

Welcome to Connexion’s documentation!

Connexion is a framework on top of Flask [http://flask.pocoo.org/] that automagically handles
HTTP requests defined using OpenAPI [https://openapis.org/] (formerly known
as Swagger), supporting both v2.0 [https://spec.openapis.org/oas/v2.0.html] and v3.0 [https://spec.openapis.org/oas/v3.0.1.html] of the specification.

Connexion allows you to write these specifications, then maps the
endpoints to your Python functions. This is what makes it unique from
other tools that generate the specification based on your Python
code. You are free to describe your REST API with as much detail as
you want and then Connexion guarantees that it will work as
you specified. We built Connexion this way in order to:

	Simplify the development process

	Reduce misinterpretation about what an API is going to look like

Contents:

	Quickstart
	Prerequisites

	Installing It

	Running It

	Dynamic Rendering of Your Specification

	The Swagger UI Console

	Server Backend

	Command-Line Interface
	Running an OpenAPI specification

	Running a mock server

	Routing
	Endpoint Routing to Your Python Views

	Automatic Routing

	Parameter Name Sanitation

	Parameter Variable Converters

	API Versioning and basePath

	Swagger JSON

	Request Handling
	Request Validation

	Automatic Parameter Handling

	Header Parameters

	Custom Validators

	Response Handling
	Response Serialization

	Returning status codes

	Returning Headers

	Response Validation

	Custom Validator

	Error Handling

	Security
	OAuth 2 Authentication and Authorization

	Basic Authentication

	ApiKey Authentication

	Bearer Authentication (JWT)

	HTTPS Support

	Connexion Cookbook
	Custom type format

	CORS Support

	Logging

	Exception Handling
	Rendering Exceptions through the Flask Handler

	Default Exception Handling

	Examples of Custom Rendering Exceptions

	Custom Exceptions

Quickstart

Prerequisites

Python 2.7 or Python 3.4+

Installing It

In your command line, type this:

$ pip install connexion[swagger-ui]

Running It

Put your API YAML inside a folder in the root path of your application (e.g openapi/) and then do

import connexion

app = connexion.FlaskApp(__name__, specification_dir='openapi/')
app.add_api('my_api.yaml')
app.run(port=8080)

Dynamic Rendering of Your Specification

Connexion uses Jinja2 [http://jinja.pocoo.org/] to allow specification parameterization through
arguments parameter. You can either define specification arguments
globally for the application in the connexion.App constructor, or
for each specific API in the connexion.App#add_api method:

app = connexion.FlaskApp(__name__, specification_dir='openapi/',
 arguments={'global': 'global_value'})
app.add_api('my_api.yaml', arguments={'api_local': 'local_value'})
app.run(port=8080)

When a value is provided both globally and on the API, the API value
will take precedence.

The Swagger UI Console

The Swagger UI for an API is available, by default, in
{base_path}/ui/ where base_path is the base path of the API.

You can disable the Swagger UI at the application level:

options = {"swagger_ui": False}
app = connexion.FlaskApp(__name__, specification_dir='openapi/',
 options=options)
app.add_api('my_api.yaml')

You can also disable it at the API level:

options = {"swagger_ui": False}
app = connexion.FlaskApp(__name__, specification_dir='openapi/')
app.add_api('my_api.yaml', options=options)

Server Backend

By default connexion uses the default flask server but you can also use Tornado [http://www.tornadoweb.org/en/stable/] or gevent [http://www.gevent.org/] as the HTTP server, to do so set server
to tornado or gevent:

import connexion

app = connexion.FlaskApp(__name__, port = 8080, specification_dir='openapi/', server='tornado')

Connexion has the aiohttp framework as server backend too:

import connexion

app = connexion.AioHttpApp(__name__, port = 8080, specification_dir='openapi/')

Command-Line Interface

For convenience Connexion provides a command-line interface
(CLI). This interface aims to be a starting point in developing or
testing OpenAPI specifications with Connexion.

The available commands are:

	connexion run

All commands can run with -h or –help to list more information.

Running an OpenAPI specification

The subcommand run of Connexion’s CLI makes it easy to run OpenAPI
specifications directly even before any operation handler function gets
implemented. This allows you to verify and inspect how your API will
work with Connexion.

To run your specification, execute in your shell:

$ connexion run your_api.yaml --stub --debug

This command will tell Connexion to run the your_api.yaml
specification file attaching a stub operation (--stub) to the
unavailable operations/functions of your API and in debug mode
(--debug).

The basic usage of this command is:

$ connexion run [OPTIONS] SPEC_FILE [BASE_MODULE_PATH]

Where:

	SPEC_FILE: Your OpenAPI specification file in YAML format.

	BASE_MODULE_PATH (optional): filesystem path where the API endpoints
handlers are going to be imported from. In short, where your Python
code is saved.

There are more options available for the run command, for a full
list run:

$ connexion run --help

Running a mock server

You can run a simple server which returns example responses on every request.
The example responses must be defined in the examples response property of the OpenAPI specification.
Your API specification file is not required to have any operationId.

$ connexion run your_api.yaml --mock=all -v

Routing

Endpoint Routing to Your Python Views

Connexion uses the operationId from each Operation Object [https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#operation-object] to
identify which Python function should handle each URL.

Explicit Routing:

paths:
 /hello_world:
 post:
 operationId: myapp.api.hello_world

If you provided this path in your specification POST requests to
http://MYHOST/hello_world, it would be handled by the function
hello_world in myapp.api module. Optionally, you can include
x-swagger-router-controller in your operation definition, making
operationId relative:

paths:
 /hello_world:
 post:
 x-swagger-router-controller: myapp.api
 operationId: hello_world

Keep in mind that Connexion follows how HTTP methods work in Flask [http://flask.pocoo.org/docs/1.0/quickstart/#http-methods]
and therefore HEAD requests will be handled by the operationId specified
under GET in the specification. If both methods are supported,
connexion.request.method can be used to determine which request was made.

Automatic Routing

To customize this behavior, Connexion can use alternative
Resolvers—for example, RestyResolver. The RestyResolver
will compose an operationId based on the path and HTTP method of
the endpoints in your specification:

from connexion.resolver import RestyResolver

app = connexion.FlaskApp(__name__)
app.add_api('swagger.yaml', resolver=RestyResolver('api'))

paths:
 /:
 get:
 # Implied operationId: api.get
 /foo:
 get:
 # Implied operationId: api.foo.search
 post:
 # Implied operationId: api.foo.post

 '/foo/{id}':
 get:
 # Implied operationId: api.foo.get
 put:
 # Implied operationId: api.foo.put
 copy:
 # Implied operationId: api.foo.copy
 delete:
 # Implied operationId: api.foo.delete

RestyResolver will give precedence to any operationId
encountered in the specification. It will also respect
x-swagger-router-controller. You may import and extend
connexion.resolver.Resolver to implement your own operationId
(and function) resolution algorithm.

Parameter Name Sanitation

The names of query and form parameters, as well as the name of the body
parameter are sanitized by removing characters that are not allowed in Python
symbols. I.e. all characters that are not letters, digits or the underscore are
removed, and finally characters are removed from the front until a letter or an
under-score is encountered. As an example:

>>> re.sub('^[^a-zA-Z_]+', '', re.sub('[^0-9a-zA-Z_]', '', '$top'))
'top'

Without this sanitation it would e.g. be impossible to implement an
OData [http://www.odata.org] API.

Parameter Variable Converters

Connexion supports Flask’s int, float, and path route parameter
variable converters [http://flask.pocoo.org/docs/0.12/quickstart/#variable-rules].
Specify a route parameter’s type as integer or number or its type as
string and its format as path to use these converters. For example:

paths:
 /greeting/{name}:
 # ...
 parameters:
 - name: name
 in: path
 required: true
 type: string
 format: path

will create an equivalent Flask route /greeting/<path:name>, allowing
requests to include forward slashes in the name url variable.

API Versioning and basePath

Setting a base path is useful for versioned APIs. An example of
a base path would be the 1.0 in http://MYHOST/1.0/hello_world.

If you are using OpenAPI 3.x.x, you set your base URL path in the
servers block of the specification. You can either specify a full
URL, or just a relative path.

servers:
 - url: https://MYHOST/1.0
 description: full url example
 - url: /1.0
 description: relative path example

paths:
 ...

If you are using OpenAPI 2.0, you can define a basePath on the top level
of your OpenAPI 2.0 specification.

basePath: /1.0

paths:
 ...

If you don’t want to include the base path in your specification, you
can provide it when adding the API to your application:

app.add_api('my_api.yaml', base_path='/1.0')

Swagger JSON

Connexion makes the OpenAPI/Swagger specification in JSON format
available from swagger.json in the base path of the API.

You can disable the Swagger JSON at the application level:

app = connexion.FlaskApp(__name__, specification_dir='swagger/',
 swagger_json=False)
app.add_api('my_api.yaml')

You can also disable it at the API level:

app = connexion.FlaskApp(__name__, specification_dir='swagger/')
app.add_api('my_api.yaml', swagger_json=False)

Request Handling

Connexion validates incoming requests for conformance with the schemas
described in swagger specification.

Request parameters will be provided to the handler functions as keyword
arguments if they are included in the function’s signature, otherwise body
parameters can be accessed from connexion.request.json and query parameters
can be accessed from connexion.request.args.

Request Validation

Both the request body and parameters are validated against the specification,
using jsonschema [https://pypi.python.org/pypi/jsonschema].

If the request doesn’t match the specification connexion will return a 400
error.

Automatic Parameter Handling

Connexion automatically maps the parameters defined in your endpoint
specification to arguments of your Python views as named parameters
and with value casting whenever possible. All you need to do is define
the endpoint’s parameters with matching names with your views arguments.

As example you have an endpoint specified as:

paths:
 /foo:
 get:
 operationId: api.foo_get
 parameters:
 - name: message
 description: Some message.
 in: query
 type: string
 required: true

And the view function:

api.py file

def foo_get(message):
 # do something
 return 'You send the message: {}'.format(message), 200

In this example Connexion will automatically identify that your view
function expects an argument named message and will assign the value
of the endpoint parameter message to your view function.

Connexion will also use default values if they are provided.

Note

In the OpenAPI 3.x.x spec, the requestBody does not have a name.
By default it will be passed in as ‘body’. You can optionally
provide the x-body-name parameter in your requestBody schema
to override the name of the parameter that will be passed to your
handler function.

Warning

Please note that when you have a parameter defined as
not required at your endpoint and your Python view have
a non-named argument, when you call this endpoint WITHOUT
the parameter you will get an exception of missing
positional argument.

Type casting

Whenever possible Connexion will try to parse your argument values and
do type casting to related Python natives values. The current
available type castings are:

	OpenAPI Type

	Python Type

	integer

	int

	string

	str

	number

	float

	boolean

	bool

	array

	list

	null

	None

	object

	dict

In the OpenAPI 2.0 specification, if the array type is used you can define the
collectionFormat used to deserialize the input. Connexion currently
supports collection formats “pipes” and “csv”. The default format is “csv”.

Note

For more details about `collectionFormat`s please check the
official `OpenAPI 2.0 Specification`_.

In the OpenAPI 2.0 Specification [https://github.com/OAI/OpenAPI-Specification/blob/OpenAPI.next/versions/2.0.md#fixed-fields-7] if you use the array type,
you can define the collectionFormat do set the deserialization behavior.
Connexion currently supports “pipes” and “csv” as collection formats.
The default format is “csv”.

Connexion is opinionated about how the URI is parsed for array types.
The default behavior for query parameters that have been defined multiple
times is to join them all together. For example, if you provide a URI with
the the query string ?letters=a,b,c&letters=d,e,f, connexion will set
letters = ['a', 'b', 'c', 'd', 'e', 'f'].

You can override this behavior by specifying the URI parser in the app or
api options.

from connexion.decorators.uri_parsing import Swagger2URIParser
options = {'uri_parsing_class': Swagger2URIParser}
app = connexion.App(__name__, specification_dir='swagger/', options=options)

You can implement your own URI parsing behavior by inheriting from
connextion.decorators.uri_parsing.AbstractURIParser.

There are a handful of URI parsers included with connection.

	OpenAPIURIParser
default: OpenAPI 3.0

	This parser adheres to the OpenAPI 3.x.x spec, and uses the style
parameter. Query parameters are parsed from left to right, so if a query
parameter is defined twice, then the right-most definition will take
precedence. For example, if you provided a URI with the query string
?letters=a,b,c&letters=d,e,f, and style: simple, then connexion
will set letters = ['d', 'e', 'f']. For additional information see
`OpenAPI 3.0 Style Values`_.

	Swagger2URIParser
default: OpenAPI 2.0

	This parser adheres to the Swagger 2.0 spec, and will only join together
multiple instance of the same query parameter if the collectionFormat
is set to multi. Query parameters are parsed from left to right, so
if a query parameter is defined twice, then the right-most definition
wins. For example, if you provided a URI with the query string
?letters=a,b,c&letters=d,e,f, and collectionFormat: csv, then
connexion will set letters = ['d', 'e', 'f']

	FirstValueURIParser

	This parser behaves like the Swagger2URIParser, except that it prefers
the first defined value. For example, if you provided a URI with the query
string ?letters=a,b,c&letters=d,e,f and collectionFormat: csv
hen connexion will set letters = ['a', 'b', 'c']

	AlwaysMultiURIParser

	This parser is backwards compatible with Connexion 1.x. It joins together
multiple instances of the same query parameter.

Parameter validation

Connexion can apply strict parameter validation for query and form data
parameters. When this is enabled, requests that include parameters not defined
in the swagger spec return a 400 error. You can enable it when adding the API
to your application:

app.add_api('my_apy.yaml', strict_validation=True)

Nullable parameters

Sometimes your API should explicitly accept nullable parameters [https://github.com/zalando/connexion/issues/182]. However
OpenAPI specification currently does not support [https://github.com/OAI/OpenAPI-Specification/issues/229] officially a way to serve
this use case, Connexion adds the x-nullable vendor extension to parameter
definitions. Its usage would be:

/countries/cities:
 parameters:
 - name: name
 in: query
 type: string
 x-nullable: true
 required: true

It is supported by Connexion in all parameter types: body, query,
formData, and path. Nullable values are the strings null and None.

Warning

Be careful on nullable parameters for sensitive data where the
strings “null” or “None” can be valid values [http://www.bbc.com/future/story/20160325-the-names-that-break-computer-systems].

Note

This extension will be removed as soon as OpenAPI/Swagger
Specification provide an official way of supporting nullable
values.

Header Parameters

Currently, header parameters are not passed to the handler functions as parameters. But they can be accessed through the underlying
connexion.request.headers object which aliases the flask.request.headers object.

def index():
 page_number = connexion.request.headers['Page-Number']

Custom Validators

By default, body and parameters contents are validated against OpenAPI schema
via connexion.decorators.validation.RequestBodyValidator
or connexion.decorators.validation.ParameterValidator, if you want to
change the validation, you can override the defaults with:

validator_map = {
 'body': CustomRequestBodyValidator,
 'parameter': CustomParameterValidator
}
app = connexion.FlaskApp(__name__)
app.add_api('api.yaml', ..., validator_map=validator_map)

See custom validator example in examples/enforcedefaults.

Response Handling

Response Serialization

If the endpoint returns a Response object this response will be used as is.

Otherwise, and by default and if the specification defines that an endpoint
produces only JSON, connexion will automatically serialize the return value
for you and set the right content type in the HTTP header.

If the endpoint produces a single non-JSON mimetype then Connexion will
automatically set the right content type in the HTTP header.

Customizing JSON encoder

Connexion allows you to customize the JSONEncoder class in the Flask app
instance json_encoder (connexion.App:app). If you wanna reuse the
Connexion’s date-time serialization, inherit your custom encoder from
connexion.apps.flask_app.FlaskJSONEncoder.

Returning status codes

There are two ways of returning a specific status code.

One way is to return a Response object that will be used unchanged.

The other is returning it as a second return value in the response. For example

def my_endpoint():
 return 'Not Found', 404

Returning Headers

There are two ways to return headers from your endpoints.

One way is to return a Response object that will be used unchanged.

The other is returning a dict with the header values as the third return value
in the response:

For example

def my_endpoint():
 return 'Not Found', 404, {'x-error': 'not found'}

Response Validation

While, by default Connexion doesn’t validate the responses it’s possible to
do so by opting in when adding the API:

import connexion

app = connexion.FlaskApp(__name__, specification_dir='swagger/')
app.add_api('my_api.yaml', validate_responses=True)
app.run(port=8080)

This will validate all the responses using jsonschema and is specially useful
during development.

Custom Validator

By default, response body contents are validated against OpenAPI schema
via connexion.decorators.response.ResponseValidator, if you want to change
the validation, you can override the default class with:

validator_map = {
 'response': CustomResponseValidator
}
app = connexion.FlaskApp(__name__)
app.add_api('api.yaml', ..., validator_map=validator_map)

Error Handling

By default connexion error messages are JSON serialized according to
Problem Details for HTTP APIs [https://tools.ietf.org/html/draft-ietf-appsawg-http-problem-00]

Application can return errors using connexion.problem.

Security

OAuth 2 Authentication and Authorization

Connexion supports one of the three OAuth 2 handling methods.
With Connexion, the API security definition must include a
x-tokenInfoFunc or set TOKENINFO_FUNC env var.

x-tokenInfoFunc must contain a reference to a function
used to obtain the token info. This reference should be a string using
the same syntax that is used to connect an operationId to a Python
function when routing. For example, an x-tokenInfoFunc of
auth.verifyToken would pass the user’s token string to the function
verifyToken in the module auth.py. The referenced function accepts
a token string as argument and should return a dict containing a scope
field that is either a space-separated list or an array of scopes belonging to
the supplied token. This list of scopes will be validated against the scopes
required by the API security definition to determine if the user is authorized.
You can supply a custom scope validation func with x-scopeValidateFunc
or set SCOPEVALIDATE_FUNC env var, otherwise
connexion.decorators.security.validate_scope will be used as default.

The recommended approach is to return a dict which complies with
RFC 7662 [https://tools.ietf.org/html/rfc7662]. Note that you have to validate the active
or exp fields etc. yourself.

The sub property of the Token Info response will be passed in the user
argument to the handler function.

Deprecated features, retained for backward compability:

	As alternative to x-tokenInfoFunc, you can set x-tokenInfoUrl or
TOKENINFO_URL env var. It must contain a URL to validate and get the token
information which complies with RFC 6749 [https://tools.ietf.org/html/rfc6749].
When both x-tokenInfoUrl and x-tokenInfoFunc are used, Connexion
will prioritize the function method. Connexion expects the authorization
server to receive the OAuth token in the Authorization header field in the
format described in RFC 6750 [https://tools.ietf.org/html/rfc6750] section 2.1. This aspect represents
a significant difference from the usual OAuth flow.

	scope field can also be named scopes.

	sub field can also be named uid.

You can find a minimal OAuth example application [https://github.com/zalando/connexion/tree/master/examples/swagger2/oauth2] in Connexion’s “examples” folder.

Basic Authentication

With Connexion, the API security definition must include a
x-basicInfoFunc or set BASICINFO_FUNC env var. It uses the same
semantics as for x-tokenInfoFunc, but the function accepts three
parameters: username, password and required_scopes. If the security declaration
of the operation also has an oauth security requirement, required_scopes is
taken from there, otherwise it’s None. This allows authorizing individual
operations with oauth scope while using basic authentication for
authentication.

ApiKey Authentication

With Connexion, the API security definition must include a
x-apikeyInfoFunc or set APIKEYINFO_FUNC env var. It uses the same
semantics as for x-basicInfoFunc, but the function accepts two
parameters: apikey and required_scopes.

You can find a minimal Basic Auth example application [https://github.com/zalando/connexion/tree/master/examples/swagger2/basicauth] in Connexion’s “examples” folder.

Bearer Authentication (JWT)

With Connexion, the API security definition must include a
x-bearerInfoFunc or set BEARERINFO_FUNC env var. It uses the same
semantics as for x-tokenInfoFunc, but the function accepts one parameter: token.

You can find a minimal JWT example application [https://github.com/zalando/connexion/tree/master/examples/openapi3/jwt] in Connexion’s “examples/openapi3” folder.

HTTPS Support

When specifying HTTPS as the scheme in the API YAML file, all the URIs
in the served Swagger UI are HTTPS endpoints. The problem: The default
server that runs is a “normal” HTTP server. This means that the
Swagger UI cannot be used to play with the API. What is the correct
way to start a HTTPS server when using Connexion?

Connexion Cookbook

This section aims to be a cookbook of possible solutions for specific
use cases of Connexion.

Custom type format

It is possible to define custom type formats that are going to be used
by the Connexion payload validation on request parameters and response
payloads of your API.

Let’s say your API deals with Products and you want to define a field
price_label that has a “money” format value. You can create a format
checker function and register that to be used to validate values of
the “money” format.

Example of a possible schema of Product having an attribute with
“money” format that would be defined in your OpenAPI specification:

type: object
properties:
 title:
 type: string
 price_label:
 type: string
 format: money

Then we create a format checker function for that type of value:

import re

MONEY_RE = re.compile('^\$\s*\d+(\.\d\d)?')

def is_money(val):
 if not isinstance(val, str):
 return True
 return MONEY_RE.match(val)

The format checker function is expected to return True when the
value matches the expected format and return False when it
doesn’t. Also is important to verify if the type of the value you are
trying to validate is compatible with the format. In our example we
check if the val is of type “string” before performing any further
checking.

The final step to make it work is registering our is_money function
to the format “money” in json_schema library. For that, we can use the
draft4 format checker decorator.

from jsonschema import draft4_format_checker

@draft4_format_checker.checks('money')
def is_money(val):
 ...

This is all you need to have validation for that format in your
Connexion application. Keep in mind that the format checkers should be
defined and registered before you run your application server. A full
example can be found at
https://gist.github.com/rafaelcaricio/6e67286a522f747405a7299e6843cd93

CORS Support

CORS [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing] (Cross-origin resource sharing) is not built into Connexion, but you can use the flask-cors [https://flask-cors.readthedocs.io/] library
to set CORS headers:

import connexion
from flask_cors import CORS

app = connexion.FlaskApp(__name__)
app.add_api('swagger.yaml')

add CORS support
CORS(app.app)

app.run(port=8080)

Logging

You can customize logging accessing the _flask-logger directly
or configuring the logger via dictConfig.
Remember that you should configure logging for your project as soon
as possible when the program starts or you’ll get the default configuration.

import connexion
from logging.config import dictConfig

dictConfig({
 'version': 1,
 'handlers': {
 'syslog': {
 'class': 'logging.handlers.SysLogHandler'
 }
 },
 'root': {
 'handlers': ['syslog']
 }
})
app = connexion.FlaskApp(__name__)
app.app.logger.warn("I configured the flask logger!")
app.add_api('swagger.yaml')
app.run(port=8080)

Exception Handling

Rendering Exceptions through the Flask Handler

Flask by default contains an exception handler, which connexion’s app can proxy
to with the add_error_handler method. You can hook either on status codes
or on a specific exception type.

Connexion is moving from returning flask responses on errors to throwing exceptions
that are a subclass of connexion.problem. So far exceptions thrown in the OAuth
decorator have been converted.

Default Exception Handling

By default connexion exceptions are JSON serialized according to
Problem Details for HTTP APIs [https://tools.ietf.org/html/draft-ietf-appsawg-http-problem-00]

Application can return errors using connexion.problem or exceptions that inherit from both
connexion.ProblemException and a werkzeug.exceptions.HttpException subclass (for example
werkzeug.exceptions.Forbidden). An example of this is the connexion.exceptions.OAuthProblem
exception

class OAuthProblem(ProblemException, Unauthorized):
 def __init__(self, title=None, **kwargs):
 super(OAuthProblem, self).__init__(title=title, **kwargs)

Examples of Custom Rendering Exceptions

To custom render an exception when you boot your connexion application you can hook into a custom
exception and render it in some sort of custom format. For example

import connexion
from connexion.exceptions import OAuthResponseProblem

def render_unauthorized(exception):
 return Response(response=json.dumps({'error': 'There is an error in the oAuth token supplied'}), status=401, mimetype="application/json")

app = connexion.FlaskApp(__name__, specification_dir='./../swagger/', debug=False, swagger_ui=False)
app.add_error_handler(OAuthResponseProblem, render_unauthorized)

Custom Exceptions

There are several exception types in connexion that contain extra information to help you render appropriate
messages to your user beyond the default description and status code:

OAuthProblem

This exception is thrown when there is some sort of validation issue with the Authorisation Header

OAuthResponseProblem

This exception is thrown when there is a validation issue from your OAuth 2 Server. It contains a
token_response property which contains the full http response from the OAuth 2 Server

OAuthScopeProblem

This scope indicates the OAuth 2 Server did not generate a token with all the scopes required. This
contains 3 properties
- required_scopes - The scopes that were required for this endpoint
- token_scopes - The scopes that were granted for this endpoint

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Connexion’s documentation!

 		
 Quickstart

 		
 Prerequisites

 		
 Installing It

 		
 Running It

 		
 Dynamic Rendering of Your Specification

 		
 The Swagger UI Console

 		
 Server Backend

 		
 Command-Line Interface

 		
 Running an OpenAPI specification

 		
 Running a mock server

 		
 Routing

 		
 Endpoint Routing to Your Python Views

 		
 Automatic Routing

 		
 Parameter Name Sanitation

 		
 Parameter Variable Converters

 		
 API Versioning and basePath

 		
 Swagger JSON

 		
 Request Handling

 		
 Request Validation

 		
 Automatic Parameter Handling

 		
 Type casting

 		
 Parameter validation

 		
 Nullable parameters

 		
 Header Parameters

 		
 Custom Validators

 		
 Response Handling

 		
 Response Serialization

 		
 Customizing JSON encoder

 		
 Returning status codes

 		
 Returning Headers

 		
 Response Validation

 		
 Custom Validator

 		
 Error Handling

 		
 Security

 		
 OAuth 2 Authentication and Authorization

 		
 Basic Authentication

 		
 ApiKey Authentication

 		
 Bearer Authentication (JWT)

 		
 HTTPS Support

 		
 Connexion Cookbook

 		
 Custom type format

 		
 CORS Support

 		
 Logging

 		
 Exception Handling

 		
 Rendering Exceptions through the Flask Handler

 		
 Default Exception Handling

 		
 Examples of Custom Rendering Exceptions

 		
 Custom Exceptions

 		
 OAuthProblem

 		
 OAuthResponseProblem

 		
 OAuthScopeProblem

_static/up.png

_static/up-pressed.png

