

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

This is the Buildbot documentation for Buildbot version 1.8.0.

If you are evaluating Buildbot and would like to get started quickly, start
with the Tutorial. Regular users of Buildbot should
consult the Manual, and those wishing to modify Buildbot
directly will want to be familiar with the Developer’s Documentation.

Table Of Contents

	1. Buildbot Tutorial
	1.1. First Run

	1.2. First Buildbot run with Docker

	1.3. A Quick Tour

	1.4. Further Reading

	2. Buildbot Manual
	2.1. Introduction

	2.2. Installation

	2.3. Concepts

	2.4. Secret Management

	2.5. Configuration

	2.6. Customization

	2.7. Command-line Tool

	2.8. Resources

	2.9. Optimization

	2.10. Plugin Infrastructure in Buildbot

	2.11. Deployment

	2.12. Upgrading

	3. Buildbot Development
	3.1. Development Quick-start

	3.2. General Documents

	3.3. APIs

	3.4. Python3 compatibility

	3.5. Classes

	4. Release Notes
	4.1. Buildbot 1.8.0 (2019-01-20)

	4.2. Buildbot 1.7.0 (2018-12-21)

	4.3. Buildbot 1.6.0 (2018-11-16)

	4.4. Buildbot 1.5.0 (2018-10-09)

	4.5. Buildbot 1.4.0 (2018-09-02)

	4.6. Buildbot 1.3.0 (2018-07-13)

	4.7. Buildbot 1.2.0 (2018-06-10)

	4.8. Buildbot 1.1.2 (2018-05-15)

	4.9. Buildbot 1.1.1 (2018-04-06)

	4.10. Buildbot 1.1.0 (2018-03-10)

	4.11. Buildbot 1.0.0 (2018-02-11)

	4.12. Buildbot 0.9.15.post1 (2018-01-07)

	4.13. Buildbot 0.9.15 (2018-01-02)

	4.14. Buildbot 0.9.14 (2017-12-08)

	4.15. Buildbot 0.9.13 (2017-11-07)

	4.16. Buildbot 0.9.12.post1 (2017-10-10)

	4.17. Buildbot 0.9.12 (2017-10-05)

	4.18. Buildbot 0.9.11 (2017-09-08)

	4.19. Buildbot 0.9.10 (2017-08-03)

	4.20. Buildbot 0.9.9.post2 (2017-07-06)

	4.21. Buildbot 0.9.9.post1 (2017-07-01)

	4.22. Buildbot 0.9.9 (2017-06-29)

	4.23. Buildbot 0.9.8 (2017-06-14)

	4.24. Buildbot 0.9.7 (2017-05-09)

	4.25. Buildbot 0.9.6 (2017-04-19)

	4.26. Buildbot 0.9.5 (2017-03-18)

	4.27. Buildbot 0.9.4 (2017-02-08)

	4.28. Buildbot 0.9.3 (2017-01-11)

	4.29. Buildbot 0.9.2 (2016-12-13)

	5. Older Release Notes
	5.1. Release Notes for Buildbot 0.9.1

	5.2. Release Notes for Buildbot 0.9.0

	5.3. Release Notes for Buildbot 0.9.0rc4

	5.4. Release Notes for Buildbot 0.9.0rc3

	5.5. Release Notes for Buildbot 0.9.0rc2

	5.6. Release Notes for Buildbot 0.9.0rc1

	5.7. Release Notes for Buildbot 0.9.0b9

	5.8. Release Notes for Buildbot 0.9.0b8

	5.9. Release Notes for Buildbot 0.9.0b7

	5.10. Release Notes for Buildbot 0.9.0b6

	5.11. Release Notes for Buildbot 0.9.0b5

	5.12. Release Notes for Buildbot 0.9.0b4

	5.13. Release Notes for Buildbot 0.9.0b3

	5.14. Release Notes for Buildbot 0.9.0b2

	5.15. Release Notes for Buildbot 0.9.0b1

	5.16. Release Notes for Buildbot 0.8.11

	5.17. Release Notes for Buildbot 0.8.10

	5.18. Release Notes for Buildbot 0.8.9

	5.19. Release Notes for Buildbot v0.8.8

	5.20. Release Notes for Buildbot v0.8.7

	5.21. Release Notes for Buildbot v0.8.6p1

	6. Indices and Tables

Copyright

This documentation is part of Buildbot.

Buildbot is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Copyright Buildbot Team Members

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3. Buildbot Development

This chapter is the official repository for the collected wisdom of the Buildbot hackers.
It is intended both for developers writing patches that will be included in Buildbot itself, and for advanced users who wish to customize Buildbot.

	3.1. Development Quick-start
	3.1.1. Create a Buildbot Python Environment

	3.1.2. Create a JavaScript Frontend Environment

	3.2. General Documents
	3.2.1. Master Organization

	3.2.2. Buildbot Coding Style

	3.2.3. CoffeeScript Coding Style

	3.2.4. Buildbot’s Test Suite

	3.2.5. Configuration

	3.2.6. Configuration in AngularJS

	3.2.7. Writing Schedulers

	3.2.8. Utilities

	3.2.9. Build Result Codes

	3.2.10. WWW Server

	3.2.11. Javascript Data Module

	3.2.12. Base web application

	3.2.13. Authentication

	3.2.14. Authorization

	3.2.15. Master-Worker API

	3.2.16. Claiming Build Requests

	3.2.17. String Encodings

	3.2.18. Metrics

	3.2.19. Secrets

	3.2.20. Secrets manager

	3.2.21. Secrets providers

	3.2.22. Statistics Service

	3.2.23. How to package Buildbot plugins

	3.3. APIs
	3.3.1. REST API

	3.3.2. Data API

	3.3.3. Database

	3.3.4. Messaging and Queues

	3.4. Python3 compatibility
	3.4.1. Imports

	3.4.2. Dictionaries

	3.4.3. New-style classes

	3.4.4. Strings

	3.4.5. Exceptions

	3.4.6. Basestring

	3.4.7. Print statements

	3.4.8. Division

	3.4.9. Types

	3.5. Classes
	3.5.1. Builds

	3.5.2. Workers

	3.5.3. BuildFactory

	3.5.4. BuildSetSummaryNotifierMixin

	3.5.5. Change Sources

	3.5.6. RemoteCommands

	3.5.7. BuildSteps

	3.5.8. BaseScheduler

	3.5.9. ForceScheduler

	3.5.10. IRenderable

	3.5.11. IProperties

	3.5.12. IConfigurator

	3.5.13. ResultSpecs

	3.5.14. Protocols

	3.5.15. WorkerManager

	3.5.16. Logs

	3.5.17. LogObservers

	3.5.18. Authentication

	3.5.19. Avatars

	3.5.20. Web Server Classes

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.1. Development Quick-start

Buildbot is a python based application.
It tries very hard to follow the python best practices, and to make is easy to dive into the code.

We won’t try to create a full step by step how to install python on whatever distribution.
Basically what you need is just a python environment with maybe some native packages required by our dependencies.
Because those dependencies sometimes change, we keep the most up to date list in the docker file we use to manage our CI (MetaBBotDockerFile [https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile]).

If you are completely new to python, the best is to first follow the tutorials that would come when you type “python virtualenv for dummies” in your favorite search engine.

3.1.1. Create a Buildbot Python Environment

Buildbot uses Twisted trial [http://twistedmatrix.com/trac/wiki/TwistedTrial] to run its test suite.

Following is a quick shell session to put you on the right track, including running the test suite.

the usual buildbot development bootstrap with git and virtualenv
git clone https://github.com/buildbot/buildbot
cd buildbot

helper script which creates the virtualenv for development
make virtualenv
. .venv/bin/activate

now we run the test suite
trial buildbot

find all tests that talk about mail
trial -n --reporter=bwverbose buildbot | grep mail

run only one test module
trial buildbot.test.unit.test_reporters_mail

3.1.2. Create a JavaScript Frontend Environment

This section describes how to get set up quickly to hack on the JavaScript UI.
It does not assume familiarity with Python, although a Python installation is required, as well as virtualenv.
You will also need NodeJS, and npm installed.

3.1.2.1. Prerequisites

Note

Buildbot UI is only tested to build on node 4.x.x.

	Install LTS release of node.js.

http://nodejs.org/ is a good start for windows and osx

For Linux, as node.js is evolving very fast, distros versions are often too old, and sometimes distro maintainers make incompatible changes (i.e naming node binary nodejs instead of node)
For Ubuntu and other Debian based distros, you want to use following method:

curl -sL https://deb.nodesource.com/setup_4.x | sudo bash -

Please feel free to update this documentation for other distros.
Know good source for Linux binary distribution is: https://github.com/nodesource/distributions

	Install gulp globally. Gulp is the build system used for coffeescript development.

sudo npm install -g gulp

3.1.2.2. Hacking the Buildbot JavaScript

To effectively hack on the Buildbot JavaScript, you’ll need a running Buildmaster, configured to operate out of the source directory (unless you like editing minified JS).

thus you need to follow the Create a Buildbot Python Environment

This should have created an isolated Python environment in which you can install packages without affecting other parts of the system.
You should see (.venv) in your shell prompt, indicating the sandbox is activated.

Next, install the Buildbot-WWW and Buildbot packages using --editable, which means that they should execute from the source directory.

make frontend

This will fetch a number of dependencies from pypi, the Python package repository.
This will also fetch a bunch a bunch of node.js dependencies used for building the web application, and a bunch of client side js dependencies, with bower

Now you’ll need to create a master instance.
For a bit more detail, see the Buildbot tutorial (First Run).

buildbot create-master .venv/testmaster
mv .venv/testmaster/master.cfg.sample .venv/testmaster/master.cfg
buildbot start .venv/testmaster

If all goes well, the master will start up and begin running in the background.
As you just installed www in editable mode (aka ‘develop’ mode), setup.py did build the web site in prod mode, so the everything is minified, making it hard to debug.

When doing web development, you usually run:

cd www/base
gulp dev

This will compile the base webapp in development mode, and automatically rebuild when files change.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2. General Documents

This section gives some general information about Buildbot development.

	3.2.1. Master Organization
	3.2.1.1. BuildMaster Object

	3.2.2. Buildbot Coding Style
	3.2.2.1. Documentation

	3.2.2.2. Symbol Names

	3.2.2.3. Twisted Idioms

	3.2.3. CoffeeScript Coding Style
	3.2.3.1. CoffeeScript looks like Python

	3.2.3.2. Coffeelint should be happy

	3.2.3.3. CoffeeScript syntax sugar

	3.2.3.4. CoffeeScript does not include batteries

	3.2.3.5. $q “A+ promises” VS twisted’s deferred

	3.2.4. Buildbot’s Test Suite
	3.2.4.1. Quick-Start

	3.2.4.2. Suites

	3.2.4.3. Mixins

	3.2.4.4. Fakes

	3.2.4.5. Type Validation

	3.2.4.6. Good Tests

	3.2.5. Configuration
	3.2.5.1. Builder Configuration

	3.2.5.2. Error Handling

	3.2.6. Configuration in AngularJS
	3.2.6.1. Reconfiguration

	3.2.7. Writing Schedulers
	3.2.7.1. API Stability

	3.2.7.2. Implementing A Scheduler

	3.2.7.3. Consuming Changes

	3.2.7.4. Adding Buildsets

	3.2.7.5. Handling Reconfiguration

	3.2.7.6. Becoming Active and Inactive

	3.2.7.7. Keeping State

	3.2.8. Utilities
	3.2.8.1. buildbot.util.lru

	3.2.8.2. buildbot.util.bbcollections

	3.2.8.3. buildbot.util.eventual

	3.2.8.4. buildbot.util.debounce

	3.2.8.5. buildbot.util.poll

	3.2.8.6. buildbot.util.maildir

	3.2.8.7. buildbot.util.misc

	3.2.8.8. buildbot.util.netstrings

	3.2.8.9. buildbot.util.sautils

	3.2.8.10. buildbot.util.pathmatch

	3.2.8.11. buildbot.util.topicmatch

	3.2.8.12. buildbot.util.subscription

	3.2.8.13. buildbot.util.croniter

	3.2.8.14. buildbot.util.state

	3.2.8.15. buildbot.util.identifiers

	3.2.8.16. buildbot.util.lineboundaries

	3.2.8.17. buildbot.util.service

	3.2.8.18. buildbot.util.httpclientservice

	3.2.8.19. buildbot.test.fake.httpclientservice

	3.2.8.20. buildbot.util.ssl

	3.2.9. Build Result Codes

	3.2.10. WWW Server
	3.2.10.1. History and Motivation

	3.2.10.2. Design Overview

	3.2.10.3. REST API

	3.2.10.4. Server-Side Session

	3.2.11. Javascript Data Module
	3.2.11.1. Base Concepts

	3.2.12. Base web application
	3.2.12.1. JavaScript Application

	3.2.12.2. Hacking Quick-Start

	3.2.12.3. Guanlecoja

	3.2.12.4. Testing Setup

	3.2.13. Authentication
	3.2.13.1. Implementation

	3.2.13.2. Username / Password Authentication

	3.2.13.3. External Authentication

	3.2.13.4. Third-Party Authentication

	3.2.13.5. Logout

	3.2.13.6. Future Additions

	3.2.14. Authorization
	3.2.14.1. Use cases

	3.2.15. Master-Worker API
	3.2.15.1. Connection

	3.2.15.2. Workers

	3.2.15.3. Setup

	3.2.15.4. Pinging

	3.2.15.5. Building

	3.2.15.6. Worker For Builders

	3.2.15.7. Commands

	3.2.15.8. Updates

	3.2.16. Claiming Build Requests
	3.2.16.1. Distributing

	3.2.16.2. Claiming

	3.2.16.3. The One That Got Away

	3.2.17. String Encodings
	3.2.17.1. Inputs

	3.2.17.2. Outputs

	3.2.18. Metrics
	3.2.18.1. Metric Events

	3.2.18.2. Metric Handlers

	3.2.18.3. Metric Watchers

	3.2.18.4. Metric Helpers

	3.2.19. Secrets

	3.2.20. Secrets manager

	3.2.21. Secrets providers
	3.2.21.1. File provider

	3.2.21.2. Vault provider

	3.2.21.3. Interpolate secret

	3.2.21.4. Secret Obfuscation

	3.2.21.5. How to use a secret in a BuildbotService

	3.2.22. Statistics Service
	3.2.22.1. Stats Service

	3.2.22.2. Storage backends

	3.2.22.3. Capture Classes

	3.2.23. How to package Buildbot plugins
	3.2.23.1. Package the source

	3.2.23.2. Making the plugin package

	3.2.23.3. Publish the package

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.1. Master Organization

Buildbot makes heavy use of Twisted Python’s support for services - software
modules that can be started and stopped dynamically. Buildbot adds the ability
to reconfigure such services, too - see Reconfiguration.
Twisted arranges services into trees; the following section describes the
service tree on a running master.

3.2.1.1. BuildMaster Object

The hierarchy begins with the master, a buildbot.master.BuildMaster
instance. Most other services contain a reference to this object in their
master attribute, and in general the appropriate way to access other
objects or services is to begin with self.master and navigate from there.

The master has a number of useful attributes:

	master.metrics

	A buildbot.process.metrics.MetricLogObserver instance that
handles tracking and reporting on master metrics.

	master.caches

	A buildbot.process.caches.CacheManager instance that provides
access to object caches.

	master.pbmanager

	A buildbot.pbmanager.PBManager instance that handles incoming
PB connections, potentially on multiple ports, and dispatching those
connections to appropriate components based on the supplied username.

	master.workers

	A buildbot.worker.manager.WorkerManager instance that
provides wrapper around multiple master-worker protocols(e.g. PB) to unify
calls for them from higher level code

	master.change_svc

	A buildbot.changes.manager.ChangeManager instance that manages
the active change sources, as well as the stream of changes received from
those sources. All active change sources are child services of this instance.

	master.botmaster

	A buildbot.process.botmaster.BotMaster instance that manages
all of the workers and builders as child services.

The botmaster acts as the parent service for a
buildbot.process.botmaster.BuildRequestDistributor instance (at
master.botmaster.brd) as well as all active workers
(buildbot.worker.AbstractWorker instances) and builders
(buildbot.process.builder.Builder instances).

	master.scheduler_manager

	A buildbot.schedulers.manager.SchedulerManager instance that
manages the active schedulers. All active schedulers are child services of
this instance.

	master.user_manager

	A buildbot.process.users.manager.UserManagerManager instance
that manages access to users. All active user managers are child services
of this instance.

	master.db

	A buildbot.db.connector.DBConnector instance that manages
access to the buildbot database. See Database for more
information.

	master.debug

	A buildbot.process.debug.DebugServices instance that manages
debugging-related access – the manhole, in particular.

	master.status

	A buildbot.status.master.Status instance that provides access
to all status data. This instance is also the service parent for all
status listeners.

	master.masterid

	This is the ID for this master, from the masters table.
It is used in the database and messages to uniquely identify this master.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.2. Buildbot Coding Style

3.2.2.1. Documentation

Buildbot strongly encourages developers to document the methods, behavior, and usage of classes that users might interact with.
However, this documentation should be in .rst files under master/docs/developer, rather than in docstrings within the code.
For private methods or where code deserves some kind of explanatory preface, use comments instead of a docstring.
While some docstrings remain within the code, these should be migrated to documentation files and removed as the code is modified.

Within the reStructuredText files, write with each English sentence on its own line.
While this does not affect the generated output, it makes git diffs between versions of the documentation easier to read, as they are not obscured by changes due to re-wrapping.
This convention is not followed everywhere, but we are slowly migrating documentation from the old (wrapped) style as we update it.

3.2.2.2. Symbol Names

Buildbot follows PEP8 [https://www.python.org/dev/peps/pep-0008/] regarding the formatting of symbol names.
Because Buildbot uses Twisted so heavily, and Twisted uses interCaps, this is not very consistently applied throughout the codebase.

The single exception to PEP8 is in naming of functions and methods.
That is, you should spell methods and functions with the first character in lower-case, and the first letter of subsequent words capitalized, e.g., compareToOther or getChangesGreaterThan.

Symbols used as parameters to functions used in configuration files should use underscores.

In summary, then:

	Symbol Type
	Format

	Methods
	interCaps

	Functions
	interCaps

	Function Arguments
	under_scores

	API method Arguments
	interCaps

	Classes
	InitialCaps

	Variables
	under_scores

	Constants
	ALL_CAPS

3.2.2.3. Twisted Idioms

Programming with Twisted Python can be daunting. But sticking to a few
well-defined patterns can help avoid surprises.

Prefer to Return Deferreds

If you’re writing a method that doesn’t currently block, but could conceivably
block sometime in the future, return a Deferred and document that it does so.
Just about anything might block - even getters and setters!

Helpful Twisted Classes

Twisted has some useful, but little-known classes.
Brief descriptions follow, but you should consult the API documentation or source code
for the full details.

	twisted.internet.task.LoopingCall

	Calls an asynchronous function repeatedly at set intervals.
Note that this will stop looping if the function fails.
In general, you will want to wrap the function to capture and log errors.

	twisted.application.internet.TimerService

	Similar to t.i.t.LoopingCall, but implemented as a service that will automatically start and stop the function calls when the service starts and stops.
See the warning about failing functions for t.i.t.LoopingCall.

Sequences of Operations

Especially in Buildbot, we’re often faced with executing a sequence of
operations, many of which may block.

In all cases where this occurs, there is a danger of pre-emption, so exercise
the same caution you would if writing a threaded application.

For simple cases, you can use nested callback functions. For more complex cases, inlineCallbacks is appropriate.
In all cases, please prefer maintainability and readability over performance.

Nested Callbacks

First, an admonition: do not create extra class methods that represent the continuations of the first:

def myMethod(self):
 d = ...
 d.addCallback(self._myMethod_2) # BAD!
def _myMethod_2(self, res): # BAD!
 ...

Invariably, this extra method gets separated from its parent as the code
evolves, and the result is completely unreadable. Instead, include all of the
code for a particular function or method within the same indented block, using
nested functions:

def getRevInfo(revname):
 # for example only! See above a better implementation with inlineCallbacks
 results = {}
 d = defer.succeed(None)
 def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])
 d.addCallback(rev_parse)
 def parse_rev_parse(res):
 results['rev'] = res.strip()
 return utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 d.addCallback(parse_rev_parse)
 def parse_log(res):
 results['comments'] = res.strip()
 d.addCallback(parse_log)
 def set_results(_):
 return results
 d.addCallback(set_results)
 return d

it is usually best to make the first operation occur within a callback, as the
deferred machinery will then handle any exceptions as a failure in the outer
Deferred. As a shortcut, d.addCallback works as a decorator:

d = defer.succeed(None)
@d.addCallback
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])

Note

d.addCallback is not really a decorator as it does not return a modified function.
As a result in previous code, rev_parse value is actually the Deferred.
In general the inlineCallbacks method is preferred inside new code as it keeps the code easier to read.
As a general rule of thumb, when you need more than 2 callbacks in the same method, it’s time to switch it to inlineCallbacks.
This would be for example the case for previous getRevInfo.
See this discussion [https://github.com/buildbot/buildbot/pull/2523] with Twisted experts for more information.

Be careful with local variables. For example, if parse_rev_parse, above,
merely assigned rev = res.strip(), then that variable would be local to
parse_rev_parse and not available in set_results. Mutable variables
(dicts and lists) at the outer function level are appropriate for this purpose.

Note

do not try to build a loop in this style by chaining multiple
Deferreds! Unbounded chaining can result in stack overflows, at least on older
versions of Twisted. Use inlineCallbacks instead.

In most of the cases if you need more than two callbacks in a method, it is more readable and maintainable to use inlineCallbacks.

inlineCallbacks

twisted.internet.defer.inlineCallbacks is a great help to writing code
that makes a lot of asynchronous calls, particularly if those calls are made in
loop or conditionals. Refer to the Twisted documentation for the details, but
the style within Buildbot is as follows:

from twisted.internet import defer

@defer.inlineCallbacks
def mymethod(self, x, y):
 xval = yield getSomething(x)

 for z in (yield getZValues()):
 y += z

 if xval > 10:
 defer.returnValue(xval + y)
 return

 self.someOtherMethod()

The key points to notice here:

	Always import defer as a module, not the names within it.

	Use the decorator form of inlineCallbacks.

	In most cases, the result of a yield expression should be assigned to a
variable. It can be used in a larger expression, but remember that Python
requires that you enclose the expression in its own set of parentheses.

	Python does not permit returning a value from a generator, so statements like
return xval + y are invalid. Instead, yield the result of
defer.returnValue. Although this function does cause an immediate
function exit, for clarity follow it with a bare return, as in
the example, unless it is the last statement in a function.

The great advantage of inlineCallbacks is that it allows you to use all
of the usual Pythonic control structures in their natural form. In particular,
it is easy to represent a loop, or even nested loops, in this style without
losing any readability.

Note that code using deferredGenerator is no longer acceptable in Buildbot.

The previous getRevInfo example implementation should rather be written as:

@defer.inlineCallbacks
def getRevInfo(revname):
 results = {}
 res = yield utils.getProcessOutput(git, ['rev-parse', revname])
 results['rev'] = res.strip()
 res = yield utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 results['comments'] = res.strip()
 defer.returnValue(results)

Locking

Remember that asynchronous programming does not free you from the need to worry
about concurrency issues. Particularly if you are executing a sequence of
operations, each time you wait for a Deferred, arbitrary other actions can take
place.

In general, you should try to perform actions atomically, but for the rare
situations that require synchronization, the following might be useful:

	twisted.internet.defer.DeferredLock

	buildbot.util.misc.deferredLocked

Joining Sequences

It’s often the case that you’ll want to perform multiple operations in
parallel, and re-join the results at the end. For this purpose, you’ll want to
use a DeferredList [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html]
:

def getRevInfo(revname):
 results = {}
 finished = dict(rev_parse=False, log=False)

 rev_parse_d = utils.getProcessOutput(git, ['rev-parse', revname])
 def parse_rev_parse(res):
 return res.strip()
 rev_parse_d.addCallback(parse_rev_parse)

 log_d = utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 def parse_log(res):
 return res.strip()
 log_d.addCallback(parse_log)

 d = defer.DeferredList([rev_parse_d, log_d], consumeErrors=1, fireOnFirstErrback=1)
 def handle_results(results):
 return dict(rev=results[0][1], log=results[1][1])
 d.addCallback(handle_results)
 return d

Here the deferred list will wait for both rev_parse_d and log_d to
fire, or for one of them to fail. You may attach callbacks and errbacks to a
DeferredList just as for a deferred.

Functions running outside of the main thread

It is very important in Twisted to be able to distinguish functions that runs in the main thread and functions that don’t, as reactors and deferreds can only be used in the main thread.
To make this distinction clearer, every functions meant to be started in a secondary thread must be prefixed with thd_.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.3. CoffeeScript Coding Style

The Buildbot development team is primarily Python experts and not front-end experts.
Whlie we did spend lot of time looking for front end best practices, we are happy to accept suggestions to this coding-style and best-practices guide.

Here is a summary of what is the expected coding style for buildbot contributions, as well as some common gotcha’s for developers with a Python background.

3.2.3.1. CoffeeScript looks like Python

Buildbot follows Python pep8 coding style as much as possible, except for naming convention (where twisted’s interCaps are preferred).
The same rules apply for CoffeeScript, whenever they makes sense:

	Symbol Type
	Format

	Methods
	interCaps

	Functions
	interCaps

	Function Arguments
	interCaps

	Classes
	InitialCaps

	Controllers
	interCaps

	Services
	interCaps

	Filters
	interCaps

	Constants
	ALL_CAPS

3.2.3.2. Coffeelint should be happy

Buildbot ships with a Gruntfile containing a coffeelint configuration which is expected to pass for buildbot CoffeeScript code.

3.2.3.3. CoffeeScript syntax sugar

CoffeeScript does not have inlineCallbacks, but have some syntax sugar for helping readability of nested callbacks.
However, those syntax sugars sometimes leads to surprises.
Make sure you check the generated javascript in case of weird behavior.

Follow the following suggestions:

	Use implicit parentheses for multi line function calls or object construction:

GOOD
d.then (res) ->
 $scope.val = res

BAD
d.then((res) ->
 $scope.val = res
)

push a dictionary into a list
GOOD
l.push
 k1: v1
 k2: v2

BAD
l.push(
 k1: v1
 k2: v2
)

BAD
l.push({
 k1: v1
 k2: v2
})

	Use explicit parentheses for single line function calls

GOOD
myFunc(service.getA(b))

BAD
myFunc service.getA b
(not enough visually-distinct from:)
myFunc service.getA, b
which means
myFunc(service.getA, b)

	always use return for multiline functions

In CoffeeScript, “everything is an expression”, and the default return value is the result of the last expression.
This is considered too error prone for Python and JS developers who are used to “return None” by default.
In buildbot code, every multiline function must end with an explicit return statement.

BAD: implicitly returns the return value of b()
myFunc = ->
 if (a)
 b()

GOOD
myFunc = ->
 if (a)
 b()
 return null

GOOD
myFunc = ->
 if (a)
 return b()
 return null

	never use return for single line functions

Single line functions is equivalent to Python lambda functions and thus must not use return.

GOOD
if p resolves with a non-null list, will return the list with all element incremented
p = p.then((res) -> _.each(res, (a) -> a + 1))

3.2.3.4. CoffeeScript does not include batteries

There is a very limited standard library in JS, and none in CoffeeScript.
However, de-facto general purpose libraries have emerged.

	JQuery considered harmful to access the DOM directly.

Buildbot ships with JQuery, because it is supposed to be more optimized than AngularJS’s own jqlite, and because some 3rd party directives are requiring it.
However, it must not be used in Buildbot services or controllers, and should be avoided in directives.
The Buildbot UI should follow AngularJS best practices and only modify DOM via templates.

	Lodash is a clone of Underscore.js, and provides good utilities for standard types manipulation (array and objects).
Underscore-string is also available for string manipulation function (e.g. startsWith, endsWith)

Avoid using lodash decoration form.
Those are considered tricky to use.

GOOD
_.each(res, (a) -> a + 1))

BAD
_(res).each((a) -> a + 1))

	Require.js is used as technical solution for plugin loading.
It should not be used apart from this.

	Moment.js is used for manipulating dates and displaying them to the user in a human readable form (e.g “one month ago”).
It can be used anywhere it is useful.

3.2.3.5. $q “A+ promises” VS twisted’s deferred

The AngularJS $q module implements A+ promises.
At first sight, this looks like Twisted Deferreds.

Warning

d.addCallbacks(successCb, errorCb) is not equivalent to p.then(successCb, errorCb)!

	Once a Twisted deferred has been “called”, its result is changed with the return value of each callback in the callback queue.

	Once a $q promise has been “resolved”, its result is immutable.
p.then() itself returns another promise which can be used to alter result of another promise.

d = someFunction()
@d.addCallback
def addOneToResult(res):
 return res + 1
return d # we return the same deferred as the one returned by someFunction()

Translate in coffeeScript to:

p = someFunction()
p = p.then (res) -> ## note assignment
 return res + 1
return p # we return the another promise as the one returned by someFunction()

	With $q, only the promise creator can resolve it.

someFunction = ->
 d = $q.defer()
 $timeout ->
 d.resolve("foo")
 , 100
 return d.promise
p = someFunction()
p.resolve() # cannot work, we can only call the "then" method of a promise

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.4. Buildbot’s Test Suite

Buildbot’s master tests are under buildbot.test, buildbot-worker package tests are under buildbot_worker.test.
Tests for the workers are similar to the master, although in some cases helpful functionality on the master is not re-implemented on the worker.

3.2.4.1. Quick-Start

Buildbot uses Twisted trial [http://twistedmatrix.com/trac/wiki/TwistedTrial] to run its test suite.
Following is a quick shell session to put you on the right track.

the usual buildbot development bootstrap with git and virtualenv
git clone https://github.com/buildbot/buildbot
cd buildbot

helper script which creates the virtualenv for development
make virtualenv
. .venv/bin/activate

now we run the test suite
trial buildbot

find all tests that talk about mail
trial -n --reporter=bwverbose buildbot | grep mail

run only one test module
trial buildbot.test.unit.test_reporters_mail

3.2.4.2. Suites

Tests are divided into a few suites:

	Unit tests (buildbot.test.unit) - these follow unit-testing practices and
attempt to maximally isolate the system under test. Unit tests are the main
mechanism of achieving test coverage, and all new code should be well-covered
by corresponding unit tests.
	Interface tests are a special type of unit tests, and are found in the same directory and often the same file.
In many cases, Buildbot has multiple implementations of the same interface – at least one “real” implementation and a fake implementation used in unit testing.
The interface tests ensure that these implementations all meet the same standards.
This ensures consistency between implementations, and also ensures that the unit tests are testing against realistic fakes.

	Integration tests (buildbot.test.integration) - these test combinations
of multiple units. Of necessity, integration tests are incomplete - they
cannot test every condition; difficult to maintain - they tend to be complex
and touch a lot of code; and slow - they usually require considerable setup
and execute a lot of code. As such, use of integration tests is limited to a
few, broad tests to act as a failsafe for the unit and interface tests.

	Regression tests (buildbot.test.regressions) - these test to prevent
re-occurrence of historical bugs. In most cases, a regression is better
tested by a test in the other suites, or unlike to recur, so this suite tends
to be small.

	Fuzz tests (buildbot.test.fuzz) - these tests run for a long time and
apply randomization to try to reproduce rare or unusual failures. The
Buildbot project does not currently have a framework to run fuzz tests
regularly.

Unit Tests

Every code module should have corresponding unit tests. This is not currently
true of Buildbot, due to a large body of legacy code, but is a goal of the
project. All new code must meet this requirement.

Unit test modules are be named after the package or class they test, replacing
. with _ and omitting the buildbot_. For example,
test_schedulers_timed_Periodic.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/unit/test_schedulers_timed_Periodic.py]
tests the Periodic class in
master/buildbot/schedulers/timed.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/schedulers/timed.py]. Modules with only one class, or a few
trivial classes, can be tested in a single test module. For more complex
situations, prefer to use multiple test modules.

Unit tests using renderables require special handling. The following example
shows how the same test would be written with the ‘param’ parameter and with the
same parameter as a renderable.:

def test_param(self):
 f = self.ConcreteClass(param='val')
 self.assertEqual(f.param, 'val')

When the parameter is renderable, you need to instantiate the Class before you
can you renderables:

def setUp(self):
 self.build = Properties(paramVal='val')

@defer.inlineCallbacks
def test_param_renderable(self):
 f = self.ConcreteClass(param=Interpolate('%(kw:rendered_val)s',
 rendered_val=Property('paramVal'))
 yield f.start_instance(self.build)
 self.assertEqual(f.param, 'val')

Interface Tests

Interface tests exist to verify that multiple implementations of an interface
meet the same requirements. Note that the name ‘interface’ should not be
confused with the sparse use of Zope Interfaces in the Buildbot code – in this
context, an interface is any boundary between testable units.

Ideally, all interfaces, both public and private, should be tested. Certainly,
any public interfaces need interface tests.

Interface tests are most often found in files named for the “real” implementation, e.g., test_db_changes.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/unit/test_db_changes.py].
When there is ambiguity, test modules should be named after the interface they are testing.
Interface tests have the following form:

from buildbot.test.util import interfaces
from twistd.trial import unittest

class Tests(interfaces.InterfaceTests):

 # define methods that must be overridden per implementation
 def someSetupMethod(self):
 raise NotImplementedError

 # method signature tests
 def test_signature_someMethod(self):
 @self.assertArgSpecMatches(self.systemUnderTest.someMethod)
 def someMethod(self, arg1, arg2):
 pass

 # tests that all implementations must pass
 def test_something(self):
 pass # ...

class RealTests(Tests):

 # tests that only *real* implementations must pass
 def test_something_else(self):
 pass # ...

All of the test methods are defined here, segregated into tests that all implementations must pass, and tests that the fake implementation is not expected to pass.
The test_signature_someMethod test above illustrates the buildbot.test.util.interfaces.assertArgSpecMatches decorator, which can be used to compare the argument specification of a callable with a reference signature conveniently written as a nested function.
Wherever possible, prefer to add tests to the Tests class, even if this means testing one method (e.g,. setFoo) in terms of another (e.g., getFoo).

The assertArgSpecMatches method can take multiple methods to test; it will check each one in turn.

At the bottom of the test module, a subclass is created for each implementation, implementing the setup methods that were stubbed out in the parent classes:

class TestFakeThing(unittest.TestCase, Tests):

 def someSetupMethod(self):
 pass # ...

class TestRealThing(unittest.TestCase, RealTests):

 def someSetupMethod(self):
 pass # ...

For implementations which require optional software, such as an AMQP server, this is the appropriate place to signal that tests should be skipped when their prerequisites are not available.

Integration Tests

Integration test modules test several units at once, including their
interactions. In general, they serve as a catch-all for failures and bugs that
were not detected by the unit and interface tests. As such, they should not
aim to be exhaustive, but merely representative.

Integration tests are very difficult to maintain if they reach into the
internals of any part of Buildbot. Where possible, try to use the same means
as a user would to set up, run, and check the results of an integration test.
That may mean writing a master.cfg to be parsed, and checking the
results by examining the database (or fake DB API) afterward.

Regression Tests

Regression tests are even more rare in Buildbot than integration tests. In
many cases, a regression test is not necessary – either the test is
better-suited as a unit or interface test, or the failure is so specific that a
test will never fail again.

Regression tests tend to be closely tied to the code in which the error
occurred. When that code is refactored, the regression test generally becomes
obsolete, and is deleted.

Fuzz Tests

Fuzz tests generally run for a fixed amount of time, running randomized tests
against a system. They do not run at all during normal runs of the Buildbot
tests, unless BUILDBOT_FUZZ is defined. This is accomplished with something
like the following at the end of each test module:

if 'BUILDBOT_FUZZ' not in os.environ:
 del LRUCacheFuzzer

3.2.4.3. Mixins

Buildbot provides a number of purpose-specific mixin classes in master/buildbot/util [https://github.com/buildbot/buildbot/tree/master/master/buildbot/util].
These generally define a set of utility functions as well as setUpXxx and tearDownXxx methods.
These methods should be called explicitly from your subclass’s setUp and tearDown methods.
Note that some of these methods return Deferreds, which should be handled properly by the caller.

3.2.4.4. Fakes

Buildbot provides a number of pre-defined fake implementations of internal interfaces, in master/buildbot/test/fake [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/fake].
These are designed to be used in unit tests to limit the scope of the test.
For example, the fake DB API eliminates the need to create a real database when testing code that uses the DB API, and isolates bugs in the system under test from bugs in the real DB implementation.

The danger of using fakes is that the fake interface and the real interface can
differ. The interface tests exist to solve this problem. All fakes should be
fully tested in an integration test, so that the fakes pass the same tests as
the “real” thing. It is particularly important that the method signatures be
compared.

3.2.4.5. Type Validation

The master/buildbot/test/util/validation.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/util/validation.py] provides a set of classes and definitions for validating Buildbot data types.
It supports four types of data:

	DB API dictionaries, as returned from the getXxx methods,

	Data API dictionaries, as returned from get,

	Data API messages, and

	Simple data types.

These are validated from elsewhere in the codebase with calls to

	verifyDbDict(testcase, type, value),

	verifyData(testcase, type, options, value),

	verifyMessage(testcase, routingKey, message), and

	verifyType(testcase, name, value, validator).

respectively.
The testcase argument is used to fail the test case if the validation does not succeed.
For DB dictionaries and data dictionaries, the type identifies the expected data type.
For messages, the type is determined from the first element of the routing key.

All messages sent with the fake MQ implementation are automatically validated using verifyMessage.
The verifyType method is used to validate simple types, e.g.,

validation.verifyType(self, 'param1', param1, validation.StringValidator())

In any case, if testcase is None, then the functions will raise an AssertionError on failure.

Validator Classes

A validator is an instance of the Validator class.
Its validate method is a generator function that takes a name and an object to validate.
It yields error messages describing any deviations of object from the designated data type.
The name argument is used to make such messages more helpful.

A number of validators are supplied for basic types.
A few classes deserve special mention:

	NoneOk wraps another validator, allowing the object to be None.

	Any will match any object without error.

	IdentifierValidator will match identifiers; see identifier.

	DictValidator takes key names as keyword arguments, with the values giving validators for each key.
The optionalNames argument is a list of keys which may be omitted without error.

	SourcedPropertiesValidator matches dictionaries with (value, source) keys, the representation used for properties in the data API.

	MessageValidator validates messages.
It checks that the routing key is a tuple of strings.
The first tuple element gives the message type.
The last tuple element is the event, and must be a member of the events set.
The remaining “middle” tuple elements must match the message values identified by keyFields.
The messageValidator should be a DictValidator configured to check the message body.
This validator’s validate method is called with a tuple (routingKey, message).

	Selector allows different validators to be selected based on matching functions.
Its add method takes a matching function, which should return a boolean, and a validator to use if the matching function returns true.
If the matching function is None, it is used as a default.
This class is used for message and data validation.

Defining Validators

DB validators are defined in the dbdict dictionary, e.g.,

dbdict['foodict'] = DictValidator(
 id=IntValidator(),
 name=StringValidator(),
 ...
)

Data validators are Selector validators, where the selector is the options passed to verifyData.

data['foo'] = Selector()
data['foo'].add(lambda opts : opt.get('fanciness') > 10,
 DictValidator(
 fooid=IntValidator(),
 name=StringValidator(),
 ...
))

Similarly, message validators are Selector validators, where the selector is the routing key.
The underlying validator should be a MessageValidator.

message['foo'] = Selector()
message['foo'].add(lambda rk : rk[-1] == 'new',
 MessageValidator(
 keyFields=['fooid'],
 events=['new', 'complete'],
 messageValidator=DictValidator(
 fooid=IntValidator(),
 name=StringValidator(),
 ...
)))

3.2.4.6. Good Tests

Bad tests are worse than no tests at all, since they waste developers’ time
wondering “was that a spurious failure?” or “what the heck is this test trying
to do?” Buildbot needs good tests. So what makes a good test?

Independent of Time

Tests that depend on wall time will fail. As a bonus, they run very slowly. Do
not use reactor.callLater to wait “long enough” for something to happen.

For testing things that themselves depend on time, consider using
twisted.internet.tasks.Clock. This may mean passing a clock instance to
the code under test, and propagating that instance as necessary to ensure that
all of the code using callLater uses it. Refactoring code for
testability is difficult, but worthwhile.

For testing things that do not depend on time, but for which you cannot detect
the “end” of an operation: add a way to detect the end of the operation!

Clean Code

Make your tests readable. This is no place to skimp on comments! Others will
attempt to learn about the expected behavior of your class by reading the
tests. As a side note, if you use a Deferred chain in your test, write
the callbacks as nested functions, rather than using methods with funny names:

def testSomething(self):
 d = doThisFirst()
 def andThisNext(res):
 pass # ...
 d.addCallback(andThisNext)
 return d

This isolates the entire test into one indented block. It is OK to add methods
for common functionality, but give them real names and explain in detail what
they do.

Good Name

Test method names should follow the pattern test_METHOD_CONDITION
where METHOD is the method being tested, and CONDITION is the
condition under which it’s tested. Since we can’t always test a single
method, this is not a hard-and-fast rule.

Assert Only One Thing

Where practical, each test should have a single assertion. This may require a
little bit of work to get several related pieces of information into a single
Python object for comparison. The problem with multiple assertions is that, if
the first assertion fails, the remainder are not tested. The test results then
do not tell the entire story.

Prefer Fakes to Mocks

Mock objects are too “compliant”, and this often masks errors in the system
under test. For example, a mis-spelled method name on a mock object will not
raise an exception.

Where possible, use one of the pre-written fake objects (see
Fakes) instead of a mock object. Fakes
themselves should be well-tested using interface tests.

Where they are appropriate, Mock objects can be constructed easily using the
aptly-named mock [http://www.voidspace.org.uk/python/mock/] module, which is
a requirement for Buildbot’s tests.

Small Tests

The shorter each test is, the better. Test as little code as possible in each test.

It is fine, and in fact encouraged, to write the code under test in such a way
as to facilitate this. As an illustrative example, if you are testing a new
Step subclass, but your tests require instantiating a BuildMaster, you’re
probably doing something wrong!

This also applies to test modules. Several short, easily-digested test modules
are preferred over a 1000-line monster.

Isolation

Each test should be maximally independent of other tests. Do not leave files
laying around after your test has finished, and do not assume that some other
test has run beforehand. It’s fine to use caching techniques to avoid repeated,
lengthy setup times.

Be Correct

Tests should be as robust as possible, which at a basic level means using the
available frameworks correctly. All Deferreds should have callbacks and be
chained properly. Error conditions should be checked properly. Race conditions
should not exist (see Independent of Time, above).

Be Helpful

Note that tests will pass most of the time, but the moment when they are most
useful is when they fail.

When the test fails, it should produce output that is helpful to the person
chasing it down. This is particularly important when the tests are run
remotely, in which case the person chasing down the bug does not have access to
the system on which the test fails. A test which fails sporadically with no
more information than “AssertionFailed” is a prime candidate for deletion if
the error isn’t obvious. Making the error obvious also includes adding comments
describing the ways a test might fail.

Keeping State

Python does not allow assignment to anything but the innermost local scope or
the global scope with the global keyword. This presents a problem when
creating nested functions:

def test_localVariable(self):
 cb_called = False
 def cb():
 cb_called = True
 cb()
 self.assertTrue(cb_called) # will fail!

The cb_called = True assigns to a different variable than
cb_called = False. In production code, it’s usually best to work around
such problems, but in tests this is often the clearest way to express the
behavior under test.

The solution is to change something in a common mutable object. While a simple
list can serve as such a mutable object, this leads to code that is hard to
read. Instead, use State:

from buildbot.test.state import State

def test_localVariable(self):
 state = State(cb_called=False)
 def cb():
 state.cb_called = True
 cb()
 self.assertTrue(state.cb_called) # passes

This is almost as readable as the first example, but it actually works.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.5. Configuration

Wherever possible, Buildbot components should access configuration information
as needed from the canonical source, master.config, which is an instance of
MasterConfig. For example, components should not keep a copy of
the buildbotURL locally, as this value may change throughout the lifetime
of the master.

Components which need to be notified of changes in the configuration should be
implemented as services, subclassing ReconfigurableServiceMixin, as
described in Reconfiguration.

	
class buildbot.config.MasterConfig

	The master object makes much of the configuration available from an object
named master.config. Configuration is stored as attributes of this
object. Where possible, other Buildbot components should access this
configuration directly and not cache the configuration values anywhere
else. This avoids the need to ensure that update-from-configuration
methods are called on a reconfig.

Aside from validating the configuration, this class handles any
backward-compatibility issues - renamed parameters, type changes, and so on
- removing those concerns from other parts of Buildbot.

This class may be instantiated directly, creating an entirely default
configuration, or via FileLoader.loadConfig, which will load the
configuration from a config file.

The following attributes are available from this class, representing the
current configuration. This includes a number of global parameters:

	
title

	The title of this buildmaster, from title.

	
titleURL

	The URL corresponding to the title, from titleURL.

	
buildbotURL

	The URL of this buildmaster, for use in constructing WebStatus URLs;
from buildbotURL.

	
logCompressionLimit

	The current log compression limit, from logCompressionLimit.

	
logCompressionMethod

	The current log compression method, from
logCompressionMethod.

	
logMaxSize

	The current log maximum size, from logMaxSize.

	
logMaxTailSize

	The current log maximum size, from logMaxTailSize.

	
logEncoding

	The encoding to expect when logs are provided as bytestrings, from logEncoding.

	
properties

	A Properties instance
containing global properties, from properties.

	
collapseRequests

	A callable, or True or False, describing how to collapse requests; from
collapseRequests.

	
prioritizeBuilders

	A callable, or None, used to prioritize builders; from
prioritizeBuilders.

	
codebaseGenerator

	A callable, or None, used to determine the codebase from an incoming
Change,
from codebaseGenerator

	
protocols

	The per-protocol port specification for worker connections.
Based on protocols.

	
multiMaster

	If true, then this master is part of a cluster; based on
multiMaster.

	
manhole

	The manhole instance to use, or None; from manhole.

The remaining attributes contain compound configuration structures, usually
dictionaries:

	
validation

	Validation regular expressions, a dictionary from validation.
It is safe to assume that all expected keys are present.

	
db

	Database specification, a dictionary with key db_url. It is
safe to assume that this key is present.

	
metrics

	The metrics configuration from metrics, or an empty
dictionary by default.

	
caches

	The cache configuration, from caches as well as the
deprecated buildCacheSize and changeCacheSize
parameters.

The keys Builds and Caches are always available; other keys
should use config.caches.get(cachename, 1).

	
schedulers

	The dictionary of scheduler instances, by name, from schedulers.

	
builders

	The list of BuilderConfig instances from
builders. Builders specified as dictionaries in the
configuration file are converted to instances.

	
workers

	The list of Worker instances from
workers.

	
change_sources

	The list of IChangeSource providers from
change_source.

	
user_managers

	The list of user managers providers from user_managers.

	
www

	The web server configuration from www. The keys port and
url are always available.

	
services

	The list of additional plugin services

	
classmethod loadFromDict(config_dict, filename)

	

	Parameters:	
	config_dict (dict) – The dictionary containing the configuration to load.

	filename (string) – The filename to use when reporting errors.

	Returns:	new MasterConfig instance

Load the configuration from the given dictionary.

Loading of the configuration file is generally triggered by the master,
using the following class:

	
class buildbot.config.FileLoader

	
	
__init__(basedir, filename)

	

	Parameters:	
	basedir (string) – directory to which config is relative

	filename (string) – the configuration file to load

The filename is treated as relative to the basedir, if it is not
absolute.

	
loadConfig(basedir, filename)

	

	Returns:	new MasterConfig instance

Load the configuration in the given file. Aside from syntax errors,
this will also detect a number of semantic errors such as multiple
schedulers with the same name.

	
buildbot.config.loadConfigDict(basedir, filename)

	

	Parameters:	
	basedir (string) – directory to which config is relative

	filename (string) – the configuration file to load

	Raises:	ConfigErrors if any errors occur

	Returns dict:	The BuildmasterConfig dictionary.

Load the configuration dictionary in the given file.

The filename is treated as relative to the basedir, if it is not
absolute.

3.2.5.1. Builder Configuration

	
class buildbot.config.BuilderConfig([keyword args])

	This class parameterizes configuration of builders; see
Builder Configuration for its arguments. The constructor checks for
errors and applies defaults, and sets the properties described here. Most
are simply copied from the constructor argument of the same name.

Users may subclass this class to add defaults, for example.

	
name

	The builder’s name.

	
factory

	The builder’s factory.

	
workernames

	The builder’s worker names (a list, regardless of whether the names were
specified with workername or workernames).

	
builddir

	The builder’s builddir.

	
workerbuilddir

	The builder’s worker-side builddir.

	
category

	The builder’s category.

	
nextWorker

	The builder’s nextWorker callable.

	
nextBuild

	The builder’s nextBuild callable.

	
canStartBuild

	The builder’s canStartBuild callable.

	
locks

	The builder’s locks.

	
env

	The builder’s environment variables.

	
properties

	The builder’s properties, as a dictionary.

	
collapseRequests

	The builder’s collapseRequests callable.

	
description

	The builder’s description, displayed in the web status.

3.2.5.2. Error Handling

If any errors are encountered while loading the configuration buildbot.config.error
should be called. This can occur both in the configuration-loading code,
and in the constructors of any objects that are instantiated in the
configuration - change sources, workers, schedulers, build steps, and so on.

	
buildbot.config.error(error)

	

	Parameters:	error – error to report

	Raises:	ConfigErrors if called at build-time

This function reports a configuration error. If a config file is being loaded,
then the function merely records the error, and allows the rest of the configuration
to be loaded. At any other time, it raises ConfigErrors. This is done
so all config errors can be reported, rather than just the first.

	
exception buildbot.config.ConfigErrors([errors])

	

	Parameters:	errors (list) – errors to report

This exception represents errors in the configuration. It supports
reporting multiple errors to the user simultaneously, e.g., when several
consistency checks fail.

	
errors

	A list of detected errors, each given as a string.

	
addError(msg)

	

	Parameters:	msg (string) – the message to add

Add another error message to the (presumably not-yet-raised) exception.

3.2.6. Configuration in AngularJS

The AngularJS frontend often needs access to the local master configuration.
This is accomplished automatically by converting various pieces of the master configuration to a dictionary.

The IConfigured interface represents a way to convert any object into a JSON-able dictionary.

	
class buildbot.interfaces.IConfigured

	
Providers of this interface provide a method to get their configuration as a dictionary:

	
getConfigDict()

	

	returns:	object

Return the configuration of this object.
Note that despite the name, the return value may not be a dictionary.

Any object can be “cast” to an IConfigured provider.
The getConfigDict method for basic Python objects simply returns the value.

IConfigured(someObject).getConfigDict()

	
class buildbot.util.ConfiguredMixin

	This class is a basic implementation of IConfigured.
Its getConfigDict method simply returns the instance’s name attribute.

	
name

	Each object configured must have a name attribute.

	
getConfigDict(self)

	

	Returns:	object

Return a config dictionary representing this object.

All of this is used by to serve /config.js to the JavaScript frontend.

3.2.6.1. Reconfiguration

When the buildmaster receives a signal to begin a reconfig, it re-reads the
configuration file, generating a new MasterConfig instance, and
then notifies all of its child services via the reconfig mechanism described
below. The master ensures that at most one reconfiguration is taking place at
any time.

See Master Organization for the structure of the Buildbot service
tree.

To simplify initialization, a reconfiguration is performed immediately on
master startup. As a result, services only need to implement their
configuration handling once, and can use startService for initialization.

See below for instructions on implementing configuration of common types of
components in Buildbot.

Note

Because Buildbot uses a pure-Python configuration file, it is not possible
to support all forms of reconfiguration. In particular, when the
configuration includes custom subclasses or modules, reconfiguration can
turn up some surprising behaviors due to the dynamic nature of Python. The
reconfig support in Buildbot is intended for “intermediate” uses of the
software, where there are fewer surprises.

Reconfigurable Services

Instances which need to be notified of a change in configuration should be
implemented as Twisted services, and mix in the
ReconfigurableServiceMixin class, overriding the
reconfigServiceWithBuildbotConfig method.

	
class buildbot.config.ReconfigurableServiceMixin

	
	
reconfigServiceWithBuildbotConfig(new_config)

	

	Parameters:	new_config (MasterConfig) – new master configuration

	Returns:	Deferred

This method notifies the service that it should make any changes
necessary to adapt to the new configuration values given.

This method will be called automatically after a service is started.

It is generally too late at this point to roll back the
reconfiguration, so if possible any errors should be detected in the
MasterConfig implementation. Errors are handled as best as
possible and communicated back to the top level invocation, but such
errors may leave the master in an inconsistent state.
ConfigErrors exceptions will be displayed appropriately to
the user on startup.

Subclasses should always call the parent class’s implementation. For
MultiService instances, this will call any child services’
reconfigService methods, as appropriate. This will be done
sequentially, such that the Deferred from one service must fire before
the next service is reconfigured.

	
priority

	Child services are reconfigured in order of decreasing priority. The
default priority is 128, so a service that must be reconfigured before
others should be given a higher priority.

Change Sources

When reconfiguring, there is no method by which Buildbot can determine that a
new ChangeSource represents the same source
as an existing ChangeSource, but with
different configuration parameters. As a result, the change source manager
compares the lists of existing and new change sources using equality, stops any
existing sources that are not in the new list, and starts any new change
sources that do not already exist.

ChangeSource inherits
ComparableMixin, so change sources are compared
based on the attributes described in their compare_attrs.

If a change source does not make reference to any global configuration
parameters, then there is no need to inherit
ReconfigurableServiceMixin, as a simple comparison and
startService and stopService will be sufficient.

If the change source does make reference to global values, e.g., as default
values for its parameters, then it must inherit
ReconfigurableServiceMixin to support the case where the global
values change.

Schedulers

Schedulers have names, so Buildbot can determine whether a scheduler has been
added, removed, or changed during a reconfig. Old schedulers will be stopped,
new schedulers will be started, and both new and existing schedulers will see a
call to reconfigService, if such a
method exists. For backward compatibility, schedulers which do not support
reconfiguration will be stopped, and the new scheduler started, when their
configuration changes.

If, during a reconfiguration, a new and old scheduler’s fully qualified class
names differ, then the old class will be stopped and the new class started.
This supports the case when a user changes, for example, a Nightly scheduler to a Periodic scheduler without changing the name.

Because Buildbot uses BaseScheduler
instances directly in the configuration file, a reconfigured scheduler must
extract its new configuration information from another instance of itself.

Custom Subclasses

Custom subclasses are most often defined directly in the configuration file, or
in a Python module that is reloaded with reload every time the
configuration is loaded. Because of the dynamic nature of Python, this creates
a new object representing the subclass every time the configuration is loaded
– even if the class definition has not changed.

Note that if a scheduler’s class changes in a reconfig, but the scheduler’s
name does not, it will still be treated as a reconfiguration of the existing
scheduler. This means that implementation changes in custom scheduler
subclasses will not be activated with a reconfig. This behavior avoids
stopping and starting such schedulers on every reconfig, but can make
development difficult.

One workaround for this is to change the name of the scheduler before each
reconfig - this will cause the old scheduler to be stopped, and the new
scheduler (with the new name and class) to be started.

Workers

Similar to schedulers, workers are specified by name, so new and old
configurations are first compared by name, and any workers to be added or
removed are noted. Workers for which the fully-qualified class name has changed
are also added and removed. All workers have their
reconfigService method called.

This method takes care of the basic worker attributes, including changing the PB
registration if necessary. Any subclasses that add configuration parameters
should override reconfigService and
update those parameters. As with Schedulers, because the
AbstractWorker instance is given directly
in the configuration, on reconfig instances must extract the configuration from
a new instance.

User Managers

Since user managers are rarely used, and their purpose is unclear, they are
always stopped and re-started on every reconfig. This may change in figure
versions.

Status Receivers

At every reconfig, all status listeners are stopped and new versions started.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.7. Writing Schedulers

Buildbot schedulers are the process objects responsible for requesting builds.

Schedulers are free to decide when to request builds, and to define the parameters of the builds.
Many schedulers (e.g., SingleBranchScheduler) request builds in response to changes from change sources.
Others, such as Nightly, request builds at specific times.
Still others, like ForceScheduler, Try_Jobdir, or Triggerable, respond to external inputs.

Each scheduler has a unique name, and within a Buildbot cluster, can be active on at most one master.
If a scheduler is configured on multiple masters, it will be inactive on all but one master.
This provides a form of non-revertive failover for schedulers: if an active scheduler’s master fails, an inactive instance of that scheduler on another master will become active.

3.2.7.1. API Stability

Until Buildbot reaches version 1.0.0, API stability is not guaranteed.
The instructions in this document may change incompatibly until that time.

3.2.7.2. Implementing A Scheduler

A scheduler is a subclass of BaseScheduler.

The constructor’s arguments form the scheduler’s configuration.
The first two arguments are name and builderNames, and are positional.
The remaining arguments are keyword arguments, and the subclass’s constructor should accept **kwargs to pass on to the parent class along with the positional arguments.

class MyScheduler(base.BaseScheduler):
 def __init__(self, name, builderNames, arg1=None, arg2=None, **kwargs):
 base.BaseScheduler.__init__(self, name, builderNames, **kwargs)
 self.arg1 = arg1
 self.arg2 = arg2

Schedulers are Twisted services, so they can implement startService and stopService.
However, it is more common for scheduler subclasses to override startActivity and stopActivity instead.
See below.

3.2.7.3. Consuming Changes

A scheduler that needs to be notified of new changes should call startConsumingChanges when it becomes active.
Change consumption will automatically stop when the scheduler becomes inactive.

Once consumption has started, the gotChange method is invoked for each new change.
The scheduler is free to do whatever it likes in this method.

3.2.7.4. Adding Buildsets

To add a new buildset, subclasses should call one of the parent-class methods with the prefix addBuildsetFor.
These methods call addBuildset after applying behaviors common to all schedulers

Any of these methods can be called at any time.

3.2.7.5. Handling Reconfiguration

When the configuration for a scheduler changes, Buildbot deactivates, stops and removes the old scheduler, then adds, starts, and maybe activates the new scheduler.
Buildbot determines whether a scheduler has changed by subclassing ComparableMixin.
See the documentation for class for an explanation of the compare_attrs attribute.

Note

In a future version, schedulers will be converted to handle reconfiguration as reconfigurable services, and will no longer require compare_attrs to be set.

3.2.7.6. Becoming Active and Inactive

An inactive scheduler should not do anything that might interfere with an active scheduler of the same name.

Simple schedulers can consult the active attribute to determine whether the scheduler is active.

Most schedulers, however, will implement the activate method to begin any processing expected of an active scheduler.
That may involve calling startConsumingChanges, beginning a LoopingCall, or subscribing to messages.

Any processing begun by the activate method, or by an active scheduler, should be stopped by the deactivate method.
The deactivate method’s Deferred should not fire until such processing has completely stopped.
Schedulers must up-call the parent class’s activate and deactivate methods!

3.2.7.7. Keeping State

The BaseScheduler class provides getState and setState methods to get and set state values for the scheduler.
Active scheduler instances should use these functions to store persistent scheduler state, such that if they fail or become inactive, other instances can pick up where they leave off.
A scheduler can cache its state locally, only calling getState when it first becomes active.
However, it is best to keep the state as up-to-date as possible, by calling setState any time the state changes.
This prevents loss of state from an unexpected master failure.

Note that the state-related methods do not use locks of any sort.
It is up to the caller to ensure that no race conditions exist between getting and setting state.
Generally, it is sufficient to rely on there being only one running instance of a scheduler, and cache state in memory.

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info

 3.2.9. Build Result Codes

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.9. Build Result Codes

Buildbot represents the status of a step, build, or buildset using a set of
numeric constants. From Python, these constants are available in the module
buildbot.process.results, but the values also appear in the database and in
external tools, so the values are fixed.

	
buildbot.process.results.SUCCESS

	Value: 0; color: green; a successful run.

	
buildbot.process.results.WARNINGS

	Value: 1; color: orange; a successful run, with some warnings.

	
buildbot.process.results.FAILURE

	Value: 2; color: red; a failed run, due to problems in the build itself, as
opposed to a Buildbot misconfiguration or bug.

	
buildbot.process.results.SKIPPED

	Value: 3; color: white; a run that was skipped – usually a step skipped by
doStepIf (see Common Parameters)

	
buildbot.process.results.EXCEPTION

	Value: 4; color: purple; a run that failed due to a problem in Buildbot
itself.

	
buildbot.process.results.RETRY

	Value: 5; color: purple; a run that should be retried, usually due to a
worker disconnection.

	
buildbot.process.results.CANCELLED

	Value: 6; color: pink; a run that was cancelled by the user.

	
buildbot.process.results.Results

	A dictionary mapping result codes to their lowercase names.

	
buildbot.process.results.worst_status(a, b)

	This function takes two status values, and returns the “worst” status of the two.
This is used to aggregate step statuses into build statuses, and build statuses into buildset statuses.

	
computeResultAndTermination(obj, result, previousResult):

	

	Parameters:	
	obj – an object with the attributes of ResultComputingConfigMixin

	result – the new result

	previousResult – the previous aggregated result

Building on worst_status, this function determines what the aggregated overall status is, as well as whether the attempt should be terminated, based on the configuration in obj.

	
class buildbot.process.results.ResultComputingConfigMixin

	This simple mixin is intended to help implement classes that will use computeResultAndTermination.
The class has, as class attributes, the result computing configuration parameters with default values:

	
haltOnFailure

	

	
flunkOnWarnings

	

	
flunkOnFailure

	

	
warnOnWarnings

	

	
warnOnFailure

	

The names of these attributes are available in the following attribute:

	
resultConfig

	

 3.2.13. Authentication

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.13. Authentication

Buildbot’s HTTP authentication subsystem supports a rich set of information about users:

	User credentials: Username and proof of ownership of that username.

	User information: Additional information about the user, including

	email address

	full name

	group membership

	Avatar information: a small image to represent the user.

Buildbot’s authentication subsystem is designed to support several authentication modes:

	
	Simple username/password authentication.

	The Buildbot UI prompts for a username and password and the backend verifies them.

	
	External authentication by an HTTP Proxy.

	An HTTP proxy in front of Buildbot performs the authentication and passes the verified username to Buildbot in an HTTP Header.

	
	Authentication by a third-party website.

	Buildbot sends the user to another site such as GitHub to authenticate and receives a trustworthy assertion of the user’s identity from that site.

3.2.13.1. Implementation

Authentication is implemented by an instance of AuthBase.
This instance is supplied directly by the user in the configuration file.
A reference to the instance is available at self.master.www.auth.

3.2.13.2. Username / Password Authentication

In this mode, the Buildbot UI displays a form allowing the user to specify a username and password.
When this form is submitted, the UI makes an AJAX call to /auth/login including HTTP Basic Authentication headers.
The master verifies the contents of the header and updates the server-side session to indicate a successful login or to contain a failure message.
Once the AJAX call is complete, the UI reloads the page, re-fetching /config.js, which will include the username or failure message from the session.

Subsequent access is authorized based on the information in the session; the authentication credentials are not sent again.

3.2.13.3. External Authentication

Buildbot’s web service can be run behind an HTTP proxy.
Many such proxies can be configured to perform authentication on HTTP connections before forwarding the request to Buildbot.
In these cases, the results of the authentication are passed to Buildbot in an HTTP header.

In this mode, authentication proceeds as follows:

	The web browser connects to the proxy, requesting the Buildbot home page

	The proxy negotiates authentication with the browser, as configured

	Once the user is authenticated, the proxy forwards the request goes to the Buildbot web service.
The request includes a header, typically Remote-User, containing the authenticated username.

	Buildbot reads the header and optionally connects to another service to fetch additional user information about the user.

	Buildbot stores all of the collected information in the server-side session.

	The UI fetches /config.js, which includes the user information from the server-side session.

Note that in this mode, the HTTP proxy will send the header with every request, although it is only interpreted during the fetch of /config.js.

Kerberos Example

Kerberos is an authentication system which allows passwordless authentication on corporate networks.
Users authenticate once on their desktop environment, and the OS, browser, webserver, and corporate directory cooperate in a secure manner to share the authentication to a webserver.
This mechanism only takes care about the authentication problem, and no user information is shared other than the username.
The kerberos authentication is supported by a Apache front-end in mod_kerberos.

3.2.13.4. Third-Party Authentication

Third-party authentication involves Buildbot redirecting a user’s browser to another site to establish the user’s identity.
Once that is complete, that site redirects the user back to Buildbot, including a cryptographically signed assertion about the user’s identity.

The most common implementation of this sort of authentication is oAuth2.
Many big internet service companies are providing oAuth2 services to identify their users.
Most oAuth2 services provide authentication and user information in the same api.

The following process is used for third-party authentication:

	The web browser connects to buildbot ui

	A session cookie is created, but user is not yet authenticated.
The UI adds a widget entitled Login via GitHub (or whatever third party is configured)

	When the user clicks on the widget, the UI fetches /auth/login, which returns a bare URL on github.com.
The UI loads that URL in the browser, with an effect similar to a redirect.

	GitHub authenticates the user, if necessary, and requests permission for Buildbot to access the user’s information.

	On success, the GitHub web page redirects back to Buildbot’s /auth/login?code=.., with an authentication code.

	Buildbot uses this code to request more information from GitHub, and stores the results in the server-side session.
Finally, Buildbot returns a redirect response, sending the user’s browser to the root of the Buildbot UI.
The UI code will fetch /config.js, which contains the login data from the session.

3.2.13.5. Logout

A “logout” button is available in the simple and third-party modes.
Such a button doesn’t make sense for external authentication, since the proxy will immediately re-authenticate the user.

This button fetches /auth/logout, which destroys the server-side session.
After this point, any stored authentication information is gone and the user is logged out.

3.2.13.6. Future Additions

	Browserid/Persona: This method is very similar to oauth2, and should be implemented in a similar way (i.e. two stage redirect + token-verify)

	Use the User table in db: This is a very similar to the UserPasswordAuth use cases (form + local db verification). Eventually, this method will require some work on the UI in order to populate the db, add a “register” button, verification email, etc. This has to be done in a ui plugin.

 3.2.14. Authorization

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.14. Authorization

Buildbot authorization is designed to address the following requirements

	Most of the configuration is only data: We avoid to require user to write callbacks for most of the use cases. This to allow to load the config from yaml or json and eventually do a UI for authorization config.

	Separation of concerns:

	Mapping users to roles

	Mapping roles to REST endpoints.

	Configuration should not need hardcoding endpoint paths.

	Easy to extend

3.2.14.1. Use cases

	Members of admin group should have access to all resources and actions

	developers can run the “try” builders

	Integrators can run the “merge” builders

	Release team can run the “release” builders

	There are separate teams for different branches or projects, but the roles are identical

	Owners of builds can stop builds or buildrequests

	Secret branch’s builds are hidden from people except explicitly authorized

 3.2.15. Master-Worker API

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.15. Master-Worker API

This section describes the master-worker interface.
It covers communication protocol of “classic” remote Worker, notice that there is other types of workers which behave a bit different, such as Local Worker and Latent Workers.

3.2.15.1. Connection

The interface is based on Twisted’s Perspective Broker, which operates over TCP
connections.

The worker connects to the master, using the parameters supplied to
buildbot-worker create-worker. It uses a reconnecting process with an
exponential backoff, and will automatically reconnect on disconnection.

Once connected, the worker authenticates with the Twisted Cred (newcred)
mechanism, using the username and password supplied to
buildbot-worker create-worker.
The mind is the worker bot instance (class buildbot_worker.pb.BotPb).

On the master side, the realm is implemented by
buildbot.pbmanager.Dispatcher, which examines the username of incoming
avatar requests. There are special cases for change, debug, and
statusClient, which are not discussed here. For all other usernames,
the botmaster is consulted, and if a worker with that name is configured, its
buildbot.worker.Worker instance is returned as the perspective.

3.2.15.2. Workers

At this point, the master-side Worker object has a pointer to the remote,
worker-side Bot object in its self.worker, and the worker-side Bot object has
a reference to the master-side Worker object in its self.perspective.

Bot methods

The worker-side Bot object has the following remote methods:

	remote_getCommands

	Returns a dictionary for all commands the worker recognizes: the key of the dictionary is command name and command version is the value.

	remote_setBuilderList

	Given a list of builders and their build directories, ensures that
those builders, and only those builders, are running. This can be
called after the initial connection is established, with a new
list, to add or remove builders.

This method returns a dictionary of WorkerForBuilder objects - see below.

	remote_print

	Adds a message to the worker logfile.

	remote_getWorkerInfo

	Returns dictionary with the contents of the worker’s info/ directory (i.e. file name is used as key and file contents as the value).
This dictionary also contains the keys

	environ

	copy of the workers environment

	system

	OS the worker is running (extracted from Python’s os.name)

	basedir

	base directory where worker is running

	numcpus

	number of CPUs on the worker, either as configured or as detected (since buildbot-worker version 0.9.0)

	version

	worker’s version (same as the result of remote_getVersion call)

	worker_commands

	worker supported commands (same as the result of remote_getCommands call)

	remote_getVersion

	Returns the worker’s version.

	remote_shutdown

	Shuts down the worker cleanly.

Worker methods

The master-side object has the following method:

	perspective_keepalive

	Does nothing - used to keep traffic flowing over the TCP connection

3.2.15.3. Setup

After the initial connection and trading of a mind (buildbot_worker.pb.BotPb) for an avatar
(Worker), the master calls the Bot’s setBuilderList method to set
up the proper builders on the worker side. This method returns a
reference to each of the new worker-side WorkerForBuilderPb
objects, described below. Each of these is handed to the corresponding
master-side WorkerForBuilder object.

This immediately calls the remote setMaster method, then the
print method.

3.2.15.4. Pinging

To ping a remote Worker, the master calls its print method.

3.2.15.5. Building

When a build starts, the master calls the worker’s startBuild method.
Each BuildStep instance will subsequently call the startCommand method,
passing a reference to itself as the stepRef parameter. The
startCommand method returns immediately, and the end of the command is
signalled with a call to a method on the master-side BuildStep object.

3.2.15.6. Worker For Builders

Each worker has a set of builders which can run on it. These are
represented by distinct classes on the master and worker, just like the
Worker and Bot objects described above.

On the worker side, builders are represented as instances of the
buildbot_worker.pb.WorkerForBuilderPb class. On the master side, they are
represented by the buildbot.process.workerforbuilder.WorkerForBuilder class.
The identical names are a source of confusion. The following will refer to
these as the worker-side and master-side Worker For Builder classes. Each object
keeps a reference to its opposite in self.remote.

Worker-Side WorkerForBuilderPb Methods

	remote_setMaster

	Provides a reference to the master-side Worker For Builder

	remote_print

	Adds a message to the worker logfile; used to check round-trip connectivity

	remote_startBuild

	Indicates that a build is about to start, and that any subsequent
commands are part of that build

	remote_startCommand

	Invokes a command on the worker side

	remote_interruptCommand

	Interrupts the currently-running command

Master-side WorkerForBuilder Methods

The master side does not have any remotely-callable methods.

3.2.15.7. Commands

Actual work done by the worker is represented on the master side by a
buildbot.process.remotecommand.RemoteCommand instance.

The command instance keeps a reference to the worker-side
buildbot_worker.pb.WorkerForBuilderPb, and calls methods like
remote_startCommand to start new commands.
Once that method is called, the WorkerForBuilderPb instance
keeps a reference to the command, and calls the following methods on it:

Master-Side RemoteCommand Methods

	remote_update

	Update information about the running command. See below for the format.

	remote_complete

	Signal that the command is complete, either successfully or with a Twisted failure.

3.2.15.8. Updates

Updates from the worker, sent via
remote_update, are a list of
individual update elements. Each update element is, in turn, a list of the
form [data, 0] where the 0 is present for historical reasons. The data is
a dictionary, with keys describing the contents. The updates are handled by
remote_update.

Updates with different keys can be combined into a single dictionary or
delivered sequentially as list elements, at the worker’s option.

To summarize, an updates parameter to
remote_update might look like
this:

[
 [{ 'header' : 'running command..' }, 0],
 [{ 'stdout' : 'abcd', 'stderr' : 'local modifications' }, 0],
 [{ 'log' : ('cmd.log', 'cmd invoked at 12:33 pm\n') }, 0],
 [{ 'rc' : 0 }, 0],
]

Defined Commands

The following commands are defined on the workers.

shell

Runs a shell command on the worker. This command takes the following arguments:

command

The command to run. If this is a string, will be passed to the system
shell as a string. Otherwise, it must be a list, which will be
executed directly.

workdir

Directory in which to run the command, relative to the builder dir.

env

A dictionary of environment variables to augment or replace the
existing environment on the worker. In this dictionary, PYTHONPATH
is treated specially: it should be a list of path components, rather
than a string, and will be prepended to the existing Python path.

initial_stdin

A string which will be written to the command’s standard input before
it is closed.

want_stdout

If false, then no updates will be sent for stdout.

want_stderr

If false, then no updates will be sent for stderr.

usePTY

If true, the command should be run with a PTY (POSIX only). This
defaults to False.

not_really

If true, skip execution and return an update with rc=0.

timeout

Maximum time without output before the command is killed.

maxTime

Maximum overall time from the start before the command is killed.

logfiles

A dictionary specifying logfiles other than stdio. Keys are the logfile
names, and values give the workdir-relative filename of the logfile. Alternately,
a value can be a dictionary; in this case, the dictionary must have a filename
key specifying the filename, and can also have the following keys:

follow

Only follow the file from its current end-of-file, rather that starting
from the beginning.

logEnviron

If false, the command’s environment will not be logged.

The shell command sends the following updates:

	stdout

	The data is a bytestring which represents a continuation of the stdout
stream. Note that the bytestring boundaries are not necessarily aligned
with newlines.

	stderr

	Similar to stdout, but for the error stream.

	header

	Similar to stdout, but containing data for a stream of
Buildbot-specific metadata.

	rc

	The exit status of the command, where – in keeping with UNIX tradition –
0 indicates success and any nonzero value is considered a failure. No
further updates should be sent after an rc.

	log

	This update contains data for a logfile other than stdio. The data
associated with the update is a tuple of the log name and the data for that
log. Note that non-stdio logs do not distinguish output, error, and header
streams.

uploadFile

Upload a file from the worker to the master. The arguments are

workdir

The base directory for the filename, relative to the builder’s basedir.

workersrc

Name of the filename to read from., relative to the workdir.

writer

A remote reference to a writer object, described below.

maxsize

Maximum size, in bytes, of the file to write. The operation will fail if
the file exceeds this size.

blocksize

The block size with which to transfer the file.

keepstamp

If true, preserve the file modified and accessed times.

The worker calls a few remote methods on the writer object. First, the
write method is called with a bytestring containing data, until all of the
data has been transmitted. Then, the worker calls the writer’s close,
followed (if keepstamp is true) by a call to upload(atime, mtime).

This command sends rc and stderr updates, as defined for the shell
command.

uploadDirectory

Similar to uploadFile, this command will upload an entire directory to the
master, in the form of a tarball. It takes the following arguments:

workdir
workersrc
writer
maxsize
blocksize

See uploadFile

compress

Compression algorithm to use – one of None, 'bz2', or 'gz'.

The writer object is treated similarly to the uploadFile command, but after
the file is closed, the worker calls the master’s unpack method with no
arguments to extract the tarball.

This command sends rc and stderr updates, as defined for the shell
command.

downloadFile

This command will download a file from the master to the worker. It takes the
following arguments:

workdir

Base directory for the destination filename, relative to the builder basedir.

workerdest

Filename to write to, relative to the workdir.

reader

A remote reference to a reader object, described below.

maxsize

Maximum size of the file.

blocksize

The block size with which to transfer the file.

mode

Access mode for the new file.

The reader object’s read(maxsize) method will be called with a maximum
size, which will return no more than that number of bytes as a bytestring. At
EOF, it will return an empty string. Once EOF is received, the worker will call
the remote close method.

This command sends rc and stderr updates, as defined for the shell
command.

mkdir

This command will create a directory on the worker. It will also create any
intervening directories required. It takes the following argument:

dir

Directory to create.

The mkdir command produces the same updates as shell.

rmdir

This command will remove a directory or file on the worker. It takes the following arguments:

dir

Directory to remove.

timeout
maxTime

See shell, above.

The rmdir command produces the same updates as shell.

cpdir

This command will copy a directory from place to place on the worker. It takes the following
arguments:

fromdir

Source directory for the copy operation, relative to the builder’s basedir.

todir

Destination directory for the copy operation, relative to the builder’s basedir.

timeout
maxTime

See shell, above.

The cpdir command produces the same updates as shell.

stat

This command returns status information about a file or directory. It takes a
single parameter, file, specifying the filename relative to the builder’s
basedir.

It produces two status updates:

stat

The return value from Python’s os.stat.

rc

0 if the file is found, otherwise 1.

glob

This command finds all pathnames matching a specified pattern that uses shell-style wildcards.
It takes a single parameter, path, specifying the pattern to pass to Python’s
glob.glob function.

It produces two status updates:

files

The list of matching files returned from glob.glob

rc

0 if the glob.glob does not raise exception, otherwise 1.

listdir

This command reads the directory and returns the list with directory contents. It
takes a single parameter, dir, specifying the directory relative to builder’s basedir.

It produces two status updates:

files

The list of files in the directory returned from os.listdir

rc

0 if the os.listdir does not raise exception, otherwise 1.

rmfile

This command removes the file in the worker base directory.
It takes a single parameter, path, specifying the file path relative to builder’s basedir.

It produces one status updates:

rc

0 if the os.remove does not raise exception, otherwise the corresponding errno.

 3.2.16. Claiming Build Requests

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.16. Claiming Build Requests

At Buildbot’s core, it is a distributed job (build) scheduling engine.
Future builds are represented by build requests, which are created by schedulers.

When a new build request is created, it is added to the buildrequests table and an appropriate message is sent.

3.2.16.1. Distributing

Each master distributes build requests among its builders by examining the list of available build requests, available workers, and accounting for user configuration for build request priority, worker priority, and so on.
This distribution process is re-run whenever an event occurs that may allow a new build to start.

Such events can be signalled to master with

	maybeStartBuildsForBuilder when a single builder is affected;

	maybeStartBuildsForWorker when a single worker is affected; or

	maybeStartBuildsForAllBuilders when all builders may be affected.

In particular, when a master receives a new-build-request message, it performs the equivalent of maybeStartBuildsForBuilder for the affected builder.

3.2.16.2. Claiming

If circumstances are right for a master to begin a build, then it attempts to “claim” the build request.
In fact, if several build requests were merged, it attempts to claim them as a group, using the claimBuildRequests DB method.
This method uses transactions and an insert into the buildrequest_claims table to ensure that exactly one master succeeds in claiming any particular build request.

If the claim fails, then another master has claimed the affected build requests, and the attempt is abandoned.

If the claim succeeds, then the master sends a message indicating that it has claimed the request.
This message can be used by other masters to abandon their attempts to claim this request, although this is not yet implemented.

If the build request is later abandoned (as can happen if, for example, the worker has disappeared), then master will send a message indicating that the request is again unclaimed; like a new-buildrequest message, this message indicates that other masters should try to distribute it once again.

3.2.16.3. The One That Got Away

The claiming process is complex, and things can go wrong at just about any point.
Through master failures or message/database race conditions, it’s quite possible for a build request to be “missed”, even when resources are available to process it.

To account for this possibility, masters periodically poll the buildrequests table for unclaimed requests and try to distribute them.
This resiliency avoids “lost” build requests, at the small cost of a polling delay before the requests are scheduled.

 3.2.17. String Encodings

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.17. String Encodings

Buildbot expects all strings used internally to be valid Unicode strings - not
bytestrings.

Note that Buildbot rarely feeds strings back into external tools in such a way
that those strings must match. For example, Buildbot does not attempt to
access the filenames specified in a Change. So it is more important to store
strings in a manner that will be most useful to a human reader (e.g., in
logfiles, web status, etc.) than to store them in a lossless format.

3.2.17.1. Inputs

On input, strings should be decoded, if their encoding is known. Where
necessary, the assumed input encoding should be configurable. In some cases,
such as filenames, this encoding is not known or not well-defined (e.g., a
utf-8 encoded filename in a latin-1 directory). In these cases, the input
mechanisms should make a best effort at decoding, and use e.g., the
errors='replace' option to fail gracefully on un-decodable characters.

3.2.17.2. Outputs

At most points where Buildbot outputs a string, the target encoding is known.
For example, the web status can encode to utf-8. In cases where it is not
known, it should be configurable, with a safe fallback (e.g., ascii with
errors='replace'. For HTML/XML outputs, consider using
errors='xmlcharrefreplace' instead.

 3.2.18. Metrics

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.18. Metrics

New in buildbot 0.8.4 is support for tracking various performance metrics inside the buildbot master process.
Currently these are logged periodically according to the log_interval configuration setting of the metrics configuration.

The metrics subsystem is implemented in buildbot.process.metrics.
It makes use of twisted’s logging system to pass metrics data from all over buildbot’s code to a central MetricsLogObserver object, which is available at BuildMaster.metrics or via Status.getMetrics().

3.2.18.1. Metric Events

MetricEvent objects represent individual items to monitor.
There are three sub-classes implemented:

	MetricCountEvent

	Records incremental increase or decrease of some value, or an absolute measure of some value.

from buildbot.process.metrics import MetricCountEvent

We got a new widget!
MetricCountEvent.log('num_widgets', 1)

We have exactly 10 widgets
MetricCountEvent.log('num_widgets', 10, absolute=True)

	MetricTimeEvent

	Measures how long things take. By default the average of the last 10 times will be reported.

from buildbot.process.metrics import MetricTimeEvent

function took 0.001s
MetricTimeEvent.log('time_function', 0.001)

	MetricAlarmEvent

	Indicates the health of various metrics.

from buildbot.process.metrics import MetricAlarmEvent, ALARM_OK

num_workers looks ok
MetricAlarmEvent.log('num_workers', level=ALARM_OK)

3.2.18.2. Metric Handlers

MetricsHandler objects are responsible for collecting MetricEvents of a specific type and keeping track of their values for future reporting.
There are MetricsHandler classes corresponding to each of the MetricEvent types.

3.2.18.3. Metric Watchers

Watcher objects can be added to MetricsHandlers to be called when metric events of a certain type are received.
Watchers are generally used to record alarm events in response to count or time events.

3.2.18.4. Metric Helpers

	countMethod(name)

	A function decorator that counts how many times the function is called.

from buildbot.process.metrics import countMethod

@countMethod('foo_called')
def foo():
 return "foo!"

	Timer(name)

	Timer objects can be used to make timing events easier.
When Timer.stop() is called, a MetricTimeEvent is logged with the elapsed time since timer.start() was called.

from buildbot.process.metrics import Timer

def foo():
 t = Timer('time_foo')
 t.start()
 try:
 for i in range(1000):
 calc(i)
 return "foo!"
 finally:
 t.stop()

Timer objects also provide a pair of decorators, startTimer/stopTimer to decorate other functions.

from buildbot.process.metrics import Timer

t = Timer('time_thing')

@t.startTimer
def foo():
 return "foo!"

@t.stopTimer
def bar():
 return "bar!"

foo()
bar()

	timeMethod(name)

	A function decorator that measures how long a function takes to execute.
Note that many functions in buildbot return deferreds, so may return before all the work they set up has completed.
Using an explicit Timer is better in this case.

from buildbot.process.metrics import timeMethod

@timeMethod('time_foo')
def foo():
 for i in range(1000):
 calc(i)
 return "foo!"

 3.2.19. Secrets

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.19. Secrets

class SecretDetails(object):
 """
 ...
 """

 def __init__(self, source, key, value):

A secretDetails is a python object initialized with a provider name, a key and a value.
Each parameter is an object property.

secretdetail = SecretDetails("SourceProvider", "myKey", "myValue")
print(secretdetail.source)
"SourceProvider"
print(secretdetail.key)
"myKey"
print(secretdetail.value)
"myValue"

A Secret is defined by a key associated to a value, returned from a provider.
Secrets returned by providers are stored in a secretDetails object.

3.2.20. Secrets manager

The manager is a Buildbot service manager.

secretsService = self.master.namedServices['secrets']
secretDetailsList = secretsService.get(self.secrets)

The service executes a get method.
Depending on the kind of storage chosen and declared in the configuration, the manager gets the selected provider and returns a list of secretDetails.

3.2.21. Secrets providers

The secrets providers are implementing the specific getters, related to the storage chosen.

3.2.21.1. File provider

c['secretsProviders'] = [secrets.SecretInAFile(dirname="/path/toSecretsFiles")]

In the master configuration the provider is instantiated through a Buildbot service secret manager with the file directory path.
File secrets provider reads the file named by the key wanted by Buildbot and returns the contained text value (removing trailing newlines if present).
SecretInAFile provider allows Buildbot to read secrets in the secret directory.

3.2.21.2. Vault provider

c['secretsProviders'] = [secrets.SecretInVault(vaultToken=open('VAULT_TOKEN').read(),
 vaultServer="http://localhost:8200",
 apiVersion=2)]

In the master configuration, the provider is instantiated through a Buildbot service secret manager with the Vault token and the Vault server address.
Vault secrets provider accesses the Vault backend asking the key wanted by Buildbot and returns the contained text value.
SecretInVAult provider allows Buildbot to read secrets in the Vault.
Currently only v1 and v2 of the Key-Value backends are supported.

3.2.21.3. Interpolate secret

text = Interpolate("some text and %(secret:foo)s")

Secret keys are replaced in a string by the secret value using the class Interpolate and the keyword secret.
The secret is searched across the providers defined in the master configuration.

3.2.21.4. Secret Obfuscation

text = Interpolate("some text and %(secret:foo)s")
some text rendered
rendered = yield self.build.render(text)
cleantext = self.build.build_status.properties.cleanupTextFromSecrets(rendered)

Secrets don’t have to be visible to the normal user via logs and thus are transmitted directly to the workers.
Secrets are rendered and can arrive anywhere in the logs.
The function cleanupTextFromSecrets defined in the class Properties helps to replace the secret value by the key value.

print("the example value is:%s" % (cleantext))
>> the example value is: <foo>

Secret is rendered and it is recorded in a dictionary, named _used_secrets, where the key is the secret value and the value the secret key.
Therefore anywhere logs are written having content with secrets, the secrets are replaced by the value from _used_secrets.

3.2.21.5. How to use a secret in a BuildbotService

Service configurations are loaded during a Buildbot start or modified during a Buildbot restart.
Secrets are used like renderables in a service and are rendered during the configuration load.

class MyService(BuildbotService):
 secrets = ['foo', 'other']

secrets is a list containing all the secret keys that can be used as class attributes.
When the service is loaded during the Buildbot reconfigService function, secrets are rendered and the values are updated.
Everywhere the variable with the secret name (foo or other in the example) is used, the class attribute value is replaced by the secret value.
This is similar to the “renderable” annotation, but will only works for BuildbotServices, and will only interpolate secrets.
Others renderables can still be held in the service as attributes, and rendered dynamically at a later time.

class MyService(object):
 secrets = ['foo', 'other']

myService = MyService()

After a Buildbot reconfigService:

print("myService returns secret value:", myService.foo))
>> myService returns secret value bar

 3.2.22. Statistics Service

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.22. Statistics Service

The statistic service (or stats service) is implemented in buildbot.statistics.stats_service.
Please see stats-service for more information.

Here is a diagram demonstrating the working of the stats service:

[image: ../_images/stats-service.png]

3.2.22.1. Stats Service

	
class buildbot.statistics.stats_service.StatsService

	An instance of this class functions as a BuildbotService.
The instance of the running service is initialized in the master configuration file (see stats-service for more information).
The running service is accessible everywhere in Buildbot via the BuildMaster.
The service is available at self.master.namedServices['<service-name>'].
It takes the following initialization arguments:

	storage_backends

	A list of storage backends.
These are instance of subclasses of StatsStorageBase.

	name

	(str) The name of this service.
This name can be used to access the running instance of this service using self.master.namedServices[name].

Please see stats-service for examples.

	
checkConfig(self, storage_backends)

	
	storage_backends

	A list of storage backends.

This method is called automatically to verify that the list of storage backends contains instances of subclasses of StatsStorageBase.

	
reconfigService(self, storage_backends)

	
	storage_backends

	A list of storage backends.

This method is called automatically to reconfigure the running service.

	
registerConsumers(self)

	Internal method for this class called to register all consumers (methods from Capture classes) to the MQ layer.

	
stopService(self)

	Internal method for this class to stop the stats service and clean up.

	
removeConsumers(self)

	Internal method for this class to stop and remove consumers from the MQ layer.

	
yieldMetricsValue(self, data_name, post_data, buildid)

	
	data_name

	(str) The name of the data being sent or storage.

	post_data

	A dictionary of key value pair that is sent for storage.

	buildid

	The integer build id of the current build.
Obtainable in all BuildSteps.

This method should be called to post data that is not generated and stored as build-data in the database.
This method generates the stats-yield-data event to the mq layer which is then consumed in postData.

3.2.22.2. Storage backends

Storage backends are responsible for storing any statistics/data sent to them.
A storage backend will generally be some sort of a database-server running on a machine.
.. note:: This machine may be different from the one running BuildMaster

Data is captured according to the master config file and then, is sent to each of the storage backends provided by the master configuration (see stats-service).

Each storage backend has a Python client defined as part of buildbot.statistics.storage_backends to aid in posting data by StatsService.

Currently, only InfluxDB [https://influxdata.com/time-series-platform/influxdb/] is supported as a storage backend.

	
class buildbot.statistis.storage_backends.base.StatsStorageBase

	A abstract class for all storage services.
It cannot be directly initialized - it would raise a TypeError otherwise.

	
thd_postStatsValue(self, post_data, series_name, context)

	
	post_data

	A dict of key-value pairs that is sent for storage.
The keys of this dict can be thought of as columns in a database and the value is the data stored for that column.

	series_name

	(str) The name of the time-series for this statistic.

	context

	(Optional) Any other contextual information about the data.
It is a dict of key-value pairs.

An abstract method that needs to be implemented by every child class of this class.
Not doing so will result result in a TypeError when starting Buildbot.

	
class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService

	InfluxDB [https://influxdata.com/time-series-platform/influxdb/] is a distributed, time series database that employs a key-value pair storage system.

This class is a Buildbot client to the InfluxDB storage backend.
It is available in the configuration as statistics.InfluxStorageService.
It takes the following initialization arguments:

	url

	(str) The URL where the service is running.

	port

	(int) The port on which the service is listening.

	user

	(str) Username of a InfluxDB user.

	password

	(str) Password for user.

	db

	(str) The name of database to be used.

	captures

	A list of instances of subclasses of Capture.
This tells which stats are to be stored in this storage backend.

	name=None

	(Optional) (str) The name of this storage backend.

	
thd_postStatsValue(self, post_data, series_name, context={})

	
	post_data

	A dict of key-value pairs that is sent for storage.
The keys of this dict can be thought of as columns in a database and the value is the data stored for that column.

	series_name

	(str) The name of the time-series for this statistic.

	context

	(Optional) Any other contextual information about the data.
It is a dict of key-value pairs.

This method constructs a dictionary of data to be sent to InfluxDB in the proper format and sends the data to the influxDB instance.

3.2.22.3. Capture Classes

Capture classes are used for declaring which data needs to captured and sent to storage backends for storage.

	
class buildbot.statistics.capture.Capture

	This is the abstract base class for all capture classes.
Not to be used directly.
Initlized with the following parameters:

	routingKey

	(tuple) The routing key to be used by StatsService to register consumers to the MQ layer for the subclass of this class.

	callback

	The callback registered with the MQ layer for the consumer of a subclass of this class.
Each subclass must provide a default callback for this purpose.

	
_defaultContext(self, msg):

	A method for providing default context to the storage backends.

	
consume(self, routingKey, msg):

	This is an abstract method - each subclass of this class should implement its own consume method.
If not, then the subclass can’t be instantiated.
The consume method, when called (from the mq layer), receives the following arguments:

	routingKey

	The routing key which was registered to the MQ layer.
Same as the routingKey provided to instantiate this class.

	msg

	The message that was sent by the producer.

	
_store(self, post_data, series_name, context):

	This is an abstract method of this class.
It must be implemented by all subclasses of this class.
It takes the following arguments:

	post_data

	(dict) The key-value pair being sent to the storage backend.

	series_name

	(str) The name of the series to which this data is stored.

	context

	(dict) Any additional information pertaining to data being sent.

	
class buildbot.statistics.capture.CapturePropertyBase

	This is a base class for both CaptureProperty and CapturePropertyAllBuilders and abstracts away much of the common functionality between the two classes.
Cannot be initialized directly as it contains an abstract method and raises TypeError if tried.
It is initialized with the following arguments:

	property_name

	(str) The name of property needed to be recorded as a statistic.
This can be a regular expression if regex=True (see below).

	callback=None

	The callback function that is used by CaptureProperty.consumer to post-process data before formatting it and sending it to the appropriate storage backends.
A default callback needs to be prois provided for this.

The default callback:

	
default_callback(props, property_name)

	

It returns property value for property_name.
It receives the following arguments:

	props

	A dictionary of all build properties.

	property_name

	(str) Name of the build property to return.

	regex=False

	If this is set to True, then the property name can be a regular expression.
All properties matching this regular expression will be sent for storage.

	
consume(self, routingKey, msg)

	The consumer for all CaptureProperty classes described below.
This method filters out the correct properties as per the configuration file and sends those properties for storage.
The subclasses of this method do not need to implement this method as it takes care of all the functionality itself.
See Capture for more information.

	
_builder_name_matches(self, builder_info):

	This is an abstract method and needs to be implemented by all subclasses of this class.
This is a helper method to the consume method mentioned above.
It checks whether a builder is allowed to send properties to the storage backend according to the configuration file.
It takes one argument:

	builder_info

	(dict) The dictionary returned by the data API containing the builder information.

	
class buildbot.statistics.capture.CaptureProperty

	The capture class for capturing build properties.
It is available in the configuration as statistics.CaptureProperty

It takes the following arguments:

	builder_name

	(str) The name of builder in which the property is recorded.

	property_name

	(str) The name of property needed to be recorded as a statistic.

	callback=None

	The callback function that is used by CaptureProperty.consumer to post-process data before formatting it and sending it to the appropriate storage backends.
A default callback is provided for this (see CapturePropertyBase for more information).

	regex=False

	If this is set to True, then the property name can be a regular expression.
All properties matching this regular expression will be sent for storage.

	
_builder_name_matches(self, builder_info)

	See CapturePropertyBase for more information on this method.

	
class buildbot.statistics.capture.CapturePropertyAllBuilders

	The capture class to use for capturing build properties on all builders.
It is available in the configuration as statistics.CaptureProperty

It takes the following arguments:

	property_name

	(str) The name of property needed to be recorded as a statistic.

	callback=None

	The callback function that is used by CaptureProperty.consumer to post-process data before formatting it and sending it to the appropriate storage backends.
A default callback is provided for this (see CapturePropertyBase for more information).

	regex=False

	If this is set to True, then the property name can be a regular expression.
All properties matching this regular expression will be sent for storage.

	
_builder_name_matches(self, builder_info)

	See CapturePropertyBase for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildTimes

	A base class for all Capture classes that deal with build times (start/end/duration).
Not to be used directly.
Initialized with:

	builder_name

	(str) The name of builder whose times are to be recorded.

	callback

	The callback function that is used by subclass of this class to post-process data before formatting it and sending it to the appropriate storage backends.
A default callback is provided for this.
Each subclass must provide a default callback that is used in initialization of this class should the user not provide a callback.

	
consume(self, routingKey, msg)

	The consumer for all subclasses of this class.
See Capture for more information.
.. note:: This consumer requires all subclasses to implement:

	self._time_type (property)

	A string used as a key in post_data sent to storage services.

	self._retValParams(msg) (method)

	A method that takes in the msg this consumer gets and returns a list of arguments for the capture callback.

	
_retValParams(self, msg)

	This is an abstract method which needs to be implemented by subclasses.
This method needs to return a list of parameters that will be passed to the callback function.
See individual build CaptureBuild* classes for more information.

	
_err_msg(self, build_data, builder_name)

	A helper method that returns an error message for the consume method.

	
_builder_name_matches(self, builder_info)

	This is an abstract method and needs to be implemented by all subclasses of this class.
This is a helper method to the consume method mentioned above.
It checks whether a builder is allowed to send build times to the storage backend according to the configuration file.
It takes one argument:

	builder_info

	(dict) The dictionary returned by the data API containing the builder information.

	
class buildbot.statistics.capture.CaptureBuildStartTime

	A capture class for capturing build start times.
It takes the following arguments:

	builder_name

	(str) The name of builder whose times are to be recorded.

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more information.

The default callback:

	
default_callback(start_time)

	

It returns the start time in ISO format.
It takes one argument:

	start_time

	A python datetime object that denotes the build start time.

	
_retValParams(self, msg)

	Returns a list containing one Python datetime object (start time) from msg dictionary.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders

	A capture class for capturing build start times from all builders.
It is a subclass of CaptureBuildStartTime.
It takes the following arguments:

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more information.

The default callback:

See CaptureBuildStartTime.__init__ for the definition.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildEndTime

	A capture class for capturing build end times.
Takes the following arguments:

	builder_name

	(str) The name of builder whose times are to be recorded.

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more information.

The default callback:

	
default_callback(end_time)

	

It returns the end time in ISO format.
It takes one argument:

	end_time

	A python datetime object that denotes the build end time.

	
_retValParams(self, msg)

	

Returns a list containing two Python datetime object (start time and end time) from msg dictionary.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders

	A capture class for capturing build end times from all builders.
It is a subclass of CaptureBuildEndTime.
It takes the following arguments:

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more information.

The default callback:

See CaptureBuildEndTime.__init__ for the definition.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildDuration

	A capture class for capturing build duration.
Takes the following arguments:

	builder_name

	(str) The name of builder whose times are to be recorded.

	report_in='seconds'

	Can be one of three: 'seconds', 'minutes', or 'hours'.
This is the units in which the build time will be reported.

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more information.

The default callback:

	
default_callback(start_time, end_time)

	

It returns the duration of the build as per the report_in argument.
It receives the following arguments:

	start_time

	A python datetime object that denotes the build start time.

	end_time

	A python datetime object that denotes the build end time.

	
_retValParams(self, msg)

	

Returns a list containing one Python datetime object (end time) from msg dictionary.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureBuildDurationAllBuilders

	A capture class for capturing build durations from all builders.
It is a subclass of CaptureBuildDuration.
It takes the following arguments:

	callback=None

	The callback function for this class.
See CaptureBuildTimes for more.

The default callback:

See CaptureBuildDuration.__init__ for the definition.

	
_builder_name_matches(self, builder_info)

	See CaptureBuildTimes for more information on this method.

	
class buildbot.statistics.capture.CaptureDataBase

	This is a base class for both CaptureData and CaptureDataAllBuilders and abstracts away much of the common functionality between the two classes.
Cannot be initialized directly as it contains an abstract method and raises TypeError if tried.
It is initialized with the following arguments:

	data_name

	(str) The name of data to be captured.
Same as in yieldMetricsValue.

	callback=None

	The callback function for this class.

The default callback:

The default callback takes a value x and return it without changing.
As such, x itself acts as the post_data sent to the storage backends.

	
consume(self, routingKey, msg)

	The consumer for this class.
See Capture for more.

	
_builder_name_matches(self, builder_info)

	This is an abstract method and needs to be implemented by all subclasses of this class.
This is a helper method to the consume method mentioned above.
It checks whether a builder is allowed to send properties to the storage backend according to the configuration file.
It takes one argument:

	builder_info

	(dict) The dictionary returned by the data API containing the builder information.

	
class buildbot.statistics.capture.CaptureData

	A capture class for capturing arbitrary data that is not stored as build-data.
See yieldMetricsValue for more.
Takes the following arguments for initialization:

	data_name

	(str) The name of data to be captured.
Same as in yieldMetricsValue.

	builder_name

	(str) The name of the builder on which the data is captured.

	callback=None

	The callback function for this class.

The default callback:

See CaptureDataBase of definition.

	
_builder_name_matches(self, builder_info)

	See CaptureDataBase for more information on this method.

	
class buildbot.statistics.capture.CaptureDataAllBuilders

	A capture class to capture arbitrary data on all builders.
See yieldMetricsValue for more.
It takes the following arguments:

	data_name

	(str) The name of data to be captured.
Same as in yieldMetricsValue.

	callback=None

	The callback function for this class.

	
_builder_name_matches(self, builder_info)

	See CaptureDataBase for more information on this method.

 3.2.23. How to package Buildbot plugins

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.2.23. How to package Buildbot plugins

If you customized an existing component (see Customization) or created a new component that you believe might be useful for others, you have two options:

	submit the change to the Buildbot main tree, however you need to adhere to certain requirements (see Buildbot Coding Style)

	prepare a Python package that contains the functionality you created

Here we cover the second option.

3.2.23.1. Package the source

To begin with, you must package your changes.
If you do not know what a Python package is, these two tutorials will get you going:

	Python Packaging User Guide [https://packaging.python.org/en/latest/]

	The Hitchhiker’s Guide to Packaging [https://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/]

The former is more recent and, while it addresses everything that you need to know about Python packages, is still work in progress.
The latter is a bit dated, though it was the most complete guide for quite some time available for Python developers looking to package their software.

You may also want to check the sample project [https://github.com/pypa/sampleproject], which exemplifies the best Python packaging practices.

3.2.23.2. Making the plugin package

Buildbot supports several kinds of pluggable components:

	worker

	changes

	schedulers

	steps

	status

	util

(these are described in Plugin Infrastructure in Buildbot), and

	www

which is described in web server configuration.

Once you have your component packaged, it’s quite straightforward: you just need to add a few lines to the entry_points parameter of your call of setup function in setup.py file:

setup(
 ...
 entry_points = {
 ...,
 'buildbot.kind': [
 'PluginName = PluginModule:PluginClass'
]
 },
 ...
)

(You might have seen different ways to specify the value for entry_points, however they all do the same thing.
Full description of possible ways is available in setuptools documentation [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins].)

After the setup.py [https://github.com/buildbot/buildbot/tree/master/master/setup.py] file is updated, you can build and install it:

$ python setup.py build
$ sudo python setup.py install

(depending on your particular setup, you might not need to use sudo).

After that the plugin should be available for Buildbot and you can use it in your master.cfg as:

from buildbot.kind import PluginName

... PluginName ...

3.2.23.3. Publish the package

This is the last step before the plugin is available to others.

Once again, there is a number of options available for you:

	just put a link to your version control system

	prepare a source tarball with the plugin (python setup.py sdist)

	or publish it on PyPI [https://pypi.python.org]

The last option is probably the best one since it will make your plugin available pretty much to all Python developers.

Once you have published the package, please send a link to buildbot-devel mailing list, so we can include a link to your plugin to Plugin Infrastructure in Buildbot.

 3.3. APIs

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.3. APIs

This section documents Buildbot’s APIs.
These are the interfaces against which externally-maintained code should be written.

	3.3.1. REST API
	3.3.1.1. Versions

	3.3.1.2. Getting

	3.3.1.3. Collections

	3.3.1.4. Controlling

	3.3.1.5. Authentication

	3.3.1.6. Raml Specs

	3.3.2. Data API
	3.3.2.1. Sections

	3.3.2.2. Updates

	3.3.2.3. Concrete Interfaces

	3.3.2.4. Extending the Data API

	3.3.2.5. Data Model

	3.3.3. Database
	3.3.3.1. Database Overview

	3.3.3.2. Schema

	3.3.3.3. API

	3.3.3.4. Writing Database Connector Methods

	3.3.3.5. Modifying the Database Schema

	3.3.3.6. Foreign key checking

	3.3.3.7. Database Compatibility Notes

	3.3.3.8. Testing migrations with real databases

	3.3.4. Messaging and Queues
	3.3.4.1. Overview

	3.3.4.2. Connector API

	3.3.4.3. Queue Schema

	3.3.4.4. Message Schema

 3.3.1. REST API

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.3.1. REST API

The REST API is a thin wrapper around the data API’s “Getter” and “Control” sections.
It is also designed, in keeping with REST principles, to be discoverable.
As such, the details of the paths and resources are not documented here.
Begin at the root URL, and see the Data API documentation for more information.

	Versions

	Getting

	Collections
	Field Selection

	Filtering

	Sorting

	Pagination

	Controlling

	Authentication

	Raml Specs
	Build
	Update Methods

	Endpoints

	builder
	Update Methods

	Endpoints

	buildrequest
	Update Methods

	Endpoints

	buildset
	Update Methods

	Endpoints

	change
	Update Methods

	Endpoints

	changesource
	Update Methods

	Endpoints

	forcescheduler
	Endpoints

	identifier

	Logs
	Update Methods

	Endpoints

	logchunk
	Update Methods

	Endpoints

	master
	Update Methods

	Endpoints

	patch
	Update Methods

	rootlink
	Endpoints

	scheduler
	Update Methods

	Endpoints

	sourcedproperties
	Update Methods

	Endpoints

	sourcestamp
	Endpoints

	spec
	Endpoints

	step
	Update Methods

	Endpoints

	worker
	Endpoints

	Raw endpoints

	Raml spec verbatim

3.3.1.1. Versions

The API described here is version 2.
The ad-hoc API from Buildbot-0.8.x, version 1, is no longer supported [1].

The policy for incrementing the version is when there is incompatible change added.
Removing a field or endpoint is considered incompatible change.
Adding a field or endpoint is not considered incompatible, and thus will only be described as a change in release note.
The policy is that we will avoid as much as possible incrementing version.

	[1]	The JSON API defined by status_json.py in Buildbot-0.8.x is considered version 1, although its root path was json, not api/v1.

3.3.1.2. Getting

To get data, issue a GET request to the appropriate path.
For example, with a base URL of http://build.example.org/buildbot, the list of masters for builder 9 is available at http://build.example.org/buildbot/api/v2/builder/9/master.

	
resource type: collection

	

3.3.1.3. Collections

Results are formatted in keeping with the JSON API [http://jsonapi.org/] specification.
The top level of every response is an object.
Its keys are the plural names of the resource types, and the values are lists of objects, even for a single-resource request.
For example:

{
 "meta": {
 "total": 2
 },
 "schedulers": [
 {
 "master": null,
 "name": "smoketest",
 "schedulerid": 1
 },
 {
 "master": {
 "active": true,
 "last_active": 1369604067,
 "link": "http://build.example.org/api/v2/master/1",
 "masterid": 1,
 "name": "master3:/BB/master"
 },
 "name": "goaheadtryme",
 "schedulerid": 2
 }
]
}

A response may optionally contain extra, related resources beyond those requested.
The meta key contains metadata about the response, including the total count of resources in a collection.

Several query parameters may be used to affect the results of a request.
These parameters are applied in the order described (so, it is not possible to sort on a field that is not selected, for example).

Field Selection

If only certain fields of each resource are required, the field query parameter can be used to select them.
For example, the following will select just the names and id’s of all schedulers:

	http://build.example.org/api/v2/scheduler?field=name&field=schedulerid

Field selection can be used for either detail (single-entity) or collection (multi-entity) requests.
The remaining options only apply to collection requests.

Filtering

Collection responses may be filtered on any simple top-level field.

To select records with a specific value use the query parameter {field}={value}.
For example, http://build.example.org/api/v2/scheduler?name=smoketest selects the scheduler named “smoketest”.

Filters can use any of the operators listed below, with query parameters of the form {field}__{operator}={value}.

	eq

	equality, or with the same parameter appearing multiple times, equality with one of the given values (so foo__eq=x&foo__eq=y would match resources where foo is x or y)

	ne

	inequality, or set exclusion

	lt

	select resources where the field’s value is less than {value}

	le

	select resources where the field’s value is less than or equal to {value}

	gt

	select resources where the field’s value is greater than {value}

	ge

	select resources where the field’s value is greater than or equal to {value}

	contains

	Select resources where the field’s value contains {value}.
If the parameter is provided multiple times, results containing at least one of the values are returned (so foo__contains=x&foo__contains=y would match resources where foo contains x, y or both).

For example:

	http://build.example.org/api/v2/builder?name__lt=cccc

	http://build.example.org/api/v2/buildsets?complete__eq=false

Boolean values can be given as on/off, true/false, yes/no, or 1/0.

Sorting

Collection responses may be ordered with the order query parameter.
This parameter takes a field name to sort on, optionally prefixed with - to reverse the sort.
The parameter can appear multiple times, and will be sorted lexically with the fields arranged in the given order.
For example:

	http://build.example.org/api/v2/buildrequest?order=builderid&order=buildrequestid

Pagination

Collection responses may be paginated with the offset and limit query parameters.
The offset is the 0-based index of the first result to included, after filtering and sorting.
The limit is the maximum number of results to return.
Some resource types may impose a maximum on the limit parameter; be sure to check the resulting links to determine whether further data is available.
For example:

	http://build.example.org/api/v2/buildrequest?order=builderid&limit=10

	http://build.example.org/api/v2/buildrequest?order=builderid&offset=20&limit=10

3.3.1.4. Controlling

Data API control operations are handled by POST requests using a simplified form of JSONRPC 2.0 [http://www.jsonrpc.org/specification].
The JSONRPC “method” is mapped to the data API “action”, and the parameters are passed to that application.

The following parts of the protocol are not supported:

	positional parameters

	batch requests

Requests are sent as an HTTP POST, containing the request JSON in the body.
The content-type header must be application/json.

A simple example:

POST http://build.example.org/api/v2/scheduler/4
--> {"jsonrpc": "2.0", "method": "force", "params": {"revision": "abcd", "branch": "dev"}, "id": 843}
<-- {"jsonrpc": "2.0", "result": {"buildsetid": 44}, "id": 843}

3.3.1.5. Authentication

Authentication to the REST API is performed in the same manner as authentication to the main web interface. Once credentials have been established, a cookie will be set, which must be sent to the buildbot REST API with every request thereafter. For those buildbot instances using OAuth2 authentication providers, access tokens can be used for automated access. For example, GitHub’s personal access tokens can be used to access the buildbot as a github user without needing to store the username and password of the user. To use an OAuth2 access token, send a GET request to the /auth/login with the token URL parameter set to the access token that the OAuth2 provider has given you. A python example using requests is shown below, where we first authenticate with our OAuth2 access token, and then are able to request otherwise shielded endpoints:

import requests
s = requests.Session()
s.get("https://<buildbot_url>/auth/login", params={"token": OAUTH_TOKEN})
builders = s.get("https://<buildbot_url>/api/v2/builders").json()

3.3.1.6. Raml Specs

The Data API is documented in RAML 1.0 format [https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md].
RAML describes and documents all our data, rest, and javascript APIs in a format that can be easily manipulated by human and machines.

Build

	
resource type: build

	

	Attributes:	
	buildid (integer) – the unique ID of this build

	number (integer) – the number of this build (sequential for a given builder)

	builderid (integer) – id of the builder for this build

	buildrequestid (integer) – build request for which this build was performed, or None if no such request exists

	workerid (integer) – the worker this build ran on

	masterid (integer) – the master this build ran on

	started_at (date) – time at which this build started

	complete (boolean) – true if this build is complete
Note that this is a calculated field (from complete_at != None).
Ordering by this field is not optimized by the database layer.

	complete_at? (date) – time at which this build was complete, or None if it’s still running

	properties? (sourcedproperties) – a dictionary of properties attached to build.

	results? (integer) – the results of the build (see Build Result Codes), or None if not complete

	state_string (string) – a string giving detail on the state of the build.

example

{
 "builderid": 10,
 "buildid": 100,
 "buildrequestid": 13,
 "workerid": 20,
 "complete": false,
 "complete_at": null,
 "masterid": 824,
 "number": 1,
 "results": null,
 "started_at": 1451001600,
 "state_string": "created",
 "properties": {}
}

This resource type describes completed and in-progress builds.
Much of the contextual data for a build is associated with the build request, and through it the buildset.

Note

properties

This properties dict is only filled out if the properties filterspec is set.

Meaning that, property filter allows one to request the Builds DATA API like so:

	api/v2/builds?property=propKey1&property=propKey2 (returns Build’s properties which match given keys)

	api/v2/builds?property=* (returns all Build’s properties)

	api/v2/builds?propKey1&property=propKey2&limit=30 (filters combination)

Important

When combined with field filter, to get properties, one should ensure properties field is set.

	api/v2/builds?field=buildid&field=properties&property=workername&property=user

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.builds.Build

	
	
newBuild(builderid, buildrequestid, workerid)

	

	Parameters:	
	builderid (integer) – builder performing this build

	buildrequstid (integer) – build request being built

	workerid (integer) – worker on which this build is performed

	Returns:	(buildid, number) via Deferred

Create a new build resource and return its ID.
The state strings for the new build will be set to ‘starting’.

	
setBuildStateString(buildid, state_string)

	

	Parameters:	
	buildid (integer) – the build to modify

	state_string (unicode) – new state string for this build

Replace the existing state strings for a build with a new list.

	
finishBuild(buildid, results)

	

	Parameters:	
	buildid (integer) – the build to modify

	results (integer) – the build’s results

Mark the build as finished at the current time, with the given results.

Endpoints

	
path: /builders/{builderid_or_buildername}/builds

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects all builds for a builder (can return lots of data!)

	GET

	
	returns

	collection of build

	
path: /builders/{builderid_or_buildername}/builds/{build_number}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

This path selects a specific build by builderid, buildnumber

	GET

	
	returns

	collection of build

	
POST with method: /builders/{builderid_or_buildername}/builds/{build_number} (method=stop)

	

	Body keys:	
	method (string) – must be stop

	reason (string) – The reason why the build was stopped

	results (integer) – optionally results value override (default CANCELLED)

	
POST with method: /builders/{builderid_or_buildername}/builds/{build_number} (method=rebuild)

	

	Body keys:	method (string) – must be rebuild

	
path: /buildrequests/{buildrequestid}/builds

	

	Path Keys:	buildrequestid (number) – the id of the buildrequest

	GET

	
	returns

	collection of build

	
path: /builds

	

	GET

	
	returns

	collection of build

	
path: /builds/{buildid}

	

	Path Keys:	buildid (number) – the id of the build

This path selects a build by id

	GET

	
	returns

	collection of build

	
POST with method: /builds/{buildid} (method=stop)

	

	Body keys:	
	method (string) – must be stop

	reason (string) – The reason why the build was stopped

	
POST with method: /builds/{buildid} (method=rebuild)

	

	Body keys:	method (string) – must be rebuild

builder

	
resource type: builder

	

	Attributes:	
	builderid (integer) – the ID of this builder

	description? (string) – The description for that builder

	masterids[] (integer) – the ID of the masters this builder is running on

	name (identifier) – builder name

	tags[] (string) – list of tags for this builder

This resource type describes a builder.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.builders.Builder

	
	
updateBuilderList(masterid, builderNames)

	

	Parameters:	
	masterid (integer) – this master’s master ID

	builderNames (list) – list of names of currently-configured builders (unicode strings)

	Returns:	Deferred

Record the given builders as the currently-configured set of builders on this master.
Masters should call this every time the list of configured builders changes.

Endpoints

	
path: /builders

	

This path selects all builders

	GET

	
	returns

	collection of builder

	
path: /builders/{builderid_or_buildername}

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects a builder by builderid

	GET

	
	returns

	collection of builder

	
path: /masters/{masterid}/builders

	

	Path Keys:	masterid (number) – the id of the master

This path selects all builders of a given master

	GET

	
	returns

	collection of builder

	
path: /masters/{masterid}/builders/{builderid}

	

	Path Keys:	
	masterid (number) – the id of the master

	builderid (number) – the id of the builder

This path selects one builder by id of a given master

	GET

	
	returns

	collection of builder

buildrequest

	
resource type: buildrequest

	

	Attributes:	
	buildrequestid (integer) – the unique ID of this buildrequest

	builderid (integer) – the id of the builder linked to this buildrequest

	buildsetid (integer) – the id of the buildset that contains this buildrequest

	claimed (boolean) – True if this buildrequest has been claimed.
Note that this is a calculated field (from claimed_at != None).
Ordering by this field is not optimized by the database layer.

	claimed_at? (date) – time at which this build has last been claimed.
None if this buildrequest has never been claimed or has been unclaimed

	claimed_by_masterid? (integer) – the id of the master that claimed this buildrequest.
None if this buildrequest has never been claimed or has been unclaimed

	complete (boolean) – true if this buildrequest is complete

	complete_at? (date) – time at which this buildrequest was completed, or None if it’s still running

	priority (integer) – the priority of this buildrequest

	properties? (sourcedproperties) – a dictionary of properties corresponding to buildrequest.

	results? (integer) – the results of this buildrequest (see Build Result Codes), or None if not complete

	submitted_at (date) – time at which this buildrequest were submitted

	waited_for (boolean) – True if the entity that triggered this buildrequest is waiting for it to complete.
Should be used by an (unimplemented so far) clean shutdown to only start br that are waited_for.

This resource type describes completed and in-progress buildrequests.
Much of the contextual data for a buildrequest is associated with the buildset that contains this buildrequest.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.buildrequests.BuildRequest

	
	
claimBuildRequests(brids, claimed_at=None, _reactor=twisted.internet.reactor)

	

	Parameters:	
	brids (list(integer)) – list of buildrequest id to claim

	claimed_at (datetime) – date and time when the buildrequest is claimed

	_reactor (twisted.internet.interfaces.IReactorTime) – reactor used to get current time if claimed_at is None

	Returns:	(boolean) whether claim succeeded or not

Claim a list of buildrequests

	
unclaimBuildRequests(brids)

	

	Parameters:	brids (list(integer)) – list of buildrequest id to unclaim

Unclaim a list of buildrequests

	
completeBuildRequests(brids, results, complete_at=None, _reactor=twisted.internet.reactor)

	

	Parameters:	
	brids (list(integer)) – list of buildrequest id to complete

	results (integer) – the results of the buildrequest (see Build Result Codes)

	complete_at (datetime) – date and time when the buildrequest is completed

	_reactor (twisted.internet.interfaces.IReactorTime) – reactor used to get current time, if complete_at is None

Complete a list of buildrequest with the results status

Endpoints

	
path: /builders/{builderid_or_buildername}/buildrequests

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects all buildrequests for a given builder (can return lots of data!)

	GET

	
	returns

	collection of buildrequest

	
path: /buildrequests

	

	GET

	
	returns

	collection of buildrequest

	
path: /buildrequests/{buildrequestid}

	

	Path Keys:	buildrequestid (number) – the id of the buildrequest

	GET

	
	returns

	collection of buildrequest

	
POST with method: /buildrequests/{buildrequestid} (method=cancel)

	

	Body keys:	
	method (string) – must be cancel

	reason (string) – The reason why the buildrequest was cancelled

buildset

	
resource type: buildset

	

	Attributes:	
	bsid (integer) – the ID of this buildset

	complete (boolean) – true if all of the build requests in this buildset are complete

	complete_at? (integer) – the time this buildset was completed, or None if not complete

	external_idstring? (string) – an identifier that external applications can use to identify a submitted buildset; can be None

	parent_buildid? (integer) – optional build id that is the parent for this buildset

	parent_relationship? (string) – relationship identifier for the parent, this is a configured relationship between the parent build, and the childs buildsets

	reason (string) – the reason this buildset was scheduled

	results? (integer) – the results of the buildset (see Build Result Codes), or None if not complete

	sourcestamps[] (sourcestamp) – the sourcestamps for this buildset; each element is a valid sourcestamp entity

	submitted_at (integer) – the time this buildset was submitted

A buildset gathers build requests that were scheduled at the same time, and which share a source stamp, properties, and so on.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.buildsets.Buildset

	
	
addBuildset(scheduler=None, sourcestamps=[], reason='', properties={}, builderids=[], external_idstring=None, parent_buildid=None, parent_relationship=None)

	

	Parameters:	
	scheduler (string) – the name of the scheduler creating this buildset

	sourcestamps (list) – sourcestamps for the new buildset; see below

	reason (unicode) – the reason for this build

	properties (dictionary with unicode keys and (source, property value) values) – properties to set on this buildset

	builderids (list) – names of the builderids for which build requests should be created

	external_idstring (unicode) – arbitrary identifier to recognize this buildset later

	parent_buildid (int) – optional build id that is the parent for this buildset

	parent_relationship (unicode) – relationship identifier for the parent, this is a configured relationship between the parent build, and the childs buildsets

	Returns:	(buildset id, dictionary mapping builder ids to build request ids) via Deferred

Create a new buildset and corresponding buildrequests based on the given parameters.
This is the low-level interface for scheduling builds.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sourcestamp ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

	
maybeBuildsetComplete(bsid)

	

	Parameters:	bsid (integer) – buildset that may be complete

	Returns:	Deferred

This method should be called when a build request is finished.
It checks the given buildset to see if all of its buildrequests are finished.
If so, it updates the status of the buildset and send the appropriate messages.

Endpoints

	
path: /buildsets

	

this path selects all buildsets

	GET

	
	returns

	collection of buildset

	
path: /buildsets/{bsid}

	

	Path Keys:	bsid (identifier) – the id of the buildset

this path selects a buildset by id

	GET

	
	returns

	collection of buildset

change

	
resource type: change

	

	Attributes:	
	changeid (integer) – the ID of this change

	author (string) – the author of the change in “name”, “name <email>” or just “email” (with @) format

	branch? (string) – branch on which the change took place, or none for the “default branch”, whatever that might mean

	category? (string) – user-defined category of this change, or none

	codebase (string) – codebase in this repository

	comments (string) – user comments for this change (aka commit)

	files[] (string) – list of source-code filenames changed

	parent_changeids[] (integer) – The ID of the parents.
The data api allow for several parents, but the core buildbot does not yet support

	project (string) – user-defined project to which this change corresponds

	properties (sourcedproperties) – user-specified properties for this change, represented as an object mapping keys to tuple (value, source)

	repository (string) – repository where this change occurred

	revision? (string) – revision for this change, or none if unknown

	revlink? (string) – link to a web view of this change

	sourcestamp (sourcestamp) – the sourcestamp resource for this change

	when_timestamp (integer) – time of the change

A change resource represents a change to the source code monitored by Buildbot.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.changes.Change

	
	
addChange(files=None, comments=None, author=None, revision=None, when_timestamp=None, branch=None, category=None, revlink='', properties={}, repository='', codebase=None, project='', src=None)

	

	Parameters:	
	files (list of unicode strings) – a list of filenames that were changed

	comments (unicode) – user comments on the change

	author (unicode) – the author of this change

	revision (unicode) – the revision identifier for this change

	when_timestamp (integer) – when this change occurred (seconds since the epoch), or the current time if None

	branch (unicode) – the branch on which this change took place

	category (unicode) – category for this change

	revlink (string) – link to a web view of this revision

	properties (dictionary with unicode keys and simple values (JSON-able)) – properties to set on this change. Note that the property source is not included in this dictionary.

	repository (unicode) – the repository in which this change took place

	project (unicode) – the project this change is a part of

	src (unicode) – source of the change (vcs or other)

	Returns:	the ID of the new change, via Deferred

Add a new change to Buildbot.
This method is the interface between change sources and the rest of Buildbot.

All parameters should be passed as keyword arguments.

All parameters labeled ‘unicode’ must be unicode strings and not bytestrings.
Filenames in files, and property names, must also be unicode strings.
This is tested by the fake implementation.

Endpoints

	
path: /builds/{buildid}/changes

	

	Path Keys:	buildid (number) – the id of the build

This path selects all changes tested by a build

	GET

	
	returns

	collection of change

	
path: /changes

	

This path selects all changes.
On a reasonably loaded master, this can quickly return a very large result, taking minutes to process.
A specific query configuration is optimized which allows to get the recent changes: order:-changeid&limit=<n>

	GET

	
	returns

	collection of change

	
path: /changes/{changeid}

	

	Path Keys:	changeid (number) – the id of a change

this path selects one change by id

	GET

	
	returns

	collection of change

	
path: /sourcestamps/{ssid}/changes

	

	Path Keys:	ssid (number) – the id of the sourcestamp

This path selects all changes associated to one sourcestamp

	GET

	
	returns

	collection of change

changesource

	
resource type: changesource

	

	Attributes:	
	changesourceid (integer) – the ID of this changesource

	master? (master) – the master on which this worker is running, or None if it is inactive

	name (string) – name of this changesource

A changesource generates change objects, for example in response to an update in some
repository. A particular changesource (by name) runs on at most one master at a time.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.changesources.ChangeSource

	
	
findChangeSourceId(name)

	

	Parameters:	name (string) – changesource name

	Returns:	changesource ID via Deferred

Get the ID for the given changesource name, inventing one if necessary.

	
trySetChangeSourceMaster(changesourceid, masterid)

	

	Parameters:	
	changesourceid (integer) – changesource ID to try to claim

	masterid (integer) – this master’s master ID

	Returns:	True or False, via Deferred

Try to claim the given scheduler for the given master and return True if
the scheduler is to be activated on that master.

Endpoints

	
path: /changesources

	

This path selects all changesource.

	GET

	
	returns

	collection of changesource

	
path: /changesources/{changesourceid}

	

	Path Keys:	changesourceid (number) – the id of a changesource

This path selects one changesource given its id.

	GET

	
	returns

	collection of changesource

	
path: /masters/{masterid}/changesources

	

	Path Keys:	masterid (number) – the id of the master

This path selects all changesources for a given master

	GET

	
	returns

	collection of changesource

	
path: /masters/{masterid}/changesources/{changesourceid}

	

	Path Keys:	masterid (number) – the id of the master

This path selects one changesource by id for a given master

	GET

	
	returns

	collection of changesource

forcescheduler

	
resource type: forcescheduler

	

	Attributes:	
	all_fields[] (object) –

	builder_names[] (identifier) – names of the builders that this scheduler can trigger

	button_name (string) – label of the button to use in the UI

	label (string) – label of this scheduler to be displayed in the ui

	name (identifier) – name of this scheduler

A forcescheduler initiates builds, via a formular in the web UI.
At the moment, forceschedulers must be defined on all the masters where a web ui is configured. A particular forcescheduler runs on the master where the web request was sent.

Note

This datatype and associated endpoints will be deprecated when bug #2673 [http://trac.buildbot.net/ticket/2673] will be resolved.

Endpoints

	
path: /builders/{builderid_or_buildername}/forceschedulers

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects all force-schedulers for a given builder

	GET

	
	returns

	collection of forcescheduler

	
path: /forceschedulers

	

This path selects all forceschedulers.

	GET

	
	returns

	collection of forcescheduler

	
path: /forceschedulers/{schedulername}

	

	Path Keys:	schedulername (identifier) – the name of a scheduler

This path selects all changesource.

	GET

	
	returns

	collection of forcescheduler

	
POST with method: /forceschedulers/{schedulername} (method=force)

	

	Body keys:	
	method (string) – must be force

	owner (string) – The user who wants to create the buildrequest

	[] – content of the forcescheduler parameter is dependent on the configuration of the forcescheduler

identifier

	
resource type: identifier

	

Logs

	
resource type: log

	

	Attributes:	
	complete (boolean) – true if this log is complete and will not generate additional logchunks

	logid (integer) – the unique ID of this log

	name (string) – the name of this log (e.g., err.html)

	num_lines (integer) – total number of line of this log

	slug (identifier) – the “slug”, suitable for use in a URL, of this log (e.g., err_html)

	stepid (integer) – id of the step containing this log

	type (identifier) – log type, identified by a single ASCII letter; see logchunk for details.

example

{
 "logid": 60,
 "name": "stdio",
 "slug": "stdio",
 "stepid": 50,
 "complete": false,
 "num_lines": 0,
 "type": "s"
}

A log represents a stream of textual output from a step.
The actual output is encoded as a sequence of logchunk resources.
In-progress logs append logchunks as new data is added to the end, and event subscription allows a client to “follow” the log.

Each log has a “slug” which is unique within the step, and which can be used in paths.
The slug is generated by addLog based on the name, using forceIdentifier and incrementIdentifier to guarantee uniqueness.

Todo

	
event: build.$buildid.step.$number.log.$logid.newlog

	The log has just started.
Logs are started when they are created, so this also indicates the creation of a new log.

	
event: build.$buildid.step.$number.log.$logid.complete

	The log is complete.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.logs.Log

	
	
addLog(stepid, name, type)

	

	Parameters:	
	stepid (integer) – stepid containing this log

	name (string) – name for the log

	Raises:	KeyError – if a log by the given name already exists

	Returns:	logid via Deferred

Create a new log and return its ID.
The name need not be unique.
This method will generate a unique slug based on the name.

	
appendLog(logid, content):

	

	Parameters:	
	logid (integer) – the log to which content should be appended

	content (unicode) – the content to append

Append the given content to the given log.
The content must end with a newline.
All newlines in the content should be UNIX-style (\n).

	
finishLog(logid)

	

	Parameters:	logid (integer) – the log to finish

Mark the log as complete.

	
compressLog(logid)

	

	Parameters:	logid (integer) – the log to compress

Compress the given log, after it is finished.
This operation may take some time.

Endpoints

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_name (identifier) – the slug name of the step

This path selects all logs for the given step.

	GET

	
	returns

	collection of log

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_name (identifier) – the slug name of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of log

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_number (number) – the number of the step

This path selects all log of a a specific step

	GET

	
	returns

	collection of log

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_number (number) – the number of the step

	log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

	GET

	
	returns

	collection of log

	
path: /builds/{buildid}/steps/{step_number_or_name}/logs

	

	Path Keys:	
	buildid (number) – the id of the build

	| number step_number_or_name (identifier) – the name or number of the step

This path selects all logs of a step of a build

	GET

	
	returns

	collection of log

	
path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}

	

	Path Keys:	
	buildid (number) – the id of the build

	| number step_number_or_name (identifier) – the name or number of the step

	log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

	GET

	
	returns

	collection of log

	
path: /logs/{logid}

	

	Path Keys:	logid (number) – the id of the log

This path selects one log

	GET

	
	returns

	collection of log

	
path: /steps/{stepid}/logs

	

	Path Keys:	stepid (number) – the id of the step

This path selects all logs for the given step.

	GET

	
	returns

	collection of log

	
path: /steps/{stepid}/logs/{log_slug}

	

	Path Keys:	
	stepid (number) – the id of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of log

logchunk

	
resource type: logchunk

	

	Attributes:	
	content (string) – content of the chunk

	firstline (integer) – zero-based line number of the first line in this chunk

	logid (integer) – the ID of log containing this chunk

A logchunk represents a contiguous sequence of lines in a logfile.
Logs are not individually addressable in the data API; instead, they must be requested by line number range.
In a strict REST sense, many logchunk resources will contain the same line.

The chunk contents is represented as a single unicode string.
This string is the concatenation of each newline terminated-line.

Each log has a type, as identified by the “type” field of the corresponding log.
While all logs are sequences of unicode lines, the type gives additional information fo interpreting the contents.
The defined types are:

	t – text, a simple sequence of lines of text

	s – stdio, like text but with each line tagged with a stream

	h – HTML, represented as plain text

	d – Deleted, logchunks for this log have been deleted by the Janitor

In the stream type, each line is prefixed by a character giving the stream type for that line.
The types are i for input, o for stdout, e for stderr, and h for header.
The first three correspond to normal UNIX standard streams, while the header stream contains metadata produced by Buildbot itself.

The offset and limit parameters can be used to select the desired lines.
These are specified as query parameters via the REST interface, or as arguments to the get method in Python.
The result will begin with line offset (so the resulting firstline will be equal to the given offset), and will contain up to limit lines.

Following example will get the first 100 lines of a log:

from buildbot.data import resultspec
first_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),
 resultSpec=resultspec.ResultSpec(limit=100))

Following example will get the last 100 lines of a log:

from buildbot.data import resultspec
last_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),
 resultSpec=resultspec.ResultSpec(offset=log['num_lines']-100))

Note

There is no event for a new chunk. Instead, the log resource is updated when new chunks are added, with the new number of lines.
Consumers can then request those lines, if desired.

Update Methods

Log chunks are updated via log.

Endpoints

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_name (identifier) – the slug name of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of logchunk

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_number (number) – the number of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of logchunk

	
path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents

	

	Path Keys:	
	buildid (number) – the id of the build

	| number step_number_or_name (identifier) – the name or number of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of logchunk

	
path: /logs/{logid}/contents

	

	Path Keys:	logid (number) – the id of the log

	GET

	
	returns

	collection of logchunk

	
path: /steps/{stepid}/logs/{log_slug}/contents

	

	Path Keys:	
	stepid (number) – the id of the step

	log_slug (identifier) – the slug name of the log

	GET

	
	returns

	collection of logchunk

master

	
resource type: master

	

	Attributes:	
	active (boolean) – true if the master is active

	last_active (date) – time this master was last marked active

	masterid (integer) – the ID of this master

	name (string) – master name (in the form “hostname:basedir”)

This resource type describes buildmasters in the buildmaster cluster.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.masters.Master

	
	
masterActive(name, masterid)

	

	Parameters:	
	name (unicode) – the name of this master (generally hostname:basedir)

	masterid (integer) – this master’s master ID

	Returns:	Deferred

Mark this master as still active.
This method should be called at startup and at least once per minute.
The master ID is acquired directly from the database early in the master startup process.

	
expireMasters()

	

	Returns:	Deferred

Scan the database for masters that have not checked in for ten minutes.
This method should be called about once per minute.

	
masterStopped(name, masterid)

	

	Parameters:	
	name (unicode) – the name of this master

	masterid (integer) – this master’s master ID

	Returns:	Deferred

Mark this master as inactive.
Masters should call this method before completing an expected shutdown, and on startup.
This method will take care of deactivating or removing configuration resources like builders and schedulers as well as marking lost builds and build requests for retry.

Endpoints

	
path: /builders/{builderid_or_buildername}/masters

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects all masters supporting a given builder

	GET

	
	returns

	collection of master

	
path: /builders/{builderid_or_buildername}/{masterid}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	masterid (number) – the id of the master

This path selects a master by id filtered by given builderid

	GET

	
	returns

	collection of master

	
path: /masters

	

This path selects all masters

	GET

	
	returns

	collection of master

	
path: /masters/{masterid}

	

	Path Keys:	masterid (number) – the id of the master

This path selects one master given its id

	GET

	
	returns

	collection of master

patch

	
resource type: patch

	

	Attributes:	
	patchid (integer) – the unique ID of this patch

	body (string) – patch body as a binary string

	level (integer) – patch level - the number of directory names to strip from filenames in the patch

	subdir (string) – subdirectory in which patch should be applied

	author? (string) – patch author, or None

	comment? (string) – patch comment, or None

This resource type describes a patch.
Patches have unique IDs, but only appear embedded in sourcestamps, so those IDs are not especially useful.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.patches.Patch

	(no update methods)

rootlink

	
resource type: rootlink

	

	Attributes:	name (string) –

Endpoints

	
path: /

	

	GET

	
	returns

	collection of rootlink

scheduler

	
resource type: scheduler

	

	Attributes:	
	master? (master) – the master on which this scheduler is running, or None if it is inactive

	name (string) – name of this scheduler

	schedulerid (integer) – the ID of this scheduler

A scheduler initiates builds, often in response to changes from change sources.
A particular scheduler (by name) runs on at most one master at a time.

Note

This data type and associated endpoints is planned to be merged with forcescheduler data type when bug #2673 [http://trac.buildbot.net/ticket/2673] will be resolved.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.schedulers.Scheduler

	

	
findSchedulerId(name)

	

	Parameters:	name (string) – scheduler name

	Returns:	scheduler ID via Deferred

Get the ID for the given scheduler name, inventing one if necessary.

	
trySetSchedulerMaster(schedulerid, masterid)

	

	Parameters:	
	schedulerid (integer) – scheduler ID to try to claim

	masterid (integer) – this master’s master ID

	Returns:	True or False, via Deferred

Try to claim the given scheduler for the given master and return True if
the scheduler is to be activated on that master.

Endpoints

	
path: /masters/{masterid}/schedulers

	

	Path Keys:	masterid (number) – the id of the master

This path selects all schedulers for a given master

	GET

	
	returns

	collection of scheduler

	
path: /masters/{masterid}/schedulers/{schedulerid}

	

	Path Keys:	
	masterid (number) – the id of the master

	schedulerid (number) – the id of the scheduler

This path selects one scheduler by id for a given master

	GET

	
	returns

	collection of scheduler

	
path: /schedulers

	

This path selects all schedulers

	GET

	
	returns

	collection of scheduler

	
path: /schedulers/{schedulerid}

	

	Path Keys:	schedulerid (number) – the id of the scheduler

This path selects one scheduler by id

	GET

	
	returns

	collection of scheduler

sourcedproperties

	
resource type: sourcedproperties

	

	Attributes:	[] (object) – Each key of this map is the name of a defined property
The value consist on a couple (source, value)

user-specified properties for this change, represented as an object mapping keys to tuple (value, source)

Properties are present in several data resources, but have a separate endpoints, because they can represent a large dataset.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.properties.Properties

	
	
setBuildProperty(buildid, name, value, source)

	

	Parameters:	
	buildid (integer) – build ID

	name (unicode) – Name of the property to set

	value (Any JSON-able type is accepted (lists, dicts, strings and numbers)) – Value of the property

	source (unicode) – Source of the property to set

Set a build property.
If no property with that name exists in that build, a new property will be created.

	
setBuildProperties(buildid, props)

	

	Parameters:	
	buildid (integer) – build ID

	props (IProperties) – Name of the property to set

Synchronise build properties with the db.
This sends only one event in the end of the sync, and only if properties changed.
The event contains only the updated properties, for network efficiency reasons.

Endpoints

	
path: /builds/{buildid}/properties

	

	Path Keys:	buildid (number) – the id of the build

This path selects all properties of a build

	GET

	
	returns

	collection of sourcedproperties

	
path: /buildsets/{bsid}/properties

	

	Path Keys:	bsid (identifier) – the id of the buildset

This path selects all properties of a buildset.
Buildset properties is part of the initial properties of a build.

	GET

	
	returns

	collection of sourcedproperties

sourcestamp

	
resource type: sourcestamp

	

	Attributes:	
	ssid (integer) – the ID of this sourcestamp

Note

For legacy reasons, the abbreviated name ssid is used instead of canonical sourcestampid.
This might change in the future (bug #3509 [http://trac.buildbot.net/ticket/3509]).

	branch? (string) – code branch, or none for the “default branch”, whatever that might mean

	codebase (string) – revision for this sourcestamp, or none if unknown

	created_at (date) – the timestamp when this sourcestamp was created

	patch? (patch) – the patch for this sourcestamp, or none

	project (string) – user-defined project to which this sourcestamp corresponds

	repository (string) – repository where this sourcestamp occurred

	revision? (string) – revision for this sourcestamp, or none if unknown

A source stamp represents a particular version of the source code.
Absolute sourcestamps specify this completely, while relative sourcestamps (with revision = None) specify the latest source at the current time.
Source stamps can also have patches; such stamps describe the underlying revision with the given patch applied.

Note that, depending on the underlying version-control system, the same revision may describe different code in different branches (e.g., SVN) or may be independent of the branch (e.g., Git).

The created_at timestamp can be used to indicate the first time a sourcestamp was seen by Buildbot.
This provides a reasonable default ordering for sourcestamps when more reliable information is not available.

Endpoints

	
path: /sourcestamps

	

This path selects all sourcestamps (can return lots of data!)

	GET

	
	returns

	collection of sourcestamp

	
path: /sourcestamps/{ssid}

	

	Path Keys:	ssid (number) – the id of the sourcestamp

This path selects one sourcestamp by id

	GET

	
	returns

	collection of sourcestamp

spec

	
resource type: spec

	

	Attributes:	
	path (string) –

	plural (string) –

	type (string) –

	type_spec (object) –

Endpoints

	
path: /application.spec

	

	GET

	
	returns

	collection of spec

step

	
resource type: step

	

	Attributes:	
	stepid (integer) – the unique ID of this step

	buildid (integer) – id of the build containing this step

	complete (boolean) – true if this step is complete

	complete_at? (date) – time at which this step was complete, or None if it’s still running

	hidden (boolean) – true if the step should not be displayed

	name (identifier) – the step name, unique within the build

	number (integer) – the number of this step (sequential within the build)

	results? (integer) – the results of the step (see Build Result Codes), or None if not complete

	started_at? (date) – time at which this step started, or None if it hasn’t started yet

	state_string (string) – a string giving detail on the state of the build.
The first is usually one word or phrase; the remainder are sized for one-line display.

	urls[] – a list of URLs associated with this step.

This resource type describes a step in a build.
Steps have unique IDs, but are most commonly accessed by name in the context of their containing builds.

Update Methods

All update methods are available as attributes of master.data.updates.

	
class buildbot.data.steps.Step

	
	
newStep(buildid, name)

	

	Parameters:	
	buildid (integer) – buildid containing this step

	name (50-character identifier) – name for the step

	Returns:	(stepid, number, name) via Deferred

Create a new step and return its ID, number, and name.
Note that the name may be different from the requested name, if that name was already in use.
The state strings for the new step will be set to ‘pending’.

	
startStep(stepid)

	

	Parameters:	stepid (integer) – the step to modify

Start the step.

	
setStepStateString(stepid, state_string)

	

	Parameters:	
	stepid (integer) – the step to modify

	state_string (unicode) – new state strings for this step

Replace the existing state string for a step with a new list.

	
addStepURL(stepid, name, url):

	

	Parameters:	
	stepid (integer) – the step to modify

	name (string) – the url name

	url (string) – the actual url

	Returns:	None via deferred

Add a new url to a step.
The new url is added to the list of urls.

	
finishStep(stepid, results, hidden)

	

	Parameters:	
	stepid (integer) – the step to modify

	results (integer) – the step’s results

	hidden (boolean) – true if the step should not be displayed

Mark the step as finished at the current time, with the given results.

Endpoints

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

This path selects all steps for the given build.

	GET

	
	returns

	collection of step

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_name (identifier) – the slug name of the step

This path selects a specific step for the given build.

	GET

	
	returns

	collection of step

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_number (number) – the number of the step

This path selects a specific step given its step number

	GET

	
	returns

	collection of step

	
path: /builds/{buildid}/steps

	

	Path Keys:	buildid (number) – the id of the build

This path selects all steps of a build

	GET

	
	returns

	collection of step

	
path: /builds/{buildid}/steps/{step_number_or_name}

	

	Path Keys:	
	buildid (number) – the id of the build

	| number step_number_or_name (identifier) – the name or number of the step

This path selects one step of a build

	GET

	
	returns

	collection of step

worker

	
resource type: worker

	

	Attributes:	
	workerid (integer) – the ID of this worker

	configured_on[] – list of builders on masters this worker is configured on

	connected_to[] – list of masters this worker is attached to

	name (string) – the name of the worker

	paused (bool) – the worker is paused if it is connected but doesn’t accept new builds.

	graceful (bool) – the worker is graceful if it doesn’t accept new builds, and will shutdown when builds are finished.

	workerinfo (object) – information about the worker.

The worker information can be any JSON-able object.
In practice, it contains the following keys, based on information provided by the worker:

	admin (the admin information)

	host (the name of the host)

	access_uri (the access URI)

	version (the version on the worker)

A worker resource represents a worker to the source code monitored by Buildbot.

The contents of the connected_to and configured_on attributes are sensitive to the context of the request.
If a builder or master is specified in the path, then only the corresponding connections and configurations are included in the result.

Endpoints

	
path: /builders/{builderid_or_buildername}/workers

	

	Path Keys:	| identifier builderid_or_buildername (number) – the ID or name of the builder

This path selects all workers configured for a given builder

	GET

	
	returns

	collection of worker

	
path: /builders/{builderid_or_buildername}/workers/{name}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	name (identifier) – the name of the worker

This path selects a worker by name filtered by given builderid

	GET

	
	returns

	collection of worker

	
path: /builders/{builderid_or_buildername}/workers/{workerid}

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	workerid (number) – the id of the worker

This path selects a worker by id filtered by given builderid

	GET

	
	returns

	collection of worker

	
POST with method: /builders/{builderid_or_buildername}/workers/{workerid} (method=stop)

	

	Body keys:	
	method (string) – must be stop

	reason (string) – The reason why the worker was stopped

	
POST with method: /builders/{builderid_or_buildername}/workers/{workerid} (method=kill)

	

	Body keys:	
	method (string) – must be kill

	reason (string) – The reason why the worker was stopped

	
POST with method: /builders/{builderid_or_buildername}/workers/{workerid} (method=pause)

	

	Body keys:	
	method (string) – must be pause

	reason (string) – The reason why the worker was paused

	
POST with method: /builders/{builderid_or_buildername}/workers/{workerid} (method=unpause)

	

	Body keys:	
	method (string) – must be unpause

	reason (string) – The reason why the worker was un-paused

	
path: /masters/{masterid}/builders/{builderid}/workers

	

	Path Keys:	
	masterid (number) – the id of the master

	builderid (number) – the id of the builder

This path selects all workers for a given builder and a given master

	GET

	
	returns

	collection of worker

	
path: /masters/{masterid}/builders/{builderid}/workers/{name}

	

	Path Keys:	
	masterid (number) – the id of the master

	builderid (number) – the id of the builder

	name (identifier) – the name of the worker

This path selects one workers by name for a given builder and a given master

	GET

	
	returns

	collection of worker

	
path: /masters/{masterid}/builders/{builderid}/workers/{workerid}

	

	Path Keys:	
	masterid (number) – the id of the master

	builderid (number) – the id of the builder

	workerid (number) – the id of the worker

This path selects one workers by name for a given builder and a given master

	GET

	
	returns

	collection of worker

	
path: /masters/{masterid}/workers

	

	Path Keys:	masterid (number) – the id of the master

This path selects all workers for a given master

	GET

	
	returns

	collection of worker

	
path: /masters/{masterid}/workers/{name}

	

	Path Keys:	
	masterid (number) – the id of the master

	name (identifier) – the name of the worker

This path selects one worker by name for a given master

	GET

	
	returns

	collection of worker

	
path: /masters/{masterid}/workers/{workerid}

	

	Path Keys:	
	masterid (number) – the id of the master

	workerid (number) – the id of the worker

This path selects one worker by id for a given master

	GET

	
	returns

	collection of worker

	
path: /workers

	

this path selects all workers

	GET

	
	returns

	collection of worker

	
path: /workers/{name_or_id}

	

	Path Keys:	| number name_or_id (identifier) – the name or id of a worker

this path selects worker by name or id

	GET

	
	returns

	collection of worker

Raw endpoints

Raw endpoints allow to download content in their raw format (i.e. not within a json glue).
The content-disposition http header is set, so that the browser knows which file to store the content to.

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_name (identifier) – the slug name of the step

	log_slug (identifier) – the slug name of the log

This endpoint allows to get the raw logs for downloading into a file.
This endpoint does not provide paging capabilities.
For stream log types, the type line header characters are dropped.
‘text/plain’ is used as the mime type except for html logs, where ‘text/html’ is used.
The ‘slug’ is used as the filename for the resulting download. Some browsers are appending ".txt" or ".html" to this filename according to the mime-type.

	
path: /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw

	

	Path Keys:	
	| identifier builderid_or_buildername (number) – the ID or name of the builder

	build_number (number) – the number of the build within the builder

	step_number (number) – the number of the step

	log_slug (identifier) – the slug name of the log

This path downloads the whole log

	
path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw

	

	Path Keys:	
	buildid (number) – the id of the build

	| number step_number_or_name (identifier) – the name or number of the step

	log_slug (identifier) – the slug name of the log

This path downloads the whole log

	
path: /logs/{logid}/raw

	

	Path Keys:	logid (number) – the id of the log

This path downloads the whole log

	
path: /steps/{stepid}/logs/{log_slug}/raw

	

	Path Keys:	
	stepid (number) – the id of the step

	log_slug (identifier) – the slug name of the log

This path downloads the whole log

Raml spec verbatim

Sometimes Raml is just clearer than formatted text.

#%RAML 1.0
title: Buildbot Web API
version: v2
mediaType: application/json
traits:
 bbget:
 responses:
 200:
 body:
 application/json:
 type: responseObjects.libraries.types.<<bbtype>>
 404:
 body:
 text/plain:
 example: "not found"
 bbpost:
 body:
 type: <<reqtype>>
 responses:
 200:
 body:
 application/json:
 type: <<resptype>>
 404:
 body:
 text/plain:
 example: "not found"
 bbgetraw:
 responses:
 200:
 headers:
 content-disposition:
 description: content disposition header allows browser to save log file with proper filename
 example: attachment; filename=stdio
 body:
 text/html:
 description: "html data if the object is html"
 text/plain:
 description: "plain text data if the object is text"

types:
 build: !include types/build.raml
 builder: !include types/builder.raml
 buildrequest: !include types/buildrequest.raml
 buildset: !include types/buildset.raml
 worker: !include types/worker.raml
 change: !include types/change.raml
 changesource: !include types/changesource.raml
 forcescheduler: !include types/forcescheduler.raml
 identifier: !include types/identifier.raml
 log: !include types/log.raml
 logchunk: !include types/logchunk.raml
 master: !include types/master.raml
 rootlink: !include types/rootlink.raml
 scheduler: !include types/scheduler.raml
 sourcedproperties: !include types/sourcedproperties.raml
 sourcestamp: !include types/sourcestamp.raml
 patch: !include types/patch.raml
 spec: !include types/spec.raml
 step: !include types/step.raml
/:
 get:
 is:
 - bbget: {bbtype: rootlink}
/application.spec:
 get:
 is:
 - bbget: {bbtype: spec}
/builders:
 description: This path selects all builders
 get:
 is:
 - bbget: {bbtype: builder}
 /{builderid_or_buildername}:
 uriParameters:
 builderid_or_buildername:
 type: number | identifier
 description: the ID or name of the builder
 description: This path selects a builder by builderid
 get:
 is:
 - bbget: {bbtype: builder}
 /forceschedulers:
 description: This path selects all force-schedulers for a given builder
 get:
 is:
 - bbget: {bbtype: forcescheduler}
 /buildrequests:
 description: This path selects all buildrequests for a given builder (can return lots of data!)
 get:
 is:
 - bbget: {bbtype: buildrequest}
 /builds:
 description: This path selects all builds for a builder (can return lots of data!)
 get:
 is:
 - bbget: {bbtype: build}
 /{build_number}:
 uriParameters:
 build_number:
 type: number
 description: the number of the build within the builder
 description: This path selects a specific build by builderid, buildnumber
 get:
 is:
 - bbget: {bbtype: build}
 /actions/stop:
 post:
 description: |
 stops one build.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the build was stopped
 results:
 type: integer
 required: false
 description: optionally results value override (default CANCELLED)
 /actions/rebuild:
 post:
 description: |
 rebuilds one build.
 body:
 application/json:
 description: no parameter are needed
 /steps:
 description: This path selects all steps for the given build.
 get:
 is:
 - bbget: {bbtype: step}
 /{step_name}:
 uriParameters:
 step_name:
 type: identifier
 description: the slug name of the step
 description: This path selects a specific step for the given build.
 get:
 is:
 - bbget: {bbtype: step}
 /logs:
 description: This path selects all logs for the given step.
 get:
 is:
 - bbget: {bbtype: log}
 /{log_slug}:
 uriParameters:
 log_slug:
 type: identifier
 description: the slug name of the log
 get:
 description: |
 This path selects a specific log in the given step.
 is:
 - bbget: {bbtype: log}
 /contents:
 get:
 description: |
 This path selects chunks from a specific log in the given step.
 is:
 - bbget: {bbtype: logchunk}
 /raw:
 get:
 description: |
 This endpoint allows to get the raw logs for downloading into a file.
 This endpoint does not provide paging capabilities.
 For stream log types, the type line header characters are dropped.
 'text/plain' is used as the mime type except for html logs, where 'text/html' is used.
 The 'slug' is used as the filename for the resulting download. Some browsers are appending ``".txt"`` or ``".html"`` to this filename according to the mime-type.
 is:
 - bbgetraw:

 /{step_number}:
 uriParameters:
 step_number:
 type: number
 description: the number of the step
 description: This path selects a specific step given its step number
 get:
 is:
 - bbget: {bbtype: step}
 /logs:
 description: This path selects all log of a a specific step
 get:
 is:
 - bbget: {bbtype: log}
 /{log_slug}:
 uriParameters:
 log_slug:
 type: identifier
 description: the slug name of the log
 description: This path selects one log of a a specific step
 get:
 is:
 - bbget: {bbtype: log}
 /contents:
 get:
 description: |
 This path selects chunks from a specific log in the given step.
 is:
 - bbget: {bbtype: logchunk}
 /raw:
 get:
 description: |
 This path downloads the whole log
 is:
 - bbgetraw:

 /workers:
 description: |
 This path selects all workers configured for a given builder
 get:
 is:
 - bbget: {bbtype: worker}
 /{name}:
 description: |
 This path selects a worker by name filtered by given builderid
 uriParameters:
 name:
 type: identifier
 description: the name of the worker
 get:
 is:
 - bbget: {bbtype: worker}
 /{workerid}:
 description: |
 This path selects a worker by id filtered by given builderid
 uriParameters:
 workerid:
 type: number
 description: the id of the worker
 get:
 is:
 - bbget: {bbtype: worker}

 /actions/stop:
 post:
 description: |
 gracefully shutdown one worker.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the worker was stopped

 /actions/kill:
 post:
 description: |
 forcefully shutdown one worker.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the worker was stopped

 /actions/pause:
 post:
 description: |
 Pause one worker. The worker will stop taking new build.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the worker was paused
 /actions/unpause:
 post:
 description: |
 Unpause one worker. The worker will re-start taking builds.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the worker was un-paused
 /masters:
 description: |
 This path selects all masters supporting a given builder
 get:
 is:
 - bbget: {bbtype: master}

 /{masterid}:
 uriParameters:
 masterid:
 type: number
 description: the id of the master
 description: |
 This path selects a master by id filtered by given builderid
 get:
 is:
 - bbget: {bbtype: master}
/buildrequests:
 /{buildrequestid}:
 uriParameters:
 buildrequestid:
 type: number
 description: the id of the buildrequest
 get:
 is:
 - bbget: {bbtype: buildrequest}
 /builds:
 get:
 is:
 - bbget: {bbtype: build}
 /actions/cancel:
 post:
 description: |
 Cancel one buildrequest.
 If necessary, this will stop the builds generated by the buildrequest, including triggered builds.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the buildrequest was cancelled
 get:
 is:
 - bbget: {bbtype: buildrequest}
/builds:
 get:
 is:
 - bbget: {bbtype: build}
 /{buildid}:
 description: |
 This path selects a build by id
 uriParameters:
 buildid:
 type: number
 description: the id of the build
 get:
 is:
 - bbget: {bbtype: build}
 /actions/stop:
 post:
 description: |
 stops one build.
 body:
 application/json:
 properties:
 reason:
 type: string
 required: false
 description: The reason why the build was stopped
 /actions/rebuild:
 post:
 description: |
 rebuilds one build.
 body:
 application/json:
 description: no parameter are needed
 /changes:
 description: |
 This path selects all changes tested by a build
 get:
 is:
 - bbget: {bbtype: change}
 /properties:
 description: |
 This path selects all properties of a build
 get:
 is:
 - bbget: {bbtype: sourcedproperties}
 /steps:
 description: |
 This path selects all steps of a build
 get:
 is:
 - bbget: {bbtype: step}
 /{step_number_or_name}:
 uriParameters:
 step_number_or_name:
 type: identifier | number
 description: the name or number of the step
 description: |
 This path selects one step of a build
 get:
 is:
 - bbget: {bbtype: step}
 /logs:
 description: |
 This path selects all logs of a step of a build
 get:
 is:
 - bbget: {bbtype: log}
 /{log_slug}:
 uriParameters:
 log_slug:
 type: identifier
 description: the slug name of the log
 description: This path selects one log of a a specific step
 get:
 is:
 - bbget: {bbtype: log}
 /contents:
 get:
 description: |
 This path selects chunks from a specific log in the given step.
 is:
 - bbget: {bbtype: logchunk}
 /raw:
 get:
 description: |
 This path downloads the whole log
 is:
 - bbgetraw:
/buildsets:
 description: this path selects all buildsets
 get:
 is:
 - bbget: {bbtype: buildset}
 /{bsid}:
 description: this path selects a buildset by id
 uriParameters:
 bsid:
 type: identifier
 description: the id of the buildset
 get:
 is:
 - bbget: {bbtype: buildset}
 /properties:
 description: |
 This path selects all properties of a buildset.
 Buildset properties is part of the initial properties of a build.
 get:
 is:
 - bbget: {bbtype: sourcedproperties}
/workers:
 description: this path selects all workers
 get:
 is:
 - bbget: {bbtype: worker}
 /{name_or_id}:
 description: this path selects worker by name or id
 uriParameters:
 name_or_id:
 type: identifier | number
 description: the name or id of a worker
 get:
 is:
 - bbget: {bbtype: worker}

/changes:
 description: |
 This path selects **all** changes.
 On a reasonably loaded master, this can quickly return a very large result, taking minutes to process.
 A specific query configuration is optimized which allows to get the recent changes: ``order:-changeid&limit=<n>``
 get:
 is:
 - bbget: {bbtype: change}
 /{changeid}:
 description: this path selects one change by id
 uriParameters:
 changeid:
 type: number
 description: the id of a change
 get:
 is:
 - bbget: {bbtype: change}

/changesources:
 description: |
 This path selects all changesource.
 get:
 is:
 - bbget: {bbtype: changesource}
 /{changesourceid}:
 uriParameters:
 changesourceid:
 type: number
 description: the id of a changesource
 description: |
 This path selects one changesource given its id.
 get:
 is:
 - bbget: {bbtype: changesource}
/forceschedulers:
 description: |
 This path selects all forceschedulers.
 get:
 is:
 - bbget: {bbtype: forcescheduler}

 /{schedulername}:
 description: |
 This path selects all changesource.
 uriParameters:
 schedulername:
 type: identifier
 description: the name of a scheduler
 get:
 is:
 - bbget: {bbtype: forcescheduler}

 /actions/force:
 post:
 description: |
 Triggers the forcescheduler
 body:
 application/json:
 properties:
 owner:
 type: string
 required: false
 description: The user who wants to create the buildrequest
 '[]':
 description: content of the forcescheduler parameter is dependent on the configuration of the forcescheduler
/logs/{logid}:
 uriParameters:
 logid:
 type: number
 description: the id of the log
 description: This path selects one log
 get:
 is:
 - bbget: {bbtype: log}
 /contents:
 get:
 description: |
 This path selects chunks from a specific log
 is:
 - bbget: {bbtype: logchunk}
 /raw:
 get:
 description: |
 This path downloads the whole log
 is:
 - bbgetraw:
/masters:
 description: This path selects all masters
 get:
 is:
 - bbget: {bbtype: master}
 /{masterid}:
 description: This path selects one master given its id
 uriParameters:
 masterid:
 type: number
 description: the id of the master
 get:
 is:
 - bbget: {bbtype: master}
 /builders:
 description: This path selects all builders of a given master
 get:
 is:
 - bbget: {bbtype: builder}
 /{builderid}:
 description: This path selects one builder by id of a given master
 uriParameters:
 builderid:
 type: number
 description: the id of the builder
 get:
 is:
 - bbget: {bbtype: builder}
 /workers:
 description: This path selects all workers for a given builder and a given master
 get:
 is:
 - bbget: {bbtype: worker}
 /{name}:
 description: This path selects one workers by name for a given builder and a given master
 uriParameters:
 name:
 type: identifier
 description: the name of the worker
 get:
 is:
 - bbget: {bbtype: worker}
 /{workerid}:
 description: This path selects one workers by name for a given builder and a given master
 uriParameters:
 workerid:
 type: number
 description: the id of the worker
 get:
 is:
 - bbget: {bbtype: worker}
 /workers:
 description: This path selects all workers for a given master
 get:
 is:
 - bbget: {bbtype: worker}
 /{name}:
 description: This path selects one worker by name for a given master
 uriParameters:
 name:
 type: identifier
 description: the name of the worker
 get:
 is:
 - bbget: {bbtype: worker}
 /{workerid}:
 description: This path selects one worker by id for a given master
 uriParameters:
 workerid:
 type: number
 description: the id of the worker
 get:
 is:
 - bbget: {bbtype: worker}
 /changesources:
 description: This path selects all changesources for a given master
 get:
 is:
 - bbget: {bbtype: changesource}
 /{changesourceid}:
 description: This path selects one changesource by id for a given master
 get:
 is:
 - bbget: {bbtype: changesource}
 /schedulers:
 description: This path selects all schedulers for a given master
 get:
 is:
 - bbget: {bbtype: scheduler}
 /{schedulerid}:
 description: This path selects one scheduler by id for a given master
 uriParameters:
 schedulerid:
 type: number
 description: the id of the scheduler
 get:
 is:
 - bbget: {bbtype: scheduler}
/schedulers:
 description: This path selects all schedulers
 get:
 is:
 - bbget: {bbtype: scheduler}
 /{schedulerid}:
 uriParameters:
 schedulerid:
 type: number
 description: the id of the scheduler
 description: This path selects one scheduler by id
 get:
 is:
 - bbget: {bbtype: scheduler}
/sourcestamps:
 description: This path selects all sourcestamps (can return lots of data!)
 get:
 is:
 - bbget: {bbtype: sourcestamp}
 /{ssid}:
 description: This path selects one sourcestamp by id
 uriParameters:
 ssid:
 type: number
 description: the id of the sourcestamp
 get:
 is:
 - bbget: {bbtype: sourcestamp}
 /changes:
 description: This path selects all changes associated to one sourcestamp
 get:
 is:
 - bbget: {bbtype: change}
/steps:
 /{stepid}:
 description: This path selects one step by id
 uriParameters:
 stepid:
 type: number
 description: the id of the step
 /logs:
 description: This path selects all logs for the given step.
 get:
 is:
 - bbget: {bbtype: log}
 /{log_slug}:
 uriParameters:
 log_slug:
 type: identifier
 description: the slug name of the log
 get:
 description: |
 This path selects a specific log in the given step.
 is:
 - bbget: {bbtype: log}
 /contents:
 get:
 description: |
 This path selects chunks from a specific log in the given step.
 is:
 - bbget: {bbtype: logchunk}
 /raw:
 get:
 description: |
 This path downloads the whole log
 is:
 - bbgetraw:

 3.3.2. Data API

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.3.2. Data API

The data layer combines access to stored state and messages, ensuring consistency between them, and exposing a well-defined API that can be used both internally and externally.
Using caching and the clock information provided by the db and mq layers, this layer ensures that its callers can easily receive a dump of current state plus changes to that state, without missing or duplicating messages.

3.3.2.1. Sections

The data api is divided into four sections:

	getters - fetching data from the db API, and

	subscriptions - subscribing to messages from the mq layer;

	control - allows state to be changed in specific ways by sending appropriate messages (e.g., stopping a build); and

	updates - direct updates to state appropriate messages.

The getters and subscriptions are exposed everywhere.
Access to the control section should be authenticated at higher levels, as the data layer does no authentication.
The updates section is for use only by the process layer.

The interfaces for all sections but the updates sections are intended to be language-agnostic.
That is, they should be callable from JavaScript via HTTP, or via some other interface added to Buildbot after the fact.

Getter

The getter section can get either a single resource, or a list of resources.
Getting a single resource requires a resource identifier (a tuple of strings) and a set of options to support automatic expansion of links to other resources (thus saving round-trips).
Lists are requested with a partial resource identifier (a tuple of strings) and an optional set of filter options.
In some cases, certain filters are implicit in the path, e.g., the list of buildsteps for a particular build.

Subscriptions

Message subscriptions can be made to anything that can be listed or gotten from the getter sections, using the same resource identifiers.
Options and explicit filters are not supported - a message contains only the most basic information about a resource, and a list subscription results in a message for every new resource of the desired type.
Implicit filters are supported.

Control

The control sections defines a set of actions that cause Buildbot to behave in a certain way, e.g., rebuilding a build or shutting down a worker.
Actions correspond to a particular resource, although sometimes that resource is the root resource (an empty tuple).

3.3.2.2. Updates

The updates section defines a free-form set of methods that Buildbot’s process implementation calls to update data.
Most update methods both modify state via the db API and send a message via the mq API.
Some are simple wrappers for these APIs, while others contain more complex logic, e.g., building a source stamp set for a collection of changes.
This section is the proper place to put common functionality, e.g., rebuilding builds or assembling buildsets.

3.3.2.3. Concrete Interfaces

Python Interface

Within the buildmaster process, the root of the data API is available at self.master.data, which is a DataConnector instance.

	
class buildbot.data.connector.DataConnector

	This class implements the root of the data API.
Within the buildmaster process, the data connector is available at self.master.data.
The first three sections are implemented with the get and control methods, respectively, while the updates section is implemented using the updates attribute.
The path arguments to these methods should always be tuples.
Integer arguments can be presented as either integers or strings that can be parsed by int; all other arguments must be strings.

	
get(path, filters=None, fields=None, order=None, limit=None, offset=None):

	

	Parameters:	
	path (tuple) – A tuple of path elements representing the API path to fetch.
Numbers can be passed as strings or integers.

	filters – result spec filters

	fields – result spec fields

	order – result spec order

	limit – result spec limit

	offset – result spec offset

	Raises:	InvalidPathError

	Returns:	a resource or list via Deferred, or None

This method implements the getter section.
Depending on the path, it will return a single resource or a list of resources.
If a single resource is not specified, it returns None.

The filters, fields, order, limit, and offset are passed to the ResultSpec constructor.

The return value is composed of simple Python objects - lists, dicts, strings, numbers, and None.

	
getEndpoint(path)

	

	Parameters:	path (tuple) – A tuple of path elements representing the API path.
Numbers can be passed as strings or integers.

	Raises:	InvalidPathError

	Returns:	tuple of endpoint and a dictionary of keyword arguments from the path

Get the endpoint responsible for the given path, along with any arguments extracted from the path.
This can be used by callers that need access to information from the endpoint beyond that returned from get.

	
produceEvent(rtype, msg, event)

	

	Parameters:	
	rtype – the name identifying a resource type

	msg – a dictionary describing the msg to send

	event – the event to produce

This method implements the production of an event, for the rtype identified by its name string.
Usually, this is the role of the data layer to produce the events inside the update methods.
For the potential use cases where it would make sense to solely produce an event, and not update data, please use this API, rather than directly call mq.
It ensures the event is sent to all the routingkeys specified by eventPathPatterns.

	
control(action, args, path)

	

	Parameters:	
	action – a short string naming the action to perform

	args – dictionary containing arguments for the action

	path (tuple) – A tuple of path elements representing the API path.
Numbers can be passed as strings or integers.

	Raises:	InvalidPathError

	Returns:	a resource or list via Deferred, or None

This method implements the control section.
Depending on the path, it may return a new created resource.

	
allEndpoints()

	

	Returns:	list of endpoint specifications

This method returns the deprecated API spec.
Please use Raml Specs instead.

	
rtypes

	This object has an attribute named for each resource type, named after the singular form (e.g., self.master.data.builder).
These attributes allow resource types to access one another for purposes of coordination.
They are not intended for external access – all external access to the data API should be via the methods above or update methods.

Updates

The updates section is available at self.master.data.updates, and contains a number of ad-hoc methods needed by the process modules.

Note

The update methods are implemented in resource type classes, but through some initialization-time magic, all appear as attributes of self.master.data.updates.

The update methods are found in the resource type pages.

Exceptions

	
exception buildbot.data.exceptions.DataException

	This is a base class for all other Data API exceptions.

	
exception buildbot.data.exceptions.InvalidPathError

	The path argument was invalid or unknown.

	
exception buildbot.data.exceptions.InvalidOptionError

	A value in the options argument was invalid or ill-formed.

	
exception buildbot.data.exceptions.SchedulerAlreadyClaimedError

	Identical to SchedulerAlreadyClaimedError.

Web Interface

The HTTP interface is implemented by the buildbot.www package, as configured by the user.
Part of that configuration is a base URL, which is considered a prefix for all paths mentioned here.

See Base web application for more information.

3.3.2.4. Extending the Data API

The data API may be extended in various ways: adding new endpoints, new fields to resource types, new update methods, or entirely new resource types.
In any case, you should only extend the API if you plan to submit the extensions to be merged into Buildbot itself.
Private API extensions are strongly discouraged.

Adding Resource Types

You’ll need to use both plural and singular forms of the resource type; in this example, we’ll use ‘pub’ and ‘pubs’.
You can also follow an existing file, like master/buildbot/data/changes.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/data/changes.py], to see when to use which form.

In master/buildbot/data/pubs.py, create a subclass of ResourceType:

from buildbot.data import base

class Pub(base.ResourceType):
 name = "pub"
 endpoints = []
 keyFields = ['pubid']

 class EntityType(types.Entity):
 pubid = types.Integer()
 name = types.String()
 num_taps = types.Integer()
 closes_at = types.Integer()

 entityType = EntityType(name)

	
class buildbot.data.base.ResourceType

	
	
name

	

	Type:	string

The singular, lower-cased name of the resource type.
This becomes the first component in message routing keys.

	
plural

	

	Type:	string

The plural, lower-cased name of the resource type.
This becomes the key containing the data in REST responses.

	
endpoints

	

	Type:	list

Subclasses should set this to a list of endpoint classes for this resource type.

	
eventPathPatterns

	

	Type:	str

This attribute should list the message routes where events should be sent, encoded as a REST like endpoint:

pub/:pubid

In the example above, a call to produceEvent({'pubid': 10, 'name': 'Winchester'}, 'opened') would result in a message with routing key ('pub', '10', 'opened').

Several paths can be specified in order to be consistent with rest endpoints.

	
entityType

	

	Type:	buildbot.data.types.Entity

The entity type describes the types of all of the fields in this particular resource type.
See buildbot.data.types.Entity and Adding Fields to Resource Types.

The parent class provides the following methods

	
getEndpoints()

	

	Returns:	a list of Endpoint instances

This method returns a list of the endpoint instances associated with the resource type.

The base method instantiates each class in the endpoints attribute.
Most subclasses can simply list Endpoint subclasses in endpoints.

	
produceEvent(msg, event)

	

	Parameters:	
	msg (dict) – the message body

	event (string) – the name of the event that has occurred

This is a convenience method to produce an event message for this resource type.
It formats the routing key correctly and sends the message, thereby ensuring consistent routing-key structure.

Like all Buildbot source files, every resource type module must have corresponding tests.
These should thoroughly exercise all update methods.

All resource types must be documented in the Buildbot documentation and linked from the bottom of this file (master/docs/developer/data.rst [https://github.com/buildbot/buildbot/tree/master/master/docs/developer/data.rst]).

Adding Endpoints

Each resource path is implemented as an Endpoint instance.
In most cases, each instance is of a different class, but this is not required.

The data connector’s get and control methods both take a path argument that is used to look up the corresponding endpoint.
The path matching is performed by buildbot.util.pathmatch, and supports automatically extracting variable fields from the path.
See that module’s description for details.

	
class buildbot.data.base.Endpoint

	
	
pathPatterns

	

	Type:	string

This attribute defines the path patterns which incoming paths must match to select this endpoint.
Paths are specified as URIs, and can contain variables as parsed by buildbot.util.pathmatch.Matcher.
Multiple paths are separated by whitespace.

For example, the following specifies two paths with the second having a single variable:

pathPatterns = """
 /bugs
 /component/i:component_name/bugs
"""

	
rootLinkName

	

	Type:	string

If set, then the first path pattern for this endpoint will be included as a link in the root of the API.
This should be set for any endpoints that begin an explorable tree.

	
isCollection

	

	Type:	boolean

If true, then this endpoint returns collections of resources.

	
isRaw

	

	Type:	boolean

If true, then this endpoint returns raw resource.

Raw resources are used to get the data not encoded in JSON via the rest API.
In the REST principles, this should be done via another endpoint, and not via a query parameter.
The get() method from endpoint should return following data structure:

{
 "raw": u"raw data to be sent to the http client",
 "mime-type": u"<mime-type>",
 "filename": u"filename_to_be_used_in_content_disposition_attachement_header"
}

	
get(options, resultSpec, kwargs)

	

	Parameters:	
	options (dict) – model-specific options

	resultSpec – a ResultSpec instance describing the desired results

	kwargs (dict) – fields extracted from the path

	Returns:	data via Deferred

Get data from the endpoint.
This should return either a list of dictionaries (for list endpoints), a dictionary, or None (both for details endpoints).
The endpoint is free to handle any part of the result spec.
When doing so, it should remove the relevant configuration from the spec.
See below.

Any result spec configuration that remains on return will be applied automatically.

	
control(action, args, kwargs)

	

	Parameters:	
	action – a short string naming the action to perform

	args – dictionary containing arguments for the action

	kwargs – fields extracted from the path

Continuing the pub example, a simple endpoint would look like this:

class PubEndpoint(base.Endpoint):
 pathPattern = ('pub', 'i:pubid')

 def get(self, resultSpec, kwargs):
 return self.master.db.pubs.getPub(kwargs['pubid'])

Endpoint implementations must have unit tests.
An endpoint’s path should be documented in the .rst file for its resource type.

The initial pass at implementing any endpoint should just ignore the resultSpec argument to get.
After that initial pass, the argument can be used to optimize certain types of queries.
For example, if the resource type has many resources, but most real-life queries use the result spec to filter out all but a few resources from that group, then it makes sense for the endpoint to examine the result spec and allow the underlying DB API to do that filtering.

When an endpoint handles parts of the result spec, it must remove those parts from the spec before it returns.
See the documentation for ResultSpec for methods to do so.

Note that endpoints must be careful not to alter the order of the filtering applied for a result spec.
For example, if an endpoint implements pagination, then it must also completely implement filtering and ordering, since those operations precede pagination in the result spec application.

Adding Messages

Message types are defined in master/buildbot/test/util/validation.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/util/validation.py], via the message module-level value.
This is a dictionary of MessageValidator objects, one for each message type.
The message type is determined from the first atom of its routing key.
The events dictionary lists the possible last atoms of the routing key.
It should be identical to the attribute of the ResourceType with the same name.

Adding Update Methods

Update methods are for use by the Buildbot process code, and as such are generally designed to suit the needs of that code.
They generally encapsulate logic common to multiple users (e.g., creating buildsets), and finish by performing modifications in the database and sending a corresponding message.
In general, Buildbot does not depend on timing of either the database or message broker, so the order in which these operations are initiated is not important.

Update methods are considered part of Buildbot’s user-visible interface, and as such incompatible changes should be avoided wherever possible.
Instead, either add a new method (and potentially re-implement existing methods in terms of the new method) or add new, optional parameters to an existing method.
If an incompatible change is unavoidable, it should be described clearly in the release notes.

Update methods are implemented as methods of ResourceType subclasses, decorated with @base.updateMethod:

	
buildbot.data.base.updateMethod(f)

	A decorator for ResourceType subclass methods, indicating that the method should be copied to master.data.updates.

Returning to the pub example:

class PubResourceType(base.ResourceType):
 # ...
 @base.updateMethod
 @defer.inlineCallbacks
 def setPubTapList(self, pubid, beers):
 pub = yield self.master.db.pubs.getPub(pubid)
 # ...
 self.produceMessage(pub, 'taps-updated')

Update methods should be documented in master/docs/developer/data.rst [https://github.com/buildbot/buildbot/tree/master/master/docs/developer/data.rst].
They should be thoroughly tested with unit tests.
They should have a fake implementation in master/buildbot/test/fake/fakedata.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/fake/fakedata.py].
That fake implementation should be tested to match the real implementation in master/buildbot/test/unit/test_data_connector.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/unit/test_data_connector.py].

Adding Fields to Resource Types

The details of the fields of a resource type are rigorously enforced at several points in the Buildbot tests.
The enforcement is performed by the buildbot.data.types module.

The module provides a number of type classes for basic and compound types.
Each resource type class defines its entity type in its entityType class attribute.
Other resource types may refer to this class attribute if they embed an entity of that type.

The types are used both for tests, and by the REST interface to properly decode user-supplied query parameters.

Basic Types

	
class buildbot.data.types.Integer

	An integer.

myid = types.Integer()

	
class buildbot.data.types.String

	A string.
Strings must always be Unicode.

name = types.String()

	
class buildbot.data.types.Binary

	A binary bytestring.

data = types.Binary()

	
class buildbot.data.types.Boolean

	A boolean value.

complete = types.Boolean()

	
class buildbot.data.types.Identifier(length)

	An identifier; see Identifier.
The constructor argument specifies the maximum length.

ident = types.Identifier(25)

Compound Types

	
class buildbot.data.types.NoneOk(nestedType)

	Either the nested type, or None.

category = types.NoneOk(types.String())

	
class buildbot.data.types.List(of)

	An list of objects.
The named constructor argument of specifies the type of the list elements.

tags = types.List(of=types.String())

	
class buildbot.data.types.SourcedProperties

	A data structure representing properties with their sources, in the form {name: (value, source)}.
The property name and source must be Unicode, and the value must be JSON-able.

props = types.SourcedProperties()

Entity Type

	
class buildbot.data.types.Entity(name)

	A data resource is represented by a dictionary with well-known keys.
To define those keys and their values, subclass the Entity class within your ResourceType class and include each field as an attribute:

class MyStuff(base.ResourceType):
 name = "mystuff"
 # ...
 class EntityType(types.Entity):
 myid = types.Integer()
 name = types.String()
 data = types.Binary()
 complete = types.Boolean()
 ident = types.Identifier(25)
 category = types.NoneOk(types.String())
 tags = types.List(of=types.String())
 props = types.SourcedProperties()

Then instantiate the class with the resource type name:

entityType = EntityType(name)

To embed another entity type, reference its entityType class attribute:

class EntityType(types.Entity):
 # ...
 master = masters.Master.entityType

3.3.2.5. Data Model

The data api enforces a strong and well-defined model on Buildbot’s data.
This model is influenced by REST, in the sense that it defines resources, representations for resources, and identifiers for resources.
For each resource type, the API specifies

	the attributes of the resource and their types (e.g., changes have a string specifying their project);

	the format of links to other resources (e.g., buildsets to sourcestamp sets);

	the paths relating to the resource type;

	the format of routing keys for messages relating to the resource type;

	the events that can occur on that resource (e.g., a buildrequest can be claimed); and

	options and filters for getting resources.

Some resource type attributes only appear in certain formats, as noted in the documentation for the resource types.
In general, messages do not include any optional attributes, nor links.

Paths are given here separated by slashes, with key names prefixed by : and described below.
Similarly, message routing keys given here are separated by dots, with key names prefixed by $.
The translation to tuples and other formats should be obvious.

All strings in the data model are unicode strings.

 3.3.3. Database

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.3.3. Database

As of version 0.8.0, Buildbot has used a database as part of its storage
backend. This section describes the database connector classes, which allow
other parts of Buildbot to access the database. It also describes how to
modify the database schema and the connector classes themselves.

3.3.3.1. Database Overview

All access to the Buildbot database is mediated by database connector classes.
These classes provide a functional, asynchronous interface to other parts of
Buildbot, and encapsulate the database-specific details in a single location in
the codebase.

The connector API, defined below, is a stable API in Buildbot, and can be
called from any other component. Given a master master, the root of the
database connectors is available at master.db, so, for example, the state
connector’s getState method is master.db.state.getState.

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] to achieve (almost)
database-independent operation. Note that the SQLAlchemy ORM is not used in
Buildbot. Database queries are carried out in threads, and report their
results back to the main thread via Twisted Deferreds.

3.3.3.2. Schema

The database schema is maintained with SQLAlchemy-Migrate [https://github.com/openstack/sqlalchemy-migrate]. This package handles the
details of upgrading users between different schema versions.

The schema itself is considered an implementation detail, and may change
significantly from version to version. Users should rely on the API (below),
rather than performing queries against the database itself.

3.3.3.3. API

types

Identifier

An “identifier” is a nonempty unicode string of limited length, containing only ASCII alphanumeric characters along with - (dash) and _ (underscore), and not beginning with a digit
Wherever an identifier is used, the documentation will give the maximum length in characters.
The function buildbot.util.identifiers.isIdentifier is useful to verify a well-formed identifier.

buildrequests

	
exception buildbot.db.buildrequests.AlreadyClaimedError

	Raised when a build request is already claimed, usually by another master.

	
exception buildbot.db.buildrequests.NotClaimedError

	Raised when a build request is not claimed by this master.

	
class buildbot.db.buildrequests.BuildRequestsConnectorComponent

	This class handles the complex process of claiming and unclaiming build
requests, based on a polling model: callers poll for unclaimed requests with
getBuildRequests, then attempt to claim the requests with
claimBuildRequests. The claim can fail if another master has claimed
the request in the interim.

An instance of this class is available at master.db.buildrequests.

Build requests are indexed by an ID referred to as a brid. The contents
of a request are represented as build request dictionaries (brdicts) with
keys

	buildrequestid

	buildsetid

	builderid

	buildername

	priority

	claimed (boolean, true if the request is claimed)

	claimed_at (datetime object, time this request was last claimed)

	claimed_by_masterid (integer, the id of the master that claimed this buildrequest)

	complete (boolean, true if the request is complete)

	complete_at (datetime object, time this request was completed)

	submitted_at (datetime object, time this request was completed)

	results (integer result code)

	waited_for (boolean)

	
getBuildRequest(brid)

	

	Parameters:	brid – build request id to look up

	Returns:	brdict or None, via Deferred

Get a single BuildRequest, in the format described above. This method
returns None if there is no such buildrequest. Note that build
requests are not cached, as the values in the database are not fixed.

	
getBuildRequests(buildername=None, complete=None, claimed=None, bsid=None, branch=None, repository=None, resultSpec=None)

	

	Parameters:	
	buildername (string) – limit results to buildrequests for this builder

	complete – if true, limit to completed buildrequests; if false,
limit to incomplete buildrequests; if None, do not limit based on
completion.

	claimed – see below

	bsid – see below

	repository – the repository associated with the sourcestamps originating the requests

	branch – the branch associated with the sourcestamps originating the requests

	resultSpec – resultSpec containing filters sorting and paging request from data/REST API.
If possible, the db layer can optimize the SQL query using this information.

	Returns:	list of brdicts, via Deferred

Get a list of build requests matching the given characteristics.

Pass all parameters as keyword parameters to allow future expansion.

The claimed parameter can be None (the default) to ignore the
claimed status of requests; True to return only claimed builds,
False to return only unclaimed builds, or a master ID to return only
builds claimed by a particular master instance. A request is considered
unclaimed if its claimed_at column is either NULL or 0, and it is
not complete. If bsid is specified, then only build requests for
that buildset will be returned.

A build is considered completed if its complete column is 1; the
complete_at column is not consulted.

	
claimBuildRequests(brids[, claimed_at=XX])

	

	Parameters:	
	brids (list) – ids of buildrequests to claim

	claimed_at (datetime) – time at which the builds are claimed

	Returns:	Deferred

	Raises:	AlreadyClaimedError

Try to “claim” the indicated build requests for this buildmaster
instance. The resulting deferred will fire normally on success, or
fail with AlreadyClaimedError if any of the build
requests are already claimed by another master instance. In this case,
none of the claims will take effect.

If claimed_at is not given, then the current time will be used.

Note

On database backends that do not enforce referential integrity
(e.g., SQLite), this method will not prevent claims for nonexistent
build requests. On database backends that do not support
transactions (MySQL), this method will not properly roll back any
partial claims made before an AlreadyClaimedError is
generated.

	
unclaimBuildRequests(brids)

	

	Parameters:	brids (list) – ids of buildrequests to unclaim

	Returns:	Deferred

Release this master’s claim on all of the given build requests. This
will not unclaim requests that are claimed by another master, but will
not fail in this case. The method does not check whether a request is
completed.

	
completeBuildRequests(brids, results[, complete_at=XX])

	

	Parameters:	
	brids (integer) – build request IDs to complete

	results (integer) – integer result code

	complete_at (datetime) – time at which the buildset was completed

	Returns:	Deferred

	Raises:	NotClaimedError

Complete a set of build requests, all of which are owned by this master
instance. This will fail with NotClaimedError if the build
request is already completed or does not exist. If complete_at is
not given, the current time will be used.

builds

	
class buildbot.db.builds.BuildsConnectorComponent

	This class handles builds.
One build record is created for each build performed by a master.
This record contains information on the status of the build, as well as links to the resources used in the build: builder, master, worker, etc.

An instance of this class is available at master.db.builds.

Builds are indexed by buildid and their contents represented as builddicts (build dictionaries), with the following keys:

	id (the build ID, globally unique)

	number (the build number, unique only within the builder)

	builderid (the ID of the builder that performed this build)

	buildrequestid (the ID of the build request that caused this build)

	workerid (the ID of the worker on which this build was performed)

	masterid (the ID of the master on which this build was performed)

	started_at (datetime at which this build began)

	complete_at (datetime at which this build finished, or None if it is ongoing)

	state_string (short string describing the build’s state)

	results (results of this build; see Build Result Codes)

	
getBuild(buildid)

	

	Parameters:	buildid (integer) – build id

	Returns:	Build dictionary as above or None, via Deferred

Get a single build, in the format described above.
Returns None if there is no such build.

	
getBuildByNumber(builderid, number)

	

	Parameters:	
	builder (integer) – builder id

	number (integer) – build number within that builder

	Returns:	Build dictionary as above or None, via Deferred

Get a single build, in the format described above, specified by builder and number, rather than build id.
Returns None if there is no such build.

	
getPrevSuccessfulBuild(builderid, number, ssBuild)

	

	Parameters:	
	builderid (integer) – builder to get builds for

	number (integer) – the current build number. Previous build will be taken from this number

	ssBuild (list) – the list of sourcestamps for the current build number

	Returns:	None or a build dictionary

Returns the last successful build from the current build number with the same repository/repository/codebase

	
getBuilds(builderid=None, buildrequestid=None, complete=None, resultSpec=None)

	

	Parameters:	
	builderid (integer) – builder to get builds for

	buildrequestid (integer) – buildrequest to get builds for

	complete (boolean) – if not None, filters results based on completeness

	resultSpec – resultSpec containing filters sorting and paging request from data/REST API.
If possible, the db layer can optimize the SQL query using this information.

	Returns:	list of build dictionaries as above, via Deferred

Get a list of builds, in the format described above.
Each of the parameters limit the resulting set of builds.

	
addBuild(builderid, buildrequestid, workerid, masterid, state_string)

	

	Parameters:	
	builderid (integer) – builder to get builds for

	buildrequestid (integer) – build request id

	workerid (integer) – worker performing the build

	masterid (integer) – master performing the build

	state_string (unicode) – initial state of the build

	Returns:	tuple of build ID and build number, via Deferred

Add a new build to the db, recorded as having started at the current time.
This will invent a new number for the build, unique within the context of the builder.

	
setBuildStateString(buildid, state_string):

	

	Parameters:	
	buildid (integer) – build id

	state_string (unicode) – updated state of the build

	Returns:	Deferred

Update the state strings for the given build.

	
finishBuild(buildid, results)

	

	Parameters:	
	buildid (integer) – build id

	results (integer) – build result

	Returns:	Deferred

Mark the given build as finished, with complete_at set to the current time.

Note

This update is done unconditionally, even if the build is already finished.

	
getBuildProperties(buildid)

	

	Parameters:	buildid – build ID

	Returns:	dictionary mapping property name to value, source, via Deferred

Return the properties for a build, in the same format they were given to addBuild.

Note that this method does not distinguish a non-existent build from a build with no properties, and returns {} in either case.

	
setBuildProperty(buildid, name, value, source)

	

	Parameters:	
	buildid (integer) – build ID

	name (string) – Name of the property to set

	value – Value of the property

	source (string) – Source of the Property to set

	Returns:	Deferred

Set a build property.
If no property with that name existed in that build, a new property will be created.

steps

	
class buildbot.db.steps.StepsConnectorComponent

	This class handles the steps performed within the context of a build.
Within a build, each step has a unique name and a unique, 0-based number.

An instance of this class is available at master.db.steps.

Builds are indexed by stepid and their contents represented as stepdicts (step dictionaries), with the following keys:

	id (the step ID, globally unique)

	number (the step number, unique only within the build)

	name (the step name, an 50-character identifier unique only within the build)

	buildid (the ID of the build containing this step)

	started_at (datetime at which this step began)

	complete_at (datetime at which this step finished, or None if it is ongoing)

	state_string (short string describing the step’s state)

	results (results of this step; see Build Result Codes)

	urls (list of URLs produced by this step. Each urls is stored as a dictionary with keys name and url)

	hidden (true if the step should be hidden in status displays)

	
getStep(stepid=None, buildid=None, number=None, name=None)

	

	Parameters:	
	stepid (integer) – the step id to retrieve

	buildid (integer) – the build from which to get the step

	number (integer) – the step number

	name (50-character identifier) – the step name

	Returns:	stepdict via Deferred

Get a single step.
The step can be specified by

	stepid alone;

	buildid and number, the step number within that build; or

	buildid and name, the unique step name within that build.

	
getSteps(buildid)

	

	Parameters:	buildid (integer) – the build from which to get the step

	Returns:	list of stepdicts, sorted by number, via Deferred

Get all steps in the given build, in order by number.

	
addStep(self, buildid, name, state_string)

	

	Parameters:	
	buildid (integer) – the build to which to add the step

	name (50-character identifier) – the step name

	state_string (unicode) – the initial state of the step

	Returns:	tuple of step ID, step number, and step name, via Deferred

Add a new step to a build.
The given name will be used if it is unique; otherwise, a unique numerical suffix will be appended.

	
setStepStateString(stepid, state_string):

	

	Parameters:	
	stepid (integer) – step ID

	state_string (unicode) – updated state of the step

	Returns:	Deferred

Update the state string for the given step.

	
finishStep(stepid, results, hidden)

	

	Parameters:	
	stepid (integer) – step ID

	results (integer) – step result

	hidden (bool) – true if the step should be hidden

	Returns:	Deferred

Mark the given step as finished, with complete_at set to the current time.

Note

This update is done unconditionally, even if the steps are already finished.

	
addURL(self, stepid, name, url)

	

	Parameters:	
	stepid (integer) – the stepid to add the url.

	name (string) – the url name

	url (string) – the actual url

	Returns:	None via deferred

Add a new url to a step.
The new url is added to the list of urls.

logs

	
class buildbot.db.logs.LogsConnectorComponent

	This class handles log data.
Build steps can have zero or more logs.
Logs are uniquely identified by name within a step.

Information about a log, apart from its contents, is represented as a dictionary with the following keys, referred to as a logdict:

	id (log ID, globally unique)

	stepid (step ID, indicating the containing step)

	name free-form name of this log

	slug (50-identifier for the log, unique within the step)

	complete (true if the log is complete and will not receive more lines)

	num_lines (number of lines in the log)

	type (log type; see below)

Each log has a type that describes how to interpret its contents.
See the logchunk resource type for details.

A log is contains a sequence of newline-separated lines of unicode.
Log line numbering is zero-based.

Each line must be less than 64k when encoded in UTF-8.
Longer lines will be truncated, and a warning logged.

Lines are stored internally in “chunks”, and optionally compressed, but the implementation hides these details from callers.

	
getLog(logid)

	

	Parameters:	logid (integer) – ID of the requested log

	Returns:	logdict via Deferred

Get a log, identified by logid.

	
getLogBySlug(stepid, slug)

	

	Parameters:	
	stepid (integer) – ID of the step containing this log

	slug – slug of the logfile to retrieve

	Returns:	logdict via Deferred

Get a log, identified by name within the given step.

	
getLogs(stepid)

	

	Parameters:	stepid (integer) – ID of the step containing the desired logs

	Returns:	list of logdicts via Deferred

Get all logs within the given step.

	
getLogLines(logid, first_line, last_line)

	

	Parameters:	
	logid (integer) – ID of the log

	first_line – first line to return

	last_line – last line to return

	Returns:	see below

Get a subset of lines for a logfile.

The return value, via Deferred, is a concatenation of newline-terminated strings.
If the requested last line is beyond the end of the logfile, only existing lines will be included.
If the log does not exist, or has no associated lines, this method returns an empty string.

	
addLog(stepid, name, type)

	

	Parameters:	
	stepid (integer) – ID of the step containing this log

	name (string) – name of the logfile

	slug (50-character identifier) – slug (unique identifier) of the logfile

	type (string) – log type (see above)

	Raises:	KeyError – if a log with the given slug already exists in the step

	Returns:	ID of the new log, via Deferred

Add a new log file to the given step.

	
appendLog(logid, content)

	

	Parameters:	
	logid (integer) – ID of the requested log

	content (string) – new content to be appended to the log

	Returns:	tuple of first and last line numbers in the new chunk, via Deferred

Append content to an existing log.
The content must end with a newline.
If the given log does not exist, the method will silently do nothing.

It is not safe to call this method more than once simultaneously for the same logid.

	
finishLog(logid)

	

	Parameters:	logid (integer) – ID of the log to mark complete

	Returns:	Deferred

Mark a log as complete.

Note that no checking for completeness is performed when appending to a log.
It is up to the caller to avoid further calls to appendLog after finishLog.

	
compressLog(logid)

	

	Parameters:	logid (integer) – ID of the log to compress

	Returns:	Deferred

Compress the given log.
This method performs internal optimizations of a log’s chunks to reduce the space used and make read operations more efficient.
It should only be called for finished logs.
This method may take some time to complete.

	
deleteOldLogChunks(older_than_timestamp)

	

	Parameters:	older_than_timestamp (integer) – the logs whose step’s started_at is older than older_than_timestamp will be deleted.

	Returns:	Deferred

Delete old logchunks (helper for the logHorizon policy).
Old logs have their logchunks deleted from the database, but they keep their num_lines metadata.
They have their types changed to ‘d’, so that the UI can display something meaningful.

buildsets

	
class buildbot.db.buildsets.BuildsetsConnectorComponent

	This class handles getting buildsets into and out of the database.
Buildsets combine multiple build requests that were triggered together.

An instance of this class is available at master.db.buildsets.

Buildsets are indexed by bsid and their contents represented as bsdicts
(buildset dictionaries), with keys

	bsid

	external_idstring (arbitrary string for mapping builds externally)

	reason (string; reason these builds were triggered)

	sourcestamps (list of sourcestamps for this buildset, by ID)

	submitted_at (datetime object; time this buildset was created)

	complete (boolean; true if all of the builds for this buildset are complete)

	complete_at (datetime object; time this buildset was completed)

	results (aggregate result of this buildset; see Build Result Codes)

	
addBuildset(sourcestamps, reason, properties, builderids, external_idstring=None, parent_buildid=None, parent_relationship=None)

	

	Parameters:	
	sourcestamps (list) – sourcestamps for the new buildset; see below

	reason (short unicode string) – reason for this buildset

	properties (dictionary, where values are tuples of (value, source)) – properties for this buildset

	builderids (list of int) – builderids specified by this buildset

	external_idstring (unicode string) – external key to identify this buildset; defaults to None

	submitted_at (datetime) – time this buildset was created; defaults to the current time

	parent_buildid (int) – optional build id that is the parent for this buildset

	parent_relationship (unicode) – relationship identifier for the parent, this is is configured relationship between the parent build, and the childs buildsets

	Returns:	buildset ID and buildrequest IDs, via a Deferred

Add a new Buildset to the database, along with BuildRequests for each builder, returning the resulting bsid via a Deferred.
Arguments should be specified by keyword.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sourcestamp ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

The return value is a tuple (bsid, brids) where bsid is the inserted buildset ID and brids is a dictionary mapping builderids to build request IDs.

	
completeBuildset(bsid, results[, complete_at=XX])

	

	Parameters:	
	bsid (integer) – buildset ID to complete

	results (integer) – integer result code

	complete_at (datetime) – time the buildset was completed

	Returns:	Deferred

	Raises:	KeyError if the buildset does not exist or is
already complete

Complete a buildset, marking it with the given results and setting
its completed_at to the current time, if the complete_at
argument is omitted.

	
getBuildset(bsid)

	

	Parameters:	bsid – buildset ID

	Returns:	bsdict, or None, via Deferred

Get a bsdict representing the given buildset, or None if no such
buildset exists.

Note that buildsets are not cached, as the values in the database are
not fixed.

	
getBuildsets(complete=None, resultSpec=None)

	

	Parameters:	
	complete – if true, return only complete buildsets; if false,
return only incomplete buildsets; if None or omitted, return all
buildsets

	resultSpec – resultSpec containing filters sorting and paging request from data/REST API.
If possible, the db layer can optimize the SQL query using this information.

	Returns:	list of bsdicts, via Deferred

Get a list of bsdicts matching the given criteria.

	
getRecentBuildsets(count=None, branch=None, repository=None,

	
complete=None):

	

	Parameters:	
	count (integer) – maximum number of buildsets to retrieve (required).

	branch (string) – optional branch name. If specified, only buildsets
affecting such branch will be returned.

	repository (string) – optional repository name. If specified, only
buildsets affecting such repository will be returned.

	complete (Boolean) – if true, return only complete buildsets; if false,
return only incomplete buildsets; if None or omitted, return all
buildsets

	Returns:	list of bsdicts, via Deferred

Get “recent” buildsets, as defined by their submitted_at times.

	
getBuildsetProperties(buildsetid)

	

	Parameters:	bsid – buildset ID

	Returns:	dictionary mapping property name to value, source, via
Deferred

Return the properties for a buildset, in the same format they were
given to addBuildset.

Note that this method does not distinguish a nonexistent buildset from
a buildset with no properties, and returns {} in either case.

workers

	
class buildbot.db.workers.WorkersConnectorComponent

	This class handles Buildbot’s notion of workers.
The worker information is returned as a dictionary:

	id

	name - the name of the worker

	workerinfo - worker information as dictionary

	paused - boolean indicating worker is paused and shall not take new builds

	graceful - boolean indicating worker will be shutdown as soon as build finished

	connected_to - a list of masters, by ID, to which this worker is currently connected.
This list will typically contain only one master, but in unusual circumstances the same worker may appear to be connected to multiple masters simultaneously.

	configured_on - a list of master-builder pairs, on which this worker is configured.
Each pair is represented by a dictionary with keys buliderid and masterid.

The worker information can be any JSON-able object.
See worker for more detail.

	
findWorkerId(name=name)

	

	Parameters:	name (50-character identifier) – worker name

	Returns:	worker ID via Deferred

Get the ID for a worker, adding a new worker to the database if necessary.
The worker information for a new worker is initialized to an empty dictionary.

	
getWorkers(masterid=None, builderid=None)

	

	Parameters:	
	masterid (integer) – limit to workers configured on this master

	builderid (integer) – limit to workers configured on this builder

	Returns:	list of worker dictionaries, via Deferred

Get a list of workers.
If either or both of the filtering parameters either specified, then the result is limited to workers configured to run on that master or builder.
The configured_on results are limited by the filtering parameters as well.
The connected_to results are limited by the masterid parameter.

	
getWorker(workerid=None, name=None, masterid=None, builderid=None)

	

	Parameters:	
	name (string) – the name of the worker to retrieve

	workerid (integer) – the ID of the worker to retrieve

	masterid (integer) – limit to workers configured on this master

	builderid (integer) – limit to workers configured on this builder

	Returns:	info dictionary or None, via Deferred

Looks up the worker with the given name or ID, returning None if no matching worker is found.
The masterid and builderid arguments function as they do for getWorkers.

	
workerConnected(workerid, masterid, workerinfo)

	

	Parameters:	
	workerid (integer) – the ID of the worker

	masterid (integer) – the ID of the master to which it connected

	workerinfo (dict) – the new worker information dictionary

	Returns:	Deferred

Record the given worker as attached to the given master, and update its cached worker information.
The supplied information completely replaces any existing information.

	
workerDisconnected(workerid, masterid)

	

	Parameters:	
	workerid (integer) – the ID of the worker

	masterid (integer) – the ID of the master to which it connected

	Returns:	Deferred

Record the given worker as no longer attached to the given master.

	
workerConfigured(workerid, masterid, builderids)

	

	Parameters:	
	workerid (integer) – the ID of the worker

	masterid (integer) – the ID of the master to which it configured

	of integer builderids (list) – the ID of the builders to which it is configured

	Returns:	Deferred

Record the given worker as being configured on the given master and for given builders.
This method will also remove any other builder that were configured previously for same (worker, master) combination.

	
deconfigureAllWorkersForMaster(masterid)

	

	Parameters:	masterid (integer) – the ID of the master to which it configured

	Returns:	Deferred

Unregister all the workers configured to a master for given builders.
This shall happen when master disabled or before reconfiguration

	
setWorkerState(workerid, paused, graceful)

	

	Parameters:	
	workerid (integer) – the ID of the worker whose state is being changed

	paused (integer) – the paused state

	graceful (integer) – the graceful state

	Returns:	Deferred

Change the state of a worker (see definition of states above in worker dict description)

changes

	
class buildbot.db.changes.ChangesConnectorComponent

	This class handles changes in the buildbot database, including pulling
information from the changes sub-tables.

An instance of this class is available at master.db.changes.

Changes are indexed by changeid, and are represented by a chdict, which
has the following keys:

	changeid (the ID of this change)

	parent_changeids (list of ID; change’s parents)

	author (unicode; the author of the change)

	files (list of unicode; source-code filenames changed)

	comments (unicode; user comments)

	is_dir (deprecated)

	links (list of unicode; links for this change, e.g., to web views,
review)

	revision (unicode string; revision for this change, or None if
unknown)

	when_timestamp (datetime instance; time of the change)

	branch (unicode string; branch on which the change took place, or
None for the “default branch”, whatever that might mean)

	category (unicode string; user-defined category of this change, or
None)

	revlink (unicode string; link to a web view of this change)

	properties (user-specified properties for this change, represented as
a dictionary mapping keys to (value, source))

	repository (unicode string; repository where this change occurred)

	project (unicode string; user-defined project to which this change
corresponds)

	
getParentChangeIds(branch, repository, project, codebase)

	

	Parameters:	
	branch (unicode string) – the branch of the change

	repository (unicode string) – the repository in which this change took place

	project (unicode string) – the project this change is a part of

	codebase (unicode string) –

return the last changeID which matches the repository/project/codebase

	
addChange(author=None, files=None, comments=None, is_dir=0, links=None, revision=None, when_timestamp=None, branch=None, category=None, revlink='', properties={}, repository='', project='', uid=None)

	

	Parameters:	
	author (unicode string) – the author of this change

	files – a list of filenames that were changed

	comments – user comments on the change

	is_dir – deprecated

	links (list of unicode strings) – a list of links related to this change, e.g., to web
viewers or review pages

	revision (unicode string) – the revision identifier for this change

	when_timestamp (datetime instance or None) – when this change occurred, or the current time
if None

	branch (unicode string) – the branch on which this change took place

	category (unicode string) – category for this change (arbitrary use by Buildbot
users)

	revlink (unicode string) – link to a web view of this revision

	properties (dictionary) – properties to set on this change, where values are
tuples of (value, source). At the moment, the source must be
'Change', although this may be relaxed in later versions.

	repository (unicode string) – the repository in which this change took place

	project (unicode string) – the project this change is a part of

	uid (integer) – uid generated for the change author

	Returns:	new change’s ID via Deferred

Add a Change with the given attributes to the database, returning the
changeid via a Deferred. All arguments should be given as keyword
arguments.

The project and repository arguments must be strings; None
is not allowed.

	
getChange(changeid, no_cache=False)

	

	Parameters:	
	changeid – the id of the change instance to fetch

	no_cache (boolean) – bypass cache and always fetch from database

	Returns:	chdict via Deferred

Get a change dictionary for the given changeid, or None if no such
change exists.

	
getChangeUids(changeid)

	

	Parameters:	changeid – the id of the change instance to fetch

	Returns:	list of uids via Deferred

Get the userids associated with the given changeid.

	
getRecentChanges(count)

	

	Parameters:	count – maximum number of instances to return

	Returns:	list of dictionaries via Deferred, ordered by changeid

Get a list of the count most recent changes, represented as
dictionaries; returns fewer if that many do not exist.

Note

For this function, “recent” is determined by the order of the
changeids, not by when_timestamp. This is most apparent in
DVCS’s, where the timestamp of a change may be significantly
earlier than the time at which it is merged into a repository
monitored by Buildbot.

	
getChanges()

	

	Returns:	list of dictionaries via Deferred

Get a list of the changes, represented as
dictionaries; changes are sorted, and paged using generic data query options

	
getChangesCount()

	

	Returns:	list of dictionaries via Deferred

Get the number changes, that the query option would return if no
paging option where set

	
getLatestChangeid()

	

	Returns:	changeid via Deferred

Get the most-recently-assigned changeid, or None if there are no
changes at all.

	
getChangesForBuild(buildid)

	

	Parameters:	buildid – ID of the build

	Returns:	list of dictionaries via Deferred

Get the “blame” list of changes for a build.

	
getChangeFromSSid(sourcestampid)

	

	Parameters:	sourcestampid – ID of the sourcestampid

	Returns:	chdict via Deferred

returns the change dictionary related to the sourcestamp ID.

changesources

	
exception buildbot.db.changesources.ChangeSourceAlreadyClaimedError

	Raised when a changesource request is already claimed by another master.

	
class buildbot.db.changesources.ChangeSourcesConnectorComponent

	This class manages the state of the Buildbot changesources.

An instance of this class is available at master.db.changesources.

Changesources are identified by their changesourceid, which can be obtained from findChangeSourceId.

Changesources are represented by dictionaries with the following keys:

	id - changesource’s ID

	name - changesource’s name

	masterid - ID of the master currently running this changesource, or None if it is inactive

Note that this class is conservative in determining what changesources are inactive: a changesource linked to an inactive master is still considered active.
This situation should never occur, however; links to a master should be deleted when it is marked inactive.

	
findChangeSourceId(name)

	

	Parameters:	name – changesource name

	Returns:	changesource ID via Deferred

Return the changesource ID for the changesource with this name.
If such a changesource is already in the database, this returns the ID.
If not, the changesource is added to the database and its ID returned.

	
setChangeSourceMaster(changesourceid, masterid)

	

	Parameters:	
	changesourceid – changesource to set the master for

	masterid – new master for this changesource, or None

	Returns:	Deferred

Set, or unset if masterid is None, the active master for this changesource.
If no master is currently set, or the current master is not active, this method will complete without error.
If the current master is active, this method will raise ChangeSourceAlreadyClaimedError.

	
getChangeSource(changesourceid)

	

	Parameters:	changesourceid – changesource ID

	Returns:	changesource dictionary or None, via Deferred

Get the changesource dictionary for the given changesource.

	
getChangeSources(active=None, masterid=None)

	

	Parameters:	
	active (boolean) – if specified, filter for active or inactive changesources

	masterid (integer) – if specified, only return changesources attached associated with this master

	Returns:	list of changesource dictionaries in unspecified order

Get a list of changesources.

If active is given, changesources are filtered according to whether they are active (true) or inactive (false).
An active changesource is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

schedulers

	
exception buildbot.db.schedulers.SchedulerAlreadyClaimedError

	Raised when a scheduler request is already claimed by another master.

	
class buildbot.db.schedulers.SchedulersConnectorComponent

	This class manages the state of the Buildbot schedulers. This state includes
classifications of as-yet un-built changes.

An instance of this class is available at master.db.schedulers.

Schedulers are identified by their schedulerid, which can be obtained from findSchedulerId.

Schedulers are represented by dictionaries with the following keys:

	id - scheduler’s ID

	name - scheduler’s name

	masterid - ID of the master currently running this scheduler, or None if it is inactive

Note that this class is conservative in determining what schedulers are inactive: a scheduler linked to an inactive master is still considered active.
This situation should never occur, however; links to a master should be deleted when it is marked inactive.

	
classifyChanges(objectid, classifications)

	

	Parameters:	
	schedulerid – ID of the scheduler classifying the changes

	classifications (dictionary) – mapping of changeid to boolean, where the boolean
is true if the change is important, and false if it is unimportant

	Returns:	Deferred

Record the given classifications. This method allows a scheduler to
record which changes were important and which were not immediately,
even if the build based on those changes will not occur for some time
(e.g., a tree stable timer). Schedulers should be careful to flush
classifications once they are no longer needed, using
flushChangeClassifications.

	
flushChangeClassifications(objectid, less_than=None)

	

	Parameters:	
	schedulerid – ID of the scheduler owning the flushed changes

	less_than – (optional) lowest changeid that should not be flushed

	Returns:	Deferred

Flush all scheduler_changes for the given scheduler, limiting to those
with changeid less than less_than if the parameter is supplied.

	
getChangeClassifications(objectid[, branch])

	

	Parameters:	
	schedulerid (integer) – ID of scheduler to look up changes for

	branch (string or None (for default branch)) – (optional) limit to changes with this branch

	Returns:	dictionary via Deferred

Return the classifications made by this scheduler, in the form of a
dictionary mapping changeid to a boolean, just as supplied to
classifyChanges.

If branch is specified, then only changes on that branch will be
given. Note that specifying branch=None requests changes for the
default branch, and is not the same as omitting the branch argument
altogether.

	
findSchedulerId(name)

	

	Parameters:	name – scheduler name

	Returns:	scheduler ID via Deferred

Return the scheduler ID for the scheduler with this name.
If such a scheduler is already in the database, this returns the ID.
If not, the scheduler is added to the database and its ID returned.

	
setSchedulerMaster(schedulerid, masterid)

	

	Parameters:	
	schedulerid – scheduler to set the master for

	masterid – new master for this scheduler, or None

	Returns:	Deferred

Set, or unset if masterid is None, the active master for this scheduler.
If no master is currently set, or the current master is not active, this method will complete without error.
If the current master is active, this method will raise SchedulerAlreadyClaimedError.

	
getScheduler(schedulerid)

	

	Parameters:	schedulerid – scheduler ID

	Returns:	scheduler dictionary or None via Deferred

Get the scheduler dictionary for the given scheduler.

	
getSchedulers(active=None, masterid=None)

	

	Parameters:	
	active (boolean) – if specified, filter for active or inactive schedulers

	masterid (integer) – if specified, only return schedulers attached associated with this master

	Returns:	list of scheduler dictionaries in unspecified order

Get a list of schedulers.

If active is given, schedulers are filtered according to whether they are active (true) or inactive (false).
An active scheduler is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

sourcestamps

	
class buildbot.db.sourcestamps.SourceStampsConnectorComponent

	This class manages source stamps, as stored in the database.
A source stamp uniquely identifies a particular version a single codebase.
Source stamps are identified by their ID.
It is safe to use sourcestamp ID equality as a proxy for source stamp equality.
For example, all builds of a particular version of a codebase will share the same sourcestamp ID.
This equality does not extend to patches: two sourcestamps generated with exactly the same patch will have different IDs.

Relative source stamps have a revision of None, meaning “whatever the latest is when this sourcestamp is interpreted”.
While such source stamps may correspond to a wide array of revisions over the lifetime of a buildbot install, they will only ever have one ID.

An instance of this class is available at master.db.sourcestamps.

	ssid

	branch (branch, or None for default branch)

	revision (revision, or None to indicate the latest revision, in
which case this is a relative source stamp)

	patchid (ID of the patch)

	patch_body (body of the patch, or None)

	patch_level (directory stripping level of the patch, or None)

	patch_subdir (subdirectory in which to apply the patch, or None)

	patch_author (author of the patch, or None)

	patch_comment (comment for the patch, or None)

	repository (repository containing the source; never None)

	project (project this source is for; never None)

	codebase (codebase this stamp is in; never None)

	created_at (timestamp when this stamp was first created)

Note that the patch body is a bytestring, not a unicode string.

	
findSourceStampId(branch=None, revision=Node,

	
repository=None, project=None, patch_body=None,

	
patch_level=None, patch_author=None, patch_comment=None,

	
patch_subdir=None):

	

	Parameters:	
	branch (unicode string or None) –

	revision (unicode string or None) –

	repository (unicode string or None) –

	project (unicode string or None) –

	codebase (unicode string (required)) –

	patch_body (unicode string or None) – patch body

	patch_level (integer or None) – patch level

	patch_author (unicode string or None) – patch author

	patch_comment (unicode string or None) – patch comment

	patch_subdir (unicode string or None) – patch subdir

	Returns:	ssid, via Deferred

Create a new SourceStamp instance with the given attributes, or find an existing one.
In either case, return its ssid.
The arguments all have the same meaning as in an ssdict.

If a new SourceStamp is created, its created_at is set to the current time.

	
getSourceStamp(ssid)

	

	Parameters:	
	ssid – sourcestamp to get

	no_cache (boolean) – bypass cache and always fetch from database

	Returns:	ssdict, or None, via Deferred

Get an ssdict representing the given source stamp, or None if no
such source stamp exists.

	
getSourceStamps()

	

	Returns:	list of ssdict, via Deferred

Get all sourcestamps in the database.
You probably don’t want to do this!
This method will be extended to allow appropriate filtering.

	
getSourceStampsForBuild(buildid)

	

	Parameters:	buildid – build ID

	Returns:	list of ssdict, via Deferred

Get sourcestamps related to a build.

state

	
class buildbot.db.state.StateConnectorComponent

	This class handles maintaining arbitrary key/value state for Buildbot
objects. Each object can store arbitrary key/value pairs, where the values
are any JSON-encodable value. Each pair can be set and retrieved
atomically.

Objects are identified by their (user-visible) name and their
class. This allows, for example, a nightly_smoketest object of class
NightlyScheduler to maintain its state even if it moves between
masters, but avoids cross-contaminating state between different classes
of objects with the same name.

Note that “class” is not interpreted literally, and can be any string that
will uniquely identify the class for the object; if classes are renamed,
they can continue to use the old names.

An instance of this class is available at master.db.state.

Objects are identified by objectid.

	
getObjectId(name, class_name)

	

	Parameters:	
	name – name of the object

	class_name – object class name

	Returns:	the objectid, via a Deferred.

Get the object ID for this combination of a name and a class. This
will add a row to the ‘objects’ table if none exists already.

	
getState(objectid, name[, default])

	

	Parameters:	
	objectid – objectid on which the state should be checked

	name – name of the value to retrieve

	default – (optional) value to return if name is not present

	Returns:	state value via a Deferred

	Raises:	KeyError – if name is not present and no default is given

	Raises:	TypeError if JSON parsing fails

Get the state value for key name for the object with id
objectid.

	
setState(objectid, name, value)

	

	Parameters:	
	objectid – the objectid for which the state should be changed

	name – the name of the value to change

	value (JSON-able value) – the value to set

	returns – value actually written via Deferred

	Raises:	TypeError if JSONification fails

Set the state value for name for the object with id objectid,
overwriting any existing value.
In case of two racing writes, the first (as per db rule) one wins, the seconds returns the value from the first.

	
atomicCreateState(objectid, name, thd_create_callback)

	

	Parameters:	
	objectid – the objectid for which the state should be created

	name – the name of the value to create

	thd_create_callback – the function to call from thread to create the value if non-existent. (returns JSON-able value)

	returns – Deferred

	Raises:	TypeError if JSONification fails

Atomically creates the state value for name for the object with id objectid,
If there is an existing value, returns that instead.
This implementation ensures the state is created only once for the whole cluster.

Those 3 methods have their threaded equivalent, thdGetObjectId, thdGetState, thdSetState that are intended to run in synchronous code, (e.g master.cfg environment)

users

	
class buildbot.db.users.UsersConnectorComponent

	This class handles Buildbot’s notion of users. Buildbot tracks the usual
information about users – username and password, plus a display name.

The more complicated task is to recognize each user across multiple
interfaces with Buildbot. For example, a user may be identified as
‘djmitche’ in Subversion, ‘dustin@v.igoro.us’ in Git, and ‘dustin’ on IRC.
To support this functionality, each user as a set of attributes, keyed by
type. The findUserByAttr method uses these attributes to match users,
adding a new user if no matching user is found.

Users are identified canonically by uid, and are represented by usdicts (user
dictionaries) with keys

	uid

	identifier (display name for the user)

	bb_username (buildbot login username)

	bb_password (hashed login password)

All attributes are also included in the dictionary, keyed by type. Types
colliding with the keys above are ignored.

	
findUserByAttr(identifier, attr_type, attr_data)

	

	Parameters:	
	identifier – identifier to use for a new user

	attr_type – attribute type to search for and/or add

	attr_data – attribute data to add

	Returns:	userid via Deferred

Get an existing user, or add a new one, based on the given attribute.

This method is intended for use by other components of Buildbot to
search for a user with the given attributes.

Note that identifier is not used in the search for an existing
user. It is only used when creating a new user. The identifier should
be based deterministically on the attributes supplied, in some fashion
that will seem natural to users.

For future compatibility, always use keyword parameters to call this
method.

	
getUser(uid)

	

	Parameters:	
	uid – user id to look up

	no_cache (boolean) – bypass cache and always fetch from database

	Returns:	usdict via Deferred

Get a usdict for the given user, or None if no matching user is
found.

	
getUserByUsername(username)

	

	Parameters:	username (string) – username portion of user credentials

	Returns:	usdict or None via deferred

Looks up the user with the bb_username, returning the usdict or
None if no matching user is found.

	
getUsers()

	

	Returns:	list of partial usdicts via Deferred

Get the entire list of users. User attributes are not included, so the
results are not full userdicts.

	
updateUser(uid=None, identifier=None, bb_username=None, bb_password=None, attr_type=None, attr_data=None)

	

	Parameters:	
	uid (int) – the user to change

	identifier (string) – (optional) new identifier for this user

	bb_username (string) – (optional) new buildbot username

	bb_password (string) – (optional) new hashed buildbot password

	attr_type (string) – (optional) attribute type to update

	attr_data (string) – (optional) value for attr_type

	Returns:	Deferred

Update information about the given user. Only the specified attributes
are updated. If no user with the given uid exists, the method will
return silently.

Note that bb_password must be given if bb_username appears;
similarly, attr_type requires attr_data.

	
removeUser(uid)

	

	Parameters:	uid (int) – the user to remove

	Returns:	Deferred

Remove the user with the given uid from the database. This will remove
the user from any associated tables as well.

	
identifierToUid(identifier)

	

	Parameters:	identifier (string) – identifier to search for

	Returns:	uid or None, via Deferred

Fetch a uid for the given identifier, if one exists.

masters

	
class buildbot.db.masters.MastersConnectorComponent

	This class handles tracking the buildmasters in a multi-master configuration.
Masters “check in” periodically.
Other masters monitor the last activity times, and mark masters that have not recently checked in as inactive.

Masters are represented by master dictionaries with the following keys:

	id – the ID of this master

	name – the name of the master (generally of the form hostname:basedir)

	active – true if this master is running

	last_active – time that this master last checked in (a datetime object)

	
findMasterId(name)

	

	Parameters:	name (unicode) – name of this master

	Returns:	master id via Deferred

Return the master ID for the master with this master name (generally hostname:basedir).
If such a master is already in the database, this returns the ID.
If not, the master is added to the database, with active=False, and its ID returned.

	
setMasterState(masterid, active)

	

	Parameters:	
	masterid (integer) – the master to check in

	active (boolean) – whether to mark this master as active or inactive

	Returns:	boolean via Deferred

Mark the given master as active or inactive, returning true if the state actually changed.
If active is true, the last_active time is updated to the current time.
If active is false, then any links to this master, such as schedulers, will be deleted.

	
getMaster(masterid)

	

	Parameters:	masterid (integer) – the master to check in

	Returns:	Master dict or None via Deferred

Get the indicated master.

	
getMasters()

	

	Returns:	list of Master dicts via Deferred

Get a list of the masters, represented as dictionaries; masters are sorted
and paged using generic data query options

	
setAllMastersActiveLongTimeAgo()

	

	Returns:	None via Deferred

This method is intended to be call by upgrade-master, and will effectively force housekeeping on all masters at next startup.
This method is not intended to be called outside of housekeeping scripts.

builders

	
class buildbot.db.builders.BuildersConnectorComponent

	This class handles the relationship between builder names and their IDs, as well as tracking which masters are configured for this builder.

Builders are represented by master dictionaries with the following keys:

	id – the ID of this builder

	name – the builder name, a 20-character identifier

	masterids – the IDs of the masters where this builder is configured (sorted by id)

	
findBuilderId(name, autoCreate=True)

	

	Parameters:	
	name (20-character identifier) – name of this builder

	autoCreate (bool) – automatically create the builder if name not found

	Returns:	builder id via Deferred

Return the builder ID for the builder with this builder name.
If such a builder is already in the database, this returns the ID.
If not and autoCreate is True, the builder is added to the database.

	
addBuilderMaster(builderid=None, masterid=None)

	

	Parameters:	
	builderid (integer) – the builder

	masterid (integer) – the master

	Returns:	Deferred

Add the given master to the list of masters on which the builder is configured.
This will do nothing if the master and builder are already associated.

	
removeBuilderMaster(builderid=None, masterid=None)

	

	Parameters:	
	builderid (integer) – the builder

	masterid (integer) – the master

	Returns:	Deferred

Remove the given master from the list of masters on which the builder is configured.

	
getBuilder(builderid)

	

	Parameters:	builderid (integer) – the builder to check in

	Returns:	Builder dict or None via Deferred

Get the indicated builder.

	
getBuilders(masterid=None)

	

	Parameters:	masterid (integer) – ID of the master to which the results should be limited

	Returns:	list of Builder dicts via Deferred

Get all builders (in unspecified order).
If masterid is given, then only builders configured on that master are returned.

3.3.3.4. Writing Database Connector Methods

The information above is intended for developers working on the rest of
Buildbot, and treating the database layer as an abstraction. The remainder of
this section describes the internals of the database implementation, and is
intended for developers modifying the schema or adding new methods to the
database layer.

Warning

It’s difficult to change the database schema significantly after it has
been released, and very disruptive to users to change the database API.
Consider very carefully the future-proofing of any changes here!

The DB Connector and Components

	
class buildbot.db.connector.DBConnector

	The root of the database connectors, master.db, is a
DBConnector instance. Its main purpose is
to hold reference to each of the connector components, but it also handles
timed cleanup tasks.

If you are adding a new connector component, import its module and create
an instance of it in this class’s constructor.

	
class buildbot.db.base.DBConnectorComponent

	This is the base class for connector components.

There should be no need to override the constructor defined by this base
class.

	
db

	A reference to the DBConnector, so that
connector components can use e.g., self.db.pool or
self.db.model. In the unusual case that a connector component
needs access to the master, the easiest path is self.db.master.

	
checkLength(col, value)

	For use by subclasses to check that ‘value’ will fit in ‘col’, where ‘col’ is a table column from the model.
Ignore this check for database engines that either provide this error themselves (postgres) or that do not enforce maximum-length restrictions (sqlite)

	
findSomethingId(self, tbl, whereclause, insert_values, _race_hook=None, autoCreate=True)

	Find (using whereclause) or add (using insert_values) a row to
table, and return the resulting ID. If autoCreate == False, we will not automatically insert the row.

	
hashColumns(*args)

	Hash the given values in a consistent manner: None is represented as xf5, an invalid unicode byte; strings are converted to utf8; and integers are represented by their decimal expansion.
The values are then joined by ‘0’ and hashed with sha1.

	
doBatch(batch, batch_n=500)

	returns an Iterator that batches stuff in order to not push to many thing in a single request.
Especially sqlite has 999 limit on argument it can take in a requests.

Direct Database Access

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] as a wrapper around database
client drivers. Unfortunately, SQLAlchemy is a synchronous library, so some
extra work is required to use it in an asynchronous context like Buildbot.
This is accomplished by deferring all database operations to threads, and
returning a Deferred. The Pool class takes care of
the details.

A connector method should look like this:

def myMethod(self, arg1, arg2):
 def thd(conn):
 q = ... # construct a query
 for row in conn.execute(q):
 ... # do something with the results
 return ... # return an interesting value
 return self.db.pool.do(thd)

Picking that apart, the body of the method defines a function named thd
taking one argument, a Connection object. It then calls
self.db.pool.do, passing the thd function. This function is called in
a thread, and can make blocking calls to SQLAlchemy as desired. The do
method will return a Deferred that will fire with the return value of thd,
or with a failure representing any exceptions raised by thd.

The return value of thd must not be an SQLAlchemy object - in particular,
any ResultProxy
objects must be parsed into lists or other data structures before they are
returned.

Warning

As the name thd indicates, the function runs in a thread. It should
not interact with any other part of Buildbot, nor with any of the Twisted
components that expect to be accessed from the main thread – the reactor,
Deferreds, etc.

Queries can be constructed using any of the SQLAlchemy core methods, using
tables from Model, and executed with the connection
object, conn.

Note

SQLAlchemy requires the use of a syntax that is forbidden by pep8.
If in where clauses you need to select rows where a value is NULL,
you need to write (tbl.c.value == None). This form is forbidden by pep8
which requires the use of is None instead of == None. As sqlalchemy is using operator
overloading to implement pythonic SQL statements, and is operator is not overloadable,
we need to keep the == operators. In order to solve this issue, buildbot
uses buildbot.db.NULL constant, which is None.
So instead of writing tbl.c.value == None, please write tbl.c.value == NULL)

	
class buildbot.db.pool.DBThreadPool

	
	
do(callable, ...)

	

	Returns:	Deferred

Call callable in a thread, with a Connection object as first
argument. Returns a deferred that will fire with the results of the
callable, or with a failure representing any exception raised during
its execution.

Any additional positional or keyword arguments are passed to
callable.

	
do_with_engine(callable, ...)

	

	Returns:	Deferred

Similar to do, call callable in a thread, but with an
Engine object as
first argument.

This method is only used for schema manipulation, and should not be
used in a running master.

Database Schema

Database connector methods access the database through SQLAlchemy, which
requires access to Python objects representing the database tables. That is
handled through the model.

	
class buildbot.db.model.Model

	This class contains the canonical description of the buildbot schema, It is
presented in the form of SQLAlchemy Table instances, as class variables. At
runtime, the model is available at master.db.model, so for example the
buildrequests table can be referred to as
master.db.model.buildrequests, and columns are available in its c
attribute.

The source file, master/buildbot/db/model.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/db/model.py], contains comments describing each table; that information is not replicated in this documentation.

Note that the model is not used for new installations or upgrades of the
Buildbot database. See Modifying the Database Schema for more
information.

	
metadata

	The model object also has a metadata attribute containing a
MetaData instance.
Connector methods should not need to access this object. The metadata
is not bound to an engine.

The Model class also defines some migration-related methods:

	
is_current()

	

	Returns:	boolean via Deferred

Returns true if the current database’s version is current.

	
upgrade()

	

	Returns:	Deferred

Upgrades the database to the most recent schema version.

Caching

Connector component methods that get an object based on an ID are good
candidates for caching. The cached decorator
makes this automatic:

	
buildbot.db.base.cached(cachename)

	

	Parameters:	cache_name – name of the cache to use

A decorator for “getter” functions that fetch an object from the database
based on a single key. The wrapped method will only be called if the named
cache does not contain the key.

The wrapped function must take one argument (the key); the wrapper will
take a key plus an optional no_cache argument which, if true, will
cause it to invoke the underlying method even if the key is in the cache.

The resulting method will have a cache attribute which can be used to
access the underlying cache.

In most cases, getter methods return a well-defined dictionary. Unfortunately,
Python does not handle weak references to bare dictionaries, so components must
instantiate a subclass of dict. The whole assembly looks something like
this:

class ThDict(dict):
 pass

class ThingConnectorComponent(base.DBConnectorComponent):

 @base.cached('thdicts')
 def getThing(self, thid):
 def thd(conn):
 ...
 thdict = ThDict(thid=thid, attr=row.attr, ...)
 return thdict
 return self.db.pool.do(thd)

Tests

It goes without saying that any new connector methods must be fully tested!

You will also want to add an in-memory implementation of the methods to the
fake classes in master/buildbot/test/fake/fakedb.py. Non-DB Buildbot code
is tested using these fake implementations in order to isolate that code from
the database code, and to speed-up tests.

The keys and types used in the return value from a connector’s get methods are described in master/buildbot/test/util/validation.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/util/validation.py], via the dbdict module-level value.
This is a dictionary of DictValidator objects, one for each return value.

These values are used within test methods like this:

rv = yield self.db.masters.getMaster(7)
validation.verifyDbDict(self, 'masterdict', rv)

3.3.3.5. Modifying the Database Schema

Changes to the schema are accomplished through migration scripts, supported by
SQLAlchemy-Migrate [https://github.com/openstack/sqlalchemy-migrate]. In fact,
even new databases are created with the migration scripts – a new database is
a migrated version of an empty database.

The schema is tracked by a version number, stored in the migrate_version
table. This number is incremented for each change to the schema, and used to
determine whether the database must be upgraded. The master will refuse to run
with an out-of-date database.

To make a change to the schema, first consider how to handle any existing data.
When adding new columns, this may not be necessary, but table refactorings can
be complex and require caution so as not to lose information.

Create a new script in master/buildbot/db/migrate/versions [https://github.com/buildbot/buildbot/tree/master/master/buildbot/db/migrate/versions], following the numbering scheme already present.
The script should have an update method, which takes an engine as a parameter, and upgrades the database, both changing the schema and performing any required data migrations.
The engine passed to this parameter is “enhanced” by SQLAlchemy-Migrate, with methods to handle adding, altering, and dropping columns.
See the SQLAlchemy-Migrate documentation for details.

Next, modify master/buildbot/db/model.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/db/model.py] to represent the updated schema.
Buildbot’s automated tests perform a rudimentary comparison of an upgraded database with the model, but it is important to check the details - key length, nullability, and so on can sometimes be missed by the checks.
If the schema and the upgrade scripts get out of sync, bizarre behavior can result.

Also, adjust the fake database table definitions in master/buildbot/test/fake/fakedb.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/fake/fakedb.py] according to your changes.

Your upgrade script should have unit tests. The classes in master/buildbot/test/util/migration.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/util/migration.py] make this straightforward.
Unit test scripts should be named e.g., test_db_migrate_versions_015_remove_bad_master_objectid.py.

The master/buildbot/test/integration/test_upgrade.py [https://github.com/buildbot/buildbot/tree/master/master/buildbot/test/integration/test_upgrade.py] also tests
upgrades, and will confirm that the resulting database matches the model. If
you encounter implicit indexes on MySQL, that do not appear on SQLite or
Postgres, add them to implied_indexes in
master/buidlbot/db/model.py.

3.3.3.6. Foreign key checking

PostgreSQL and SQlite db backends are checking the foreign keys consistency.
bug #2248 [http://trac.buildbot.net/ticket/2248] needs to be fixed so that we can support foreign key checking for MySQL.

To maintain consistency with real db, fakedb can check the foreign key consistency of your test data. For this, just enable it with:

self.db = fakedb.FakeDBConnector(self.master, self)
self.db.checkForeignKeys = True

Note that tests that only use fakedb do not really need foreign key consistency, even if this is a good practice to enable it in new code.

3.3.3.7. Database Compatibility Notes

Or: “If you thought any database worked right, think again”

Because Buildbot works over a wide range of databases, it is generally limited
to database features present in all supported backends. This section
highlights a few things to watch out for.

In general, Buildbot should be functional on all supported database backends.
If use of a backend adds minor usage restrictions, or cannot implement some
kinds of error checking, that is acceptable if the restrictions are
well-documented in the manual.

The metabuildbot tests Buildbot against all supported databases, so most
compatibility errors will be caught before a release.

Index Length in MySQL

MySQL only supports about 330-character indexes. The actual index length is
1000 bytes, but MySQL uses 3-byte encoding for UTF8 strings. This is a
longstanding bug in MySQL - see “Specified key was too long; max key
length is 1000 bytes” with utf8 [http://bugs.mysql.com/bug.php?id=4541].
While this makes sense for indexes used for record lookup, it limits the
ability to use unique indexes to prevent duplicate rows.

InnoDB only supports indexes up to 255 unicode characters, which is why
all indexed columns are limited to 255 characters in Buildbot.

Transactions in MySQL

Unfortunately, use of the MyISAM storage engine precludes real transactions in
MySQL. transaction.commit() and transaction.rollback() are essentially
no-ops: modifications to data in the database are visible to other users
immediately, and are not reverted in a rollback.

Referential Integrity in SQLite and MySQL

Neither MySQL nor SQLite enforce referential integrity based on foreign keys.
Postgres does enforce, however. If possible, test your changes on Postgres
before committing, to check that tables are added and removed in the proper
order.

Subqueries in MySQL

MySQL’s query planner is easily confused by subqueries. For example, a DELETE
query specifying id’s that are IN a subquery will not work. The workaround is
to run the subquery directly, and then execute a DELETE query for each returned
id.

If this weakness has a significant performance impact, it would be acceptable to
conditionalize use of the subquery on the database dialect.

Too Many Variables in SQLite

Sqlite has a limitation on the number of variables it can use.
This limitation is usually SQLITE_LIMIT_VARIABLE_NUMBER=999 [http://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber].
There is currently no way with pysqlite to query the value of this limit.
The C-api sqlite_limit is just not bound to the python.

When you hit this problem, you will get error like the following:

sqlalchemy.exc.OperationalError: (OperationalError) too many SQL variables
u'DELETE FROM scheduler_changes WHERE scheduler_changes.changeid IN (?, ?, ?,tons of ?? and IDs 9363, 9362, 9361)

You can use the method doBatch in order to write batching code in a consistent manner.

3.3.3.8. Testing migrations with real databases

By default Buildbot test suite uses SQLite database for testings database
migrations.
To use other database set BUILDBOT_TEST_DB_URL environment variable to
value in SQLAlchemy database URL specification [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

For example, to run tests with file-based SQLite database you can start
tests in the following way:

BUILDBOT_TEST_DB_URL=sqlite:////tmp/test_db.sqlite trial buildbot.test

Run databases in Docker

Docker [https://www.docker.com/] allows to easily install and configure
different databases locally in containers.

To run tests with PostgreSQL:

Install psycopg.
pip install psycopg2
Start container with PostgreSQL 9.5.
It will listen on port 15432 on localhost.
sudo docker run --name bb-test-postgres -e POSTGRES_PASSWORD=password \
 -p 127.0.0.1:15432:5432 -d postgres:9.5
Start interesting tests
BUILDBOT_TEST_DB_URL=postgresql://postgres:password@localhost:15432/postgres \
 trial buildbot.test

To run tests with MySQL:

Install mysqlclient
pip install mysqlclient
Start container with MySQL 5.5.
It will listen on port 13306 on localhost.
sudo docker run --name bb-test-mysql -e MYSQL_ROOT_PASSWORD=password \
 -p 127.0.0.1:13306:3306 -d mysql:5.5
Start interesting tests
BUILDBOT_TEST_DB_URL=mysql+mysqldb://root:password@127.0.0.1:13306/mysql \
 trial buildbot.test

 3.3.4. Messaging and Queues

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.3.4. Messaging and Queues

As of version 0.9.0, Buildbot uses a message-queueing structure to handle asynchronous notifications in a distributed fashion.
This avoids, for the most part, the need for each master to poll the database, allowing masters to react to events as they happen.

3.3.4.1. Overview

Buildbot is structured as a hybrid state- and event-based application, which will probably offend adherents of either pattern.
In particular, the most current state is stored in the Database, while any changes to the state are announced in the form of a message.
The content of the messages is sufficient to reconstruct the updated state, allowing external processes to represent “live” state without polling the database.

This split nature immediately brings to light the problem of synchronizing the two interfaces.
Queueing systems can introduce queueing delays as messages propagate.
Likewise, database systems may introduce a delay between committed modifications and the modified data appearing in queries; for example, with MySQL master/slave replication, there can be several seconds’ delay before a slave is updated.

Buildbot’s MQ connector simply relays messages, and makes no attempt to coordinate the timing of those messages with the corresponding database updates.
It is up to higher layers to apply such coordination.

3.3.4.2. Connector API

All access to the queueing infrastructure is mediated by an MQ connector.
The connector’s API is defined below.
The connector itself is always available as master.mq, where master is the current BuildMaster instance.

The connector API is quite simple.
It is loosely based on AMQP, although simplified because there is only one exchange (see Queue Schema).

All messages include a “routing key”, which is a tuple of 7-bit ascii strings describing the content of the message.
By convention, the first element of the tuple gives the type of the data in the message.
The last element of the tuple describes the event represented by the message.
The remaining elements of the tuple describe attributes of the data in the message that may be useful for filtering; for example, buildsets may usefully be filtered on buildsetids.
The topics and associated message types are described below in Message Schema.

Filters are also specified with tuples.
For a filter to match a routing key, it must have the same length, and each element of the filter that is not None must match the corresponding routing key element exactly.

	
class buildbot.mq.base.MQConnector

	This is an abstract parent class for MQ connectors, and defines the interface.
It should not be instantiated directly.
It is a subclass of buildbot.util.service.AsyncService, and subclasses can override service methods to start and stop the connector.

	
produce(routing_key, data)

	

	Parameters:	
	routing_key (tuple) – the routing key for this message

	data – JSON-serializable body of the message

This method produces a new message and queues it for delivery to any associated consumers.

The routing key and data should match one of the formats given in Message Schema.

The method returns immediately; the caller will not receive any indication of a failure to transmit the message, although errors will be displayed in twistd.log.

	
startConsuming(callback, filter[, persistent_name=name])

	

	Parameters:	
	callback – callable to invoke for matching messages

	filter (tuple) – filter for routing keys of interest

	persistent_name – persistent name for this consumer

	Returns:	a QueueRef instance via Deferred

This method will begin consuming messages matching the filter, invoking callback for each message.
See above for the format of the filter.

The callback will be invoked with two arguments: the message’s routing key and the message body, as a Python data structure.
It may return a Deferred, but no special processing other than error handling will be applied to that Deferred.
In particular, note that the callback may be invoked a second time before the Deferred from the first invocation fires.

A message is considered delivered as soon as the callback is invoked - there is no support for acknowledgements or re-queueing unhandled messages.

Note that the timing of messages is implementation-dependent.
It is not guaranteed that messages sent before the startConsuming method completes will be received.
In fact, because the registration process may not be immediate, even messages sent after the method completes may not be received.

If persistent_name is given, then the consumer is assumed to be persistent, and consumption can be resumed with the given name.
Messages that arrive when no consumer is active are queued and will be delivered when a consumer becomes active.

	
waitUntilEvent(filter, check_callback)

	

	Parameters:	
	filter (tuple) – filter for routing keys of interest

	check_callback (function) – a callback which check if the event has already happened

	Returns:	a Deferred that fires when the event has been received, and contain tuple (routing_key, value) representing the event

This method is a helper which returns a defer that fire when a certain event has occurred.
This is useful for waiting the end of a build or disconnection of a worker.
You shall make sure when using this method that this event will happen in the future, and take care of race conditions.
For that caller must provide a check_callback which will check of the event has already occurred.
The whole race-condition-free process is:

	Register to event

	Check if it has already happened

	If not wait for the event

	Unregister from event

	
class buildbot.mq.base.QueueRef

	The QueueRef returned (via Deferred) from startConsuming can be used to stop consuming messages when they are no longer needed.
Users should be very careful to ensure that consumption is terminated in all cases.

	
stopConsuming()

	Stop invoking the callback passed to startConsuming.
This method can be called multiple times for the same QueueRef instance without harm.

After the first call to this method has returned, the callback will not be invoked.

Implementations

Several concrete implementations of the MQ connector exist.
The simplest is intended for cases where only one master exists, similar to the SQLite database support.
The remainder use various existing queueing applications to support distributed communications.

Simple

	
class buildbot.mq.simple.SimpleMQ

	The SimpleMQ class implements a local equivalent of a message-queueing server.
It is intended for Buildbot installations with only one master.

Wamp

	
class buildbot.mq.wamp.WampMQ

	The WampMQ class implements message-queueing using a wamp router.
This class translates the semantics of the buildbot mq api to the semantics of the wamp messaging system.
The message route is translated to a wamp topic by joining with dot and prefixing with buildbot namespace.
Example message that is sent via wamp is:

topic = "org.buildbot.mq.builds.1.new"
data = {
 'builderid': 10,
 'buildid': 1,
 'buildrequestid': 13,
 'workerid': 20,
 'complete': False,
 'complete_at': None,
 'masterid': 824,
 'number': 1,
 'results': None,
 'started_at': 1,
 'state_string': u'created'
}

	
class buildbot.wamp.connector.WampConnector

	The WampConnector class implements a buildbot service for wamp.
It is managed outside of the mq module as this protocol can also be reused for worker protocol.
The connector support queuing of requests until the wamp connection is created, but do not support disconnection and reconnection.
Reconnection will be supported as part of a next release of AutobahnPython (https://github.com/crossbario/autobahn-python/issues/295).
There is a chicken and egg problem at the buildbot initialization phases, so the produce messages are actually not sent with deferred.

3.3.4.3. Queue Schema

Buildbot uses a particularly simple architecture: in AMQP terms, all messages are sent to a single topic exchange, and consumers define anonymous queues bound to that exchange.

In future versions of Buildbot, some components (e.g., schedulers) may use durable queues to ensure that messages are not lost when one or more masters are disconnected.

3.3.4.4. Message Schema

This section describes the general structure messages.
The specific routing keys and content of each message are described in the relevant sub-section of Data API.

Routing Keys

Routing keys are a sequence of strings, usually written with dot separators.
Routing keys are represented with variables when one or more of the words in the key are defined by the content of the message.
For example, buildset.$bsid describes routing keys such as buildset.1984, where 1984 is the ID of the buildset described by the message body.
Internally, keys are represented as tuples of strings.

Body Format

Message bodies are encoded in JSON.
The top level of each message is an object (a dictionary).

Most simple Python types - strings, numbers, lists, and dictionaries - are mapped directly to the corresponding JSON types.
Timestamps are represented as seconds since the UNIX epoch in message bodies.

Cautions

Message ordering is generally maintained by the backend implementations, but this should not be depended on.
That is, messages originating from the same master are usually delivered to consumers in the order they were produced.
Thus, for example, a consumer can expect to see a build request claimed before it is completed.
That said, consumers should be resilient to messages delivered out of order, at the very least by scheduling a “reload” from state stored in the database when messages arrive in an invalid order.

Unit tests should be used to ensure this resiliency.

Some related messages are sent at approximately the same time.
Due to the non-blocking nature of message delivery, consumers should not assume that subsequent messages in a sequence remain queued.
For example, upon receipt of a buildset.$bsid.new message, it is already too late to try to subscribe to the associated build requests messages, as they may already have been consumed.

Schema Changes

Future versions of Buildbot may add keys to messages, or add new messages.
Consumers should expect unknown keys and, if using wildcard topics, unknown messages.

 3.4. Python3 compatibility

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.4. Python3 compatibility

A good place to start looking for advice to ensure that any code is compatible with both Python-3.x and Python2.6/2.7 is too look at the python-future cheat sheet [http://python-future.org/compatible_idioms.html] .
Buildbot uses the python-future library to ensure compatibility with both Python2.6/2.7 and Python3.x.

3.4.1. Imports

All __future__ import have to happen at the top of the module, anything else is seen as a syntax error.
All imports from the python-future package should happen below __future__ imports, but before any other.

Yes:

from __future__ import print_function
from twisted.application import internet
from twisted.spread import pb

No:

from twisted.application import internet
from twisted.spread import pb
from __future__ import print_function

3.4.2. Dictionaries

In python3, dict.iteritems is no longer available.
While dict.items() does exist, it can be memory intensive in python2.
For this reason, please use the python.future function iteritems().

Example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in d.iteritems():
 print("We have {} {}".format(num, item))

should be written as:

from future.utils import iteritems
d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in iteritems(d):
 print("We have {} {}".format(num, item))

This also applies to the similar methods dict.itervalues() and dict.values(), which have an equivalent itervalues().

If a list is required, please use list(iteritems(dict)).
This is for compatibility with the six library.

For iterating over dictionary keys, please use for key in dict:.
For example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item in d:
 print("We have {}".format(item))

Similarly when you want a list of keys:

keys = list(d)

3.4.3. New-style classes

All classes in Python3 are newstyle, so any classes added to the code base must therefore be new-style.
This is done by inheriting object

Old-style:

class Foo:
 def __init__(self, bar)
 self.bar = bar

new-style:

class Foo(object):
 def __init__(self, bar)
 self.bar = bar

When creating new-style classes, it is advised to import object from the builtins module.
The reasoning for this can be read in the python-future documentation [http://python-future.org/changelog.html#newobject-base-object-defines-fallback-py2-compatible-special-methods]

3.4.4. Strings

Note

This has not yet been implemented in the current code base, and will not be strictly adhered to yet.
But it is important to keep in mind when writing code, that there is a strict distinction between bytestrings and unicode in Python3’

In python2, there is only one type of string.
It can be both unicode and bytestring.
In python3, this is no longer the case.
For this reasons all string must be marked with either u'' or b'' to signify if the string is a unicode string or a bytestring respectively

Example:

u'this is a unicode string, a string for humans to read'
b'This is a bytestring, a string for computers to read'

3.4.5. Exceptions

All exceptions should be written with the as statement.
Before:

try:
 number = 5 / 0
except ZeroDivisionError, err:
 print(err.msg)

After:

try:
 number = 5/0
except ZeroDivisionError as err:
 print(err.msg)

3.4.6. Basestring

In Python2 there is a basestring type, which both str and unicode inherit.
In Python3, only unicode should be of this type, while bytestrings are type(byte).

For this reason, we use an import from python future.
Before:

s = "this is a string"
if(isinstance(s, basestring)):
 print "This line will run"

After:

from future.utils import text_type
unicode_s = u"this is a unicode string"
byte_s = b"this is a bytestring"

if(isinstance(unicode_s, text_type)):
 print("This line will print")
if(isinstance(unicode_s, bytes)):
 print("this line will not print")
if(isinstance(unicode_s, (text_type, bytes))):
 print("This line will print")
if(isinstance(byte_s, text_type):
 print("this line will not print")
if(isinstance(byte_s, bytes):
 print("This line will print")
if(isinstance(byte_s, (text_type, bytes)):
 print("This line will print")

3.4.7. Print statements

Print statements are gone in python3.
Please import from __future__ import print_function at the very top of the module to enable use of python3 style print functions

3.4.8. Division

Integer division is slightly different in Python3.
// is integer division and / is floating point division.
For this reason, we use division from the future module.
Before:

2 / 3 = 0

After:

from __future__ import division

2 / 3 = 1.5
2 // 3 = 0

3.4.9. Types

The types standard library has changed in Python3.
Please make sure to read the official documentation [https://docs.python.org/3.3/library/types.html] for the library and adapt accordingly

 3.5. Classes

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5. Classes

The sections contained here document classes that can be used or subclassed.

Note

Some of this information duplicates information available in the source code itself.
Consider this information authoritative, and the source code a demonstration of the current implementation which is subject to change.

	3.5.1. Builds

	3.5.2. Workers

	3.5.3. BuildFactory

	3.5.4. BuildSetSummaryNotifierMixin

	3.5.5. Change Sources

	3.5.6. RemoteCommands

	3.5.7. BuildSteps

	3.5.8. BaseScheduler

	3.5.9. ForceScheduler

	3.5.10. IRenderable

	3.5.11. IProperties

	3.5.12. IConfigurator

	3.5.13. ResultSpecs

	3.5.14. Protocols

	3.5.15. WorkerManager

	3.5.16. Logs

	3.5.17. LogObservers

	3.5.18. Authentication

	3.5.19. Avatars

	3.5.20. Web Server Classes

 3.5.1. Builds

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.1. Builds

The Build class represents a running build, with associated steps.

3.5.1.1. Build

	
class buildbot.process.build.Build

	
	
buildid

	The ID of this build in the database.

	
getSummaryStatistic(name, summary_fn, initial_value=None)

	

	Parameters:	
	name – statistic name to summarize

	summary_fn – callable with two arguments that will combine two values

	initial_value – first value to pass to summary_fn

	Returns:	summarized result

This method summarizes the named step statistic over all steps in which it exists, using combination_fn and initial_value to combine multiple results into a single result.
This translates to a call to Python’s reduce:

return reduce(summary_fn, step_stats_list, initial_value)

	
getUrl()

	

	Returns:	Url as string

Returns url of the build in the UI.
Build must be started.
This is useful for customs steps.

 3.5.2. Workers

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.2. Workers

The Worker class represents a worker, which may or may not be connected to the master.
Instances of this class are created directly in the Buildbot configuration file.

3.5.2.1. Worker

	
class buildbot.worker.Worker

	
	
workerid

	The ID of this worker in the database.

 3.5.3. BuildFactory

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.3. BuildFactory

3.5.3.1. BuildFactory Implementation Note

The default BuildFactory, provided in the buildbot.process.factory module, contains an internal list of BuildStep specifications: a list of (step_class, kwargs) tuples for each.
These specification tuples are constructed when the config file is read, by asking the instances passed to addStep for their subclass and arguments.

To support config files from Buildbot version 0.7.5 and earlier, addStep also accepts the f.addStep(shell.Compile, command=["make","build"]) form, although its use is discouraged because then the Compile step doesn’t get to validate or complain about its arguments until build time.
The modern pass-by-instance approach allows this validation to occur while the config file is being loaded, where the admin has a better chance of noticing problems.

When asked to create a Build, the BuildFactory puts a copy of the list of step specifications into the new Build object.
When the Build is actually started, these step specifications are used to create the actual set of BuildSteps, which are then executed one at a time.
This serves to give each Build an independent copy of each step.

Each step can affect the build process in the following ways:

	If the step’s haltOnFailure attribute is True, then a failure in the step (i.e. if it completes with a result of FAILURE) will cause the whole build to be terminated immediately: no further steps will be executed, with the exception of steps with alwaysRun set to True.
haltOnFailure is useful for setup steps upon which the rest of the build depends: if the CVS checkout or ./configure process fails, there is no point in trying to compile or test the resulting tree.

	If the step’s alwaysRun attribute is True, then it will always be run, regardless of if previous steps have failed.
This is useful for cleanup steps that should always be run to return the build directory or worker into a good state.

	If the flunkOnFailure or flunkOnWarnings flag is set, then a result of FAILURE or WARNINGS will mark the build as a whole as FAILED.
However, the remaining steps will still be executed.
This is appropriate for things like multiple testing steps: a failure in any one of them will indicate that the build has failed, however it is still useful to run them all to completion.

	Similarly, if the warnOnFailure or warnOnWarnings flag is set, then a result of FAILURE or WARNINGS will mark the build as having WARNINGS, and the remaining steps will still be executed.
This may be appropriate for certain kinds of optional build or test steps.
For example, a failure experienced while building documentation files should be made visible with a WARNINGS result but not be serious enough to warrant marking the whole build with a FAILURE.

In addition, each Step produces its own results, may create logfiles, etc.
However only the flags described above have any effect on the build as a whole.

The pre-defined BuildSteps like CVS and Compile have reasonably appropriate flags set on them already.
For example, without a source tree there is no point in continuing the build, so the CVS class has the haltOnFailure flag set to True.
Look in buildbot/steps/*.py to see how the other Steps are marked.

Each Step is created with an additional workdir argument that indicates where its actions should take place.
This is specified as a subdirectory of the worker’s base directory, with a default value of build.
This is only implemented as a step argument (as opposed to simply being a part of the base directory) because the CVS/SVN steps need to perform their checkouts from the parent directory.

 3.5.4. BuildSetSummaryNotifierMixin

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.4. BuildSetSummaryNotifierMixin

Some status notifiers will want to report the status of all builds all at once for a particular buildset, instead of reporting each build individually as it finishes.
In order to do this, the status notifier must wait for all builds to finish, collect their results, and then report a kind of summary on all of the collected results.
The act of waiting for and collecting the results of all of the builders is implemented via BuildSetSummaryNotifierMixin, to be subclassed by a status notification implementation.

3.5.4.1. BuildSetSummaryNotifierMixin

	
buildbot.status.buildset.BuildSetSummaryNotifierMixin::

	This class provides some helper methods for implementing a status notification that provides notifications for all build results for a buildset at once.

This class provides the following methods:

	
buildbot.status.buildset.summarySubscribe()

	Call this to start receiving sendBuildSetSummary callbacks.
Typically this will be called from the subclass’s startService method.

	
buildbot.status.buildset.summaryUnsubscribe()

	Call this to stop receiving sendBuildSetSummary callbacks.
Typically this will be called from the subclass’s stopService method.

The following methods are hooks to be implemented by the subclass.

	
buildbot.status.buildset.sendBuildSetSummary(buildset, builds)

	

	Parameters:	
	buildset – A BuildSet object

	builds – A list of Build objects

This method must be implemented by the subclass.
This method is called when all of the builds for a buildset have finished, and it should initiate sending a summary status for the buildset.

The following attributes must be provided by the subclass.

	
buildbot.status.buildset.master

	This must point to the BuildMaster object.

 3.5.5. Change Sources

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.5. Change Sources

3.5.5.1. ChangeSource

	
class buildbot.changes.base.ChangeSource

	This is the base class for change sources.

Subclasses should override the inherited activate and deactivate methods if necessary to handle initialization and shutdown.

Change sources which are active on every master should, instead, override startService and stopService.

3.5.5.2. ReconfigurablePollingChangeSource

	
class buildbot.changes.base.ReconfigurablePollingChangeSource

	This is a subclass of ChangeSource which adds polling behavior.
Its constructor accepts the pollInterval and pollAtLaunch arguments as documented for most built-in change sources.

Subclasses should override the poll method.
This method may return a Deferred.
Calls to poll will not overlap.

3.5.5.3. PollingChangeSource

	
class buildbot.changes.base.PollingChangeSource

	This is a legacy class for polling change sources not yet ported to the :py:class::BuildbotService component lifecycle.
Do not use for new code.

 3.5.6. RemoteCommands

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.6. RemoteCommands

Most of the action in build steps consists of performing operations on the worker.
This is accomplished via RemoteCommand and its subclasses.
Each represents a single operation on the worker.

Most data is returned to a command via updates.
These updates are described in detail in Updates.

3.5.6.1. RemoteCommand

	
class buildbot.process.remotecommand.RemoteCommand(remote_command, args, collectStdout=False, ignore_updates=False, decodeRC=dict(0), stdioLogName='stdio')

	

	Parameters:	
	remote_command (string) – command to run on the worker

	args (dictionary) – arguments to pass to the command

	collectStdout – if True, collect the command’s stdout

	ignore_updates – true to ignore remote updates

	decodeRC – dictionary associating rc values to buildsteps results constants (e.g. SUCCESS, FAILURE, WARNINGS)

	stdioLogName – name of the log to which to write the command’s stdio

This class handles running commands, consisting of a command name and a dictionary of arguments.
If true, ignore_updates will suppress any updates sent from the worker.

This class handles updates for stdout, stderr, and header by appending them to s stdio logfile named by the stdioLogName parameter.
Steps that run multiple commands and want to separate those commands’ stdio streams can use this parameter.

It handles updates for rc by recording the value in its rc attribute.

Most worker-side commands, even those which do not spawn a new process on the worker, generate logs and an rc, requiring this class or one of its subclasses.
See Updates for the updates that each command may send.

	
active

	True if the command is currently running

	
run(step, remote)

	

	Parameters:	
	step – the buildstep invoking this command

	remote – a reference to the remote WorkerForBuilder instance

	Returns:	Deferred

Run the command.
Call this method to initiate the command; the returned Deferred will fire when the command is complete.
The Deferred fires with the RemoteCommand instance as its value.

	
interrupt(why)

	

	Parameters:	why (Twisted Failure) – reason for interrupt

	Returns:	Deferred

This method attempts to stop the running command early.
The Deferred it returns will fire when the interrupt request is received by the worker; this may be a long time before the command itself completes, at which time the Deferred returned from run will fire.

	
results()

	

	Returns:	results constant

This method checks the rc against the decodeRC dictionary, and returns results constant

	
didFail()

	

	Returns:	bool

This method returns True if the results() function returns FAILURE

The following methods are invoked from the worker.
They should not be called directly.

	
remote_update(updates)

	

	Parameters:	updates – new information from the worker

Handles updates from the worker on the running command.
See Updates for the content of the updates.
This class splits the updates out, and handles the ignore_updates option, then calls remoteUpdate to process the update.

	
remote_complete(failure=None)

	

	Parameters:	failure – the failure that caused the step to complete, or None for success

Called by the worker to indicate that the command is complete.
Normal completion (even with a nonzero rc) will finish with no failure; if failure is set, then the step should finish with status EXCEPTION.

These methods are hooks for subclasses to add functionality.

	
remoteUpdate(update)

	

	Parameters:	update – the update to handle

Handle a single update. Subclasses must override this method.

	
remoteComplete(failure)

	

	Parameters:	failure – the failure that caused the step to complete, or None for success

	Returns:	Deferred

Handle command completion, performing any necessary cleanup.
Subclasses should override this method.
If failure is not None, it should be returned to ensure proper processing.

	
logs

	A dictionary of LogFile instances representing active logs.
Do not modify this directly – use useLog instead.

	
rc

	Set to the return code of the command, after the command has completed.
For compatibility with shell commands, 0 is taken to indicate success, while nonzero return codes indicate failure.

	
stdout

	If the collectStdout constructor argument is true, then this attribute will contain all data from stdout, as a single string.
This is helpful when running informational commands (e.g., svnversion), but is not appropriate for commands that will produce a large amount of output, as that output is held in memory.

To set up logging, use useLog or useLogDelayed before starting the command:

	
useLog(log, closeWhenFinished=False, logfileName=None)

	

	Parameters:	
	log – the LogFile instance to add to.

	closeWhenFinished – if true, call finish when the command is finished.

	logfileName – the name of the logfile, as given to the worker.
This is stdio for standard streams.

Route log-related updates to the given logfile.
Note that stdio is not included by default, and must be added explicitly.
The logfileName must match the name given by the worker in any log updates.

	
useLogDelayed(logfileName, activateCallback, closeWhenFinished=False)

	

	Parameters:	
	logfileName – the name of the logfile, as given to the worker.
This is stdio for standard streams.

	activateCallback – callback for when the log is added; see below

	closeWhenFinished – if true, call finish when the command is finished.

Similar to useLog, but the logfile is only actually added when an update arrives for it.
The callback, activateCallback, will be called with the RemoteCommand instance when the first update for the log is delivered.
It should return the desired log instance, optionally via a Deferred.

With that finished, run the command using the inherited run method.
During the run, you can inject data into the logfiles with any of these methods:

	
addStdout(data)

	

	Parameters:	data – data to add to the logfile

	Returns:	Deferred

Add stdout data to the stdio log.

	
addStderr(data)

	

	Parameters:	data – data to add to the logfile

	Returns:	Deferred

Add stderr data to the stdio log.

	
addHeader(data)

	

	Parameters:	data – data to add to the logfile

	Returns:	Deferred

Add header data to the stdio log.

	
addToLog(logname, data)

	

	Parameters:	
	logname – the logfile to receive the data

	data – data to add to the logfile

	Returns:	Deferred

Add data to a logfile other than stdio.

	
class buildbot.process.remotecommand.RemoteShellCommand(workdir, command, env=None, want_stdout=True, want_stderr=True, timeout=20*60, maxTime=None, sigtermTime=None, logfiles={}, usePTY=None, logEnviron=True, collectStdio=False)

	

	Parameters:	
	workdir – directory in which command should be executed, relative to the builder’s basedir.

	command (string or list) – shell command to run

	want_stdout – If false, then no updates will be sent for stdout.

	want_stderr – If false, then no updates will be sent for stderr.

	timeout – Maximum time without output before the command is killed.

	maxTime – Maximum overall time from the start before the command is killed.

	sigtermTime – Try to kill the command with SIGTERM and wait for sigtermTime seconds before firing SIGKILL.
If None, SIGTERM will not be fired.

	env – A dictionary of environment variables to augment or replace the existing environment on the worker.

	logfiles – Additional logfiles to request from the worker.

	usePTY – True to use a PTY, false to not use a PTY; the default value is False.

	logEnviron – If false, do not log the environment on the worker.

	collectStdout – If True, collect the command’s stdout.

Most of the constructor arguments are sent directly to the worker; see shell for the details of the formats.
The collectStdout parameter is as described for the parent class.

If shell command contains passwords, they can be hidden from log files by using Secret Management.
This is the recommended procedure for new-style build steps. For legacy build steps password were hidden from the
log file by passing them as tuple in command argument.
Eg. ['print', ('obfuscated', 'password', 'dummytext')] is logged as ['print', 'dummytext'].

This class is used by the ShellCommand step, and by steps that run multiple customized shell commands.

 3.5.7. BuildSteps

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.7. BuildSteps

There are a few parent classes that are used as base classes for real buildsteps.
This section describes the base classes.
The “leaf” classes are described in Build Steps.

See Writing New BuildSteps for a guide to implementing new steps.

3.5.7.1. BuildStep

	
class buildbot.process.buildstep.BuildStep(name, description, descriptionDone, descriptionSuffix, locks, haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings, warnOnFailure, alwaysRun, progressMetrics, useProgress, doStepIf, hideStepIf)

	All constructor arguments must be given as keyword arguments.
Each constructor parameter is copied to the corresponding attribute.

	
name

	The name of the step.
Note that this value may change when the step is started, if the existing name was not unique.

	
stepid

	The ID of this step in the database.
This attribute is not set until the step starts.

	
description

	The description of the step.

	
descriptionDone

	The description of the step after it has finished.

	
descriptionSuffix

	Any extra information to append to the description.

	
locks

	List of locks for this step; see Interlocks.

	
progressMetrics

	List of names of metrics that should be used to track the progress of this build, and build ETA’s for users.
This is generally set in the

	
useProgress

	If true (the default), then ETAs will be calculated for this step using progress metrics.
If the step is known to have unpredictable timing (e.g., an incremental build), then this should be set to false.

	
doStepIf

	A callable or bool to determine whether this step should be executed.
See Common Parameters for details.

	
hideStepIf

	A callable or bool to determine whether this step should be shown in the waterfall and build details pages.
See Common Parameters for details.

The following attributes affect the behavior of the containing build:

	
haltOnFailure

	If true, the build will halt on a failure of this step, and not execute subsequent tests (except those with alwaysRun).

	
flunkOnWarnings

	If true, the build will be marked as a failure if this step ends with warnings.

	
flunkOnFailure

	If true, the build will be marked as a failure if this step fails.

	
warnOnWarnings

	If true, the build will be marked as warnings, or worse, if this step ends with warnings.

	
warnOnFailure

	If true, the build will be marked as warnings, or worse, if this step fails.

	
alwaysRun

	If true, the step will run even if a previous step halts the build with haltOnFailure.

	
logEncoding

	The log encoding to use for logs produced in this step, or None to ues the global default.
See Log Handling.

	
rendered

	At the beginning of the step, the renderable attributes are rendered against the properties.
There is a slight delay however when those are not yet rendered, which lead to weird and difficult to reproduce bugs.
To address this problem, a rendered attribute is available for methods that could be called early in the buildstep creation.

	
results

	This is the result (a code from buildbot.process.results) of the step.
This attribute only exists after the step is finished, and should only be used in getResultSummary.

A few important pieces of information are not available when a step is constructed, and are added later.
These are set by the following methods; the order in which these methods are called is not defined.

	
setBuild(build)

	

	Parameters:	build – the Build instance controlling this step.

This method is called during setup to set the build instance controlling this worker.
Subclasses can override this to get access to the build object as soon as it is available.
The default implementation sets the build attribute.

	
build

	The build object controlling this step.

	
setWorker(build)

	

	Parameters:	build – the Worker instance on which this step will run.

Similarly, this method is called with the worker that will run this step.
The default implementation sets the worker attribute.

	
worker

	The worker that will run this step.

	
workdir

	Implemented as a property.
Workdir where actions of the step are happening.
The workdir is by order of priority

	workdir of the step, if defined via constructor argument

	workdir of the BuildFactory (itself defaults to ‘build’).

BuildFactory workdir can be a function of sourcestamp. See Factory Workdir Functions

	
setDefaultWorkdir(workdir)

	

	Parameters:	workdir – the default workdir, from the build

Note

This method is deprecated and should not be used anymore, as workdir is calculated automatically via a property

	
setupProgress()

	This method is called during build setup to give the step a chance to set up progress tracking.
It is only called if the build has useProgress set.
There is rarely any reason to override this method.

Execution of the step itself is governed by the following methods and attributes.

	
startStep(remote)

	

	Parameters:	remote – a remote reference to the worker-side
WorkerForBuilderPb instance

	Returns:	Deferred

Begin the step.
This is the build’s interface to step execution.
Subclasses should override run to implement custom behaviors.

	
run()

	

	Returns:	result via Deferred

Execute the step.
When this method returns (or when the Deferred it returns fires), the step is complete.
The method’s return value must be an integer, giving the result of the step – a constant from buildbot.process.results.
If the method raises an exception or its Deferred fires with failure, then the step will be completed with an EXCEPTION result.
Any other output from the step (logfiles, status strings, URLs, etc.) is the responsibility of the run method.

Subclasses should override this method.
Do not call finished or failed from this method.

	
start()

	

	Returns:	None or SKIPPED,
optionally via a Deferred.

Begin the step.
BuildSteps written before Buildbot-0.9.0 often override this method instead of run, but this approach is deprecated.

When the step is done, it should call finished, with a result – a constant from buildbot.process.results.
The result will be handed off to the Build.

If the step encounters an exception, it should call failed with a Failure object.

If the step decides it does not need to be run, start can return the constant SKIPPED.
In this case, it is not necessary to call finished directly.

	
finished(results)

	

	Parameters:	results – a constant from results

A call to this method indicates that the step is finished and the build should analyze the results and perhaps proceed to the next step.
The step should not perform any additional processing after calling this method.
This method must only be called from the (deprecated) start method.

	
failed(failure)

	

	Parameters:	failure – a Failure instance

Similar to finished, this method indicates that the step is finished, but handles exceptions with appropriate logging and diagnostics.

This method handles BuildStepFailed specially, by calling finished(FAILURE).
This provides subclasses with a shortcut to stop execution of a step by raising this failure in a context where failed will catch it.
This method must only be called from the (deprecated) start method.

	
interrupt(reason)

	

	Parameters:	reason (string or Failure) – why the build was interrupted

This method is used from various control interfaces to stop a running step.
The step should be brought to a halt as quickly as possible, by cancelling a remote command, killing a local process, etc.
The step must still finish with either finished or failed.

The reason parameter can be a string or, when a worker is lost during step processing, a ConnectionLost failure.

The parent method handles any pending lock operations, and should be called by implementations in subclasses.

	
stopped

	If false, then the step is running.
If true, the step is not running, or has been interrupted.

A step can indicate its up-to-the-moment status using a short summary string.
These methods allow step subclasses to produce such summaries.

	
updateSummary()

	Update the summary, calling getCurrentSummary or getResultSummary as appropriate.
New-style build steps should call this method any time the summary may have changed.
This method is debounced, so even calling it for every log line is acceptable.

	
getCurrentSummary()

	

	Returns:	dictionary, optionally via Deferred

Returns a dictionary containing status information for a running step.
The dictionary can have a step key with a unicode value giving a summary for display with the step.
This method is only called while the step is running.

New-style build steps should override this method to provide a more interesting summary than the default u"running".

	
getResultSummary()

	

	Returns:	dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step.
The dictionary can have keys step and build, each with unicode values.
The step key gives a summary for display with the step, while the build key gives a summary for display with the entire build.
The latter should be used sparingly, and include only information that the user would find relevant for the entire build, such as a number of test failures.
Either or both keys can be omitted.

This method is only called while the step is finished.
The step’s result is available in self.results at that time.

New-style build steps should override this method to provide a more interesting summary than the default, or to provide any build summary information.

	
getBuildResultSummary()

	

	Returns:	dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step.
This method calls getResultSummary, and automatically compute a build key from the step key according to the updateBuildSummaryPolicy

	
describe(done=False)

	

	Parameters:	done – If true, the step is finished.

	Returns:	list of strings

Describe the step succinctly.
The return value should be a sequence of short strings suitable for display in a horizontally constrained space.

Note

Be careful not to assume that the step has been started in this method.
In relatively rare circumstances, steps are described before they have started.
Ideally, unit tests should be used to ensure that this method is resilient.

Note

This method is not called for new-style steps.
Instead, override getCurrentSummary and getResultSummary.

Build steps have statistics, a simple key/value store of data which can later be aggregated over all steps in a build.
Note that statistics are not preserved after a build is complete.

	
hasStatistic(stat)

	

	Parameters:	stat (string) – name of the statistic

	Returns:	True if the statistic exists on this step

	
getStatistic(stat, default=None)

	

	Parameters:	
	stat (string) – name of the statistic

	default – default value if the statistic does not exist

	Returns:	value of the statistic, or the default value

	
getStatistics()

	

	Returns:	a dictionary of all statistics for this step

	
setStatistic(stat, value)

	

	Parameters:	
	stat (string) – name of the statistic

	value – value to assign to the statistic

	Returns:	value of the statistic

Build steps support progress metrics - values that increase roughly linearly during the execution of the step, and can thus be used to calculate an expected completion time for a running step.
A metric may be a count of lines logged, tests executed, or files compiled.
The build mechanics will take care of translating this progress information into an ETA for the user.

	
setProgress(metric, value)

	

	Parameters:	
	metric (string) – the metric to update

	value (integer) – the new value for the metric

Update a progress metric.
This should be called by subclasses that can provide useful progress-tracking information.

The specified metric name must be included in progressMetrics.

The following methods are provided as utilities to subclasses.
These methods should only be invoked after the step is started.

	
workerVersion(command, oldversion=None)

	

	Parameters:	
	command (string) – command to examine

	oldversion – return value if the worker does not specify a version

	Returns:	string

Fetch the version of the named command, as specified on the worker.
In practice, all commands on a worker have the same version, but passing command is still useful to ensure that the command is implemented on the worker.
If the command is not implemented on the worker, workerVersion will return None.

Versions take the form x.y where x and y are integers, and are compared as expected for version numbers.

Buildbot versions older than 0.5.0 did not support version queries; in this case, workerVersion will return oldVersion.
Since such ancient versions of Buildbot are no longer in use, this functionality is largely vestigial.

	
workerVersionIsOlderThan(command, minversion)

	

	Parameters:	
	command (string) – command to examine

	minversion – minimum version

	Returns:	boolean

This method returns true if command is not implemented on the worker, or if it is older than minversion.

	
checkWorkerHasCommand(command)

	

	Parameters:	command (string) – command to examine

This method raise WorkerTooOldError if command is not implemented on the worker

	
getWorkerName()

	

	Returns:	string

Get the name of the worker assigned to this step.

Most steps exist to run commands.
While the details of exactly how those commands are constructed are left to subclasses, the execution of those commands comes down to this method:

	
runCommand(command)

	

	Parameters:	command – RemoteCommand instance

	Returns:	Deferred

This method connects the given command to the step’s worker and runs it, returning the Deferred from run.

The BuildStep class provides methods to add log data to the step.
Subclasses provide a great deal of user-configurable functionality on top of these methods.
These methods can be called while the step is running, but not before.

	
addLog(name, type="s", logEncoding=None)

	

	Parameters:	
	name – log name

	type – log type; see logchunk

	logEncoding – the log encoding, or None to use the step or global default (see Log Handling)

	Returns:	Log instance via Deferred

Add a new logfile with the given name to the step, and return the log file instance.

	
getLog(name)

	

	Parameters:	name – log name

	Raises:	
	KeyError – if there is no such log

	KeyError – if no such log is defined

	Returns:	Log instance

Return an existing logfile, previously added with addLog.
Note that this return value is synchronous, and only available after addLog’s deferred has fired.

	
addCompleteLog(name, text)

	

	Parameters:	
	name – log name

	text – content of the logfile

	Returns:	Deferred

This method adds a new log and sets text as its content.
This is often useful to add a short logfile describing activities performed on the master.
The logfile is immediately closed, and no further data can be added.

If the logfile’s content is a bytestring, it is decoded with the step’s log encoding or the global default log encoding.
To add a logfile with a different character encoding, perform the decode operation directly and pass the resulting unicode string to this method.

	
addHTMLLog(name, html)

	

	Parameters:	
	name – log name

	html – content of the logfile

	Returns:	Deferred

Similar to addCompleteLog, this adds a logfile containing pre-formatted HTML, allowing more expressiveness than the text format supported by addCompleteLog.

	
addLogObserver(logname, observer)

	

	Parameters:	
	logname – log name

	observer – log observer instance

Add a log observer for the named log.
The named log need not have been added already: the observer will be connected when the log is added.

See Adding LogObservers for more information on log observers.

	
addLogWithFailure(why, logprefix='')

	

	Parameters:	
	why (Failure) – the failure to log

	logprefix – prefix for the log name

	Returns:	Deferred

Add log files displaying the given failure, named <logprefix>err.text and <logprefix>err.html.

	
addLogWithException(why, logprefix='')

	

	Parameters:	
	why (Exception) – the exception to log

	logprefix – prefix for the log name

	Returns:	Deferred

Similar to addLogWithFailure, but for an Exception instead of a Failure.

Along with logs, build steps have an associated set of links that can be used to provide additional information for developers.
Those links are added during the build with this method:

	
addURL(name, url)

	

	Parameters:	
	name – URL name

	url – the URL

Add a link to the given url, with the given name to displays of this step.
This allows a step to provide links to data that is not available in the log files.

3.5.7.2. LoggingBuildStep

	
class buildbot.process.buildstep.LoggingBuildStep(name, locks, haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings, warnOnFailure, alwaysRun, progressMetrics, useProgress, doStepIf, hideStepIf)

	The remaining arguments are passed to the BuildStep constructor.

Warning

Subclasses of this class are always old-style steps.
As such, this class will be removed after Buildbot-0.9.0.
Instead, subclass BuildStep and mix in ShellMixin to get similar behavior.

This subclass of BuildStep is designed to help its subclasses run remote commands that produce standard I/O logfiles.
It:

	tracks progress using the length of the stdout logfile

	provides hooks for summarizing and evaluating the command’s result

	supports lazy logfiles

	handles the mechanics of starting, interrupting, and finishing remote commands

	detects lost workers and finishes with a status of
RETRY

	
logfiles

	The logfiles to track, as described for ShellCommand.
The contents of the class-level logfiles attribute are combined with those passed to the constructor, so subclasses may add log files with a class attribute:

class MyStep(LoggingBuildStep):
 logfiles = dict(debug='debug.log')

Note that lazy logfiles cannot be specified using this method; they must be provided as constructor arguments.

	
setupLogsRunCommandAndProcessResults(cmd, stdioLog=None, closeLogWhenFinished=True, errorMessages=None, logfiles=None, lazylogfiles=False):

	

	Parameters:	
	command – the RemoteCommand
instance to start

	stdioLog – an optional Log object where the
stdout of the command will be stored.

	closeLogWhenFinished – a boolean

	logfiles – optional dictionary see ShellCommand

	lazylogfiles – optional boolean see ShellCommand

	Returns:	step result from buildbot.process.results

Note

This method permits an optional errorMessages parameter, allowing errors detected early in the command process to be logged.
It will be removed, and its use is deprecated.

Handle all of the mechanics of running the given command.
This sets up all required logfiles, and calls the utility hooks described below.

Subclasses should use that method if they want to launch multiple commands in a single step.
One could use that method, like for example

@defer.inlineCallbacks
def run(self):
 cmd = RemoteCommand(...)
 res = yield self.setupLogRunCommandAndProcessResults(cmd)
 if res == results.SUCCESS:
 cmd = RemoteCommand(...)
 res = yield self.setupLogRunCommandAndProcessResults(cmd)
 defer.returnValue(res)

To refine the status output, override one or more of the following methods.
The LoggingBuildStep implementations are stubs, so there is no need to call the parent method.

	
commandComplete(command)

	

	Parameters:	command – the just-completed remote command

This is a general-purpose hook method for subclasses.
It will be called after the remote command has finished, but before any of the other hook functions are called.

	
evaluateCommand(command)

	

	Parameters:	command – the just-completed remote command

	Returns:	step result from buildbot.process.results

This hook should decide what result the step should have.

3.5.7.3. CommandMixin

The runCommand method can run a RemoteCommand instance, but it’s no help in building that object or interpreting the results afterward.
This mixin class adds some useful methods for running commands.

This class can only be used in new-style steps.

	
class buildbot.process.buildstep.CommandMixin

	Some remote commands are simple enough that they can boil down to a method call.
Most of these take an abandonOnFailure argument which, if true, will abandon the entire buildstep on command failure.
This is accomplished by raising BuildStepFailed.

These methods all write to the stdio log (generally just for errors).
They do not close the log when finished.

	
runRmdir(dir, abandonOnFailure=True)

	

	Parameters:	
	dir – directory to remove

	abndonOnFailure – if true, abandon step on failure

	Returns:	Boolean via Deferred

Remove the given directory, using the rmdir command.
Returns False on failure.

	
runMkdir(dir, abandonOnFailure=True)

	

	Parameters:	
	dir – directory to create

	abndonOnFailure – if true, abandon step on failure

	Returns:	Boolean via Deferred

Create the given directory and any parent directories, using the mkdir command.
Returns False on failure.

	
pathExists(path)

	

	Parameters:	path – path to test

	Returns:	Boolean via Deferred

Determine if the given path exists on the worker (in any form - file, directory, or otherwise).
This uses the stat command.

	
runGlob(path)

	

	Parameters:	path – path to test

	Returns:	list of filenames

Get the list of files matching the given path pattern on the worker.
This uses Python’s glob module.
If the runGlob method fails, it aborts the step.

	
getFileContentFromWorker(path, abandonOnFailure=False)

	

	Parameters:	path – path of the file to download from worker

	Returns:	string via deferred (content of the file)

Get the content of a file on the worker.

3.5.7.4. ShellMixin

Most Buildbot steps run shell commands on the worker, and Buildbot has an impressive array of configuration parameters to control that execution.
The ShellMixin mixin provides the tools to make running shell commands easy and flexible.

This class can only be used in new-style steps.

	
class buildbot.process.buildstep.ShellMixin

	This mixin manages the following step configuration parameters, the contents of which are documented in the manual.
Naturally, all of these are renderable.

	
command

	

	
workdir

	

	
env

	

	
want_stdout

	

	
want_stderr

	

	
usePTY

	

	
logfiles

	

	
lazylogfiles

	

	
timeout

	

	
maxTime

	

	
logEnviron

	

	
interruptSignal

	

	
sigtermTime

	

	
initialStdin

	

	
decodeRC

	

	
setupShellMixin(constructorArgs, prohibitArgs=[])

	

	Parameters:	
	constructorArgs (dict) – constructor keyword arguments

	prohibitArgs (list) – list of recognized arguments to reject

	Returns:	keyword arguments destined for BuildStep

This method is intended to be called from the shell constructor, passed any keyword arguments not otherwise used by the step.
Any attributes set on the instance already (e.g., class-level attributes) are used as defaults.
Attributes named in prohibitArgs are rejected with a configuration error.

The return value should be passed to the BuildStep constructor.

	
makeRemoteShellCommand(collectStdout=False, collectStderr=False, **overrides)

	

	Parameters:	
	collectStdout – if true, the command’s stdout will be available in cmd.stdout on completion

	collectStderr – if true, the command’s stderr will be available in cmd.stderr on completion

	overrides – overrides arguments that might have been passed to setupShellMixin

	Returns:	RemoteShellCommand instance via Deferred

This method constructs a RemoteShellCommand instance based on the instance attributes and any supplied overrides.
It must be called while the step is running, as it examines the worker capabilities before creating the command.
It takes care of just about everything:

	Creating log files and associating them with the command

	Merging environment configuration

	Selecting the appropriate workdir configuration

All that remains is to run the command with runCommand.

The ShellMixin class implements getResultSummary, returning a summary of the command.
If no command was specified or run, it falls back to the default getResultSummary based on descriptionDone.
Subclasses can override this method to return a more appropriate status.

3.5.7.5. Exceptions

	
exception buildbot.process.buildstep.BuildStepFailed

	This exception indicates that the buildstep has failed.
It is useful as a way to skip all subsequent processing when a step goes wrong.
It is handled by BuildStep.failed.

 3.5.8. BaseScheduler

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.8. BaseScheduler

	
class buildbot.schedulers.base.BaseScheduler

	This is the base class for all Buildbot schedulers.
See Writing Schedulers for information on writing new schedulers.

	
__init__(name, builderNames, properties={}, codebases={'':{}})

	

	Parameters:	
	name – (positional) the scheduler name

	builderName – (positional) a list of builders, by name, for which this scheduler can queue builds

	properties – a dictionary of properties to be added to queued builds

	codebases – the codebase configuration for this scheduler (see user documentation)

Initializes a new scheduler.

The scheduler configuration parameters, and a few others, are available as attributes:

	
name

	This scheduler’s name.

	
builderNames

	

	Type:	list

Builders for which this scheduler can queue builds.

	
codebases

	

	Type:	dict

The codebase configuration for this scheduler.

	
properties

	

	Type:	Properties instance

Properties that this scheduler will attach to queued builds.
This attribute includes the scheduler property.

	
schedulerid

	

	Type:	integer

The ID of this scheduler in the schedulers table.

Subclasses can consume changes by implementing gotChange and calling startConsumingChanges from startActivity.

	
startConsumingChanges(self, fileIsImportant=None, change_filter=None, onlyImportant=False)

	

	Parameters:	
	fileIsImportant (callable) – a callable provided by the user to distinguish important and unimportant changes

	change_filter (buildbot.changes.filter.ChangeFilter instance) – a filter to determine which changes are even considered by this scheduler, or None to consider all changes

	onlyImportant (boolean) – If True, only important changes, as specified by fileIsImportant, will be added to the buildset.

	Returns:	Deferred

Subclasses should call this method when becoming active in order to receive changes.
The parent class will take care of filtering the changes (using change_filter) and (if fileIsImportant is not None) classifying them.

	
gotChange(change, important)

	

	Parameters:	
	change (buildbot.changes.changes.Change) – the new change

	important (boolean) – true if the change is important

	Returns:	Deferred

This method is called when a change is received.
Schedulers which consume changes should implement this method.

If the fileIsImportant parameter to startConsumingChanges was None, then all changes are considered important.
It is guaranteed that the codebase of the change is one of the scheduler’s codebase.

Note

The buildbot.changes.changes.Change instance will instead be a change resource in later versions.

The following methods are available for subclasses to queue new builds.
Each creates a new buildset with a build request for each builder.

	
addBuildsetForSourceStamps(self, sourcestamps=[], waited_for=False, reason='', external_idstring=None, properties=None, builderNames=None)

	

	Parameters:	
	sourcestamps (list) – a list of full sourcestamp dictionaries or sourcestamp IDs

	waited_for (boolean) – if true, this buildset is being waited for (and thus should continue during a clean shutdown)

	reason (string) – reason for the build set

	external_idstring (string) – external identifier for the buildset

	properties (Properties instance) – properties - in addition to those in the scheduler configuration - to include in the buildset

	builderNames (list) – a list of builders for the buildset, or None to use the scheduler’s configured builderNames

	Returns:	(buildset ID, buildrequest IDs) via Deferred

Add a buildset for the given source stamps.
Each source stamp must be specified as a complete source stamp dictionary (with keys revision, branch, project, repository, and codebase), or an integer sourcestampid.

The return value is a tuple.
The first tuple element is the ID of the new buildset.
The second tuple element is a dictionary mapping builder name to buildrequest ID.

	
addBuildsetForSourceStampsWithDefaults(reason, sourcestamps, waited_for=False, properties=None, builderNames=None)

	

	Parameters:	
	reason (string) – reason for the build set

	sourcestamps (list) – partial list of source stamps to build

	waited_for (boolean) – if true, this buildset is being waited for (and thus should continue during a clean shutdown)

	properties (Properties instance) – properties - in addition to those in the scheduler configuration - to include in the buildset

	builderNames (list) – a list of builders for the buildset, or None to use the scheduler’s configured builderNames

	Returns:	(buildset ID, buildrequest IDs) via Deferred, as for addBuildsetForSourceStamps

Create a buildset based on the supplied sourcestamps, with defaults applied from the scheduler’s configuration.

The sourcestamps parameter is a list of source stamp dictionaries, giving the required parameters.
Any unspecified values, including sourcestamps from unspecified codebases, will be filled in from the scheduler’s configuration.
If sourcestamps is None, then only the defaults will be used.
If sourcestamps includes sourcestamps for codebases not configured on the scheduler, they will be included anyway, although this is probably a sign of an incorrect configuration.

	
addBuildsetForChanges(waited_for=False, reason='', external_idstring=None, changeids=[], builderNames=None, properties=None)

	

	Parameters:	
	waited_for (boolean) – if true, this buildset is being waited for (and thus should continue during a clean shutdown)

	reason (string) – reason for the build set

	external_idstring (string) – external identifier for the buildset

	changeids (list) – changes from which to construct the buildset

	builderNames (list) – a list of builders for the buildset, or None to use the scheduler’s configured builderNames

	properties (Properties instance) – properties - in addition to those in the scheduler configuration - to include in the buildset

	Returns:	(buildset ID, buildrequest IDs) via Deferred, as for addBuildsetForSourceStamps

Add a buildset for the given changes (changeids).
This will take sourcestamps from the latest of any changes with the same codebase, and will fill in sourcestamps for any codebases for which no changes are included.

The active state of the scheduler is tracked by the following attribute and methods.

	
active

	True if this scheduler is active

	
activate()

	

	Returns:	Deferred

Subclasses should override this method to initiate any processing that occurs only on active schedulers.
This is the method from which to call startConsumingChanges, or to set up any timers or message subscriptions.

	
deactivate()

	

	Returns:	Deferred

Subclasses should override this method to stop any ongoing processing, or wait for it to complete.
The method’s returned Deferred should not fire until the processing is complete.

The state-manipulation methods are provided by buildbot.util.state.StateMixin.
Note that no locking of any sort is performed between these two functions.
They should only be called by an active scheduler.

	
getState(name[, default])

	

	Parameters:	
	name – state key to fetch

	default – default value if the key is not present

	Returns:	Deferred

This calls through to buildbot.db.state.StateConnectorComponent.getState, using the scheduler’s objectid.

	
setState(name, value)

	

	Parameters:	
	name – state key

	value – value to set for the key

	Returns:	Deferred

This calls through to buildbot.db.state.StateConnectorComponent.setState, using the scheduler’s objectid.

 3.5.9. ForceScheduler

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.9. ForceScheduler

The force scheduler has a symbiotic relationship with the web application, so it deserves some further description.

3.5.9.1. Parameters

The force scheduler comes with a fleet of parameter classes.
This section contains information to help users or developers who are interested in adding new parameter types or hacking the existing types.

	
class buildbot.schedulers.forceshed.BaseParameter(name, label, regex, **kwargs)

	This is the base implementation for most parameters, it will check validity, ensure the arg is present if the required attribute is set, and implement the default value.
It will finally call updateFromKwargs to process the string(s) from the HTTP POST.

The BaseParameter constructor converts all keyword arguments into instance attributes, so it is generally not necessary for subclasses to implement a constructor.

For custom parameters that set properties, one simple customization point is getFromKwargs:

	
getFromKwargs(kwargs)

	

	Parameters:	kwargs – a dictionary of the posted values

Given the passed-in POST parameters, return the value of the property that should be set.

For more control over parameter parsing, including modifying sourcestamps or changeids, override the updateFromKwargs function, which is the function that ForceScheduler invokes for processing:

	
updateFromKwargs(master, properties, changes, sourcestamps, collector, kwargs)

	

	Parameters:	
	master – the BuildMaster instance

	properties – a dictionary of properties

	changes – a list of changeids that will be used to build the SourceStamp for the forced builds

	sourcestamps – the SourceStamp dictionary that will be passed to the build; some parameters modify sourcestamps rather than properties.

	collector – a buildbot.schedulers.forcesched.ValidationErrorCollector object, which is used by nestedParameter to collect errors from its childs

	kwargs – a dictionary of the posted values

This method updates properties, changes, and/or sourcestamps according to the request.
The default implementation is good for many simple uses, but can be overridden for more complex purposes.

When overriding this function, take all parameters by name (not by position), and include an **unused catch-all to guard against future changes.

The remaining attributes and methods should be overridden by subclasses, although BaseParameter provides appropriate defaults.

	
name

	The name of the parameter.
This corresponds to the name of the property that your parameter will set.
This name is also used internally as identifier for http POST arguments

	
label

	The label of the parameter, as displayed to the user.
This value can contain raw HTML.

	
fullName()

	A fully-qualified name that uniquely identifies the parameter in the scheduler.
This name is used internally as the identifier for HTTP POST arguments.
It is a mix of name and the parent’s name (in the case of nested parameters).
This field is not modifiable.

	
type

	A string identifying the type that the parameter conforms to.
It is used by the angular application to find which angular directive to use for showing the form widget.
The available values are visible in www/base/src/app/common/directives/forcefields/forcefields.directive.coffee [https://github.com/buildbot/buildbot/tree/master/www/base/src/app/common/directives/forcefields/forcefields.directive.coffee].

Examples of how to create a custom parameter widgets are available in the buildbot source code in directories:

	www/codeparameter [https://github.com/buildbot/buildbot/tree/master/www/codeparameter]

	www/nestedexample [https://github.com/buildbot/buildbot/tree/master/www/nestedexample]

	
default

	The default value to use if there is no user input.
This is also used to fill in the form presented to the user.

	
required

	If true, an error will be shown to user if there is no input in this field

	
multiple

	If true, this parameter represents a list of values (e.g. list of tests to run)

	
regex

	A string that will be compiled as a regex and used to validate the string value of this parameter.
If None, then no validation will take place.

	
parse_from_args(l)

	return the list of object corresponding to the list or string passed default function will just call parse_from_arg with the first argument

	
parse_from_arg(s)

	return the object corresponding to the string passed default function will just return the unmodified string

3.5.9.2. Nested Parameters

The NestedParameter class is a container for parameters.
The original motivating purpose for this feature is the multiple-codebase configuration, which needs to provide the user with a form to control the branch (et al) for each codebase independently.
Each branch parameter is a string field with name ‘branch’ and these must be disambiguated.

In Buildbot nine, this concept has been extended to allow grouping different parameters into UI containers.
Details of the available layouts is described in NestedParameter.

Each of the child parameters mixes in the parent’s name to create the fully qualified fullName.
This allows, for example, each of the ‘branch’ fields to have a unique name in the POST request.
The NestedParameter handles adding this extra bit to the name to each of the children.
When the kwarg dictionary is posted back, this class also converts the flat POST dictionary into a richer structure that represents the nested structure.

As illustration, if the nested parameter has the name ‘foo’, and has children ‘bar1’ and ‘bar2’, then the POST will have entries like “foo.bar1” and “foo.bar2”.
The nested parameter will translate this into a dictionary in the ‘kwargs’ structure, resulting in something like:

kwargs = {
 # ...
 'foo': {
 'bar1': '...',
 'bar2': '...'
 }
}

Arbitrary nesting is allowed and results in a deeper dictionary structure.

Nesting can also be used for presentation purposes.
If the name of the NestedParameter is empty, the nest is “anonymous” and does not mangle the child names.
However, in the HTML layout, the nest will be presented as a logical group.

 3.5.10. IRenderable

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.10. IRenderable

	
buildbot.interfaces.IRenderable::

	Providers of this class can be “rendered”, based on available properties, when a build is started.

	
getRenderingFor(iprops)

	

	Parameters:	iprops – the IProperties provider supplying the properties of the build.

Returns the interpretation of the given properties, optionally in a Deferred.

 3.5.11. IProperties

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.11. IProperties

	
buildbot.interfaces.IProperties::

	Providers of this interface allow get and set access to a build’s properties.

	
getProperty(propname, default=None)

	Get a named property, returning the default value if the property is not found.

	
hasProperty(propname)

	Determine whether the named property exists.

	
setProperty(propname, value, source)

	Set a property’s value, also specifying the source for this value.

	
getProperties()

	Get a buildbot.process.properties.Properties instance.
The interface of this class is not finalized; where possible, use the other IProperties methods.

 3.5.12. IConfigurator

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.12. IConfigurator

	
buildbot.interfaces.IConfigurator::

	A configurator is an object which configures several components of Buildbot in a coherent manner.
This can be used to implement higher level configuration tools.

	
configure(config_dict)

	Alter the buildbot config_dict, as defined in master.cfg

like the master.cfg, this is run out of the main reactor thread, so this can block, but this can’t
call most Buildbot facilities.

 3.5.13. ResultSpecs

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.13. ResultSpecs

Result specifications are used by the Data API to describe the desired results of a get call.
They can be used to filter, sort and paginate the contents of collections, and to limit the fields returned for each item.

Python calls to get call can pass a ResultSpec instance directly.
Requests to the HTTP REST API are converted into instances automatically.

Implementers of Data API endpoints can ignore result specifications entirely, except where efficiency suffers.
Any filters, sort keys, and so on still present after the endpoint returns its result are applied generically.
ResultSpec instances are mutable, so endpoints that do apply some of the specification can remove parts of the specification.

Result specifications are applied in the following order:

	Field Selection (fields)

	Filters

	Order

	Pagination (limit/offset)

	Properties

Only fields & properties are applied to non-collection results.
Endpoints processing a result specification should take care to replicate this behavior.

	
class buildbot.data.resultspec.ResultSpec

	A result specification has the following attributes, which should be treated as read-only:

	
filters

	A list of Filter instances to be applied.
The result is a logical AND of all filters.

	
fields

	A list of field names that should be included, or None for no sorting.
if the field names all begin with -, then those fields will be omitted and all others included.

	
order

	A list of field names to sort on.
if any field name begins with -, then the ordering on that field will be in reverse.

	
limit

	The maximum number of collection items to return.

	
offset

	The 0-based index of the first collection item to return.

	
properties

	
A list of Property instances to be applied.
The result is a logical AND of all properties.

All of the attributes can be supplied as constructor keyword arguments.

Endpoint implementations may call these methods to indicate that they have processed part of the result spec.
A subsequent call to apply will then not waste time re-applying that part.

	
popProperties()

	If a property exists, return its values list and remove it from the result spec.

	
popFilter(field, op)

	If a filter exists for the given field and operator, return its values list and remove it from the result spec.

	
popBooleanFilter(field)

	If a filter exists for the field, remove it and return the expected value (True or False); otherwise return None.
This method correctly handles odd cases like field__ne=false.

	
popStringFilter(field)

	If one string filter exists for the field, remove it and return the expected value (as string); otherwise return None.

	
popIntegerFilter(field)

	If one integer filter exists for the field, remove it and return the expected value (as integer); otherwise return None.
raises ValueError if the field is not convertible to integer.

	
removePagination()

	Remove the pagination attributes (limit and offset) from the result spec.
And endpoint that calls this method should return a ListResult instance with its pagination attributes set appropriately.

	
removeOrder()

	Remove the order attribute.

	
popField(field)

	Remove a single field from the fields attribute, returning True if it was present.
Endpoints can use this in conditionals to avoid fetching particularly expensive fields from the DB API.

The following method is used internally to apply any remaining parts of a result spec that are not handled by the endpoint.

	
apply(data)

	Apply the result specification to the data, returning a transformed copy of the data.
If the data is a collection, then the result will be a ListResult instance.

	
class buildbot.data.resultspec.Filter(field, op, values)

	

	Parameters:	
	field (string) – the field to filter on

	op (string) – the comparison operator (e.g., “eq” or “gt”)

	values (list) – the values on the right side of the operator

A filter represents a limitation of the items from a collection that should be returned.

Many operators, such as “gt”, only accept one value.
Others, such as “eq” or “ne”, can accept multiple values.
In either case, the values must be passed as a list.

	
class buildbot.data.resultspec.Property(values)

	

	Parameters:	values (list) – the values on the right side of the operator (eq)

A property represents an item of a foreign table.

In either case, the values must be passed as a list.

 3.5.14. Protocols

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.14. Protocols

To exchange information over the network between master and worker we need to use
protocol.

buildbot.worker.protocols.base provide interfaces to implement
wrappers around protocol specific calls, so other classes which use them do not need
to know about protocol calls or handle protocol specific exceptions.

	
class buildbot.worker.protocols.base.Listener(master)

	

	Parameters:	master – buildbot.master.BuildMaster instance

Responsible for spawning Connection instances and updating registrations.
Protocol-specific subclasses are instantiated with protocol-specific
parameters by the buildmaster during startup.

	
class buildbot.worker.protocols.base.Connection(master, worker)

	Represents connection to single worker

	
proxies

	Dictionary containing mapping between Impl classes and Proxy class for this protocol
This may be overridden by subclass to declare its proxy implementations

	
createArgsProxies(args)

	

	Returns:	shallow copy of args dictionary with proxies instead of impls

Helper method that will use proxies, and replace Impl objects by specific Proxy counterpart.

	
notifyOnDisconnect(cb)

	

	Parameters:	cb – callback

	Returns:	buildbot.util.subscriptions.Subscription

Register a callback to be called if worker gets disconnected

	
loseConnection()

	Close connection

	
remotePrint(message)

	

	Parameters:	message (string) – message for worker

	Returns:	Deferred

Print message to worker log file

	
remoteGetWorkerInfo()

	

	Returns:	Deferred

Get worker information, commands and version, put them in dictionary
then return back

	
remoteSetBuilderList(builders)

	

	Parameters:	builders (List) – list with wanted builders

	Returns:	Deferred containing PB references XXX

Take list with wanted builders and send them to worker, return list with
created builders

	
remoteStartCommand(remoteCommand, builderName, commandId, commandName, args)

	

	Parameters:	
	remoteCommand – RemoteCommandImpl instance

	builderName (string) – self explanatory

	commandId (string) – command number

	commandName (string) – command which will be executed on worker

	args (List) – arguments for that command

	Returns:	Deferred

Start command on worker

	
remoteShutdown()

	

	Returns:	Deferred

Shutdown the worker, causing its process to halt permanently.

	
remoteStartBuild(builderName)

	:param builderName name of the builder for which the build is starting
:returns: Deferred

Just starts build

	
remoteInterruptCommand(builderName, commandId, why)

	

	Parameters:	
	builderName (string) – self explanatory

	commandId (string) – command number

	why (string) – reason to interrupt

	Returns:	Deferred

Interrupt the command executed on builderName with given commandId on worker, print reason “why” to
worker logs

Following classes are describing the worker -> master part of the protocol.

In order to support old workers, we must make sure we do not change the current pb protocol.
This is why we implement a Impl vs Proxy methods.
All the objects that are referenced from the workers for remote calls have an Impl and a Proxy base classes in this module.

Impl classes are subclassed by buildbot master, and implement the actual logic for the protocol api.
Proxy classes are implemented by the worker/master protocols, and implements the demux and de-serialization of protocol calls.

On worker sides, those proxy objects are replaced by a proxy object having a single method to call master side methods:

	
class buildbot.worker.protocols.base.workerProxyObject

	
	
callRemote(message, *args, **kw)

	calls the method "remote_" + message on master side

	
class buildbot.worker.protocols.base.RemoteCommandImpl

	Represents a RemoteCommand status controller

	
remote_update(updates)

	

	Parameters:	updates – dictionary of updates

Called when the workers has updates to the current remote command

possible keys for updates are:

	stdout: Some logs where captured in remote command’s stdout. value: <data> as string

	stderr: Some logs where captured in remote command’s stderr. value: <data> as string

	header: remote command’s header text. value: <data> as string

	log: one of the watched logs has received some text. value: (<logname> as string, <data> as string)

	rc: Remote command exited with a return code. value: <rc> as integer

	elapsed: Remote command has taken <elapsed> time. value: <elapsed seconds> as float

	stat: sent by the stat command with the result of the os.stat, converted to a tuple. value: <stat> as tuple

	files: sent by the glob command with the result of the glob.glob. value: <files> as list of string

	got_revision: sent by the source commands with the revision checked out. value: <revision> as string

	repo_downloaded: sent by the repo command with the list of patches downloaded by repo. value: <downloads> as list of string

	
class buildbot.worker.protocols.base.FileWriterImpl

	Class used to implement data transfer between worker and master

	
class buildbot.worker.protocols.base.FileReaderImpl(object)

	
	
remote_read(maxLength)

	

	Parameters:	maxLength – maximum length of the data to send

	Returns:	data read

called when worker needs more data

	
remote_close()

	Called when master should close the file

 3.5.15. WorkerManager

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.15. WorkerManager

3.5.15.1. WorkerRegistration

	
class buildbot.worker.manager.WorkerRegistration(master, worker)

	Represents single Worker registration

	
unregister()

	Remove registration for worker

	
update(worker_config, global_config)

	

	Parameters:	
	worker_config (Worker) – new Worker instance

	global_config (MasterConfig) – Buildbot config

Update the registration in case the port or password has changed.

NOTE: You should invoke this method after calling
WorkerManager.register(worker)

3.5.15.2. WorkerManager

	
class buildbot.worker.manager.WorkerManager(master)

	Handle Worker registrations for multiple protocols

	
register(worker)

	

	Parameters:	worker (Worker) – new Worker instance

	Returns:	WorkerRegistration

Creates WorkerRegistration
instance.

NOTE: You should invoke .update() on returned WorkerRegistration
instance

 3.5.16. Logs

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.16. Logs

	
class buildbot.process.log.Log

	This class handles write-only access to log files from running build steps.
It does not provide an interface for reading logs - such access should occur directly through the Data API.

Instances of this class can only be created by the addLog method of a build step.

	
name

	The name of the log.

Note that if you have a build step which outputs multiple logs, naming one of the logs Summary will cause the Web UI to sort the summary log first in the list, and expand it so that the contents are immediately visible.

	
type

	The type of the log, represented as a single character.
See logchunk for details.

	
logid

	The ID of the logfile.

	
decoder

	A callable used to decode bytestrings.
See logEncoding.

	
subscribe(receiver)

	

	Parameters:	receiver (callable) – the function to call

Register receiver to be called with line-delimited chunks of log data.
The callable is invoked as receiver(stream, chunk), where the stream is indicated by a single character, or None for logs without streams.
The chunk is a single string containing an arbitrary number of log lines, and terminated with a newline.
When the logfile is finished, receiver will be invoked with None for both arguments.

The callable cannot return a Deferred.
If it must perform some asynchronous operation, it will need to handle its own Deferreds, and be aware that multiple overlapping calls may occur.

Note that no “rewinding” takes place: only log content added after the call to subscribe will be supplied to receiver.

	
finish()

	

	Returns:	Deferred

This method indicates that the logfile is finished.
No further additions will be permitted.

In use, callers will receive a subclass with methods appropriate for the log type:

	
class buildbot.process.log.TextLog

	
	
addContent(text):

	

	Parameters:	text – log content

	Returns:	Deferred

Add the given data to the log.
The data need not end on a newline boundary.

	
class buildbot.process.log.HTMLLog

	
	
addContent(text):

	

	Parameters:	text – log content

	Returns:	Deferred

Same as TextLog.addContent.

	
class buildbot.process.log.StreamLog

	This class handles logs containing three interleaved streams: stdout, stderr, and header.
The resulting log maintains data distinguishing these streams, so they can be filtered or displayed in different colors.
This class is used to represent the stdio log in most steps.

	
addStdout(text)

	

	Parameters:	text – log content

	Returns:	Deferred

Add content to the stdout stream.
The data need not end on a newline boundary.

	
addStderr(text)

	

	Parameters:	text – log content

	Returns:	Deferred

Add content to the stderr stream.
The data need not end on a newline boundary.

	
addHeader(text)

	

	Parameters:	text – log content

	Returns:	Deferred

Add content to the header stream.
The data need not end on a newline boundary.

 3.5.17. LogObservers

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.17. LogObservers

	
class buildbot.process.logobserver.LogObserver

	This is a base class for objects which receive logs from worker commands as they are produced.
It does not provide an interface for reading logs - such access should occur directly through the Data API.

See Adding LogObservers for help creating and using a custom log observer.

The three methods that subclasses may override follow.
None of these methods may return a Deferred.
It is up to the callee to handle any asynchronous operations.
Subclasses may also override the constructor, with no need to call LogObserver’s constructor.

	
outReceived(data):

	

	Parameters:	data (unicode) – received data

This method is invoked when a “chunk” of data arrives in the log.
The chunk contains one or more newline-terminated unicode lines.
For stream logs (e.g., stdio), output to stderr generates a call to errReceived, instead.

	
errReceived(data):

	

	Parameters:	data (unicode) – received data

This method is similar to outReceived, but is called for output to stderr.

	
headerReceived(data):

	

	Parameters:	data (unicode) – received data

This method is similar to outReceived, but is called for header output.

	
finishReceived()

	This method is invoked when the observed log is finished.

	
class buildbot.process.logobserver.LogLineObserver

	This subclass of LogObserver calls its subclass methods once for each line, instead of once per chunk.

	
outLineReceived(line):

	

	Parameters:	line (unicode) – received line, without newline

Like outReceived, this is called once for each line of output received.
The argument does not contain the trailing newline character.

	
errLineReceived(line):

	

	Parameters:	line (unicode) – received line, without newline

Similar to outLineReceived, but for stderr.

	
headerLineReceived(line):

	

	Parameters:	line (unicode) – received line, without newline

Similar to outLineReceived, but for header output..

	
finishReceived()

	This method, inherited from LogObserver, is invoked when the observed log is finished.

	
class buildbot.process.logobserver.LineConsumerLogObserver

	This subclass of LogObserver takes a generator function and “sends” each line to that function.
This allows consumers to be written as stateful Python functions, e.g.,

def logConsumer(self):
 while True:
 stream, line = yield
 if stream == 'o' and line.startswith('W'):
 self.warnings.append(line[1:])

def __init__(self):
 ...
 self.warnings = []
 self.addLogObserver('stdio', logobserver.LineConsumerLogObserver(self.logConsumer))

Each yield expression evaluates to a tuple of (stream, line), where the stream is one of ‘o’, ‘e’, or ‘h’ for stdout, stderr, and header, respectively.
As with any generator function, the yield expression will raise a GeneratorExit exception when the generator is complete.
To do something after the log is finished, just catch this exception (but then re-raise it or return)

def logConsumer(self):
 while True:
 try:
 stream, line = yield
 if stream == 'o' and line.startswith('W'):
 self.warnings.append(line[1:])
 except GeneratorExit:
 self.warnings.sort()
 return

Warning

This use of generator functions is a simple Python idiom first described in PEP 342 [https://www.python.org/dev/peps/pep-0342/].
It is unrelated to the generators used in inlineCallbacks.
In fact, consumers of this type are incompatible with asynchronous programming, as each line must be processed immediately.

	
class buildbot.process.logobserver.BufferLogObserver(wantStdout=True, wantStderr=False)

	

	Parameters:	
	wantStdout (boolean) – true if stdout should be buffered

	wantStderr (boolean) – true if stderr should be buffered

This subclass of LogObserver buffers stdout and/or stderr for analysis after the step is complete.
This can cause excessive memory consumption if the output is large.

	
getStdout()

	

	Returns:	unicode string

Return the accumulated stdout.

	
getStderr()

	

	Returns:	unicode string

Return the accumulated stderr.

 3.5.18. Authentication

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.18. Authentication

	
class buildbot.www.auth.AuthBase

	This class is the base class for all authentication methods.
All authentications are not done at the same level, so several optional methods are available.
This class implements default implementation.
The login session is stored via twisted’s request.getSession(), and detailed used information is stored in request.getSession().user_info.
The session information is then sent to the UI via the config constant (in the user attribute of config)

	
userInfoProvider

	Authentication modules are responsible for providing user information as detailed as possible.
When there is a need to get additional information from another source, a userInfoProvider can optionally be specified.

	
reconfigAuth(master, new_config)

	

	Parameters:	
	master – the reference to the master

	new_config – the reference to the new configuration

Reconfigure the authentication module.
In the base class, this simply sets self.master.

	
maybeAutoLogin(request)

	

	Parameters:	request – the request object

	Returns:	Deferred

This method is called when /config.js is fetched.
If the authentication method supports automatic login, e.g., from a header provided by a frontend proxy, this method handles the login.

If it succeeds, the method sets request.getSession().user_info.
If the login fails unexpectedly, it raises resource.Error.
The default implementation simply returns without setting user_info.

	
getLoginResource()

	Return the resource representing /auth/login.

	
getLogout()

	Return the resource representing /auth/logout.

	
updateUserInfo(request)

	

	Parameters:	request – the request object

Separate entrypoint for getting user information.
This is a mean to call self.userInfoProvider if provided.

	
class buildbot.www.auth.UserInfoProviderBase

	Class that can be used, to get more info for the user like groups, in a separate database.

	
getUserInfo(username)

	

returns the user infos, from the username used for login (via deferred)

returns a dict with following keys:

	email: email address of the user

	full_name: Full name of the user, like “Homer Simpson”

	groups: groups the user belongs to, like [“duff fans”, “dads”]

	
class buildbot.www.oauth2.OAuth2Auth

	OAuth2Auth implements oauth2 2 phases authentication.
With this method /auth/login is called twice.
Once without argument.
It should return the URL the browser has to redirect in order to perform oauth2 authentication, and authorization.
Then the oauth2 provider will redirect to /auth/login?code=???, and buildbot web server will verify the code using the oauth2 provider.

Typical login process is:

	UI calls the /auth/login api, and redirect the browser to the returned oauth2 provider url

	oauth2 provider shows a web page with a form for the user to authenticate, and ask the user the permission for buildbot to access its account.

	oauth2 provider redirects the browser to /auth/login?code=???

	OAuth2Auth module verifies the code, and get the user’s additional information

	buildbot UI is reloaded, with the user authenticated.

This implementation is using requests [http://docs.python-requests.org/en/latest/]
subclasses must override following class attributes:
* name Name of the oauth plugin
* faIcon font awesome class to use for login button logo
* resourceEndpoint URI of the resource where the authentication token is used
* authUri URI the browser is pointed to to let the user enter creds
* tokenUri URI to verify the browser code and get auth token
* authUriAdditionalParams Additional parameters for the authUri
* tokenUriAdditionalParams Additional parameters for the tokenUri

	
getUserInfoFromOAuthClient(self, c)

	This method is called after a successful authentication to get additional information about the user from the oauth2 provider.

 3.5.19. Avatars

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.19. Avatars

Buildbot’s avatar support associate a small image with each user.

	
class buildbot.www.avatar.AvatarBase

	Class that can be used, to get more the avatars for the users.
This can be used for the authenticated users, but also for the users referenced by changes.

	
getUserAvatar(self, email, size, defaultAvatarUrl)

	

returns the user’s avatar, from the user’s email (via deferred).
If the data is directly available, this function returns a tuple (mime_type, picture_raw_data).
If the data is available in another URL, this function can raise resource.Redirect(avatar_url), and the web server will redirect to the avatar_url.

 3.5.20. Web Server Classes

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

3.5.20. Web Server Classes

Most of the source in master/buildbot/www [https://github.com/buildbot/buildbot/tree/master/master/buildbot/www] is self-explanatory.
However, a few classes and methods deserve some special mention.

3.5.20.1. Resources

	
class buildbot.www.resource.Redirect(url)

	This is a subclass of Twisted Web’s Error.
If this is raised within asyncRenderHelper, the user will be redirected to the given URL.

	
class buildbot.www.resource.Resource

	This class specializes the usual Twisted Web Resource class.

It adds support for resources getting notified when the master is reconfigured.

	
needsReconfig

	If True, reconfigResource will be called on reconfig.

	
reconfigResource(new_config)

	

	Parameters:	new_config – new MasterConfig instance

	Returns:	Deferred if desired

Reconfigure this resource.

It’s surprisingly difficult to render a Twisted Web resource asynchronously.
This method makes it quite a bit easier:

	
asyncRenderHelper(request, callable, writeError=None)

	

	Parameters:	
	request – the request instance

	callable – the render function

	writeError – optional callable for rendering errors

This method will call callable, which can return a Deferred, with the given request.
The value returned from this callable will be converted to an HTTP response.
Exceptions, including Error subclasses, are handled properly.
If the callable raises Redirect, the response will be a suitable HTTP 302 redirect.

Use this method as follows:

def render_GET(self, request):
 return self.asyncRenderHelper(request, self.renderThing)

 6. Indices and Tables

Caution

Buildbot is deprecating Python 2.7.
This is one of the last releases supporting it on the buildmaster.
More info [https://github.com/buildbot/buildbot/issues/4439].

6. Indices and Tables

	Index

	Buildmaster Configuration Index

	Scheduler Index

	Change Source Index

	Build Step Index

	Reporter Target Index

	Command Line Index

	MQ Routing Key Index

	Data API Event Index

	REST/Data API Resource Type Index

	REST/Data API Path Index

	REST/Data API Actions Index

	Module Index

	Search Page

 Buildmaster Configuration Index

 Buildmaster Configuration Index

 B |
 C |
 D |
 L |
 M |
 P |
 R |
 S |
 T |
 U |
 V |
 W

 		 	

 		
 B	

 	
 	
 buildbotNetUsageData	

 	
 	
 buildbotURL	

 	
 	
 buildCacheSize	

 	
 	
 builders	

 		 	

 		
 C	

 	
 	
 caches	

 	
 	
 change_source	

 	
 	
 changeCacheSize	

 	
 	
 codebaseGenerator	

 	
 	
 collapseRequests	

 	
 	
 configurators	

 		 	

 		
 D	

 	
 	
 db	

 	
 	
 db_url	

 	
 	
 dbconfig	

 		 	

 		
 L	

 	
 	
 logCompressionLimit	

 	
 	
 logCompressionMethod	

 	
 	
 logEncoding	

 	
 	
 logMaxSize	

 	
 	
 logMaxTailSize	

 		 	

 		
 M	

 	
 	
 manhole	

 	
 	
 metrics	

 	
 	
 mq	

 	
 	
 multiMaster	

 		 	

 		
 P	

 	
 	
 prioritizeBuilders	

 	
 	
 properties	

 	
 	
 protocols	

 		 	

 		
 R	

 	
 	
 reporter	

 	
 	
 revlink	

 		 	

 		
 S	

 	
 	
 schedulers	

 	
 	
 secretsProviders	

 	
 	
 services	

 	
 	
 stats-service	

 		 	

 		
 T	

 	
 	
 title	

 	
 	
 titleURL	

 		 	

 		
 U	

 	
 	
 user_managers	

 		 	

 		
 V	

 	
 	
 validation	

 		 	

 		
 W	

 	
 	
 workers	

 	
 	
 www	

 Scheduler Index

 Scheduler Index

 A |
 C |
 D |
 F |
 I |
 N |
 P |
 S |
 T |
 W

 		 	

 		
 A	

 	
 	
 AnyBranchScheduler	

 		 	

 		
 C	

 	
 	
 ChoiceStringParameter	

 	
 	
 CodebaseParameter	

 		 	

 		
 D	

 	
 	
 Dependent	

 		 	

 		
 F	

 	
 	
 FileParameter	

 	
 	
 ForceScheduler	

 		 	

 		
 I	

 	
 	
 InheritBuildParameter	

 		 	

 		
 N	

 	
 	
 NestedParameter	

 	
 	
 Nightly	

 	
 	
 NightlyTriggerable	

 		 	

 		
 P	

 	
 	
 PatchParameter	

 	
 	
 Periodic	

 		 	

 		
 S	

 	
 	
 Scheduler	

 	
 	
 SingleBranchScheduler	

 		 	

 		
 T	

 	
 	
 Triggerable	

 	
 	
 Try_Jobdir	

 	
 	
 Try_Userpass	

 		 	

 		
 W	

 	
 	
 WorkerChoiceParameter	

 Change Source Index

 Change Source Index

 B |
 C |
 G |
 H |
 M |
 P |
 S

 		 	

 		
 B	

 	
 	
 BitBucket	

 	
 	
 BitbucketPullrequestPoller	

 	
 	
 BzrLaunchpadEmailMaildirSource	

 	
 	
 BzrPoller	

 		 	

 		
 C	

 	
 	
 Change Hooks	

 	
 	
 CVSMaildirSource	

 		 	

 		
 G	

 	
 	
 GerritChangeSource	

 	
 	
 GerritEventLogPoller	

 	
 	
 GitHub	

 	
 	
 GitHubPullrequestPoller	

 	
 	
 GitLab	

 	
 	
 Gitorious	

 	
 	
 GitPoller	

 		 	

 		
 H	

 	
 	
 HgPoller	

 		 	

 		
 M	

 	
 	
 Mercurial	

 		 	

 		
 P	

 	
 	
 P4Source	

 	
 	
 PBChangeSource	

 		 	

 		
 S	

 	
 	
 SVNCommitEmailMaildirSource	

 	
 	
 SVNPoller	

 Build Step Index

 Build Step Index

 A |
 B |
 C |
 D |
 F |
 G |
 H |
 J |
 L |
 M |
 O |
 P |
 R |
 S |
 T |
 V

 		 	

 		
 A	

 	
 	
 Assert	

 		 	

 		
 B	

 	
 	
 BuildEPYDoc	

 	
 	
 Bzr	

 		 	

 		
 C	

 	
 	
 CMake	

 	
 	
 Compile	

 	
 	
 Configure	

 	
 	
 CopyDirectory	

 	
 	
 Cppcheck	

 	
 	
 CVS	

 		 	

 		
 D	

 	
 	
 Darcs	

 	
 	
 DebCowbuilder	

 	
 	
 DebLintian	

 	
 	
 DebPbuilder	

 	
 	
 DELETE	

 	
 	
 DirectoryUpload	

 		 	

 		
 F	

 	
 	
 FileDownload	

 	
 	
 FileExists	

 	
 	
 FileUpload	

 		 	

 		
 G	

 	
 	
 Gerrit	

 	
 	
 GET	

 	
 	
 Git	

 	
 	
 GitHub	

 	
 	
 GitLab	

 	
 	
 GitPush	

 		 	

 		
 H	

 	
 	
 HEAD	

 	
 	
 HLint	

 	
 	
 HTTPStep	

 		 	

 		
 J	

 	
 	
 JSONPropertiesDownload	

 	
 	
 JSONStringDownload	

 		 	

 		
 L	

 	
 	
 LogRenderable	

 		 	

 		
 M	

 	
 	
 MakeDirectory	

 	
 	
 MasterShellCommand	

 	
 	
 MaxQ	

 	
 	
 Mercurial	

 	
 	
 MockBuildSRPM	

 	
 	
 MockRebuild	

 	
 	
 Monotone	

 	
 	
 MsBuild12	

 	
 	
 MsBuild14	

 	
 	
 MsBuild141	

 	
 	
 MsBuild4	

 	
 	
 MTR	

 	
 	
 MultipleFileUpload	

 		 	

 		
 O	

 	
 	
 OPTIONS	

 		 	

 		
 P	

 	
 	
 P4	

 	
 	
 PerlModuleTest	

 	
 	
 POST	

 	
 	
 PUT	

 	
 	
 PyFlakes	

 	
 	
 PyLint	

 		 	

 		
 R	

 	
 	
 RemoveDirectory	

 	
 	
 RemovePYCs	

 	
 	
 Repo	

 	
 	
 Robocopy	

 	
 	
 RpmBuild	

 	
 	
 RpmLint	

 		 	

 		
 S	

 	
 	
 SetProperties	

 	
 	
 SetPropertiesFromEnv	

 	
 	
 SetProperty	

 	
 	
 SetPropertyFromCommand	

 	
 	
 ShellCommand	

 	
 	
 ShellSequence	

 	
 	
 Sphinx	

 	
 	
 StringDownload	

 	
 	
 SubunitShellCommand	

 	
 	
 SVN	

 		 	

 		
 T	

 	
 	
 Test	

 	
 	
 TreeSize	

 	
 	
 Trial	

 	
 	
 Trigger	

 		 	

 		
 V	

 	
 	
 VC10	

 	
 	
 VC11	

 	
 	
 VC12	

 	
 	
 VC14	

 	
 	
 VC141	

 	
 	
 VC6	

 	
 	
 VC7	

 	
 	
 VC8	

 	
 	
 VC9	

 	
 	
 VCExpress9	

 	
 	
 VS2003	

 	
 	
 VS2005	

 	
 	
 VS2008	

 	
 	
 VS2010	

 	
 	
 VS2012	

 	
 	
 VS2013	

 	
 	
 VS2015	

 	
 	
 VS2017	

 Reporter Target Index

 Reporter Target Index

 B |
 G |
 H |
 I |
 M |
 P

 		 	

 		
 B	

 	
 	
 BitbucketServerPRCommentPush	

 	
 	
 BitbucketServerStatusPush	

 	
 	
 BitbucketStatusPush	

 		 	

 		
 G	

 	
 	
 GerritStatusPush	

 	
 	
 GerritVerifyStatusPush	

 	
 	
 GitHubCommentPush	

 	
 	
 GitHubStatusPush	

 	
 	
 GitLabStatusPush	

 		 	

 		
 H	

 	
 	
 HipchatStatusPush	

 	
 	
 HttpStatusPush	

 		 	

 		
 I	

 	
 	
 IRC	

 		 	

 		
 M	

 	
 	
 MailNotifier	

 		 	

 		
 P	

 	
 	
 PushjetNotifier	

 	
 	
 PushoverNotifier	

 Configurator Target Index

 Configurator Target Index

 J

 		 	

 		
 J	

 	
 	
 JanitorConfigurator	

 Build Worker Index

 Build Worker Index

 A |
 D |
 E |
 L |
 O

 		 	

 		
 A	

 	
 	
 AbstractWorkerController	

 		 	

 		
 D	

 	
 	
 DockerLatentWorker	

 		 	

 		
 E	

 	
 	
 EC2LatentWorker	

 		 	

 		
 L	

 	
 	
 LibVirtWorker	

 		 	

 		
 O	

 	
 	
 OpenStackLatentWorker	

 Command Line Index

 Command Line Index

 C |
 R |
 S |
 T |
 U

 		 	

 		
 C	

 	
 	
 checkconfig	

 	
 	
 cleanupdb	

 	
 	
 create-master	

 	
 	
 create-worker	

 		 	

 		
 R	

 	
 	
 restart (buildbot)	

 	
 	
 restart (worker)	

 		 	

 		
 S	

 	
 	
 sendchange	

 	
 	
 sighup	

 	
 	
 start (buildbot)	

 	
 	
 start (worker)	

 	
 	
 stop (buildbot)	

 	
 	
 stop (worker)	

 		 	

 		
 T	

 	
 	
 try	

 		 	

 		
 U	

 	
 	
 upgrade-master	

 	
 	
 user	

 Data API Event Index

 Data API Event Index

 B

 		 	

 		
 B	

 	
 	
 build.$buildid.step.$number.log.$logid.complete	

 	
 	
 build.$buildid.step.$number.log.$logid.newlog	

 REST/Data API Resource Type Index

 REST/Data API Resource Type Index

 B |
 C |
 F |
 I |
 L |
 M |
 P |
 R |
 S |
 W

 		 	

 		
 B	

 	
 	
 build	

 	
 	
 builder	

 	
 	
 buildrequest	

 	
 	
 buildset	

 		 	

 		
 C	

 	
 	
 change	

 	
 	
 changesource	

 	
 	
 collection	

 		 	

 		
 F	

 	
 	
 forcescheduler	

 		 	

 		
 I	

 	
 	
 identifier	

 		 	

 		
 L	

 	
 	
 log	

 	
 	
 logchunk	

 		 	

 		
 M	

 	
 	
 master	

 		 	

 		
 P	

 	
 	
 patch	

 		 	

 		
 R	

 	
 	
 rootlink	

 		 	

 		
 S	

 	
 	
 scheduler	

 	
 	
 sourcedproperties	

 	
 	
 sourcestamp	

 	
 	
 spec	

 	
 	
 step	

 		 	

 		
 W	

 	
 	
 worker	

 REST/Data API Path Index

 REST/Data API Path Index

 /

 		 	

 		
 /	

 	
 	
 /	

 	
 	
 /application.spec	

 	
 	
 /builders	

 	
 	
 /builders/{builderid_or_buildername}	

 	
 	
 /builders/{builderid_or_buildername}/buildrequests	

 	
 	
 /builders/{builderid_or_buildername}/builds	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw	

 	
 	
 /builders/{builderid_or_buildername}/forceschedulers	

 	
 	
 /builders/{builderid_or_buildername}/masters	

 	
 	
 /builders/{builderid_or_buildername}/workers	

 	
 	
 /builders/{builderid_or_buildername}/workers/{name}	

 	
 	
 /builders/{builderid_or_buildername}/workers/{workerid}	

 	
 	
 /builders/{builderid_or_buildername}/{masterid}	

 	
 	
 /buildrequests	

 	
 	
 /buildrequests/{buildrequestid}	

 	
 	
 /buildrequests/{buildrequestid}/builds	

 	
 	
 /builds	

 	
 	
 /builds/{buildid}	

 	
 	
 /builds/{buildid}/changes	

 	
 	
 /builds/{buildid}/properties	

 	
 	
 /builds/{buildid}/steps	

 	
 	
 /builds/{buildid}/steps/{step_number_or_name}	

 	
 	
 /builds/{buildid}/steps/{step_number_or_name}/logs	

 	
 	
 /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}	

 	
 	
 /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents	

 	
 	
 /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw	

 	
 	
 /buildsets	

 	
 	
 /buildsets/{bsid}	

 	
 	
 /buildsets/{bsid}/properties	

 	
 	
 /changes	

 	
 	
 /changes/{changeid}	

 	
 	
 /changesources	

 	
 	
 /changesources/{changesourceid}	

 	
 	
 /forceschedulers	

 	
 	
 /forceschedulers/{schedulername}	

 	
 	
 /logs/{logid}	

 	
 	
 /logs/{logid}/contents	

 	
 	
 /logs/{logid}/raw	

 	
 	
 /masters	

 	
 	
 /masters/{masterid}	

 	
 	
 /masters/{masterid}/builders	

 	
 	
 /masters/{masterid}/builders/{builderid}	

 	
 	
 /masters/{masterid}/builders/{builderid}/workers	

 	
 	
 /masters/{masterid}/builders/{builderid}/workers/{name}	

 	
 	
 /masters/{masterid}/builders/{builderid}/workers/{workerid}	

 	
 	
 /masters/{masterid}/changesources	

 	
 	
 /masters/{masterid}/changesources/{changesourceid}	

 	
 	
 /masters/{masterid}/schedulers	

 	
 	
 /masters/{masterid}/schedulers/{schedulerid}	

 	
 	
 /masters/{masterid}/workers	

 	
 	
 /masters/{masterid}/workers/{name}	

 	
 	
 /masters/{masterid}/workers/{workerid}	

 	
 	
 /schedulers	

 	
 	
 /schedulers/{schedulerid}	

 	
 	
 /sourcestamps	

 	
 	
 /sourcestamps/{ssid}	

 	
 	
 /sourcestamps/{ssid}/changes	

 	
 	
 /steps/{stepid}/logs	

 	
 	
 /steps/{stepid}/logs/{log_slug}	

 	
 	
 /steps/{stepid}/logs/{log_slug}/contents	

 	
 	
 /steps/{stepid}/logs/{log_slug}/raw	

 	
 	
 /workers	

 	
 	
 /workers/{name_or_id}	

 REST/Data API Actions Index

 REST/Data API Actions Index

 /

 		 	

 		
 /	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number} (method=rebuild)	

 	
 	
 /builders/{builderid_or_buildername}/builds/{build_number} (method=stop)	

 	
 	
 /builders/{builderid_or_buildername}/workers/{workerid} (method=kill)	

 	
 	
 /builders/{builderid_or_buildername}/workers/{workerid} (method=pause)	

 	
 	
 /builders/{builderid_or_buildername}/workers/{workerid} (method=stop)	

 	
 	
 /builders/{builderid_or_buildername}/workers/{workerid} (method=unpause)	

 	
 	
 /buildrequests/{buildrequestid} (method=cancel)	

 	
 	
 /builds/{buildid} (method=rebuild)	

 	
 	
 /builds/{buildid} (method=stop)	

 	
 	
 /forceschedulers/{schedulername} (method=force)	

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 buildbot	

 	
 	
 buildbot.changes.base	

 	
 	
 buildbot.config	

 	
 	
 buildbot.data.connector	

 	
 	
 buildbot.data.exceptions	

 	
 	
 buildbot.data.resultspec	

 	
 	
 buildbot.data.types	

 	
 	
 buildbot.db.base	

 	
 	
 buildbot.db.builders	

 	
 	
 buildbot.db.buildrequests	

 	
 	
 buildbot.db.builds	

 	
 	
 buildbot.db.buildsets	

 	
 	
 buildbot.db.changes	

 	
 	
 buildbot.db.changesources	

 	
 	
 buildbot.db.connector	

 	
 	
 buildbot.db.logs	

 	
 	
 buildbot.db.masters	

 	
 	
 buildbot.db.model	

 	
 	
 buildbot.db.pool	

 	
 	
 buildbot.db.schedulers	

 	
 	
 buildbot.db.sourcestamps	

 	
 	
 buildbot.db.state	

 	
 	
 buildbot.db.steps	

 	
 	
 buildbot.db.users	

 	
 	
 buildbot.db.workers	

 	
 	
 buildbot.mq.base	

 	
 	
 buildbot.mq.simple	

 	
 	
 buildbot.mq.wamp	

 	
 	
 buildbot.process.build	

 	
 	
 buildbot.process.buildstep	

 	
 	
 buildbot.process.log	

 	
 	
 buildbot.process.logobserver	

 	
 	
 buildbot.process.results	

 	
 	
 buildbot.schedulers.base	

 	
 	
 buildbot.schedulers.forceshed	

 	
 	
 buildbot.steps.source	

 	
 	
 buildbot.util	

 	
 	
 buildbot.util.bbcollections	

 	
 	
 buildbot.util.debounce	

 	
 	
 buildbot.util.eventual	

 	
 	
 buildbot.util.identifiers	

 	
 	
 buildbot.util.lineboundaries	

 	
 	
 buildbot.util.lru	

 	
 	
 buildbot.util.maildir	

 	
 	
 buildbot.util.misc	

 	
 	
 buildbot.util.netstrings	

 	
 	
 buildbot.util.pathmatch	

 	
 	
 buildbot.util.poll	

 	
 	
 buildbot.util.sautils	

 	
 	
 buildbot.util.service	

 	
 	
 buildbot.util.state	

 	
 	
 buildbot.util.topicmatch	

 	
 	
 buildbot.wamp.connector	

 	
 	
 buildbot.worker	

 	
 	
 buildbot.worker.manager	

 	
 	
 buildbot.worker.protocols.base	

 	
 	
 buildbot.www.auth	

 	
 	
 buildbot.www.avatar	

 	
 	
 buildbot.www.oauth2	

 	
 	
 buildbot.www.resource	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	
 	
 --allow-shutdown

 	buildbot-worker-create-worker command line option

 	
 --config

 	buildbot-create-master command line option

 	
 --db

 	buildbot-create-master command line option

 	
 --force

 	buildbot-create-master command line option

 	
 --keepalive

 	buildbot-worker-create-worker command line option

 	
 --log-count

 	buildbot-create-master command line option

 	buildbot-worker-create-worker command line option

 	
 	
 --log-size

 	buildbot-create-master command line option

 	buildbot-worker-create-worker command line option

 	
 --maxdelay

 	buildbot-worker-create-worker command line option

 	
 --maxretries

 	buildbot-worker-create-worker command line option

 	
 --no-logrotate

 	buildbot-create-master command line option

 	buildbot-worker-create-worker command line option

 	
 --relocatable

 	buildbot-create-master command line option

 	
 --umask

 	buildbot-worker-create-worker command line option

_

 	
 	__call__() (buildbot.util.poll.Poller method)

 	__init__() (buildbot.config.FileLoader method)

 	(DbConfig method)

 	(buildbot.schedulers.base.BaseScheduler method)

 	(buildbot.util.service.BuildbotService method)

 	(buildbot.util.service.SharedService method)

 	_builder_name_matches() (buildbot.statistics.capture.CaptureBuildDuration method)

 	(buildbot.statistics.capture.CaptureBuildDurationAllBuilders method)

 	(buildbot.statistics.capture.CaptureBuildEndTime method)

 	(buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders method)

 	(buildbot.statistics.capture.CaptureBuildStartTime method)

 	(buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders method)

 	(buildbot.statistics.capture.CaptureBuildTimes method)

 	(buildbot.statistics.capture.CaptureData method)

 	(buildbot.statistics.capture.CaptureDataAllBuilders method)

 	(buildbot.statistics.capture.CaptureDataBase method)

 	(buildbot.statistics.capture.CaptureProperty method)

 	(buildbot.statistics.capture.CapturePropertyAllBuilders method)

 	
 	_claimService() (buildbot.util.service.ClusteredService method)

 	_err_msg() (buildbot.statistics.capture.CaptureBuildTimes method)

 	_getServiceId() (buildbot.util.service.ClusteredService method)

 	_retValParams() (buildbot.statistics.capture.CaptureBuildDuration method)

 	(buildbot.statistics.capture.CaptureBuildEndTime method)

 	(buildbot.statistics.capture.CaptureBuildStartTime method)

 	(buildbot.statistics.capture.CaptureBuildTimes method)

 	_unclaimService() (buildbot.util.service.ClusteredService method)

A

 	
 	AbstractWorkerController Build Worker

 	activate() (buildbot.schedulers.base.BaseScheduler method)

 	(buildbot.util.service.ClusteredService method)

 	active (buildbot.process.remotecommand.RemoteCommand attribute)

 	(buildbot.schedulers.base.BaseScheduler attribute)

 	addBuild() (buildbot.db.builds.BuildsConnectorComponent method)

 	addBuilderMaster() (buildbot.db.builders.BuildersConnectorComponent method)

 	addBuildset() (buildbot.data.buildsets.Buildset method)

 	(buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	addBuildsetForChanges() (buildbot.schedulers.base.BaseScheduler method)

 	addBuildsetForSourceStamps() (buildbot.schedulers.base.BaseScheduler method)

 	addBuildsetForSourceStampsWithDefaults() (buildbot.schedulers.base.BaseScheduler method)

 	addChange() (buildbot.data.changes.Change method)

 	(buildbot.db.changes.ChangesConnectorComponent method)

 	addCompleteLog() (buildbot.process.buildstep.BuildStep method)

 	addError() (buildbot.config.ConfigErrors method)

 	addHeader() (buildbot.process.log.StreamLog method)

 	(buildbot.process.remotecommand.RemoteCommand method)

 	addHTMLLog() (buildbot.process.buildstep.BuildStep method)

 	addLog() (buildbot.data.logs.Log method)

 	(buildbot.db.logs.LogsConnectorComponent method)

 	(buildbot.process.buildstep.BuildStep method)

 	addLogObserver() (buildbot.process.buildstep.BuildStep method)

 	addLogWithException() (buildbot.process.buildstep.BuildStep method)

 	addLogWithFailure() (buildbot.process.buildstep.BuildStep method)

 	
 	addStderr() (buildbot.process.log.StreamLog method)

 	(buildbot.process.remotecommand.RemoteCommand method)

 	addStdout() (buildbot.process.log.StreamLog method)

 	(buildbot.process.remotecommand.RemoteCommand method)

 	addStep() (buildbot.db.steps.StepsConnectorComponent method)

 	addToLog() (buildbot.process.remotecommand.RemoteCommand method)

 	addURL

 	addURL() (buildbot.db.steps.StepsConnectorComponent method)

 	(buildbot.process.buildstep.BuildStep method)

 	allEndpoints() (buildbot.data.connector.DataConnector method)

 	AlreadyClaimedError

 	alwaysRun (buildbot.process.buildstep.BuildStep attribute)

 	AnyBranchScheduler Scheduler

 	append() (buildbot.util.lineboundaries.LineBoundaryFinder method)

 	appendLog() (buildbot.db.logs.LogsConnectorComponent method)

 	apply() (buildbot.data.resultspec.ResultSpec method)

 	Assert Build Step

 	AsyncMultiService (class in buildbot.util.service)

 	asyncRenderHelper() (buildbot.www.resource.Resource method)

 	AsyncService (class in buildbot.util.service)

 	asyncSleep() (in module buildbot.util)

 	atomicCreateState() (buildbot.db.state.StateConnectorComponent method)

 	AuthBase (class in buildbot.www.auth)

 	AvatarBase (class in buildbot.www.avatar)

 	AWS EC2

B

 	
 	BaseParameter (class in buildbot.schedulers.forceshed)

 	BaseScheduler (class in buildbot.schedulers.base)

 	BasicBuildFactory

 	BasicSVN

 	bdict

 	Binary (class in buildbot.data.types)

 	BitBucket Change Source

 	BitbucketPullrequestPoller Change Source

 	BitbucketServerPRCommentPush Reporter Target

 	BitbucketServerStatusPush (built-in class)

 	BitbucketServerStatusPush Reporter Target

 	BitbucketStatusPush (built-in class)

 	BitbucketStatusPush Reporter Target

 	Boolean (class in buildbot.data.types)

 	brdict

 	brid

 	bsdict

 	bsid

 	BufferLogObserver (class in buildbot.process.logobserver)

 	build (buildbot.process.buildstep.BuildStep attribute)

 	Build (class in buildbot.process.build)

 	Build Factory

 	BasicBuildFactory

 	BasicSVN

 	CPAN

 	Distutils

 	GNUAutoconf

 	QuickBuildFactory

 	Trial

 	
 Build Steps

 	Assert

 	BuildEPYDoc

 	Bzr

 	CMake

 	CVS

 	Compile

 	Configure

 	CopyDirectory

 	Cppcheck

 	DELETE

 	Darcs

 	DebCowbuilder

 	DebLintian

 	DebPbuilder

 	DirectoryUpload

 	FileDownload

 	FileExists

 	FileUpload

 	GET

 	Gerrit

 	Git

 	GitHub

 	GitLab

 	GitPush

 	HEAD

 	HLint

 	HTTPStep

 	JSONPropertiesDownload

 	JSONStringDownload

 	LogRenderable

 	MTR

 	MakeDirectory

 	MasterShellCommand

 	MaxQ

 	Mercurial

 	MockBuildSRPM

 	MockRebuild

 	Monotone

 	MsBuild12

 	MsBuild14

 	MsBuild141

 	MsBuild4

 	MultipleFileUpload

 	OPTIONS

 	P4

 	POST

 	PUT

 	PerlModuleTest

 	PyFlakes

 	PyLint

 	RemoveDirectory

 	RemovePYCs

 	Repo

 	Robocopy

 	RpmBuild

 	RpmLint

 	SVN

 	SetProperties

 	SetPropertiesFromEnv

 	SetProperty

 	SetPropertyFromCommand

 	ShellCommand

 	ShellSequence

 	Sphinx

 	StringDownload

 	SubunitShellCommand

 	Test

 	TreeSize

 	Trial

 	Trigger

 	VC10

 	VC11

 	VC12

 	VC14

 	VC141

 	VC6

 	VC7

 	VC8

 	VC9

 	VCExpress9

 	VS2003

 	VS2005

 	VS2008

 	VS2010

 	VS2012

 	VS2013

 	VS2015

 	VS2017

 	
 Build Workers

 	AbstractWorkerController

 	DockerLatentWorker

 	EC2LatentWorker

 	LibVirtWorker

 	OpenStackLatentWorker

 	buildAdditionalContext()

 	
 buildbot-create-master command line option

 	--config

 	--db

 	--force

 	--log-count

 	--log-size

 	--no-logrotate

 	--relocatable

 	
 buildbot-worker-create-worker command line option

 	--allow-shutdown

 	--keepalive

 	--log-count

 	--log-size

 	--maxdelay

 	--maxretries

 	--no-logrotate

 	--umask

 	buildbot.changes.base (module)

 	buildbot.changes.bitbucket.BitbucketPullrequestPoller (built-in class)

 	buildbot.changes.changes.Change (built-in class)

 	buildbot.changes.gerritchangesource.GerritChangeFilter (built-in class)

 	buildbot.changes.gerritchangesource.GerritChangeSource (built-in class)

 	buildbot.changes.gerritchangesource.GerritEventLogPoller (built-in class)

 	buildbot.changes.github.GitHubPullrequestPoller (built-in class)

 	buildbot.changes.mail.BzrLaunchpadEmailMaildirSource (built-in class)

 	buildbot.changes.mail.CVSMaildirSource (built-in class)

 	buildbot.changes.mail.SVNCommitEmailMaildirSource (built-in class)

 	buildbot.changes.pb.PBChangeSource (built-in class)

 	buildbot.changes.svnpoller.SVNPoller (built-in class)

 	buildbot.config (module)

 	buildbot.data.builders.Builder (built-in class)

 	buildbot.data.buildrequests.BuildRequest (built-in class)

 	buildbot.data.builds.Build (built-in class)

 	buildbot.data.buildsets.Buildset (built-in class)

 	buildbot.data.changes.Change (built-in class)

 	buildbot.data.changesources.ChangeSource (built-in class)

 	buildbot.data.connector (module)

 	buildbot.data.exceptions (module)

 	buildbot.data.logs.Log (built-in class)

 	buildbot.data.masters.Master (built-in class)

 	buildbot.data.patches.Patch (built-in class)

 	buildbot.data.properties.Properties (built-in class)

 	buildbot.data.resultspec (module)

 	buildbot.data.schedulers.Scheduler (built-in class)

 	buildbot.data.steps.Step (built-in class)

 	buildbot.data.types (module)

 	buildbot.db.base (module)

 	buildbot.db.builders (module)

 	buildbot.db.buildrequests (module)

 	buildbot.db.builds (module)

 	buildbot.db.buildsets (module)

 	buildbot.db.changes (module)

 	buildbot.db.changesources (module)

 	buildbot.db.connector (module)

 	buildbot.db.logs (module)

 	buildbot.db.masters (module)

 	buildbot.db.model (module)

 	buildbot.db.pool (module)

 	buildbot.db.schedulers (module)

 	buildbot.db.sourcestamps (module)

 	buildbot.db.state (module)

 	buildbot.db.steps (module)

 	buildbot.db.users (module)

 	buildbot.db.workers (module)

 	buildbot.interfaces.IConfigured (class in buildbot.config)

 	buildbot.ldapuserinfo.LdapUserInfo (built-in class)

 	buildbot.mq.base (module)

 	buildbot.mq.simple (module)

 	buildbot.mq.wamp (module)

 	buildbot.plugins.util.KubeCtlProxyConfigLoader (built-in class)

 	buildbot.plugins.util.KubeHardcodedConfig (built-in class)

 	buildbot.plugins.util.KubeInClusterConfigLoader (built-in class)

 	buildbot.plugins.worker.DockerLatentWorker (built-in class)

 	buildbot.plugins.worker.HyperLatentWorker (built-in class)

 	buildbot.plugins.worker.KubeLatentWorker (built-in class)

 	buildbot.plugins.worker.MarathonLatentWorker (built-in class)

 	buildbot.process.build (module)

 	buildbot.process.buildstep (module)

 	buildbot.process.buildstep.CommandMixin (class in buildbot.process.buildstep)

 	buildbot.process.buildstep.ShellMixin (class in buildbot.process.buildstep)

 	buildbot.process.factory.BasicBuildFactory (built-in class)

 	buildbot.process.factory.BasicSVN (built-in class)

 	buildbot.process.factory.CPAN (built-in class)

 	buildbot.process.factory.Distutils (built-in class)

 	buildbot.process.factory.GNUAutoconf (built-in class)

 	buildbot.process.factory.QuickBuildFactory (built-in class)

 	buildbot.process.factory.Trial (built-in class)

 	buildbot.process.log (module)

 	buildbot.process.logobserver (module)

 	buildbot.process.results (module)

 	buildbot.reporters.bitbucket.BitbucketStatusPush (built-in class)

 	buildbot.reporters.BitbucketServer.BitbucketServerPRCommentPush (built-in class)

 	buildbot.reporters.BitbucketServer.BitbucketServerStatusPush (built-in class)

 	buildbot.reporters.github.GitHubCommentPush (built-in class)

 	buildbot.reporters.github.GitHubStatusPush (built-in class)

 	
 	buildbot.reporters.gitlab.GitLabStatusPush (built-in class)

 	buildbot.reporters.hipchat.HipchatStatusPush (built-in class)

 	buildbot.reporters.mail.MailNotifier (built-in class)

 	buildbot.reporters.pushover.PushjetNotifier (built-in class)

 	buildbot.reporters.pushover.PushoverNotifier (built-in class)

 	buildbot.schedulers.base (module)

 	buildbot.schedulers.forceshed (module)

 	buildbot.schedulers.timed.NightlyTriggerable (built-in class)

 	buildbot.statistics.capture.Capture (built-in class)

 	buildbot.statistics.capture.CaptureBuildDuration (built-in class)

 	buildbot.statistics.capture.CaptureBuildDuration.default_callback() (built-in function)

 	buildbot.statistics.capture.CaptureBuildDurationAllBuilders (built-in class)

 	buildbot.statistics.capture.CaptureBuildEndTime (built-in class)

 	buildbot.statistics.capture.CaptureBuildEndTime.default_callback() (built-in function)

 	buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders (built-in class)

 	buildbot.statistics.capture.CaptureBuildStartTime (built-in class)

 	buildbot.statistics.capture.CaptureBuildStartTime.default_callback() (built-in function)

 	buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders (built-in class)

 	buildbot.statistics.capture.CaptureBuildTimes (built-in class)

 	buildbot.statistics.capture.CaptureData (built-in class)

 	buildbot.statistics.capture.CaptureDataAllBuilders (built-in class)

 	buildbot.statistics.capture.CaptureDataBase (built-in class)

 	buildbot.statistics.capture.CaptureProperty (built-in class)

 	buildbot.statistics.capture.CapturePropertyAllBuilders (built-in class)

 	buildbot.statistics.capture.CapturePropertyBase (built-in class)

 	buildbot.statistics.capture.CapturePropertyBase.default_callback() (built-in function)

 	buildbot.statistics.stats_service.StatsService (built-in class)

 	buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService (built-in class)

 	buildbot.statistis.storage_backends.base.StatsStorageBase (built-in class)

 	buildbot.status.status_gerrit.GerritStatusPush (built-in class)

 	buildbot.status.status_gerrit_verify_status.GerritVerifyStatusPush (built-in class)

 	buildbot.steps.cmake.CMake (class in buildbot.steps.source)

 	buildbot.steps.master.Assert (class in buildbot.steps.source)

 	buildbot.steps.master.LogRenderable (class in buildbot.steps.source)

 	buildbot.steps.master.MasterShellCommand (class in buildbot.steps.source)

 	buildbot.steps.master.SetProperty (class in buildbot.steps.source), [1]

 	buildbot.steps.mswin.Robocopy (class in buildbot.steps.source)

 	buildbot.steps.python.BuildEPYDoc (class in buildbot.steps.source)

 	buildbot.steps.python.PyFlakes (class in buildbot.steps.source)

 	buildbot.steps.python.Sphinx (class in buildbot.steps.source)

 	buildbot.steps.python_twisted.RemovePYCs (class in buildbot.steps.source)

 	buildbot.steps.python_twisted.Trial (class in buildbot.steps.source)

 	buildbot.steps.shell.Configure (class in buildbot.steps.source)

 	buildbot.steps.shell.SetPropertyFromCommand (class in buildbot.steps.source)

 	buildbot.steps.shell.ShellCommand (class in buildbot.steps.source)

 	buildbot.steps.shellsequence.ShellArg (class in buildbot.steps.source)

 	buildbot.steps.shellsequence.ShellSequence (class in buildbot.steps.source)

 	buildbot.steps.source (module)

 	buildbot.steps.source.bzr.Bzr (class in buildbot.steps.source)

 	buildbot.steps.source.cvs.CVS (class in buildbot.steps.source)

 	buildbot.steps.source.darcs.Darcs (class in buildbot.steps.source)

 	buildbot.steps.source.gerrit.Gerrit (class in buildbot.steps.source)

 	buildbot.steps.source.git.Git (class in buildbot.steps.source)

 	buildbot.steps.source.git.GitPush (class in buildbot.steps.source)

 	buildbot.steps.source.github.GitHub (class in buildbot.steps.source)

 	buildbot.steps.source.gitlab.GitLab (class in buildbot.steps.source)

 	buildbot.steps.source.mercurial.Mercurial (class in buildbot.steps.source)

 	buildbot.steps.source.mtn.Monotone (class in buildbot.steps.source)

 	buildbot.steps.source.p4.P4 (class in buildbot.steps.source)

 	buildbot.steps.source.repo.Repo (class in buildbot.steps.source)

 	buildbot.steps.source.repo.RepoDownloadsFromChangeSource (class in buildbot.steps.source)

 	buildbot.steps.source.repo.RepoDownloadsFromProperties (class in buildbot.steps.source)

 	buildbot.steps.source.svn.SVN (class in buildbot.steps.source)

 	buildbot.steps.subunit.SubunitShellCommand (class in buildbot.steps.source)

 	buildbot.steps.transfer.DirectoryUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.FileDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.FileUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.JSONPropertiesDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.JSONStringDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.MultipleFileUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.StringDownload (class in buildbot.steps.source)

 	buildbot.steps.trigger.Trigger (class in buildbot.steps.source)

 	buildbot.steps.worker.SetPropertiesFromEnv (class in buildbot.steps.source)

 	buildbot.util (module)

 	buildbot.util.bbcollections (module)

 	buildbot.util.ConfiguredMixin (class in buildbot.config)

 	buildbot.util.debounce (module)

 	buildbot.util.eventual (module)

 	buildbot.util.identifiers (module)

 	buildbot.util.kubeclientservice.KubeCtlProxyConfigLoader (built-in class)

 	buildbot.util.kubeclientservice.KubeHardcodedConfig (built-in class)

 	buildbot.util.kubeclientservice.KubeInClusterConfigLoader (built-in class)

 	buildbot.util.lineboundaries (module)

 	buildbot.util.lru (module)

 	buildbot.util.maildir (module)

 	buildbot.util.misc (module)

 	buildbot.util.netstrings (module)

 	buildbot.util.pathmatch (module)

 	buildbot.util.poll (module)

 	buildbot.util.sautils (module)

 	buildbot.util.service (module)

 	buildbot.util.state (module)

 	buildbot.util.topicmatch (module)

 	buildbot.wamp.connector (module)

 	buildbot.worker (module)

 	buildbot.worker.AbstractLatentWorker (built-in class)

 	buildbot.worker.docker.DockerLatentWorker (built-in class)

 	buildbot.worker.ec2.EC2LatentWorker (built-in class)

 	buildbot.worker.hyper.HyperLatentWorker (built-in class)

 	buildbot.worker.kubernetes.KubeLatentWorker (built-in class)

 	buildbot.worker.libvirt.LibVirtWorker (built-in class)

 	buildbot.worker.manager (module)

 	buildbot.worker.marathon.MarathonLatentWorker (built-in class)

 	buildbot.worker.openstack.OpenStackLatentWorker (built-in class)

 	buildbot.worker.protocols.base (module)

 	buildbot.www.auth (module)

 	buildbot.www.auth.CustomAuth (built-in class)

 	buildbot.www.auth.HTPasswdAuth (built-in class)

 	buildbot.www.auth.NoAuth (built-in class)

 	buildbot.www.auth.RemoteUserAuth (built-in class)

 	buildbot.www.auth.UserPasswordAuth (built-in class)

 	buildbot.www.authz.Authz (built-in class)

 	buildbot.www.authz.endpointmatchers.AnyControlEndpointMatcher (built-in class)

 	buildbot.www.authz.endpointmatchers.AnyEndpointMatcher (built-in class)

 	buildbot.www.authz.endpointmatchers.EnableSchedulerEndpointMatcher (built-in class)

 	buildbot.www.authz.endpointmatchers.EndpointMatcherBase (built-in class)

 	buildbot.www.authz.endpointmatchers.ForceBuildEndpointMatcher (built-in class)

 	buildbot.www.authz.endpointmatchers.RebuildBuildEndpointMatcher (built-in class)

 	buildbot.www.authz.endpointmatchers.StopBuildEndpointMatcher (built-in class)

 	buildbot.www.authz.roles.RolesFromDomain (built-in class)

 	buildbot.www.authz.roles.RolesFromEmails (built-in class)

 	buildbot.www.authz.roles.RolesFromGroups (built-in class)

 	buildbot.www.authz.roles.RolesFromOwner (built-in class)

 	buildbot.www.authz.roles.RolesFromUsername (built-in class)

 	buildbot.www.avatar (module)

 	buildbot.www.oauth2 (module)

 	buildbot.www.oauth2.BitbucketAuth (built-in class)

 	buildbot.www.oauth2.GitHubAuth (built-in class)

 	buildbot.www.oauth2.GitLabAuth (built-in class)

 	buildbot.www.oauth2.GoogleAuth (built-in class)

 	buildbot.www.resource (module)

 	buildbotNetUsageData (Buildmaster Config)

 	BuildbotService (class in buildbot.util.service)

 	buildbotURL (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	buildCacheSize (Buildmaster Config)

 	builddir (buildbot.config.BuilderConfig attribute)

 	BuildEPYDoc Build Step

 	BuilderConfig (class in buildbot.config)

 	builderNames (buildbot.schedulers.base.BaseScheduler attribute)

 	
 Builders

 	DB Connector Component

 	priority, [1]

 	builders (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	BuildersConnectorComponent (class in buildbot.db.builders)

 	buildid

 	(buildbot.process.build.Build attribute)

 	
 Buildmaster Config

 	buildCacheSize

 	buildbotNetUsageData

 	buildbotURL

 	builders

 	caches

 	changeCacheSize

 	change_source

 	codebaseGenerator

 	collapseRequests

 	configurators

 	db

 	db_url

 	dbconfig

 	logCompressionLimit

 	logCompressionMethod

 	logEncoding

 	logMaxSize

 	logMaxTailSize

 	manhole

 	metrics

 	mq

 	multiMaster

 	prioritizeBuilders

 	properties

 	protocols

 	reporter

 	revlink

 	schedulers

 	secretsProviders

 	services

 	stats-service

 	title

 	titleURL

 	user_managers

 	validation

 	workers

 	www

 	
 BuildRequests

 	DB Connector Component

 	BuildRequestsConnectorComponent (class in buildbot.db.buildrequests)

 	
 Builds

 	DB Connector Component

 	collapsing

 	merging, [1], [2]

 	priority, [1]

 	builds_may_be_incompatible

 	BuildsConnectorComponent (class in buildbot.db.builds)

 	
 Buildsets

 	DB Connector Component

 	BuildsetsConnectorComponent (class in buildbot.db.buildsets)

 	BuildStep (class in buildbot.process.buildstep)

 	Buildstep Parameter

 	alwaysRun

 	description

 	descriptionDone

 	descriptionSuffix

 	doStepIf

 	flunkOnFailure

 	flunkOnWarnings

 	haltOnFailure

 	hideStepIf

 	locks

 	logEncoding

 	updateBuildSummaryPolicy

 	warnOnFailure

 	warnOnWarnings

 	BuildStep URLs

 	BuildStepFailed

 	Bzr Build Step

 	BzrLaunchpadEmailMaildirSource Change Source

 	BzrPoller Change Source

C

 	
 	cached() (in module buildbot.db.base)

 	caches (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	callRemote() (buildbot.worker.protocols.base.workerProxyObject method)

 	cancelAfter() (in module buildbot.util.misc)

 	CANCELLED (in module buildbot.process.results)

 	canStartBuild (buildbot.config.BuilderConfig attribute)

 	category (buildbot.config.BuilderConfig attribute)

 	Change Hooks Change Source

 	Change Sources

 	BitBucket

 	BitbucketPullrequestPoller

 	BzrLaunchpadEmailMaildirSource

 	BzrPoller

 	CVSMaildirSource

 	Change Hooks

 	GerritChangeSource

 	GerritEventLogPoller

 	GitHub

 	GitHubPullrequestPoller

 	GitLab

 	GitPoller

 	Gitorious

 	HgPoller

 	Mercurial

 	P4Source

 	PBChangeSource

 	SVNCommitEmailMaildirSource

 	SVNPoller

 	change_source (Buildmaster Config)

 	change_sources (buildbot.config.MasterConfig attribute)

 	changeCacheSize (Buildmaster Config)

 	changeid

 	
 Changes

 	DB Connector Component

 	ChangesConnectorComponent (class in buildbot.db.changes)

 	ChangeSource (class in buildbot.changes.base)

 	ChangeSourceAlreadyClaimedError

 	
 ChangeSources

 	DB Connector Component

 	ChangeSourcesConnectorComponent (class in buildbot.db.changesources)

 	chdict

 	checkconfig Command Line Subcommand

 	checkConfig() (buildbot.statistics.stats_service.StatsService method)

 	(buildbot.util.service.BuildbotService method)

 	checkLength() (buildbot.db.base.DBConnectorComponent method)

 	checkWorkerHasCommand() (buildbot.process.buildstep.BuildStep method)

 	ChoiceStringParameter Scheduler

 	claimBuildRequests() (buildbot.data.buildrequests.BuildRequest method)

 	(buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	classifyChanges() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	cleanupdb Command Line Subcommand

 	ClusteredService (class in buildbot.util.service)

 	CMake Build Step

 	code (buildbot.util.service.IHTTPResponse attribute)

 	
 	codebaseGenerator (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	CodebaseParameter Scheduler

 	codebases (buildbot.schedulers.base.BaseScheduler attribute)

 	collapseRequests (buildbot.config.BuilderConfig attribute)

 	(Buildmaster Config)

 	(buildbot.config.MasterConfig attribute)

 	command (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	
 Command Line Subcommands

 	checkconfig

 	cleanupdb

 	create-master

 	create-worker

 	restart (buildbot)

 	restart (worker)

 	sendchange

 	sighup

 	start (buildbot)

 	start (worker)

 	stop (buildbot)

 	stop (worker)

 	try

 	upgrade-master

 	user

 	commandComplete() (buildbot.process.buildstep.LoggingBuildStep method)

 	ComparableMixin (class in buildbot.util)

 	Compile Build Step

 	completeBuildRequests() (buildbot.data.buildrequests.BuildRequest method)

 	(buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	completeBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	compressLog() (buildbot.data.logs.Log method)

 	(buildbot.db.logs.LogsConnectorComponent method)

 	ConfigErrors

 	
 Configurator

 	IConfigurator

 	
 Configurators

 	JanitorConfigurator

 	configurators (Buildmaster Config)

 	Configure Build Step

 	configure()

 	Connection (class in buildbot.worker.protocols.base)

 	consume() (buildbot.statistics.capture.CaptureBuildTimes method)

 	(buildbot.statistics.capture.CaptureDataBase method)

 	(buildbot.statistics.capture.CapturePropertyBase method)

 	content() (buildbot.util.service.IHTTPResponse method)

 	control() (buildbot.data.base.Endpoint method)

 	(buildbot.data.connector.DataConnector method)

 	CopyDirectory Build Step

 	CPAN

 	Cppcheck Build Step

 	create-master Command Line Subcommand

 	create-worker Command Line Subcommand

 	createArgsProxies() (buildbot.worker.protocols.base.Connection method)

 	createEnvironment()

 	CVS Build Step

 	CVSMaildirSource Change Source

D

 	
 	Darcs Build Step

 	DataConnector (class in buildbot.data.connector)

 	DataException

 	datetime2epoch() (in module buildbot.util)

 	db (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	(buildbot.db.base.DBConnectorComponent attribute)

 	
 DB Connector Component

 	BuildRequests

 	Builders

 	Builds

 	Buildsets

 	ChangeSources

 	Changes

 	Logs

 	Masters

 	Schedulers

 	SourceStamps

 	State

 	Steps

 	Users

 	Workers

 	db_url (Buildmaster Config)

 	dbconfig (Buildmaster Config)

 	DbConfig (built-in class)

 	DBConnector (class in buildbot.db.connector)

 	DBConnectorComponent (class in buildbot.db.base)

 	DBThreadPool (class in buildbot.db.pool)

 	deactivate() (buildbot.schedulers.base.BaseScheduler method)

 	(buildbot.util.service.ClusteredService method)

 	
 	DebCowbuilder Build Step

 	DebLintian Build Step

 	Debouncer (class in buildbot.util.debounce)

 	DebPbuilder Build Step

 	decoder (buildbot.process.log.Log attribute)

 	decodeRC (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	deconfigureAllWorkersForMaster() (buildbot.db.workers.WorkersConnectorComponent method)

 	default (buildbot.schedulers.forceshed.BaseParameter attribute)

 	defaultdict (class in buildbot.util.bbcollections)

 	deferredLocked() (in module buildbot.util.misc)

 	DELETE Build Step

 	delete() (buildbot.util.service.HTTPClientService method)

 	deleteOldLogChunks() (buildbot.db.logs.LogsConnectorComponent method)

 	Dependent Scheduler

 	describe() (buildbot.process.buildstep.BuildStep method)

 	description (buildbot.config.BuilderConfig attribute)

 	(buildbot.process.buildstep.BuildStep attribute)

 	descriptionDone (buildbot.process.buildstep.BuildStep attribute)

 	descriptionSuffix (buildbot.process.buildstep.BuildStep attribute)

 	didFail() (buildbot.process.remotecommand.RemoteCommand method)

 	diffSets() (in module buildbot.util)

 	DirectoryUpload Build Step

 	Distutils

 	do() (buildbot.db.pool.DBThreadPool method)

 	do_with_engine() (buildbot.db.pool.DBThreadPool method)

 	doBatch() (buildbot.db.base.DBConnectorComponent method)

 	Docker

 	DockerLatentWorker Build Worker

 	domain (in module buildbot.util)

 	doStepIf (buildbot.process.buildstep.BuildStep attribute)

E

 	
 	EC2LatentWorker Build Worker

 	
 email

 	MailNotifier

 	Endpoint (class in buildbot.data.base)

 	endpoints (buildbot.data.base.ResourceType attribute)

 	ensureHasSSL() (in module buildbot.util.service)

 	Entity (class in buildbot.data.types)

 	entityType (buildbot.data.base.ResourceType attribute)

 	env (buildbot.config.BuilderConfig attribute)

 	(buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	
 environment variable

 	HOME

 	INCLUDE

 	LIB

 	P4PASSWD

 	P4PORT

 	P4USER

 	PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

 	TMP

 	
 	epoch2datetime() (in module buildbot.util)

 	error() (in module buildbot.config)

 	errors (buildbot.config.ConfigErrors attribute)

 	evaluateCommand() (buildbot.process.buildstep.LoggingBuildStep method)

 	
 event

 	build.$buildid.step.$number.log.$logid.complete

 	build.$buildid.step.$number.log.$logid.newlog

 	eventPathPatterns (buildbot.data.base.ResourceType attribute)

 	eventually() (in module buildbot.util.eventual)

 	EXCEPTION (in module buildbot.process.results)

 	expireMasters() (buildbot.data.masters.Master method)

F

 	
 	factory (buildbot.config.BuilderConfig attribute)

 	failed() (buildbot.process.buildstep.BuildStep method)

 	FAILURE (in module buildbot.process.results)

 	feed() (buildbot.util.netstrings.NetstringParser method)

 	fields (buildbot.data.resultspec.ResultSpec attribute)

 	File Transfer

 	FileDownload Build Step

 	FileExists Build Step

 	FileLoader (class in buildbot.config)

 	FileParameter Scheduler

 	FileReaderImpl (class in buildbot.worker.protocols.base)

 	FileUpload Build Step

 	FileWriterImpl (class in buildbot.worker.protocols.base)

 	Filter (class in buildbot.data.resultspec)

 	filters (buildbot.data.resultspec.ResultSpec attribute)

 	findBuilderId() (buildbot.db.builders.BuildersConnectorComponent method)

 	findChangeSourceId() (buildbot.data.changesources.ChangeSource method)

 	(buildbot.db.changesources.ChangeSourcesConnectorComponent method)

 	findMasterId() (buildbot.db.masters.MastersConnectorComponent method)

 	findSchedulerId()

 	(buildbot.db.schedulers.SchedulersConnectorComponent method)

 	findSomethingId() (buildbot.db.base.DBConnectorComponent method)

 	findUserByAttr() (buildbot.db.users.UsersConnectorComponent method)

 	findWorkerId() (buildbot.db.workers.WorkersConnectorComponent method)

 	
 	finish() (buildbot.process.log.Log method)

 	finishBuild() (buildbot.data.builds.Build method)

 	(buildbot.db.builds.BuildsConnectorComponent method)

 	finished() (buildbot.process.buildstep.BuildStep method)

 	finishLog() (buildbot.data.logs.Log method)

 	(buildbot.db.logs.LogsConnectorComponent method)

 	finishReceived() (buildbot.process.logobserver.LogLineObserver method)

 	(buildbot.process.logobserver.LogObserver method)

 	finishStep() (buildbot.data.steps.Step method)

 	(buildbot.db.steps.StepsConnectorComponent method)

 	fireEventually() (in module buildbot.util.eventual)

 	flatten() (in module buildbot.util)

 	flattened_iterator() (in module buildbot.util)

 	flunkOnFailure (buildbot.process.buildstep.BuildStep attribute)

 	(buildbot.process.results.ResultComputingConfigMixin attribute)

 	flunkOnWarnings (buildbot.process.buildstep.BuildStep attribute)

 	(buildbot.process.results.ResultComputingConfigMixin attribute)

 	flush() (buildbot.util.lineboundaries.LineBoundaryFinder method)

 	flushChangeClassifications() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	flushEventualQueue() (in module buildbot.util.eventual)

 	Forced Builds

 	forceIdentifier() (in module buildbot.util.identifiers)

 	ForceScheduler Scheduler

 	formatInterval() (in module buildbot.util)

 	fullName() (buildbot.schedulers.forceshed.BaseParameter method)

G

 	
 	Gerrit Build Step

 	
 Gerrit integration

 	Repo Build Step

 	GerritChangeSource Change Source

 	GerritEventLogPoller Change Source

 	GerritStatusPush (built-in class)

 	GerritStatusPush Reporter Target

 	GerritVerifyStatusPush Reporter Target

 	GET Build Step

 	get() (buildbot.data.base.Endpoint method)

 	(DbConfig method)

 	(buildbot.util.service.HTTPClientService method)

 	(in module buildbot.util.lru)

 	getBuild() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildByNumber() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildContainerResources()

 	getBuilder() (buildbot.db.builders.BuildersConnectorComponent method)

 	getBuilders() (buildbot.db.builders.BuildersConnectorComponent method)

 	getBuildProperties() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildRequest() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	getBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	getBuildResultSummary() (buildbot.process.buildstep.BuildStep method)

 	getBuilds() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getBuildsetProperties() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getBuildsets() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getChange() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChangeClassifications() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	getChangeFromSSid() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChanges() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChangesCount() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChangesForBuild() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChangeSource() (buildbot.db.changesources.ChangeSourcesConnectorComponent method)

 	getChangeSources() (buildbot.db.changesources.ChangeSourcesConnectorComponent method)

 	getChangeUids() (buildbot.db.changes.ChangesConnectorComponent method)

 	getConfigDict() (buildbot.config.buildbot.interfaces.IConfigured method)

 	(buildbot.config.buildbot.util.ConfiguredMixin method)

 	getCurrentSummary() (buildbot.process.buildstep.BuildStep method)

 	getEndpoint() (buildbot.data.connector.DataConnector method)

 	getEndpoints() (buildbot.data.base.ResourceType method)

 	getExtraParams()

 	getFileContentFromWorker() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	getFinalState() (buildbot.steps.source.buildbot.steps.shellsequence.ShellSequence method)

 	getFromKwargs() (buildbot.schedulers.forceshed.BaseParameter method)

 	getLatestChangeid() (buildbot.db.changes.ChangesConnectorComponent method)

 	getLog() (buildbot.db.logs.LogsConnectorComponent method)

 	(buildbot.process.buildstep.BuildStep method)

 	getLogBySlug() (buildbot.db.logs.LogsConnectorComponent method)

 	getLoginResource() (buildbot.www.auth.AuthBase method)

 	getLogLines() (buildbot.db.logs.LogsConnectorComponent method)

 	getLogout() (buildbot.www.auth.AuthBase method)

 	getLogs() (buildbot.db.logs.LogsConnectorComponent method)

 	getMaster() (buildbot.db.masters.MastersConnectorComponent method)

 	getMasters() (buildbot.db.masters.MastersConnectorComponent method)

 	getMessage()

 	getName() (buildbot.util.service.SharedService method)

 	
 	getObjectId() (buildbot.db.state.StateConnectorComponent method)

 	getParentChangeIds() (buildbot.db.changes.ChangesConnectorComponent method)

 	getPrevSuccessfulBuild() (buildbot.db.builds.BuildsConnectorComponent method)

 	getProperties()

 	getProperty()

 	getRecentChanges() (buildbot.db.changes.ChangesConnectorComponent method)

 	getRecipientList()

 	getRenderingFor()

 	getResultSummary() (buildbot.process.buildstep.BuildStep method)

 	getScheduler() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	getSchedulers() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	getSchedulersAndProperties() (in module buildbot.steps.source)

 	getService() (buildbot.util.service.HTTPClientService static method)

 	(buildbot.util.service.SharedService method)

 	getServicesContainers()

 	getSourceStamp() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	getSourceStamps() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	getSourceStampsForBuild() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	getState() (buildbot.db.state.StateConnectorComponent method)

 	(buildbot.schedulers.base.BaseScheduler method)

 	(buildbot.util.state.StateMixin method), [1]

 	getStatistic() (buildbot.process.buildstep.BuildStep method)

 	getStatistics() (buildbot.process.buildstep.BuildStep method)

 	getStderr() (buildbot.process.logobserver.BufferLogObserver method)

 	getStdout() (buildbot.process.logobserver.BufferLogObserver method)

 	getStep() (buildbot.db.steps.StepsConnectorComponent method)

 	getSteps() (buildbot.db.steps.StepsConnectorComponent method)

 	getSummaryStatistic() (buildbot.process.build.Build method)

 	getUrl() (buildbot.process.build.Build method)

 	getUser() (buildbot.db.users.UsersConnectorComponent method)

 	getUserAvatar() (buildbot.www.avatar.AvatarBase method)

 	getUserByUsername() (buildbot.db.users.UsersConnectorComponent method)

 	getUserInfo() (buildbot.www.auth.UserInfoProviderBase method)

 	getUserInfoFromOAuthClient() (buildbot.www.oauth2.OAuth2Auth method)

 	getUsers() (buildbot.db.users.UsersConnectorComponent method)

 	getWorker() (buildbot.db.workers.WorkersConnectorComponent method)

 	getWorkerName() (buildbot.process.buildstep.BuildStep method)

 	getWorkers() (buildbot.db.workers.WorkersConnectorComponent method)

 	Git Build Step

 	GitHub Build Step

 	GitHub Change Source

 	GitHubCommentPush (built-in class)

 	GitHubCommentPush Reporter Target

 	GitHubPullrequestPoller Change Source

 	GitHubStatusPush (built-in class)

 	GitHubStatusPush Reporter Target

 	GitLab Build Step

 	GitLab Change Source

 	GitLabStatusPush (built-in class)

 	GitLabStatusPush Reporter Target

 	Gitorious Change Source

 	GitPoller Change Source

 	GitPush Build Step

 	giturlparse() (in module buildbot.util)

 	GNUAutoconf

 	gotChange() (buildbot.schedulers.base.BaseScheduler method)

H

 	
 	haltOnFailure (buildbot.process.buildstep.BuildStep attribute)

 	(buildbot.process.results.ResultComputingConfigMixin attribute)

 	hashColumns() (buildbot.db.base.DBConnectorComponent method)

 	hasProperty()

 	hasStatistic() (buildbot.process.buildstep.BuildStep method)

 	HEAD Build Step

 	HgPoller Change Source

 	hideStepIf (buildbot.process.buildstep.BuildStep attribute)

 	HipchatStatusPush Reporter Target

 	
 	hits (in module buildbot.util.lru)

 	HLint Build Step

 	HOME

 	HTMLLog (class in buildbot.process.log)

 	HTTP Requests

 	HTTPClientService (class in buildbot.util.service), [1]

 	HttpStatusPush (built-in class)

 	HttpStatusPush Reporter Target

 	HTTPStep Build Step

I

 	
 	Identifier (class in buildbot.data.types)

 	identifierToUid() (buildbot.db.users.UsersConnectorComponent method)

 	IHTTPResponse (class in buildbot.util.service)

 	in_reactor() (in module buildbot.util)

 	INCLUDE

 	incrementIdentifier() (in module buildbot.util.identifiers)

 	InheritBuildParameter Scheduler

 	initialStdin (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	InsertFromSelect (class in buildbot.util.sautils)

 	Integer (class in buildbot.data.types)

 	interrupt() (buildbot.process.buildstep.BuildStep method)

 	(buildbot.process.remotecommand.RemoteCommand method)

 	
 	interruptSignal (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	inv() (in module buildbot.util.lru)

 	InvalidOptionError

 	InvalidPathError

 	IRC

 	IRC Reporter Target

 	is_current() (buildbot.db.model.Model method)

 	isActive() (buildbot.util.service.ClusteredService method)

 	isCollection (buildbot.data.base.Endpoint attribute)

 	isCompatibleWithBuild()

 	isIdentifier() (in module buildbot.util.identifiers)

 	isRaw (buildbot.data.base.Endpoint attribute)

 	iterPatterns() (buildbot.util.pathmatch.Matcher method)

J

 	
 	JanitorConfigurator Configurators

 	join_list() (in module buildbot.util)

 	
 	json() (buildbot.util.service.IHTTPResponse method)

 	JSONPropertiesDownload Build Step

 	JSONStringDownload Build Step

K

 	
 	KeyedSets (class in buildbot.util.bbcollections)

L

 	
 	label (buildbot.schedulers.forceshed.BaseParameter attribute)

 	lazylogfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	LIB

 	libvirt

 	LibVirtWorker Build Worker

 	limit (buildbot.data.resultspec.ResultSpec attribute)

 	LineBoundaryFinder (class in buildbot.util.lineboundaries)

 	LineConsumerLogObserver (class in buildbot.process.logobserver)

 	links

 	List (class in buildbot.data.types)

 	Listener (class in buildbot.worker.protocols.base)

 	loadConfig() (buildbot.config.FileLoader method)

 	loadConfigDict() (in module buildbot.config)

 	loadFromDict() (buildbot.config.MasterConfig class method)

 	locks (buildbot.config.BuilderConfig attribute)

 	(buildbot.process.buildstep.BuildStep attribute)

 	Log (class in buildbot.process.log)

 	logCompressionLimit (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	logCompressionMethod (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	
 	logEncoding (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	(buildbot.process.buildstep.BuildStep attribute)

 	logEnviron (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	logfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	(buildbot.process.buildstep.LoggingBuildStep attribute)

 	LoggingBuildStep (class in buildbot.process.buildstep)

 	logid (buildbot.process.log.Log attribute)

 	LogLineObserver (class in buildbot.process.logobserver)

 	logMaxSize (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	logMaxTailSize (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	LogObserver (class in buildbot.process.logobserver)

 	LogRenderable Build Step

 	
 Logs

 	DB Connector Component

 	logs (buildbot.process.remotecommand.RemoteCommand attribute)

 	LogsConnectorComponent (class in buildbot.db.logs)

 	loseConnection() (buildbot.worker.protocols.base.Connection method)

M

 	
 	MaildirService (class in buildbot.util.maildir)

 	MailNotifier Reporter Target

 	MakeDirectory Build Step

 	makeList() (in module buildbot.util)

 	makeRemoteShellCommand() (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin method)

 	Manhole

 	manhole (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	master (buildbot.util.state.StateMixin attribute)

 	(in module buildbot.status.buildset)

 	masterActive() (buildbot.data.masters.Master method)

 	MasterConfig (class in buildbot.config)

 	
 Masters

 	DB Connector Component

 	MastersConnectorComponent (class in buildbot.db.masters)

 	MasterShellCommand Build Step

 	masterStopped() (buildbot.data.masters.Master method)

 	Matcher (class in buildbot.util.pathmatch)

 	matches() (buildbot.util.topicmatch.TopicMatcher method)

 	max_size (in module buildbot.util.lru)

 	MaxQ Build Step

 	maxTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	maybeAutoLogin() (buildbot.www.auth.AuthBase method)

 	maybeBuildsetComplete() (buildbot.data.buildsets.Buildset method)

 	Mercurial Build Step

 	
 	Mercurial Change Source

 	messageReceived() (buildbot.util.maildir.MaildirService method)

 	metadata (buildbot.db.model.Model attribute)

 	method() (in module buildbot.util.debounce)

 	(in module buildbot.util.poll)

 	metrics (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	misses (in module buildbot.util.lru)

 	MockBuildSRPM Build Step

 	MockRebuild Build Step

 	Model (class in buildbot.db.model)

 	Monotone Build Step

 	moveToCurDir() (buildbot.util.maildir.MaildirService method)

 	mq (Buildmaster Config)

 	MQConnector (class in buildbot.mq.base)

 	MsBuild12 Build Step

 	MsBuild14 Build Step

 	MsBuild141 Build Step

 	MsBuild4 Build Step

 	MTR Build Step

 	multiMaster (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	multiple (buildbot.schedulers.forceshed.BaseParameter attribute)

 	MultipleFileUpload Build Step

 	MySQL

 	limitations, [1], [2], [3], [4]

N

 	
 	name (buildbot.config.buildbot.util.ConfiguredMixin attribute)

 	(buildbot.config.BuilderConfig attribute)

 	(buildbot.data.base.ResourceType attribute)

 	(buildbot.process.buildstep.BuildStep attribute)

 	(buildbot.process.log.Log attribute)

 	(buildbot.schedulers.base.BaseScheduler attribute)

 	(buildbot.schedulers.forceshed.BaseParameter attribute)

 	(buildbot.util.state.StateMixin attribute)

 	naturalSort() (in module buildbot.util)

 	needsReconfig (buildbot.www.resource.Resource attribute)

 	NestedParameter Scheduler

 	NetstringParser (class in buildbot.util.netstrings)

 	
 	newBuild() (buildbot.data.builds.Build method)

 	newStep() (buildbot.data.steps.Step method)

 	nextBuild (buildbot.config.BuilderConfig attribute)

 	nextWorker (buildbot.config.BuilderConfig attribute)

 	Nightly Scheduler

 	NightlyTriggerable Scheduler

 	none_or_str() (in module buildbot.util)

 	NoneOk (class in buildbot.data.types)

 	NotABranch (in module buildbot.util)

 	NotClaimedError

 	notify() (in module buildbot.util)

 	notifyOnDisconnect() (buildbot.worker.protocols.base.Connection method)

 	now() (in module buildbot.util)

O

 	
 	OAuth2Auth (class in buildbot.www.oauth2)

 	objdict

 	objectid

 	offset (buildbot.data.resultspec.ResultSpec attribute)

 	
 	OpenStackLatentWorker Build Worker

 	OPTIONS Build Step

 	order (buildbot.data.resultspec.ResultSpec attribute)

 	owner (in module buildbot.util)

P

 	
 	P4 Build Step

 	P4PASSWD

 	P4PORT

 	P4Source Change Source

 	P4USER

 	parse_from_arg() (buildbot.schedulers.forceshed.BaseParameter method)

 	parse_from_args() (buildbot.schedulers.forceshed.BaseParameter method)

 	PatchParameter Scheduler

 	PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	pathExists() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	pathPatterns (buildbot.data.base.Endpoint attribute)

 	PBChangeSource Change Source

 	Periodic Scheduler

 	PerlModuleTest Build Step

 	plural (buildbot.data.base.ResourceType attribute)

 	Poller (class in buildbot.util.poll)

 	PollingChangeSource (class in buildbot.changes.base)

 	popBooleanFilter() (buildbot.data.resultspec.ResultSpec method)

 	popField() (buildbot.data.resultspec.ResultSpec method)

 	popFilter() (buildbot.data.resultspec.ResultSpec method)

 	popIntegerFilter() (buildbot.data.resultspec.ResultSpec method)

 	popProperties() (buildbot.data.resultspec.ResultSpec method)

 	popStringFilter() (buildbot.data.resultspec.ResultSpec method)

 	port (in module buildbot.util)

 	POST Build Step

 	post() (buildbot.util.service.HTTPClientService method)

 	Postgres

 	prioritizeBuilders (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	priority (buildbot.config.ReconfigurableServiceMixin attribute)

 	produce() (buildbot.mq.base.MQConnector method)

 	produceEvent() (buildbot.data.base.ResourceType method)

 	(buildbot.data.connector.DataConnector method)

 	progressMetrics (buildbot.process.buildstep.BuildStep attribute)

 	Properties, [1]

 	Common Properties

 	IProperties

 	IRenderable

 	Interpolate

 	JSONPropertiesDownload

 	Property

 	Renderer

 	Transform

 	WithProperties

 	branch

 	builddir

 	builder

 	buildername

 	buildnumber

 	from GerritChangeSource

 	from forced build

 	from scheduler

 	from steps

 	from worker

 	global

 	got_revision

 	scheduler

 	tree-size-KiB

 	triggering schedulers

 	warnings-count

 	workername

 	
 	properties (buildbot.config.BuilderConfig attribute)

 	(Buildmaster Config)

 	(buildbot.config.MasterConfig attribute)

 	(buildbot.data.resultspec.ResultSpec attribute)

 	(buildbot.schedulers.base.BaseScheduler attribute)

 	Property (class in buildbot.data.resultspec)

 	proto (in module buildbot.util)

 	protocols (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	proxies (buildbot.worker.protocols.base.Connection attribute)

 	Pushjet

 	PushjetNotifier Reporter Target

 	Pushover

 	PushoverNotifier Reporter Target

 	PUT Build Step

 	put() (buildbot.util.service.HTTPClientService method)

 	(in module buildbot.util.lru)

 	PyFlakes Build Step

 	PyLint Build Step

 	
 Python Enhancement Proposals

 	PEP 328

 	PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

Q

 	
 	QueueRef (class in buildbot.mq.base)

 	
 	QuickBuildFactory

R

 	
 	rc (buildbot.process.remotecommand.RemoteCommand attribute)

 	reconfigAuth() (buildbot.www.auth.AuthBase method)

 	reconfigResource() (buildbot.www.resource.Resource method)

 	reconfigService() (buildbot.statistics.stats_service.StatsService method)

 	(buildbot.util.service.BuildbotService method)

 	reconfigServiceWithBuildbotConfig() (buildbot.config.ReconfigurableServiceMixin method)

 	reconfigServiceWithSibling() (buildbot.util.service.BuildbotService method)

 	ReconfigurablePollingChangeSource (class in buildbot.changes.base)

 	ReconfigurableServiceMixin (class in buildbot.config)

 	Redirect (class in buildbot.www.resource)

 	refhits (in module buildbot.util.lru)

 	regex (buildbot.schedulers.forceshed.BaseParameter attribute)

 	register() (buildbot.worker.manager.WorkerManager method)

 	registerConsumers() (buildbot.statistics.stats_service.StatsService method)

 	remote_close() (buildbot.worker.protocols.base.FileReaderImpl method)

 	remote_complete() (buildbot.process.remotecommand.RemoteCommand method)

 	remote_read() (buildbot.worker.protocols.base.FileReaderImpl method)

 	remote_update() (buildbot.process.remotecommand.RemoteCommand method)

 	(buildbot.worker.protocols.base.RemoteCommandImpl method)

 	RemoteCommand (class in buildbot.process.remotecommand)

 	RemoteCommandImpl (class in buildbot.worker.protocols.base)

 	remoteComplete() (buildbot.process.remotecommand.RemoteCommand method)

 	remoteGetWorkerInfo() (buildbot.worker.protocols.base.Connection method)

 	remoteInterruptCommand() (buildbot.worker.protocols.base.Connection method)

 	remotePrint() (buildbot.worker.protocols.base.Connection method)

 	remoteSetBuilderList() (buildbot.worker.protocols.base.Connection method)

 	RemoteShellCommand (class in buildbot.process.remotecommand)

 	remoteShutdown() (buildbot.worker.protocols.base.Connection method)

 	remoteStartBuild() (buildbot.worker.protocols.base.Connection method)

 	remoteStartCommand() (buildbot.worker.protocols.base.Connection method)

 	remoteUpdate() (buildbot.process.remotecommand.RemoteCommand method)

 	removeBuilderMaster() (buildbot.db.builders.BuildersConnectorComponent method)

 	removeConsumers() (buildbot.statistics.stats_service.StatsService method)

 	RemoveDirectory Build Step

 	removeOrder() (buildbot.data.resultspec.ResultSpec method)

 	removePagination() (buildbot.data.resultspec.ResultSpec method)

 	RemovePYCs Build Step

 	removeUser() (buildbot.db.users.UsersConnectorComponent method)

 	renderable, [1], [2]

 	rendered (buildbot.process.buildstep.BuildStep attribute)

 	renderSecrets() (buildbot.util.service.BuildbotService method)

 	repo (in module buildbot.util)

 	Repo Build Step

 	Gerrit integration

 	reporter (Buildmaster Config)

 	
 Reporter Targets

 	BitbucketServerPRCommentPush

 	BitbucketServerStatusPush

 	BitbucketStatusPush

 	GerritStatusPush

 	GerritVerifyStatusPush

 	GitHubCommentPush

 	GitHubStatusPush

 	GitLabStatusPush

 	HipchatStatusPush

 	HttpStatusPush

 	IRC

 	MailNotifier

 	PushjetNotifier

 	PushoverNotifier

 	required (buildbot.schedulers.forceshed.BaseParameter attribute)

 	Resource (class in buildbot.www.resource)

 	
 Resource Action

 	/builders/{builderid_or_buildername}/builds/{build_number} (method=rebuild)

 	/builders/{builderid_or_buildername}/builds/{build_number} (method=stop)

 	/builders/{builderid_or_buildername}/workers/{workerid} (method=kill)

 	/builders/{builderid_or_buildername}/workers/{workerid} (method=pause)

 	/builders/{builderid_or_buildername}/workers/{workerid} (method=stop)

 	/builders/{builderid_or_buildername}/workers/{workerid} (method=unpause)

 	/buildrequests/{buildrequestid} (method=cancel)

 	/builds/{buildid} (method=rebuild)

 	/builds/{buildid} (method=stop)

 	/forceschedulers/{schedulername} (method=force)

 	
 Resource Path

 	/

 	/application.spec

 	/builders

 	/builders/{builderid_or_buildername}

 	/builders/{builderid_or_buildername}/buildrequests

 	/builders/{builderid_or_buildername}/builds

 	/builders/{builderid_or_buildername}/builds/{build_number}

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents

 	/builders/{builderid_or_buildername}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw

 	/builders/{builderid_or_buildername}/forceschedulers

 	/builders/{builderid_or_buildername}/masters

 	/builders/{builderid_or_buildername}/workers

 	/builders/{builderid_or_buildername}/workers/{name}

 	/builders/{builderid_or_buildername}/workers/{workerid}

 	/builders/{builderid_or_buildername}/{masterid}

 	/buildrequests

 	/buildrequests/{buildrequestid}

 	/buildrequests/{buildrequestid}/builds

 	/builds

 	/builds/{buildid}

 	/builds/{buildid}/changes

 	/builds/{buildid}/properties

 	/builds/{buildid}/steps

 	/builds/{buildid}/steps/{step_number_or_name}

 	/builds/{buildid}/steps/{step_number_or_name}/logs

 	/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}

 	/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents

 	/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw

 	/buildsets

 	/buildsets/{bsid}

 	/buildsets/{bsid}/properties

 	/changes

 	/changes/{changeid}

 	/changesources

 	/changesources/{changesourceid}

 	/forceschedulers

 	/forceschedulers/{schedulername}

 	/logs/{logid}

 	/logs/{logid}/contents

 	/logs/{logid}/raw

 	/masters

 	/masters/{masterid}

 	/masters/{masterid}/builders

 	/masters/{masterid}/builders/{builderid}

 	/masters/{masterid}/builders/{builderid}/workers

 	/masters/{masterid}/builders/{builderid}/workers/{name}

 	/masters/{masterid}/builders/{builderid}/workers/{workerid}

 	/masters/{masterid}/changesources

 	/masters/{masterid}/changesources/{changesourceid}

 	/masters/{masterid}/schedulers

 	/masters/{masterid}/schedulers/{schedulerid}

 	/masters/{masterid}/workers

 	/masters/{masterid}/workers/{name}

 	/masters/{masterid}/workers/{workerid}

 	/schedulers

 	/schedulers/{schedulerid}

 	/sourcestamps

 	/sourcestamps/{ssid}

 	/sourcestamps/{ssid}/changes

 	/steps/{stepid}/logs

 	/steps/{stepid}/logs/{log_slug}

 	/steps/{stepid}/logs/{log_slug}/contents

 	/steps/{stepid}/logs/{log_slug}/raw

 	/workers

 	/workers/{name_or_id}

 	
 	
 Resource Type

 	build

 	builder

 	buildrequest

 	buildset

 	change

 	changesource

 	collection

 	forcescheduler

 	identifier

 	log

 	logchunk

 	master

 	patch

 	rootlink

 	scheduler

 	sourcedproperties

 	sourcestamp

 	spec

 	step

 	worker

 	ResourceType (class in buildbot.data.base)

 	restart (buildbot) Command Line Subcommand

 	(worker)

 	ResultComputingConfigMixin (class in buildbot.process.results)

 	resultConfig (buildbot.process.results.ResultComputingConfigMixin attribute)

 	results (buildbot.process.buildstep.BuildStep attribute)

 	Results (in module buildbot.process.results)

 	results() (buildbot.process.remotecommand.RemoteCommand method)

 	ResultSpec (class in buildbot.data.resultspec)

 	RETRY (in module buildbot.process.results)

 	revlink (Buildmaster Config)

 	Robocopy Build Step

 	rootLinkName (buildbot.data.base.Endpoint attribute)

 	RpmBuild Build Step

 	RpmLint Build Step

 	rtypes (buildbot.data.connector.DataConnector attribute)

 	run() (buildbot.process.buildstep.BuildStep method)

 	(buildbot.process.remotecommand.RemoteCommand method)

 	runCommand() (buildbot.process.buildstep.BuildStep method)

 	runGlob() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	runMkdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	runRmdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

S

 	
 	sa_version() (in module buildbot.util.sautils)

 	safeTranslate() (in module buildbot.util)

 	Scheduler Scheduler

 	SchedulerAlreadyClaimedError, [1]

 	schedulerid (buildbot.schedulers.base.BaseScheduler attribute)

 	
 Schedulers

 	AnyBranchScheduler

 	ChoiceStringParameter

 	CodebaseParameter

 	DB Connector Component

 	Dependent

 	FileParameter

 	ForceScheduler

 	InheritBuildParameter

 	NestedParameter

 	Nightly

 	NightlyTriggerable

 	PatchParameter

 	Periodic

 	Scheduler

 	SingleBranchScheduler

 	Triggerable

 	Try_Jobdir

 	Try_Userpass

 	WorkerChoiceParameter

 	schedulers (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	SchedulersConnectorComponent (class in buildbot.db.schedulers)

 	secretsProviders (Buildmaster Config)

 	sendBuildSetSummary() (in module buildbot.status.buildset)

 	sendchange Command Line Subcommand

 	
 Service Mixins

 	ReconfigurableServiceMixin

 	
 Service utilities

 	ClusteredService

 	services (buildbot.config.MasterConfig attribute)

 	(Buildmaster Config)

 	set() (DbConfig method)

 	setAllMastersActiveLongTimeAgo() (buildbot.db.masters.MastersConnectorComponent method)

 	setBasedir() (buildbot.util.maildir.MaildirService method)

 	setBuild() (buildbot.process.buildstep.BuildStep method)

 	setBuildProperties() (buildbot.data.properties.Properties method)

 	setBuildProperty() (buildbot.data.properties.Properties method)

 	(buildbot.db.builds.BuildsConnectorComponent method)

 	setBuildStateString() (buildbot.data.builds.Build method)

 	setChangeSourceMaster() (buildbot.db.changesources.ChangeSourcesConnectorComponent method)

 	setDefaultWorkdir() (buildbot.process.buildstep.BuildStep method)

 	setMasterState() (buildbot.db.masters.MastersConnectorComponent method)

 	setProgress() (buildbot.process.buildstep.BuildStep method)

 	SetProperties Build Step

 	SetPropertiesFromEnv Build Step

 	SetProperty Build Step

 	setProperty()

 	SetPropertyFromCommand Build Step

 	setSchedulerMaster() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	setState() (buildbot.db.state.StateConnectorComponent method)

 	(buildbot.schedulers.base.BaseScheduler method)

 	setStatistic() (buildbot.process.buildstep.BuildStep method)

 	setStepStateString() (buildbot.data.steps.Step method)

 	setupProgress() (buildbot.process.buildstep.BuildStep method)

 	setupShellMixin() (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin method)

 	setWorker() (buildbot.process.buildstep.BuildStep method)

 	
 	setWorkerState() (buildbot.db.workers.WorkersConnectorComponent method)

 	SharedService (class in buildbot.util.service)

 	ShellCommand Build Step

 	ShellSequence Build Step

 	shouldRunTheCommand() (buildbot.steps.source.buildbot.steps.shellsequence.ShellSequence method)

 	sighup Command Line Subcommand

 	sigtermTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin attribute)

 	SimpleMQ (class in buildbot.mq.simple)

 	SingleBranchScheduler Scheduler

 	SKIPPED (in module buildbot.process.results)

 	skipUnless() (in module buildbot.util.service)

 	SourcedProperties (class in buildbot.data.types)

 	
 SourceStamps

 	DB Connector Component

 	SourceStampsConnectorComponent (class in buildbot.db.sourcestamps)

 	Sphinx Build Step

 	SQLite

 	limitations, [1], [2]

 	ssdict

 	ssid

 	start (buildbot) Command Line Subcommand

 	(worker)

 	start() (buildbot.process.buildstep.BuildStep method)

 	(buildbot.util.debounce.Debouncer method)

 	(buildbot.util.poll.Poller method)

 	start_instance()

 	startConsuming() (buildbot.mq.base.MQConnector method)

 	startConsumingChanges() (buildbot.schedulers.base.BaseScheduler method)

 	startStep() (buildbot.data.steps.Step method)

 	(buildbot.process.buildstep.BuildStep method)

 	
 State

 	DB Connector Component

 	StateConnectorComponent (class in buildbot.db.state)

 	StateMixin (class in buildbot.util.state)

 	stats-service (Buildmaster Config)

 	stdout (buildbot.process.remotecommand.RemoteCommand attribute)

 	stepdict

 	stepid

 	(buildbot.process.buildstep.BuildStep attribute)

 	
 Steps

 	DB Connector Component

 	StepsConnectorComponent (class in buildbot.db.steps)

 	stop (buildbot) Command Line Subcommand

 	(worker)

 	stop() (buildbot.util.debounce.Debouncer method)

 	(buildbot.util.poll.Poller method)

 	stop_instance()

 	stopConsuming() (buildbot.mq.base.QueueRef method)

 	stopped (buildbot.process.buildstep.BuildStep attribute)

 	stopService() (buildbot.statistics.stats_service.StatsService method)

 	StreamLog (class in buildbot.process.log)

 	String (class in buildbot.data.types)

 	StringDownload Build Step

 	strings (buildbot.util.netstrings.NetstringParser attribute)

 	stripUrlPassword() (in module buildbot.util)

 	subscribe() (buildbot.process.log.Log method)

 	SubunitShellCommand Build Step

 	SUCCESS (in module buildbot.process.results)

 	summarySubscribe() (in module buildbot.status.buildset)

 	summaryUnsubscribe() (in module buildbot.status.buildset)

 	SVN Build Step

 	SVNCommitEmailMaildirSource Change Source

 	SVNPoller Change Source

T

 	
 	Test Build Step

 	TextLog (class in buildbot.process.log)

 	thd_postStatsValue() (buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService