

UCSC Cell Browser

The UCSC Cell Browser is a fast, lightweight viewer for single-cell data.
Cells are presented along with metadata and gene expression, with the ability
to color cells by both of these attributes. Additional information, such as
cluster marker genes and selected dataset-relevant genes, can also be displayed
using the Cell Browser.

There is a UCSC Cell Browser website available at http://cells.ucsc.edu, which includes
a handful of datasets from repositories like HCA, CIRM, and GEO as well as user
contributed ones. We are happy to add your favorite dataset to this, you will just need
to send us the files or a link to where we can download them to cells@ucsc.edu.

The documentation on this website describes how you can create a Cell Browser for
your own data and make it available through your own web server.

The UCSC cell browser is funded by grants from the California Institute for Regenerative Medicine [https://www.cirm.ca.gov/] and the
Chan-Zuckerberg Initiative [https://www.chanzuckerberg.com/].

To report issues or view the source code, see GitHub [https://github.com/maximilianh/cellBrowser].

This is early research software. You are likely to run into bugs.
If you do run into any trouble, please open a
Github issue [https://github.com/maximilianh/cellBrowser/issues/new]
or email us at cells@ucsc.edu, we can usually fix them quickly.

	Installation

	Basic usage

	Putting it onto the internet

	With text files

	With Seurat

	With Scanpy

	With Cell Ranger

	Advanced Topics

	Annotate Genes

	cbTool: combine and convert your data

	Describing datasets

	Dataset Collections

	Loading a dataset

	Optional Python modules

Installation

Installation with pip

To install the Cell Browser using pip, you will need Python2.5+ or Python3+ and pip. With these setup, on a Mac or any Linux system, simply run:

sudo pip install cellbrowser

On Linux, if you are not allowed to run the sudo command, you can install the Cell Browser into your user home directory:

pip install --user cellbrowser
export PATH=$PATH:~/.local/bin

You can add the second command to your ~/.profile or ~/.bashrc, this will allow you
to run the Cell Browser commands without having to specify their location.

On OSX, if running sudo pip outputs command not found, you will need to setup pip first by running:

sudo easy_install pip

Installation with conda

If you would prefer to install the Cell Browser through bioconda, you can run:

conda install -c bioconda ucsc-cell-browser

There should be conda versions for release 0.4.23 onwards. The conda version is managed by
Pablo Moreno at the EBI and is often a few releases behind. Please indicate in any bug
reports if you used conda to install.

Installation with git clone

Pip is not required to install the Cell Browser. As an alternative to pip or conda, you can also git clone the repo and
run the command line scripts under cellbrowser/src:

git clone https://github.com/maximilianh/cellBrowser.git --depth=10
cd cellBrowser/src

Installation with just wget or curl

You don’t use pip, conda or git? You can also download the current master branch:

wget https://github.com/maximilianh/cellBrowser/archive/master.zip
unzip master.zip
cellBrowser-master/src/cbBuild

Basic usage

Overview

The UCSC Cell Browser tool set consists of a number of different scripts to help you set up your own.
The primiary utility being the Python script cbBuild that will import a set of existing single-cell
data from a directory of tab-separated files and configuration files to generate a
directory of html, json, and css files that can be viewed on the web. The rest of the utilities will
produce output than can be fed directly into cbBuild.

The utilities cbSeurat and cbScanpy run a very basic single-cell pipeline on your expression
matrix and will output all the files needed to create a cell browser visualization.
The cbImport* (cbImportCellranger, cbImportScanpy, etc.) tools convert files
produced by Cellranger, Seurat, and Scanpy into a set of files that you can create a Cell
Browser visualization from. Both the pipeline and import tools are covered in more detail
under their respective sections (With Scanpy, With Seurat, and With Cellranger).
There is also a collection of small tools (cbTool) to combine cell annotation files
from different pipelines or convert expression matrices.

Using cbBuild to set up a Cell Browser

The main utility for building your own cell browser is cbBuild. It takes in a gene expression
matrix and a set related files and converts them JSON and binary files outputting them to directory which
can be put onto a web server or used with the built-in webserver. At this time, there is no backend
server needed for a cell browser. You can place the output of cbBuild on any static web server at your University
or the ones you can rent from companies will do.

After the installation, you should be able to run the cbBuild command and see
the usage message:

cbBuild

Example Minimal Cell Browser

Below are some instructions to set up a cell browser using a small example dataset based on data from
Nowakowski et al. 2017. [https://science.sciencemag.org/content/358/6368/1318.long] and
the cortex-dev dataset on cells.ucsc.edu [http://cells.ucsc.edu/?ds=cortex-dev]. The
expression matrix only includes 100 genes, but it does show off many of the
features of the cell browser.

First, download and extract it to the directory mini with:

curl -s https://cells.ucsc.edu/downloads/samples/mini.tgz | tar xvz

Next, build a browser consisting of html and other files into the directory
~/public_html/cells/ and serve that directory on port 8888:

cd mini
cbBuild -o ~/public_html/cells/ -p 8888

Lastly, point your web browser to http://localhost:8888 to view your minimal cell browser. If you’re running
this on a server and not your own computer, replace localhost with the address
of your server. To stop the cbBuild web server, press Ctrl-C. To keep it running in the background,
press Ctrl-Z and put it into the background with bg. If you have stopped the web server, you
can always run the same cbBuild command to restart it. Restarting the web server will not re-export
the entire expression matrix again if there is already one under
~/public_html/cells/sample.

The optional to specify the port, -p PORT, is optional. If you only want to build html files and serve them with your own
web server, do not specify this option and cbBuild will only build the output files, but won’t start a web server.

The example cellbrowser.conf [https://github.com/maximilianh/cellBrowser/blob/master/src/cbPyLib/cellbrowser/sampleConfig/cellbrowser.conf]
explains all the various settings that are available in this config file. Things
you can change include the colors for different metadata attributes, explain cluster acronyms used in your cluster names,
add file names, add alternative dimensionality reduction layouts, add more marker gene tables, and more.

One of the most important settings in cellbrowser.conf is the dataset name. For example, in this
‘mini’ example, the dataset name is ‘sample’. When you run cbBuild, its output
files will be written to ~/public_html/cells/sample. You can go to another directory
with a different cellbrowser.conf file and a different dataset name, and if you run the same cbBuild
command as above, the cell browser output files will be copied into a new subdirectory within ~/public_html/cells/.
A single cbBuild output directory can contain multiple datasets.

Putting it onto the internet

Basics

Deploying your cell browser on the web is as simple as copying the output of cbBuild,
including all files and directories, into to an empty directory on a web
server. The cell browser should be able to be deployed on almost any web server, including:

	One provided by your university (often through a public_html directory in your home directory)

	A cloud provider, such as:

	Cyverse

	Amazon S3

	Google Cloud Storage

	Microsoft Azure

If none of the above options work, you can always send the output files to cells@ucsc.edu,
we are happy to add it to our public Cell Browser website.
Unfortunately, online backup solutions such as Dropbox, Box.com, iCloud, OneDrive or Google
Drive will not work; they are intentionally designed to not be used as web servers.

Adding multiple datasets to your cell browser

To add more datasets to the same cell browser, navigate to the other data directories and run cbBuild
there with the same output directory. cbBuild will then modify the index.html
in the output directory to show all datasets. Note that the directory that you
provide via -o (or the CBOUT environment variable) is the html directory. The
data for each individual dataset will be copied into subdirectories under this
html directory, one directory per dataset.

Specifying a default output directory for cbBuild

The output directory for cbBuild can be controlled using environment or .conf variables.
This allows you to run cbBuild in a directory without needing to specify an output
directory using the “-o” option.

To control the output directory using an environment variable, add the following line to
your ~/.bashrc to point to your html directory:

export CBOUT=/var/www

Replace /var/www with whatever you want the default output directory to be.

Alternatively, you can create a file called .cellbrowser.conf in your home directory
and assign a value to htmlDir:

echo 'htmlDir = "/var/www"' >> ~/.cellbrowser.conf

Again, replace /var/www with your own dorectory.

Notes on setting up a permanent cell browser on a local machine

The port option, e.g. -p 8888, is optional. When this option is specified,
it will start up its own web server. If you are running this on your local machine,
a more permanent alternative to the -p option is to run a web server on your machine
and then build directly into its web directory.

On a Mac, you can use the Apache that ships with OSX:

sudo /usr/sbin/apachectl start
sudo cbBuild -o /Library/WebServer/Documents/cells/

You should be able to access your viewer at http://localhost/cells

On Linux, you will need to install Apache2 (with sudo yum install httpd
or sudo apt-get install apache2) and use the directory /var/www/ instead:

sudo cbBuild -o /var/www/

We hope you do not use this software on Windows. Email cells@ucsc.edu if you have to.

With text files

The generic way to set up your own cell browser is to start from tab-separated (tsv)
or comma-separated (csv) format text files. The steps on this page assume that you
have already gone through the process of clustering your cells.

The files you will need

You will need the first three files described below in tsv or csv format, the fourth is optional:

	Expression matrix: one row per gene and one column per cell, ideally gzipped. The first column
must be the gene identifier or gene symbol, or ideally
geneId|symbol. Ensembl/GENCODE gene identifiers starting with ENSG and ENSMUSG will be translated
automatically to symbols. The other columns are expression values as
numbers, one per cell. The number type will be auto-detected (float or int).
The first line of the file must be a header that includes the cell
identifiers.

	Cell annotation metadata table, one row per cell. No need to gzip this
relatively small file. The first column is the name of the cell and it has
to match the name in the expression matrix. There should be at least
two columns: one with the name of the cell and one with
the name of the cluster. To speed up processing of both your expression matrix
and metadata file, these files should describe the same numbers of cells and be
in the same order. This allows cbBuild process these files without needing to
trim the matrix and reorder the metadata file. The metadata file also must have
a header line.

	Cell coordinates, often t-SNE or UMAP coordinates. This file
always has three columns, (cellName, x, y). The cellName must be the same as in
the expression matrix and cell annotation metadata file. If you have run
multiple dimensionality reduction algorithms, you can specify multiple
coordinate files in this format. The number rows in these coordinates doesn’t
need to match that of your expression matrix or metadata files, allowing you to
specify only a subset of the cells. In this way, you can use a single dimensionality
reduction algorithm, but include multiple subsets and view of the cells,
e.g. one coordinates file per tissue. Note, if R has changed your
cell identifiers (e.g. by adding dots), you may be able to fix them by running cbTool metaCat.

	Cluster-specific marker genes (optional). The first column is
the cluster name (from the cell annotation metadata file), the second column
contains the gene symbol (or Ensembl gene ID, which will automatically be mapped
to the gene symbol), and
the third column is some numeric score (e.g. p-Value or FDR). You can add
as many other columns as you like with additional information about this
gene. You can also run cbMarkerAnnotate on this file to add information from
various gene-centric databases and link-outs to other resources to your existing
table. See Annotate genes on how to add link to external
gene-databases (like Allan Brain Atlas or OMIM) to your marker genes.
If you used Seurat for your clustering, you can just provide the raw Seurat marker gene output.
You can also specify multiple files of cluster-specific marker genes,
e.g. in case that you are also doing differential gene expression analysis
or have results from multiple algorithms.

Make sure that all your input files have Unix line endings and fix the line
endings if necessary with mac2unix or dos2unix:

file *.txt *.csv *.tsv *.tab

Setting up your cellbrowser.conf

After you have all of these files in place, go to the directory go to the
directory containing all of these files and run the following command to
copy a sample cellbrowser.conf into your current directory:

cbBuild --init

This sample cellbrowser.conf includes the required settings plus some other useful settings.
The current list of all possible cellbrowser.conf statements can be found in our example cellbrowser.conf [https://github.com/maximilianh/cellBrowser/blob/master/src/cbPyLib/cellbrowser/sampleConfig/cellbrowser.conf].

In your cellbrowser.conf, replace the default values in the config statements:

	exprMatrix - expression matrix file name

	meta - cell annotation metadata file name

	coords - coordinate file names with a layout method label for each

	markers - cluster-specific marker gene file namew with a label for each

	labelField and clusterField - name of cluster field from header line of metadata file

From the directory where your cellbrowser.conf is located, run:

cbBuild -o /tmp/cb -p 8888

Point your internet browser to the name of the server (or localhost, if
you’re running this on your own machine) followed by :8888, e.g.
http://localhost:8888.

The cell browser output directory (/tmp/cb in this example) can hold multiple datasets.
If you have a second dataset in another directory that contains cellbrowser.conf,
just make sure that the other cellbrowser.conf specifies a different dataset name
with name=xxx. Then run cbBuild -o /tmp/cb -p 8888 in the other
directory to add the second dataset to your cell browser output directory /tmp/cb.

With Seurat

There are a number of ways to create a cell browser using Seurat:

	Import a Seurat rds file - create a cell browser with the Unix command line tool cbImportSeurat.

	Using RStudio and a Seurat object - create a cell browser directly using the ExportToCellbrowser() R function.

	Run our basic Seurat pipeline - with just an expression matrix, you can run our cbSeurat pipeline to create a cell browser.

Each of these methods are described in more detail below.

Convert a Seurat rds file

First, create an .rds file in R as described in the Seurat tutorial:

saveRDS(pbmc, "pbmc3k_small.rds")

Next, on the Unix command line, use the cbImportSeurat script to convert this rds
file into a cell browser:

cbImportSeurat -i pbmc3k_small.rds -o pbmc3kImport

This works with objects created by versions 2 and 3 of Seurat. Make sure that you have the same version of Seurat installed that was used to create the object.

The -i option specifies the input rds file and the -o option specifies a name for the output
directory. You can use the -n option to change the dataset name in the cell browser;
if it is not specified, it will default to the output directory name.

A Seurat object does not contain the marker genes by default, as FindAllMarkers() does not save its output.
You can add it to the object when you save the .rds file with a command like this:

object@misc$markers <- FindAllMarkers(object)

cbImportSeurat will then use these markers. Otherwise, if misc$markers is not present in the object, it will
run FindAllMarkers with the default values (Wilcoxon and 0.25 as the cutoff). Alternatively, you can also save the markers
to a tab-separated file yourself and provide this file with the --markerFile option.

Lastly, go into the pbmc3kImport directory and run cbBuild to create the cell browser
output files:

cd pbmc3kImport
cbBuild -o ~/public_html/cb

Alternatively, you can use the --htmlDir option for cbImportSeurat to automatically run cbBuild for you:

cbImportSeurat -i pbmc3k_small.rds -o pbmc3kImport --htmlDir=~/public_html/cb

Convert a Seurat object from R

The function ExportToCellbrowser() is already part of Seurat 3. You can install pre-release Seurat3 like this:

install.packages("devtools")
devtools::install_github("satijalab/seurat", ref = "release/3.0")

For Seurat 2, you have to load the function with this command:

source("https://raw.githubusercontent.com/maximilianh/cellBrowser/master/src/cbPyLib/cellbrowser/R/ExportToCellbrowser-seurat2.R")

You can then write a Seurat object to a directory from which you can run cbBuild:

ExportToCellbrowser(pbmc_small, dir="pbmcSmall", dataset.name="pbmcSmall")

Or, you can build a cell browser from this dataset into the htdocs directory,
serve the result on port 8080 via http, and open a web browser from within R:

ExportToCellbrowser(pbmc_small, dir="pbmcSmall", cb.dir="htdocs", dataset.name="pbmcSmall", port=8080)

Writing the expression matrix is somewhat slow. If you have already exported into the same
output directory before and just updated a part of the cell annotation data
(e.g. clustering), you can use the argument skip.matrix=TRUE to save some
time:

ExportToCellbrowser(pbmc_small, dir=”pbmcSmall”, dataset.name=”pbmcSmall”, skip-matrix=TRUE)

Run a basic Seurat pipeline

If you have never used Seurat before and just want to process an expression matrix
as quickly as possible, this section is for you.

If you do not have R installed yet, we recommend that you install it via conda.
To install miniconda, follow their installation instructions [https://conda.io/projects/conda/en/latest/user-guide/install/index.html#regular-installation].

After setting up conda, install R:

conda install r

Then, install Seurat:

conda install -c bioconda r-seurat

To process an example dataset now, download the 10X pbmc3k expression matrix:

rsync -Lavzp genome-test.gi.ucsc.edu::cells/datasets/pbmc3k/ ./pbmc3k/ --progress

Now run the expression matrix filtered_gene_bc_matrices/hg19/matrix.mtx through
Seurat:

cbSeurat -e filtered_gene_bc_matrices/hg19 --name pbmc3kSeurat -o seuratOut

This will create a script (seuratOut/runSeurat.R), run it through Rscript, and
will fill the directory seuratOut/ with everything needed to create a cell
browser. After the cbSeurat script completes, you can build your cell browser from the output:

cd seuratOut
cbBuild -o ~/public_html/cells

Changing the defaults using seurat.conf

This set of steps will run a basic Seurat pipeline with the default settings. You can
modify the settings for Seurat by creating a seurat.conf file:

cbSeurat --init

You can edit the settings in seurat.conf and re-run the cbSeurat command to
generate a new set of Seurat output using these new settings.

With Scanpy

There area few different ways to create a cell browser using Scanpy:

	Run our basic Scanpy pipeline - with just an expression matrix and cbScanpy, you can the standard preprocessing, embedding, and clustering through Scanpy.

	Import a Scanpy h5ad file - create a cell browser from your h5ad file using the command-line program cbImportScanpy.

	Use a few Python 3 function - you can build a cell browser from a Scanpy h5ad file and start a web server, e.g. from Jupyter, with the Python3 function cellbrowser.scanpyToCellbrowser(ad, outDir, datasetname).

A standard Scanpy pipeline

Requirements: Python3 with Scanpy installed, see their installation instructions [https://scanpy.readthedocs.io/en/latest/installation.html] for information about setting up Scanpy.
As part of the Scanpy installion process, ensure that the igraph library is also installed.
It’s needed for the most basic scanpy features even though it’s not an official requirement.
The command pip install scanpy[louvain] will make sure that igraph is installed.

We provide a wrapper around Scanpy, named cbScanpy, which runs filtering, PCA,
nearest-neighbors, clustering, t-SNE, and UMAP. The individual steps are explained in more detail in
the Scanpy PBMC3k tutorial [https://icb-scanpy-tutorials.readthedocs-hosted.com/en/latest/pbmc3k.html].

The output of cbScanpy is formatted
to be directly usable to build a cell browser with cbBuild.

You can test cbScanpy yourself using the following set of steps.
To process an example dataset, download the 10x pbmc3k expression matrix from our servers:

mkdir ~/cellData
cd ~/cellData
rsync -Lavzp genome-test.gi.ucsc.edu::cells/datasets/pbmc3k/ ./pbmc3k/ --progress
cd pbmc3k

Next, run the expression matrix filtered_gene_bc_matrices/hg19/matrix.mtx through Scanpy:

cbScanpy -e filtered_gene_bc_matrices/hg19/matrix.mtx -o scanpyOut -n pbmc3k

This will run Scanpy and will fill the directory scanpyOut/ with everything needed
to create a cell browser. After the cbScanpy script completes, you can build your
cell browser from the output:

cd scanpyout
cbBuild -o ~/public_html/cb -p 8888

Changing the defaults using scanpy.conf

This set of steps will run a basic Scanpy pipeline with the default settings. You can modify the settings
for Scanpy by creating a scanpy.conf:

cbScanpy --init

You can edit the settings in scanpy.conf and re-run the cbScanpy command to generate a new set of
Scanpy output using these new settings.

Convert a Scanpy h5ad

If you have run Scanpy and have an output h5ad file, you can import it
into a cell browser using the command cbImportScanpy.

The steps in this section walk you through the process of importing data from a
Scanpy file and then building a cell browser from the output. The steps use an example
h5ad file available for a small pbmc dataset from our Github repo:
anndata.h5ad [https://github.com/maximilianh/cellBrowser/blob/master/sampleData/pbmc_small/anndata.h5ad].

First, use cbImportScanpy to extract the data from the h5ad:

cbImportScanpy -i anndata.h5ad -o pbmc3kImportScanpy

The -i option specifies the input h5ad file and the -o option specifies
a name for the output directory. You can use the -n option to change the dataset
name in the cell browser; if it is not specified, it will default to the output
directory name.

The output of cbImportScanpy will be formatted so that you can immediately
build a cell browser from it. Go into the pbmc3kImportScanpy directory and run
cbBuild to create the cell browser output files:

cd pbmc3kImportScanpy
cbBuild -o ~/public_html/cb

Alternatively, you can use the --htmlDir option for cbImportScanpy to automatically
run cbBuild for you:

cbImportScanpy -i anndata.h5ad -o pbmc3kImportScanpy --htmlDir=~/public_html/cb

Convert a Scanpy object

From Jupyter or Python3, you can create a data directory with the necessary
tsv files and a basic cellbrowser.conf:

import cellbrowser.cellbrowser as cb
cb.scanpyToCellbrowser(adata, "scanpyOut", "myScanpyDataset")

Here adata is your Scanpy object, scanpyOut is your output directory, and
myScanpyDataset is your dataset name.

Then, build the cell browser from this output directory into a html directory:

cb.build("scanpyOut", "~/public_html/cells")

If you don’t have a web server running already, use this function start one to serve up this directory:

cb.serve("~/public_html/cells", 8888)

You can stop the web server with the function:

cb.stop()

Or from a Unix shell, you can build and start a web server using cbBuild:

cd scanpyOut
cbBuild -o ~/public_html/cells/ -p 8888

With Cell Ranger

Find the cellranger OUT directory, it should contain an analysis directory and
a subdirectory filtered_gene_bc_matrices. The OUT
directory will be the input for our tool cbImportCellranger. The tool converts the
cellranger files to ones formatted for cbBuild.

As we are reading Cell Ranger mtx files, we need the scipy package (add --user
if you are not the admin on your machine):

pip install scipy

The example below use the pbmc3k cellranger output files from the 10x website.
First, download the files with the command:

rsync -Lavzp genome-test.gi.ucsc.edu::cells/datasets/pbmc3kCellranger/ ./pbmc3kCellranger/ --progress

Next, run cbImportCellranger to convert the cellranger files into something
that can be used to build a cell browser:

cbImportCellranger -i pbmc3kCellranger -o cellrangerOut --name pbmc3k_cellranger

The -i option specifies the input cellranger directory and the -o option
specifies a name for the output directory. You can use the -n option to change the
dataset name in the cell browser; if it is not specified, it will default to the output
directory name.

Lastly, go into the cellrangerOut directory and run cbBuild to create a cell browser:

cd cellrangerOut
cbBuild -o ~/public_html/cells -p 9999

Advanced Topics

Cell browser updates and web server configuration

New features and bug fixes are being added to the UCSC Cell Browser software all the time. You can update the javascript files and re-create the index.html using the command line tool cbUpgrade.

Your web server should support byte-range requests. This isn’t important for smaller,
but for datasets with files larger than 30MB, a warning message
will be shown once. For Apache, byte-range requests are enabled by default
but may need to be activated in nginx.

Default output directory for building cell browsers

The html directory can be defined in all tools with the option -o. If that
becomes cumbersome, you can also permanently set it through the environment
variable CBOUT (e.g. in your ~/.bashrc) or by adding a line like this to ~/.cellbrowser.conf:

htmlDir = "/data/www/cb/"

Google Analytics

To add Google Analytics tracking to your cell browser, create a file .cellbrowser.conf in your home directory
and add a line like this:

gaTag = "UA-11231232-1"

Then run cbBuild or cbUpgrade to rebuild your index.html, after which it
should contain your Google Analytics tracking code.

Various cellbrowser.conf configurations

For a reference of all possible cellbrowser.conf statements, see the example conf [https://github.com/maximilianh/cellBrowser/blob/master/src/cbPyLib/cellbrowser/sampleConfig/cellbrowser.conf]

If you have meta fields with very long names, you can reduce the font size. Configure them like this:

metaOpt = {‘Cluster_field’ : {‘fontSize’: ‘10px’}}

In your meta.tsv, you can have URLs to images. These will be shown on mouse over in the left annotation bar.

If you set the default coloring field to ‘None’ (without the quotes), then there is no coloring at all when the
cell browser starts.

To change the coloring/label field automatically when the user activates some coordinates (layout), use the option
“colorOnMeta” to specify the field:

coords=[
 {"file":"tsne.coords.tsv", "shortLabel":"t-SNE on WGCNA"},
 # you can force coloring of some other meta data field when a layout is changed to another one
 {"file":"subset.coords.tsv", "shortLabel":"neural cells", colorOnMeta="neuralCluster"},
]

In very rare cases, it can be necessary to tell cbBuild that the numbers in the matrix are floating point numbers.
The setting looks like this:

matrixType = "float"

Annotate Genes

When you load a basic set of marker genes into your cell browser, they will be
imported as gene symbols along with an associated score, with no extra
annotations. To make the list of markers genes more useful, you can add extra
annotations using the cbMarkerAnnotate tool. This tool will add information
about in other resources that describe gene expression profiles
(Allen Brain Atlas), diseases they have been linked to (OMIM, HPO, Sfari), and
protein class (HPRD).

Running this script on your marker genes file is very simple:

cbMarkerAnnotate inFname outFname

The format for inFname is the same as for standard cell browser marker gene
files, a tsv or csv table with at least three columns, in this order:

	cluster - needs to match labelField in cellbrowser.conf.

	gene - can be a gene symbol or Ensembl gene ID, with or without the version.

	score - scores are typically “avg_diff” or “p-Value” or similar. Gene

cbMarkerAnnotate will map Ensembl gene IDs to symbols and then lookup various
gene-related databases to add more columns to inFname and write the result to
outFname. You can then change the marker genes file described by the markers
parameter in your cellbrowser.conf to point to outFname.

You can also add your own annotations (e.g. number of associated PubMed articles) to
your marker genes files. These will be displayed alongside any other annotations
that you may have added using cbMarkerAnnotate.

cbTool: combine and convert your data

The script cbTool included in the Cell Browser package includes a number of utilties
for combining or converting your data. These different functions and how to use them are
described below.

Combining results

Metadata

You can use the cbTool metaCat utility to merge the metadata files from different
sources or pipelines (e.g. cbScanpy or cbSeurat) into a single one. A command
to do combine a metadata set of metadata files from Scanpy and Seurat with a separate
one might look like this:

cbTool metaCat myMeta.tsv seuratOut/meta.tsv scanpyOut/meta.tsv ./newMeta.tsv --fixDot

The resulting file will include the columns from all three of the original files
combined into a new metadata file. Note that cbTool metaCat assumes that the first
column of each file contains the same cell identifier that it can use to join them.

Matrices

Similar to metaCat for combining metadata files, cbTool matCat can be used to
combine expression matrices from different sources. A command combine the two different
matrixes would look like this:

cbTool matCat mat1.tsv.gz mat2.tsv.gz exprMatrix.tsv.gz

Converting mtx to tsv

Using cbTool mtx2tsv, you can convert your expression matrix in matrix market [https://math.nist.gov/MatrixMarket/formats.html] to tsv format
(with one gene per line and one cell per column):

cbTool mtx2tsv matrix.mtx genes.tsv barcodes.tsv exprMatrix.tsv.gz

Fixing R Seurat output

The option --fixDot for cbTool will work around R’s strange habit of replacing
special characters in the cell identifiers with “.”. Directories created with the
ExportToCellbrowser() function from R should not have this problem, but others may.

Describing datasets

A dataset can be described with three HTML files, summary.html, methods.html
and downloads.html. You can put these in the same directory where
cellbrowser.conf is stored and they will get copied
along to the webserver and shown in the File > Open Dataset... dialog or
when you click the Info button.

However, when you have many datasets, writing the html files gets repetitive.
This is where desc.conf is handy, it’s a key-value file, similar to cellbrowser.conf, with the
description of the dataset in a standardized format.

A sample file can be created with the command cbBuild --init.

The following lists all tags that are currently supported.

These tags contain longer text and can include HTML markup:

	title: title of the dataset, often the paper title

	abstract: a big picture summary of the dataset, as a string

	methods: the methods for the dataset, as a string

	unitDesc: a description of the values / the unit in the expression matrix
(e.g. ‘TPM’ or ‘log’ed counts’)

Instead of long strings with HTML content for abstract and methods, you can also create the
files abstract.html and methods.html, they will be used instead. Or use the
statements abstractFile and methodsFile to specify other file names. In the HTML,
you can use text like <section>some subtitle</section> to split the text into sections.

These tags contains a file name:

	image: usually a 400px-wide thumbnail of the dimensionality reduction. You can use a command like convert graphical_abstract.png -sampling-factor 4:2:0 -strip -quality 85 -interlace JPEG -colorspace sRGB thumb.jpg to create thumb.jpg, a version of the image with a lower resolution that loads faster.

	rawMatrixFile: the file name of the raw unprocessed matrix. Usually a .zip or .gz file. Also see rawMatrixNote.

The following tags can contain URLs and optionally, separated with a space, a label for the link. If you do
not specify the label, a default label will be used (e.g. ‘Biorxiv Preprint’):

	biorxiv_url: URL of the pre-print

	paper_url: URL to any website with the fulltext

	other_url: URL to a website that describes the dataset

The following tags contain accession IDs and will be translated to links:

	pmid: Pubmed ID of the publication (CIRM TagsV5)

	geo_series: NCBI GEO series ID (CIRM TagsV5)

	sra: NCBI SRA accession

	arrayexpress: EBI Arrayexpress accession

	ena_project: EBI ENA project accession, ENAPxxxx

	sra_study: NCBI SRA SRPxxxx accession

	doi: DOI of paper fulltext

	dbgap: NCBI dbGaP accession, starts with phs

	bioproject: NCBI Bioproject accession, a 4-9 digit number, without the PRJNA prefix

The following tags contain just text:

	submitter: name and/or email of submitter

	lab: lab and University of submitter

	submission_date: ideally in format year-month-day

	rawMatrixNote: text to describe the raw matrix, see rawMatrixFile

	version: version of dataset, a simple number (1,2,3,…) that should be increased each time a major change (usually meta data) was received from the lab

The following tags contain key-value information:

	custom: anything about the dataset that does not have an existing tag, e.g. {‘taxon_id’:‘9606’}

	algParams: algorithm parameters, e.g. { ‘louvainRes’:‘0.7’ }. This tag is generated by cbScanpy.

Dataset Collections

The Cell Browser allows you to group related datasets into single-level collections. Collections will displayed
in your cell browser alongside all of your other datasets; when you open a collection, it will
show you all of the datasets within it.

First, to enable the collections feature, you must add a single line pointing to
the directory where all of your single-cell data lives to your ~/.cellbrowser.conf:

collDir='/celldata/'

Next, for each dataset you would like to be a part of a collection,
add a collections line to the dataset’s cellbrowser.conf, such as:

collections = ["organoids"]

This will create a single collection in your cell browser named organoids. You can
specify multiple collection names separated by a comma (e.g. ["organoids", "human"]).

Then, describe the menu entry for the collection by placing a cellbrowser.conf for it somewhere within
your collDir. This minimal cellbrowser.conf file only needs to contains the name,
shortLabel and tags settings:

mkdir -p /celldata/organoids
cd /celldata/organoids
echo 'name="organoids"' > cellbrowser.conf
echo 'shortLabel="Brain Organoids"' >> cellbrowser.conf
echo 'tags=["10x"]' >> cellbrowser.conf

Now you can describe your collection as discussed under the Describing
datasets section. Put the desc.conf file into the same directory as the
cellbrowser.conf you just created.

Now run cbBuild for each of the datasets that you would like to be in the collection.
If you view your cell browser on the web, you should see this new collection present.
Additionally, when viewing a dataset in a collection, you can move quickly between
it and other datasets in the same collection using the “Collection” dropdown menu.

Loading a dataset

Once you have found a dataset of interest on https://cells.ucsc.edu, it is
very easy to load it into your favorite analysis environment. (Let us know if
something if we are missing one below.)

First, download the expression matrix and the meta data, usually in a Unix terminal:

wget https://cells.ucsc.edu/quakePancreas/exprMatrix.tsv.gz
wget https://cells.ucsc.edu/quakePancreas/meta.tsv

Replace “quakePancreas” above with the dataset name of interest, it is shown in
the URL when you open a dataset after “ds=” or in the download instructions.

Then open your favorite tool (e.g. RStudio or Jupyter) and follow the instructions below.

Seurat

Run these commands if you have downloaded the file as above:

require(Seurat)
require(data.tables)
mat <- fread("zcat < exprMatrix.tsv.gz")
or: mat <- read.table(gzfile("exprMatrix.tsv.gz"), header = T)
meta <- read.table("meta.tsv", header=T, sep="\t", as.is=T, row.names=1)
so <- CreateSeuratObject(counts = mat, project = "cellBrowserImport", meta.data=meta)

Or without downloading them first:

require(data.tables)
mat <- fread("curl https://cells.ucsc.edu/adultPancreas/exprMatrix.tsv.gz | zcat")
meta <- data.frame(fread("https://cells.ucsc.edu/adultPancreas/meta.tsv"), row.names=1)
so <- CreateSeuratObject(counts = mat, project = "cellBrowserImport", meta.data=meta)

Scanpy

To create an anndata object in Scanpy:

import scanpy as sc
import pandas as pd
ad = sc.read_text("exprMatrix.tsv.gz")
meta = pd.read_csv("meta.tsv", sep="\t")
ad.var = meta

Optional Python modules

There are currently no required Pythom modules for the core Cell Browser script: cbBuild.
However, to take advantage of some of the advanced features or specialized scripts
such as cbScanpy or cbSeurat, you will need to install some extra packages or tools.

Custom Colors

In your cellbrowser.conf you can specify a color file, e.g. colors.tsv, with custom colors
for your metadata values. The file can be in tsv or csv format and it has two columns,
first metadataValue and then colorCode. If this file contains HTML color names instead
of color codes, you have to install the module webcolors:

pip install webcolors

Image sizes

To get the image sizes, cbBuild uses either the “file” command or the “identify” command (for JPEGs).
You may have to install the ImageMagick package to get the identify command.

Matrices in mtx format

To read expression matrices in .mtx format, you have to install scipy:

pip install scipy

cbScanpy and cbSeurat

cbScanpy requires that Scanpy is installed. See the Scanpy documentation for installation instructions [https://scanpy.readthedocs.io/en/latest/installation.html].

cbSeurat requires that both R and Seurat are installed. See the Seurat website for
installation instructions [https://satijalab.org/seurat/install.html].
Note Conda can also be used to install Seurat [https://anaconda.org/bioconda/r-seurat]
and R [https://anaconda.org/r/r]. You can confirm that seurat is installed for R by
typing Rscript and looking for Seurat in the output.

Index

 # ——— REQUIRED SETTINGS ————–

example config file with all possible settings
For a minimal file, see minimal.conf

internal short name, only visible in the URL
same as the output directory name
no special chars, no whitespace, please
name = “sample”

priority determines the order of the datasets
smallest comes first
priority = 10

tags are shown in the dataset browser
current tags:
smartseq2,10x
tags = [“smartseq2”]

human-readable name of this dataset
shortLabel=”CellBrowser 100-genes demo”

name of the expression matrix file, genes are rows
exprMatrix=”exprMatrix.tsv.gz”

“gencode-human”, “gencode-mouse” or “symbol”
For “symbol” you can specify which database to use to check
symbols or, for cbHub, how to map them to the genome.
‘auto’ will automatically detect Ensembl human/mouse IDs
and translate to symbols
geneIdType=”auto”

name of the meta data table (“samplesheet). One sample per row. First row is name of sample.
meta=”meta.tsv”

we try to auto-detect the field type of fields in the meta data.
Sometimes, this doesn’t work, e.g. when your cluster ID is a numer
or your C1 chip ID is a number, but you don’t want them binned, you want
to treat as if they were categories
enumFields = [“c1_cell_id”]

tsv files with coordinates of every sample in format <sampleId, x, y>
first the name of the file, then a human readable description
coords=[

{“file”:”tsne.coords.tsv”, “shortLabel”:”t-SNE on WGCNA”},
you can force coloring of some other meta data field when a layout is changed to another one
{“file”:”subset.coords.tsv”, “shortLabel”:”neural cells”, “colorOnMeta”:”neuralCluster”},

]

——— OPTIONAL SETTINGS ————–

default field in the meta data table with the name of the cluster
clusterField=”WGCNAcluster”

default field in the meta data table used for the label of the clusters shown by default
labelField=”WGCNAcluster”

tsv files with marker gene lists for the clusters
format is (clusterName, geneSymbol, pValue, enrichment) + any additional fields or URLs you want to show
markers=[

{“file”:”markers.tsv”, “shortLabel”:”Cluster-specific markers”}

]

optional: UCSC track hub with the BAM file reads and expression values
Alternatively, you can also provide a full link to a UCSC Genome Browser session here
hubUrl=”http://cells.ucsc.edu/cortex-dev/hub/hub.txt”

optional: table with <name><color> for any meta data values
color is a six-digit hexcode
name is a any value in the meta data table, e.g. cluster name. Canb be a .tsv or .csv file.
colors=”colors.tsv”

should the cluster labels be shown by default (default: true)
showLabels=True

the radius of the circles. If not specified, reasonable defaults will be used
#radius = 5
the alpha/transparency of the circles. If not specified, reasonable defaults will be used.
#alpha = 0.3

you need short names for your clusters, as there is little space on the plot
but cell types have complicated and long names
So you can provide a table with two columns: 1) short cluster name 2) long version
e.g. EC, endothelial cells
can be a .tsv or .csv file
acroFname = “acronyms.tsv”

genes that are highlighted in your paper can be pre-loaded and are shown as a clickable table on the left
quickGenesFile = “quickGenes.csv”

the unit of the values in the expression matrix
any string, shown on genome browser and violin y-Axis
typical values are: “read count/UMI”, “log of read count/UMI”, “TPM”, “log of TPM”, “CPM”, “FPKM”, “RPKM”
unit = “TPM”

format of the numbers in the matrix.
‘auto’ works in 99% of the cases. Otherwise you can use ‘int’ for integers and ‘float’ for floating point numbers.
Use ‘forceInt’ if your matrix contains only integers but in a format like 3.123e10
or the matrix has only integers expressed like 100.000, 200.000, 300.00, …
matrixType=’auto’

— The following options are only used by cbHub —
hubName = “100 Genes Sample Hub” # name of hub (optional, default is value of ‘shortLabel’)
ucscDb = “hg38” # UCSC genome ID of the BAM files, required
bamDir = “bam” # directory with .bam files, optional. If not present, don’t do bam merging
#clusterOrder = “clusterOrder.txt” # file with cluster names to order the tracks (default is alphabetical)

On master Dec 7, 2018

	better docs

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 UCSC Cell Browser

 		
 Installation

 		
 Installation with pip

 		
 Installation with conda

 		
 Installation with git clone

 		
 Installation with just wget or curl

 		
 Basic usage

 		
 Overview

 		
 Using cbBuild to set up a Cell Browser

 		
 Example Minimal Cell Browser

 		
 Putting it onto the internet

 		
 Basics

 		
 Adding multiple datasets to your cell browser

 		
 Specifying a default output directory for cbBuild

 		
 Notes on setting up a permanent cell browser on a local machine

 		
 With text files

 		
 The files you will need

 		
 Setting up your cellbrowser.conf

 		
 With Seurat

 		
 Convert a Seurat rds file

 		
 Convert a Seurat object from R

 		
 Run a basic Seurat pipeline

 		
 Changing the defaults using seurat.conf

 		
 With Scanpy

 		
 A standard Scanpy pipeline

 		
 Changing the defaults using scanpy.conf

 		
 Convert a Scanpy h5ad

 		
 Convert a Scanpy object

 		
 With Cell Ranger

 		
 Advanced Topics

 		
 Cell browser updates and web server configuration

 		
 Default output directory for building cell browsers

 		
 Google Analytics

 		
 Various cellbrowser.conf configurations

 		
 Annotate Genes

 		
 cbTool: combine and convert your data

 		
 Combining results

 		
 Metadata

 		
 Matrices

 		
 Converting mtx to tsv

 		
 Fixing R Seurat output

 		
 Describing datasets

 		
 Dataset Collections

 		
 Loading a dataset

 		
 Seurat

 		
 Scanpy

 		
 Optional Python modules

 		
 Custom Colors

 		
 Image sizes

 		
 Matrices in mtx format

 		
 cbScanpy and cbSeurat

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

