

Cranelift Code Generator

Contents:

	Cranelift IR Reference

	Cranelift Meta Language Reference

	Testing Cranelift

	Register Allocation in Cranelift

	Cranelift compared to LLVM

Rust Crate Documentation

	cranelift [https://docs.rs/cranelift/]

	This is the core code generator crate. It takes Cranelift IR as input
and emits encoded machine instructions, along with symbolic relocations,
as output.

	cranelift-wasm [https://docs.rs/cranelift-wasm/]

	This crate translates WebAssembly code into Cranelift IR.

	cranelift-frontend [https://docs.rs/cranelift-frontend/]

	This crate provides utilities for translating code into Cranelift IR.

	cranelift-native [https://docs.rs/cranelift-native/]

	This crate performs auto-detection of the host, allowing Cranelift to
generate code optimized for the machine it’s running on.

	cranelift-reader [https://docs.rs/cranelift-reader/]

	This crate translates from Cranelift IR’s text format into Cranelift IR
in in-memory data structures.

	cranelift-module [https://docs.rs/cranelift-module/]

	This crate manages compiling multiple functions and data objects
together.

	cranelift-faerie [https://docs.rs/cranelift-faerie/]

	This crate provides a faerie-based backend for cranelift-module, which
emits native object files using the
faerie [https://github.com/m4b/faerie] library.

	cranelift-simplejit [https://docs.rs/cranelift-simplejit/]

	This crate provides a simple JIT backend for cranelift-module, which
emits code and data into memory.

Indices and tables

	Index

	Module Index

	Search Page

Todo list

Todo

Add and subtract with signed overflow.

For example, see
llvm.sadd.with.overflow.* and llvm.ssub.with.overflow.* in
LLVM [https://llvm.org/docs/LangRef.html#arithmetic-with-overflow-intrinsics].

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cranelift/checkouts/latest/docs/ir.rst, line 828.)

Todo

Larger multiplication results.

For example, smulx which multiplies i32 operands to produce a
i64 result. Alternatively, smulhi and smullo pairs.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cranelift/checkouts/latest/docs/ir.rst, line 837.)

Todo

Integer minimum / maximum.

NEON has smin, smax, umin, and umax instructions. We should
replicate those for both scalar and vector integer types. Even if the
target ISA doesn’t have scalar operations, these are good pattern matching
targets.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cranelift/checkouts/latest/docs/ir.rst, line 851.)

Todo

Saturating arithmetic.

Mostly for SIMD use, but again these are good patterns for contraction.
Something like usatadd, usatsub, ssatadd, and ssatsub is a
good start.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cranelift/checkouts/latest/docs/ir.rst, line 858.)

Cranelift IR Reference

The Cranelift intermediate representation (IR) has two primary forms:
an in-memory data structure that the code generator library is using, and a
text format which is used for test cases and debug output.
Files containing Cranelift textual IR have the .clif filename extension.

This reference uses the text format to describe IR semantics but glosses over
the finer details of the lexical and syntactic structure of the format.

Overall structure

Cranelift compiles functions independently. A .clif IR file may contain
multiple functions, and the programmatic API can create multiple function
handles at the same time, but the functions don’t share any data or reference
each other directly.

This is a simple C function that computes the average of an array of floats:

float
average(const float *array, size_t count)
{
 double sum = 0;
 for (size_t i = 0; i < count; i++)
 sum += array[i];
 return sum / count;
}

Here is the same function compiled into Cranelift IR:

function %average(i32, i32) -> f32 system_v {
 ss0 = explicit_slot 8 ; Stack slot for ``sum``.

ebb1(v0: i32, v1: i32):
 v2 = f64const 0x0.0
 stack_store v2, ss0
 brz v1, ebb3 ; Handle count == 0.
 v3 = iconst.i32 0
 jump ebb2(v3)

ebb2(v4: i32):
 v5 = imul_imm v4, 4
 v6 = iadd v0, v5
 v7 = load.f32 v6 ; array[i]
 v8 = fpromote.f64 v7
 v9 = stack_load.f64 ss0
 v10 = fadd v8, v9
 stack_store v10, ss0
 v11 = iadd_imm v4, 1
 v12 = icmp ult v11, v1
 brnz v12, ebb2(v11) ; Loop backedge.
 v13 = stack_load.f64 ss0
 v14 = fcvt_from_uint.f64 v1
 v15 = fdiv v13, v14
 v16 = fdemote.f32 v15
 return v16

ebb3:
 v100 = f32const +NaN
 return v100
}

The first line of a function definition provides the function name and
the function signature which declares the parameter and return types.
Then follows the function preamble which declares a number of entities
that can be referenced inside the function. In the example above, the preamble
declares a single explicit stack slot, ss0.

After the preamble follows the function body which consists of
extended basic blocks (EBBs), the first of which is the
entry block. Every EBB ends with a terminator instruction, so
execution can never fall through to the next EBB without an explicit branch.

A .clif file consists of a sequence of independent function definitions:

function_list ::= { function }
function ::= "function" function_name signature "{" preamble function_body "}"
preamble ::= { preamble_decl }
function_body ::= { extended_basic_block }

Static single assignment form

The instructions in the function body use and produce values in SSA form. This
means that every value is defined exactly once, and every use of a value must be
dominated by the definition.

Cranelift does not have phi instructions but uses EBB parameters
instead. An EBB can be defined with a list of typed parameters. Whenever control
is transferred to the EBB, argument values for the parameters must be provided.
When entering a function, the incoming function parameters are passed as
arguments to the entry EBB’s parameters.

Instructions define zero, one, or more result values. All SSA values are either
EBB parameters or instruction results.

In the example above, the loop induction variable i is represented as three
SSA values: In the entry block, v4 is the initial value. In the loop block
ebb2, the EBB parameter v5 represents the value of the induction
variable during each iteration. Finally, v12 is computed as the induction
variable value for the next iteration.

The cranelift_frontend crate contains utilities for translating from programs
containing multiple assignments to the same variables into SSA form for
Cranelift IR.

Such variables can also be presented to Cranelift as stack slots.
Stack slots are accessed with the stack_store and stack_load
instructions, and can have their address taken with stack_addr, which
supports C-like programming languages where local variables can have their
address taken.

Value types

All SSA values have a type which determines the size and shape (for SIMD
vectors) of the value. Many instructions are polymorphic – they can operate on
different types.

Boolean types

Boolean values are either true or false.

The b1 type represents an abstract boolean value. It can only exist as
an SSA value, and can’t be directly stored in memory. It can, however, be
converted into an integer with value 0 or 1 by the bint instruction (and
converted back with icmp_imm with 0).

Several larger boolean types are also defined, primarily to be used as SIMD
element types. They can be stored in memory, and are represented as either all
zero bits or all one bits.

	
b1

	A boolean type with 1 bits.

	Bytes

	Can’t be stored in memory

	
b8

	A boolean type with 8 bits.

	Bytes

	1

	
b16

	A boolean type with 16 bits.

	Bytes

	2

	
b32

	A boolean type with 32 bits.

	Bytes

	4

	
b64

	A boolean type with 64 bits.

	Bytes

	8

Integer types

Integer values have a fixed size and can be interpreted as either signed or
unsigned. Some instructions will interpret an operand as a signed or unsigned
number, others don’t care.

The support for i8 and i16 arithmetic is incomplete and use could lead to bugs.

	
i8

	An integer type with 8 bits.
WARNING: arithmetic on 8bit integers is incomplete

	Bytes

	1

	
i16

	An integer type with 16 bits.
WARNING: arithmetic on 16bit integers is incomplete

	Bytes

	2

	
i32

	An integer type with 32 bits.

	Bytes

	4

	
i64

	An integer type with 64 bits.

	Bytes

	8

Floating point types

The floating point types have the IEEE 754 semantics that are supported by most
hardware, except that non-default rounding modes, unmasked exceptions, and
exception flags are not currently supported.

There is currently no support for higher-precision types like quad-precision,
double-double, or extended-precision, nor for narrower-precision types like
half-precision.

NaNs are encoded following the IEEE 754-2008 recommendation, with quiet NaN
being encoded with the MSB of the trailing significand set to 1, and signaling
NaNs being indicated by the MSB of the trailing significand set to 0.

Except for bitwise and memory instructions, NaNs returned from arithmetic
instructions are encoded as follows:

	If all NaN inputs to an instruction are quiet NaNs with all bits of the
trailing significand other than the MSB set to 0, the result is a quiet
NaN with a nondeterministic sign bit and all bits of the trailing
significand other than the MSB set to 0.

	Otherwise the result is a quiet NaN with a nondeterministic sign bit
and all bits of the trailing significand other than the MSB set to
nondeterministic values.

	
f32

	A 32-bit floating point type represented in the IEEE 754-2008
binary32 interchange format. This corresponds to the float
type in most C implementations.

	Bytes

	4

	
f64

	A 64-bit floating point type represented in the IEEE 754-2008
binary64 interchange format. This corresponds to the double
type in most C implementations.

	Bytes

	8

CPU flags types

Some target ISAs use CPU flags to represent the result of a comparison. These
CPU flags are represented as two value types depending on the type of values
compared.

Since some ISAs don’t have CPU flags, these value types should not be used
until the legalization phase of compilation where the code is adapted to fit
the target ISA. Use instructions like icmp instead.

The CPU flags types are also restricted such that two flags values can not be
live at the same time. After legalization, some instruction encodings will
clobber the flags, and flags values are not allowed to be live across such
instructions either. The verifier enforces these rules.

	
iflags

	CPU flags representing the result of an integer comparison. These flags
can be tested with an intcc condition code.

	Bytes

	Can’t be stored in memory

	
fflags

	CPU flags representing the result of a floating point comparison. These
flags can be tested with a floatcc condition code.

	Bytes

	Can’t be stored in memory

SIMD vector types

A SIMD vector type represents a vector of values from one of the scalar types
(boolean, integer, and floating point). Each scalar value in a SIMD type is
called a lane. The number of lanes must be a power of two in the range 2-256.

	
iBxN

	A SIMD vector of integers. The lane type iB is one of the integer
types i8 … i64.

Some concrete integer vector types are i32x4, i64x8, and
i16x4.

The size of a SIMD integer vector in memory is \(N B\over 8\) bytes.

	
f32xN

	A SIMD vector of single precision floating point numbers.

Some concrete f32 vector types are: f32x2, f32x4,
and f32x8.

The size of a f32 vector in memory is \(4N\) bytes.

	
f64xN

	A SIMD vector of double precision floating point numbers.

Some concrete f64 vector types are: f64x2, f64x4,
and f64x8.

The size of a f64 vector in memory is \(8N\) bytes.

	
b1xN

	A boolean SIMD vector.

Boolean vectors are used when comparing SIMD vectors. For example,
comparing two i32x4 values would produce a b1x4 result.

Like the b1 type, a boolean vector cannot be stored in memory.

Pseudo-types and type classes

These are not concrete types, but convenient names used to refer to real types
in this reference.

	
iAddr

	A Pointer-sized integer representing an address.

This is either i32, or i64, depending on whether the target
platform has 32-bit or 64-bit pointers.

	
iB

	Any of the scalar integer types i8 – i64.

	
Int

	Any scalar or vector integer type: iB or iBxN.

	
fB

	Either of the floating point scalar types: f32 or f64.

	
Float

	Any scalar or vector floating point type: fB or fBxN.

	
TxN

	Any SIMD vector type.

	
Mem

	Any type that can be stored in memory: Int or Float.

	
Testable

	Either b1 or iN.

Immediate operand types

These types are not part of the normal SSA type system. They are used to
indicate the different kinds of immediate operands on an instruction.

	
imm64

	A 64-bit immediate integer. The value of this operand is interpreted as a
signed two’s complement integer. Instruction encodings may limit the valid
range.

In the textual format, imm64 immediates appear as decimal or
hexadecimal literals using the same syntax as C.

	
offset32

	A signed 32-bit immediate address offset.

In the textual format, offset32 immediates always have an explicit
sign, and a 0 offset may be omitted.

	
ieee32

	A 32-bit immediate floating point number in the IEEE 754-2008 binary32
interchange format. All bit patterns are allowed.

	
ieee64

	A 64-bit immediate floating point number in the IEEE 754-2008 binary64
interchange format. All bit patterns are allowed.

	
bool

	A boolean immediate value, either false or true.

In the textual format, bool immediates appear as ‘false’
and ‘true’.

	
intcc

	An integer condition code. See the icmp instruction for details.

	
floatcc

	A floating point condition code. See the fcmp instruction for details.

The two IEEE floating point immediate types ieee32 and ieee64
are displayed as hexadecimal floating point literals in the textual IR
format. Decimal floating point literals are not allowed because some computer
systems can round differently when converting to binary. The hexadecimal
floating point format is mostly the same as the one used by C99, but extended
to represent all NaN bit patterns:

	Normal numbers

	Compatible with C99: -0x1.Tpe where T are the trailing
significand bits encoded as hexadecimal, and e is the unbiased exponent
as a decimal number. ieee32 has 23 trailing significand bits. They
are padded with an extra LSB to produce 6 hexadecimal digits. This is not
necessary for ieee64 which has 52 trailing significand bits
forming 13 hexadecimal digits with no padding.

	Zeros

	Positive and negative zero are displayed as 0.0 and -0.0 respectively.

	Subnormal numbers

	Compatible with C99: -0x0.Tpemin where T are the trailing
significand bits encoded as hexadecimal, and emin is the minimum exponent
as a decimal number.

	Infinities

	Either -Inf or Inf.

	Quiet NaNs

	Quiet NaNs have the MSB of the trailing significand set. If the remaining
bits of the trailing significand are all zero, the value is displayed as
-NaN or NaN. Otherwise, -NaN:0xT where T are the trailing
significand bits encoded as hexadecimal.

	Signaling NaNs

	Displayed as -sNaN:0xT.

Control flow

Branches transfer control to a new EBB and provide values for the target EBB’s
arguments, if it has any. Conditional branches only take the branch if their
condition is satisfied, otherwise execution continues at the following
instruction in the EBB.

	
jump EBB(args…)

	Jump.

Unconditionally jump to an extended basic block, passing the specified
EBB arguments. The number and types of arguments must match the
destination EBB.

	Arguments

	
	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

	
brz c, EBB(args…)

	Branch when zero.

If c is a b1 value, take the branch when c is false. If
c is an integer value, take the branch when c = 0.

	Arguments

	
	c (Testable) – Controlling value to test

	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

	Type Variables

	
	Testable – inferred from c

	
brnz c, EBB(args…)

	Branch when non-zero.

If c is a b1 value, take the branch when c is true. If
c is an integer value, take the branch when c != 0.

	Arguments

	
	c (Testable) – Controlling value to test

	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

	Type Variables

	
	Testable – inferred from c

	
br_icmp Cond, x, y, EBB(args…)

	Compare scalar integers and branch.

Compare x and y in the same way as the icmp instruction
and take the branch if the condition is true:

br_icmp ugt v1, v2, ebb4(v5, v6)

is semantically equivalent to:

v10 = icmp ugt, v1, v2
brnz v10, ebb4(v5, v6)

Some RISC architectures like MIPS and RISC-V provide instructions that
implement all or some of the condition codes. The instruction can also
be used to represent macro-op fusion on architectures like Intel’s.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

	Type Variables

	
	iB – inferred from x

	
br_table x, EBB, JT

	Indirect branch via jump table.

Use x as an unsigned index into the jump table JT. If a jump
table entry is found, branch to the corresponding EBB. If no entry was
found or the index is out-of-bounds, branch to the given default EBB.

Note that this branch instruction can’t pass arguments to the targeted
blocks. Split critical edges as needed to work around this.

Do not confuse this with “tables” in WebAssembly. br_table is for
jump tables with destinations within the current function only – think
of a match in Rust or a switch in C. If you want to call a
function in a dynamic library, that will typically use
call_indirect.

	Arguments

	
	x (iB) – index into jump table

	EBB (ebb) – Destination extended basic block

	JT (jump_table) – A jump table.

	Type Variables

	
	iB – inferred from x

	
JT = jump_table [EBB0, EBB1, …, EBBn]

	Declare a jump table in the function preamble.

This declares a jump table for use by the br_table indirect branch
instruction. Entries in the table are EBB names.

The EBBs listed must belong to the current function, and they can’t have
any arguments.

	Arguments

	
	EBB0 – Target EBB when x = 0.

	EBB1 – Target EBB when x = 1.

	EBBn – Target EBB when x = n.

	Result

	A jump table identifier. (Not an SSA value).

Traps stop the program because something went wrong. The exact behavior depends
on the target instruction set architecture and operating system. There are
explicit trap instructions defined below, but some instructions may also cause
traps for certain input value. For example, udiv traps when the divisor
is zero.

	
trap code

	Terminate execution unconditionally.

	Arguments

	
	code (trapcode) – A trap reason code.

	
trapz c, code

	Trap when zero.

if c is non-zero, execution continues at the following instruction.

	Arguments

	
	c (Testable) – Controlling value to test

	code (trapcode) – A trap reason code.

	Type Variables

	
	Testable – inferred from c

	
trapnz c, code

	Trap when non-zero.

if c is zero, execution continues at the following instruction.

	Arguments

	
	c (Testable) – Controlling value to test

	code (trapcode) – A trap reason code.

	Type Variables

	
	Testable – inferred from c

Function calls

A function call needs a target function and a function signature. The
target function may be determined dynamically at runtime, but the signature must
be known when the function call is compiled. The function signature describes
how to call the function, including parameters, return values, and the calling
convention:

signature ::= "(" [paramlist] ")" ["->" retlist] [call_conv]
paramlist ::= param { "," param }
retlist ::= paramlist
param ::= type [paramext] [paramspecial]
paramext ::= "uext" | "sext"
paramspecial ::= "sret" | "link" | "fp" | "csr" | "vmctx" | "sigid" | "stack_limit"
callconv ::= "fast" | "cold" | "system_v" | "fastcall" | "baldrdash"

A function’s calling convention determines exactly how arguments and return
values are passed, and how stack frames are managed. Since all of these details
depend on both the instruction set /// architecture and possibly the operating
system, a function’s calling convention is only fully determined by a
(TargetIsa, CallConv) tuple.

	Name

	Description

	sret

	pointer to a return value in memory

	link

	return address

	fp

	the initial value of the frame pointer

	csr

	callee-saved register

	vmctx

	VM context pointer, which may contain pointers to heaps etc.

	sigid

	signature id, for checking caller/callee signature compatibility

	stack_limit

	limit value for the size of the stack

	Name

	Description

	fast

	not-ABI-stable convention for best performance

	cold

	not-ABI-stable convention for infrequently executed code

	system_v

	System V-style convention used on many platforms

	fastcall

	Windows “fastcall” convention, also used for x64 and ARM

	baldrdash

	SpiderMonkey WebAssembly convention

The “not-ABI-stable” conventions do not follow an external specification and
may change between versions of Cranelift.

The “fastcall” convention is not yet implemented.

Parameters and return values have flags whose meaning is mostly target
dependent. These flags support interfacing with code produced by other
compilers.

Functions that are called directly must be declared in the function
preamble:

	
FN = [colocated] NAME signature

	Declare a function so it can be called directly.

If the colocated keyword is present, the symbol’s definition will be
defined along with the current function, such that it can use more
efficient addressing.

	Arguments

	
	NAME – Name of the function, passed to the linker for resolution.

	signature – Function signature. See below.

	Results

	
	FN – A function identifier that can be used with call.

	
rvals = call FN(args…)

	Direct function call.

Call a function which has been declared in the preamble. The argument
types must match the function’s signature.

	Arguments

	
	FN (func_ref) – function to call, declared by function

	args (variable_args) – call arguments

	Results

	
	rvals (variable_args) – return values

	
return rvals…

	Return from the function.

Unconditionally transfer control to the calling function, passing the
provided return values. The list of return values must match the
function signature’s return types.

	Arguments

	
	rvals (variable_args) – return values

	
fallthrough_return rvals…

	Return from the function by fallthrough.

This is a specialized instruction for use where one wants to append
a custom epilogue, which will then perform the real return. This
instruction has no encoding.

	Arguments

	
	rvals (variable_args) – return values

This simple example illustrates direct function calls and signatures:

function %gcd(i32 uext, i32 uext) -> i32 uext system_v {
 fn0 = %divmod(i32 uext, i32 uext) -> i32 uext, i32 uext

ebb1(v0: i32, v1: i32):
 brz v1, ebb2
 v2, v3 = call fn0(v0, v1)
 return v2

ebb2:
 return v0
}

Indirect function calls use a signature declared in the preamble.

	
rvals = call_indirect SIG, callee(args…)

	Indirect function call.

Call the function pointed to by callee with the given arguments. The
called function must match the specified signature.

Note that this is different from WebAssembly’s call_indirect; the
callee is a native address, rather than a table index. For WebAssembly,
table_addr and load are used to obtain a native address
from a table.

	Arguments

	
	SIG (sig_ref) – function signature

	callee (iAddr) – address of function to call

	args (variable_args) – call arguments

	Results

	
	rvals (variable_args) – return values

	Type Variables

	
	iAddr – inferred from callee

	
addr = func_addr FN

	Get the address of a function.

Compute the absolute address of a function declared in the preamble.
The returned address can be used as a callee argument to
call_indirect. This is also a method for calling functions that
are too far away to be addressable by a direct call
instruction.

	Arguments

	
	FN (func_ref) – function to call, declared by function

	Results

	
	addr (iAddr) – An integer address type

	Type Variables

	
	iAddr – explicitly provided

Memory

Cranelift provides fully general load and store instructions for
accessing memory, as well as extending loads and truncating stores.

If the memory at the given address is not addressable, the behavior of
these instructions is undefined. If it is addressable but not
accessible, they trap.

	
a = load MemFlags, p, Offset

	Load from memory at p + Offset.

This is a polymorphic instruction that can load any value type which
has a memory representation.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (Mem) – Value loaded

	Type Variables

	
	Mem – explicitly provided

	iAddr – from input operand

	
store MemFlags, x, p, Offset

	Store x to memory at p + Offset.

This is a polymorphic instruction that can store any value type with a
memory representation.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	x (Mem) – Value to be stored

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Type Variables

	
	Mem – inferred from x

	iAddr – from input operand

There are also more restricted operations for accessing specific types of memory
objects.

Additionally, instructions are provided for handling multi-register addressing.

	
a = load_complex MemFlags(args…), Offset

	Load from memory at sum(args) + Offset.

This is a polymorphic instruction that can load any value type which
has a memory representation.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	args (variable_args) – Address arguments

	Offset (offset32) – Byte offset from base address

	Results

	
	a (Mem) – Value loaded

	Type Variables

	
	Mem – explicitly provided

	
store_complex MemFlags, x(args…), Offset

	Store x to memory at sum(args) + Offset.

This is a polymorphic instruction that can store any value type with a
memory representation.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	x (Mem) – Value to be stored

	args (variable_args) – Address arguments

	Offset (offset32) – Byte offset from base address

	Type Variables

	
	Mem – inferred from x

Memory operation flags

Loads and stores can have flags that loosen their semantics in order to enable
optimizations.

When the accessible flag is set, the behavior is undefined if the memory
is not accessible.

Loads and stores are misaligned if the resultant address is not a multiple of
the expected alignment. By default, misaligned loads and stores are allowed,
but when the aligned flag is set, a misaligned memory access is allowed to
trap.

Explicit Stack Slots

One set of restricted memory operations access the current function’s stack
frame. The stack frame is divided into fixed-size stack slots that are
allocated in the function preamble. Stack slots are not typed, they
simply represent a contiguous sequence of accessible bytes in the stack
frame.

	
SS = explicit_slot Bytes, Flags…

	Allocate a stack slot in the preamble.

If no alignment is specified, Cranelift will pick an appropriate alignment
for the stack slot based on its size and access patterns.

	Arguments

	
	Bytes – Stack slot size on bytes.

	Flags

	
	align(N) – Request at least N bytes alignment.

	Results

	
	SS – Stack slot index.

	
a = stack_load SS, Offset

	Load a value from a stack slot at the constant offset.

This is a polymorphic instruction that can load any value type which
has a memory representation.

The offset is an immediate constant, not an SSA value. The memory
access cannot go out of bounds, i.e.
\(sizeof(a) + Offset <= sizeof(SS)\).

	Arguments

	
	SS (stack_slot) – A stack slot.

	Offset (offset32) – In-bounds offset into stack slot

	Results

	
	a (Mem) – Value loaded

	Type Variables

	
	Mem – explicitly provided

	
stack_store x, SS, Offset

	Store a value to a stack slot at a constant offset.

This is a polymorphic instruction that can store any value type with a
memory representation.

The offset is an immediate constant, not an SSA value. The memory
access cannot go out of bounds, i.e.
\(sizeof(a) + Offset <= sizeof(SS)\).

	Arguments

	
	x (Mem) – Value to be stored

	SS (stack_slot) – A stack slot.

	Offset (offset32) – In-bounds offset into stack slot

	Type Variables

	
	Mem – inferred from x

The dedicated stack access instructions are easy for the compiler to reason
about because stack slots and offsets are fixed at compile time. For example,
the alignment of these stack memory accesses can be inferred from the offsets
and stack slot alignments.

It’s also possible to obtain the address of a stack slot, which can be used
in unrestricted loads and stores.

	
addr = stack_addr SS, Offset

	Get the address of a stack slot.

Compute the absolute address of a byte in a stack slot. The offset must
refer to a byte inside the stack slot:
\(0 <= Offset < sizeof(SS)\).

	Arguments

	
	SS (stack_slot) – A stack slot.

	Offset (offset32) – In-bounds offset into stack slot

	Results

	
	addr (iAddr) – An integer address type

	Type Variables

	
	iAddr – explicitly provided

The stack_addr instruction can be used to macro-expand the stack access
instructions before instruction selection:

v0 = stack_load.f64 ss3, 16
; Expands to:
v1 = stack_addr ss3, 16
v0 = load.f64 v1

When Cranelift code is running in a sandbox, it can also be necessary to include
stack overflow checks in the prologue.

Global values

A global value is an object whose value is not known at compile time. The
value is computed at runtime by global_value, possibly using
information provided by the linker via relocations. There are multiple
kinds of global values using different methods for determining their value.
Cranelift does not track the type of a global value, for they are just
values stored in non-stack memory.

When Cranelift is generating code for a virtual machine environment, globals can
be used to access data structures in the VM’s runtime. This requires functions
to have access to a VM context pointer which is used as the base address.
Typically, the VM context pointer is passed as a hidden function argument to
Cranelift functions.

Chains of global value expressions are possible, but cycles are not allowed.
They will be caught by the IR verifier.

	
GV = vmctx

	Declare a global value of the address of the VM context struct.

This declares a global value which is the VM context pointer which may
be passed as a hidden argument to functions JIT-compiled for a VM.

Typically, the VM context is a #[repr(C, packed)] struct.

	Results

	
	GV – Global value.

A global value can also be derived by treating another global variable as a
struct pointer and loading from one of its fields. This makes it possible to
chase pointers into VM runtime data structures.

	
GV = load.Type BaseGV [Offset]

	Declare a global value pointed to by BaseGV plus Offset, with type Type.

It is assumed the BaseGV plus Offset resides in accessible memory with the
appropriate alignment for storing a value with type Type.

	Arguments

	
	BaseGV – Global value providing the base pointer.

	Offset – Offset added to the base before loading.

	Results

	
	GV – Global value.

	
GV = iadd_imm BaseGV, Offset

	Declare a global value which has the value of BaseGV offset by Offset.

	Arguments

	
	BaseGV – Global value providing the base value.

	Offset – Offset added to the base value.

	
GV = [colocated] symbol Name

	Declare a symbolic address global value.

The value of GV is symbolic and will be assigned a relocation, so that
it can be resolved by a later linking phase.

If the colocated keyword is present, the symbol’s definition will be
defined along with the current function, such that it can use more
efficient addressing.

	Arguments

	
	Name – External name.

	Results

	
	GV – Global value.

	
a = global_value GV

	Compute the value of global GV.

	Arguments

	
	GV (global_value) – A global value.

	Results

	
	a (Mem) – Value loaded

	Type Variables

	
	Mem – explicitly provided

	
a = symbol_value GV

	Compute the value of global GV, which is a symbolic value.

	Arguments

	
	GV (global_value) – A global value.

	Results

	
	a (Mem) – Value loaded

	Type Variables

	
	Mem – explicitly provided

Heaps

Code compiled from WebAssembly or asm.js runs in a sandbox where it can’t access
all process memory. Instead, it is given a small set of memory areas to work
in, and all accesses are bounds checked. Cranelift models this through the
concept of heaps.

A heap is declared in the function preamble and can be accessed with the
heap_addr instruction that traps on out-of-bounds accesses or
returns a pointer that is guaranteed to trap. Heap addresses can be smaller than
the native pointer size, for example unsigned i32 offsets on a 64-bit
architecture.

digraph static {
node [
 shape=record,
 fontsize=10,
 fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans"
]
"static" [label="mapped\npages|unmapped\npages|offset_guard\npages"]
}

Heap address space layout

A heap appears as three consecutive ranges of address space:

	The mapped pages are the accessible memory range in the heap. A
heap may have a minimum guaranteed size which means that some mapped pages
are always present.

	The unmapped pages is a possibly empty range of address space that may be
mapped in the future when the heap is grown. They are addressable but
not accessible.

	The offset-guard pages is a range of address space that is guaranteed to
always cause a trap when accessed. It is used to optimize bounds checking for
heap accesses with a shared base pointer. They are addressable but
not accessible.

The heap bound is the total size of the mapped and unmapped pages. This is
the bound that heap_addr checks against. Memory accesses inside the
heap bounds can trap if they hit an unmapped page (which is not
accessible).

	
addr = heap_addr H, p, Size

	Bounds check and compute absolute address of heap memory.

Verify that the offset range p .. p + Size - 1 is in bounds for the
heap H, and generate an absolute address that is safe to dereference.

	If p + Size is not greater than the heap bound, return an
absolute address corresponding to a byte offset of p from the
heap’s base address.

	If p + Size is greater than the heap bound, generate a trap.

	Arguments

	
	H (heap) – A heap.

	p (HeapOffset) – An unsigned heap offset

	Size (uimm32) – Size in bytes

	Results

	
	addr (iAddr) – An integer address type

	Type Variables

	
	iAddr – explicitly provided

	HeapOffset – from input operand

Two styles of heaps are supported, static and dynamic. They behave
differently when resized.

Static heaps

A static heap starts out with all the address space it will ever need, so it
never moves to a different address. At the base address is a number of mapped
pages corresponding to the heap’s current size. Then follows a number of
unmapped pages where the heap can grow up to its maximum size. After the
unmapped pages follow the offset-guard pages which are also guaranteed to
generate a trap when accessed.

	
H = static Base, min MinBytes, bound BoundBytes, offset_guard OffsetGuardBytes

	Declare a static heap in the preamble.

	Arguments

	
	Base – Global value holding the heap’s base address.

	MinBytes – Guaranteed minimum heap size in bytes. Accesses below this
size will never trap.

	BoundBytes – Fixed heap bound in bytes. This defines the amount of
address space reserved for the heap, not including the offset-guard
pages.

	OffsetGuardBytes – Size of the offset-guard pages in bytes.

Dynamic heaps

A dynamic heap can be relocated to a different base address when it is
resized, and its bound can move dynamically. The offset-guard pages move when
the heap is resized. The bound of a dynamic heap is stored in a global value.

	
H = dynamic Base, min MinBytes, bound BoundGV, offset_guard OffsetGuardBytes

	Declare a dynamic heap in the preamble.

	Arguments

	
	Base – Global value holding the heap’s base address.

	MinBytes – Guaranteed minimum heap size in bytes. Accesses below this
size will never trap.

	BoundGV – Global value containing the current heap bound in bytes.

	OffsetGuardBytes – Size of the offset-guard pages in bytes.

Heap examples

The SpiderMonkey VM prefers to use fixed heaps with a 4 GB bound and 2 GB of
offset-guard pages when running WebAssembly code on 64-bit CPUs. The combination
of a 4 GB fixed bound and 1-byte bounds checks means that no code needs to be
generated for bounds checks at all:

function %add_members(i32, i64 vmctx) -> f32 baldrdash {
 gv0 = vmctx
 gv1 = load.i64 notrap aligned gv0+64
 heap0 = static gv1, min 0x1000, bound 0x1_0000_0000, offset_guard 0x8000_0000

ebb0(v0: i32, v5: i64):
 v1 = heap_addr.i64 heap0, v0, 1
 v2 = load.f32 v1+16
 v3 = load.f32 v1+20
 v4 = fadd v2, v3
 return v4
}

A static heap can also be used for 32-bit code when the WebAssembly module
declares a small upper bound on its memory. A 1 MB static bound with a single 4
KB offset-guard page still has opportunities for sharing bounds checking code:

function %add_members(i32, i32 vmctx) -> f32 baldrdash {
 gv0 = vmctx
 gv1 = load.i32 notrap aligned gv0+64
 heap0 = static gv1, min 0x1000, bound 0x10_0000, offset_guard 0x1000

ebb0(v0: i32, v5: i32):
 v1 = heap_addr.i32 heap0, v0, 1
 v2 = load.f32 v1+16
 v3 = load.f32 v1+20
 v4 = fadd v2, v3
 return v4
}

If the upper bound on the heap size is too large, a dynamic heap is required
instead.

Finally, a runtime environment that simply allocates a heap with
malloc() may not have any offset-guard pages at all. In that case,
full bounds checking is required for each access:

function %add_members(i32, i64 vmctx) -> f32 baldrdash {
 gv0 = vmctx
 gv1 = load.i64 notrap aligned gv0+64
 gv2 = load.i32 notrap aligned gv0+72
 heap0 = dynamic gv1, min 0x1000, bound gv2, offset_guard 0

ebb0(v0: i32, v6: i64):
 v1 = heap_addr.i64 heap0, v0, 20
 v2 = load.f32 v1+16
 v3 = heap_addr.i64 heap0, v0, 24
 v4 = load.f32 v3+20
 v5 = fadd v2, v4
 return v5
}

Tables

Code compiled from WebAssembly often needs access to objects outside of its
linear memory. WebAssembly uses tables to allow programs to refer to opaque
values through integer indices.

A table is declared in the function preamble and can be accessed with the
table_addr instruction that traps on out-of-bounds accesses.
Table addresses can be smaller than the native pointer size, for example
unsigned i32 offsets on a 64-bit architecture.

A table appears as a consecutive range of address space, conceptually
divided into elements of fixed sizes, which are identified by their index.
The memory is accessible.

The table bound is the number of elements currently in the table. This is
the bound that table_addr checks against.

	
addr = table_addr T, p, Offset

	Bounds check and compute absolute address of a table entry.

Verify that the offset p is in bounds for the table T, and generate
an absolute address that is safe to dereference.

Offset must be less than the size of a table element.

	If p is not greater than the table bound, return an absolute
address corresponding to a byte offset of p from the table’s
base address.

	If p is greater than the table bound, generate a trap.

	Arguments

	
	T (table) – A table.

	p (TableOffset) – An unsigned table offset

	Offset (offset32) – Byte offset from element address

	Results

	
	addr (iAddr) – An integer address type

	Type Variables

	
	iAddr – explicitly provided

	TableOffset – from input operand

A table can be relocated to a different base address when it is resized, and
its bound can move dynamically. The bound of a table is stored in a global
value.

	
T = dynamic Base, min MinElements, bound BoundGV, element_size ElementSize

	Declare a table in the preamble.

	Arguments

	
	Base – Global value holding the table’s base address.

	MinElements – Guaranteed minimum table size in elements.

	BoundGV – Global value containing the current heap bound in elements.

	ElementSize – Size of each element.

Operations

	
a = select c, x, y

	Conditional select.

This instruction selects whole values. Use vselect for
lane-wise selection.

	Arguments

	
	c (Testable) – Controlling value to test

	x (Any) – Value to use when c is true

	y (Any) – Value to use when c is false

	Results

	
	a (Any) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	Any – inferred from x

	Testable – from input operand

	
a = selectif cc, flags, x, y

	Conditional select, dependent on integer condition codes.

	Arguments

	
	cc (intcc) – Controlling condition code

	flags (iflags) – The machine’s flag register

	x (Any) – Value to use when c is true

	y (Any) – Value to use when c is false

	Results

	
	a (Any) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	Any – explicitly provided

Constant materialization

A few instructions have variants that take immediate operands (e.g.,
band / band_imm), but in general an instruction is required to
load a constant into an SSA value.

	
a = iconst N

	Integer constant.

Create a scalar integer SSA value with an immediate constant value, or
an integer vector where all the lanes have the same value.

	Arguments

	
	N (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A constant integer scalar or vector value

	Type Variables

	
	Int – explicitly provided

	
a = f32const N

	Floating point constant.

Create a f32 SSA value with an immediate constant value.

	Arguments

	
	N (ieee32) – A 32-bit immediate floating point number.

	Results

	
	a (f32) – A constant f32 scalar value

	
a = f64const N

	Floating point constant.

Create a f64 SSA value with an immediate constant value.

	Arguments

	
	N (ieee64) – A 64-bit immediate floating point number.

	Results

	
	a (f64) – A constant f64 scalar value

	
a = bconst N

	Boolean constant.

Create a scalar boolean SSA value with an immediate constant value, or
a boolean vector where all the lanes have the same value.

	Arguments

	
	N (bool) – An immediate boolean.

	Results

	
	a (Bool) – A constant boolean scalar or vector value

	Type Variables

	
	Bool – explicitly provided

Vector operations

	
lo, hi = vsplit x

	Split a vector into two halves.

Split the vector x into two separate values, each containing half of
the lanes from x. The result may be two scalars if x only had
two lanes.

	Arguments

	
	x (TxN) – Vector to split

	Results

	
	lo (half_vector(TxN)) – Low-numbered lanes of x

	hi (half_vector(TxN)) – High-numbered lanes of x

	Type Variables

	
	TxN – inferred from x

	
a = vconcat x, y

	Vector concatenation.

Return a vector formed by concatenating x and y. The resulting
vector type has twice as many lanes as each of the inputs. The lanes of
x appear as the low-numbered lanes, and the lanes of y become
the high-numbered lanes of a.

It is possible to form a vector by concatenating two scalars.

	Arguments

	
	x (Any128) – Low-numbered lanes

	y (Any128) – High-numbered lanes

	Results

	
	a (double_vector(Any128)) – Concatenation of x and y

	Type Variables

	
	Any128 – inferred from x

	
a = vselect c, x, y

	Vector lane select.

Select lanes from x or y controlled by the lanes of the boolean
vector c.

	Arguments

	
	c (as_bool(TxN)) – Controlling vector

	x (TxN) – Value to use where c is true

	y (TxN) – Value to use where c is false

	Results

	
	a (TxN) – A SIMD vector type

	Type Variables

	
	TxN – inferred from x

	
a = splat x

	Vector splat.

Return a vector whose lanes are all x.

	Arguments

	
	x (lane_of(TxN)) – None

	Results

	
	a (TxN) – A SIMD vector type

	Type Variables

	
	TxN – explicitly provided

	
a = insertlane x, Idx, y

	Insert y as lane Idx in x.

The lane index, Idx, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of x.

	Arguments

	
	x (TxN) – SIMD vector to modify

	Idx (uimm8) – Lane index

	y (lane_of(TxN)) – New lane value

	Results

	
	a (TxN) – A SIMD vector type

	Type Variables

	
	TxN – inferred from x

	
a = extractlane x, Idx

	Extract lane Idx from x.

The lane index, Idx, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of x.

	Arguments

	
	x (TxN) – A SIMD vector type

	Idx (uimm8) – Lane index

	Results

	
	a (lane_of(TxN)) – None

	Type Variables

	
	TxN – inferred from x

Integer operations

	
a = icmp Cond, x, y

	Integer comparison.

The condition code determines if the operands are interpreted as signed
or unsigned integers.

	Signed

	Unsigned

	Condition

	eq

	eq

	Equal

	ne

	ne

	Not equal

	slt

	ult

	Less than

	sge

	uge

	Greater than or equal

	sgt

	ugt

	Greater than

	sle

	ule

	Less than or equal

When this instruction compares integer vectors, it returns a boolean
vector of lane-wise comparisons.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (as_bool(Int)) – None

	Type Variables

	
	Int – inferred from x

	
a = icmp_imm Cond, x, Y

	Compare scalar integer to a constant.

This is the same as the icmp instruction, except one operand is
an immediate constant.

This instruction can only compare scalars. Use icmp for
lane-wise vector comparisons.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (b1) – A boolean type with 1 bits.

	Type Variables

	
	iB – inferred from x

	
a = iadd x, y

	Wrapping integer addition: \(a := x + y \pmod{2^B}\).

This instruction does not depend on the signed/unsigned interpretation
of the operands.

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = iadd_imm x, Y

	Add immediate integer.

Same as iadd, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = iadd_cin x, y, c_in

	Add integers with carry in.

Same as iadd with an additional carry input. Computes:

\[a = x + y + c_{in} \pmod 2^B\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	c_in (b1) – Input carry flag

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from y

	
a, c_out = iadd_cout x, y

	Add integers with carry out.

Same as iadd with an additional carry output.

\[\begin{split}a &= x + y \pmod 2^B \\
c_{out} &= x+y >= 2^B\end{split}\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	c_out (b1) – Output carry flag

	Type Variables

	
	iB – inferred from x

	
a, c_out = iadd_carry x, y, c_in

	Add integers with carry in and out.

Same as iadd with an additional carry input and output.

\[\begin{split}a &= x + y + c_{in} \pmod 2^B \\
c_{out} &= x + y + c_{in} >= 2^B\end{split}\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	c_in (b1) – Input carry flag

	Results

	
	a (iB) – A scalar integer type

	c_out (b1) – Output carry flag

	Type Variables

	
	iB – inferred from y

	
a = isub x, y

	Wrapping integer subtraction: \(a := x - y \pmod{2^B}\).

This instruction does not depend on the signed/unsigned interpretation
of the operands.

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = irsub_imm x, Y

	Immediate reverse wrapping subtraction: \(a := Y - x \pmod{2^B}\).

Also works as integer negation when \(Y = 0\). Use iadd_imm
with a negative immediate operand for the reverse immediate
subtraction.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = isub_bin x, y, b_in

	Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

\[a = x - (y + b_{in}) \pmod 2^B\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	b_in (b1) – Input borrow flag

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from y

	
a, b_out = isub_bout x, y

	Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

\[\begin{split}a &= x - y \pmod 2^B \\
b_{out} &= x < y\end{split}\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	b_out (b1) – Output borrow flag

	Type Variables

	
	iB – inferred from x

	
a, b_out = isub_borrow x, y, b_in

	Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

\[\begin{split}a &= x - (y + b_{in}) \pmod 2^B \\
b_{out} &= x < y + b_{in}\end{split}\]

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	b_in (b1) – Input borrow flag

	Results

	
	a (iB) – A scalar integer type

	b_out (b1) – Output borrow flag

	Type Variables

	
	iB – inferred from y

Todo

Add and subtract with signed overflow.

For example, see
llvm.sadd.with.overflow.* and llvm.ssub.with.overflow.* in
LLVM [https://llvm.org/docs/LangRef.html#arithmetic-with-overflow-intrinsics].

	
a = imul x, y

	Wrapping integer multiplication: \(a := x y \pmod{2^B}\).

This instruction does not depend on the signed/unsigned interpretation
of the
operands.

Polymorphic over all integer types (vector and scalar).

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = imul_imm x, Y

	Integer multiplication by immediate constant.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

Todo

Larger multiplication results.

For example, smulx which multiplies i32 operands to produce a
i64 result. Alternatively, smulhi and smullo pairs.

	
a = udiv x, y

	Unsigned integer division: \(a := \lfloor {x \over y} \rfloor\).

This operation traps if the divisor is zero.

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = udiv_imm x, Y

	Unsigned integer division by an immediate constant.

This operation traps if the divisor is zero.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = sdiv x, y

	Signed integer division rounded toward zero: \(a := sign(xy)
\lfloor {|x| \over |y|}\rfloor\).

This operation traps if the divisor is zero, or if the result is not
representable in \(B\) bits two’s complement. This only happens
when \(x = -2^{B-1}, y = -1\).

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = sdiv_imm x, Y

	Signed integer division by an immediate constant.

This operation traps if the divisor is zero, or if the result is not
representable in \(B\) bits two’s complement. This only happens
when \(x = -2^{B-1}, Y = -1\).

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = urem x, y

	Unsigned integer remainder.

This operation traps if the divisor is zero.

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = urem_imm x, Y

	Unsigned integer remainder with immediate divisor.

This operation traps if the divisor is zero.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = srem x, y

	Signed integer remainder. The result has the sign of the dividend.

This operation traps if the divisor is zero.

	Arguments

	
	x (Int) – A scalar or vector integer type

	y (Int) – A scalar or vector integer type

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = srem_imm x, Y

	Signed integer remainder with immediate divisor.

This operation traps if the divisor is zero.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

Todo

Integer minimum / maximum.

NEON has smin, smax, umin, and umax instructions. We should
replicate those for both scalar and vector integer types. Even if the
target ISA doesn’t have scalar operations, these are good pattern matching
targets.

Todo

Saturating arithmetic.

Mostly for SIMD use, but again these are good patterns for contraction.
Something like usatadd, usatsub, ssatadd, and ssatsub is a
good start.

Bitwise operations

The bitwise operations and operate on any value type: Integers, floating point
numbers, and booleans. When operating on integer or floating point types, the
bitwise operations are working on the binary representation of the values. When
operating on boolean values, the bitwise operations work as logical operators.

	
a = band x, y

	Bitwise and.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = band_imm x, Y

	Bitwise and with immediate.

Same as band, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = bor x, y

	Bitwise or.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = bor_imm x, Y

	Bitwise or with immediate.

Same as bor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = bxor x, y

	Bitwise xor.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = bxor_imm x, Y

	Bitwise xor with immediate.

Same as bxor, but one operand is an immediate constant.

Polymorphic over all scalar integer types, but does not support vector
types.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = bnot x

	Bitwise not.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = band_not x, y

	Bitwise and not.

Computes x & ~y.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = bor_not x, y

	Bitwise or not.

Computes x | ~y.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

	
a = bxor_not x, y

	Bitwise xor not.

Computes x ^ ~y.

	Arguments

	
	x (bits) – Any integer, float, or boolean scalar or vector type

	y (bits) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (bits) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	bits – inferred from x

The shift and rotate operations only work on integer types (scalar and vector).
The shift amount does not have to be the same type as the value being shifted.
Only the low B bits of the shift amount is significant.

When operating on an integer vector type, the shift amount is still a scalar
type, and all the lanes are shifted the same amount. The shift amount is masked
to the number of bits in a lane, not the full size of the vector type.

	
a = rotl x, y

	Rotate left.

Rotate the bits in x by y places.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	y (iB) – Number of bits to shift

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	iB – from input operand

	
a = rotl_imm x, Y

	Rotate left by immediate.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = rotr x, y

	Rotate right.

Rotate the bits in x by y places.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	y (iB) – Number of bits to shift

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	iB – from input operand

	
a = rotr_imm x, Y

	Rotate right by immediate.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = ishl x, y

	Integer shift left. Shift the bits in x towards the MSB by y
places. Shift in zero bits to the LSB.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

\[\begin{split}s &:= y \pmod B, \\
a &:= x \cdot 2^s \pmod{2^B}.\end{split}\]

	Arguments

	
	x (Int) – Scalar or vector value to shift

	y (iB) – Number of bits to shift

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	iB – from input operand

	
a = ishl_imm x, Y

	Integer shift left by immediate.

The shift amount is masked to the size of x.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = ushr x, y

	Unsigned shift right. Shift bits in x towards the LSB by y
places, shifting in zero bits to the MSB. Also called a logical
shift.

The shift amount is masked to the size of the register.

When shifting a B-bits integer type, this instruction computes:

\[\begin{split}s &:= y \pmod B, \\
a &:= \lfloor x \cdot 2^{-s} \rfloor.\end{split}\]

	Arguments

	
	x (Int) – Scalar or vector value to shift

	y (iB) – Number of bits to shift

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	iB – from input operand

	
a = ushr_imm x, Y

	Unsigned shift right by immediate.

The shift amount is masked to the size of the register.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	
a = sshr x, y

	Signed shift right. Shift bits in x towards the LSB by y
places, shifting in sign bits to the MSB. Also called an arithmetic
shift.

The shift amount is masked to the size of the register.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	y (iB) – Number of bits to shift

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

	iB – from input operand

	
a = sshr_imm x, Y

	Signed shift right by immediate.

The shift amount is masked to the size of the register.

	Arguments

	
	x (Int) – Scalar or vector value to shift

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	a (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from x

The bit-counting instructions below are scalar only.

	
a = clz x

	Count leading zero bits.

Starting from the MSB in x, count the number of zero bits before
reaching the first one bit. When x is zero, returns the size of x
in bits.

	Arguments

	
	x (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = cls x

	Count leading sign bits.

Starting from the MSB after the sign bit in x, count the number of
consecutive bits identical to the sign bit. When x is 0 or -1,
returns one less than the size of x in bits.

	Arguments

	
	x (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = ctz x

	Count trailing zeros.

Starting from the LSB in x, count the number of zero bits before
reaching the first one bit. When x is zero, returns the size of x
in bits.

	Arguments

	
	x (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

	
a = popcnt x

	Population count

Count the number of one bits in x.

	Arguments

	
	x (iB) – A scalar integer type

	Results

	
	a (iB) – A scalar integer type

	Type Variables

	
	iB – inferred from x

Floating point operations

These operations generally follow IEEE 754-2008 semantics.

	
a = fcmp Cond, x, y

	Floating point comparison.

Two IEEE 754-2008 floating point numbers, x and y, relate to each
other in exactly one of four ways:

	UN

	Unordered when one or both numbers is NaN.

	EQ

	When \(x = y\). (And \(0.0 = -0.0\)).

	LT

	When \(x < y\).

	GT

	When \(x > y\).

The 14 floatcc condition codes each correspond to a subset of
the four relations, except for the empty set which would always be
false, and the full set which would always be true.

The condition codes are divided into 7 ‘ordered’ conditions which don’t
include UN, and 7 unordered conditions which all include UN.

	Ordered

	Unordered

	Condition

	ord

	EQ | LT | GT

	uno

	UN

	NaNs absent / present.

	eq

	EQ

	ueq

	UN | EQ

	Equal

	one

	LT | GT

	ne

	UN | LT | GT

	Not equal

	lt

	LT

	ult

	UN | LT

	Less than

	le

	LT | EQ

	ule

	UN | LT | EQ

	Less than or equal

	gt

	GT

	ugt

	UN | GT

	Greater than

	ge

	GT | EQ

	uge

	UN | GT | EQ

	Greater than or equal

The standard C comparison operators, <, <=, >, >=, are all ordered,
so they are false if either operand is NaN. The C equality operator,
==, is ordered, and since inequality is defined as the logical
inverse it is unordered. They map to the floatcc condition
codes as follows:

	C

	Cond

	Subset

	==

	eq

	EQ

	!=

	ne

	UN | LT | GT

	<

	lt

	LT

	<=

	le

	LT | EQ

	>

	gt

	GT

	>=

	ge

	GT | EQ

This subset of condition codes also corresponds to the WebAssembly
floating point comparisons of the same name.

When this instruction compares floating point vectors, it returns a
boolean vector with the results of lane-wise comparisons.

	Arguments

	
	Cond (floatcc) – A floating point comparison condition code.

	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (as_bool(Float)) – None

	Type Variables

	
	Float – inferred from x

	
a = fadd x, y

	Floating point addition.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from x

	
a = fsub x, y

	Floating point subtraction.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from x

	
a = fmul x, y

	Floating point multiplication.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from x

	
a = fdiv x, y

	Floating point division.

Unlike the integer division instructions sdiv and
udiv, this can’t trap. Division by zero is infinity or
NaN, depending on the dividend.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from x

	
a = sqrt x

	Floating point square root.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from x

	
a = fma x, y, z

	Floating point fused multiply-and-add.

Computes \(a := xy+z\) without any intermediate rounding of the
product.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	z (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – Result of applying operator to each lane

	Type Variables

	
	Float – inferred from y

Sign bit manipulations

The sign manipulating instructions work as bitwise operations, so they don’t
have special behavior for signaling NaN operands. The exponent and trailing
significand bits are always preserved.

	
a = fneg x

	Floating point negation.

Note that this is a pure bitwise operation.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x with its sign bit inverted

	Type Variables

	
	Float – inferred from x

	
a = fabs x

	Floating point absolute value.

Note that this is a pure bitwise operation.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x with its sign bit cleared

	Type Variables

	
	Float – inferred from x

	
a = fcopysign x, y

	Floating point copy sign.

Note that this is a pure bitwise operation. The sign bit from y is
copied to the sign bit of x.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x with its sign bit changed to that of y

	Type Variables

	
	Float – inferred from x

Minimum and maximum

These instructions return the larger or smaller of their operands. Note that
unlike the IEEE 754-2008 minNum and maxNum operations, these instructions
return NaN when either input is NaN.

When comparing zeroes, these instructions behave as if \(-0.0 < 0.0\).

	
a = fmin x, y

	Floating point minimum, propagating NaNs.

If either operand is NaN, this returns a NaN.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – The smaller of x and y

	Type Variables

	
	Float – inferred from x

	
a = fmax x, y

	Floating point maximum, propagating NaNs.

If either operand is NaN, this returns a NaN.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – The larger of x and y

	Type Variables

	
	Float – inferred from x

Rounding

These instructions round their argument to a nearby integral value, still
represented as a floating point number.

	
a = ceil x

	Round floating point round to integral, towards positive infinity.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x rounded to integral value

	Type Variables

	
	Float – inferred from x

	
a = floor x

	Round floating point round to integral, towards negative infinity.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x rounded to integral value

	Type Variables

	
	Float – inferred from x

	
a = trunc x

	Round floating point round to integral, towards zero.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x rounded to integral value

	Type Variables

	
	Float – inferred from x

	
a = nearest x

	Round floating point round to integral, towards nearest with ties to
even.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – x rounded to integral value

	Type Variables

	
	Float – inferred from x

Conversion operations

	
a = bitcast x

	Reinterpret the bits in x as a different type.

The input and output types must be storable to memory and of the same
size. A bitcast is equivalent to storing one type and loading the other
type from the same address.

	Arguments

	
	x (Mem) – Any type that can be stored in memory

	Results

	
	a (MemTo) – Bits of x reinterpreted

	Type Variables

	
	MemTo – explicitly provided

	Mem – from input operand

	
a = breduce x

	Convert x to a smaller boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input,
and each lane must not have more bits that the input lanes. If the
input and output types are the same, this is a no-op.

	Arguments

	
	x (Bool) – A scalar or vector boolean type

	Results

	
	a (BoolTo) – A smaller boolean type with the same number of lanes

	Type Variables

	
	BoolTo – explicitly provided

	Bool – from input operand

	
a = bextend x

	Convert x to a larger boolean type in the platform-defined way.

The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.

	Arguments

	
	x (Bool) – A scalar or vector boolean type

	Results

	
	a (BoolTo) – A larger boolean type with the same number of lanes

	Type Variables

	
	BoolTo – explicitly provided

	Bool – from input operand

	
a = bint x

	Convert x to an integer.

True maps to 1 and false maps to 0. The result type must have the same
number of vector lanes as the input.

	Arguments

	
	x (Bool) – A scalar or vector boolean type

	Results

	
	a (IntTo) – An integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Bool – from input operand

	
a = bmask x

	Convert x to an integer mask.

True maps to all 1s and false maps to all 0s. The result type must have
the same number of vector lanes as the input.

	Arguments

	
	x (Bool) – A scalar or vector boolean type

	Results

	
	a (IntTo) – An integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Bool – from input operand

	
a = ireduce x

	Convert x to a smaller integer type by dropping high bits.

Each lane in x is converted to a smaller integer type by discarding
the most significant bits. This is the same as reducing modulo
\(2^n\).

The result type must have the same number of vector lanes as the input,
and each lane must not have more bits that the input lanes. If the
input and output types are the same, this is a no-op.

	Arguments

	
	x (Int) – A scalar or vector integer type

	Results

	
	a (IntTo) – A smaller integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Int – from input operand

	
a = uextend x

	Convert x to a larger integer type by zero-extending.

Each lane in x is converted to a larger integer type by adding
zeroes. The result has the same numerical value as x when both are
interpreted as unsigned integers.

The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.

	Arguments

	
	x (Int) – A scalar or vector integer type

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Int – from input operand

	
a = sextend x

	Convert x to a larger integer type by sign-extending.

Each lane in x is converted to a larger integer type by replicating
the sign bit. The result has the same numerical value as x when both
are interpreted as signed integers.

The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.

	Arguments

	
	x (Int) – A scalar or vector integer type

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Int – from input operand

	
a = fpromote x

	Convert x to a larger floating point format.

Each lane in x is converted to the destination floating point format.
This is an exact operation.

Cranelift currently only supports two floating point formats
- f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input,
and the result lanes must not have fewer bits than the input lanes. If
the input and output types are the same, this is a no-op.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (FloatTo) – A scalar or vector floating point number

	Type Variables

	
	FloatTo – explicitly provided

	Float – from input operand

	
a = fdemote x

	Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format
by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats
- f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input,
and the result lanes must not have more bits than the input lanes. If
the input and output types are the same, this is a no-op.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (FloatTo) – A scalar or vector floating point number

	Type Variables

	
	FloatTo – explicitly provided

	Float – from input operand

	
a = fcvt_to_uint x

	Convert floating point to unsigned integer.

Each lane in x is converted to an unsigned integer by rounding
towards zero. If x is NaN or if the unsigned integral value cannot be
represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Float – from input operand

	
a = fcvt_to_sint x

	Convert floating point to signed integer.

Each lane in x is converted to a signed integer by rounding towards
zero. If x is NaN or if the signed integral value cannot be
represented in the result type, this instruction traps.

The result type must have the same number of vector lanes as the input.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Float – from input operand

	
a = fcvt_to_uint_sat x

	Convert floating point to unsigned integer as fcvt_to_uint does, but
saturates the input instead of trapping. NaN and negative values are
converted to 0.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Float – from input operand

	
a = fcvt_to_sint_sat x

	Convert floating point to signed integer as fcvt_to_sint does, but
saturates the input instead of trapping. NaN values are converted to 0.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (IntTo) – A larger integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Float – from input operand

	
a = fcvt_from_uint x

	Convert unsigned integer to floating point.

Each lane in x is interpreted as an unsigned integer and converted to
floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

	Arguments

	
	x (Int) – A scalar or vector integer type

	Results

	
	a (FloatTo) – A scalar or vector floating point number

	Type Variables

	
	FloatTo – explicitly provided

	Int – from input operand

	
a = fcvt_from_sint x

	Convert signed integer to floating point.

Each lane in x is interpreted as a signed integer and converted to
floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

	Arguments

	
	x (Int) – A scalar or vector integer type

	Results

	
	a (FloatTo) – A scalar or vector floating point number

	Type Variables

	
	FloatTo – explicitly provided

	Int – from input operand

Extending loads and truncating stores

Most ISAs provide instructions that load an integer value smaller than a register
and extends it to the width of the register. Similarly, store instructions that
only write the low bits of an integer register are common.

In addition to the normal load and store instructions, Cranelift
provides extending loads and truncation stores for 8, 16, and 32-bit memory
accesses.

These instructions succeed, trap, or have undefined behavior, under the same
conditions as normal loads and stores.

	
a = uload8 MemFlags, p, Offset

	Load 8 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt8) – An integer type with more than 8 bits

	Type Variables

	
	iExt8 – explicitly provided

	iAddr – from input operand

	
a = sload8 MemFlags, p, Offset

	Load 8 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt8) – An integer type with more than 8 bits

	Type Variables

	
	iExt8 – explicitly provided

	iAddr – from input operand

	
istore8 MemFlags, x, p, Offset

	Store the low 8 bits of x to memory at p + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	x (iExt8) – An integer type with more than 8 bits

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Type Variables

	
	iExt8 – inferred from x

	iAddr – from input operand

	
a = uload16 MemFlags, p, Offset

	Load 16 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt16) – An integer type with more than 16 bits

	Type Variables

	
	iExt16 – explicitly provided

	iAddr – from input operand

	
a = sload16 MemFlags, p, Offset

	Load 16 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt16) – An integer type with more than 16 bits

	Type Variables

	
	iExt16 – explicitly provided

	iAddr – from input operand

	
istore16 MemFlags, x, p, Offset

	Store the low 16 bits of x to memory at p + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	x (iExt16) – An integer type with more than 16 bits

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Type Variables

	
	iExt16 – inferred from x

	iAddr – from input operand

	
a = uload32 MemFlags, p, Offset

	Load 32 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt32) – An integer type with more than 32 bits

	Type Variables

	
	iAddr – inferred from p

	
a = sload32 MemFlags, p, Offset

	Load 32 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Results

	
	a (iExt32) – An integer type with more than 32 bits

	Type Variables

	
	iAddr – inferred from p

	
istore32 MemFlags, x, p, Offset

	Store the low 32 bits of x to memory at p + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

	Arguments

	
	MemFlags (memflags) – Memory operation flags

	x (iExt32) – An integer type with more than 32 bits

	p (iAddr) – An integer address type

	Offset (offset32) – Byte offset from base address

	Type Variables

	
	iExt32 – inferred from x

	iAddr – from input operand

ISA-specific instructions

Target ISAs can define supplemental instructions that do not make sense to
support generally.

x86

Instructions that can only be used by the x86 target ISA.

	
q, r = x86_sdivmodx nlo, nhi, d

	Extended signed division.

Concatenate the bits in nhi and nlo to form the numerator.
Interpret the bits as a signed number and divide by the signed
denominator d. Trap when d is zero or if the quotient is outside
the range of the output.

Return both quotient and remainder.

	Arguments

	
	nlo (iWord) – Low part of numerator

	nhi (iWord) – High part of numerator

	d (iWord) – Denominator

	Results

	
	q (iWord) – Quotient

	r (iWord) – Remainder

	Type Variables

	
	iWord – inferred from nhi

	
q, r = x86_udivmodx nlo, nhi, d

	Extended unsigned division.

Concatenate the bits in nhi and nlo to form the numerator.
Interpret the bits as an unsigned number and divide by the unsigned
denominator d. Trap when d is zero or if the quotient is larger
than the range of the output.

Return both quotient and remainder.

	Arguments

	
	nlo (iWord) – Low part of numerator

	nhi (iWord) – High part of numerator

	d (iWord) – Denominator

	Results

	
	q (iWord) – Quotient

	r (iWord) – Remainder

	Type Variables

	
	iWord – inferred from nhi

	
a = x86_cvtt2si x

	Convert with truncation floating point to signed integer.

The source floating point operand is converted to a signed integer by
rounding towards zero. If the result can’t be represented in the output
type, returns the smallest signed value the output type can represent.

This instruction does not trap.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	Results

	
	a (IntTo) – An integer type with the same number of lanes

	Type Variables

	
	IntTo – explicitly provided

	Float – from input operand

	
a = x86_fmin x, y

	Floating point minimum with x86 semantics.

This is equivalent to the C ternary operator x < y ? x : y which
differs from fmin when either operand is NaN or when comparing
+0.0 to -0.0.

When the two operands don’t compare as LT, y is returned unchanged,
even if it is a signalling NaN.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – A scalar or vector floating point number

	Type Variables

	
	Float – inferred from x

	
a = x86_fmax x, y

	Floating point maximum with x86 semantics.

This is equivalent to the C ternary operator x > y ? x : y which
differs from fmax when either operand is NaN or when comparing
+0.0 to -0.0.

When the two operands don’t compare as GT, y is returned unchanged,
even if it is a signalling NaN.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	a (Float) – A scalar or vector floating point number

	Type Variables

	
	Float – inferred from x

	
y, rflags = x86_bsf x

	Bit Scan Forwards – returns the bit-index of the least significant 1
in the word. Is otherwise identical to ‘bsr’, just above.

	Arguments

	
	x (iWord) – A scalar integer machine word

	Results

	
	y (iWord) – A scalar integer machine word

	rflags (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Type Variables

	
	iWord – inferred from x

	
y, rflags = x86_bsr x

	Bit Scan Reverse – returns the bit-index of the most significant 1
in the word. Result is undefined if the argument is zero. However, it
sets the Z flag depending on the argument, so it is at least easy to
detect and handle that case.

This is polymorphic in i32 and i64. It is implemented for both i64 and
i32 in 64-bit mode, and only for i32 in 32-bit mode.

	Arguments

	
	x (iWord) – A scalar integer machine word

	Results

	
	y (iWord) – A scalar integer machine word

	rflags (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Type Variables

	
	iWord – inferred from x

	
x86_push x

	Pushes a value onto the stack.

Decrements the stack pointer and stores the specified value on to the top.

This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.

	Arguments

	
	x (iWord) – A scalar integer machine word

	Type Variables

	
	iWord – inferred from x

	
x = x86_pop

	Pops a value from the stack.

Loads a value from the top of the stack and then increments the stack
pointer.

This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.

	Results

	
	x (iWord) – A scalar integer machine word

	Type Variables

	
	iWord – explicitly provided

Codegen implementation instructions

Frontends don’t need to emit the instructions in this section themselves;
Cranelift will generate them automatically as needed.

Legalization operations

These instructions are used as helpers when legalizing types and operations for
the target ISA.

	
lo, hi = isplit x

	Split an integer into low and high parts.

Vectors of integers are split lane-wise, so the results have the same
number of lanes as the input, but the lanes are half the size.

Returns the low half of x and the high half of x as two independent
values.

	Arguments

	
	x (WideInt) – An integer type with lanes from i16 upwards

	Results

	
	lo (half_width(WideInt)) – The low bits of x

	hi (half_width(WideInt)) – The high bits of x

	Type Variables

	
	WideInt – inferred from x

	
a = iconcat lo, hi

	Concatenate low and high bits to form a larger integer type.

Vectors of integers are concatenated lane-wise such that the result has
the same number of lanes as the inputs, but the lanes are twice the
size.

	Arguments

	
	lo (NarrowInt) – An integer type with lanes type to i32

	hi (NarrowInt) – An integer type with lanes type to i32

	Results

	
	a (double_width(NarrowInt)) – The concatenation of lo and hi

	Type Variables

	
	NarrowInt – inferred from lo

Special register operations

The prologue and epilogue of a function needs to manipulate special registers like the stack
pointer and the frame pointer. These instructions should not be used in regular code.

	
adjust_sp_down delta

	Subtracts delta offset value from the stack pointer register.

This instruction is used to adjust the stack pointer by a dynamic amount.

	Arguments

	
	delta (Int) – A scalar or vector integer type

	Type Variables

	
	Int – inferred from delta

	
adjust_sp_up_imm Offset

	Adds Offset immediate offset value to the stack pointer register.

This instruction is used to adjust the stack pointer, primarily in function
prologues and epilogues. Offset is constrained to the size of a signed
32-bit integer.

	Arguments

	
	Offset (imm64) – Offset from current stack pointer

	
adjust_sp_down_imm Offset

	Subtracts Offset immediate offset value from the stack pointer
register.

This instruction is used to adjust the stack pointer, primarily in function
prologues and epilogues. Offset is constrained to the size of a signed
32-bit integer.

	Arguments

	
	Offset (imm64) – Offset from current stack pointer

	
f = ifcmp_sp addr

	Compare addr with the stack pointer and set the CPU flags.

This is like ifcmp where addr is the LHS operand and the stack
pointer is the RHS.

	Arguments

	
	addr (iAddr) – An integer address type

	Results

	
	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Type Variables

	
	iAddr – inferred from addr

	
copy_special src, dst

	Copies the contents of ‘’src’’ register to ‘’dst’’ register.

This instructions copies the contents of one register to another
register without involving any SSA values. This is used for copying
special registers, e.g. copying the stack register to the frame
register in a function prologue.

	Arguments

	
	src (regunit) – A register unit in the target ISA

	dst (regunit) – A register unit in the target ISA

Low-level control flow operations

	
fallthrough EBB(args…)

	Fall through to the next EBB.

This is the same as jump, except the destination EBB must be
the next one in the layout.

Jumps are turned into fall-through instructions by the branch
relaxation pass. There is no reason to use this instruction outside
that pass.

	Arguments

	
	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

CPU flag operations

These operations are for working with the “flags” registers of some CPU
architectures.

	
f = ifcmp x, y

	Compare scalar integers and return flags.

Compare two scalar integer values and return integer CPU flags
representing the result.

	Arguments

	
	x (iB) – A scalar integer type

	y (iB) – A scalar integer type

	Results

	
	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Type Variables

	
	iB – inferred from x

	
f = ifcmp_imm x, Y

	Compare scalar integer to a constant and return flags.

Like icmp_imm, but returns integer CPU flags instead of testing
a specific condition code.

	Arguments

	
	x (iB) – A scalar integer type

	Y (imm64) – A 64-bit immediate integer.

	Results

	
	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Type Variables

	
	iB – inferred from x

	
f = ffcmp x, y

	Floating point comparison returning flags.

Compares two numbers like fcmp, but returns floating point CPU
flags instead of testing a specific condition.

	Arguments

	
	x (Float) – A scalar or vector floating point number

	y (Float) – A scalar or vector floating point number

	Results

	
	f (fflags) –
 CPU flags representing the result of a floating point comparison. These
 flags can be tested with a floatcc condition code.

	Type Variables

	
	Float – inferred from x

	
a = trueif Cond, f

	Test integer CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and
return true when the condition code is satisfied.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	Results

	
	a (b1) – A boolean type with 1 bits.

	
a = trueff Cond, f

	Test floating point CPU flags for a specific condition.

Check the CPU flags in f against the Cond condition code and
return true when the condition code is satisfied.

	Arguments

	
	Cond (floatcc) – A floating point comparison condition code.

	f (fflags) –
 CPU flags representing the result of a floating point comparison. These
 flags can be tested with a floatcc condition code.

	Results

	
	a (b1) – A boolean type with 1 bits.

	
trapif Cond, f, code

	Trap when condition is true in integer CPU flags.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	code (trapcode) – A trap reason code.

	
trapff Cond, f, code

	Trap when condition is true in floating point CPU flags.

	Arguments

	
	Cond (floatcc) – A floating point comparison condition code.

	f (fflags) –
 CPU flags representing the result of a floating point comparison. These
 flags can be tested with a floatcc condition code.

	code (trapcode) – A trap reason code.

	
brif Cond, f, EBB(args…)

	Branch when condition is true in integer CPU flags.

	Arguments

	
	Cond (intcc) – An integer comparison condition code.

	f (iflags) –
 CPU flags representing the result of an integer comparison. These flags
 can be tested with an intcc condition code.

	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

	
brff Cond, f, EBB(args…)

	Branch when condition is true in floating point CPU flags.

	Arguments

	
	Cond (floatcc) – A floating point comparison condition code.

	f (fflags) –
 CPU flags representing the result of a floating point comparison. These
 flags can be tested with a floatcc condition code.

	EBB (ebb) – Destination extended basic block

	args (variable_args) – EBB arguments

Live range splitting

Cranelift’s register allocator assigns each SSA value to a register or a spill
slot on the stack for its entire live range. Since the live range of an SSA
value can be quite large, it is sometimes beneficial to split the live range
into smaller parts.

A live range is split by creating new SSA values that are copies or the
original value or each other. The copies are created by inserting copy,
spill, or fill instructions, depending on whether the values
are assigned to registers or stack slots.

This approach permits SSA form to be preserved throughout the register
allocation pass and beyond.

	
a = copy x

	Register-register copy.

This instruction copies its input, preserving the value type.

A pure SSA-form program does not need to copy values, but this
instruction is useful for representing intermediate stages during
instruction transformations, and the register allocator needs a way of
representing register copies.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (Any) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	Any – inferred from x

	
a = spill x

	Spill a register value to a stack slot.

This instruction behaves exactly like copy, but the result
value is assigned to a spill slot.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (Any) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	Any – inferred from x

	
a = fill x

	Load a register value from a stack slot.

This instruction behaves exactly like copy, but creates a new
SSA value for the spilled input value.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	Results

	
	a (Any) – Any integer, float, or boolean scalar or vector type

	Type Variables

	
	Any – inferred from x

Register values can be temporarily diverted to other registers by the
regmove instruction, and to and from stack slots by regspill
and regfill.

	
regmove x, src, dst

	Temporarily divert x from src to dst.

This instruction moves the location of a value from one register to
another without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.

The register diversions created by this instruction must be undone
before the value leaves the EBB. At the entry to a new EBB, all live
values must be in their originally assigned registers.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	src (regunit) – A register unit in the target ISA

	dst (regunit) – A register unit in the target ISA

	Type Variables

	
	Any – inferred from x

	
regspill x, src, SS

	Temporarily divert x from src to SS.

This instruction moves the location of a value from a register to a
stack slot without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.

See also regmove.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	src (regunit) – A register unit in the target ISA

	SS (stack_slot) – A stack slot.

	Type Variables

	
	Any – inferred from x

	
regfill x, SS, dst

	Temporarily divert x from SS to dst.

This instruction moves the location of a value from a stack slot to a
register without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.

See also regmove.

	Arguments

	
	x (Any) – Any integer, float, or boolean scalar or vector type

	SS (stack_slot) – A stack slot.

	dst (regunit) – A register unit in the target ISA

	Type Variables

	
	Any – inferred from x

Instruction groups

All of the shared instructions are part of the base instruction
group.

	
base.instructions.GROUP

	Shared base instruction set

adjust_sp_down
adjust_sp_down_imm
adjust_sp_up_imm
band
band_imm
band_not
bconst
bextend
bint
bitcast
bitrev
bmask
bnot
bor
bor_imm
bor_not
br_icmp
br_table
breduce
brff
brif
brnz
brz
bxor
bxor_imm
bxor_not
call
call_indirect
ceil
cls
clz
copy
copy_special
ctz
debugtrap
extractlane
f32const
f64const
fabs
fadd
fallthrough
fallthrough_return
fcmp
fcopysign
fcvt_from_sint
fcvt_from_uint
fcvt_to_sint
fcvt_to_sint_sat
fcvt_to_uint
fcvt_to_uint_sat
fdemote
fdiv
ffcmp
fill
floor
fma
fmax
fmin
fmul
fneg
fpromote
fsub
func_addr
global_value
heap_addr
iadd
iadd_carry
iadd_cin
iadd_cout
iadd_imm
icmp
icmp_imm
iconcat
iconst
ifcmp
ifcmp_imm
ifcmp_sp
imul
imul_imm
indirect_jump_table_br
insertlane
ireduce
irsub_imm
ishl
ishl_imm
isplit
istore16
istore16_complex
istore32
istore32_complex
istore8
istore8_complex
isub
isub_bin
isub_borrow
isub_bout
jump
jump_table_base
jump_table_entry
load
load_complex
nearest
nop
popcnt
regfill
regmove
regspill
return
rotl
rotl_imm
rotr
rotr_imm
sdiv
sdiv_imm
select
selectif
sextend
sload16
sload16_complex
sload32
sload32_complex
sload8
sload8_complex
smulhi
spill
splat
sqrt
srem
srem_imm
sshr
sshr_imm
stack_addr
stack_load
stack_store
store
store_complex
symbol_value
table_addr
trap
trapff
trapif
trapnz
trapz
trueff
trueif
trunc
udiv
udiv_imm
uextend
uload16
uload16_complex
uload32
uload32_complex
uload8
uload8_complex
umulhi
urem
urem_imm
ushr
ushr_imm
vconcat
vselect
vsplit

Target ISAs may define further instructions in their own instruction groups:

	
isa.x86.instructions.GROUP

	x86-specific instruction set

x86_bsf
x86_bsr
x86_cvtt2si
x86_fmax
x86_fmin
x86_pop
x86_push
x86_sdivmodx
x86_smulx
x86_udivmodx
x86_umulx

Implementation limits

Cranelift’s intermediate representation imposes some limits on the size of
functions and the number of entities allowed. If these limits are exceeded, the
implementation will panic.

	Number of instructions in a function

	At most \(2^{31} - 1\).

	Number of EBBs in a function

	At most \(2^{31} - 1\).

Every EBB needs at least a terminator instruction anyway.

	Number of secondary values in a function

	At most \(2^{31} - 1\).

Secondary values are any SSA values that are not the first result of an
instruction.

	Other entities declared in the preamble

	At most \(2^{32} - 1\).

This covers things like stack slots, jump tables, external functions, and
function signatures, etc.

	Number of arguments to an EBB

	At most \(2^{16}\).

	Number of arguments to a function

	At most \(2^{16}\).

This follows from the limit on arguments to the entry EBB. Note that
Cranelift may add a handful of ABI register arguments as function signatures
are lowered. This is for representing things like the link register, the
incoming frame pointer, and callee-saved registers that are saved in the
prologue.

	Size of function call arguments on the stack

	At most \(2^{32} - 1\) bytes.

This is probably not possible to achieve given the limit on the number of
arguments, except by requiring extremely large offsets for stack arguments.

Glossary

	addressable

	Memory in which loads and stores have defined behavior. They either
succeed or trap, depending on whether the memory is
accessible.

	accessible

	Addressable memory in which loads and stores always succeed
without trapping, except where specified otherwise (eg. with the
aligned flag). Heaps, globals, tables, and the stack may contain
accessible, merely addressable, and outright unaddressable regions.
There may also be additional regions of addressable and/or accessible
memory not explicitly declared.

	basic block

	A maximal sequence of instructions that can only be entered from the
top, and that contains no branch or terminator instructions except for
the last instruction.

	entry block

	The EBB that is executed first in a function. Currently, a
Cranelift function must have exactly one entry block which must be the
first block in the function. The types of the entry block arguments must
match the types of arguments in the function signature.

	extended basic block	EBB

	A maximal sequence of instructions that can only be entered from the
top, and that contains no terminator instructions except for
the last one. An EBB can contain conditional branches that can fall
through to the following instructions in the block, but only the first
instruction in the EBB can be a branch target.

The last instruction in an EBB must be a terminator instruction,
so execution cannot flow through to the next EBB in the function. (But
there may be a branch to the next EBB.)

Note that some textbooks define an EBB as a maximal subtree in the
control flow graph where only the root can be a join node. This
definition is not equivalent to Cranelift EBBs.

	EBB parameter

	A formal parameter for an EBB is an SSA value that dominates everything
in the EBB. For each parameter declared by an EBB, a corresponding
argument value must be passed when branching to the EBB. The function’s
entry EBB has parameters that correspond to the function’s parameters.

	EBB argument

	Similar to function arguments, EBB arguments must be provided when
branching to an EBB that declares formal parameters. When execution
begins at the top of an EBB, the formal parameters have the values of
the arguments passed in the branch.

	function signature

	A function signature describes how to call a function. It consists of:

	The calling convention.

	The number of arguments and return values. (Functions can return
multiple values.)

	Type and flags of each argument.

	Type and flags of each return value.

Not all function attributes are part of the signature. For example, a
function that never returns could be marked as noreturn, but that
is not necessary to know when calling it, so it is just an attribute,
and not part of the signature.

	function preamble

	A list of declarations of entities that are used by the function body.
Some of the entities that can be declared in the preamble are:

	Stack slots.

	Functions that are called directly.

	Function signatures for indirect function calls.

	Function flags and attributes that are not part of the signature.

	function body

	The extended basic blocks which contain all the executable code in a
function. The function body follows the function preamble.

	intermediate representation	IR

	The language used to describe functions to Cranelift. This reference
describes the syntax and semantics of Cranelift IR. The IR has two
forms: Textual, and an in-memory data structure.

	stack slot

	A fixed size memory allocation in the current function’s activation
frame. These include explicit stack slots and
spill stack slots.

	explicit stack slot

	A fixed size memory allocation in the current function’s activation
frame. These differ from spill stack slots in that they can
be created by frontends and they may have their addresses taken.

	spill stack slot

	A fixed size memory allocation in the current function’s activation
frame. These differ from explicit stack slots in that they are
only created during register allocation, and they may not have their
address taken.

	terminator instruction

	A control flow instruction that unconditionally directs the flow of
execution somewhere else. Execution never continues at the instruction
following a terminator instruction.

The basic terminator instructions are br, return, and
trap. Conditional branches and instructions that trap
conditionally are not terminator instructions.

	trap	traps	trapping

	Terminates execution of the current thread. The specific behavior after
a trap depends on the underlying OS. For example, a common behavior is
delivery of a signal, with the specific signal depending on the event
that triggered it.

 Cranelift Meta Language Reference

Cranelift Meta Language Reference

The Cranelift meta language is used to define instructions for Cranelift. It is a
domain specific language embedded in Python. This document describes the Python
modules that form the embedded DSL.

The meta language descriptions are Python modules under the
cranelift-codegen/meta-python directory. The descriptions are processed in two
steps:

	The Python modules are imported. This has the effect of building static data
structures in global values in the modules. These static data structures
in the base and isa packages use the classes in the
cdsl package to describe instruction sets and other properties.

	The static data structures are processed to produce Rust source code and
constant tables.

The main driver for this source code generation process is the
cranelift-codegen/meta-python/build.py script which is invoked as part of the build
process if anything in the cranelift-codegen/meta-python directory has changed
since the last build.

Settings

Settings are used by the environment embedding Cranelift to control the details
of code generation. Each setting is defined in the meta language so a compact
and consistent Rust representation can be generated. Shared settings are defined
in the base.settings module. Some settings are specific to a target ISA,
and defined in a settings.py module under the appropriate
cranelift-codegen/meta-python/isa/* directory.

Settings can take boolean on/off values, small numbers, or explicitly enumerated
symbolic values. Each type is represented by a sub-class of Setting:

Inheritance diagram of Setting, BoolSetting, NumSetting, EnumSetting

	
class cdsl.settings.Setting(doc)

	A named setting variable that can be configured externally to Cranelift.

Settings are normally not named when they are created. They get their name
from the extract_names method.

	
class cdsl.settings.BoolSetting(doc, default=False)

	A named setting with a boolean on/off value.

	Parameters

	
	doc – Documentation string.

	default – The default value of this setting.

	
class cdsl.settings.NumSetting(doc, default=0)

	A named setting with an integral value in the range 0–255.

	Parameters

	
	doc – Documentation string.

	default – The default value of this setting.

	
class cdsl.settings.EnumSetting(doc, *args)

	A named setting with an enumerated set of possible values.

The default value is always the first enumerator.

	Parameters

	
	doc – Documentation string.

	args – Tuple of unique strings representing the possible values.

All settings must belong to a group, represented by a SettingGroup
object.

	
class cdsl.settings.SettingGroup(name, parent=None)

	A group of settings.

Whenever a Setting object is created, it is added to the currently
open group. A setting group must be closed explicitly before another can be
opened.

	Parameters

	
	name – Short mnemonic name for setting group.

	parent – Parent settings group.

Normally, a setting group corresponds to all settings defined in a module. Such
a module looks like this:

group = SettingGroup('example')

foo = BoolSetting('use the foo')
bar = BoolSetting('enable bars', True)
opt = EnumSetting('optimization level', 'Debug', 'Release')

group.close(globals())

Instruction descriptions

New instructions are defined as instances of the Instruction
class. As instruction instances are created, they are added to the currently
open InstructionGroup.

	
class cdsl.instructions.InstructionGroup(name, doc)

	Every instruction must belong to exactly one instruction group. A given
target architecture can support instructions from multiple groups, and it
does not necessarily support all instructions in a group.

New instructions are automatically added to the currently open instruction
group.

	
close()

	Close this instruction group. This function should be called before
opening another instruction group.

	
open()

	Open this instruction group such that future new instructions are
added to this group.

The basic Cranelift instruction set described in Cranelift IR Reference is defined by the
Python module base.instructions. This module has a global value
base.instructions.GROUP which is an InstructionGroup instance
containing all the base instructions.

	
class cdsl.instructions.Instruction(name, doc, ins=(), outs=(), constraints=(), **kwargs)

	The operands to the instruction are specified as two tuples: ins and
outs. Since the Python singleton tuple syntax is a bit awkward, it is
allowed to specify a singleton as just the operand itself, i.e., ins=x
and ins=(x,) are both allowed and mean the same thing.

	Parameters

	
	name – Instruction mnemonic, also becomes opcode name.

	doc – Documentation string.

	ins – Tuple of input operands. This can be a mix of SSA value
operands and other operand kinds.

	outs – Tuple of output operands. The output operands must be SSA
values or variable_args.

	constraints – Tuple of instruction-specific TypeConstraints.

	is_terminator – This is a terminator instruction.

	is_branch – This is a branch instruction.

	is_indirect_branch – This is an indirect branch instruction.

	is_call – This is a call instruction.

	is_return – This is a return instruction.

	is_ghost – This is a ghost instruction, which has no encoding and no
other register allocation constraints.

	can_trap – This instruction can trap.

	can_load – This instruction can load from memory.

	can_store – This instruction can store to memory.

	other_side_effects – Instruction has other side effects.

An instruction is defined with a set of distinct input and output operands which
must be instances of the Operand class.

	
class cdsl.operands.Operand(name, typ, doc='')

	An instruction operand can be an immediate, an SSA value, or an entity
reference. The type of the operand is one of:

	A ValueType instance indicates an SSA value operand with a
concrete type.

	A TypeVar instance indicates an SSA value operand, and the
instruction is polymorphic over the possible concrete types that the
type variable can assume.

	An ImmediateKind instance indicates an immediate operand
whose value is encoded in the instruction itself rather than being
passed as an SSA value.

	An EntityRefKind instance indicates an operand that
references another entity in the function, typically something declared
in the function preamble.

Cranelift uses two separate type systems for operand kinds and SSA values.

Type variables

Instruction descriptions can be made polymorphic by using
cdsl.operands.Operand instances that refer to a type variable
instead of a concrete value type. Polymorphism only works for SSA value
operands. Other operands have a fixed operand kind.

	
class cdsl.typevar.TypeVar(name, doc, ints=False, floats=False, bools=False, scalars=True, simd=False, bitvecs=False, base=None, derived_func=None, specials=None)

	Type variables can be used in place of concrete types when defining
instructions. This makes the instructions polymorphic.

A type variable is restricted to vary over a subset of the value types.
This subset is specified by a set of flags that control the permitted base
types and whether the type variable can assume scalar or vector types, or
both.

	Parameters

	
	name – Short name of type variable used in instruction descriptions.

	doc – Documentation string.

	ints – Allow all integer base types, or (min, max) bit-range.

	floats – Allow all floating point base types, or (min, max)
bit-range.

	bools – Allow all boolean base types, or (min, max) bit-range.

	scalars – Allow type variable to assume scalar types.

	simd – Allow type variable to assume vector types, or (min, max)
lane count range.

	bitvecs – Allow all BitVec base types, or (min, max) bit-range.

	
as_bool()

	Return a derived type variable that has the same vector geometry as
this type variable, but with boolean lanes. Scalar types map to b1.

	
constrain_types(other)

	Constrain the range of types this variable can assume to a subset of
those other can assume.

	
constrain_types_by_ts(ts)

	Constrain the range of types this variable can assume to a subset of
those in the typeset ts.

	
static derived(base, derived_func)

	Create a type variable that is a function of another.

	
double_vector()

	Return a derived type variable that has twice the number of vector
lanes as this one, with the same lane type.

	
double_width()

	Return a derived type variable that has the same number of vector lanes
as this one, but the lanes are double the width.

	
free_typevar()

	Get the free type variable controlling this one.

	
static from_typeset(ts)

	Create a type variable from a type set.

	
get_fresh_copy(name)

	Get a fresh copy of self. Can only be called on free typevars.

	
get_typeset()

	Returns the typeset for this TV. If the TV is derived, computes it
recursively from the derived function and the base’s typeset.

	
half_vector()

	Return a derived type variable that has half the number of vector lanes
as this one, with the same lane type.

	
half_width()

	Return a derived type variable that has the same number of vector lanes
as this one, but the lanes are half the width.

	
lane_of()

	Return a derived type variable that is the scalar lane type of this
type variable.

When this type variable assumes a scalar type, the derived type will be
the same scalar type.

	
rust_expr()

	Get a Rust expression that computes the type of this type variable.

	
static singleton(typ)

	Create a type variable that can only assume a single type.

	
singleton_type()

	If the associated typeset has a single type return it. Otherwise return
None

	
to_bitvec()

	Return a derived type variable that represent a flat bitvector with
the same size as self

If multiple operands refer to the same type variable they will be required to
have the same concrete type. For example, this defines an integer addition
instruction:

Int = TypeVar('Int', 'A scalar or vector integer type', ints=True, simd=True)
a = Operand('a', Int)
x = Operand('x', Int)
y = Operand('y', Int)

iadd = Instruction('iadd', 'Integer addition', ins=(x, y), outs=a)

The type variable Int is allowed to vary over all scalar and vector integer
value types, but in a given instance of the iadd instruction, the two
operands must have the same type, and the result will be the same type as the
inputs.

There are some practical restrictions on the use of type variables, see
Restricted polymorphism.

Immediate operands

Immediate instruction operands don’t correspond to SSA values, but have values
that are encoded directly in the instruction. Immediate operands don’t
have types from the cdsl.types.ValueType type system; they often have
enumerated values of a specific type. The type of an immediate operand is
indicated with an instance of ImmediateKind.

	
class cdsl.operands.ImmediateKind(name, doc, default_member='imm', rust_type=None, values=None)

	The kind of an immediate instruction operand.

	Parameters

	default_member – The default member name of this kind the
InstructionData data structure.

The cranelift.immediates module predefines all the Cranelift immediate
operand types.

	
base.immediates.boolean = ImmediateKind(bool)

	An immediate boolean operand.

This type of immediate boolean can interact with SSA values with any
cranelift.BoolType type.

	
base.immediates.floatcc = ImmediateKind(floatcc)

	A condition code for comparing floating point values.

This enumerated operand kind is used for the fcmp instruction
and corresponds to the condcodes::FloatCC Rust type.

	
base.immediates.ieee32 = ImmediateKind(ieee32)

	A 32-bit immediate floating point operand.

IEEE 754-2008 binary32 interchange format.

	
base.immediates.ieee64 = ImmediateKind(ieee64)

	A 64-bit immediate floating point operand.

IEEE 754-2008 binary64 interchange format.

	
base.immediates.imm64 = ImmediateKind(imm64)

	A 64-bit immediate integer operand.

This type of immediate integer can interact with SSA values with any
cranelift.IntType type.

	
base.immediates.intcc = ImmediateKind(intcc)

	A condition code for comparing integer values.

This enumerated operand kind is used for the icmp instruction
and corresponds to the condcodes::IntCC Rust type.

	
base.immediates.memflags = ImmediateKind(memflags)

	Flags for memory operations like load and store.

	
base.immediates.offset32 = ImmediateKind(offset32)

	A 32-bit immediate signed offset.

This is used to represent an immediate address offset in load/store
instructions.

	
base.immediates.regunit = ImmediateKind(regunit)

	A register unit in the current target ISA.

	
base.immediates.trapcode = ImmediateKind(trapcode)

	A trap code indicating the reason for trapping.

The Rust enum type also has a User(u16) variant for user-provided trap
codes.

	
base.immediates.uimm32 = ImmediateKind(uimm32)

	An unsigned 32-bit immediate integer operand.

	
base.immediates.uimm8 = ImmediateKind(uimm8)

	An unsigned 8-bit immediate integer operand.

This small operand is used to indicate lane indexes in SIMD vectors and
immediate bit counts on shift instructions.

Entity references

Instruction operands can also refer to other entities in the same function. This
can be extended basic blocks, or entities declared in the function preamble.

	
class cdsl.operands.EntityRefKind(name, doc, default_member=None, rust_type=None)

	The kind of an entity reference instruction operand.

The cranelift.entities module predefines all the Cranelift entity reference
operand types. There are corresponding definitions in the cranelift.entities
Rust module.

	
base.entities.ebb = EntityRefKind(ebb)

	A reference to an extended basic block in the same function.
This is primarliy used in control flow instructions.

	
base.entities.func_ref = EntityRefKind(func_ref)

	A reference to an external function declared in the function preamble.
This is used to provide the callee and signature in a call instruction.

	
base.entities.global_value = EntityRefKind(global_value)

	A reference to a global value.

	
base.entities.heap = EntityRefKind(heap)

	A reference to a heap declared in the function preamble.

	
base.entities.jump_table = EntityRefKind(jump_table)

	A reference to a jump table declared in the function preamble.

	
base.entities.sig_ref = EntityRefKind(sig_ref)

	A reference to a function sugnature declared in the function preamble.
This is used to provide the call signature in a call_indirect instruction.

	
base.entities.stack_slot = EntityRefKind(stack_slot)

	A reference to a stack slot declared in the function preamble.

	
base.entities.table = EntityRefKind(table)

	A reference to a table declared in the function preamble.

Value types

Concrete value types are represented as instances of ValueType. There
are subclasses to represent scalar and vector types.

	
class cdsl.types.ValueType(name, membytes, doc)

	A concrete SSA value type.

All SSA values have a type that is described by an instance of ValueType
or one of its subclasses.

Inheritance diagram of ValueType, LaneType, VectorType, IntType, FloatType, BoolType, SpecialType, FlagsType

	
class cdsl.types.LaneType(name, membytes, doc)

	A concrete scalar type that can appear as a vector lane too.

Also tracks a unique set of VectorType instances with this type
as the lane type.

	
by(lanes)

	Get a vector type with this type as the lane type.

For example, i32.by(4) returns the i32x4 type.

	
lane_count()

	Return the number of lanes.

	
class cdsl.types.VectorType(base, lanes)

	A concrete SIMD vector type.

A vector type has a lane type which is an instance of LaneType,
and a positive number of lanes.

	
class cdsl.types.SpecialType(name, membytes, doc)

	A concrete scalar type that is neither a vector nor a lane type.

Special types cannot be used to form vectors.

	
class cdsl.types.IntType(bits)

	A concrete scalar integer type.

	
class cdsl.types.FloatType(bits, doc)

	A concrete scalar floating point type.

	
class cdsl.types.BoolType(bits)

	A concrete scalar boolean type.

	
class cdsl.types.FlagsType(name, doc)

	A type representing CPU flags.

Flags can’t be stored in memory.

The base.types module predefines all the Cranelift scalar types.

	
base.types.b1 = BoolType(bits=1)

	1-bit bool.

	
base.types.b16 = BoolType(bits=16)

	16-bit bool.

	
base.types.b32 = BoolType(bits=32)

	32-bit bool.

	
base.types.b64 = BoolType(bits=64)

	64-bit bool.

	
base.types.b8 = BoolType(bits=8)

	8-bit bool.

	
base.types.f32 = FloatType(bits=32)

	IEEE single precision.

	
base.types.f64 = FloatType(bits=64)

	IEEE double precision.

	
base.types.fflags = FlagsType(fflags)

	CPU flags from a floating point comparison.

	
base.types.i16 = IntType(bits=16)

	16-bit int.

	
base.types.i32 = IntType(bits=32)

	32-bit int.

	
base.types.i64 = IntType(bits=64)

	64-bit int.

	
base.types.i8 = IntType(bits=8)

	8-bit int.

	
base.types.iflags = FlagsType(iflags)

	CPU flags from an integer comparison.

There are no predefined vector types, but they can be created as needed with
the LaneType.by() function.

Instruction representation

The Rust in-memory representation of instructions is derived from the
instruction descriptions. Part of the representation is generated, and part is
written as Rust code in the cranelift.instructions module. The instruction
representation depends on the input operand kinds and whether the instruction
can produce multiple results.

	
class cdsl.operands.OperandKind(name, doc, default_member=None, rust_type=None)

	An instance of the OperandKind class corresponds to a kind of operand.
Each operand kind has a corresponding type in the Rust representation of an
instruction.

Inheritance diagram of OperandKind, ImmediateKind, EntityRefKind

Since all SSA value operands are represented as a Value in Rust code, value
types don’t affect the representation. Two special operand kinds are used to
represent SSA values:

	
cdsl.operands.VALUE = OperandKind(value)

	An SSA value operand. This is a value defined by another instruction.

	
cdsl.operands.VARIABLE_ARGS = OperandKind(variable_args)

	A variable-sized list of value operands. Use for Ebb and function call
arguments.

When an instruction description is created, it is automatically assigned a
predefined instruction format which is an instance of
InstructionFormat:

	
class cdsl.formats.InstructionFormat(*kinds, **kwargs)

	Every instruction opcode has a corresponding instruction format which
determines the number of operands and their kinds. Instruction formats are
identified structurally, i.e., the format of an instruction is derived from
the kinds of operands used in its declaration.

The instruction format stores two separate lists of operands: Immediates
and values. Immediate operands (including entity references) are
represented as explicit members in the InstructionData variants. The
value operands are stored differently, depending on how many there are.
Beyond a certain point, instruction formats switch to an external value
list for storing value arguments. Value lists can hold an arbitrary number
of values.

All instruction formats must be predefined in the
cranelift.formats module.

	Parameters

	
	kinds – List of OperandKind objects describing the operands.

	name – Instruction format name in CamelCase. This is used as a Rust
variant name in both the InstructionData and InstructionFormat
enums.

	typevar_operand – Index of the value input operand that is used to
infer the controlling type variable. By default, this is 0, the first
value operand. The index is relative to the values only, ignoring
immediate operands.

Restricted polymorphism

The instruction format strictly controls the kinds of operands on an
instruction, but it does not constrain value types at all. A given instruction
description typically does constrain the allowed value types for its value
operands. The type variables give a lot of freedom in describing the value type
constraints, in practice more freedom than what is needed for normal instruction
set architectures. In order to simplify the Rust representation of value type
constraints, some restrictions are imposed on the use of type variables.

A polymorphic instruction has a single controlling type variable. For a given
opcode, this type variable must be the type of the first result or the type of
the input value operand designated by the typevar_operand argument to the
InstructionFormat constructor. By default, this is the first value
operand, which works most of the time.

The value types of instruction results must be one of the following:

	A concrete value type.

	The controlling type variable.

	A type variable derived from the controlling type variable.

This means that all result types can be computed from the controlling type
variable.

Input values to the instruction are allowed a bit more freedom. Input value
types must be one of:

	A concrete value type.

	The controlling type variable.

	A type variable derived from the controlling type variable.

	A free type variable that is not used by any other operands.

This means that the type of an input operand can either be computed from the
controlling type variable, or it can vary independently of the other operands.

Encodings

Encodings describe how Cranelift instructions are mapped to binary machine code
for the target architecture. After the legalization pass, all remaining
instructions are expected to map 1-1 to native instruction encodings. Cranelift
instructions that can’t be encoded for the current architecture are called
illegal instructions.

Some instruction set architectures have different CPU modes with
incompatible encodings. For example, a modern ARMv8 CPU might support three
different CPU modes: A64 where instructions are encoded in 32 bits, A32
where all instructions are 32 bits, and T32 which has a mix of 16-bit and
32-bit instruction encodings. These are incompatible encoding spaces, and while
an iadd instruction can be encoded in 32 bits in each of them, it’s
not the same 32 bits. It’s a judgement call if CPU modes should be modelled as
separate targets, or as sub-modes of the same target. In the ARMv8 case, the
different register banks means that it makes sense to model A64 as a separate
target architecture, while A32 and T32 are CPU modes of the 32-bit ARM target.

In a given CPU mode, there may be multiple valid encodings of the same
instruction. Both RISC-V and ARMv8’s T32 mode have 32-bit encodings of all
instructions with 16-bit encodings available for some opcodes if certain
constraints are satisfied.

	
class cdsl.isa.CPUMode(name, isa)

	A CPU mode determines which instruction encodings are active.

All instruction encodings are associated with exactly one CPUMode, and
all CPU modes are associated with exactly one TargetISA.

	Parameters

	
	name – Short mnemonic name for the CPU mode.

	target – Associated TargetISA.

Encodings are guarded by sub-target predicates. For example, the RISC-V
“C” extension which specifies the compressed encodings may not be supported, and
a predicate would be used to disable all of the 16-bit encodings in that case.
This can also affect whether an instruction is legal. For example, x86 has a
predicate that controls the SSE 4.1 instruction encodings. When that predicate
is false, the SSE 4.1 instructions are not available.

Encodings also have a instruction predicate which depends on the
specific values of the instruction’s immediate fields. This is used to ensure
that immediate address offsets are within range, for example. The instructions
in the base Cranelift instruction set can often represent a wider range of
immediates than any specific encoding. The fixed-size RISC-style encodings tend
to have more range limitations than CISC-style variable length encodings like
x86.

The diagram below shows the relationship between the classes involved in
specifying instruction encodings:

digraph encoding {
node [shape=record]
EncRecipe -> SubtargetPred
EncRecipe -> InstrFormat
EncRecipe -> InstrPred
Encoding [label="{Encoding|Opcode+TypeVars}"]
Encoding -> EncRecipe [label="+EncBits"]
Encoding -> CPUMode
Encoding -> SubtargetPred
Encoding -> InstrPred
Encoding -> Opcode
Opcode -> InstrFormat
CPUMode -> Target
}

An Encoding instance specifies the encoding of a concrete
instruction. The following properties are used to select instructions to be
encoded:

	An opcode, i.e. iadd_imm, that must match the instruction’s
opcode.

	Values for any type variables if the opcode represents a polymorphic
instruction.

	An instruction predicate that must be satisfied by the instruction’s
immediate operands.

	The CPU mode that must be active.

	A sub-target predicate that must be satisfied by the currently active
sub-target.

An encoding specifies an encoding recipe along with some encoding bits that
the recipe can use for native opcode fields etc. The encoding recipe has
additional constraints that must be satisfied:

	An InstructionFormat that must match the format required by the
opcodes of any encodings that use this recipe.

	An additional instruction predicate.

	An additional sub-target predicate.

The additional predicates in the EncRecipe are merged with the
per-encoding predicates when generating the encoding matcher code. Often
encodings only need the recipe predicates.

	
class cdsl.isa.EncRecipe(name, format, base_size, ins, outs, compute_size=None, branch_range=None, clobbers_flags=True, instp=None, isap=None, emit=None)

	A recipe for encoding instructions with a given format.

Many different instructions can be encoded by the same recipe, but they
must all have the same instruction format.

The ins and outs arguments are tuples specifying the register
allocation constraints for the value operands and results respectively. The
possible constraints for an operand are:

	A RegClass specifying the set of allowed registers.

	A Register specifying a fixed-register operand.

	An integer indicating that this result is tied to a value operand, so
they must use the same register.

	A Stack specifying a value in a stack slot.

The branch_range argument must be provided for recipes that can encode
branch instructions. It is an (origin, bits) tuple describing the exact
range that can be encoded in a branch instruction.

For ISAs that use CPU flags in iflags and fflags value types, the
clobbers_flags is used to indicate instruction encodings that clobbers
the CPU flags, so they can’t be used where a flag value is live.

	Parameters

	
	name – Short mnemonic name for this recipe.

	format – All encoded instructions must have this
InstructionFormat.

	base_size – Base number of bytes in the binary encoded instruction.

	compute_size – Function name to use when computing actual size.

	ins – Tuple of register constraints for value operands.

	outs – Tuple of register constraints for results.

	branch_range – (origin, bits) range for branches.

	clobbers_flags – This instruction clobbers iflags and fflags.

	instp – Instruction predicate.

	isap – ISA predicate.

	emit – Rust code for binary emission.

Register constraints

After an encoding recipe has been chosen for an instruction, it is the register
allocator’s job to make sure that the recipe’s Register constraints
are satisfied. Most ISAs have separate integer and floating point registers,
and instructions can usually only use registers from one of the banks. Some
instruction encodings are even more constrained and can only use a subset of
the registers in a bank. These constraints are expressed in terms of register
classes.

Sometimes the result of an instruction is placed in a register that must be the
same as one of the input registers. Some instructions even use a fixed register
for inputs or results.

Each encoding recipe specifies separate constraints for its value operands and
result. These constraints are separate from the instruction predicate which can
only evaluate the instruction’s immediate operands.

	
class cdsl.registers.RegBank(name, isa, doc, units, pressure_tracking=True, prefix='r', names=())

	A register bank belonging to an ISA.

A register bank controls a set of register units disjoint from all the
other register banks in the ISA. The register units are numbered uniquely
within the target ISA, and the units in a register bank form a contiguous
sequence starting from a sufficiently aligned point that their low bits can
be used directly when encoding machine code instructions.

Register units can be given generated names like r0, r1, …, or a
tuple of special register unit names can be provided.

	Parameters

	
	name – Name of this register bank.

	doc – Documentation string.

	units – Number of register units.

	pressure_tracking – Enable tracking of register pressure.

	prefix – Prefix for generated unit names.

	names – Special names for the first units. May be shorter than
units, the remaining units are named using prefix.

Register class constraints

The most common type of register constraint is the register class. It specifies
that an operand or result must be allocated one of the registers from the given
register class:

IntRegs = RegBank('IntRegs', ISA, 'General purpose registers', units=16, prefix='r')
GPR = RegClass(IntRegs)
R = EncRecipe('R', Binary, ins=(GPR, GPR), outs=GPR)

This defines an encoding recipe for the Binary instruction format where
both input operands must be allocated from the GPR register class.

	
class cdsl.registers.RegClass(bank, count=0, width=1, start=0, bitmask=None)

	A register class is a subset of register units in a RegBank along with a
strategy for allocating registers.

The width parameter determines how many register units are allocated at a
time. Usually it that is one, but for example the ARM D registers are
allocated two units at a time. When multiple units are allocated, it is
always a contiguous set of unit numbers.

	Parameters

	
	bank – The register bank we’re allocating from.

	count – The maximum number of allocations in this register class. By
default, the whole register bank can be allocated.

	width – How many units to allocate at a time.

	start – The first unit to allocate, relative to bank.first.unit.

Tied register operands

In more compact machine code encodings, it is common to require that the result
register is the same as one of the inputs. This is represented with tied
operands:

CR = EncRecipe('CR', Binary, ins=(GPR, GPR), outs=0)

This indicates that the result value must be allocated to the same register as
the first input value. Tied operand constraints can only be used for result
values, so the number always refers to one of the input values.

Fixed register operands

Some instructions use hard-coded input and output registers for some value
operands. An example is the pblendvb x86 SSE instruction which takes one
of its three value operands in the hard-coded %xmm0 register:

XMM0 = FPR[0]
SSE66_XMM0 = EncRecipe('SSE66_XMM0', Ternary, ins=(FPR, FPR, XMM0), outs=0)

The syntax FPR[0] selects the first register from the FPR register
class which consists of all the XMM registers.

Stack operands

Cranelift’s register allocator can assign an SSA value to a stack slot if there
isn’t enough registers. It will insert spill and fill
instructions as needed to satisfy instruction operand constraints, but it is
also possible to have instructions that can access stack slots directly:

CSS = EncRecipe('CSS', Unary, ins=GPR, outs=Stack(GPR))

An output stack value implies a store to the stack, an input value implies a
load.

Targets

Cranelift can be compiled with support for multiple target instruction set
architectures. Each ISA is represented by a cdsl.isa.TargetISA instance.

	
class cdsl.isa.TargetISA(name, instruction_groups)

	A target instruction set architecture.

The TargetISA class collects everything known about a target ISA.

	Parameters

	
	name – Short mnemonic name for the ISA.

	instruction_groups – List of InstructionGroup instances that are
relevant for this ISA.

The definitions for each supported target live in a package under
cranelift-codegen/meta-python/isa.

Cranelift target ISA definitions

The isa package contains sub-packages for each target instruction set
architecture supported by Cranelift.

	
isa.all_isas()

	Get a list of all the supported target ISAs. Each target ISA is represented
as a cranelift.TargetISA instance.

RISC-V Target

RISC-V [https://riscv.org/] is an open instruction set architecture
originally developed at UC Berkeley. It is a RISC-style ISA with either a
32-bit (RV32I) or 64-bit (RV32I) base instruction set and a number of optional
extensions:

	RV32M / RV64M

	Integer multiplication and division.

	RV32A / RV64A

	Atomics.

	RV32F / RV64F

	Single-precision IEEE floating point.

	RV32D / RV64D

	Double-precision IEEE floating point.

	RV32G / RV64G

	General purpose instruction sets. This represents the union of the I, M, A,
F, and D instruction sets listed above.

x86 Target Architecture

This target ISA generates code for x86 CPUs with two separate CPU modes:

	I32

	32-bit x86 architecture, also known as ‘IA-32’, also sometimes referred
to as ‘i386’, however note that Cranelift depends on instructions not
in the original i386, such as SSE2, CMOVcc, and UD2.

	I64

	x86-64 architecture, also known as ‘AMD64`, Intel 64, and ‘x64’.

ARM 32-bit Architecture

This target ISA generates code for ARMv7 and ARMv8 CPUs in 32-bit mode
(AArch32). We support both ARM and Thumb2 instruction encodings.

ARM 64-bit Architecture

ARMv8 CPUs running the Aarch64 architecture.

Glossary

	Illegal instruction

	An instruction is considered illegal if there is no encoding available
for the current CPU mode. The legality of an instruction depends on the
value of sub-target predicates, so it can’t always be
determined ahead of time.

	CPU mode

	Every target defines one or more CPU modes that determine how the CPU
decodes binary instructions. Some CPUs can switch modes dynamically with
a branch instruction (like ARM/Thumb), while other modes are
process-wide (like x86 32/64-bit).

	Sub-target predicate

	A predicate that depends on the current sub-target configuration.
Examples are “Use SSE 4.1 instructions”, “Use RISC-V compressed
encodings”. Sub-target predicates can depend on both detected CPU
features and configuration settings.

	Instruction predicate

	A predicate that depends on the immediate fields of an instruction. An
example is “the load address offset must be a 10-bit signed integer”.
Instruction predicates do not depend on the registers selected for value
operands.

	Register constraint

	Value operands and results correspond to machine registers. Encodings may
constrain operands to either a fixed register or a register class. There
may also be register constraints between operands, for example some
encodings require that the result register is one of the input
registers.

 Testing Cranelift

Testing Cranelift

Cranelift is tested at multiple levels of abstraction and integration. When
possible, Rust unit tests are used to verify single functions and types. When
testing the interaction between compiler passes, file-level tests are
appropriate.

The top-level shell script test-all.sh runs all of the tests in the
Cranelift repository.

Rust tests

Rust and Cargo have good support for testing. Cranelift uses unit tests, doc
tests, and integration tests where appropriate.

Unit tests

Unit test live in a tests sub-module of the code they are testing:

pub fn add(x: u32, y: u32) -> u32 {
 x + y
}

#[cfg(test)]
mod tests {
 use super::add;

 #[test]
 check_add() {
 assert_eq!(add(2, 2), 4);
 }
}

Since sub-modules have access to non-public items in a Rust module, unit tests
can be used to test module-internal functions and types too.

Doc tests

Documentation comments can contain code snippets which are also compiled and
tested:

//! The `Flags` struct is immutable once it has been created. A `Builder` instance is used to
//! create it.
//!
//! # Example
//! ```
//! use cranelift_codegen::settings::{self, Configurable};
//!
//! let mut b = settings::builder();
//! b.set("opt_level", "fastest");
//!
//! let f = settings::Flags::new(&b);
//! assert_eq!(f.opt_level(), settings::OptLevel::Fastest);
//! ```

These tests are useful for demonstrating how to use an API, and running them
regularly makes sure that they stay up to date. Documentation tests are not
appropriate for lots of assertions; use unit tests for that.

Integration tests

Integration tests are Rust source files that are compiled and linked
individually. They are used to exercise the external API of the crates under
test.

These tests are usually found in the tests top-level directory where
they have access to all the crates in the Cranelift repository. The
cranelift-codegen and cranelift-reader crates have no external
dependencies, which can make testing tedious. Integration tests that don’t need
to depend on other crates can be placed in cranelift-codegen/tests and
cranelift-reader/tests.

File tests

Compilers work with large data structures representing programs, and it quickly
gets unwieldy to generate test data programmatically. File-level tests make it
easier to provide substantial input functions for the compiler tests.

File tests are *.clif files in the filetests/ directory
hierarchy. Each file has a header describing what to test followed by a number
of input functions in the Cranelift textual intermediate representation:

test_file ::= test_header function_list
test_header ::= test_commands (isa_specs | settings)
test_commands ::= test_command { test_command }
test_command ::= "test" test_name { option } "\n"

The available test commands are described below.

Many test commands only make sense in the context of a target instruction set
architecture. These tests require one or more ISA specifications in the test
header:

isa_specs ::= { [settings] isa_spec }
isa_spec ::= "isa" isa_name { option } "\n"

The options given on the isa line modify the ISA-specific settings defined in
cranelift-codegen/meta-python/isa/*/settings.py.

All types of tests allow shared Cranelift settings to be modified:

settings ::= { setting }
setting ::= "set" { option } "\n"
option ::= flag | setting "=" value

The shared settings available for all target ISAs are defined in
cranelift-codegen/meta-python/base/settings.py.

The set lines apply settings cumulatively:

test legalizer
set opt_level=best
set is_pic=1
isa riscv64
set is_pic=0
isa supports_m=false

function %foo() {}

This example will run the legalizer test twice. Both runs will have
opt_level=best, but they will have different is_pic settings. The 32-bit
run will also have the RISC-V specific flag supports_m disabled.

The filetests are run automatically as part of cargo test, and they can
also be run manually with the clif-util test command.

Filecheck

Many of the test commands described below use filecheck to verify their
output. Filecheck is a Rust implementation of the LLVM tool of the same name.
See the documentation [https://docs.rs/filecheck/] for details of its syntax.

Comments in .clif files are associated with the entity they follow.
This typically means an instruction or the whole function. Those tests that
use filecheck will extract comments associated with each function (or its
entities) and scan them for filecheck directives. The test output for each
function is then matched against the filecheck directives for that function.

Comments appearing before the first function in a file apply to every function.
This is useful for defining common regular expression variables with the
regex: directive, for example.

Note that LLVM’s file tests don’t separate filecheck directives by their
associated function. It verifies the concatenated output against all filecheck
directives in the test file. LLVM’s FileCheck command has a
CHECK-LABEL: directive to help separate the output from different functions.
Cranelift’s tests don’t need this.

test cat

This is one of the simplest file tests, used for testing the conversion to and
from textual IR. The test cat command simply parses each function and
converts it back to text again. The text of each function is then matched
against the associated filecheck directives.

Example:

function %r1() -> i32, f32 {
ebb1:
 v10 = iconst.i32 3
 v20 = f32const 0.0
 return v10, v20
}
; sameln: function %r1() -> i32, f32 {
; nextln: ebb0:
; nextln: v10 = iconst.i32 3
; nextln: v20 = f32const 0.0
; nextln: return v10, v20
; nextln: }

test verifier

Run each function through the IR verifier and check that it produces the
expected error messages.

Expected error messages are indicated with an error: directive on the
instruction that produces the verifier error. Both the error message and
reported location of the error is verified:

test verifier

function %test(i32) {
 ebb0(v0: i32):
 jump ebb1 ; error: terminator
 return
}

This example test passes if the verifier fails with an error message containing
the sub-string "terminator" and the error is reported for the jump
instruction.

If a function contains no error: annotations, the test passes if the
function verifies correctly.

test print-cfg

Print the control flow graph of each function as a Graphviz graph, and run
filecheck over the result. See also the clif-util print-cfg
command:

; For testing cfg generation. This code is nonsense.
test print-cfg
test verifier

function %nonsense(i32, i32) -> f32 {
; check: digraph %nonsense {
; regex: I=\binst\d+\b
; check: label="{ebb0 | <$(BRZ=$I)>brz ebb2 | <$(JUMP=$I)>jump ebb1}"]

ebb0(v0: i32, v1: i32):
 brz v1, ebb2 ; unordered: ebb0:$BRZ -> ebb2
 v2 = iconst.i32 0
 jump ebb1(v2) ; unordered: ebb0:$JUMP -> ebb1

ebb1(v5: i32):
 return v0

ebb2:
 v100 = f32const 0.0
 return v100
}

test domtree

Compute the dominator tree of each function and validate it against the
dominates: annotations:

test domtree

function %test(i32) {
 ebb0(v0: i32):
 jump ebb1 ; dominates: ebb1
 ebb1:
 brz v0, ebb3 ; dominates: ebb3
 jump ebb2 ; dominates: ebb2
 ebb2:
 jump ebb3
 ebb3:
 return
}

Every reachable extended basic block except for the entry block has an
immediate dominator which is a jump or branch instruction. This test passes
if the dominates: annotations on the immediate dominator instructions are
both correct and complete.

This test also sends the computed CFG post-order through filecheck.

test legalizer

Legalize each function for the specified target ISA and run the resulting
function through filecheck. This test command can be used to validate the
encodings selected for legal instructions as well as the instruction
transformations performed by the legalizer.

test regalloc

Test the register allocator.

First, each function is legalized for the specified target ISA. This is
required for register allocation since the instruction encodings provide
register class constraints to the register allocator.

Second, the register allocator is run on the function, inserting spill code and
assigning registers and stack slots to all values.

The resulting function is then run through filecheck.

test binemit

Test the emission of binary machine code.

The functions must contains instructions that are annotated with both encodings
and value locations (registers or stack slots). For instructions that are
annotated with a bin: directive, the emitted hexadecimal machine code for
that instruction is compared to the directive:

test binemit
isa riscv

function %int32() {
ebb0:
 [-,%x5] v0 = iconst.i32 1
 [-,%x6] v1 = iconst.i32 2
 [R#0c,%x7] v10 = iadd v0, v1 ; bin: 006283b3
 [R#200c,%x8] v11 = isub v0, v1 ; bin: 40628433
 return
}

If any instructions are unencoded (indicated with a [-] encoding field), they
will be encoded using the same mechanism as the legalizer uses. However,
illegal instructions for the ISA won’t be expanded into other instruction
sequences. Instead the test will fail.

Value locations must be present if they are required to compute the binary
bits. Missing value locations will cause the test to crash.

test simple-gvn

Test the simple GVN pass.

The simple GVN pass is run on each function, and then results are run
through filecheck.

test licm

Test the LICM pass.

The LICM pass is run on each function, and then results are run
through filecheck.

test dce

Test the DCE pass.

The DCE pass is run on each function, and then results are run
through filecheck.

test shrink

Test the instruction shrinking pass.

The shrink pass is run on each function, and then results are run
through filecheck.

test preopt

Test the preopt pass.

The preopt pass is run on each function, and then results are run
through filecheck.

test postopt

Test the postopt pass.

The postopt pass is run on each function, and then results are run
through filecheck.

test compile

Test the whole code generation pipeline.

Each function is passed through the full Context::compile() function
which is normally used to compile code. This type of test often depends
on assertions or verifier errors, but it is also possible to use
filecheck directives which will be matched against the final form of the
Cranelift IR right before binary machine code emission.

 Register Allocation in Cranelift

Register Allocation in Cranelift

Cranelift uses a decoupled, SSA-based register allocator. Decoupled means that
register allocation is split into two primary phases: spilling and
coloring. SSA-based means that the code stays in SSA form throughout the
register allocator, and in fact is still in SSA form after register allocation.

Before the register allocator is run, all instructions in the function must be
legalized, which means that every instruction has an entry in the
encodings table. The encoding entries also provide register class
constraints on the instruction’s operands that the register allocator must
satisfy.

After the register allocator has run, the locations table provides a
register or stack slot location for all SSA values used by the function. The
register allocator may have inserted spill, fill, and
copy instructions to make that possible.

SSA-based register allocation

The phases of the SSA-based register allocator are:

	Liveness analysis

	For each SSA value, determine exactly where it is live.

	Coalescing

	Form virtual registers which are sets of SSA values that should be
assigned to the same location. Split live ranges such that values that
belong to the same virtual register don’t have interfering live ranges.

	Spilling

	The process of deciding which SSA values go in a stack slot and which
values go in a register. The spilling phase can also split live ranges by
inserting copy instructions, or transform the code in other ways to
reduce the number of values kept in registers.

After spilling, the number of live register values never exceeds the number
of available registers.

	Reload

	Insert spill and fill instructions as necessary such that
instructions that expect their operands in registers won’t see values that
live on the stack and vice versa.

Reuse registers containing values loaded from the stack as much as possible
without exceeding the maximum allowed register pressure.

	Coloring

	The process of assigning specific registers to the live values. It’s a
property of SSA form that this can be done in a linear scan of the
dominator tree without causing any additional spills.

Make sure that specific register operand constraints are satisfied.

The contract between the spilling and coloring phases is that the number of
values in registers never exceeds the number of available registers. This
sounds simple enough in theory, but in practice there are some complications.

Real-world complications to SSA coloring

In practice, instruction set architectures don’t have “K interchangeable
registers”, and register pressure can’t be measured with a single number. There
are complications:

	Different register banks

	Most ISAs separate integer registers from floating point registers, and
instructions require their operands to come from a specific bank. This is a
fairly simple problem to deal with since the register banks are completely
disjoint. We simply count the number of integer and floating-point values
that are live independently, and make sure that each number does not exceed
the size of their respective register banks.

	Instructions with fixed operands

	Some instructions use a fixed register for an operand. This happens on the
x86 ISAs:

	Dynamic shift and rotate instructions take the shift amount in CL.

	Division instructions use RAX and RDX for both input and output operands.

	Wide multiply instructions use fixed RAX and RDX registers for input and
output operands.

	A few SSE variable blend instructions use a hardwired XMM0 input operand.

	Operands constrained to register subclasses

	Some instructions can only use a subset of the registers for some operands.
For example, the ARM NEON vmla (scalar) instruction requires the scalar
operand to be located in D0-15 or even D0-7, depending on the data type.
The other operands can be from the full D0-31 register set.

	ABI boundaries

	Before making a function call, arguments must be placed in specific
registers and stack locations determined by the ABI, and return values
appear in fixed registers.

Some registers can be clobbered by the call and some are saved by the
callee. In some cases, only the low bits of a register are saved by the
callee. For example, ARM64 callees save only the low 64 bits of v8-15, and
Win64 callees only save the low 128 bits of AVX registers.

ABI boundaries also affect the location of arguments to the entry block and
return values passed to the return instruction.

	Aliasing registers

	Different registers sometimes share the same bits in the register bank.
This can make it difficult to measure register pressure. For example, the
x86 registers RAX, EAX, AX, AL, and AH overlap.

If only one of the aliasing registers can be used at a time, the aliasing
doesn’t cause problems since the registers can simply be counted as one
unit.

	Early clobbers

	Sometimes an instruction requires that the register used for an output
operand does not alias any of the input operands. This happens for inline
assembly and in some other special cases.

Liveness Analysis

All the register allocator passes need to know exactly where SSA values are
live. The liveness analysis computes this information.

The data structure representing the live range of a value uses the linear
layout of the function. All instructions and EBB headers are assigned a
program position. A starting point for a live range can be one of the
following:

	The instruction where the value is defined.

	The EBB header where the value is an EBB parameter.

	An EBB header where the value is live-in because it was defined in a
dominating block.

The ending point of a live range can be:

	The last instruction to use the value.

	A branch or jump to an EBB where the value is live-in.

When all the EBBs in a function are laid out linearly, the live range of a
value doesn’t have to be a contiguous interval, although it will be in a
majority of cases. There can be holes in the linear live range.

The part of a value’s live range that falls inside a single EBB will always be
an interval without any holes. This follows from the dominance requirements of
SSA. A live range is represented as:

	The interval inside the EBB where the value is defined.

	A set of intervals for EBBs where the value is live-in.

Any value that is only used inside a single EBB will have an empty set of
live-in intervals. Some values are live across large parts of the function, and
this can often be represented with coalesced live-in intervals covering many
EBBs. It is important that the live range data structure doesn’t have to grow
linearly with the number of EBBs covered by a live range.

This representation is very similar to LLVM’s LiveInterval data structure
with a few important differences:

	The Cranelift LiveRange only covers a single SSA value, while LLVM’s
LiveInterval represents the union of multiple related SSA values in a
virtual register. This makes Cranelift’s representation smaller because
individual segments don’t have to annotated with a value number.

	Cranelift stores the def-interval separately from a list of coalesced live-in
intervals, while LLVM stores an array of segments. The two representations
are equivalent, but Cranelift optimizes for the common case of a value that is
only used locally.

	It is simpler to check if two live ranges are overlapping. The dominance
properties of SSA form means that it is only necessary to check the
def-interval of each live range against the intervals of the other range. It
is not necessary to check for overlap between the two sets of live-in
intervals. This makes the overlap check logarithmic in the number of live-in
intervals instead of linear.

	LLVM represents a program point as SlotIndex which holds a pointer to a
32-byte IndexListEntry struct. The entries are organized in a double
linked list that mirrors the ordering of instructions in a basic block. This
allows ‘tombstone’ program points corresponding to instructions that have
been deleted.

Cranelift uses a 32-bit program point representation that encodes an
instruction or EBB number directly. There are no ‘tombstones’ for deleted
instructions, and no mirrored linked list of instructions. Live ranges must
be updated when instructions are deleted.

A consequence of Cranelift’s more compact representation is that two program
points can’t be compared without the context of a function layout.

Coalescing algorithm

Unconstrained SSA form is not well suited to register allocation because of the problems
that can arise around EBB parameters and arguments. Consider this simple example:

function %interference(i32, i32) -> i32 {
ebb0(v0: i32, v1: i32):
 brz v0, ebb1(v1)
 jump ebb1(v0)

ebb1(v2: i32):
 v3 = iadd v1, v2
 return v3
}

Here, the value v1 is both passed as an argument to ebb1 and it is
live in to the EBB because it is used by the iadd instruction. Since
EBB arguments on the brz instruction need to be in the same register as
the corresponding EBB parameter v2, there is going to be interference
between v1 and v2 in the ebb1 block.

The interference can be resolved by isolating the SSA values passed as EBB arguments:

function %coalesced(i32, i32) -> i32 {
ebb0(v0: i32, v1: i32):
 v5 = copy v1
 brz v0, ebb1(v5)
 v6 = copy v0
 jump ebb1(v6)

ebb1(v2: i32):
 v3 = iadd.i32 v1, v2
 return v3
}

Now the EBB argument is v5 which is not itself live into ebb1,
resolving the interference.

The coalescing pass groups the SSA values into sets called virtual registers
and inserts copies such that:

	Whenever a value is passed as an EBB argument, the corresponding EBB
parameter value belongs to the same virtual register as the passed argument
value.

	The live ranges of values belonging to the same virtual register do not
interfere, i.e. they don’t overlap anywhere.

Most virtual registers contains only a single isolated SSA value because most
SSA values are never passed as EBB arguments. The VirtRegs data structure
doesn’t store any information about these singleton virtual registers, it only
tracks larger virtual registers and assumes that any value it doesn’t know about
is its own singleton virtual register

Once the values have been partitioned into interference-free virtual registers,
the code is said to be in conventional SSA form (CSSA) [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.7249]. A program
in CSSA form can be register allocated correctly by assigning all the values in
a virtual register to the same stack or register location.

Conventional SSA form and the virtual registers are maintained through all the
register allocator passes.

Spilling algorithm

The spilling pass is responsible for lowering the register pressure enough that
the coloring pass is guaranteed to be able to find a coloring solution. It does
this by assigning whole virtual registers to stack slots.

Besides just counting registers, the spiller also has to look at the
instruction’s operand constraints because sometimes the constraints can require
extra registers to solve, raising the register pressure:

	If a single value is used more than once by an instruction, and the operands
have conflicting constraints, two registers must be used. The most common case is
when a single value is passed as two separate arguments to a function call.

	If an instruction has a tied operand constraint where one of the input operands
must use the same register as the output operand, the spiller makes sure that
the tied input value doesn’t interfere with the output value by inserting a copy
if needed.

The spilling heuristic used by Cranelift is very simple. Whenever the spiller
determines that the register pressure is too high at some instruction, it picks
the live SSA value whose definition is farthest away as the spill candidate.
Then it spills all values in the corresponding virtual register to the same
spill slot. It is important that all values in a virtual register get the same
spill slot, otherwise we could need memory-to-memory copies when passing spilled
arguments to a spilled EBB parameter.

This simple heuristic tends to spill values with long live ranges, and it
depends on the reload pass to do a good job of reusing registers reloaded from
spill slots if the spilled value gets used a lot. The idea is to minimize stack
write traffic with the spilling heuristic and to minimize stack read traffic
with the reload pass.

Coloring algorithm

The SSA coloring algorithm is based on a single observation: If two SSA values
interfere, one of the values must be live where the other value is defined.

We visit the EBBs in a topological order such that all dominating EBBs are
visited before the current EBB. The instructions in an EBB are visited in a
top-down order, and each value define by the instruction is assigned an
available register. With this iteration order, every value that is live at an
instruction has already been assigned to a register.

This coloring algorithm works if the following condition holds:

At every instruction, consider the values live through the instruction. No
matter how the live values have been assigned to registers, there must be
available registers of the right register classes available for the values
defined by the instruction.

We’ll need to modify this condition in order to deal with the real-world
complications.

The coloring algorithm needs to keep track of the set of live values at each
instruction. At the top of an EBB, this set can be computed as the union of:

	The set of live values before the immediately dominating branch or jump
instruction. The topological iteration order guarantees that this set is
available. Values whose live range indicate that they are not live-in to the
current EBB should be filtered out.

	The set of parameters the EBB. These values should all be live-in, although
it is possible that some are dead and never used anywhere.

For each live value, we also track its kill point in the current EBB. This is
the last instruction to use the value in the EBB. Values that are live-out
through the EBB terminator don’t have a kill point. Note that the kill point
can be a branch to another EBB that uses the value, so the kill instruction
doesn’t have to be a use of the value.

When advancing past an instruction, the live set is updated:

	Any values whose kill point is the current instruction are removed.

	Any values defined by the instruction are added, unless their kill point is
the current instruction. This corresponds to a dead def which has no uses.

 Cranelift compared to LLVM

Cranelift compared to LLVM

LLVM [https://llvm.org] is a collection of compiler components implemented as
a set of C++ libraries. It can be used to build both JIT compilers and static
compilers like Clang [https://clang.llvm.org], and it is deservedly very
popular. Chris Lattner’s chapter about LLVM [https://www.aosabook.org/en/llvm.html] in the Architecture of Open Source
Applications [https://aosabook.org/en/index.html] book gives an excellent
overview of the architecture and design of LLVM.

Cranelift and LLVM are superficially similar projects, so it is worth
highlighting some of the differences and similarities. Both projects:

	Use an ISA-agnostic input language in order to mostly abstract away the
differences between target instruction set architectures.

	Depend extensively on SSA form.

	Have both textual and in-memory forms of their primary intermediate
representation. (LLVM also has a binary bitcode format; Cranelift doesn’t.)

	Can target multiple ISAs.

	Can cross-compile by default without rebuilding the code generator.

However, there are also some major differences, described in the following sections.

Intermediate representations

LLVM uses multiple intermediate representations as it translates a program to
binary machine code:

	LLVM IR [https://llvm.org/docs/LangRef.html]

	This is the primary intermediate representation which has textual, binary, and
in-memory forms. It serves two main purposes:

	An ISA-agnostic, stable(ish) input language that front ends can generate
easily.

	Intermediate representation for common mid-level optimizations. A large
library of code analysis and transformation passes operate on LLVM IR.

	SelectionDAG [https://llvm.org/docs/CodeGenerator.html#instruction-selection-section]

	A graph-based representation of the code in a single basic block is used by
the instruction selector. It has both ISA-agnostic and ISA-specific
opcodes. These main passes are run on the SelectionDAG representation:

	Type legalization eliminates all value types that don’t have a
representation in the target ISA registers.

	Operation legalization eliminates all opcodes that can’t be mapped to
target ISA instructions.

	DAG-combine cleans up redundant code after the legalization passes.

	Instruction selection translates ISA-agnostic expressions to ISA-specific
instructions.

The SelectionDAG representation automatically eliminates common
subexpressions and dead code.

	MachineInstr [https://llvm.org/docs/CodeGenerator.html#machine-code-representation]

	A linear representation of ISA-specific instructions that initially is in
SSA form, but it can also represent non-SSA form during and after register
allocation. Many low-level optimizations run on MI code. The most important
passes are:

	Scheduling.

	Register allocation.

	MC [https://llvm.org/docs/CodeGenerator.html#the-mc-layer]

	MC serves as the output abstraction layer and is the basis for LLVM’s
integrated assembler. It is used for:

	Branch relaxation.

	Emitting assembly or binary object code.

	Assemblers.

	Disassemblers.

There is an ongoing “global instruction selection” project to replace the
SelectionDAG representation with ISA-agnostic opcodes on the MachineInstr
representation. Some target ISAs have a fast instruction selector that can
translate simple code directly to MachineInstrs, bypassing SelectionDAG when
possible.

Cranelift uses a single intermediate representation to cover
these levels of abstraction. This is possible in part because of Cranelift’s
smaller scope.

	Cranelift does not provide assemblers and disassemblers, so it is not
necessary to be able to represent every weird instruction in an ISA. Only
those instructions that the code generator emits have a representation.

	Cranelift’s opcodes are ISA-agnostic, but after legalization / instruction
selection, each instruction is annotated with an ISA-specific encoding which
represents a native instruction.

	SSA form is preserved throughout. After register allocation, each SSA value
is annotated with an assigned ISA register or stack slot.

The Cranelift intermediate representation is similar to LLVM IR, but at a slightly
lower level of abstraction, to allow it to be used all the way through the
codegen process.

This design tradeoff does mean that Cranelift IR is less friendly for mid-level
optimizations. Cranelift doesn’t currently perform mid-level optimizations,
however if it should grow to where this becomes important, the vision is that
Cranelift would add a separate IR layer, or possibly an separate IR, to support
this. Instead of frontends producing optimizer IR which is then translated to
codegen IR, Cranelift would have frontends producing codegen IR, which can be
translated to optimizer IR and back.

This biases the overall system towards fast compilation when mid-level
optimization is not needed, such as when emitting unoptimized code for or when
low-level optimizations are sufficient.

And, it removes some constraints in the mid-level optimize IR design space,
making it more feasible to consider ideas such as using a
VSDG-based IR [https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-705.pdf].

Program structure

In LLVM IR, the largest representable unit is the module which corresponds
more or less to a C translation unit. It is a collection of functions and
global variables that may contain references to external symbols too.

In Cranelift’s IR [https://cranelift.readthedocs.io/en/latest/ir.html],
used by the cranelift-codegen [https://docs.rs/cranelift-codegen/] crate,
functions are self-contained, allowing them to be compiled independently. At
this level, there is no explicit module that contains the functions.

Module functionality in Cranelift is provided as an optional library layer, in
the cranelift-module [https://docs.rs/cranelift-module/] crate. It provides
facilities for working with modules, which can contain multiple functions as
well as data objects, and it links them together.

An LLVM IR function is a graph of basic blocks. A Cranelift IR function is a
graph of extended basic blocks that may contain internal branch instructions.
The main difference is that an LLVM conditional branch instruction has two
target basic blocks—a true and a false edge. A Cranelift branch instruction
only has a single target and falls through to the next instruction when its
condition is false. The Cranelift representation is closer to how machine code
works; LLVM’s representation is more abstract.

LLVM uses phi instructions [https://llvm.org/docs/LangRef.html#phi-instruction] in its SSA
representation. Cranelift passes arguments to EBBs instead. The two
representations are equivalent, but the EBB arguments are better suited to
handle EBBs that may contain multiple branches to the same destination block
with different arguments. Passing arguments to an EBB looks a lot like passing
arguments to a function call, and the register allocator treats them very
similarly. Arguments are assigned to registers or stack locations.

Value types

Cranelift’s type system is mostly a subset of LLVM’s type
system. It is less abstract and closer to the types that common ISA registers
can hold.

	Integer types are limited to powers of two from i8 to
i64. LLVM can represent integer types of arbitrary bit width.

	Floating point types are limited to f32 and f64
which is what WebAssembly provides. It is possible that 16-bit and 128-bit
types will be added in the future.

	Addresses are represented as integers—There are no Cranelift pointer types.
LLVM currently has rich pointer types that include the pointee type. It may
move to a simpler ‘address’ type in the future. Cranelift may add a single
address type too.

	SIMD vector types are limited to a power-of-two number of vector lanes up to
256. LLVM allows an arbitrary number of SIMD lanes.

	Cranelift has no aggregate types. LLVM has named and anonymous struct types as
well as array types.

Cranelift has multiple boolean types, whereas LLVM simply uses i1. The sized
Cranelift boolean types are used to represent SIMD vector masks like b32x4
where each lane is either all 0 or all 1 bits.

Cranelift instructions and function calls can return multiple result values. LLVM
instead models this by returning a single value of an aggregate type.

Instruction set

LLVM has a small well-defined basic instruction set and a large number of
intrinsics, some of which are ISA-specific. Cranelift has a larger instruction
set and no intrinsics. Some Cranelift instructions are ISA-specific.

Since Cranelift instructions are used all the way until the binary machine code
is emitted, there are opcodes for every native instruction that can be
generated. There is a lot of overlap between different ISAs, so for example the
iadd_imm instruction is used by every ISA that can add an
immediate integer to a register. A simple RISC ISA like RISC-V can be defined
with only shared instructions, while x86 needs a number of specific
instructions to model addressing modes.

Undefined behavior

Cranelift does not generally exploit undefined behavior in its optimizations.
LLVM’s mid-level optimizations do, but it should be noted that LLVM’s low-level code
generator rarely needs to make use of undefined behavior either.

LLVM provides nsw and nuw flags for its arithmetic that invoke
undefined behavior on overflow. Cranelift does not provide this functionality.
Its arithmetic instructions either produce a value or a trap.

LLVM has an unreachable instruction which is used to indicate impossible
code paths. Cranelift only has an explicit trap instruction.

Cranelift does make assumptions about aliasing. For example, it assumes that it
has full control of the stack objects in a function, and that they can only be
modified by function calls if their address have escaped. It is quite likely
that Cranelift will admit more detailed aliasing annotations on load/store
instructions in the future. When these annotations are incorrect, undefined
behavior ensues.

 Python Module Index

 Python Module Index

 b |
 c |
 i

 		 	

 		
 b	

 	[image: -]
 	
 base	

 	
 	
 base.entities	

 	
 	
 base.immediates	

 	
 	
 base.types	

 		 	

 		
 c	

 	[image: -]
 	
 cdsl	

 	
 	
 cdsl.formats	

 	
 	
 cdsl.instructions	

 	
 	
 cdsl.isa	

 	
 	
 cdsl.operands	

 	
 	
 cdsl.registers	

 	
 	
 cdsl.settings	

 	
 	
 cdsl.typevar	

 		 	

 		
 i	

 	[image: -]
 	
 isa	

 	
 	
 isa.arm32	

 	
 	
 isa.arm64	

 	
 	
 isa.riscv	

 	
 	
 isa.x86	

 Index

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

Symbols

 	
 	%Tx%N (IR type)

 	
 	[colocated], [1]

A

 	
 	accessible

 	addressable

 	adjust_sp_down

 	
 	adjust_sp_down_imm

 	adjust_sp_up_imm

 	all_isas() (in module isa)

 	as_bool() (cdsl.typevar.TypeVar method)

B

 	
 	b1 (in module base.types)

 	(IR type)

 	b16 (in module base.types)

 	(IR type)

 	b1x%N (IR type)

 	b32 (in module base.types)

 	(IR type)

 	b64 (in module base.types)

 	(IR type)

 	b8 (in module base.types)

 	(IR type)

 	band

 	band_imm

 	band_not

 	base.entities (module)

 	base.immediates (module)

 	base.types (module)

 	basic block

 	bconst

 	bextend

 	bint

 	
 	bitcast

 	bmask

 	bnot

 	bool (IR type)

 	boolean (in module base.immediates)

 	BoolSetting (class in cdsl.settings)

 	BoolType (class in cdsl.types)

 	bor

 	bor_imm

 	bor_not

 	br_icmp

 	br_table

 	breduce

 	brff

 	brif

 	brnz

 	brz

 	bxor

 	bxor_imm

 	bxor_not

 	by() (cdsl.types.LaneType method)

C

 	
 	call

 	call_indirect

 	cdsl (module)

 	cdsl.formats (module)

 	cdsl.instructions (module)

 	cdsl.isa (module)

 	cdsl.operands (module)

 	cdsl.registers (module)

 	cdsl.settings (module)

 	cdsl.typevar (module)

 	
 	ceil

 	close() (cdsl.instructions.InstructionGroup method)

 	cls

 	clz

 	constrain_types() (cdsl.typevar.TypeVar method)

 	constrain_types_by_ts() (cdsl.typevar.TypeVar method)

 	copy

 	copy_special

 	CPU mode

 	CPUMode (class in cdsl.isa)

 	ctz

D

 	
 	derived() (cdsl.typevar.TypeVar static method)

 	double_vector() (cdsl.typevar.TypeVar method)

 	
 	double_width() (cdsl.typevar.TypeVar method)

 	dynamic, [1]

E

 	
 	EBB

 	ebb (in module base.entities)

 	EBB argument

 	EBB parameter

 	EncRecipe (class in cdsl.isa)

 	EntityRefKind (class in cdsl.operands)

 	
 	entry block

 	EnumSetting (class in cdsl.settings)

 	explicit stack slot

 	explicit_slot

 	extended basic block

 	extractlane

F

 	
 	f32 (in module base.types)

 	(IR type)

 	f32const

 	f32x%N (IR type)

 	f64 (in module base.types)

 	(IR type)

 	f64const

 	f64x%N (IR type)

 	fabs

 	fadd

 	fallthrough

 	fallthrough_return

 	fB (IR type)

 	fcmp

 	fcopysign

 	fcvt_from_sint

 	fcvt_from_uint

 	fcvt_to_sint

 	fcvt_to_sint_sat

 	fcvt_to_uint

 	fcvt_to_uint_sat

 	fdemote

 	fdiv

 	
 	ffcmp

 	fflags (in module base.types)

 	(IR type)

 	fill

 	FlagsType (class in cdsl.types)

 	Float (IR type)

 	floatcc (in module base.immediates)

 	(IR type)

 	FloatType (class in cdsl.types)

 	floor

 	fma

 	fmax

 	fmin

 	fmul

 	fneg

 	fpromote

 	free_typevar() (cdsl.typevar.TypeVar method)

 	from_typeset() (cdsl.typevar.TypeVar static method)

 	fsub

 	func_addr

 	func_ref (in module base.entities)

 	function body

 	function preamble

 	function signature

G

 	
 	get_fresh_copy() (cdsl.typevar.TypeVar method)

 	get_typeset() (cdsl.typevar.TypeVar method)

 	
 	global_value

 	(in module base.entities)

H

 	
 	half_vector() (cdsl.typevar.TypeVar method)

 	half_width() (cdsl.typevar.TypeVar method)

 	
 	heap (in module base.entities)

 	heap_addr

I

 	
 	i%Bx%N (IR type)

 	i16 (in module base.types)

 	(IR type)

 	i32 (in module base.types)

 	(IR type)

 	i64 (in module base.types)

 	(IR type)

 	i8 (in module base.types)

 	(IR type)

 	iadd

 	iadd_carry

 	iadd_cin

 	iadd_cout

 	iadd_imm, [1]

 	iAddr (IR type)

 	iB (IR type)

 	icmp

 	icmp_imm

 	iconcat

 	iconst

 	ieee32 (in module base.immediates)

 	(IR type)

 	ieee64 (in module base.immediates)

 	(IR type)

 	ifcmp

 	ifcmp_imm

 	ifcmp_sp

 	iflags (in module base.types)

 	(IR type)

 	Illegal instruction

 	imm64 (in module base.immediates)

 	(IR type)

 	
 	ImmediateKind (class in cdsl.operands)

 	imul

 	imul_imm

 	insertlane

 	Instruction (class in cdsl.instructions)

 	Instruction predicate

 	InstructionFormat (class in cdsl.formats)

 	InstructionGroup (class in cdsl.instructions)

 	Int (IR type)

 	intcc (in module base.immediates)

 	(IR type)

 	intermediate representation

 	IntType (class in cdsl.types)

 	IR

 	ireduce

 	irsub_imm

 	isa (module)

 	isa.arm32 (module)

 	isa.arm64 (module)

 	isa.riscv (module)

 	isa.x86 (module)

 	ishl

 	ishl_imm

 	isplit

 	istore16

 	istore32

 	istore8

 	isub

 	isub_bin

 	isub_borrow

 	isub_bout

J

 	
 	jump

 	
 	jump_table

 	(in module base.entities)

L

 	
 	lane_count() (cdsl.types.LaneType method)

 	lane_of() (cdsl.typevar.TypeVar method)

 	LaneType (class in cdsl.types)

 	
 	load

 	load.Type

 	load_complex

M

 	
 	Mem (IR type)

 	
 	memflags (in module base.immediates)

N

 	
 	nearest

 	
 	NumSetting (class in cdsl.settings)

O

 	
 	offset32 (in module base.immediates)

 	(IR type)

 	
 	open() (cdsl.instructions.InstructionGroup method)

 	Operand (class in cdsl.operands)

 	OperandKind (class in cdsl.operands)

P

 	
 	popcnt

R

 	
 	RegBank (class in cdsl.registers)

 	RegClass (class in cdsl.registers)

 	regfill

 	Register constraint

 	regmove

 	regspill

 	
 	regunit (in module base.immediates)

 	return

 	rotl

 	rotl_imm

 	rotr

 	rotr_imm

 	rust_expr() (cdsl.typevar.TypeVar method)

S

 	
 	sdiv

 	sdiv_imm

 	select

 	selectif

 	Setting (class in cdsl.settings)

 	SettingGroup (class in cdsl.settings)

 	sextend

 	sig_ref (in module base.entities)

 	singleton() (cdsl.typevar.TypeVar static method)

 	singleton_type() (cdsl.typevar.TypeVar method)

 	sload16

 	sload32

 	sload8

 	SpecialType (class in cdsl.types)

 	spill

 	spill stack slot

 	
 	splat

 	sqrt

 	srem

 	srem_imm

 	sshr

 	sshr_imm

 	stack slot

 	stack_addr

 	stack_load

 	stack_slot (in module base.entities)

 	stack_store

 	static

 	store

 	store_complex

 	Sub-target predicate

 	symbol_value

T

 	
 	table (in module base.entities)

 	table_addr

 	TargetISA (class in cdsl.isa)

 	terminator instruction

 	Testable (IR type)

 	to_bitvec() (cdsl.typevar.TypeVar method)

 	trap, [1]

 	trapcode (in module base.immediates)

 	trapff

 	
 	trapif

 	trapnz

 	trapping

 	traps

 	trapz

 	trueff

 	trueif

 	trunc

 	TypeVar (class in cdsl.typevar)

U

 	
 	udiv

 	udiv_imm

 	uextend

 	uimm32 (in module base.immediates)

 	uimm8 (in module base.immediates)

 	uload16

 	
 	uload32

 	uload8

 	urem

 	urem_imm

 	ushr

 	ushr_imm

V

 	
 	VALUE (in module cdsl.operands)

 	ValueType (class in cdsl.types)

 	VARIABLE_ARGS (in module cdsl.operands)

 	vconcat

 	
 	VectorType (class in cdsl.types)

 	vmctx

 	vselect

 	vsplit

X

 	
 	x86_bsf

 	x86_bsr

 	x86_cvtt2si

 	x86_fmax

 	
 	x86_fmin

 	x86_pop

 	x86_push

 	x86_sdivmodx

 	x86_udivmodx

 Redirection Page

Redirection Page

Cranelift’s IR is documented in Cranelift IR Reference. Please update links to point to
this new page.

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Cranelift Code Generator

 		
 Cranelift IR Reference

 		
 Overall structure

 		
 Static single assignment form

 		
 Value types

 		
