

Welcome to Clustergrammer’s Documentation!

The Clustergrammer project consists of web-based tools for visualizing and analyzing high-dimensional data as interactive and shareable hierarchically clustered heatmaps (see Introduction to Clustergrams). Clustergrammer produces highly interactive visualizations that enable intuitive exploration of high-dimensional data and has several optional biology-specific features (e.g. enrichment analysis; see Biology-Specific Features) to facilitate the exploration of gene-level biological data. The project is free, open-source (all code is available on GitHub), and being actively developed at the Human Immune Monitoring Center [https://icahn.mssm.edu/research/human-immune-monitoring-center] and the Ma’ayan Lab [http://labs.icahn.mssm.edu/maayanlab/] at the Icahn School of Medicine at Mount Sinai [http://icahn.mssm.edu/].

Clustergrammer2

[image: MyBinder-scRNA-seq] [https://mybinder.org/v2/gh/ismms-himc/clustergrammer2-notebooks/master?filepath=notebooks%2F3.0_2700_PBMC_scRNA-seq.ipynb] [image: NBViewer-scRNA-seq] [https://nbviewer.jupyter.org/github/ismms-himc/clustergrammer2-notebooks/blob/master/notebooks/3.0_2700_PBMC_scRNA-seq.ipynb]

 Getting Started

Getting Started

Clustergrammer is a web-based tool for visualizing and analyzing high-dimensional data as interactive and shareable hierarchically clustered heatmaps (see Introduction to Clustergrams). This section will provide information on how to interact with the visualization and how to quickly visualize your own data using the Clustergrammer-Web, Clustergrammer2, and Clustergrammer-Widget.

See Case Studies and Tutorials for examples of how Clustergrammer can be used to explore and analyze real world data. For developers interested in building their own web page using Clustergrammer, please refer to the Web-Development section.

Using Clustergrammer

Clustergrammer can be used as a web application Clustergrammer-Web, a Jupyter Widget (Clustergrammer2 and Clustergrammer-Widget) or stand alone JavaScript libraries (Clustergrammer-GL and Clustergrammer-JS). The newer Clustergrammer2 and Clustergrammer-GL libraries are built to handle larger datasets such as scRNA-seq data.

[image: MyBinder-running-cgm2] [https://mybinder.org/v2/gh/ismms-himc/clustergrammer2-notebooks/master?filepath=notebooks%2F1.0_Running_Clustergrammer2.ipynb] [image: NBViewer-running-cgm2] [https://nbviewer.jupyter.org/github/ismms-himc/clustergrammer2-notebooks/blob/master/notebooks/1.0_Running_Clustergrammer2.ipynb]

 Case Studies and Tutorials

Case Studies and Tutorials

Clustergrammer was developed to visualize high-dimensional biological data (e.g. genome-wide expression data), but it can also generally be applied to any high-dimensional data. Below are links to several case studies and examples using Clustergrammer to explore high-dimensional data. All examples are below are publically available through GitHub.

scRNA-seq Gene Expression 2,700 PBMC

[image: MyBinder-scRNA-seq] [https://mybinder.org/v2/gh/ismms-himc/clustergrammer2-notebooks/master?filepath=notebooks%2F3.0_2700_PBMC_scRNA-seq.ipynb] [image: NBViewer-scRNA-seq] [https://nbviewer.jupyter.org/github/ismms-himc/clustergrammer2-notebooks/blob/master/notebooks/3.0_2700_PBMC_scRNA-seq.ipynb]

 Clustergrammer2

Clustergrammer2

Clustergrammer2 is an interactive heatmap Jupyter widget built using the widget-ts-cookiecutter library and the WebGL library regl [http://regl.party/]. Clustergrammer2 is built to help researchers interactively explore single cell data (e.g. scRNA-seq). Please see Case Studies and Tutorials for examples.

Single Cell Gene Expression 2,700 PBMC

[image: MyBinder-scRNA-seq] [https://mybinder.org/v2/gh/ismms-himc/clustergrammer2-notebooks/master?filepath=notebooks%2F3.0_2700_PBMC_scRNA-seq.ipynb] [image: NBViewer-scRNA-seq] [https://nbviewer.jupyter.org/github/ismms-himc/clustergrammer2-notebooks/blob/master/notebooks/3.0_2700_PBMC_scRNA-seq.ipynb]

 Clustergrammer-Web

Clustergrammer-Web

[image: version] [https://github.com/MaayanLab/clustergrammer-web]

The Web App [http://amp.pharm.mssm.edu/clustergrammer/] (http://amp.pharm.mssm.edu/clustergrammer [http://amp.pharm.mssm.edu/clustergrammer/]) enables users to easily generate interactive and shareable heatmap visualizations by uploading their data as a tab-separated file.

Uploading Data using the Web App Homepage

Users can easily generate an interactive and shareable heatmap visualization using the Clustergrammer-Web (see upload section screenshot below). Simply upload a tab-separated matrix file (see Matrix Formats and Input/Output for more information) at the homepage [http://amp.pharm.mssm.edu/clustergrammer/] to be redirected to a permanent and shareable visualization of your data.

[image: Clustergrammer Web]
 [http://amp.pharm.mssm.edu/clustergrammer/]Users can upload their data using the web app homepage [http://amp.pharm.mssm.edu/clustergrammer/]. Simply choose your file and upload to be redirected to your permanent and shareable visualization.

Clustergrammer-Web Visualization

Uploading a matrix to the Web App [http://amp.pharm.mssm.edu/clustergrammer/] will redirect the user to a new permanent and shareable page with three views of their data:

	Heatmap view of their matrix

	Similarity matrix of the columns in their original matrix

	Similarity matrix of the rows in their original matrix

See the screenshots below and the example visualization [http://amp.pharm.mssm.edu/clustergrammer/viz_sim_mats/58a492b4a63cb826f0be6476/rc_two_cats.txt] for an example Web App [http://amp.pharm.mssm.edu/clustergrammer/] visualization page.

Heatmap View

[image: Web application heatmap]
 [http://amp.pharm.mssm.edu/clustergrammer/viz_sim_mats/58a492b4a63cb826f0be6476/rc_two_cats.txt]Above is an example clustergram visualization produced by the Web App [http://amp.pharm.mssm.edu/clustergrammer/]. Clustergrammer produces three views of your data and the clustered heatmap view is shown above.

Similarity Matrix View

[image: Web application sim-mat]
 [http://amp.pharm.mssm.edu/clustergrammer/viz_sim_mats/58a492b4a63cb826f0be6476/rc_two_cats.txt]The Web App [http://amp.pharm.mssm.edu/clustergrammer/] produces similarity matrices of rows and columns to provide additional perspectives on a user’s data. Above is an example column similarity matrix.

Users can view the heatmap/similarity-matrices in full screen by clicking the blue link under the visualizations. All visualizations are permanent and shareable, which enables sharing with collaborators. See Interacting with the Visualization for more information.

Clustergrammer-Web API

Clustergrammer-Web’s RESTful API enables users to programmatically generate visualizations. The API can be convenient for users that need to generate many clustergrams or developers who need to automatically generate visualizations for their own Web application.

Matrix Upload

Users can post a matrix file to Clustergrammer-Web using the endpoint

http://amp.pharm.mssm.edu/clustergrammer/matrix_upload/

and receive a permanent link to their visualization. Below is an example in Python 2.7 showing the post request and how to obtain the link from the response object:

import requests

filename = 'example_matrix.txt'
upload_url = 'http://amp.pharm.mssm.edu/clustergrammer/matrix_upload/'

r = requests.post(upload_url, files={'file': open(filename, 'rb')})

link = r.text

Clustergrammer-Web Development

Clustergrammer-Web is a dockerized [https://docs.docker.com/] Web application built using the Python library Flask [http://flask.pocoo.org/] and MongoDB [https://www.mongodb.com/] database. Clustergrammer-Web uses the Clustergrammer-JS and Clustergrammer-PY libraries and the source code can be found in the clustergrammer-web [https://github.com/MaayanLab/clustergrammer-web/] GitHub repo.

 Interacting with the Visualization

Interacting with the Visualization

[image: demo GIF]
 [http://amp.pharm.mssm.edu/clustergrammer/viz_sim_mats/58a492b4a63cb826f0be6476/rc_two_cats.txt]

Data visualization benefits enormously from user interaction – particularly interactions that allow users to explore their data and interactively generate new views. Clustergrammer produces highly interactive heatmaps that enable users to intuitively explore their data and perform complex data transformations. Clustergrammer visualizations are built using the Clustergrammer-JS library and are consistent across the Clustergrammer-Web and the Clustergrammer-Widget. This section will overview heatmaps as a visualization tool and cover Clustergrammer’s interactive features.

Clustergrammer2 Video Tutorial

 Biology-Specific Features

Biology-Specific Features

Clustergrammer was developed to visualize high-dimensional biological data (e.g. genome-wide expression data), but it can also generally be applied to any high-dimensional data. Clustergrammer has several biology-specific features that facilitate the analysis of gene-level biological data, such as: gene expression data, proteomics-data, etc. To take advantage of these features, row names must be official gene names. See the CCLE Explorer [http://amp.pharm.mssm.edu/clustergrammer/CCLE/] for examples of visualizing gene expression data. These optional biology-specific features are available in the Clustergrammer-Web as well as the Clustergrammer-Widget and will automatically activate if the row-names are genes.

Mouseover Gene Name and Description

The human genome consists of over 20,000 genes and modern high-throughput measurements are capable of making measurements across the entire genome (e.g. genome-wide expression studies). Human genes have official gene symbols (e.g. EGFR) that are frequently used to label genes in these datasets. Since no biologist can be knowledgeable about every gene in the genome a common and repetitive task is looking up the names and descriptions of genes in a dataset or visualization. To streamline this activity, Clustergrammer automatically displays the full name and description of a gene (provided by data aggregated through the Harmonizome [http://amp.pharm.mssm.edu/Harmonizome/]) as a tooltip when a user mouses over a gene label (see screenshot below). This simple feature speeds up analysis of large gene-level datasets.

[image: Gene Info]
Mousing over a gene name row brings up the full gene name and description (provided by data aggregated through the Harmonizome [http://amp.pharm.mssm.edu/Harmonizome/]).

The JavaScript file hzome_functions.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/hzome_functions.js] provides this functionality by utilizing Harmonizome’s RESTful API [http://amp.pharm.mssm.edu/Harmonizome/documentation] to obtain gene names and descriptions on mouseover events. hzome_functions.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/hzome_functions.js] is passed to Clustergrammer-JS as a callback function. See load_clustergram.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/load_clustergram.js] for an example use case. Mouseover callback functions can be used by developers to extend functionality for other domain-specific problems.

Enrichment Analysis

The field of biology has amassed an enormous amount of information about the genes in living organisms such as: function, disease-association, up-stream regulators, protein-level binding partners, etc. Integration of this information can help biologists understand patterns in their data. For instance, enrichment analysis is a popular method to identify biological information specific to a list of genes – e.g. a biologist can use enrichment analysis to identify up-stream regulatory transcription factors that specifically target their a set of up-regulated genes and thereby form hypotheses about potential up-stream regulators.

Export to Enrichr

When a user visualizes a matrix with genes as rows, Clustergrammer automatically enables integration with the enrichment analysis tool Enrichr [http://amp.pharm.mssm.edu/Enrichr/]. Users can export a set of clustered genes to Enrichr [http://amp.pharm.mssm.edu/Enrichr/] using the interactive dendrogram (see screenshot) or import enriched terms into the visualization using the Enrichrgram functionality.

[image: Send to Enrichr Modal]
Clicking a row dendrogram cluster opens a modal window with cluster information, row names, and a ‘Send genes to Enrichr’ link that allows users to export their gene list (e.g. cluster of row-genes) to Enrichr.

Enrichrgram

Enrichrgram enables users to find biological information specific to their genes of interest (using Enrichr [http://amp.pharm.mssm.edu/Enrichr/]) and import this information directly into the visualization as row categories (see screenshot below). Enrichrgram can be run on the front or back end (using the Clustergrammer-PY API to pre-calculate results). This feature enables enrichment analysis to be performed within the visualization itself by both the original author of the visualization and subsequent viewers.

Enrichrgram Front End

Enrichrgram on the front end is available to anyone viewing the visualization and can be used by simply clicking the red DNA-like Enrichr logo on the top left of the heatmap, which brings up a list of Enrichr libraries to choose from. To perform enrichment analysis, choose a library and Enrichrgram will return enriched terms from this library that are specifically associated with your list of genes (P-value bars indicate the degree of specificity). For instance, clicking on ChEA 2016 will calculate enrichment for up-stream transcription factors. The enriched terms are shown as row categories, which enables users to see which genes are associated with each term. Row-category titles show the enriched term and the red-bars represent the significance of the enrichment (see Enrichr combined score [http://amp.pharm.mssm.edu/Enrichr/help#basics]). Users can run enrichment analysis on a specific cluster of genes by filtering the matrix to only show only their genes of interest. This filtering can be done using the Dendrogram Crop buttons (see Interactive Dendrogram) or Brush-Crop button (see Cropping) to select a subset of genes for analysis.

[image: Enrichrgram Menu]
Users can perform enrichment analysis to find biological information specific to their genes (e.g. a cluster of genes). Users can select from several enrichment libraries, and the top 10 enriched terms will be shown as rows categories. The combined scores for the enriched terms will be shown as red bars behind the row category titles.

Note that Enrichrgram results run on the front end are not permanent and will be lost after refreshing the page, but the matrix with enrichment results can be downloaded using the Download Icon button. Enrichment results can be permanently added to the visualization from the back end using the enrichgram method described below.

Enrichrgram Back End

To permanently add pre-calculated enrichment results to a visualization run the enrichrgram method described in the Clustergrammer-PY API before clustering. The Jupyter notebook Clustergrammer_CCLE_Notebook.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/CCLE_Clustergrammer/blob/master/notebooks/Clustergrammer_CCLE_Notebook.ipynb] demonstrates how to use the enrichrgram method to pre-calculate enrichment analysis results for a visualization.

The Enrichrgram.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/Enrichrgram.js] library provides this functionality on the front end and works with the Clustergrammer-JS API to depict enriched terms and their associated genes as row categories. The update-row-category functionality can be extended by developers for other domain-specific problems.

 Matrix Formats and Input/Output

Matrix Formats and Input/Output

Clustergrammer takes as input either:

	a tab-separated matrix file

	a Pandas DataFrame (using Clustergrammer-PY)

The tab-separated matrix file can take several formats shown below, which can include row/column categories and name/category titles. In all cases, row and column names must be unique (if input names are not unique then unique integers will be appended to names). Users are encouraged to arrange their matrix with data-points as columns and dimensions as rows, which enables users to take advantage of Clustergrammer’s Interactive Dimensionality Reduction.

The front-end Clustergrammer-JS library can visualize matrices up to ~500,000 to ~1,000,000 cells in size and is also optimized to visualize matrices with more rows than columns – this has been done to accommodate datasets with many dimensions (rows) and few measurements (columns) that are common in biology. However very large matrices may take a long time to cluster using the Clustergrammer-PY library.

Simple Matrix Format

The simplest tab-separated file format is shown here:

 Col-A Col-B Col-C
Row-A 0.0 -0.1 1.0
Row-B 3.0 0.0 8.0
Row-C 0.2 0.1 2.5

The first row gives the column names and starts with a blank tab. All other rows start with the row name followed by the row data. Row and column titles can be added by prefixing each row or column name with 'Title: ' (not shown in this example). See example_tsv.txt [https://github.com/MaayanLab/clustergrammer/blob/master/txt/example_tsv.txt] for an example of this matrix format.

Simple-Category Matrix Format

Row and column categories can be included in two ways. The first, simple-category format, is shown below:

[image: Simple Matrix-Category Format]
A matrix with row and column categories in ‘simple’ format.

This simple-category format allows users to encode column categories as extra rows underneath column labels and row categories as an extra columns next to row labels. The above screenshot of an Excel spreadsheet shows a single row category being added as an additional column of strings (e.g. Type: Interesting) and a single column category being added as an additional row of strings (e.g. Gender: Male). Up to 15 categories can be added in a similar manner. Titles for row or column names or categories can be added by prefixing each string with 'Title: ' (note the space after the colon). For example, the title of the column names is Cell Line and the title of the row categories is Gender. See rc_two_cats.txt [https://github.com/MaayanLab/clustergrammer/blob/master/txt/rc_two_cats.txt] for an example of this matrix format. Titles, if given, will be shown as labels above row/column names or adjacent to row/column categories.

Tuple-Category Matrix Format

Row/column names and categories can also be encoded as Python tuples [https://docs.python.org/3/tutorial/datastructures.html] as shown below:

 ('Cell Line: A549', 'Gender: Male') ('Cell Line: H1299', 'Gender: Female') ('Cell Line: H661', 'Gender: Female')
('Gene: EGFR','Type: Interesting') -3.234 5.03 0.001
('Gene: TP53','Type: Not Interesting') 8.3 4.098 -12.2
('Gene: IRAK','Type: Not Interesting') 7.23 3.01 0.88

The tuple-category format is easier to work with in Python and can be imported/exported into Pandas DataFrames and as tab-separated files. Note that titles have been added to row/column names and categories as discussed above. See tuple_cats.txt [https://github.com/MaayanLab/clustergrammer/blob/master/txt/tuple_cats.txt] for an example of this matrix format.

Category Types: String and Value

Row and column categories can be of type: string or value. If categories are given as strings (e.g. containing letters), then categories will be depicted using colors. If categories are of type value (e.g. all categories contain only numbers), then value-categories will be depicted using color and opacity (gray for positive and orange for negative).

Value-based categories can be useful for adding data to your visualization (e.g. drug-dosage value) that you would like to compare to your other dimensions, but that should not influence your clustering. Both value and string categories can also be used to reorder your matrix by double-clicking their labels (see Interactive Categories).

Matrix File Examples

Several example tab-separated matrix files can be found in example matrix files [https://github.com/MaayanLab/clustergrammer/tree/master/txt].

Matrix Input/Output to Clustergrammer.py

Clustergrammer-PY can load a matrix directly from a file or from a Pandas DataFrame as well as export to a file or Pandas DataFrame (for more information see Clustergrammer-PY API):

initialize Network object
from clustergrammer import Network
net = Network()

load matrix from file or DataFrame
####################################

load data from file
net.load_file('your_matrix.txt')

load data from DataFrame, df
net.load_df(df)

export matrix
###############

write matrix to tab separated file
net.write_matrix_to_tsv(filename)

export data to Pandas DataFrame
df_export = net.export_df()

 Web-Development

Web-Development

Clustergrammer can be used by developers to add interactive heatmap visualizations to their web pages and web applications (see App Integrations).

Embedding Clustergrammer

The Clustergrammer web app can be used to produce visualizations that are embedded into another page using an IFrame; see below:

<iframe id="iframe_preview" src="https://amp.pharm.mssm.edu/clustergrammer/viz/5734a7399fee36034aeb787e/rc_two_cats.txt" frameborder="0"></iframe>

Users can obtain a permanent link to their visualization by manually uploading their data using the Upload section of Clustergrammer-Web’s homepage [http://amp.pharm.mssm.edu/clustergrammer] and copying the URL to the full-screen version of their visualization. Alternatively users can programmatically upload their data using the Clustergrammer-Web API and obtain their permanent links through the API.

Adding Clustergrammer to a Page

In addition to embedding a visualization hosted by the Clustergrammer-Web application developers add a Clustergrammer to directly their own page using the core libraries:

Clustergrammer-JS: The front-end Clustergrammer-JS JavaScript library generates the interactive visualization and can be installed via npm: npm install Clustergrammer. See the Example Pages for templates to build a site with your visualization

Clustergrammer-PY: The back-end Clustergrammer-PY Python library clusters a matrix of data and makes the JSON for the front end and can be installed using pip: pip install --upgrade clustergrammer. See the Python Workflow Examples for examples of how cluster your matrix and generate the Visualization-JSON

To make a page, simply include the Clustergrammer-JS script in your page and load the pre-calculated visualization-JSON to generate a visualization (use Clustergrammer-PY to generate this JSON).

Clustergrammer-JS can also be included as a node module (see Clustergrammer-Widget source code [https://github.com/MaayanLab/clustergrammer-widget] for an example with Webpack), or can be used with RequireJS [http://requirejs.org/] (see Clustergrammer RequireJS example [https://github.com/MaayanLab/clustergrammer_requirejs]).

Jupyter Notebook Webpages

The Clustergrammer-Widget can also be used in combination with nbviewer [http://nbviewer.jupyter.org/] to share static Jupyter notebook web pages with embedded interactive Clustergrammer visualizations. This is one of the easiest ways to generate a web page with Clustergrammer visualizations and several of the Case Studies and Tutorials are Jupyter notebooks.

 Clustergrammer-Widget

Clustergrammer-Widget

[image: pypi-version] [https://pypi.python.org/pypi?:action=display&name=clustergrammer_widget]
[image: npm-version] [https://www.npmjs.com/package/clustergrammer_widgt]

See Clustergrammer2 for Latest Widget

Clustergrammer2 is the new WebGL widget that is being developed to handle larger datasets (e.g. scRNA-seq data). This widget will be the focus of future development and feature additions. The original Clustergrammer-Widget will still be maintained, but users are encouraged to migrate to Clustergrammer2.

About Clustergrammer-Widget

Jupyter [http://jupyter.org/] notebooks are ideal for generating reproducible workflows and analysis. They are also the best way to share Clustergrammer’s interactive visualizations while providing context, analysis, and the underlying data to enable reproducibility (see Sharing with nbviewer). The Clustergrammer Widget enables users to easily produce interactive visualizations within a Jupyter notebook that can be shared with collaborators (using nbviewer [http://nbviewer.jupyter.org/]). Clustergrammer-Widget can be used to visualize a matrix of data from a file or from a Pandas [http://pandas.pydata.org/] DataFrame (see Matrix Formats and Input/Output for more information). The library is free and open-source and can be found on GitHub [https://github.com/MaayanLab/clustergrammer-widget].

Clustergrammer has been applied to a wide variety of biological and non-biological data. See the Jupyter notebook examples below and Case Studies and Tutorials for more information:

	Running_clustergrammer_widget.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/Running_clustergrammer_widget.ipynb]

	DataFrame_Example.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/DataFrame_Example.ipynb]

	CCLE Jupyter Notebook [http://nbviewer.jupyter.org/github/MaayanLab/CCLE_Clustergrammer/blob/master/notebooks/Clustergrammer_CCLE_Notebook.ipynb]

	Lung Cancer PTM and Gene Expression Regulation [http://nbviewer.jupyter.org/github/MaayanLab/CST_Lung_Cancer_Viz/blob/master/notebooks/CST_Data_Viz.ipynb]

	Single-Cell CyTOF Data [http://nbviewer.jupyter.org/github/MaayanLab/Cytof_Plasma_PMA/blob/master/notebooks/Plasma_vs_PMA_Phosphorylation.ipynb]

	MNIST Notebook [http://nbviewer.jupyter.org/github/MaayanLab/MNIST_heatmaps/blob/master/notebooks/MNIST_Notebook.ipynb]

	USDA Nutrient Dataset [http://nbviewer.jupyter.org/github/MaayanLab/USDA_Nutrients_Viz/blob/master/USDA_Nutrients.ipynb]

	Iris Dataset.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/iris_clustergrammer_visualization/blob/master/Iris%20Dataset.ipynb]

[image: Jupyter Widget NBViewer]
 [http://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/Running_clustergrammer_widget.ipynb]Clustergrammer can be used as an interactive widget within a Jupyter notebook and shared using nbviewer (see Running_clustergrammer_widget.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/Running_clustergrammer_widget.ipynb] example).

Jupyter Widget Dependencies

	Numpy [http://www.numpy.org/]

	SciPy [https://www.scipy.org/]

	Pandas [http://pandas.pydata.org/]

	ipywidgets [http://ipywidgets.readthedocs.io/en/latest/]

Clustergrammer-Widget works with Python 2 and 3.

Installation

To use the Clustergrammer-Widget users need to install: Python [https://www.python.org/], Jupyter [http://jupyter.org/] notebook, the widget dependencies (see Jupyter Widget Dependencies), and ipywidgets [http://ipywidgets.readthedocs.io/en/latest/] version 6.0.0 (to save the notebook with widgets, version 6.0.0 is recommended). Users can install Anaconda [https://www.continuum.io/downloads], a Python distribution that includes the Jupyter notebook as well as other scientific computing libraries, to easily obtain the necessary dependencies (except ipywidgets version 6.0.0). The clustergrammer_widget can the be installed (with pip) and enabled using the following commands:

pip install --upgrade clustergrammer_widget
jupyter nbextension enable --py --sys-prefix widgetsnbextension
jupyter nbextension enable --py --sys-prefix clustergrammer_widget

Clustergrammer-Widget Workflow Example

The Jupyter notebook Running_clustergrammer_widget.ipynb [http://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/Running_clustergrammer_widget.ipynb] (which is rendered using nbviewer [http://nbviewer.jupyter.org/]) shows how to visualize: a matrix from a file and a Pandas [http://pandas.pydata.org/] DataFrame. The following examples are taken from this notebook.

Here we are visualizing a matrix of data from a file (e.g. rc_two_cats.txt). We start by instantiating the Network object, net, and passing it the widget class, clustergrammer_widget as an argument. The net object is used to load data, filter, normalize, cluster, and render the widget. For more information about the Network class, refer to the Clustergrammer-PY API.

Load Data from File

make imports and instantiate a Network instance with the widget class as an argument
from clustergrammer_widget import *
net = Network(clustergrammer_widget)

load matrix file
net.load_file('rc_two_cats.txt')

cluster using default parameters
net.cluster()

make interactive widget
net.widget()

General Purpose DataFrame Viewer

Clustergrammer-Widget can also be used as a general purpose Pandas [http://pandas.pydata.org/] DataFrame viewer. Below is an example of how to visualize a Pandas DataFrame, df, by loading it into the net object:

load DataFrame
net.load_df(df)

cluster using default parameters
net.cluster()

make interactive widget
net.widget()

Loading new data into net removes any old data, which allows the net object to be easily reused within the same notebook.

Filtering, Downsampling, and Normalizing

The net object can also be used to filter and normalize your data before visualizing (note that filtering and normalization are permanent and irreversible). The example below performs Z-score normalization on the columns, filters to keep the top 200 rows based on their absolute value sum, calculates clustering, and finally renders the widget:

Z-score normalize columns
net.normalize(axis='col', norm_type='zscore', keep_orig=True)

filter for the top 200 rows based on their absolute value sum
net.filter_N_top('row', 200, 'sum')

cluster using default parameters
net.cluster()

make interactive widget
net.widget()

Two-way Widget Communication

Jupyter widgets enable both back-end to front-end communication (e.g. Python kernel to JavaScript) and front-end to back-end (e.g. JavaScript to Python kernel). Clustergrammer-Widget uses front-end to back-end communication to enable users to export their modified matrix (e.g. cropped matrix) to the Python kernel as a DataFrame. This can be used to select a cluster of interest (e.g. by Cropping or using the Interactive Dendrogram) and pass this cluster to a new DataFrame. Alternatively, this can be used to export data to a DataFrame after running front-end enrichment analysis using Enrichrgram. See the df_widget method below for an example:

After modifying the visualization (e.g. dendrogram cropping) we can export the
modified matrix to the back end using the df_widget method
df_new = net.df_widget()

Clustergrammer-PY API

For more information about the Network object and additional options refer to the Clustergrammer-PY API.

Sharing with nbviewer

To enable rendering interactive widgets on nbviewer [http://nbviewer.jupyter.org/] you must have ipywidgets version 6 [https://github.com/ipython/ipywidgets/releases] or later installed and use the “Save Notebook with Widgets” action in the Widgets menu in the Jupyter notebook (see ipywidgets Rendering Interactive Widgets on nbviewer [http://ipywidgets.readthedocs.io/en/latest/embedding.html?highlight=save#rendering-interactive-widgets-on-nbviewer] documentation and screenshot below):

[image: Save Jupyter Widget]
Users can save notebooks with interactive HTML widgets using the “Save Notebook with Widgets” action in the Jupyter Notebook Widgets menu as shown here. ipywidgets version 6 [https://github.com/ipython/ipywidgets/releases] or later must be installed in order to enable this feature.

Clustergrammer-Widget Development

Clustergrammer-Widget’s source code can be found in the clustergrammer-widget [https://github.com/MaayanLab/clustergrammer-widget] GitHub repo. Clustergrammer-Widget is built using the ipywidgets [http://ipywidgets.readthedocs.io/en/latest/] framework (using the cookie cutter [https://github.com/jupyter/widget-cookiecutter] template).

Please Contact Nicolas Fernandez and Avi Ma’ayan with questions or use the GitHub issues [https://github.com/MaayanLab/clustergrammer-widget/issues] feature to report an issue.

 Clustergrammer-JS

Clustergrammer-JS

[image: version] [https://www.npmjs.com/package/clustergrammer]
[image: license] [https://github.com/MaayanLab/clustergrammer/blob/master/LICENSES/LICENSE]

Clustergrammer-JS is the front end JavaScript library that builds the interactive clustergram visualization in SVG [https://en.wikipedia.org/wiki/Scalable_Vector_Graphics] using the visualization library D3.js [https://d3js.org/]. The library is free and open-source and can be found on GitHub [https://github.com/MaayanLab/clustergrammer].

Clustergrammer-JS Dependencies

	D3.js [https://d3js.org/]

	JQuery [https://jquery.com/]

	Underscore [http://underscorejs.org/]

	Bootstrap [http://getbootstrap.com/]

Installation

Clustergrammer.js can be installed using node package manager (npm package [https://www.npmjs.com/package/clustergrammer]) with the following:

npm install clustergrammer

or the source code and library, clustergrammer.js, can be obtained from the Clustergrammer GitHub repo [https://github.com/MaayanLab/clustergrammer].

JavaScript Workflow Example

This workflow shows how to generate a visualization using the JSON produced by Clustergrammer.py

// the visualization JSON (produced by Clustergrammer-PY)
var network_data = {
 "row_nodes":[...],
 "col_nodes":[...],
 "mat": [...]
 }

// args must contain root of container and the visualization JSON
var args = {
 'root': '#id_of_container',
 'network_data': 'network_data'
}

// Clustergrammer returns a Clustergrammer object in addition to making
// the visualization
var cgm = Clustergrammer(args);

The id of the container where the visualization will be made is passed as root (this root container must be made by the user). The Visualization-JSON (produced by Clustergrammer-PY) contains all the information necessary to generate the visualization and is passed in this example as network_data. See the Clustergrammer-JS API for additional arguments that can be passed to Clustergrammer.js.

Example Pages

The Clustergrammer GitHub repo [https://github.com/MaayanLab/clustergrammer] contains several example pages demonstrating how to build a web page with a Clustergrammer visualization. The page index.html [https://github.com/MaayanLab/clustergrammer/blob/master/index.html] and corresponding script load_clustergram.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/load_clustergram.js] show how to make a full-screen resizable visualization. The page multiple_clust.html [https://github.com/MaayanLab/clustergrammer/blob/master/multiple_clustergrams.html] and corresponding script load_multiple_clustergrams.js [https://github.com/MaayanLab/clustergrammer/blob/master/js/load_multiple_clustergrams.js] show how to visualize multiple clustergrams on one page. Note that each visualization requires its own container.

Clustergrammer-JS API

	
class Clustergrammer(args)

	The Clustergrammer JavaScript object takes the args object and produces a visualization on the page.

This args object has two required arguments, network_data and root:

	
Clustergrammer.args.network_data

	This required attribute is where the visualization JSON should be passed as a JavaScript object.

	
Clustergrammer.args.root

	This required attribute is the id (passed as a string) of the container where Clustergrammer will be built. Each Clustergrammer visualization in a page should be passed a unique id.

	
Clustergrammer.args.row_label, args.col_label

	Pass strings that will be used as ‘super-labels’ for rows and columns.

	
Clustergrammer.args.row_label_scale, args.col_label_scale.

	Scaling factor to increase/decrease the size of the rows and column labels.

	
Clustergrammer.args.super_label_scale

	Scaling factor to increase/decrease the size of the row/column ‘super-labels’.

	
Clustergrammer.args.opacity_scale

	Name of the scaling function, e.g. linear, log, used to map matrix cell values to cell opacity. The default is linear.

	
Clustergrammer.args.input_domain

	The input_domain defines the maximum absolute value of matrix cells that are mapped to the maximum opacity of 1. The default input_domain is defined using the maximum absolute value of the matrix. Lowering the input_domain value increases the opacity of the overall visualization by setting a cutoff.

	
Clustergrammer.args.do_zoom

	This boolean value turns on or off zooming. The default is true.

	
Clustergrammer.args.tile_colors

	Set the positive and negative colors in the heatmap using an array with color names or hexcode, e.g. ['#ED9124','#1C86EE']. The default is red and blue for positive and negative, respectively.

	
Clustergrammer.args.row_order, args.col_order

	Set the initial ordering for rows and columns. The default is clust and the options are:

	alpha: order based on names

	clust: order based on clustering

	rank: order based on sum

	rank_var: order based on variance

	
Clustergrammer.args.ini_view

	Load clustergram using an initial filtered view.

	
Clustergrammer.args.about

	This attribute is a string (which can include HTML) that will produce a small About section at the top of the sidebar. This can be used to provide a quick description about the data or visualization.

	
Clustergrammer.args.row_tip_callback

	Users can pass a callback function that will run when mousing over row labels.

	
Clustergrammer.args.col_tip_callback

	Users can pass a callback function that will run when mousing over column labels.

	
Clustergrammer.args.tile_tip_callback

	Users can pass a callback function that will run when mousing over a matrix-cell (e.g. matrix tile).

	
Clustergrammer.args.dendro_callback

	Users can pass a callback function that will run when mousing over a dendrogram cluster (e.g. gray trapezoid)

	
Clustergrammer.args.dendro_click_callback

	Users can pass a callback function that will run when clicking a dendrogram cluster (e.g. gray trapezoid)

	
Clustergrammer.args.matrix_update_callback

	Users can pass a callback function that will run anytime the matrix has been updated, for instance when filtering/un-filtering, cropping, etc.

	
Clustergrammer.args.ini_expand

	Initialize the visualization in ‘expanded’ mode where the sidebar is not visible. The sidebar can be shown by clicking the menu button on the top left of the visualization.

	
Clustergrammer.args.sidebar_width:

	Users can modify the width of the sidebar by specifying the width of the sidebar in pixels as a number.

	
Clustergrammer.args.ini_view

	Users can initialize the ‘view’ of their matrix, e.g. initialize the matrix at a particular row filtering level.

	
Clustergrammer.args.make_modals

	This boolean option gives users have the option to not make any Bootstrap modals (e.g. dendrogram group modals) and the default is true.

Clustergrammer’s attributes and functions are listed below:

	
Clustergrammer.params

	The Clustergrammer parameters object, which contains all the parameters necessary to generate the visualization.

	
Clustergrammer.update_cats(row_data)

	Update the visualization row categories.

	Arguments

	
	row_data – Row category data.

	
Clustergrammer.reset_cats()

	Reset the row categories to their original state.

	
Clustergrammer.resize_viz:()

	Call this function to resize the visualization to fit in its resized container (if the user has resized the container).

	
Clustergrammer.d3_tip_custom()

	Generate a D3 tooltip for SVG elements.

	
Clustergrammer.update_view(filter_type, inst_state)

	Update the heatmap with a specified row filter ‘view’.

	Arguments

	
	filter_type – The available filter types sum or variance: e.g. N_row_sum, N_row_var

	inst_state – The value of the row filter, e.g. 500

	
Clustergrammer.filter_viz_using_names(names)

	Update the visualization to show the row and column names specified in the names object.

	Arguments

	
	names – Object with row and/or col attributes that specify the row and column names that will be visible after updating. Row and column names should be given as a list. Users can include only one attribute, e.g. filter rows only by including no col attribute, to only filter rows or columns (or users can specify an empty list to not filter).

	
Clustergrammer.filter_viz_using_nodes(nodes)

	Update the visualization to show the row and column names specified in the nodes object.

	Arguments

	
	names – Object with row and col attributes that specify the row and column nodes that will be visible after updating.

	
Clustergrammer.zoom(pan_x, pan_y, zoom)

	Zoom and pan into the visualization.

	Arguments

	
	pan_x – Panning in the x direction

	pan_y – Panning in the y direction

	zoom – The zoom level applied to the visualization.

	
Clustergrammer.export_matrix()

	Save the current matrix (e.g. after cropping) as a tab-separated file.

Visualization-JSON

The visualization-JSON is calculated by Clustergrammer-PY and encodes everything needed for the front end Clustergrammer-JS to produce the visualization. The visualization-JSON format is described here (see clustergrammer_example.json [https://github.com/MaayanLab/clustergrammer-json/blob/master/clustergrammer_example.json] for an example file). An overview of the format is shown below (note that the group arrays are not shown):

{
 "row_nodes":[
 {
 "name": "ATF7",
 "clust": 67,
 "rank": 66,
 "rankvar": 10,
 "group": []
 }
],
 "col_nodes":[
 {
 "name": "Col-0",
 "clust": 4,
 "rank": 10,
 "rankvar": 120,
 "group": []
 }
],
 "mat":[
 [1, 2],
 [3, 4],
 [5, 6]
],
 "links":[
 {
 "source": 0,
 "target": 0,
 "value": 0.023
 }
]
}

Optional ‘views’ of the matrix (e.g. row-filtered views) are encoded into the views attribute at the base level of the object. These views are used to store a filtered version of the matrix. Only the row and column names are stored in these views since all views share the same matrix cells. The view attributes are stored in the view object (e.g. N_row_sum):

"views":[
 {
 "N_row_sum": "all",
 "dist": "cos",
 "nodes":{
 "row_nodes": [],
 "col_nodes": []
 }
 }

There are three required properties for the Visualization-JSON: row_nodes, col_nodes, and mat (links can be used in place of mat and will continue to be supported, but the default format will use mat). Each of these properties is an array of objects and these objects are discussed below.

Nodes

row_nodes and col_nodes objects are required to have three properties: name, clust, rank. name specifies the name given to the row or column. clust and rank give the ordering of the row or column in the clustergram. Two optional properties are group and value. group is an array that contains group-membership of the row/column at different dendrogram distance cutoffs and is necessary for displaying a dendrogram. If nodes have the value property, then semi-transparent bars will be displayed behind the labels to represent this value.

Mat

mat is an JavaScript array that stores the matrix data. The source and target of each value (row and column) are inferred from the position of the data in the two-dimensional array.

Links

Note: mat will be used by default instead of links, but both formats will be supported (mat is usually a more compact format). links have three properties: source, target, and value. source and target give the integer value of the row and column of the matrix-cell in the visualization. value specifies the opacity and color of the matrix-cell, where positive/negative values results in red/blue matrix-cells in the visualization. The optional properties value_up and value_dn allow the user to have a split matrix-cell that has an up-triangle and a down-triangle.

Users can also generate the visualization-JSON using their own scripts provided that they adhere to the above format.

Clustergrammer-JS Development

The Clustergrammer-JS source code can be found in the Clustergrammer GitHub repo [https://github.com/MaayanLab/clustergrammer]. The Clustergrammer-JS library is utilized by the Clustergrammer-Web and the Clustergrammer-Widget. Clustergrammer-JS is built with Webpack Module Bundler [https://webpack.github.io/] from the source files in the src [https://github.com/MaayanLab/clustergrammer/tree/master/src] directory.

Please Contact Nicolas Fernandez and Avi Ma’ayan with questions or use the GitHub issues [https://github.com/MaayanLab/clustergrammer/issues] feature to report an issue.

 Clustergrammer-GL

Clustergrammer-GL

Clustergrammer-GL is the new in-development WegGL front end JavaScript library. This new library can visualize much larger datasets (matrices with ~millions of matrix-cells) and is being utilized by the new in-development Jupyter Widget, Clustergrammer2.

Clustergrammer-GL is being built using the WebGL library regl [http://regl.party/], is free and open-source, and can be found on GitHub [https://github.com/ismms-himc/clustergrammer-gl].

Check back soon for more updates.

 Clustergrammer-PY

Clustergrammer-PY

[image: version] [https://pypi.python.org/pypi?:action=display&name=clustergrammer]

Clustergrammer-PY is the back end Python library that is used to hierarchically cluster the data and generate the Visualization-JSON for the front end Clustergrammer-JS visualization library. Clustergrammer-PY is compatible with Python 2 and 3. The library is free and open-source and can be found on GitHub [http://github.com/MaayanLab/clustergrammer-py].

Clustergrammer-PY Dependencies

	Numpy [http://www.numpy.org/]

	SciPy [https://www.scipy.org/]

	Pandas [http://pandas.pydata.org/]

	scikit-learn [http://scikit-learn.org/stable/]

Installation

Clustergrammer-PY can be installed using pip (package index [https://pypi.python.org/pypi?:action=display&name=clustergrammer]) with the following:

pip install --upgrade clustergrammer

or the source code can be obtained from the GitHub repo [http://github.com/MaayanLab/clustergrammer-py].

Python Workflow Examples

This workflow shows how to cluster a matrix of data from a file (see Matrix Formats and Input/Output) and generate a Visualization-JSON (for use by Clustergrammer-JS):

make network object and load file
from clustergrammer import Network
net = Network()
net.load_file('your_matrix.txt')

calculate clustering using default parameters
net.cluster()

save visualization JSON to file for use by front end
net.write_json_to_file('viz', 'mult_view.json')

The file mult_view.json will be loaded by the front end and used to build the interactive visualization. See clusterergrammer.py [https://github.com/MaayanLab/clustergrammer-py/blob/master/clusterergrammer.py] for an additional example.

Clustergrammer can also load data from a Pandas DataFrame and perform normalization and filtering. In this example, we will load data from a DataFrame, normalize the rows, and filter the columns:

make network object and load DataFrame, df
net = Network()
net.load_df(df)

Z-score normalize the rows
net.normalize(axis='row', norm_type='zscore', keep_orig=True)

filter for the top 100 columns based on their absolute value sum
net.filter_N_top('col', 100, 'sum')

cluster using default parameters
net.cluster()

save visualization JSON to file for use by front end
net.write_json_to_file('viz', 'mult_view.json')

Note that filtering done on the Network object before clustering is permanent, unlike the filtering done within cluster which can be toggled on and off in the front end visualization. The keep_orig parameter in the normalize function allows us to show un-normalized data a user mouses over a matrix-cell in the visualization. See the Clustergrammer-PY API documentation below for more information.

Clustergrammer-PY API

Clustergrammer-PY generates a Network object (see Network class definition [https://github.com/MaayanLab/clustergrammer-py/blob/master/clustergrammer/__init__.py]), which is used to load a matrix (e.g. from a Pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html]), optionally normalize or filter the matrix, cluster the matrix, and finally generate the visualization JSON for the front end Clustergrammer.js.

When a matrix is loaded into an instance of Network (e.g. net.load_file('your_file.txt')) it is stored in the data, dat, attribute. Normalization and filtering will permanently modify the dat representation of the matrix. When the matrix is clustered (by calling cluster) this produces the Visualization-JSON, which is stored in the viz attribute. This JSON can then be exported as a string using net.export_net_json('viz') or saved to a file using net.write_json_to_file('viz', filename).

The function cluster calculates hierarchical clustering of your data and hierarchical clustering of successive-row-filtered versions of your data. These alternate filtered-views are stored as views within the Visualization-JSON.

	
class clustergrammer_py.Network(widget=None)

	version 1.13.5

Clustergrammer.py takes a matrix as input (either from a file of a Pandas DataFrame), normalizes/filters, hierarchically clusters, and produces the Visualization-JSON for Clustergrammer-JS.

Networks have two states:

	the data state, where they are stored as a matrix and nodes

	the viz state where they are stored as viz.links, viz.row_nodes, and viz.col_nodes.

The goal is to start in a data-state and produce a viz-state of
the network that will be used as input to clustergram.js.

	
add_cats(axis, cat_data)

	Add categories to rows or columns using cat_data array of objects. Each object in cat_data is a dictionary with one key (category title) and value (rows/column names) that have this category. Categories will be added onto the existing categories and will be added in the order of the objects in the array.

Example cat_data:

[
 {
 "title": "First Category",
 "cats": {
 "true": [
 "ROS1",
 "AAK1"
]
 }
 },
 {
 "title": "Second Category",
 "cats": {
 "something": [
 "PDK4"
]
 }
 }
]

	
clip(lower=None, upper=None)

	Trim values at input thresholds using pandas function

	
cluster(dist_type='cosine', run_clustering=True, dendro=True, views=['N_row_sum', 'N_row_var'], linkage_type='average', sim_mat=False, filter_sim=0.1, calc_cat_pval=False, run_enrichr=None, enrichrgram=None)

	The main function performs hierarchical clustering, optionally generates filtered views (e.g. row-filtered views), and generates the :visualization_json.

	
dat_to_df()

	Export Pandas DataFrams (will be deprecated).

	
dendro_cats(axis, dendro_level)

	Generate categories from dendrogram groups/clusters. The dendrogram has 11
levels to choose from 0 -> 10. Dendro_level can be given as an integer or
string.

	
df_to_dat(df, define_cat_colors=False)

	Load Pandas DataFrame (will be deprecated).

	
downsample(df=None, ds_type='kmeans', axis='row', num_samples=100, random_state=1000)

	Downsample the matrix rows or columns (currently supporting kmeans only). Users can optionally pass in a DataFrame to be downsampled (and this will be incorporated into the network object).

	
enrichrgram(lib, axis='row')

	Add Enrichr gene enrichment results to your visualization (where your rows
are genes). Run enrichrgram before clustering to include enrichment results
as row categories. Enrichrgram can also be run on the front-end using the
Enrichr logo at the top left.

Set lib to the Enrichr library that you want to use for enrichment analysis.
Libraries included:

	ChEA_2016

	KEA_2015

	ENCODE_TF_ChIP-seq_2015

	ENCODE_Histone_Modifications_2015

	Disease_Perturbations_from_GEO_up

	Disease_Perturbations_from_GEO_down

	GO_Molecular_Function_2015

	GO_Biological_Process_2015

	GO_Cellular_Component_2015

	Reactome_2016

	KEGG_2016

	MGI_Mammalian_Phenotype_Level_4

	LINCS_L1000_Chem_Pert_up

	LINCS_L1000_Chem_Pert_down

	
export_df()

	Export Pandas DataFrame/

	
export_net_json(net_type='viz', indent='no-indent')

	Export dat or viz JSON.

	
export_viz_to_widget(which_viz='viz')

	Export viz JSON, for use with clustergrammer_widget. Formerly method was
named widget.

	
filter_N_top(inst_rc, N_top, rank_type='sum')

	Filter the matrix rows or columns based on sum/variance, and only keep the top
N.

	
filter_cat(axis, cat_index, cat_name)

	Filter the matrix based on their category. cat_index is the index of the category, the first category has index=1.

	
filter_names(axis, names)

	Filter the visualization using row/column names. The function takes, axis (‘row’/’col’) and names, a list of strings.

	
filter_sum(inst_rc, threshold, take_abs=True)

	Filter a network’s rows or columns based on the sum across rows or columns.

	
filter_threshold(inst_rc, threshold, num_occur=1)

	Filter the matrix rows or columns based on num_occur values being above a
threshold (in absolute value).

	
load_data_file_to_net(filename)

	Load Clustergrammer’s dat format (saved as JSON).

	
load_df(df)

	Load Pandas DataFrame.

	
load_file(filename)

	Load TSV file.

	
load_file_as_string(file_string, filename='')

	Load file as a string.

	
load_stdin()

	Load stdin TSV-formatted string.

	
load_tsv_to_net(file_buffer, filename=None)

	This will load a TSV matrix file buffer; this is exposed so that it will
be possible to load data without having to read from a file.

	
load_vect_post_to_net(vect_post)

	Load data in the vector format JSON.

	
make_clust(dist_type='cosine', run_clustering=True, dendro=True, views=['N_row_sum', 'N_row_var'], linkage_type='average', sim_mat=False, filter_sim=0.1, calc_cat_pval=False, run_enrichr=None, enrichrgram=None)

	… Will be deprecated, renaming method cluster …
The main function performs hierarchical clustering, optionally generates filtered views (e.g. row-filtered views), and generates the :visualization_json.

	
normalize(df=None, norm_type='zscore', axis='row', keep_orig=False)

	Normalize the matrix rows or columns using Z-score (zscore) or Quantile Normalization (qn). Users can optionally pass in a DataFrame to be normalized (and this will be incorporated into the Network object).

	
produce_view(requested_view=None)

	This function is under development and will produce a single view on demand.

	
random_sample(num_samples, df=None, replace=False, weights=None, random_state=100, axis='row')

	Return random sample of matrix.

	
reset()

	This re-initializes the Network object.

	
set_cat_color(axis, cat_index, cat_name, inst_color)

	Set row/column category colors using index, name and specified color.

	
swap_nan_for_zero()

	Swaps all NaN (numpy NaN) instances for zero.

	
widget(which_viz='viz')

	Generate a widget visualization using the widget. The export_viz_to_widget
method passes the visualization JSON to the instantiated widget, which is
returned and visualized on the front-end.

	
widget_df()

	Export a DataFrame from the front-end visualization. For instance, a user
can filter to show only a single cluster using the dendrogram and then
get a DataFrame of this cluster using the widget_df method.

	
write_json_to_file(net_type, filename, indent='no-indent')

	Save dat or viz as a JSON to file.

	
write_matrix_to_tsv(filename=None, df=None)

	Export data-matrix to file.

Clustergrammer-PY Development

Clustergrammer-PY’s source code can be found in the clustergrammer-py [https://github.com/MaayanLab/clustergrammer-py] GitHub repo. The Clustergrammer-PY library is utilized by the Clustergrammer-Web and the Clustergrammer-Widget.

Please Contact Nicolas Fernandez and Avi Ma’ayan with questions or use the GitHub issues [https://github.com/MaayanLab/clustergrammer-py/issues] feature to report an issue.

 App Integrations

App Integrations

Clustergrammer can be integrated into web applications to dynamically produce interactive visualizations – see Web-Development for information. Clustergrammer is currently being utilized to visualize data for the following Ma’ayan lab [http://labs.icahn.mssm.edu/maayanlab/] web applications:

Enrichr

The enrichment analysis tool, Enrichr [http://amp.pharm.mssm.edu/Enrichr/], uses Clustergrammer to produce dynamic heatmaps of enriched terms as columns and user input genes as rows, which helps users understand the relationships between their input genes and enriched terms.

[image: Enirchr Clustergram]
 [http://amp.pharm.mssm.edu/Enrichr/]Enrichr [http://amp.pharm.mssm.edu/Enrichr/] uses the Clustergrammer-Web API to produce interactive heatmaps of enriched terms as columns and user-input genes as rows.

GEN3VA

The gene signature analysis and visualization tool, GEN3VA [http://amp.pharm.mssm.edu/gen3va/], uses Clustergrammer’s core libraries, Clustergrammer-JS and Clustergrammer-PY, to dynamically visualize collections of gene expression signatures collected by users from GEO [https://www.ncbi.nlm.nih.gov/geo/] as interactive heatmaps. GEN3VA also uses Clustergrammer to visualize enrichment analysis results (obtained from Enrichr [http://amp.pharm.mssm.edu/Enrichr/]) and perturbations that reverse or mimic gene expression signatures (obtained from L1000CDS2 [http://amp.pharm.mssm.edu/l1000cds2/])

[image: GEN3VA Gene Expression]
 [http://amp.pharm.mssm.edu/gen3va/report/approved/BioGPS_human]GEN3VA [http://amp.pharm.mssm.edu/gen3va/] uses Clustergrammer’s core libraries, Clustergrammer-JS and Clustergrammer-PY, to visualize gene expression signatures and enrichment analysis results.

L1000CDS2

L1000CDS2 [http://amp.pharm.mssm.edu/l1000cds2/] uses the Clustergrammer-Web API to produce interactive heatmaps of perturbagen gene signatures that mimic or reverse an input gene signature. This can be useful for users who are interested in the specific genes that are differentially regulated by the identified perturbagens.

[image: L1000CDS2 Clustergram]
 [http://amp.pharm.mssm.edu/clustergrammer/l1000cds2/55e0b68a5bf3665f1a726bfa]L1000CDS2 [http://amp.pharm.mssm.edu/l1000cds2/] uses Clustergrammer to produce interactive visualizations of input gene signatures and perturbation signatures that mimick or reverse the user’s user-input signature. A users’s input signature is shown as rows with gene expression levels shown as row-bars (red/blue for up/down expression) and perturbations found to mimic/reverse their signature are shown as columns in the heatmap.

Harmonizome

The Harmonizome [http://amp.pharm.mssm.edu/Harmonizome/] uses the Clustergrammer-Web API to generate visualizations of curated biological datasets as heatmaps and adjacency matrices (e.g. to depict networks). The Harmonizome also uses the Clustergrammer to visualize the amount of biological information that is available for different families of genes in the Harmonogram [http://amp.pharm.mssm.edu/harmonogram/]

[image: Harmonizome Similarity Heatmap]
 [http://amp.pharm.mssm.edu/Harmonizome/visualize/heat_map/attribute_similarity]The Harmonizome [http://amp.pharm.mssm.edu/Harmonizome/] uses Clustergrammer to visualize datasets as heatmaps and similarity matrices (e.g. similarity of attributes based on shared genes). Above is an example similarity matrix of KEGG pathways.

 Developing

Developing

Developers interested in working with the source code or in contributing to the Clustergrammer project can find instructions for the sub-projects here:

	Clustergrammer-JS Development

	Clustergrammer-PY Development

	Clustergrammer-Widget Development

	Clustergrammer-Web Development

Clustergrammer-JS and Clustergrammer-PY are the two core libraries that are used to build the Clustergrammer-Widget and the Clustergrammer-Web; these can be used by developers to build their own web pages and apps.

 License

License

[image: Interacting with Categories]

Clustergrammer is being developed by the Ma’ayan lab [http://labs.icahn.mssm.edu/maayanlab/] at the Icahn School of Medicine at Mount Sinai [http://icahn.mssm.edu/] for the BD2K-LINCS DCIC [http://lincs-dcic.org/] and the KMC-IDG [http://commonfund.nih.gov/idg/overview]. Please contact Nicolas Fernandez (nicolas.fernandez@mssm.edu) and Avi Ma’ayan (avi.maayan@mssm.edu) with any questions about the License.

Clustergrammer’s license [https://github.com/MaayanLab/clustergrammer/blob/master/LICENSES/LICENSE] and third-party licenses are in the LICENSES [https://github.com/MaayanLab/clustergrammer/tree/master/LICENSES] directory.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 clustergrammer_py	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | L
 | M
 | N
 | P
 | R
 | S
 | W

A

 	
 	add_cats() (clustergrammer_py.Network method)

C

 	
 	clip() (clustergrammer_py.Network method)

 	cluster() (clustergrammer_py.Network method)

 	Clustergrammer() (class)

 	Clustergrammer.args.about (Clustergrammer.args attribute)

 	Clustergrammer.args.col_tip_callback (Clustergrammer.args attribute)

 	Clustergrammer.args.dendro_callback (Clustergrammer.args attribute)

 	Clustergrammer.args.dendro_click_callback (Clustergrammer.args attribute)

 	Clustergrammer.args.do_zoom (Clustergrammer.args attribute)

 	Clustergrammer.args.ini_expand (Clustergrammer.args attribute)

 	Clustergrammer.args.ini_view (Clustergrammer.args attribute), [1]

 	Clustergrammer.args.input_domain (Clustergrammer.args attribute)

 	Clustergrammer.args.make_modals (Clustergrammer.args attribute)

 	Clustergrammer.args.matrix_update_callback (Clustergrammer.args attribute)

 	Clustergrammer.args.network_data (Clustergrammer.args attribute)

 	Clustergrammer.args.opacity_scale (Clustergrammer.args attribute)

 	Clustergrammer.args.root (Clustergrammer.args attribute)

 	Clustergrammer.args.row_label, args.col_label (Clustergrammer.args.row_label, args attribute)

 	
 	Clustergrammer.args.row_label_scale, args.col_label_scale. (Clustergrammer.args.row_label_scale, args.col_label_scale attribute)

 	Clustergrammer.args.row_order, args.col_order (Clustergrammer.args.row_order, args attribute)

 	Clustergrammer.args.row_tip_callback (Clustergrammer.args attribute)

 	Clustergrammer.args.sidebar_width: (Clustergrammer.args attribute)

 	Clustergrammer.args.super_label_scale (Clustergrammer.args attribute)

 	Clustergrammer.args.tile_colors (Clustergrammer.args attribute)

 	Clustergrammer.args.tile_tip_callback (Clustergrammer.args attribute)

 	Clustergrammer.d3_tip_custom() (Cl