an input file
needs to be decompressed or an output file needs to be compressed is detected
automatically by inspecting the file name: If it ends in .gz, then gzip
compression is assumed. You can therefore run cutadapt like this and it works
as expected:

cutadapt -a AACCGGTT -o output.fastq.gz input.fastq.gz

All of cutadapt’s options that expect a file name support this.

Files compressed with bzip2 (.bz2) or xz (.xz) are also supported, but
only if the Python installation includes the proper modules. xz files require
Python 3.3 or later.

Standard input and output

If no output file is specified via the -o option, then the output is sent to
the standard output stream. Instead of the example command line from above, you
can therefore also write:

cutadapt -a AACCGGTT input.fastq > output.fastq

There is one difference in behavior if you use cutadapt without -o: The
report is sent to the standard error stream instead of standard output. You
can redirect it to a file like this:

cutadapt -a AACCGGTT input.fastq > output.fastq 2> report.txt

Wherever cutadapt expects a file name, you can also write a dash (-) in
order to specify that standard input or output should be used. For example:

tail -n 4 input.fastq | cutadapt -a AACCGGTT - > output.fastq

The tail -n 4 prints out only the last four lines of input.fastq, which
are then piped into cutadapt. Thus, cutadapt will work only on the last read in
the input file.

In most cases, you should probably use - at most once for an input file and
at most once for an output file, in order not to get mixed output.

You cannot combine - and gzip compression since cutadapt needs to know the
file name of the output or input file. if you want to have a gzip-compressed
output file, use -o with an explicit name.

One last “trick” is to use /dev/null as an output file name. This special
file discards everything you send into it. If you only want to see the
statistics output, for example, and do not care about the trimmed reads at all,
you could use something like this:

cutadapt -a AACCGGTT -o /dev/null input.fastq

Read processing

Cutadapt can do a lot more in addition to removing adapters. There are various
command-line options that make it possible to modify and filter reads and to
redirect them to various output files. Each read is processed in the following
way:

	Read modification options are applied. This includes
adapter removal,
quality trimming, read name modifications etc.

	Filtering options are applied, such as removal of too
short or untrimmed reads. Some of the filters also allow to redirect a read
to a separate output file.

	If the read has passed all the filters, it is written to the output file.

Removing adapters

Cutadapt supports trimming of multiple types of adapters:

	Adapter type
	Command-line option

	3’ adapter
	-a ADAPTER

	5’ adapter
	-g ADAPTER

	Anchored 3’ adapter
	-a ADAPTER$

	Anchored 5’ adapter
	-g ^ADAPTER

	5’ or 3’ (both possible)
	-b ADAPTER

Here is an illustration of the allowed adapter locations relative to the read
and depending on the adapter type:

By default, all adapters are searched error-tolerantly.
Adapter sequences may also contain the “N” wildcard
character.

In addition, it is possible to remove a fixed number of
bases from the beginning or end of each read, and to remove
low-quality bases (quality trimming) from the 3’ and 5’ ends.

3’ adapters

A 3’ adapter is a piece of DNA ligated to the 3’ end of the DNA fragment you
are interested in. The sequencer starts the sequencing process at the 5’ end of
the fragment and sequences into the adapter if the read is long enough.
The read that it outputs will then have a part of the adapter in the
end. Or, if the adapter was short and the read length quite long, then the
adapter will be somewhere within the read (followed by other bases).

For example, assume your fragment of interest is MYSEQUENCE and the adapter is
ADAPTER. Depending on the read length, you will get reads that look like this:

MYSEQUEN
MYSEQUENCEADAP
MYSEQUENCEADAPTER
MYSEQUENCEADAPTERSOMETHINGELSE

Use cutadapt’s -a ADAPTER option to remove this type of adapter. This will
be the result:

MYSEQUEN
MYSEQUENCE
MYSEQUENCE
MYSEQUENCE

As can be seen, cutadapt correctly deals with partial adapter matches, and also
with any trailing sequences after the adapter. Cutadapt deals with 3’ adapters
by removing the adapter itself and any sequence that may follow. If the sequence
starts with an adapter, like this:

ADAPTERSOMETHING

Then the sequence will be empty after trimming. By default, empty reads are kept
and will appear in the output.

5’ adapters

Note

Unless your adapter may also occur in a degraded form, you probably
want to use an anchored 5’ adapter, described in the next section.

A 5’ adapter is a piece of DNA ligated to the 5’ end of the DNA fragment of
interest. The adapter sequence is expected to appear at the start of the read,
but may be partially degraded. The sequence may also appear somewhere within
the read. In all cases, the adapter itself and the sequence preceding it is
removed.

Again, assume your fragment of interest is MYSEQUENCE and the adapter is
ADAPTER. The reads may look like this:

ADAPTERMYSEQUENCE
DAPTERMYSEQUENCE
TERMYSEQUENCE
SOMETHINGADAPTERMYSEQUENCE

All the above sequences are trimmed to MYSEQUENCE when you use -g ADAPTER.
As with 3’ adapters, the resulting read may have a length of zero when the
sequence ends with the adapter. For example, the read

SOMETHINGADAPTER

will be empty after trimming.

Anchored 5’ adapters

In many cases, the above behavior is not really what you want for trimming 5’
adapters. You may know, for example, that degradation does not occur and that
the adapter is also not expected to be within the read. Thus, you always expect
the read to look like the first example from above:

ADAPTERSOMETHING

If you want to trim only this type of adapter, use -g ^ADAPTER. The ^ is
supposed to indicate the the adapter is “anchored” at the beginning of the read.
In other words: The adapter is expected to be a prefix of the read. Note that
cases like these are also recognized:

ADAPTER
ADAPT
ADA

The read will simply be empty after trimming.

Be aware that cutadapt still searches for adapters error-tolerantly and, in
particular, allows insertions. So if your maximum error rate is sufficiently
high, even this read will be trimmed:

BADAPTERSOMETHING

The B in the beginnig is seen as an insertion. If you also want to prevent
this from happening, use the option --no-indels to disallow insertions and
deletions entirely.

Anchored 3’ adapters

It is also possible to anchor 3’ adapters to the end of the read. This is
rarely necessary, but if you have merged, for example, overlapping paired-end
reads, then it is useful. Add the $ character to the end of an
adapter sequence specified via -a in order to anchor the adapter to the
end of the read, such as -a ADAPTER$. The adapter will only be found if it
is a suffix of the read, but errors are still allowed as for 5’ adapters.
You can disable insertions and deletions with --no-indels.

Anchored 3’ adapters work as if you had reversed the sequence and used an
appropriate anchored 5’ adapter.

As an example, assume you have these reads:

MYSEQUENCEADAP
MYSEQUENCEADAPTER
MYSEQUENCEADAPTERSOMETHINGELSE

Using -a ADAPTER$ will result in:

MYSEQUENCEADAP
MYSEQUENCE
MYSEQUENCEADAPTERSOMETHINGELSE

Only the middle read is trimmed at all.

5’ or 3’ adapters

The last type of adapter is a combination of the 5’ and 3’ adapter. You can use
it when your adapter is ligated to the 5’ end for some reads and to the 3’ end
in other reads. This probably does not happen very often, and this adapter type
was in fact originally implemented because the library preparation in an
experiment did not work as it was supposed to.

For this type of adapter, the sequence is specified with -b ADAPTER (or use
the longer spelling --anywhere ADAPTER). The adapter may appear in the
beginning (even degraded), within the read, or at the end of the read (even
partially). The decision which part of the read to remove is made as follows: If
there is at least one base before the found adapter, then the adapter is
considered to be a 3’ adapter and the adapter itself and everything
following it is removed. Otherwise, the adapter is considered to be a 5’
adapter and it is removed from the read, but the sequence after it remains.

Here are some examples.

	Read before trimming
	Read after trimming
	Detected adapter type

	MYSEQUENCEADAPTERSOMETHING
	MYSEQUENCE
	3’ adapter

	MYSEQUENCEADAPTER
	MYSEQUENCE
	3’ adapter

	MYSEQUENCEADAP
	MYSEQUENCE
	3’ adapter

	MADAPTER
	M
	3’ adapter

	ADAPTERMYSEQUENCE
	MYSEQUENCE
	5’ adapter

	PTERMYSEQUENCE
	MYSEQUENCE
	5’ adapter

	TERMYSEQUENCE
	MYSEQUENCE
	5’ adapter

The -b option cannot be used with colorspace data.

Error tolerance

All searches for adapter sequences are error tolerant. Allowed errors are
mismatches, insertions and deletions. For example, if you search for the
adapter sequence ADAPTER and the error tolerance is set appropriately
(as explained below), then also ADABTER will be found (with 1 mismatch),
as well as ADAPTR (with 1 deletion), and also ADAPPTER (with 1
insertion).

The level of error tolerance is adjusted by specifying a maximum error rate,
which is 0.1 (=10%) by default. Use the -e option to set a different value.
To determine the number of allowed errors, the maximum error rate is multiplied
by the length of the match (and then rounded off).

What does that mean?
Assume you have a long adapter LONGADAPTER and it appears in full somewhere
within the read. The length of the match is 11 characters since the full adapter
has a length of 11, therefore 11·0.1=1.1 errors are allowed with the default
maximum error rate of 0.1. This is rounded off to 1 allowed error. So the
adapter will be found within this read:

SEQUENCELONGADUPTERSOMETHING

If the match is a bit shorter, however, the result is different:

SEQUENCELONGADUPT

Only 9 characters of the adapter match: LONGADAPT matches LONGADUPT
with one substitution. Therefore, only 9·0.1=0.9 errors are allowed. Since this
is rounded off to zero allowed errors, the adapter will not be found.

The number of errors allowed for a given adapter match length is also shown in
the report that cutadapt prints:

Sequence: 'LONGADAPTER'; Length: 11; Trimmed: 2 times.

No. of allowed errors:
0-9 bp: 0; 10-11 bp: 1

This tells us what we now already know: For match lengths of 0-9 bases, zero
errors are allowed and for matches of length 10-11 bases, one error is allowed.

The reason for this behavior is to ensure that short matches are not favored
unfairly. For example, assume the adapter has 40 bases and the maximum error
rate is 0.1, which means that four errors are allowed for full-length matches.
If four errors were allowed even for a short match such as one with 10 bases, this would
mean that the error rate for such a case is 40%, which is clearly not what was
desired.

Insertions and deletions can be disallowed by using the option
--no-indels.

See also the section on details of the alignment algorithm.

Reducing random matches

Since cutadapt allows partial matches between the read and the adapter sequence,
short matches can occur by chance, leading to erroneously trimmed bases. For
example, roughly 25% of all reads end with a base that is identical to the
first base of the adapter. To reduce the number of falsely trimmed bases,
the alignment algorithm requires that at least three bases match between
adapter and read. The minimum overlap length can be changed with the
--overlap``(short: ``-O) parameter. Shorter matches are simply
ignored, and the bases are not trimmed.

Requiring at least three bases to match is quite conservative. Even if no
minimum overlap was required, we can compute that we lose only about 0.44 bases
per read on average, see Section 2.3.3 in my
thesis [http://hdl.handle.net/2003/31824]. With the default minimum
overlap length of 3, only about 0.07 bases are lost per read.

When choosing an appropriate minimum overlap length, take into account that
true adapter matches are also lost when the overlap length is higher than
1, reducing cutadapt’s sensitivity.

Wildcards

All IUPAC nucleotide codes [http://www.bioinformatics.org/sms/iupac.html]
(wildcard characters) are supported. For example, use an N in the adapter
sequence to match any nucleotide in the read, or use -a YACGT for an adapter
that matches both CACGT and TACGT. The wildcard character N is
useful for trimming adapters with an embedded variable barcode:

cutadapt -a ACGTAANNNNTTAGC -o output.fastq input.fastq

Wildcard characters in the adapter are enabled by default. Use the option -N
to disable this.

Matching of wildcards in the reads is also possible, but disabled by default
in order to avoid matches in reads that consist of many (often low-quality)
N bases. Use --match-read-wildcards to enable wildcards also in reads.

If wildcards are disabled entirely (that is, you use -N and do not use
--match-read-wildcards), then cutadapt compares characters by ASCII value.
Thus, both the read and adapter can be arbitrary strings (such as SEQUENCE
or ADAPTER as used here in the examples).

Wildcards do not work in colorspace.

Repeated bases in the adapter sequence

If you have many repeated bases in the adapter sequence, such as many N``s or
many ``A``s, you do not have to spell them out. For example, instead of writing
ten ``A in a row (AAAAAAAAAA), write A{10} instead. The number within
the curly braces specifies how often the character that preceeds it will be
repeated. This works also for IUPAC wildcard characters, as in N{5}.

It is recommended that you use quotation marks around your adapter sequence if
you use this feature. For poly-A trimming, for example, you would write:

cutadapt -a "A{100}" -o output.fastq input.fastq

Modifying reads

This section describes in which ways reads can be modified other than adapter
removal.

Removing a fixed number of bases

By using the --cut option or its abbreviation -u, it is possible to
unconditionally remove bases from the beginning or end of each read. If
the given length is positive, the bases are removed from the beginning
of each read. If it is negative, the bases are removed from the end.

For example, to remove the first five bases of each read:

cutadapt -u 5 -o trimmed.fastq reads.fastq

To remove the last seven bases of each read:

cutadapt -u -7 -o trimmed.fastq reads.fastq

The -u/--cut option can be combined with the other options, but
the desired bases are removed before any adapter trimming.

Quality trimming

The -q (or --trim-qualities) parameter can be used to trim
low-quality ends from reads before adapter removal. For this to work
correctly, the quality values must be encoded as ascii(phred quality +
33). If they are encoded as ascii(phred quality + 64), you need to add
--quality-base=64 to the command line.

Quality trimming can be done without adapter trimming, so this will work:

cutadapt -q 10 -o output.fastq input.fastq

By default, only the 3’ end of each read is quality-trimmed. If you want to
trim the 5’ end as well, use the -q option with two comma-separated cutoffs:

cutadapt -q 15,10 -o output.fastq input.fastq

The 5’ end will then be trimmed with a cutoff of 15, and the 3’ will be trimmed
with a cutoff of 10. If you only want to trim the 5’ end, then use a cutoff of
0 for the 3’ end, as in -q 10,0.

Quality trimming algorithm

The trimming algorithm is the same as the one used by BWA, but applied to both
ends of the read in turn (if requested). That is: Subtract the given cutoff
from all qualities; compute partial sums from all indices to the end of the
sequence; cut the sequence at the index at which the sum is minimal. If both
ends are to be trimmed, repeat this for the other end.

The basic idea is to remove all bases starting from the end of the read whose
quality is smaller than the given threshold. This is refined a bit by allowing
some good-quality bases among the bad-quality ones. In the following example,
we assume that the 3’ end is to be quality-trimmed.

Assume you use a threshold of 10 and have these quality values:

42, 40, 26, 27, 8, 7, 11, 4, 2, 3

Subtracting the threshold gives:

32, 30, 16, 17, -2, -3, 1, -6, -8, -7

Then sum up the numbers, starting from the end (partial sums). Stop early if
the sum is greater than zero:

(70), (38), 8, -8, -25, -23, -20, -21, -15, -7

The numbers in parentheses are not computed (because 8 is greater than zero),
but shown here for completeness. The position of the minimum (-25) is used as
the trimming position. Therefore, the read is trimmed to the first four bases,
which have quality values 42, 40, 26, 27.

Modifying read names

If you feel the need to modify the names of processed reads, some of the
following options may be useful.

Use -y or --suffix to append a text to read names. The given string can
contain the placeholder {name}, which will be replaced with the name of the
adapter found in that read. For example, writing

cutadapt -a adapter1=ACGT -y ' we found {name}' input.fastq

changes a read named read1 to read1 we found adapter1 if the adapter
ACGT was found. The options -x/--prefix work the same, but the text
is added in front of the read name. For both options, spaces need to be
specified explicitly, as in the above example. If no adapter was found in a
read, the text no_adapter is inserted for {name}.

In order to remove a suffix of each read name, use --strip-suffix.

Some old 454 read files contain the length of the read in the name:

>read1 length=17
ACGTACGTACAAAAAAA

If you want to update this to the correct length after trimming, use the option
--length-tag. In this example, this would be --length-tag 'length='.
After trimming, the read would perhaps look like this:

>read1 length=10
ACGTACGTAC

Read modification order

The read modifications described above are applied in the following order to
each read. Steps not requested on the command-line are skipped.

	Unconditional base removal with --cut

	Quality trimming (-q)

	Adapter trimming (-a, -b, -g and uppercase versions)

	N-end trimming (--trim-n)

	Length tag modification (--length-tag)

	Read name suffixe removal (--strip-suffix)

	Addition of prefix and suffix to read name (-x/--prefix and -y/--suffix)

	Double-encode the sequence (only colorspace)

	Replace negative quality values with zero (zero capping, only colorspace)

	Trim primer base (only colorspace)

The last three steps are colorspace-specific.

Filtering reads

By default, all processed reads, no matter whether they were trimmed are not,
are written to the output file specified by the -o option (or to standard
output if -o was not provided). For paired-end reads, the second read in a
pair is always written to the file specified by the -p option.

The options described here make it possible to filter reads by either discarding
them entirely or by redirecting them to other files. When redirecting reads,
the basic rule is that each read is written to at most one file. You cannot
write reads to more than one output file.

In the following, the term “processed read” refers to a read to which all
modifications have been applied (adapter removal, quality trimming etc.). A
processed read can be identical to the input read if no modifications were done.

	--minimum-length N or -m N

	Throw away processed reads shorter than N bases.

	--too-short-output FILE

	Instead of throwing away the reads that are too short according to -m,
write them to FILE (in FASTA/FASTQ format).

	--maximum-length N or -M N

	Throw away processed reads longer than N bases.

	--too-long-output FILE

	Instead of throwing away the reads that are too long (according to -M),
write them to FILE (in FASTA/FASTQ format).

	--untrimmed-output FILE

	Write all reads without adapters to FILE (in FASTA/FASTQ format) instead
of writing them to the regular output file.

	--discard-trimmed

	Throw away reads in which an adapter was found.

	--discard-untrimmed

	Throw away reads in which no adapter was found. This has the same effect as
specifying --untrimmed-output /dev/null.

The options --too-short-output and --too-long-output are applied first.
This means, for example, that a read that is too long will never end up in the
--untrimmed-output file when --too-long-output was given, no matter
whether it was trimmed or not.

The options --untrimmed-output, --discard-trimmed and -discard-untrimmed
are mutually exclusive.

Trimming paired-end reads

Cutadapt supports trimming of paired-end reads, trimming both reads in a pair
at the same time.

Assume the input is in reads.1.fastq and reads.2.fastq and that
ADAPTER_FWD should be trimmed from the forward reads (first file)
and ADAPTER_REV from the reverse reads (second file).

The basic command-line is:

cutadapt -a ADAPTER_FWD -A ADAPTER_REV -o out.1.fastq -p out.2.fastq reads.1.fastq reads.2.fastq

-p is the short form of --paired-output. The option -A is used here
to specify an adapter sequence that cutadapt
should remove from the second read in each pair. There are also the options
-G, -B. All of them work just like their lowercase counterparts,
except that the adapter is searched for in the second read in each paired-end
read. There is also option -U, which you can use to remove a fixed number
of bases from the second read in a pair.

While it is possible to run cutadapt on the two files separately, processing
both files at the same time is highly recommended since the program can check
for problems in your input files only when they are processed together.

When you use -p/--paired-output, cutadapt checks whether the files are
properly paired. An error is raised if one of the files contains more reads than
the other or if the read names in the two files do not match. Only the part of
the read name before the first space is considered. If the read name ends with
/1 or /2, then that is also ignored. For example, two FASTQ headers that
would be considered to denote properly paired reads are:

@my_read/1 a comment

and:

@my_read/2 another comment

As soon as you start to use one of the filtering options that discard reads, it
is mandatory you process both files at the same time to make sure that the
output files are kept synchronized: If a read is removed from one of the files,
cutadapt will ensure it is also removed from the other file.

The following command-line options are applied to both reads:

	-q (along with --quality-base)

	--times applies to all the adapters given

	--no-trim

	--trim-n

	--mask

	--length-tag

	--prefix, --suffix

	--strip-f3

	--colorspace, --bwa, -z, --no-zero-cap, --double-encode,
--trim-primer

The following limitations still exist:

	The --info-file, --rest-file and --wildcard-file options write out
information only from the first read.

	Demultiplexing is not yet supported with paired-end data.

Filtering paired-end reads

The filtering options listed above can also be used when
trimming paired-end data. Since there are two reads, however, the filtering
criteria are checked for both reads. The question is what to do when a criterion
applies to only one read and not the other.

By default, the filtering options discard or redirect the read pair if any
of the two reads fulfill the criteria. That is, --max-n discards the pair
if one of the two reads has too many N bases; --discard-untrimmed
discards the pair if one of the reads does not contain an adapter;
--minimum-length discards the pair if one of the reads is too short;
and --maximum-length discards the pair if one of the reads is too long.
Note that the --discard-trimmed filter would also apply because it is also
the case that at least one of the reads is trimmed!

To require that filtering criteria must apply to both reads in order for a
read pair to be considered “filtered”, use the option --pair-filter=both.

To further complicate matters, cutadapt switches to a backwards compatibility
mode (“legacy mode”) when none of the uppercase modification options
(-A/-B/-G/-U) are given. In that mode, filtering criteria are
checked only for the first read. Cutadapt will also tell you at the top of
the report whether legacy mode is active. Check that line if you get strange
results!

These are the paired-end specific filtering and output options:

	--paired-output FILE or -p FILE

	Write the second read of each processed pair to FILE (in FASTA/FASTQ
format).

	--untrimmed-paired-output FILE

	Used together with --untrimmed-output. The second read in a pair is
written to this file when the processed pair was not trimmed.

	--pair-filter=(any|both)

	Which of the reads in a paired-end read have to match the filtering
criterion in order for it to be filtered.

Note that the option names can be abbreviated as long as it is clear which
option is meant (unique prefix). For example, instead of --untrimmed-output
and --untrimmed-paired-output, you can write --untrimmed-o and
--untrimmed-p.

Interleaved paired-end reads

Paired-end reads can be read from a single FASTQ file in which the entries for
the first and second read from each pair alternate. The first read in each pair
comes before the second. Enable this file format by adding the --interleaved
option to the command-line. For example:

cutadapt --interleaved -q 20 -a ACGT -A TGCA -o trimmed.fastq reads.fastq

The output FASTQ file will also be written interleaved. Cutadapt will detect if
the input file is not properly interleaved by checking whether read names match
and whether the file contains an even number of entries.

When --interleaved is used, legacy mode is disabled (that is,
read-modification options such as -q always apply to both reads).

Legacy paired-end read trimming

Note

This section describes the way paired-end trimming was done
in cutadapt before 1.8, where the -A, -G, -B options were not
available. It is less safe and more complicated, but you can still use it.

If you do not use any of the filtering options that discard reads, such
as --discard, --minimum-length or --maximum-length, you can run
cutadapt on each file separately:

cutadapt -a ADAPTER_FWD -o trimmed.1.fastq reads1.fastq
cutadapt -a ADAPTER_REV -o trimmed.2.fastq reads2.fastq

You can use the options that are listed under ‘Additional modifications’
in cutadapt’s help output without problems. For example, if you want to
quality-trim the first read in each pair with a threshold of 10, and the
second read in each pair with a threshold of 15, then the commands could
be:

cutadapt -q 10 -a ADAPTER_FWD -o trimmed.1.fastq reads1.fastq
cutadapt -q 15 -a ADAPTER_REV -o trimmed.2.fastq reads2.fastq

If you use any of the filtering options, you must use cutadapt in the following
way (with the -p option) to make sure that read pairs remain sychronized.

First trim the forward read, writing output to temporary files (we also
add some quality trimming):

cutadapt -q 10 -a ADAPTER_FWD --minimum-length 20 -o tmp.1.fastq -p tmp.2.fastq reads.1.fastq reads.2.fastq

Then trim the reverse read, using the temporary files as input:

cutadapt -q 15 -a ADAPTER_REV --minimum-length 20 -o trimmed.2.fastq -p trimmed.1.fastq tmp.2.fastq tmp.1.fastq

Finally, remove the temporary files:

rm tmp.1.fastq tmp.2.fastq

Please see the previous section for a much simpler way of trimming paired-end
reads!

In legacy paired-end mode, the read-modifying options such as -q only
apply to the first file in each call to cutadapt (first reads.1.fastq, then
tmp.2.fastq in this example). Reads in the second file are not affected by those
options, but by the filtering options: If a read in the first file is
discarded, then the matching read in the second file is also filtered
and not written to the output given by --paired-output in order to
keep both output files synchronized.

Multiple adapters

It is possible to specify more than one adapter sequence by using the options
-a, -b and -g more than once. Any combination is allowed, such as
five -a adapters and two -g adapters. Each read will be searched for
all given adapters, but only the best matching adapter is removed. (But it
is possible to trim more than one adapter from each
read). This is how a command may look like to trim one of two
possible 3’ adapters:

cutadapt -a TGAGACACGCA -a AGGCACACAGGG -o output.fastq input.fastq

The adapter sequences can also be read from a FASTA file. Instead of giving an
explicit adapter sequence, you need to write file: followed by the name of
the FASTA file:

cutadapt -a file:adapters.fasta -o output.fastq input.fastq

All of the sequences in the file adapters.fasta will be used as 3’
adapters. The other adapter options -b and -g also support this. Again,
only the best matching adapter is trimmed from each read.

When cutadapt has multiple adapter sequences to work with, either specified
explicitly on the command line or via a FASTA file, it decides in the
following way which adapter should be trimmed:

	All given adapter sequences are matched to the read.

	Adapter matches where the overlap length (see the -O parameter) is too
small or where the error rate is too high (-e) are removed from further
consideration.

	Among the remaining matches, the one with the greatest number of matching
bases is chosen.

	If there is a tie, the first adapter wins. The order of adapters is the order
in which they are given on the command line or in which they are found in the
FASTA file.

If your adapter sequences are all similar and differ only by a variable barcode
sequence, you should use a single adapter sequence instead that
contains wildcard characters.

Named adapters

Cutadapt reports statistics for each adapter separately. To identify the
adapters, they are numbered and the adapter sequence is also printed:

=== Adapter 1 ===

Sequence: AACCGGTT; Length 8; Trimmed: 5 times.

If you want this to look a bit nicer, you can give each adapter a name in this
way:

cutadapt -a My_Adapter=AACCGGTT -o output.fastq input.fastq

The actual adapter sequence in this example is AACCGGTT and the name
assigned to it is My_Adapter. The report will then contain this name in
addition to the other information:

=== Adapter 'My_Adapter' ===

Sequence: TTAGACATATCTCCGTCG; Length 18; Trimmed: 5 times.

When adapters are read from a FASTA file, the sequence header is used as the
adapter name.

Adapter names are also used in column 8 of info files.

Demultiplexing

Cutadapt supports demultiplexing, which means that reads are written to different
output files depending on which adapter was found in them. To use this, include
the string {name} in the name of the output file and give each adapter a name.
The path is then interpreted as a template and each trimmed read is written
to the path in which {name} is replaced with the name of the adapter that
was found in the read. Reads in which no adapter was found will be written to a
file in which {name} is replaced with unknown.

Example:

cutadapt -a one=TATA -a two=GCGC -o trimmed-{name}.fastq.gz input.fastq.gz

This command will create the three files demulti-one.fastq.gz,
demulti-two.fastq.gz and demulti-unknown.fastq.gz. You can also
provide adapter sequences in a FASTA file.

In order to not trim the input files at all, but to only do multiplexing, use
option --no-trim. And if you want to output the reads in which no
adapters were found to a different file, use the --untrimmed-output
parameter with a file name. Here is an example that uses both parameters and
reads the adapters from a FASTA file (note that --untrimmed-output can be
abbreviated):

cutadapt -a file:barcodes.fasta --no-trim --untrimmed-o untrimmed.fastq.gz -o trimmed-{name}.fastq.gz input.fastq.gz

Trimming more than one adapter from each read

By default, at most one adapter sequence is removed from each read, even if
multiple adapter sequences were provided. This can be changed by using the
--times option (or its abbreviated form -n). Cutadapt will then search
for all the given adapter sequences repeatedly, either until no adapter match
was found or until the specified number of rounds was reached.

As an example, assume you have a protocol in which a 5’ adapter gets ligated
to your DNA fragment, but it’s possible that the adapter is ligated more than
once. So your sequence could look like this:

ADAPTERADAPTERADAPTERMYSEQUENCE

To be on the safe side, you assume that there are at most 5 copies of the
adapter sequence. This command can be used to trim the reads correctly:

cutadapt -g ^ADAPTER -n 5 -o output.fastq input.fastq

This feature can also be used to search for 5’/3’ linked adapters. For example,
when the 5’ adapter is FIRST and the 3’ adapter is SECOND, then the read
could look like this:

FIRSTMYSEQUENCESECOND

That is, the sequence of interest is framed by the 5’ and the 3’ adapter. The
following command can be used to trim such a read:

cutadapt -g ^FIRST -a SECOND -n 2 ...

Support for linked adapters is currently incomplete. For example, it is not
possible to specify that SECOND should only be trimmed when FIRST also occurs.
See also this feature
request [https://code.google.com/p/cutadapt/issues/detail?id=34], and
comment on it if you would like to see this implemented.

Illumina TruSeq

If you have reads containing Illumina TruSeq adapters, follow these
steps.

Single-end reads as well as the first reads of paired-end data need to be
trimmed with A + the “TruSeq Indexed Adapter”. Use only the prefix of the
adapter sequence that is common to all Indexed Adapter sequences:

cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -o trimmed.fastq.gz reads.fastq.gz

If you have paired-end data, trim also read 2 with the reverse complement of the
“TruSeq Universal Adapter”. The full command-line looks as follows:

cutadapt \
 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \
 -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT \
 -o trimmed.1.fastq.gz -p trimmed.2.fastq.gz \
 reads.1.fastq.gz reads.2.fastq.gz

See also the section about paired-end adapter trimming above.

If you want to simplify this a bit, you can also use the common prefix
AGATCGGAAGAGC as the adapter sequence in both cases:

cutadapt \
 -a AGATCGGAAGAGC -A AGATCGGAAGAGC \
 -o trimmed.1.fastq.gz -p trimmed.2.fastq.gz \
 reads.1.fastq.gz reads.2.fastq.gz

The adapter sequences can be found in the document Illumina TruSeq Adapters
De-Mystified [http://tucf-genomics.tufts.edu/documents/protocols/TUCF_Understanding_Illumina_TruSeq_Adapters.pdf].

Warning about incomplete adapter sequences

Sometimes cutadapt’s report ends with these lines:

WARNING:
 One or more of your adapter sequences may be incomplete.
 Please see the detailed output above.

Further up, you’ll see a message like this:

Bases preceding removed adapters:
 A: 95.5%
 C: 1.0%
 G: 1.6%
 T: 1.6%
 none/other: 0.3%
WARNING:
 The adapter is preceded by "A" extremely often.
 The provided adapter sequence may be incomplete.
 To fix the problem, add "A" to the beginning of the adapter sequence.

This means that in 95.5% of the cases in which an adapter was removed from a
read, the base coming before that was an A. If your DNA fragments are
not random, such as in amplicon sequencing, then this is to be expected and
the warning can be ignored. If the DNA fragments are supposed to be random,
then the message may be genuine: The adapter sequence may be incomplete and
should include an additional A in the beginning.

This warning exists because some documents list the Illumina TruSeq adapters
as starting with GATCGGA.... While that is technically correct, the
library preparation actually results in an additional A before that
sequence, which also needs to be removed. See the previous
section for the correct sequence.

Dealing with N bases

Cutadapt supports the following options to deal with N bases in your reads:

	--max-n COUNT

	Discard reads containing more than COUNT N bases. A fractional COUNT
between 0 and 1 can also be given and will be treated as the proportion of
maximally allowed N bases in the read.

	--trim-n

	Remove flanking N bases from each read. That is, a read such as this:

NNACGTACGTNNNN

Is trimmed to just ACGTACGT. This option is applied after adapter
trimming. If you want to get rid of N bases before adapter removal, use
quality trimming: N bases typically also have a low quality value
associated with them.

Bisulfite sequencing (RRBS)

When trimming reads that come from a library prepared with the RRBS (reduced
representation bisulfit sequencing) protocol, the last two 3’ bases must be
removed in addition to the adapter itself. This can be achieved by using not
the adapter sequence itself, but by adding two wildcard characters to its
beginning. If the adapter sequence is ADAPTER, the command for trimming
should be:

cutadapt -a NNADAPTER -o output.fastq input.fastq

Details can be found in Babraham bioinformatics’ “Brief guide to
RRBS” [http://www.bioinformatics.babraham.ac.uk/projects/bismark/RRBS_Guide.pdf].
A summary follows.

During RRBS library preparation, DNA is digested with the restriction enzyme
MspI, generating a two-base overhang on the 5’ end (CG). MspI recognizes
the sequence CCGG and cuts
between C and CGG. A double-stranded DNA fragment is cut in this way:

5'-NNNC|CGGNNN-3'
3'-NNNGGC|CNNN-5'

The fragment between two MspI restriction sites looks like this:

5'-CGGNNN...NNNC-3'
 3'-CNNN...NNNGGC-5'

Before sequencing (or PCR) adapters can be ligated, the missing base positions
must be filled in with GTP and CTP:

5'-ADAPTER-CGGNNN...NNNCcg-ADAPTER-3'
3'-ADAPTER-gcCNNN...NNNGGC-ADAPTER-5'

The filled-in bases, marked in lowercase above, do not contain any original
methylation information, and must therefore not be used for methylation calling.
By prefixing the adapter sequence with NN, the bases will be automatically
stripped during adapter trimming.

Cutadapt’s output

How to read the report

After every run, cutadapt prints out per-adapter statistics. The output
starts with something like this:

Sequence: 'ACGTACGTACGTTAGCTAGC'; Length: 20; Trimmed: 2402 times.

The meaning of this should be obvious.

The next piece of information is this:

No. of allowed errors:
0-9 bp: 0; 10-19 bp: 1; 20 bp: 2

The adapter has, as was shown above, has a length of 20
characters. We are using the default error rate of 0.1. What this
implies is shown above: Matches up to a length of 9 bp are allowed to
have no errors. Matches of lengths 10-19 bp are allowd to have 1 error
and matches of length 20 can have 2 errors. See also the section about
error-tolerant matching.

Finally, a table is output that gives more detailed information about
the lengths of the removed sequences. The following is only an excerpt;
some rows are left out:

Overview of removed sequences
length count expect max.err error counts
3 140 156.2 0 140
4 57 39.1 0 57
5 50 9.8 0 50
6 35 2.4 0 35
...
100 397 0.0 3 358 36 3

The first row tells us the following: Three bases were removed in 140
reads; randomly, one would expect this to occur 156.2 times; the maximum
number of errors at that match length is 0 (this is actually redundant
since we know already that no errors are allowed at lengths 0-9 bp).

The last column shows the number of reads that had 0, 1, 2 ... errors.
In the last row, for example, 358 reads matched the adapter with zero
errors, 36 with 1 error, and 3 matched with 2 errors.

The “expect” column gives only a rough estimate of the number of
sequences that is expected to match randomly (it assumes a GC content of
50%, for example), but it can help to estimate whether the matches that
were found are true adapter matches or if they are due to chance. At
lengths 6, for example, only 2.4 reads are expected, but 35 do match,
which hints that most of these matches are due to actual adapters.

Note that the “length” column refers to the length of the removed
sequence. That is, the actual length of the match in the above row at
length 100 is 20 since that is the adapter length. Assuming the read
length is 100, the adapter was found in the beginning of 397 reads and
therefore those reads were trimmed to a length of zero.

The table may also be useful in case the given adapter sequence contains
an error. In that case, it may look like this:

...
length count expect max.err error counts
10 53 0.0 1 51 2
11 45 0.0 1 42 3
12 51 0.0 1 48 3
13 39 0.0 1 0 39
14 40 0.0 1 0 40
15 36 0.0 1 0 36
...

We can see that no matches longer than 12 have zero errors. In this
case, it indicates that the 13th base of the given adapter sequence is
incorrect.

Format of the info file

When the --info-file command-line parameter is given, detailed
information about the found adapters is written to the given file. The
output is a tab-separated text file. Each line corresponds to one read
of the input file (unless –times is used, see below). The fields are:

	Read name

	Number of errors

	0-based start coordinate of the adapter match

	0-based end coordinate of the adapter match

	Sequence of the read to the left of the adapter match (can be empty)

	Sequence of the read that was matched to the adapter

	Sequence of the read to the right of the adapter match (can be empty)

	Name of the found adapter.

	Quality values corresponding to sequence left of the adapter match (can be empty)

	Quality values corresponding to sequence matched to the adapter (can be empty)

	Quality values corresponding to sequence to the right of the adapter match (can be empty)

The concatenation of the fields 5-7 yields the full read sequence. Column 8 identifies
the found adapter. The section about named adapters <named-adapters> describes
how to give a name to an adapter. Adapters without a name are numbered starting
from 1. Fields 9-11 are empty if quality values are not available.
Concatenating them yields the full sequence of quality values.

If no adapter was found, the format is as follows:

	Read name

	The value -1

	The read sequence

	Quality values

When parsing the file, be aware that additional columns may be added in
the future. Note also that some fields can be empty, resulting in
consecutive tabs within a line.

If the --times option is used and greater than 1, each read can appear
more than once in the info file. There will be one line for each found adapter,
all with identical read names. Only for the first of those lines will the
concatenation of columns 5-7 be identical to the original read sequence (and
accordingly for columns 9-11). For subsequent lines, the shown sequence are the
ones that were used in subsequent rounds of adapter trimming, that is, they get
successively shorter.

Columns 9-11 have been added in cutadapt version 1.9.

The alignment algorithm

Since the publication of the EMBnet journal application note about
cutadapt [http://dx.doi.org/10.14806/ej.17.1.200], the alignment algorithm
used for finding adapters has changed significantly. An overview of this new
algorithm is given in this section. An even more detailed description is
available in Chapter 2 of my PhD thesis Algorithms and tools for the analysis
of high-throughput DNA sequencing data [http://hdl.handle.net/2003/31824].

The algorithm is based on semiglobal alignment, also called free-shift,
ends-free or overlap alignment. In a regular (global) alignment, the
two sequences are compared from end to end and all differences occuring over
that length are counted. In semiglobal alignment, the sequences are allowed to
freely shift relative to each other and differences are only penalized in the
overlapping region between them:

 FANTASTIC
ELEFANT

The prefix ELE and the suffix ASTIC do not have a counterpart in the
respective other row, but this is not counted as an error. The overlap FANT
has a length of four characters.

Traditionally, alignment scores are used to find an optimal overlap aligment:
This means that the scoring function assigns a positive value to matches,
while mismatches, insertions and deletions get negative values. The optimal
alignment is then the one that has the maximal total score. Usage of scores
has the disadvantage that they are not at all intuitive: What does a total score
of x mean? Is that good or bad? How should a threshold be chosen in order to
avoid finding alignments with too many errors?

For cutadapt, the adapter alignment algorithm uses unit costs instead.
This means that mismatches, insertions and deletions are counted as one error, which
is easier to understand and allows to specify a single parameter for the
algorithm (the maximum error rate) in order to describe how many errors are
acceptable.

There is a problem with this: When using costs instead of scores, we would like
to minimize the total costs in order to find an optimal alignment. But then the
best alignment would always be the one in which the two sequences do not overlap
at all! This would be correct, but meaningless for the purpose of finding an
adapter sequence.

The optimization criteria are therefore a bit different. The basic idea is to
consider the alignment optimal that maximizes the overlap between the two
sequences, as long as the allowed error rate is not exceeded.

Conceptually, the procedure is as follows:

	Consider all possible overlaps between the two sequences and compute an
alignment for each, minimizing the total number of errors in each one.

	Keep only those alignments that do not exceed the specified maximum error
rate.

	Then, keep only those alignments that have a maximal number of matches
(that is, there is no alignment with more matches).

	If there are multiple alignments with the same number of matches, then keep
only those that have the smallest error rate.

	If there are still multiple candidates left, choose the alignment that starts
at the leftmost position within the read.

In Step 1, the different adapter types are taken into account: Only those
overlaps that are actually allowed by the adapter type are actually considered.

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cutadapt 1.9.1 documentation

Colorspace reads

Cutadapt was designed to work with colorspace reads from the ABi SOLiD
sequencer. Colorspace trimming is activated by the --colorspace
option (or use -c for short). The input reads can be given either:

	in a FASTA file

	in a FASTQ file

	in a .csfasta and a .qual file (this is the native SOLiD
format).

In all cases, the colors must be represented by the characters 0, 1, 2,
3. Example input files are in the cutadapt distribution at
tests/data/solid.*. The .csfasta/.qual file format is
automatically assumed if two input files are given to cutadapt.

In colorspace mode, the adapter sequences given to the -a, -b
and -g options can be given both as colors or as nucleotides. If
given as nucleotides, they will automatically be converted to
colorspace. For example, to trim an adapter from solid.csfasta and
solid.qual, use this command-line:

cutadapt -c -a CGCCTTGGCCGTACAGCAG solid.csfasta solid.qual > output.fastq

In case you know the colorspace adapter sequence, you can also write
330201030313112312 instead of CGCCTTGGCCGTACAGCAG and the result
is the same.

Ambiguity in colorspace

The ambiguity of colorspace encoding leads to some effects to be aware
of when trimming 3’ adapters from colorspace reads. For example, when
trimming the adapter AACTC, cutadapt searches for its
colorspace-encoded version 0122. But also TTGAG, CCAGA and
GGTCT have an encoding of 0122. This means that effectively four
different adapter sequences are searched and trimmed at the same time.
There is no way around this, unless the decoded sequence were available,
but that is usually only the case after read mapping.

The effect should usually be quite small. The number of false positives
is multiplied by four, but with a sufficiently large overlap (3 or 4 is
already enough), this is still only around 0.2 bases lost per read on
average. If inspecting k-mer frequencies or using small overlaps, you
need to be aware of the effect, however.

Double-encoding, BWA and MAQ

The read mappers MAQ and BWA (and possibly others) need their colorspace
input reads to be in a so-called “double encoding”. This simply means
that they cannot deal with the characters 0, 1, 2, 3 in the reads, but
require that the letters A, C, G, T be used for colors. For example, the
colorspace sequence 0011321 would be AACCTGC in double-encoded
form. This is not the same as conversion to basespace! The read is still
in colorspace, only letters are used instead of digits. If that sounds
confusing, that is because it is.

Note that MAQ is unmaintained and should not be used in new projects.

BWA’s colorspace support was dropped in versions more recent than 0.5.9,
but that version works well.

When you want to trim reads that will be mapped with BWA or MAQ, you can
use the --bwa option, which enables colorspace mode (-c),
double-encoding (-d), primer trimming (-t), all of which are
required for BWA, in addition to some other useful options.

The --maq option is an alias for --bwa.

Colorspace examples

To cut an adapter from SOLiD data given in solid.csfasta and
solid.qual, to produce MAQ- and BWA-compatible output, allow the
default of 10% errors and write the resulting FASTQ file to
output.fastq:

cutadapt --bwa -a CGCCTTGGCCGTACAGCAG solid.csfasta solid.qual > output.fastq

Instead of redirecting standard output with >, the -o option can
be used. This also shows that you can give the adapter in colorspace and
how to use a different error rate:

cutadapt --bwa -e 0.15 -a 330201030313112312 -o output.fastq solid.csfasta solid.qual

This does the same as above, but produces BFAST-compatible output,
strips the _F3 suffix from read names and adds the prefix “abc:” to
them:

cutadapt -c -e 0.15 -a 330201030313112312 -x abc: --strip-f3 solid.csfasta solid.qual > output.fastq

Bowtie

Quality values of colorspace reads are sometimes negative. Bowtie gets
confused and prints this message:

Encountered a space parsing the quality string for read xyz

BWA also has a problem with such data. Cutadapt therefore converts
negative quality values to zero in colorspace data. Use the option
--no-zero-cap to turn this off.

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cutadapt 1.9.1 documentation

Recipes

For some trimming applications, the pre-defined adapter types behave differently
from what you would like to have. In this section, we show some ways in which
cutadapt can be made to behave in the desired way.

Note

This section is still being written.

Forcing matches to be at the end of the read

Use -a TACGGCATXXX. The X is always counted as a mismatch and will force
the adapter match to be at the end. This is not the same as an anchored 3’
adapter since partial matches are still allowed.

Removing more than one adapter

If you want to remove more than one adapter, let’s say a 5’ adapter and a 3’
adapter, you have two options.

First, you can specify both adapters and also --times=2 (or the short
version -n 2). For example:

cutadapt -g ^TTAAGGCC -a TACGGACT -n 2 -o output.fastq input.fastq

This instructs cutadapt to run two rounds of adapter finding and removal. That
means that, after the first round and only when an adapter was actually found,
another round is performed. In both rounds, all given adapters (two in this
case) are searched and removed. The problem is that it could happen that one
adapter is found twice (so the 3’ adapter, for example, could be removed twice).

The second option is to not use the -n option, but to run cutadapt twice,
first removing one adapter and then the other. It is easiest if you use a pipe
as in this example:

cutadapt -g ^TTAAGGCC input.fastq | cutadapt -a TACGGACT - > output.fastq

Trimming poly-A tails

If you want to trim a poly-A tail from the 3’ end of your reads, use the 3’
adapter type (-a) with an adapter sequence of many repeated A
nucleotides. Starting with version 1.8 of cutadapt, you can use the
following notation to specify a sequence that consists of 100 A:

cutadapt -a "A{100}" -o output.fastq input.fastq

This also works when there are sequencing errors in the poly-A tail. So this
read

TACGTACGTACGTACGAAATAAAAAAAAAAA

will be trimmed to:

TACGTACGTACGTACG

If for some reason you would like to use a shorter sequence of A, you can
do so: The matching algorithm always picks the leftmost match that it can find,
so cutadapt will do the right thing even when the tail has more A than you
used in the adapter sequence. However, sequencing errors may result in shorter
matches than desired. For example, using -a "A{10}", the read above (where
the AAAT is followed by eleven A) would be trimmed to:

TACGTACGTACGTACGAAAT

Depending on your application, perhaps a variant of -a A{10}N{90} is an
alternative, forcing the match to be located as much to the left as possible,
while still allowing for non-A bases towards the end of the read.

Other things (unfinished)

	How to detect adapters

	Use cutadapt for quality-trimming only

	Use it for minimum/maximum length filtering

	Use it for conversion to FASTQ

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cutadapt 1.9.1 documentation

Ideas/To Do

This is a rather unsorted list of features that would be nice to have, of
things that could be improved in the source code, and of possible algorithmic
improvements.

	show average error rate

	In colorspace and probably also for Illumina data, gapped alignment
is not necessary

	--progress

	run pylint, pychecker

	length histogram

	check whether input is FASTQ although -f fasta is given

	search for adapters in the order in which they are given on the
command line

	more tests for the alignment algorithm

	deprecate --rest-file

	--detect prints out best guess which of the given adapters is the correct one

	alignment algorithm: make a ‘banded’ version

	it seems the str.find optimization isn’t very helpful. In any case, it should be
moved into the Aligner class.

	allow to remove not the adapter itself, but the sequence before or after it

	instead of trimming, convert adapter to lowercase

	warn when given adapter sequence contains non-IUPAC characters

	try multithreading again, this time use os.pipe() or 0mq

Specifying adapters

The idea is to deprecate the -b and -g parameters. Only -a is used
with a special syntax for each adapter type. This makes it a bit easier to add
new adapter types in the feature.

	back
	-a ADAPTER
	-a ADAPTER or -a ...ADAPTER

	suffix
	-a ADAPTER$
	-a ...ADAPTER$

	front
	-g ADAPTER
	-a ADAPTER...

	prefix
	-g ^ADAPTER
	-a ^ADAPTER... (or have anchoring by default?)

	anywhere
	-b ADAPTER
	-a ...ADAPTER... ???

	paired
	(not implemented)
	-a ADAPTER...ADAPTER or -a ^ADAPTER...ADAPTER

Or add only -a ADAPTER... as an alias for -g ^ADAPTER and
-a ...ADAPTER as an alias for -a ADAPTER.

The ... would be equivalent to N* as in regular expressions.

Another idea: Allow something such as -a ADAP$TER or -a ADAPTER$NNN.
This would be a way to specify less strict anchoring.

Make it possible to specify that the rightmost or leftmost match should be
picked. Default right now: Leftmost, even for -g adapters.

Allow N{3,10} as in regular expressions (for a variable-length sequence).

Use parentheses to specify the part of the sequence that should be kept:

	-a (...)ADAPTER (default)

	-a (...ADAPTER) (default)

	-a ADAPTER(...) (default)

	-a (ADAPTER...) (??)

Or, specify the part that should be removed:

-a ...(ADAPTER...)
-a ...ADAPTER(...)
-a (ADAPTER)...

Model somehow all the flags that exist for semiglobal alignment. For start of the adapter:

	Start of adapter can be degraded or not

	Bases are allowed to be before adapter or not

Not degraded and no bases before allowed = anchored.
Degraded and bases before allowed = regular 5’

By default, the 5’ end should be anchored, the 3’ end not.

	-a ADAPTER... → not degraded, no bases before allowed

	-a N*ADAPTER... → not degraded, bases before allowed

	-a ADAPTER^... → degraded, no bases before allowed

	-a N*ADAPTER^... → degraded, bases before allowed

	-a ...ADAPTER → degraded, bases after allowed

	-a ...ADAPTER$ → not degraded, no bases after allowed

Paired-end trimming

	Could also use a paired-end read merger, then remove adapters with -a and -g

Available/used letters for command-line options

	Remaining characters: All uppercase letters except A, B, G, M, N, O, U

	Lowercase letters: i, j, k, l, s, w

	Planned/reserved: Q (paired-end quality trimming), j (multithreading)

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	cutadapt 1.9.1 documentation

Changes

v1.9.1

	Added --pair-filter option, which modifies how filtering criteria
apply to paired-end reads

	Add --too-short-paired-output and --too-long-paired-output options.

	Fix incorrect number of trimmed bases reported if --times option was used.

v1.9

	Indels in the alignment can now be disabled for all adapter types (use
--no-indels).

	Quality values are now printed in the info file (--info-file)
when trimming FASTQ files. Fixes issue #144.

	Options --prefix and --suffix, which modify read names, now accept the
placeholder {name} and will replace it with the name of the found adapter.
Fixes issue #104.

	Interleaved FASTQ files: With the --interleaved switch, paired-end reads
will be read from and written to interleaved FASTQ files. Fixes issue #113.

	Anchored 5’ adapters can now be specified by writing -a SEQUENCE... (note
the three dots).

	Fix --discard-untrimmed and --discard-trimmed not working as expected
in paired-end mode (issue #146).

	The minimum overlap is now automatically reduced to the adapter length if it
is too large. Fixes part of issue #153.

	Thanks to Wolfgang Gerlach, there is now a Dockerfile.

	The new --debug switch makes cutadapt print out the alignment matrix.

v1.8.3

	Fix issue #95: Untrimmed reads were not listed in the info file.

	Fix issue #138: pip install cutadapt did not work with new setuptools versions.

	Fix issue #137: Avoid a hang when writing to two or more gzip-compressed
output files in Python 2.6.

v1.8.1

	Fix #110: Counts for ‘too short’ and ‘too long’ reads were swapped in statistics.

	Fix #115: Make --trim-n work also on second read for paired-end data.

v1.8

	Support single-pass paired-end trimming with the new -A/-G/-B/-U
parameters. These work just like their -a/-g/-b/-u counterparts, but they
specify sequences that are removed from the second read in a pair.

Also, if you start using one of those options, the read modification options
such as -q (quality trimming) are applied to both reads. For backwards
compatibility, read modifications are applied to the first read only if
neither of -A/-G/-B/-U is used. See the
documentation [http://cutadapt.readthedocs.org/en/latest/guide.html#paired-end]
for details.

This feature has not been extensively tested, so please give feedback if
something does not work.

	The report output has been re-worked in order to accomodate the new paired-end
trimming mode. This also changes the way the report looks like in single-end
mode. It is hopefully now more accessible.

	Chris Mitchell contributed a patch adding two new options: --trim-n
removes any N bases from the read ends, and the --max-n option can be
used to filter out reads with too many N.

	Support notation for repeated bases in the adapter sequence: Write A{10}
instead of AAAAAAAAAA. Useful for poly-A trimming: Use -a A{100} to
get the longest possible tail.

	Quality trimming at the 5’ end of reads is now supported. Use -q 15,10 to
trim the 5’ end with a cutoff of 15 and the 3’ end with a cutoff of 10.

	Fix incorrectly reported statistics (> 100% trimmed bases) when --times
set to a value greater than one.

	Support .xz-compressed files (if running in Python 3.3 or later).

	Started to use the GitHub issue tracker instead of Google Code. All old issues
have been moved.

v1.7

	IUPAC characters are now supported. For example, use -a YACGT for an
adapter that matches both CACGT and TACGT with zero errors. Disable
with -N. By default, IUPAC characters in the read are not interpreted in
order to avoid matches in reads that consist of many (low-quality) N
bases. Use --match-read-wildcards to enable them also in the read.

	Support for demultiplexing was added. This means that reads can be written to
different files depending on which adapter was found. See the section in the
documentation [http://cutadapt.readthedocs.org/en/latest/guide.html#demultiplexing]
for how to use it. This is currently only supported for single-end reads.

	Add support for anchored 3’ adapters. Append $ to the adapter sequence to
force the adapter to appear in the end of the read (as a suffix). Closes
issue #81.

	Option --cut (-u) can now be specified twice, once for each end of the
read. Thanks to Rasmus Borup Hansen for the patch!

	Options --minimum-length/--maximum-length (-m/-M) can be used
standalone. That is, cutadapt can be used to filter reads by length without
trimming adapters.

	Fix bug: Adapters read from a FASTA file can now be anchored.

v1.6

	Fix bug: Ensure --format=... can be used even with paired-end input.

	Fix bug: Sometimes output files would be incomplete because they were not
closed correctly.

	Alignment algorithm is a tiny bit faster.

	Extensive work on the documentation. It’s now available at
https://cutadapt.readthedocs.org/ .

	For 3’ adapters, statistics about the bases preceding the trimmed adapter
are collected and printed. If one of the bases is overrepresented, a warning
is shown since this points to an incomplete adapter sequence. This happens,
for example, when a TruSeq adapter is used but the A overhang is not taken
into account when running cutadapt.

	Due to code cleanup, there is a change in behavior: If you use
--discard-trimmed or --discard-untrimmed in combination with
--too-short-output or --too-long-output, then cutadapt now writes also
the discarded reads to the output files given by the --too-short or
--too-long options. If anyone complains, I will consider reverting this.

	Galaxy support files are now in a separate
repository [https://bitbucket.org/lance_parsons/cutadapt_galaxy_wrapper].

v1.5

	Adapter sequences can now be read from a FASTA file. For example, write
-a file:adapters.fasta to read 3’ adapters from adapters.fasta. This works
also for -b and -g.

	Add the option --mask-adapter, which can be used to not remove adapters,
but to instead mask them with N characters. Thanks to Vittorio Zamboni
for contributing this feature!

	U characters in the adapter sequence are automatically converted to T.

	Do not run Cython at installation time unless the –cython option is provided.

	Add the option -u/–cut, which can be used to unconditionally remove a number
of bases from the beginning or end of each read.

	Make --zero-cap the default for colorspace reads.

	When the new option --quiet is used, no report is printed after all reads
have been processed.

	When processing paired-end reads, cutadapt now checks whether the reads are
properly paired.

	To properly handle paired-end reads, an option –untrimmed-paired-output was
added.

v1.4

	This release of cutadapt reduces the overhead of reading and writing files.
On my test data set, a typical run of cutadapt (with a single adapter) takes
40% less time due to the following two changes.

	Reading and writing of FASTQ files is faster (thanks to Cython).

	Reading and writing of gzipped files is faster (up to 2x) on systems
where the gzip program is available.

	The quality trimming function is four times faster (also due to Cython).

	Fix the statistics output for 3’ colorspace adapters: The reported lengths were one
too short. Thanks to Frank Wessely for reporting this.

	Support the --no-indels option. This disallows insertions and deletions while
aligning the adapter. Currently, the option is only available for anchored 5’ adapters.
This fixes issue 69.

	As a sideeffect of implementing the –no-indels option: For colorspace, the
length of a read (for --minimum-length and --maximum-length) is now computed after
primer base removal (when --trim-primer is specified).

	Added one column to the info file that contains the name of the found adapter.

	Add an explanation about colorspace ambiguity to the README

v1.3

	Preliminary paired-end support with the --paired-output option (contributed by
James Casbon). See the README section on how to use it.

	Improved statistics.

	Fix incorrectly reported amount of quality-trimmed Mbp (issue 57, fix by Chris Penkett)

	Add the --too-long-output option.

	Add the --no-trim option, contributed by Dave Lawrence.

	Port handwritten C alignment module to Cython.

	Fix the --rest-file option (issue 56)

	Slightly speed up alignment of 5’ adapters.

	Support bzip2-compressed files.

v1.2

	At least 25% faster processing of .csfasta/.qual files due to faster parser.

	Between 10% and 30% faster writing of gzip-compressed output files.

	Support 5’ adapters in colorspace, even when no primer trimming is requested.

	Add the --info-file option, which has a line for each found adapter.

	Named adapters are possible. Usage: -a My_Adapter=ACCGTA assigns the name “My_adapter”.

	Improve alignment algorithm for better poly-A trimming when there are sequencing errors.
Previously, not the longest possible poly-A tail would be trimmed.

	James Casbon contributed the --discard-untrimmed option.

v1.1

	Allow to “anchor” 5’ adapters (-g), forcing them to be a prefix of the read.
To use this, add the special character ^ to the beginning of the adapter sequence.

	Add the “-N” option, which allows ‘N’ characters within adapters to match literally.

	Speedup of approx. 25% when reading from .gz files and using Python 2.7.

	Allow to only trim qualities when no adapter is given on the command-line.

	Add a patch by James Casbon: include read names (ids) in rest file

	Use nosetest for testing. To run, install nose and run “nosetests”.

	When using cutadapt without installing it, you now need to run bin/cutadapt due to
a new directory layout.

	Allow to give a colorspace adapter in basespace (gets automatically converted).

	Allow to search for 5’ adapters (those specified with -g) in colorspace.

	Speed up the alignment by a factor of at least 3 by using Ukkonen’s algorithm.
The total runtime decreases by about 30% in the tested cases.

	allow to deal with colorspace FASTQ files from the SRA that contain a fake
additional quality in the beginning (use --format sra-fastq)

v1.0

	ASCII-encoded quality values were assumed to be encoded as ascii(quality+33).
With the new parameter --quality-base, this can be changed to ascii(quality+64),
as used in some versions of the Illumina pipeline. (Fixes issue 7.)

	Allow to specify that adapters were ligated to the 5’ end of reads. This change
is based on a patch contributed by James Casbon.

	Due to cutadapt being published in EMBnet.journal, I found it appropriate
to call this release version 1.0. Please see
http://journal.embnet.org/index.php/embnetjournal/article/view/200 for the
article and I would be glad if you cite it.

	Add Galaxy support, contributed by Lance Parsons.

	Patch by James Casbon: Allow N wildcards in read or adapter or both.
Wildcard matching of ‘N’s in the adapter is always done. If ‘N’s within reads
should also match without counting as error, this needs to be explicitly
requested via --match-read-wildcards.

v0.9.5

	Fix issue 20: Make the report go to standard output when -o/--output is
specified.

	Recognize .fq as an extension for FASTQ files

	many more unit tests

	The alignment algorithm has changed. It will now find some adapters that
previously were missed. Note that this will produce different output than
older cutadapt versions!

Before this change, finding an adapter would work as follows:

	Find an alignment between adapter and read – longer alignments are
better.

	If the number of errors in the alignment (divided by length) is above the
maximum error rate, report the adapter as not being found.

Sometimes, the long alignment that is found had too many errors, but a
shorter alignment would not. The adapter was then incorrectly seen as “not
found”. The new alignment algorithm checks the error rate while aligning and only
reports alignments that do not have too many errors.

v0.9.4

	now compatible with Python 3

	Add the --zero-cap option, which changes negative quality values to zero.
This is a workaround to avoid segmentation faults in BWA. The option is now
enabled by default when --bwa/--maq is used.

	Lots of unit tests added. Run them with cd tests && ./tests.sh.

	Fix issue 16: --discard-trimmed did not work.

	Allow to override auto-detection of input file format with the new -f/--format
parameter. This mostly fixes issue 12.

	Don’t break when input file is empty.

v0.9.2

	Install a single cutadapt Python package instead of multiple Python
modules. This avoids cluttering the global namespace and should lead to less
problems with other Python modules. Thanks to Steve Lianoglou for
pointing this out to me!

	ignore case (ACGT vs acgt) when comparing the adapter with the read sequence

	.FASTA/.QUAL files (not necessarily colorspace) can now be read (some
454 software uses this format)

	Move some functions into their own modules

	lots of refactoring: replace the fasta module with a much nicer seqio module.

	allow to input FASTA/FASTQ on standard input (also FASTA/FASTQ is
autodetected)

v0.9

	add --too-short-output and --untrimmed-output, based on patch by Paul Ryvkin (thanks!)

	add --maximum-length parameter: discard reads longer than a specified length

	group options by category in --help output

	add --length-tag option. allows to fix read length in FASTA/Q comment lines
(e.g., length=123 becomes length=58 after trimming) (requested by Paul Ryvkin)

	add -q/--quality-cutoff option for trimming low-quality ends (uses the same algorithm
as BWA)

	some refactoring

	the filename - is now interpreted as standard in or standard output

v0.8

	Change default behavior of searching for an adapter: The adapter is now assumed to
be an adapter that has been ligated to the 3’ end. This should be the correct behavior
for at least the SOLiD small RNA protocol (SREK) and also for the Illumina protocol.
To get the old behavior, which uses a heuristic to determine whether the adapter was
ligated to the 5’ or 3’ end and then trimmed the read accordingly, use the new
-b (--anywhere) option.

	Clear up how the statistics after processing all reads are printed.

	Fix incorrect statistics. Adapters starting at pos. 0 were correctly trimmed,
but not counted.

	Modify scoring scheme: Improves trimming (some reads that should have been
trimmed were not). Increases no. of trimmed reads in one of our SOLiD data sets
from 36.5 to 37.6%.

	Speed improvements (20% less runtime on my test data set).

v0.7

	Useful exit codes

	Better error reporting when malformed files are encountered

	Add --minimum-length parameter for discarding reads that are shorter than
a specified length after trimming.

	Generalize the alignment function a bit. This is preparation for
supporting adapters that are specific to either the 5’ or 3’ end.

	pure Python fallback for alignment function for when the C module cannot
be used.

v0.6

	Support gzipped input and output.

	Print timing information in statistics.

v0.5

	add --discard option which makes cutadapt discard reads in which an adapter occurs

v0.4

	(more) correctly deal with multiple adapters: If a long adapter matches with lots of
errors, then this could lead to a a shorter adapter matching with few errors getting ignored.

v0.3

	fix huge memory usage (entire input file was unintentionally read into memory)

v0.2

	allow FASTQ input

v0.1

	initial release

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cutadapt 1.9.1 documentation

Index

 Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		cutadapt 1.9.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2014, Marcel Martin.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/up-pressed.png

_static/down.png

