

Welcome to the bugs-everywhere documentation!

Bugs Everywhere (BE) is a bugtracker built on distributed version control. It
works with Bazaar [http://bazaar.canonical.com/], Darcs [http://darcs.net/], Git [http://git-scm.com/], and Mercurial [http://mercurial.selenic.com/] at the moment, but is easily
extensible. It can also function with no VCS at all.

The idea is to package the bug information with the source code, so
that bugs can be marked “fixed” in the branches that fix them. Other
architectures—such as keeping all the bugs in their own branch—are
also possible.

Contents:

	Installing BE
	Distribution packages

	Dependencies

	Git repository

	Release tarballs

	Tutorial
	Introduction

	Installation

	Bugs

	Command-line interface

	Configuration
	Config file format and location

	Settings

	Email Interface
	Overview

	Architecture

	Creating bugs

	Commenting on bugs

	Controlling bugs

	Example emails

	Procmail rules

	Testing

	HTTP Interface

	Distributed Bugtracking
	Usage Cases

	Notes

	Power features
	Autocompletion

	XML-handling utilities

	Hacking BE
	Adding commands

	Adding user interfaces

	Testing

	Profiling

	Data Format
	Bugdir

	Bug

	Comment

	Dealing with spam
	If the offending commit is the last commit

	If the offending commit is not the last commit

	Warnings about changing history

	Producing this documentation
	Man page

Indices and tables

	Index

	Module Index

	Search Page

Installing BE

Distribution packages

Some distributions (Debian [https://packages.debian.org/stretch/bugs-everywhere] , Ubuntu [https://packages.ubuntu.com/zesty/bugs-everywhere] , others?) package an old version of BE.
If you’re running one of those distributions, you can install the package with
your regular package manager. For Debian, Ubuntu, and related distros, that’s:

$ apt-get install bugs-everywhere

While, the official packages are not based on this fork, they are compatible.

Dependencies

Not all of these dependencies are strictly required. See Minimal installs
for possible shortcuts.

	Package

	Role

	Debian [https://packages.debian.org/stretch/bugs-everywhere]

	Gentoo_

	Jinja [http://jinja.pocoo.org/]

	HTML templating

	python-jinja2

	dev-python/jinja

	CherryPy [http://cherrypy.org/]

	serve repos over HTTPS

	python-cherrypy3

	dev-python/cherrypy

	Sphinx [http://sphinx.pocoo.org/]

	see Producing this documentation

	python-sphinx

	dev-python/sphinx

	numpydoc [http://pypi.python.org/pypi/numpydoc]

	see Producing this documentation

	python-numpydoc

	dev-python/numpydoc

	Docutils [http://docutils.sourceforge.net/]

	manpage generation

	python-docutils

	dev-python/docutils

Git repository

BE is available as a Git repository:

$ git clone https://gitlab.com/bugseverywhere/bugseverywhere.git be

See the homepage [http://bugseverywhere.org/] for details. If you do branch the Git repo, you’ll
need to run:

$ make

to build some auto-generated files (e.g. libbe._version), and:

$ make install

to install BE. By default BE will install into your home directory, but you can
tweak the INSTALL_OPTIONS variable in Makefile to install to another
location. With the default installation, you may need to add ~/.local/bin/
to your PATH so that your shell can find the installed be script.

Minimal installs

By default, make builds both a man page for be and the HTML
Sphinx documentation (Producing this documentation). You can customize the
documentation targets (if, for example, you don’t want to install
Sphinx) by overriding [http://www.gnu.org/software/make/manual/html_node/Overriding.html] the DOC variable. For example, to disable
all documentation during a build/install, run:

$ make DOC= install

Note that setup.py (called during make install) will install
the man page (doc/man/be.1) if it exists, so:

$ make
$ make DOC= install

will build (first make) and install (second make) the man
page.

Also note that there is no need to edit the Makefile to change any
of its internal variables. You can override them from the command
line [http://www.gnu.org/software/make/manual/html_node/Overriding.html], as we did for DOC above.

Finally, if you want to do the absolute minimum required to install BE
locally, you can skip the Makefile entirely, and just use
setup.py directly:

$ python setup.py install

See:

$ python setup.py install --help

for a list of installation options.

Jinja is only used by the html command, so there’s no need to install Jinja
if you don’t mind avoiding that command. Similarly, CherryPy is only used for
the html and serve-* commands with the --ssl option set. The other
dependencies are only used for building these docs, so feel free to
skip them and just use the docs wherever you’re
currently reading them.

Release tarballs

For those not interested in the development version, or those who don’t want to
worry about installing Git, we’ll post release tarballs [https://github.com/kalkin/be/releases]. After you’ve
downloaded the release tarball, unpack it with:

$ tar -xzvf be-<VERSION>.tar.gz

And install it with::

$ cd be-<VERSION>
$ make install

Tutorial

Introduction

Bugs Everywhere (BE) is a bugtracker built on distributed revision
control. The idea is to package the bug information with the source
code, so that developers working on the code can make appropriate
changes to the bug repository as they go. For example, by marking a
bug as “fixed” and applying the fixing changes in the same commit.
This makes it easy to see what’s been going on in a particular branch
and helps keep the bug repository in sync with the code.

However, there are some differences compared to centralized
bugtrackers. Because bugs and comments can be created by several
users in parallel, they have globally unique IDs rather than numbers. There is also a
developer-friendly command-line interface to compliment the
user-friendly web and email interfaces.
This tutorial will focus on the command-line interface as the most
powerful, and leave the web and email interfaces to other documents.

Installation

If your distribution packages BE, it will be easiest to use their package.
For example, most Debian-based distributions support:

$ apt-get install bugs-everywhere

See the install page for more information and
alternative methods.

Bugs

If you have any problems with BE, you can look for matching bugs:

$ be --repo http://bugs.bugseverywhere.org/ list

If your bug isn’t listed, please open a new bug:

$ be --repo http://bugs.bugseverywhere.org/ new 'bug'
Created bug with ID bea/abc
$ be --repo http://bugs.bugseverywhere.org/ comment bea/def
<editor spawned for comments>

Command-line interface

Help

All of the following information elaborates on the command help text,
which is stored in the code itself, and therefore more likely to be up
to date. You can get a list of commands and topics with:

$ be help

Or see specific help on COMMAND with

$ be help COMMAND

for example:

$ be help init

will give help on the init command.

Initialization

You’re happily coding in your Bazaar [http://bazaar.canonical.com/] / Darcs [http://darcs.net/] / Git [http://git-scm.com/] / Mercurial [http://mercurial.selenic.com/] versioned
project and you discover a bug. You think, “Hmm, I’ll need a simple way to
track these things”. This is where BE comes in. One of the benefits of
distributed versioning systems is the ease of repository creation, and BE
follows this trend.
Just type:

$ be init
Using <VCS> for revision control.
BE repository initialized.

in your project’s root directory. This will create a .be
directory containing the bug repository and notify your VCS so it will
be versioned starting with your next commit. See:

$ be help init

for specific details about where the .be directory will end up
if you call it from a directory besides your project’s root.

Inside the .be directory (among other things) there will be a long
UUID [http://en.wikipedia.org/wiki/Universally_Unique_Identifier] directory. This is your bug directory. The idea is that you
could keep several bug directories in the same repository, using one
to track bugs, another to track roadmap issues, etc. See IDs for details. For BE itself, the bug directory is
bea86499-824e-4e77-b085-2d581fa9ccab, which is why all the bug and
comment IDs in this tutorial will start with bea/.

Creating bugs

Create new bugs with:

$ be new <SUMMARY>

For example:

$ be new 'Missing demuxalizer functionality'
Created bug with ID bea/28f

If you are entering a bug reported by another person, take advantage
of the --reporter option to give them credit:

$ be new --reporter 'John Doe <jdoe@example.com>' 'Missing whatsit...'
Created bug with ID bea/81a

See be help new for more details.

While the bug summary should include the appropriate keywords, it
should also be brief. Unlike other bug trackers, the bug itself cannot
contain a multi-line description. So you should probably add a comment
immediately giving a more elaborate explanation of the problem so that
the developer understands what you want and when the bug can be
considered fixed.

Commenting on bugs

Bugs are like little mailing lists, and you can comment on the bug
itself or previous comments, attach files, etc. For example:

$ be comment abc/28f "Thoughts about demuxalizers..."
Created comment with ID abc/28f/97a
$ be comment abc/def/012 "Oops, I forgot to mention..."
Created comment with ID abc/28f/e88

Usually comments will be long enough that you’ll want to compose them
in a text editor, not on the command line itself. Running be
comment without providing a COMMENT argument will try to spawn
an editor automatically (using your environment’s VISUAL or
EDITOR, see Guide to Unix, Environmental Variables [http://en.wikibooks.org/wiki/Guide_to_Unix/Environment_Variables]).

You can also pipe the comment body in on stdin, which is especially
useful for binary attachments, etc.:

$ cat screenshot.png | be comment --content-type image/png bea/28f -
Created comment with ID bea/28f/35d

It’s polite to insert binary attachments under comments that explain
the content and why you’re attaching it, so the above should have
been:

$ be comment bea/28f "Whosit dissapears when you mouse-over whatsit."
Created comment with ID bea/28f/41d
$ cat screenshot.png | be comment --content-type image/png bea/28f/41d -
Created comment with ID bea/28f/35d

For more details, see be help comment.

Showing bugs

Ok, you understand how to enter bugs, but how do you get that
information back out? If you know the ID of the item you’re
interested in (e.g. bug bea/28f), try:

$ be show bea/28f
 ID : 28fb711c-5124-4128-88fe-a88a995fc519
 Short name : bea/28f
 Severity : minor
 Status : open
 Assigned :
 Reporter :
 Creator : ...
 Created : ...
Missing demuxalizer functionality
--------- Comment ---------
Name: bea/28f/97a
From: ...
Date: ...

Thoughts about demuxalizers...
 --------- Comment ---------
 Name: bea/28f/e88
 From: ...
 Date: ...

 Thoughts about demuxalizers...
--------- Comment ---------
Name: bea/28f/41d
From: ...
Date: ...

Whosit dissapears when you mouse-over whatsit.
 --------- Comment ---------
 Name: bea/28f/35d
 From: ...
 Date: ...

 Content type image/png not printable. Try XML output instead

You can also get a single comment body, which is useful for extracting
binary attachments:

$ be show --only-raw-body bea/28f/35d > screenshot.png

There is also an XML output format, which can be useful for emailing
entries around, scripting BE, etc.:

$ be show --xml bea/35d
<?xml version="1.0" encoding="UTF-8" ?>
<be-xml>
...

Listing bugs

If you don’t know which bug you’re interested in, you can query
the whole bug directory:

$ be list
bea/28f:om: Missing demuxalizer functionality
bea/81a:om: Missing whatsit...

There are a whole slew of options for filtering the list of bugs. See
be help list for details.

Showing changes

Often you will want to see what’s going on in another dev’s branch or
remind yourself what you’ve been working on recently. All VCSs have
some sort of diff command that shows what’s changed since revision
XYZ. BE has its own command that formats the bug-repository
portion of those changes in an easy-to-understand summary format. To
compare your working tree with the last commit:

$ be diff
New bugs:
 bea/01c:om: Need command output abstraction for flexible UIs
Modified bugs:
 bea/343:om: Attach tests to bugs
 Changed bug settings:
 creator: None -> W. Trevor King <wking@drexel.edu>

Compare with a previous revision 1.1.0:

$ be diff 1.1.0
...

The format of revision names passed to diff will depend on your
VCS. For Git, look to gitrevisions [http://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html] for inspiration.

Compare your BE branch with the trunk:

$ be diff --repo http://bugs.bugseverywhere.org/

Manipulating bugs

There are several commands that allow to to set bug properties. They
are all fairly straightforward, so we will merely point them out here,
and refer you to be help COMMAND for more details.

	assign, Assign an individual or group to fix a bug

	depend, Add/remove bug dependencies

	due, Set bug due dates

	status, Change a bug’s status level

	severity, Change a bug’s severity level

	tag, Tag a bug, or search bugs for tags

	target, Assorted bug target manipulations and queries

You can also remove bugs you feel are no longer useful with
be remove, and merge duplicate bugs with be merge.

Subscriptions

Since BE bugs act as mini mailing lists, we provide be subscribe
as a way to manage change notification. You can subscribe to all
the changes with:

$ be subscribe --types all DIR

Subscribe only to bug creaton on bugseverywhere.org with:

$ be subscribe --server bugseverywhere.org --types new DIR

Subscribe to get all the details about bug bea/28f:

$ be subscribe --types new bea/28f

To unsubscribe, simply repeat the subscription command adding the
--unsubscribe option, but be aware that it may take some time for
these changes to propogate between distributed repositories. If you
don’t feel confident in your ability to filter email, it’s best to
only subscribe to the repository for which you have direct write
access.

Managing bug directories

be set lets you configure a bug directory. You can set

	active_status
The allowed active bug states and their descriptions.

	inactive_status
The allowed inactive bug states and their descriptions.

	severities
The allowed bug severities and their descriptions.

	target
The current project development target (bug UUID).

	extra_strings
Space for an array of extra strings. You usually won’t bother with
this directly.

For example, to set the current target to ‘1.2.3’:

$ be set target $(be target --resolve '1.2.3')

Import XML

For serializing bug information (e.g. to email to a mailing list), use:

$ be show --xml bea/28f > bug.xml

This information can be imported into (another) bug directory via

$ be import-xml bug.xml

Also distributed with BE are some utilities to convert mailboxes
into BE-XML (be-mail-to-xml) and convert BE-XML into mbox [http://en.wikipedia.org/wiki/Mbox]
format for reading in your mail client.

Export HTML

To create a static dump of your bug directory, use:

$ be html

This is a fairly flexible command, see be help html for details.
It works pretty well as the browsable part of a public interface using
the Email Interface for interactive access.

BE over HTTP

Besides using BE to work directly with local VCS-based repositories,
you can use:

$ be serve-storage

To serve a repository over HTTP. For example:

$ be serve-storage > server.log 2>&1 &
$ be --repo http://localhost:8000 list

Of course, be careful about serving over insecure networks, since
malicous users could fill your disk with endless bugs, etc. You can
disabled write access by using the --read-only option, which would
make serving on a public network safer.

Serving the storage interface is flexible, but it can be inefficient.
For example, a call to be list against a remote backend requires
all bug information to be transfered over the wire. As a faster
alternative, you may want to serve your repository at the command
level:

$ be serve-commands > server.log 2>&1 &
$ be --server http://localhost:8000 list

Take a look at the server logs to get a feel for the bandwidth you’re
saving! Serving commands over insecure networks is at least as
dangerous as serving storage. Take appropriate precautions for your
network.

Driving the VCS through BE

Since BE uses internal storage drivers for its various backends, it
seemed useful to provide a uniform interface to some of the common
functionality. These commands are not intended to replace the usually
much more powerful native VCS commands, but to provide an easy means
of simple VCS-agnostic scripting for BE user interfaces, etc.

Commit

Currently, we only expose be commit, which commits all currently
pending changes.

Configuration

Config file format and location

Most of the information that BE needs lives in the bug repository
itself, but there is user-specific information that does not fit into
a shared repository. This per-user configuration information is
stored in an INI-style config file [http://docs.python.org/library/configparser.html]:

[default]
user = 'John Doe <jdoe@example.com>'

The config file is located at ~/.config/bugs-everywhere by
default, but you can override the path by setting environment
variables (see path() for
details).

Settings

Currently the only information stored in the configuration file is a
user ID (see get_user_id()), as shown in
the example above. However, many version control systems allow you to
specify your name and email address, and BE will fall back to the
VCS-configured values, so you probably don’t need to set a BE-specific
configuration.

Email Interface

Overview

The interactive email interface to Bugs Everywhere (BE) attempts to
provide a Debian-bug-tracking-system-style [http://www.debian.org/Bugs] interface to a BE
repository. Users can mail in bug reports, comments, or control
requests, which will be committed to the served repository.
Developers can then pull the changes they approve of from the served
repository into their other repositories and push updates back onto
the served repository.

Architecture

In order to reduce setup costs, the entire interface can piggyback on
an existing email address, although from a security standpoint it’s
probably best to create a dedicated user. Incoming email is filtered
by procmail, with matching emails being piped into be-handle-mail
for execution.

Once be-handle-mail receives the email, the parsing method is
selected according to the subject tag that procmail used grab the
email in the first place. There are four parsing styles:

	Style

	Subject

	creating bugs

	[be-bug:submit] new bug summary

	commenting on bugs

	[be-bug:<bug-id>] commit message

	control

	[be-bug] commit message

These are analogous to submit@bugs.debian.org,
nnn@bugs.debian.org, and control@bugs.debian.org respectively.

Creating bugs

This interface creates a bug whose summary is given by the email’s
post-tag subject. The body of the email must begin with a
pseudo-header containing at least the Version field. Anything after
the pseudo-header and before a line starting with -- is, if present,
attached as the bug’s first comment.:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug:submit] Need tests for the email interface.

Version: XYZ
Severity: minor

Someone should write up a series of test emails to send into
be-handle-mail so we can test changes quickly without having to
use procmail.

--
Goofy tagline not included.

Available pseudo-headers are Version, Reporter, Assign,
Depend, Severity, Status, Tag, and Target.

Commenting on bugs

This interface appends a comment to the bug specified in the subject
tag. The the first non-multipart body is attached with the
appropriate content-type. In the case of text/plain contents,
anything following a line starting with -- is stripped.:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug:XYZ] Isolated problem in baz()

Finally tracked it down to the bar() call. Some sort of
string<->unicode conversion problem. Solution ideas?

--
Goofy tagline not included.

Controlling bugs

This interface consists of a list of allowed be commands, with one
command per line. Blank lines and lines beginning with # are
ignored, as well anything following a line starting with --. All
the listed commands are executed in order and their output returned.
The commands are split into arguments with the POSIX-compliant
shlex.split().:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug] I'll handle XYZ by release 1.2.3

assign XYZ "John Doe <jdoe@example.com>"
status XYZ assigned
severity XYZ critical
target XYZ 1.2.3

--
Goofy tagline ignored.

Example emails

Take a look at interfaces/email/interactive/examples for some
more examples.

Procmail rules

The file _procmailrc as it stands is fairly appropriate for as a
dedicated user’s ~/.procmailrc. It forwards matching mail to
be-handle-mail, which should be installed somewhere in the user’s
path. All non-matching mail is dumped into /dev/null. Everything
procmail does will be logged to ~/be-mail/procmail.log.

If you’re piggybacking the interface on top of an existing account,
you probably only need to add the be-handle-mail stanza to your
existing ~/.procmailrc, since you will still want to receive
non-bug emails.

Note that you will probably have to add a:

--repo /path/to/served/repository

option to the be-handle-mail invocation so it knows what repository to
serve.

Multiple repositories may be served by the same email address by adding
multiple be-handle-mail stanzas, each matching a different tag, for
example the [be-bug portion of the stanza could be [projectX-bug,
[projectY-bug, etc. If you change the base tag, be sure to add a:

--tag-base "projectX-bug"

or equivalent to your be-handle-mail invocation.

Testing

Send test emails in to be-handle-mail with something like:

cat examples/blank | ./be-handle-mail -o -l - -a

HTTP Interface

BE bundles Cherry-flavored BE, an interactive HTML interface
originally developed by Steve Losh.

You can run it from the BE source directory with:

$ python interfaces/web/cfbe.py PATH_TO_REPO

Eventually we’ll move it into libbe.ui so it will be installed
automatically with every BE installation.

Distributed Bugtracking

Usage Cases

Case 1: Tracking the status of bugs in remote repo branches

See the discussion in
#bea86499-824e-4e77-b085-2d581fa9ccab/12c986be-d19a-4b8b-b1b5-68248ff4d331#.
Here, it doesn’t matter whether the remote repository is a branch of
the local repository, or a completely separate project
(e.g. upstream, …). So long as the remote project provides access
via some REPO format, you can use:

$ be --repo REPO ...

to run your query, or:

$ be diff REPO

to see the changes between the local and remote repositories.

Case 2: Importing bugs from other repositories

Case 2.1: If the remote repository is a branch of the local repository:

$ <VCS> merge <REPO>

Case 2.2: If the remote repository is not a branch of the local repository
(Hypothetical command):

$ be import <REPO> <ID>

Notes

Providing public repositories

e.g. for non-dev users. These are just branches that expose a public
interface (HTML, email, …). Merge and query like any other
development branch.

Managing permissions

Many bugtrackers implement some sort of permissions system, and they
are certainly required for a central system with diverse user roles.
However DVCSs also support the “pull my changes” workflow, where
permissions are irrelevant.

Power features

BE comes with a number of additional utilities and features that may
be useful to power users. We’ll try to keep an up to date list here,
but your best bet may be poking around in the source on your own.

Autocompletion

misc/completion contains completion scripts for common shells
(if we don’t have a completion script for your favorite shell, submit
one!). Basic instructions for installing the completion file for a
given shell should be given in the completion script comments.

Packagers should install these completion scripts in their system’s
usual spot (on Gentoo, the Bash completion script should be installed
as /usr/share/bash_completion/be and Z shell completion script
should be installed as /usr/share/zsh/site-functions/_be).

XML-handling utilities

Email threads are quite similar to the bugs/issues that BE tracks.
There are a number of useful scripts in misc/xml to go back
and forth between the two formats using BE’s XML format. The commands
should be well documented. Use the usual <command> --help for
more details on a given command.

Hacking BE

Adding commands

To write a plugin, you simply create a new file in the
libbe/command/ directory. Take a look at one of the simpler
plugins (e.g. libbe.command.remove) for an example of how that
looks, and to start getting a feel for the libbe interface.

See libbe.command.base for the definition of the important
classes Option,
Argument,
Command,
InputOutput,
StorageCallbacks, and
UserInterface. You’ll be subclassing
Command for your command, but all those
classes will be important.

Command completion

BE implements a general framework to make it easy to support command
completion for arbitrary plugins. In order to support this system,
any of your completable Argument
instances (in your command’s .options or .args) should be
initialized with some valid completion_callback function. Some common
cases are defined in libbe.command.util. If you need more
flexibility, see libbe.command.list’s --sort option for an
example of extensions via libbe.command.util.Completer, or
write a custom completion function from scratch.

Adding user interfaces

Take a look at libbe.ui.command_line for an example.
Basically you’ll need to setup a
UserInterface instance for running
commands. More details to come after I write an HTML UI…

Testing

Run any tests in your module with:

be$ python test.py <python.module.name>

for example:

be$ python test.py libbe.command.merge

For a definition of “any tests”, see test.py’s
add_module_tests() function.

Note that you will need to run make before testing a clean BE
branch to auto-generate required files like libbe/_version.py.

Profiling

Find out which 20 calls take the most cumulative time (time of
execution + childrens’ times):

$ python -m cProfile -o profile be [command] [args]
$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').print_stats(20)"

If you want to find out who’s calling your expensive function
(e.g. libbe.util.subproc.invoke()), try:

$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').print_callers(20)"

You can also toss:

import sys, traceback
print >> sys.stderr, '-'*60, '\n', '\n'.join(traceback.format_stack()[-10:])

into the function itself for a depth-first caller list.

For a more top-down approach, try:

$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').print_callees(20)"

Data Format

Bugdir

	target

	The current project development target.

	severities

	The allowed bug severities and their descriptions.

	active_status

	The allowed active bug states and their descriptions.

	inactive_status

	The allowed inactive bug states and their descriptions.

	extra_strings

	Space for an array of extra strings. Useful for storing state for
functionality implemented purely in becommands/<some_function>.py.

Bug

	severity

	A measure of the bug’s importance

	status

	The bug’s current status

	creator

	The user who entered the bug into the system

	reporter

	The user who reported the bug

	time

	An RFC 2822 timestamp for bug creation

	extra_strings

	Space for an array of extra strings. Useful for storing state for
functionality implemented purely in becommands/<some_function>.py.

	comment_root

	The trunk of the comment tree. We use a dummy root comment by default,
because there can be several comment threads rooted on the same parent bug.
To simplify comment interaction, we condense these threads into a single
thread with a Comment dummy root.

Comment

	Alt-Id

	Alternate ID for linking imported comments. Internally comments are linked
(via In-reply-to) to the parent’s UUID. However, these UUIDs are generated
internally, so Alt-id is provided as a user-controlled linking target.

	Author

	The author of the comment

	In-reply-to

	UUID for parent comment or bug

	Content-type

	Mime type for comment body

	Date

	An RFC 2822 timestamp for comment creation

	body

	The meat of the comment

	extra_strings

	Space for an array of extra strings. Useful for storing state for
functionality implemented purely in becommands/<some_function>.py.

vim: ft=rst

Dealing with spam

In the case that some spam or inappropriate comment makes its way
through you interface, you can (sometimes) remove the offending commit
XYZ.

If the offending commit is the last commit

	bzr

	bzr uncommit && bzr revert

	darcs

	darcs obliterate –last=1

	git

	git reset –hard HEAD^

	hg

	hg rollback && hg revert

If the offending commit is not the last commit

	bzr 1

	bzr rebase -r <XYZ+1>..-1 –onto before:XYZ .

	darcs

	darcs obliterate –matches ‘name XYZ’

	git

	git rebase –onto XYZ~1 XYZ

	hg 2

	

	1

	Requires the `bzr-rebase plugin`_. Note, you have to
increment XYZ by hand for <XYZ+1>, because bzr does not
support after:XYZ.

	2

	From Mercurial, The Definitive Guide [http://hgbook.red-bean.com/read/finding-and-fixing-mistakes.html#id394667]:

“Mercurial also does not provide a way to make a file or
changeset completely disappear from history, because there is no
way to enforce its disappearance”

Warnings about changing history

Note that all of these change the repo history , so only do this on
your interface-specific repo before it interacts with any other repo.
Otherwise, you’ll have to survive by cherry-picking only the good
commits.

Producing this documentation

This documentation is written in reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html], and produced
using Sphinx [http://sphinx.pocoo.org/] and the numpydoc [http://pypi.python.org/pypi/numpydoc] extension. The documentation source
should be fairly readable without processing, but you can compile the
documentation, you’ll need to install Sphinx and numpydoc:

$ easy_install Sphinx
$ easy_install numpydoc

See the reStructuredText quick reference and the NumPy/SciPy
documentation guide [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] for an introduction to the documentation
syntax.

Man page

The man-page source be.1.txt is writen in reStructuredText.
The Makefile converts it to roff(7) format using
Docutils [http://docutils.sourceforge.net/] rst2man.

The man page should conform to Debian policy [http://www.debian.org/doc/debian-policy/ch-docs.html].

Index

 jinja2
numpydoc

be

distributed bug tracking from the command line

	Author

	wking@drexel.edu

	Date

	2012-02-25

	Copyright

	Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU General Public License,
Version 2 or (at your option) any later version published by the
Free Software Foundation.

	Version

	0.3

	Manual section

	1

	Manual group

	distributed bug tracker

SYNOPSIS

be [options] [command] [command_options] [commands_args…]

DESCRIPTION

be allows commandline interaction with the Bugs Everywhere
database in a project tree.

To avoid bit-rotted documentation, we do not describe all available
commands and options in this manpage. Run be help for accurate
documentation. See the Bugs Everywhere Manual
(http://docs.bugseverywhere.org/) for more detailed documentation and
tutorials.

COMMANDS

	help

	Print help for be and a list of all available commands.

Run be help for a complete list.

EXAMPLES

	be help

	Show general help and a list of all commands.

	be help init

	Show help for the init command.

	be init

	Initialize a new Bugs Everywhere database.

BUGS

The Bugs Everywhere uses Bugs Everywhere to track its bugs. You can
submit bugs directly using be:

$ be --repo http://bugs.bugseverywhere.org/ new "The demuxulizer is broken"
Created bug with ID bea/abc
$ be --repo http://bugs.bugseverywhere.org/ comment bea/abc
<Describe bug>
$ be --repo http://bugs.bugseverywhere.org/ commit "Reported bug in demuxulizer"

Or send an email to the mailing list at be-devel@bugseverywhere.org [http://void.printf.net/cgi-bin/mailman/listinfo/be-devel].

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to the bugs-everywhere documentation!

 		
 Installing BE

 		
 Distribution packages

 		
 Dependencies

 		
 Git repository

 		
 Minimal installs

 		
 Release tarballs

 		
 Tutorial

 		
 Introduction

 		
 Installation

 		
 Bugs

 		
 Command-line interface

 		
 Help

 		
 Initialization

 		
 Creating bugs

 		
 Commenting on bugs

 		
 Showing bugs

 		
 Listing bugs

 		
 Showing changes

 		
 Manipulating bugs

 		
 Subscriptions

 		
 Managing bug directories

 		
 Import XML

 		
 Export HTML

 		
 BE over HTTP

 		
 Driving the VCS through BE

 		
 Configuration

 		
 Config file format and location

 		
 Settings

 		
 Email Interface

 		
 Overview

 		
 Architecture

 		
 Creating bugs

 		
 Commenting on bugs

 		
 Controlling bugs

 		
 Example emails

 		
 Procmail rules

 		
 Testing

 		
 HTTP Interface

 		
 Distributed Bugtracking

 		
 Usage Cases

 		
 Case 1: Tracking the status of bugs in remote repo branches

 		
 Case 2: Importing bugs from other repositories

 		
 Notes

 		
 Providing public repositories

 		
 Managing permissions

 		
 Power features

 		
 Autocompletion

 		
 XML-handling utilities

 		
 Hacking BE

 		
 Adding commands

 		
 Command completion

 		
 Adding user interfaces

 		
 Testing

 		
 Profiling

 		
 Data Format

 		
 Bugdir

 		
 Bug

 		
 Comment

 		
 Dealing with spam

 		
 If the offending commit is the last commit

 		
 If the offending commit is not the last commit

 		
 Warnings about changing history

 		
 Producing this documentation

 		
 Man page

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

