

beets: the music geek’s media organizer

Welcome to the documentation for beets [https://beets.io/], the media library management system
for obsessive-compulsive music geeks.

If you’re new to beets, begin with the Getting Started guide. That guide
walks you through installing beets, setting it up how you like it, and starting
to build your music library.

Then you can get a more detailed look at beets’ features in the
Command-Line Interface and Configuration references. You might also
be interested in exploring the plugins.

If you still need help, your can drop by the #beets IRC channel on
Freenode, drop by the discussion board [https://discourse.beets.io], send email to the mailing list [https://groups.google.com/group/beets-users],
or file a bug [https://github.com/beetbox/beets/issues] in the issue tracker. Please let us know where you think this
documentation can be improved.

Contents

	Guides
	Getting Started

	Using the Auto-Tagger

	Advanced Awesomeness

	Reference
	Command-Line Interface

	Configuration

	Path Formats

	Queries

	Plugins
	Using Plugins

	Autotagger Extensions

	Metadata

	Path Formats

	Interoperability

	Miscellaneous

	Other Plugins

	FAQ
	How do I…

	Why does beets…

	For Developers
	Writing Plugins

	Library Database API

	Music Importer

	Providing a CLI

	Changelog

Guides

This section contains a couple of walkthroughs that will help you get familiar
with beets. If you’re new to beets, you’ll want to begin with the Getting Started
guide.

	Getting Started

	Using the Auto-Tagger

	Advanced Awesomeness

Getting Started

Welcome to beets [https://beets.io/]! This guide will help you begin using it to make your music
collection better.

Installing

You will need Python.
Beets works on Python 2.7 [https://www.python.org/download/] and Python 3.4 or later.

	macOS v10.7 (Lion) and later include Python 2.7 out of the box.
You can opt for Python 3 by installing it via Homebrew [https://brew.sh]:
brew install python3

	On Debian or Ubuntu, depending on the version, beets is available as an
official package (Debian details [https://tracker.debian.org/pkg/beets], Ubuntu details [https://launchpad.net/ubuntu/+source/beets]), so try typing:
apt-get install beets. But the version in the repositories might lag
behind, so make sure you read the right version of these docs. If you want
the latest version, you can get everything you need to install with pip
as described below by running:
apt-get install python-dev python-pip

	On Arch Linux, beets is in [community] [https://www.archlinux.org/packages/community/any/beets/], so just run pacman -S
beets. (There’s also a bleeding-edge dev package [https://aur.archlinux.org/packages/beets-git/] in the AUR, which will
probably set your computer on fire.)

	For Gentoo Linux, beets is in Portage as media-sound/beets. Just run
emerge beets to install. There are several USE flags available for
optional plugin dependencies.

	On FreeBSD, there’s a beets port [http://portsmon.freebsd.org/portoverview.py?category=audio&portname=beets] at audio/beets.

	On OpenBSD, there’s a beets port [http://openports.se/audio/beets] can be installed with pkg_add beets.

	For Slackware, there’s a SlackBuild [https://slackbuilds.org/repository/14.2/multimedia/beets/] available.

	On Fedora 22 or later, there is a DNF package [https://apps.fedoraproject.org/packages/beets]:

$ sudo dnf install beets beets-plugins beets-doc

	On Solus, run eopkg install beets.

	On NixOS, there’s a package [https://github.com/NixOS/nixpkgs/tree/master/pkgs/tools/audio/beets] you can install with nix-env -i beets.

If you have pip [https://pip.pypa.io], just say pip install beets (or pip install --user
beets if you run into permissions problems).

To install without pip, download beets from its PyPI page [https://pypi.org/project/beets#downloads] and run python
setup.py install in the directory therein.

The best way to upgrade beets to a new version is by running pip install -U
beets. You may want to follow @b33ts [https://twitter.com/b33ts] on Twitter to hear about progress on
new versions.

Installing on macOS 10.11 and Higher

Starting with version 10.11 (El Capitan), macOS has a new security feature
called System Integrity Protection [https://support.apple.com/en-us/HT204899] (SIP) that prevents you from modifying
some parts of the system. This means that some pip commands may fail with
a permissions error. (You probably won’t run into this if you’ve installed
Python yourself with Homebrew [https://brew.sh] or otherwise.)

If this happens, you can install beets for the current user only by typing
pip install --user beets. If you do that, you might want to add
~/Library/Python/3.6/bin to your $PATH.

Installing on Windows

Installing beets on Windows can be tricky. Following these steps might help you
get it right:

	If you don’t have it, install Python [https://python.org/download/] (you want Python 3.6). The
installer should give you the option to “add Python to PATH.” Check this
box. If you do that, you can skip the next step.

	If you haven’t done so already, set your PATH environment variable to
include Python and its scripts. To do so, you have to get the “Properties”
window for “My Computer”, then choose the “Advanced” tab, then hit the
“Environment Variables” button, and then look for the PATH variable in
the table. Add the following to the end of the variable’s value:
;C:\Python36;C:\Python36\Scripts. You may need to adjust these paths to
point to your Python installation.

	Now install beets by running: pip install beets

	You’re all set! Type beet at the command prompt to make sure everything’s
in order.

Windows users may also want to install a context menu item for importing files
into beets. Download the beets.reg [https://github.com/beetbox/beets/blob/master/extra/beets.reg] file and open it in a text file to make
sure the paths to Python match your system. Then double-click the file add the
necessary keys to your registry. You can then right-click a directory and
choose “Import with beets”.

Because I don’t use Windows myself, I may have missed something. If you have
trouble or you have more detail to contribute here, please direct it to
the mailing list [https://groups.google.com/group/beets-users].

Configuring

You’ll want to set a few basic options before you start using beets. The
configuration is stored in a text file. You
can show its location by running beet config -p, though it may not
exist yet. Run beet config -e to edit the configuration in your
favorite text editor. The file will start out empty, but here’s good
place to start:

directory: ~/music
library: ~/data/musiclibrary.db

Change that first path to a directory where you’d like to keep your music. Then,
for library, choose a good place to keep a database file that keeps an index
of your music. (The config’s format is YAML [https://yaml.org/]. You’ll want to configure your
text editor to use spaces, not real tabs, for indentation. Also, ~ means
your home directory in these paths, even on Windows.)

The default configuration assumes you want to start a new organized music folder
(that directory above) and that you’ll copy cleaned-up music into that
empty folder using beets’ import command (see below). But you can configure
beets to behave many other ways:

	Start with a new empty directory, but move new music in instead of copying
it (saving disk space). Put this in your config file:

import:
 move: yes

	Keep your current directory structure; importing should never move or copy
files but instead just correct the tags on music. Put the line copy: no
under the import: heading in your config file to disable any copying or
renaming. Make sure to point directory at the place where your music is
currently stored.

	Keep your current directory structure and do not correct files’ tags: leave
files completely unmodified on your disk. (Corrected tags will still be stored
in beets’ database, and you can use them to do renaming or tag changes later.)
Put this in your config file:

import:
 copy: no
 write: no

to disable renaming and tag-writing.

There are approximately six million other configuration options you can set
here, including the directory and file naming scheme. See
Configuration for a full reference.

Importing Your Library

The next step is to import your music files into the beets library database.
Because this can involve modifying files and moving them around, data loss is
always a possibility, so now would be a good time to make sure you have a
recent backup of all your music. We’ll wait.

There are two good ways to bring your existing library into beets. You can
either: (a) quickly bring all your files with all their current metadata into
beets’ database, or (b) use beets’ highly-refined autotagger to find canonical
metadata for every album you import. Option (a) is really fast, but option (b)
makes sure all your songs’ tags are exactly right from the get-go. The point
about speed bears repeating: using the autotagger on a large library can take a
very long time, and it’s an interactive process. So set aside a good chunk of
time if you’re going to go that route. For more on the interactive
tagging process, see Using the Auto-Tagger.

If you’ve got time and want to tag all your music right once and for all, do
this:

$ beet import /path/to/my/music

(Note that by default, this command will copy music into the directory you
specified above. If you want to use your current directory structure, set the
import.copy config option.) To take the fast,
un-autotagged path, just say:

$ beet import -A /my/huge/mp3/library

Note that you just need to add -A for “don’t autotag”.

Adding More Music

If you’ve ripped or… otherwise obtained some new music, you can add it with
the beet import command, the same way you imported your library. Like so:

$ beet import ~/some_great_album

This will attempt to autotag the new album (interactively) and add it to your
library. There are, of course, more options for this command—just type beet
help import to see what’s available.

Seeing Your Music

If you want to query your music library, the beet list (shortened to beet
ls) command is for you. You give it a query string,
which is formatted something like a Google search, and it gives you a list of
songs. Thus:

$ beet ls the magnetic fields
The Magnetic Fields - Distortion - Three-Way
The Magnetic Fields - Distortion - California Girls
The Magnetic Fields - Distortion - Old Fools
$ beet ls hissing gronlandic
of Montreal - Hissing Fauna, Are You the Destroyer? - Gronlandic Edit
$ beet ls bird
The Knife - The Knife - Bird
The Mae Shi - Terrorbird - Revelation Six
$ beet ls album:bird
The Mae Shi - Terrorbird - Revelation Six

By default, a search term will match any of a handful of common
attributes of songs.
(They’re
also implicitly joined by ANDs: a track must match all criteria in order to
match the query.) To narrow a search term to a particular metadata field, just
put the field before the term, separated by a : character. So album:bird
only looks for bird in the “album” field of your songs. (Need to know more?
Queries will answer all your questions.)

The beet list command also has an -a option, which searches for albums instead of songs:

$ beet ls -a forever
Bon Iver - For Emma, Forever Ago
Freezepop - Freezepop Forever

There’s also an -f option (for format) that lets you specify what gets displayed in the results of a search:

$ beet ls -a forever -f "[$format] $album ($year) - $artist - $title"
[MP3] For Emma, Forever Ago (2009) - Bon Iver - Flume
[AAC] Freezepop Forever (2011) - Freezepop - Harebrained Scheme

In the format option, field references like $format and $year are filled
in with data from each result. You can see a full list of available fields by
running beet fields.

Beets also has a stats command, just in case you want to see how much music
you have:

$ beet stats
Tracks: 13019
Total time: 4.9 weeks
Total size: 71.1 GB
Artists: 548
Albums: 1094

Keep Playing

This is only the beginning of your long and prosperous journey with beets. To
keep learning, take a look at Advanced Awesomeness for a sampling of what else
is possible. You’ll also want to glance over the Command-Line Interface page
for a more detailed description of all of beets’ functionality. (Like
deleting music! That’s important.)

Also, check out beets’ plugins. The
real power of beets is in its extensibility—with plugins, beets can do almost
anything for your music collection.

You can always get help using the beet help command. The plain beet help
command lists all the available commands; then, for example, beet help
import gives more specific help about the import command.

Please let me know what you think of beets via the discussion board [https://discourse.beets.io] or
Twitter [https://twitter.com/b33ts].

Using the Auto-Tagger

Beets’ automatic metadata correcter is sophisticated but complicated and
cryptic. This is a guide to help you through its myriad inputs and options.

An Apology and a Brief Interlude

I would like to sincerely apologize that the autotagger in beets is so fussy. It
asks you a lot of complicated questions, insecurely asking that you verify
nearly every assumption it makes. This means importing and correcting the tags
for a large library can be an endless, tedious process. I’m sorry for this.

Maybe it will help to think of it as a tradeoff. By carefully examining every
album you own, you get to become more familiar with your library, its extent,
its variation, and its quirks. People used to spend hours lovingly sorting and
resorting their shelves of LPs. In the iTunes age, many of us toss our music
into a heap and forget about it. This is great for some people. But there’s
value in intimate, complete familiarity with your collection. So instead of a
chore, try thinking of correcting tags as quality time with your music
collection. That’s what I do.

One practical piece of advice: because beets’ importer runs in multiple threads,
it queues up work in the background while it’s waiting for you to respond. So if
you find yourself waiting for beets for a few seconds between every question it
asks you, try walking away from the computer for a while, making some tea, and
coming back. Beets will have a chance to catch up with you and will ask you
questions much more quickly.

Back to the guide.

Overview

Beets’ tagger is invoked using the beet import command. Point it at a
directory and it imports the files into your library, tagging them as it goes
(unless you pass --noautotag, of course). There are several assumptions
beets currently makes about the music you import. In time, we’d like to remove
all of these limitations.

	Your music should be organized by album into directories. That is, the tagger
assumes that each album is in a single directory. These directories can be
arbitrarily deep (like music/2010/hiphop/seattle/freshespresso/glamour),
but any directory with music files in it is interpreted as a separate album.

There are, however, a couple of exceptions to this rule:

First, directories that look like separate parts of a multi-disc album are
tagged together as a single release. If two adjacent albums have a common
prefix, followed by “disc,” “disk,” or “CD” and then a number, they are
tagged together.

Second, if you have jumbled directories containing more than one album, you
can ask beets to split them apart for you based on their metadata. Use
either the --group-albums command-line flag or the G interactive
option described below.

	The music may have bad tags, but it’s not completely untagged. This is
because beets by default infers tags based on existing metadata. But this is
not a hard and fast rule—there are a few ways to tag metadata-poor music:

	You can use the E or I options described below to search in
MusicBrainz for a specific album or song.

	The Acoustid plugin extends the autotagger to
use acoustic fingerprinting to find information for arbitrary audio.
Install that plugin if you’re willing to spend a little more CPU power
to get tags for unidentified albums. (But be aware that it does slow
down the process.)

	The FromFilename plugin adds the ability
to guess tags from the filenames. Use this plugin if your tracks have
useful names (like “03 Call Me Maybe.mp3”) but their tags don’t reflect
that.

	Currently, MP3, AAC, FLAC, ALAC, Ogg Vorbis, Monkey’s Audio, WavPack,
Musepack, Windows Media, Opus, and AIFF files are supported. (Do you use
some other format? Please file a feature request [https://github.com/beetbox/beets/issues/new]!)

Now that that’s out of the way, let’s tag some music.

Options

To import music, just say beet import MUSICDIR. There are, of course, a few
command-line options you should know:

	beet import -A: don’t try to autotag anything; just import files (this
goes much faster than with autotagging enabled)

	beet import -W: when autotagging, don’t write new tags to the files
themselves (just keep the new metadata in beets’ database)

	beet import -C: don’t copy imported files to your music directory; leave
them where they are

	beet import -m: move imported files to your music directory (overrides
the -c option)

	beet import -l LOGFILE: write a message to LOGFILE every time you skip
an album or choose to take its tags “as-is” (see below) or the album is
skipped as a duplicate; this lets you come back later and reexamine albums
that weren’t tagged successfully

	beet import -q: quiet mode. Never prompt for input and, instead,
conservatively skip any albums that need your opinion. The -ql combination
is recommended.

	beet import -t: timid mode, which is sort of the opposite of “quiet.” The
importer will ask your permission for everything it does, confirming even very
good matches with a prompt.

	beet import -p: automatically resume an interrupted import. The importer
keeps track of imports that don’t finish completely (either due to a crash or
because you stop them halfway through) and, by default, prompts you to decide
whether to resume them. The -p flag automatically says “yes” to this
question. Relatedly, -P flag automatically says “no.”

	beet import -s: run in singleton mode, tagging individual tracks instead
of whole albums at a time. See the “as Tracks” choice below. This means you
can use beet import -AC to quickly add a bunch of files to your library
without doing anything to them.

	beet import -g: assume there are multiple albums contained in each
directory. The tracks contained a directory are grouped by album artist and
album name and you will be asked to import each of these groups separately.
See the “Group albums” choice below.

Similarity

So you import an album into your beets library. It goes like this:

$ beet imp witchinghour
Tagging:
 Ladytron - Witching Hour
(Similarity: 98.4%)
* Last One Standing -> The Last One Standing
* Beauty -> Beauty*2
* White Light Generation -> Whitelightgenerator
* All the Way -> All the Way...

Here, beets gives you a preview of the album match it has found. It shows you
which track titles will be changed if the match is applied. In this case, beets
has found a match and thinks it’s a good enough match to proceed without asking
your permission. It has reported the similarity for the match it’s found.
Similarity is a measure of how well-matched beets thinks a tagging option is.
100% similarity means a perfect match 0% indicates a truly horrible match.

In this case, beets has proceeded automatically because it found an option with
very high similarity (98.4%). But, as you’ll notice, if the similarity isn’t
quite so high, beets will ask you to confirm changes. This is because beets
can’t be very confident about more dissimilar matches, and you (as a human) are
better at making the call than a computer. So it occasionally asks for help.

Choices

When beets needs your input about a match, it says something like this:

Tagging:
 Beirut - Lon Gisland
(Similarity: 94.4%)
* Scenic World (Second Version) -> Scenic World
[A]pply, More candidates, Skip, Use as-is, as Tracks, Enter search, enter Id, or aBort?

When beets asks you this question, it wants you to enter one of the capital
letters: A, M, S, U, T, G, E, I or B. That is, you can choose one of the
following:

	A: Apply the suggested changes shown and move on.

	M: Show more options. (See the Candidates section, below.)

	S: Skip this album entirely and move on to the next one.

	U: Import the album without changing any tags. This is a good option for
albums that aren’t in the MusicBrainz database, like your friend’s operatic
faux-goth solo record that’s only on two CD-Rs in the universe.

	T: Import the directory as singleton tracks, not as an album. Choose this
if the tracks don’t form a real release—you just have one or more loner
tracks that aren’t a full album. This will temporarily flip the tagger into
singleton mode, which attempts to match each track individually.

	G: Group tracks in this directory by album artist and album and import
groups as albums. If the album artist for a track is not set then the artist
is used to group that track. For each group importing proceeds as for
directories. This is helpful if a directory contains multiple albums.

	E: Enter an artist and album to use as a search in the database. Use this
option if beets hasn’t found any good options because the album is mistagged
or untagged.

	I: Enter a metadata backend ID to use as search in the database. Use this
option to specify a backend entity (for example, a MusicBrainz release or
recording) directly, by pasting its ID or the full URL. You can also specify
several IDs by separating them by a space.

	B: Cancel this import task altogether. No further albums will be tagged;
beets shuts down immediately. The next time you attempt to import the same
directory, though, beets will ask you if you want to resume tagging where you
left off.

Note that the option with [B]rackets is the default—so if you want to
apply the changes, you can just hit return without entering anything.

Candidates

If you choose the M option, or if beets isn’t very confident about any of the
choices it found, it will present you with a list of choices (called
candidates), like so:

Finding tags for "Panther - Panther".
Candidates:
1. Panther - Yourself (66.8%)
2. Tav Falco's Panther Burns - Return of the Blue Panther (30.4%)
selection (default 1), Skip, Use as-is, or Enter search, or aBort?

Here, you have many of the same options as before, but you can also enter a
number to choose one of the options that beets has found. Don’t worry about
guessing—beets will show you the proposed changes and ask you to confirm
them, just like the earlier example. As the prompt suggests, you can just hit
return to select the first candidate.

Duplicates

If beets finds an album or item in your library that seems to be the same as the
one you’re importing, you may see a prompt like this:

This album is already in the library!
[S]kip new, Keep both, Remove old, Merge all?

Beets wants to keep you safe from duplicates, which can be a real pain, so you
have four choices in this situation. You can skip importing the new music,
choosing to keep the stuff you already have in your library; you can keep both
the old and the new music; you can remove the existing music and choose the
new stuff; or you can merge all the new and old tracks into a single album.
If you choose that “remove” option, any duplicates will be
removed from your library database—and, if the corresponding files are located
inside of your beets library directory, the files themselves will be deleted as
well.

If you choose “merge”, beets will try re-importing the existing and new tracks
as one bundle together.
This is particularly helpful when you have an album that’s missing some tracks
and then want to import the remaining songs.
The importer will ask you the same questions as it would if you were importing
all tracks at once.

If you choose to keep two identically-named albums, beets can avoid storing both
in the same directory. See Album Disambiguation for details.

Fingerprinting

You may have noticed by now that beets’ autotagger works pretty well for most
files, but can get confused when files don’t have any metadata (or have wildly
incorrect metadata). In this case, you need acoustic fingerprinting, a
technology that identifies songs from the audio itself. With fingerprinting,
beets can autotag files that have very bad or missing tags. The “chroma”
plugin, distributed with beets, uses the Chromaprint [https://acoustid.org/chromaprint] open-source fingerprinting technology, but it’s disabled by default. That’s because
it’s sort of tricky to install. See the Chromaprint/Acoustid Plugin page for a guide
to getting it set up.

Before you jump into acoustic fingerprinting with both feet, though, give beets
a try without it. You may be surprised at how well metadata-based matching
works.

Album Art, Lyrics, Genres and Such

Aside from the basic stuff, beets can optionally fetch more specialized
metadata. As a rule, plugins are responsible for getting information that
doesn’t come directly from the MusicBrainz database. This includes album
cover art, song lyrics, and
musical genres. Check out the list of plugins to pick and choose the data you want.

Missing Albums?

If you’re having trouble tagging a particular album with beets, check to make
sure the album is present in the MusicBrainz database [https://musicbrainz.org/]. You can search on
their site to make sure it’s cataloged there. If not, anyone can edit
MusicBrainz—so consider adding the data yourself.

If you think beets is ignoring an album that’s listed in MusicBrainz, please
file a bug report [https://github.com/beetbox/beets/issues].

I Hope That Makes Sense

If we haven’t made the process clear, please post on the discussion
board [https://discourse.beets.io] and we’ll try to improve this guide.

Advanced Awesomeness

So you have beets up and running and you’ve started importing your
music. There’s a lot more that beets can do now that it has
cataloged your collection. Here’s a few features to get you started.

Most of these tips involve plugins and fiddling with
beets’ configuration. So use your favorite text
editor create a config file before you continue.

Fetch album art, genres, and lyrics

Beets can help you fill in more than just the basic taxonomy metadata that
comes from MusicBrainz. Plugins can provide album art, lyrics, and
genres from databases around the Web.

If you want beets to get any of this data automatically during the import
process, just enable any of the three relevant plugins (see
Plugins). For example, put this line in your config file to enable all three:

plugins: fetchart lyrics lastgenre

Each plugin also has a command you can run to fetch data manually. For
example, if you want to get lyrics for all the Beatles tracks in your
collection, just type beet lyrics beatles after enabling the plugin.

Read more about using each of these plugins:

	FetchArt Plugin (and its accompanying EmbedArt Plugin)

	Lyrics Plugin

	LastGenre Plugin

Customize your file and folder names

Beets uses an extremely flexible template system to name the folders and files
that organize your music in your filesystem. Take a look at
Path Format Configuration for the basics: use fields like $year and
$title to build up a naming scheme. But if you need more flexibility,
there are two features you need to know about:

	Template functions are simple expressions you
can use in your path formats to add logic to your names. For example, you
can get an artist’s first initial using %upper{%left{$albumartist,1}}.

	If you need more flexibility, the Inline Plugin lets you write
snippets of Python code that generate parts of your filenames. The
equivalent code for getting an artist initial with the inline plugin looks
like initial: albumartist[0].upper().

If you already have music in your library and want to update their names
according to a new scheme, just run the move command to rename
everything.

Stream your music to another computer

Sometimes it can be really convenient to store your music on one machine and
play it on another. For example, I like to keep my music on a server at home
but play it at work (without copying my whole library locally). The
Web Plugin makes streaming your music easy—it’s sort of like having
your own personal Spotify.

First, enable the web plugin (see Plugins). Run the server by
typing beet web and head to http://localhost:8337 in a browser. You can
browse your collection with queries and, if your browser supports it, play
music using HTML5 audio.

Transcode music files for media players

Do you ever find yourself transcoding high-quality rips to a lower-bitrate,
lossy format for your phone or music player? Beets can help with that.

You’ll first need to install ffmpeg [https://www.ffmpeg.org]. Then, enable beets’
Convert Plugin. Set a destination directory in your
config file like so:

convert:
 dest: ~/converted_music

Then, use the command beet convert QUERY to transcode everything matching
the query and drop the resulting files in that directory, named according to
your path formats. For example, beet convert long winters will move over
everything by the Long Winters for listening on the go.

The plugin has many more dials you can fiddle with to get your conversions how
you like them. Check out its documentation.

Store any data you like

The beets database keeps track of a long list of built-in fields, but you’re not limited to just that list. Say, for example,
that you like to categorize your music by the setting where it should be
played. You can invent a new context attribute to store this. Set the field
using the modify command:

beet modify context=party artist:'beastie boys'

By default beets will show you the changes that are about to be applied and ask
if you really want to apply them to all, some or none of the items or albums.
You can type y for “yes”, n for “no”, or s for “select”. If you choose the latter,
the command will prompt you for each individual matching item or album.

Then query your music just as you would with any
other field:

beet ls context:mope

You can even use these fields in your filenames (see
Path Format Configuration).

And, unlike built-in fields, such fields can be removed:

beet modify context! artist:'beastie boys'

Read more than you ever wanted to know about the flexible attributes
feature on the beets blog [https://beets.io/blog/flexattr.html].

Choose a path style manually for some music

Sometimes, you need to categorize some songs differently in your file system.
For example, you might want to group together all the music you don’t really
like but keep around to play for friends and family. This is, of course,
impossible to determine automatically using metadata from MusicBrainz.

Instead, use a flexible attribute (see above) to store a flag on the music you
want to categorize, like so:

beet modify bad=1 christmas

Then, you can query on this field in your path formats to sort this music
differently. Put something like this in your configuration file:

paths:
 bad:1: Bad/$artist/$title

Used together, flexible attributes and path format conditions let you sort
your music by any criteria you can imagine.

Automatically add new music to your library

As a command-line tool, beets is perfect for automated operation via a cron job
or the like. To use it this way, you might want to use these options in your
config file:

import:
 incremental: yes
 quiet: yes
 log: /path/to/log.txt

The incremental option will skip importing any directories that have
been imported in the past.
quiet avoids asking you any questions (since this will be run
automatically, no input is possible).
You might also want to use the quiet_fallback options to configure
what should happen when no near-perfect match is found – this option depends
on your level of paranoia.
Finally, log will make beets record its decisions so you can come
back later and see what you need to handle manually.

The last step is to set up cron or some other automation system to run
beet import /path/to/incoming/music.

Useful reports

Since beets has a quite powerful query tool, this list contains some useful and
powerful queries to run on your library.

	See a list of all albums which have files which are 128 bit rate:

beet list bitrate:128000

	See a list of all albums with the tracks listed in order of bit rate:

beet ls -f '$bitrate $artist - $title' bitrate+

	See a list of albums and their formats:

beet ls -f '$albumartist $album $format' | sort | uniq

Note that beet ls --album -f '... $format' doesn’t do what you want,
because format is an item-level field, not an album-level one.
If an album’s tracks exist in multiple formats, the album will appear in the
list once for each format.

Reference

This section contains reference materials for various parts of beets. To get
started with beets as a new user, though, you may want to read the
Getting Started guide first.

	Command-Line Interface
	Commands

	Global Flags

	Shell Completion

	Configuration
	Global Options

	UI Options

	Importer Options

	MusicBrainz Options

	Autotagger Matching Options

	Path Format Configuration

	Configuration Location

	Example

	Path Formats
	A Note About Artists

	Template Functions

	Album Disambiguation

	Syntax Details

	Available Values

	Template functions and values provided by plugins

	Queries
	Keyword

	Combining Keywords

	Specific Fields

	Phrases

	Regular Expressions

	Numeric Range Queries

	Date and Date Range Queries

	Query Term Negation

	Path Queries

	Sort Order

Command-Line Interface

beet is the command-line interface to beets.

You invoke beets by specifying a command, like so:

beet COMMAND [ARGS...]

The rest of this document describes the available
commands. If you ever need a quick list of what’s available, just
type beet help or beet help COMMAND for help with a specific
command.

Beets also offers shell completion. For bash, see the completion
command; for zsh, see the accompanying completion script [https://github.com/beetbox/beets/blob/master/extra/_beet] for the
beet command.

Commands

Here are the built-in commands available in beets:

	import

	list

	remove

	modify

	move

	update

	write

	stats

	fields

	config

Also be sure to see the global flags.

import

beet import [-CWAPRqst] [-l LOGPATH] PATH...
beet import [options] -L QUERY

Add music to your library, attempting to get correct tags for it from
MusicBrainz.

Point the command at some music: directories, single files, or
compressed archives. The music will be copied to a configurable
directory structure and added to a library database. The command is
interactive and will try to get you to verify MusicBrainz tags that it
thinks are suspect. See the autotagging guide
for detail on how to use the interactive tag-correction flow.

Directories passed to the import command can contain either a single
album or many, in which case the leaf directories will be considered
albums (the latter case is true of typical Artist/Album organizations
and many people’s “downloads” folders). The path can also be a single
song or an archive. Beets supports zip and tar archives out of the
box. To extract rar files, install the rarfile [https://pypi.python.org/pypi/rarfile/2.2] package and the
unrar command.

Optional command flags:

	By default, the command copies files your the library directory and
updates the ID3 tags on your music. In order to move the files, instead of
copying, use the -m (move) option. If you’d like to leave your music
files untouched, try the -C (don’t copy) and -W (don’t write tags)
options. You can also disable this behavior by default in the
configuration file (below).

	Also, you can disable the autotagging behavior entirely using -A
(don’t autotag)—then your music will be imported with its existing
metadata.

	During a long tagging import, it can be useful to keep track of albums
that weren’t tagged successfully—either because they’re not in the
MusicBrainz database or because something’s wrong with the files. Use the
-l option to specify a filename to log every time you skip an album
or import it “as-is” or an album gets skipped as a duplicate.

	Relatedly, the -q (quiet) option can help with large imports by
autotagging without ever bothering to ask for user input. Whenever the
normal autotagger mode would ask for confirmation, the quiet mode
pessimistically skips the album. The quiet mode also disables the tagger’s
ability to resume interrupted imports.

	Speaking of resuming interrupted imports, the tagger will prompt you if it
seems like the last import of the directory was interrupted (by you or by
a crash). If you want to skip this prompt, you can say “yes” automatically
by providing -p or “no” using -P. The resuming feature can be
disabled by default using a configuration option (see below).

	If you want to import only the new stuff from a directory, use the
-i
option to run an incremental import. With this flag, beets will keep
track of every directory it ever imports and avoid importing them again.
This is useful if you have an “incoming” directory that you periodically
add things to.
To get this to work correctly, you’ll need to use an incremental import every
time you run an import on the directory in question—including the first
time, when no subdirectories will be skipped. So consider enabling the
incremental configuration option.

	When beets applies metadata to your music, it will retain the value of any
existing tags that weren’t overwritten, and import them into the database. You
may prefer to only use existing metadata for finding matches, and to erase it
completely when new metadata is applied. You can enforce this behavior with
the --from-scratch option, or the from_scratch configuration option.

	By default, beets will proceed without asking if it finds a very close
metadata match. To disable this and have the importer ask you every time,
use the -t (for timid) option.

	The importer typically works in a whole-album-at-a-time mode. If you
instead want to import individual, non-album tracks, use the singleton
mode by supplying the -s option.

	If you have an album that’s split across several directories under a common
top directory, use the --flat option. This takes all the music files
under the directory (recursively) and treats them as a single large album
instead of as one album per directory. This can help with your more stubborn
multi-disc albums.

	Similarly, if you have one directory that contains multiple albums, use the
--group-albums option to split the files based on their metadata before
matching them as separate albums.

	If you want to preview which files would be imported, use the --pretend
option. If set, beets will just print a list of files that it would
otherwise import.

	If you already have a metadata backend ID that matches the items to be
imported, you can instruct beets to restrict the search to that ID instead of
searching for other candidates by using the --search-id SEARCH_ID option.
Multiple IDs can be specified by simply repeating the option several times.

	You can supply --set field=value to assign field to value on import.
These assignments will merge with (and possibly override) the
set_fields configuration dictionary. You can use the option multiple
times on the command line, like so:

beet import --set genre="Alternative Rock" --set mood="emotional"

Reimporting

The import command can also be used to “reimport” music that you’ve
already added to your library. This is useful when you change your mind
about some selections you made during the initial import, or if you prefer
to import everything “as-is” and then correct tags later.

Just point the beet import command at a directory of files that are
already catalogged in your library. Beets will automatically detect this
situation and avoid duplicating any items. In this situation, the “copy
files” option (-c/-C on the command line or copy in the
config file) has slightly different behavior: it causes files to be moved,
rather than duplicated, if they’re already in your library. (The same is
true, of course, if move is enabled.) That is, your directory
structure will be updated to reflect the new tags if copying is enabled; you
never end up with two copies of the file.

The -L (--library) flag is also useful for retagging. Instead of
listing paths you want to import on the command line, specify a query
string that matches items from your library. In this case, the
-s (singleton) flag controls whether the query matches individual items
or full albums. If you want to retag your whole library, just supply a null
query, which matches everything: beet import -L

Note that, if you just want to update your files’ tags according to
changes in the MusicBrainz database, the MBSync Plugin is a
better choice. Reimporting uses the full matching machinery to guess
metadata matches; mbsync just relies on MusicBrainz IDs.

list

beet list [-apf] QUERY

Queries the database for music.

Want to search for “Gronlandic Edit” by of Montreal? Try beet list
gronlandic. Maybe you want to see everything released in 2009 with
“vegetables” in the title? Try beet list year:2009 title:vegetables. You
can also specify the sort order. (Read more in Queries.)

You can use the -a switch to search for albums instead of individual items.
In this case, the queries you use are restricted to album-level fields: for
example, you can search for year:1969 but query parts for item-level fields
like title:foo will be ignored. Remember that artist is an item-level
field; albumartist is the corresponding album field.

The -p option makes beets print out filenames of matched items, which might
be useful for piping into other Unix commands (such as xargs [https://en.wikipedia.org/wiki/Xargs]). Similarly, the
-f option lets you specify a specific format with which to print every album
or track. This uses the same template syntax as beets’ path formats. For example, the command beet ls -af '$album: $tracktotal'
beatles prints out the number of tracks on each Beatles album. In Unix shells,
remember to enclose the template argument in single quotes to avoid environment
variable expansion.

remove

beet remove [-adf] QUERY

Remove music from your library.

This command uses the same query syntax as the list command.
You’ll be shown a list of the files that will be removed and asked to confirm.
By default, this just removes entries from the library database; it doesn’t
touch the files on disk. To actually delete the files, use beet remove -d.
If you do not want to be prompted to remove the files, use beet remove -f.

modify

beet modify [-MWay] [-f FORMAT] QUERY [FIELD=VALUE...] [FIELD!...]

Change the metadata for items or albums in the database.

Supply a query matching the things you want to change and a
series of field=value pairs. For example, beet modify genius of love
artist="Tom Tom Club" will change the artist for the track “Genius of Love.”
To remove fields (which is only possible for flexible attributes), follow a
field name with an exclamation point: field!.

The -a switch operates on albums instead of individual tracks. Without
this flag, the command will only change track-level data, even if all the
tracks belong to the same album. If you want to change an album-level field,
such as year or albumartist, you’ll want to use the -a flag to
avoid a confusing situation where the data for individual tracks conflicts
with the data for the whole album.

Items will automatically be moved around when necessary if they’re in your
library directory, but you can disable that with -M. Tags will be written
to the files according to the settings you have for imports, but these can be
overridden with -w (write tags, the default) and -W (don’t write
tags).

When you run the modify command, it prints a list of all
affected items in the library and asks for your permission before making any
changes. You can then choose to abort the change (type n), confirm
(y), or interactively choose some of the items (s). In the latter case,
the command will prompt you for every matching item or album and invite you to
type y to apply the changes, n to discard them or q to exit and apply
the selected changes. This option lets you choose precisely which data to
change without spending too much time to carefully craft a query. To skip the
prompts entirely, use the -y option.

move

beet move [-capt] [-d DIR] QUERY

Move or copy items in your library.

This command, by default, acts as a library consolidator: items matching the
query are renamed into your library directory structure. By specifying a
destination directory with -d manually, you can move items matching a query
anywhere in your filesystem. The -c option copies files instead of moving
them. As with other commands, the -a option matches albums instead of items.
The -e flag (for “export”) copies files without changing the database.

To perform a “dry run”, just use the -p (for “pretend”) flag. This will
show you a list of files that would be moved but won’t actually change anything
on disk. The -t option sets the timid mode which will ask again
before really moving or copying the files.

update

beet update [-F] FIELD [-aM] QUERY

Update the library (and, optionally, move files) to reflect out-of-band metadata
changes and file deletions.

This will scan all the matched files and read their tags, populating the
database with the new values. By default, files will be renamed according to
their new metadata; disable this with -M. Beets will skip files if their
modification times have not changed, so any out-of-band metadata changes must
also update these for beet update to recognise that the files have been
edited.

To perform a “dry run” of an update, just use the -p (for “pretend”) flag.
This will show you all the proposed changes but won’t actually change anything
on disk.

By default, all the changed metadata will be populated back to the database.
If you only want certain fields to be written, specify them with the `-F`
flags (which can be used multiple times). For the list of supported fields,
please see `beet fields`.

When an updated track is part of an album, the album-level fields of all
tracks from the album are also updated. (Specifically, the command copies
album-level data from the first track on the album and applies it to the
rest of the tracks.) This means that, if album-level fields aren’t identical
within an album, some changes shown by the update command may be
overridden by data from other tracks on the same album. This means that
running the update command multiple times may show the same changes being
applied.

write

beet write [-pf] [QUERY]

Write metadata from the database into files’ tags.

When you make changes to the metadata stored in beets’ library database
(during import or with the modify command, for example), you often
have the option of storing changes only in the database, leaving your files
untouched. The write command lets you later change your mind and write the
contents of the database into the files. By default, this writes the changes only if there is a difference between the database and the tags in the file.

You can think of this command as the opposite of update.

The -p option previews metadata changes without actually applying them.

The -f option forces a write to the file, even if the file tags match the database. This is useful for making sure that enabled plugins that run on write (e.g., the Scrub and Zero plugins) are run on the file.

stats

beet stats [-e] [QUERY]

Show some statistics on your entire library (if you don’t provide a
query) or the matched items (if you do).

By default, the command calculates file sizes using their bitrate and
duration. The -e (--exact) option reads the exact sizes of each file
(but is slower). The exact mode also outputs the exact duration in seconds.

fields

beet fields

Show the item and album metadata fields available for use in Queries and
Path Formats. The listing includes any template fields provided by
plugins and any flexible attributes you’ve manually assigned to your items and
albums.

config

beet config [-pdc]
beet config -e

Show or edit the user configuration. This command does one of three things:

	With no options, print a YAML representation of the current user
configuration. With the --default option, beets’ default options are
also included in the dump.

	The --path option instead shows the path to your configuration file.
This can be combined with the --default flag to show where beets keeps
its internal defaults.

	By default, sensitive information like passwords is removed when dumping the
configuration. The --clear option includes this sensitive data.

	With the --edit option, beets attempts to open your config file for
editing. It first tries the $EDITOR environment variable and then a
fallback option depending on your platform: open on OS X, xdg-open
on Unix, and direct invocation on Windows.

Global Flags

Beets has a few “global” flags that affect all commands. These must appear
between the executable name (beet) and the command—for example, beet -v
import

	-l LIBPATH: specify the library database file to use.

	-d DIRECTORY: specify the library root directory.

	-v: verbose mode; prints out a deluge of debugging information. Please use
this flag when reporting bugs. You can use it twice, as in -vv, to make
beets even more verbose.

	-c FILE: read a specified YAML configuration file. This
configuration works as an overlay: rather than replacing your normal
configuration options entirely, the two are merged. Any individual options set
in this config file will override the corresponding settings in your base
configuration.

Beets also uses the BEETSDIR environment variable to look for
configuration and data.

Shell Completion

Beets includes support for shell command completion. The command beet
completion prints out a bash [https://www.gnu.org/software/bash/] 3.2 script; to enable completion put a line
like this into your .bashrc or similar file:

eval "$(beet completion)"

Or, to avoid slowing down your shell startup time, you can pipe the beet
completion output to a file and source that instead.

You will also need to source the bash-completion [https://github.com/scop/bash-completion] script, which is probably
available via your package manager. On OS X, you can install it via Homebrew
with brew install bash-completion; Homebrew will give you instructions for
sourcing the script.

The completion script suggests names of subcommands and (after typing
-) options of the given command. If you are using a command that
accepts a query, the script will also complete field names.

beet list ar[TAB]
artist: artist_credit: artist_sort: artpath:
beet list artp[TAB]
beet list artpath\:

(Don’t worry about the slash in front of the colon: this is a escape
sequence for the shell and won’t be seen by beets.)

Completion of plugin commands only works for those plugins
that were enabled when running beet completion. If you add a plugin
later on you will want to re-generate the script.

zsh

If you use zsh, take a look at the included completion script [https://github.com/beetbox/beets/blob/master/extra/_beet]. The script
should be placed in a directory that is part of your fpath, and not
sourced in your .zshrc. Running echo $fpath will give you a list of
valid directories.

Another approach is to use zsh’s bash completion compatibility. This snippet
defines some bash-specific functions to make this work without errors:

autoload bashcompinit
bashcompinit
_get_comp_words_by_ref() { :; }
compopt() { :; }
_filedir() { :; }
eval "$(beet completion)"

Configuration

Beets has an extensive configuration system that lets you customize nearly
every aspect of its operation. To configure beets, you create a file called
config.yaml. The location of the file depend on your platform (type beet
config -p to see the path on your system):

	On Unix-like OSes, write ~/.config/beets/config.yaml.

	On Windows, use %APPDATA%\beets\config.yaml. This is usually in a
directory like C:\Users\You\AppData\Roaming.

	On OS X, you can use either the Unix location or ~/Library/Application
Support/beets/config.yaml.

You can launch your text editor to create or update your configuration by
typing beet config -e. (See the config command for details.) It
is also possible to customize the location of the configuration file and even
use multiple layers of configuration. See Configuration Location, below.

The config file uses YAML [https://yaml.org/] syntax. You can use the full power of YAML, but
most configuration options are simple key/value pairs. This means your config
file will look like this:

option: value
another_option: foo
bigger_option:
 key: value
 foo: bar

In YAML, you will need to use spaces (not tabs!) to indent some lines. If you
have questions about more sophisticated syntax, take a look at the YAML [https://yaml.org/]
documentation.

The rest of this page enumerates the dizzying litany of configuration options
available in beets. You might also want to see an
example.

	Global Options

	library

	directory

	plugins

	include

	pluginpath

	ignore

	ignore_hidden

	replace

	asciify_paths

	art_filename

	threaded

	format_item

	format_album

	sort_item

	sort_album

	sort_case_insensitive

	original_date

	artist_credit

	per_disc_numbering

	aunique

	terminal_encoding

	clutter

	max_filename_length

	id3v23

	va_name

	UI Options

	color

	colors

	Importer Options

	write

	copy

	move

	link

	hardlink

	resume

	incremental

	incremental_skip_later

	from_scratch

	quiet

	quiet_fallback

	none_rec_action

	timid

	log

	default_action

	languages

	detail

	group_albums

	autotag

	duplicate_action

	bell

	set_fields

	MusicBrainz Options

	searchlimit

	Autotagger Matching Options

	max_rec

	preferred

	ignored

	required

	ignored_media

	ignore_data_tracks

	ignore_video_tracks

	Path Format Configuration

	Configuration Location

	Environment Variable

	Command-Line Option

	Default Location

	Example

Global Options

These options control beets’ global operation.

library

Path to the beets library file. By default, beets will use a file called
library.db alongside your configuration file.

directory

The directory to which files will be copied/moved when adding them to the
library. Defaults to a folder called Music in your home directory.

plugins

A space-separated list of plugin module names to load. See
Using Plugins.

include

A space-separated list of extra configuration files to include.
Filenames are relative to the directory containing config.yaml.

pluginpath

Directories to search for plugins. Each Python file or directory in a plugin
path represents a plugin and should define a subclass of BeetsPlugin.
A plugin can then be loaded by adding the filename to the plugins configuration.
The plugin path can either be a single string or a list of strings—so, if you
have multiple paths, format them as a YAML list like so:

pluginpath:
 - /path/one
 - /path/two

ignore

A list of glob patterns specifying file and directory names to be ignored when
importing. By default, this consists of .*, *~, System Volume
Information, lost+found (i.e., beets ignores Unix-style hidden files,
backup files, and directories that appears at the root of some Linux and Windows
filesystems).

ignore_hidden

Either yes or no; whether to ignore hidden files when importing. On
Windows, the “Hidden” property of files is used to detect whether or not a file
is hidden. On OS X, the file’s “IsHidden” flag is used to detect whether or not
a file is hidden. On both OS X and other platforms (excluding Windows), files
(and directories) starting with a dot are detected as hidden files.

replace

A set of regular expression/replacement pairs to be applied to all filenames
created by beets. Typically, these replacements are used to avoid confusing
problems or errors with the filesystem (for example, leading dots, which hide
files on Unix, and trailing whitespace, which is illegal on Windows). To
override these substitutions, specify a mapping from regular expression to
replacement strings. For example, [xy]: z will make beets replace all
instances of the characters x or y with the character z.

If you do change this value, be certain that you include at least enough
substitutions to avoid causing errors on your operating system. Here are
the default substitutions used by beets, which are sufficient to avoid
unexpected behavior on all popular platforms:

replace:
 '[\\/]': _
 '^\.': _
 '[\x00-\x1f]': _
 '[<>:"\?*\|]': _
 '\.$': _
 '\s+$': ''
 '^\s+': ''
 '^-': _

These substitutions remove forward and back slashes, leading dots, and
control characters—all of which is a good idea on any OS. The fourth line
removes the Windows “reserved characters” (useful even on Unix for for
compatibility with Windows-influenced network filesystems like Samba).
Trailing dots and trailing whitespace, which can cause problems on Windows
clients, are also removed.

When replacements other than the defaults are used, it is possible that they
will increase the length of the path. In the scenario where this leads to a
conflict with the maximum filename length, the default replacements will be
used to resolve the conflict and beets will display a warning.

Note that paths might contain special characters such as typographical
quotes (“”). With the configuration above, those will not be
replaced as they don’t match the typewriter quote ("). To also strip these
special characters, you can either add them to the replacement list or use the
asciify_paths configuration option below.

asciify_paths

Convert all non-ASCII characters in paths to ASCII equivalents.

For example, if your path template for
singletons is singletons/$title and the title of a track is “Café”,
then the track will be saved as singletons/Cafe.mp3. The changes
take place before applying the replace configuration and are roughly
equivalent to wrapping all your path templates in the %asciify{}
template function.

Default: no.

art_filename

When importing album art, the name of the file (without extension) where the
cover art image should be placed. This is a template string, so you can use any
of the syntax available to Path Formats. Defaults to cover
(i.e., images will be named cover.jpg or cover.png and placed in the
album’s directory).

threaded

Either yes or no, indicating whether the autotagger should use
multiple threads. This makes things substantially faster by overlapping work:
for example, it can copy files for one album in parallel with looking up data
in MusicBrainz for a different album. You may want to disable this when
debugging problems with the autotagger.
Defaults to yes.

format_item

Format to use when listing individual items with the list
command and other commands that need to print out items. Defaults to
$artist - $album - $title. The -f command-line option overrides
this setting.

It used to be named list_format_item.

format_album

Format to use when listing albums with list and other
commands. Defaults to $albumartist - $album. The -f command-line
option overrides this setting.

It used to be named list_format_album.

sort_item

Default sort order to use when fetching items from the database. Defaults to
artist+ album+ disc+ track+. Explicit sort orders override this default.

sort_album

Default sort order to use when fetching albums from the database. Defaults to
albumartist+ album+. Explicit sort orders override this default.

sort_case_insensitive

Either yes or no, indicating whether the case should be ignored when
sorting lexicographic fields. When set to no, lower-case values will be
placed after upper-case values (e.g., Bar Qux foo), while yes would
result in the more expected Bar foo Qux. Default: yes.

original_date

Either yes or no, indicating whether matched albums should have their
year, month, and day fields set to the release date of the
original version of an album rather than the selected version of the release.
That is, if this option is turned on, then year will always equal
original_year and so on. Default: no.

artist_credit

Either yes or no, indicating whether matched tracks and albums should
use the artist credit, rather than the artist. That is, if this option is turned
on, then artist will contain the artist as credited on the release.

per_disc_numbering

A boolean controlling the track numbering style on multi-disc releases. By
default (per_disc_numbering: no), tracks are numbered per-release, so the
first track on the second disc has track number N+1 where N is the number of
tracks on the first disc. If this per_disc_numbering is enabled, then the
first (non-pregap) track on each disc always has track number 1.

If you enable per_disc_numbering, you will likely want to change your
Path Format Configuration also to include $disc before $track to make
filenames sort correctly in album directories. For example, you might want to
use a path format like this:

paths:
 default: $albumartist/$album%aunique{}/$disc-$track $title

When this option is off (the default), even “pregap” hidden tracks are
numbered from one, not zero, so other track numbers may appear to be bumped up
by one. When it is on, the pregap track for each disc can be numbered zero.

aunique

These options are used to generate a string that is guaranteed to be unique
among all albums in the library who share the same set of keys.

The defaults look like this:

aunique:
 keys: albumartist album
 disambiguators: albumtype year label catalognum albumdisambig releasegroupdisambig
 bracket: '[]'

See Album Disambiguation for more details.

terminal_encoding

The text encoding, as known to Python [https://docs.python.org/2/library/codecs.html#standard-encodings], to use for messages printed to the
standard output. It’s also used to read messages from the standard input.
By default, this is determined automatically from the locale
environment variables.

clutter

When beets imports all the files in a directory, it tries to remove the
directory if it’s empty. A directory is considered empty if it only contains
files whose names match the glob patterns in clutter, which should be a list
of strings. The default list consists of “Thumbs.DB” and “.DS_Store”.

The importer only removes recursively searched subdirectories—the top-level
directory you specify on the command line is never deleted.

max_filename_length

Set the maximum number of characters in a filename, after which names will be
truncated. By default, beets tries to ask the filesystem for the correct
maximum.

id3v23

By default, beets writes MP3 tags using the ID3v2.4 standard, the latest
version of ID3. Enable this option to instead use the older ID3v2.3 standard,
which is preferred by certain older software such as Windows Media Player.

va_name

Sets the albumartist for various-artist compilations. Defaults to 'Various
Artists' (the MusicBrainz standard). Affects other sources, such as
Discogs Plugin, too.

UI Options

The options that allow for customization of the visual appearance
of the console interface.

These options are available in this section:

color

Either yes or no; whether to use color in console output (currently
only in the import command). Turn this off if your terminal doesn’t
support ANSI colors.

Note

The color option was previously a top-level configuration. This is
still respected, but a deprecation message will be shown until your
top-level color configuration has been nested under ui.

colors

The colors that are used throughout the user interface. These are only used if
the color option is set to yes. For example, you might have a section
in your configuration file that looks like this:

ui:
 color: yes
 colors:
 text_success: green
 text_warning: yellow
 text_error: red
 text_highlight: red
 text_highlight_minor: lightgray
 action_default: turquoise
 action: blue

Available colors: black, darkred, darkgreen, brown (darkyellow), darkblue,
purple (darkmagenta), teal (darkcyan), lightgray, darkgray, red, green,
yellow, blue, fuchsia (magenta), turquoise (cyan), white

Importer Options

The options that control the import command are indented under the
import: key. For example, you might have a section in your configuration
file that looks like this:

import:
 write: yes
 copy: yes
 resume: no

These options are available in this section:

write

Either yes or no, controlling whether metadata (e.g., ID3) tags are
written to files when using beet import. Defaults to yes. The -w
and -W command-line options override this setting.

copy

Either yes or no, indicating whether to copy files into the
library directory when using beet import. Defaults to yes. Can be
overridden with the -c and -C command-line options.

The option is ignored if move is enabled (i.e., beets can move or
copy files but it doesn’t make sense to do both).

move

Either yes or no, indicating whether to move files into the
library directory when using beet import.
Defaults to no.

The effect is similar to the copy option but you end up with only
one copy of the imported file. (“Moving” works even across filesystems; if
necessary, beets will copy and then delete when a simple rename is
impossible.) Moving files can be risky—it’s a good idea to keep a backup in
case beets doesn’t do what you expect with your files.

This option overrides copy, so enabling it will always move
(and not copy) files. The -c switch to the beet import command,
however, still takes precedence.

link

Either yes or no, indicating whether to use symbolic links instead of
moving or copying files. (It conflicts with the move, copy and
hardlink options.) Defaults to no.

This option only works on platforms that support symbolic links: i.e., Unixes.
It will fail on Windows.

It’s likely that you’ll also want to set write to no if you use this
option to preserve the metadata on the linked files.

hardlink

Either yes or no, indicating whether to use hard links instead of
moving or copying or symlinking files. (It conflicts with the move,
copy, and link options.) Defaults to no.

As with symbolic links (see link, above), this will not work on Windows
and you will want to set write to no. Otherwise, metadata on the
original file will be modified.

resume

Either yes, no, or ask. Controls whether interrupted imports
should be resumed. “Yes” means that imports are always resumed when
possible; “no” means resuming is disabled entirely; “ask” (the default)
means that the user should be prompted when resuming is possible. The -p
and -P flags correspond to the “yes” and “no” settings and override this
option.

incremental

Either yes or no, controlling whether imported directories are
recorded and whether these recorded directories are skipped. This
corresponds to the -i flag to beet import.

incremental_skip_later

Either yes or no, controlling whether skipped directories are
recorded in the incremental list. When set to yes, skipped directories
will be recorded, and skipped later. When set to no, skipped
directories won’t be recorded, and beets will try to import them again
later. Defaults to no.

from_scratch

Either yes or no (default), controlling whether existing metadata is
discarded when a match is applied. This corresponds to the --from_scratch
flag to beet import.

quiet

Either yes or no (default), controlling whether to ask for a manual
decision from the user when the importer is unsure how to proceed. This
corresponds to the --quiet flag to beet import.

quiet_fallback

Either skip (default) or asis, specifying what should happen in
quiet mode (see the -q flag to import, above) when there is no
strong recommendation.

none_rec_action

Either ask (default), asis or skip. Specifies what should happen
during an interactive import session when there is no recommendation. Useful
when you are only interested in processing medium and strong recommendations
interactively.

timid

Either yes or no, controlling whether the importer runs in timid
mode, in which it asks for confirmation on every autotagging match, even the
ones that seem very close. Defaults to no. The -t command-line flag
controls the same setting.

log

Specifies a filename where the importer’s log should be kept. By default,
no log is written. This can be overridden with the -l flag to
import.

default_action

One of apply, skip, asis, or none, indicating which option
should be the default when selecting an action for a given match. This is the
action that will be taken when you type return without an option letter. The
default is apply.

languages

A list of locale names to search for preferred aliases. For example, setting
this to en uses the transliterated artist name “Pyotr Ilyich Tchaikovsky”
instead of the Cyrillic script for the composer’s name when tagging from
MusicBrainz. You can use a space-separated list of language abbreviations, like
en jp es, to specify a preference order. Defaults to an empty list, meaning
that no language is preferred.

detail

Whether the importer UI should show detailed information about each match it
finds. When enabled, this mode prints out the title of every track, regardless
of whether it matches the original metadata. (The default behavior only shows
changes.) Default: no.

group_albums

By default, the beets importer groups tracks into albums based on the
directories they reside in. This option instead uses files’ metadata to
partition albums. Enable this option if you have directories that contain
tracks from many albums mixed together.

The --group-albums or -g option to the import command is
equivalent, and the G interactive option invokes the same workflow.

Default: no.

autotag

By default, the beets importer always attempts to autotag new music. If
most of your collection consists of obscure music, you may be interested in
disabling autotagging by setting this option to no. (You can re-enable it
with the -a flag to the import command.)

Default: yes.

duplicate_action

Either skip, keep, remove, merge or ask.
Controls how duplicates are treated in import task.
“skip” means that new item(album or track) will be skipped;
“keep” means keep both old and new items; “remove” means remove old
item; “merge” means merge into one album; “ask” means the user
should be prompted for the action each time. The default is ask.

bell

Ring the terminal bell to get your attention when the importer needs your input.

Default: no.

set_fields

A dictionary indicating fields to set to values for newly imported music.
Here’s an example:

set_fields:
 genre: 'To Listen'
 collection: 'Unordered'

Other field/value pairs supplied via the --set option on the command-line
override any settings here for fields with the same name.

Default: {} (empty).

MusicBrainz Options

You can instruct beets to use your own MusicBrainz database [https://musicbrainz.org/doc/MusicBrainz_Server/Setup] instead of
the main server [https://musicbrainz.org/]. Use the host and ratelimit options under a
musicbrainz: header, like so:

musicbrainz:
 host: localhost:5000
 ratelimit: 100

The host key, of course, controls the Web server hostname (and port,
optionally) that will be contacted by beets (default: musicbrainz.org).
The server must have search indices enabled (see Building search indexes [https://musicbrainz.org/doc/MusicBrainz_Server/Setup#Building_search_indexes]).

The ratelimit option, an integer, controls the number of Web service requests
per second (default: 1). Do not change the rate limit setting if you’re
using the main MusicBrainz server—on this public server, you’re limited [https://musicbrainz.org/doc/XML_Web_Service/Rate_Limiting]
to one request per second.

searchlimit

The number of matches returned when sending search queries to the
MusicBrainz server.

Default: 5.

Autotagger Matching Options

You can configure some aspects of the logic beets uses when automatically
matching MusicBrainz results under the match: section. To control how
tolerant the autotagger is of differences, use the strong_rec_thresh
option, which reflects the distance threshold below which beets will make a
“strong recommendation” that the metadata be used. Strong recommendations
are accepted automatically (except in “timid” mode), so you can use this to
make beets ask your opinion more or less often.

The threshold is a distance value between 0.0 and 1.0, so you can think of it
as the opposite of a similarity value. For example, if you want to
automatically accept any matches above 90% similarity, use:

match:
 strong_rec_thresh: 0.10

The default strong recommendation threshold is 0.04.

The medium_rec_thresh and rec_gap_thresh options work similarly. When a
match is below the medium recommendation threshold or the distance between it
and the next-best match is above the gap threshold, the importer will suggest
that match but not automatically confirm it. Otherwise, you’ll see a list of
options to choose from.

max_rec

As mentioned above, autotagger matches have recommendations that control how
the UI behaves for a certain quality of match. The recommendation for a certain
match is based on the overall distance calculation. But you can also control
the recommendation when a specific distance penalty is applied by defining
maximum recommendations for each field:

To define maxima, use keys under max_rec: in the match section. The
defaults are “medium” for missing and unmatched tracks and “strong” (i.e., no
maximum) for everything else:

match:
 max_rec:
 missing_tracks: medium
 unmatched_tracks: medium

If a recommendation is higher than the configured maximum and the indicated
penalty is applied, the recommendation is downgraded. The setting for
each field can be one of none, low, medium or strong. When the
maximum recommendation is strong, no “downgrading” occurs. The available
penalty names here are:

	source

	artist

	album

	media

	mediums

	year

	country

	label

	catalognum

	albumdisambig

	album_id

	tracks

	missing_tracks

	unmatched_tracks

	track_title

	track_artist

	track_index

	track_length

	track_id

preferred

In addition to comparing the tagged metadata with the match metadata for
similarity, you can also specify an ordered list of preferred countries and
media types.

A distance penalty will be applied if the country or media type from the match
metadata doesn’t match. The specified values are preferred in descending order
(i.e., the first item will be most preferred). Each item may be a regular
expression, and will be matched case insensitively. The number of media will
be stripped when matching preferred media (e.g. “2x” in “2xCD”).

You can also tell the autotagger to prefer matches that have a release year
closest to the original year for an album.

Here’s an example:

match:
 preferred:
 countries: ['US', 'GB|UK']
 media: ['CD', 'Digital Media|File']
 original_year: yes

By default, none of these options are enabled.

ignored

You can completely avoid matches that have certain penalties applied by adding
the penalty name to the ignored setting:

match:
 ignored: missing_tracks unmatched_tracks

The available penalties are the same as those for the max_rec setting.

For example, setting ignored: missing_tracks will skip any album matches where your audio files are missing some of the tracks. The importer will not attempt to display these matches. It does not ignore the fact that the album is missing tracks, which would allow these matches to apply more easily. To do that, you’ll want to adjust the penalty for missing tracks.

required

You can avoid matches that lack certain required information. Add the tags you
want to enforce to the required setting:

match:
 required: year label catalognum country

No tags are required by default.

ignored_media

A list of media (i.e., formats) in metadata databases to ignore when matching
music. You can use this to ignore all media that usually contain video instead
of audio, for example:

match:
 ignored_media: ['Data CD', 'DVD', 'DVD-Video', 'Blu-ray', 'HD-DVD',
 'VCD', 'SVCD', 'UMD', 'VHS']

No formats are ignored by default.

ignore_data_tracks

By default, audio files contained in data tracks within a release are included
in the album’s tracklist. If you want them to be included, set it no.

Default: yes.

ignore_video_tracks

By default, video tracks within a release will be ignored. If you want them to
be included (for example if you would like to track the audio-only versions of
the video tracks), set it to no.

Default: yes.

Path Format Configuration

You can also configure the directory hierarchy beets uses to store music.
These settings appear under the paths: key. Each string is a template
string that can refer to metadata fields like $artist or $title. The
filename extension is added automatically. At the moment, you can specify three
special paths: default for most releases, comp for “various artist”
releases with no dominant artist, and singleton for non-album tracks. The
defaults look like this:

paths:
 default: $albumartist/$album%aunique{}/$track $title
 singleton: Non-Album/$artist/$title
 comp: Compilations/$album%aunique{}/$track $title

Note the use of $albumartist instead of $artist; this ensures that albums
will be well-organized. For more about these format strings, see
Path Formats. The aunique{} function ensures that identically-named
albums are placed in different directories; see Album Disambiguation for details.

In addition to default, comp, and singleton, you can condition path
queries based on beets queries (see Queries). This means that a
config file like this:

paths:
 albumtype:soundtrack: Soundtracks/$album/$track $title

will place soundtrack albums in a separate directory. The queries are tested in
the order they appear in the configuration file, meaning that if an item matches
multiple queries, beets will use the path format for the first matching query.

Note that the special singleton and comp path format conditions are, in
fact, just shorthand for the explicit queries singleton:true and
comp:true. In contrast, default is special and has no query equivalent:
the default format is only used if no queries match.

Configuration Location

The beets configuration file is usually located in a standard location that
depends on your OS, but there are a couple of ways you can tell beets where to
look.

Environment Variable

First, you can set the BEETSDIR environment variable to a directory
containing a config.yaml file. This replaces your configuration in the
default location. This also affects where auxiliary files, like the library
database, are stored by default (that’s where relative paths are resolved to).
This environment variable is useful if you need to manage multiple beets
libraries with separate configurations.

Command-Line Option

Alternatively, you can use the --config command-line option to indicate a
YAML file containing options that will then be merged with your existing
options (from BEETSDIR or the default locations). This is useful if you
want to keep your configuration mostly the same but modify a few options as a
batch. For example, you might have different strategies for importing files,
each with a different set of importer options.

Default Location

In the absence of a BEETSDIR variable, beets searches a few places for
your configuration, depending on the platform:

	On Unix platforms, including OS X:~/.config/beets and then
$XDG_CONFIG_DIR/beets, if the environment variable is set.

	On OS X, we also search ~/Library/Application Support/beets before the
Unixy locations.

	On Windows: ~\AppData\Roaming\beets, and then %APPDATA%\beets, if
the environment variable is set.

Beets uses the first directory in your platform’s list that contains
config.yaml. If no config file exists, the last path in the list is used.

Example

Here’s an example file:

directory: /var/mp3
import:
 copy: yes
 write: yes
 log: beetslog.txt
art_filename: albumart
plugins: bpd
pluginpath: ~/beets/myplugins
ui:
 color: yes

paths:
 default: $genre/$albumartist/$album/$track $title
 singleton: Singletons/$artist - $title
 comp: $genre/$album/$track $title
 albumtype:soundtrack: Soundtracks/$album/$track $title

Path Formats

The paths: section of the config file (see Configuration) lets
you specify the directory and file naming scheme for your music library.
Templates substitute symbols like $title (any field value prefixed by $)
with the appropriate value from the track’s metadata. Beets adds the filename
extension automatically.

For example, consider this path format string:
$albumartist/$album/$track $title

Here are some paths this format will generate:

	Yeah Yeah Yeahs/It's Blitz!/01 Zero.mp3

	Spank Rock/YoYoYoYoYo/11 Competition.mp3

	The Magnetic Fields/Realism/01 You Must Be Out of Your Mind.mp3

Because $ is used to delineate a field reference, you can use $$ to emit
a dollars sign. As with Python template strings [https://docs.python.org/library/string.html#template-strings], ${title} is equivalent
to $title; you can use this if you need to separate a field name from the
text that follows it.

A Note About Artists

Note that in path formats, you almost certainly want to use $albumartist and
not $artist. The latter refers to the “track artist” when it is present,
which means that albums that have tracks from different artists on them (like
Stop Making Sense [https://musicbrainz.org/release/798dcaab-0f1a-4f02-a9cb-61d5b0ddfd36.html], for example) will be placed into different folders!
Continuing with the Stop Making Sense example, you’ll end up with most of the
tracks in a “Talking Heads” directory and one in a “Tom Tom Club” directory. You
probably don’t want that! So use $albumartist.

As a convenience, however, beets allows $albumartist to fall back to the value for $artist and vice-versa if one tag is present but the other is not.

Template Functions

Beets path formats also support function calls, which can be used to transform
text and perform logical manipulations. The syntax for function calls is like
this: %func{arg,arg}. For example, the upper function makes its argument
upper-case, so %upper{beets rocks} will be replaced with BEETS ROCKS.
You can, of course, nest function calls and place variable references in
function arguments, so %upper{$artist} becomes the upper-case version of the
track’s artists.

These functions are built in to beets:

	%lower{text}: Convert text to lowercase.

	%upper{text}: Convert text to UPPERCASE.

	%title{text}: Convert text to Title Case.

	%left{text,n}: Return the first n characters of text.

	%right{text,n}: Return the last n characters of text.

	%if{condition,text} or %if{condition,truetext,falsetext}: If
condition is nonempty (or nonzero, if it’s a number), then returns
the second argument. Otherwise, returns the third argument if specified (or
nothing if falsetext is left off).

	%asciify{text}: Convert non-ASCII characters to their ASCII equivalents.
For example, “café” becomes “cafe”. Uses the mapping provided by the
unidecode module [https://pypi.org/project/Unidecode]. See the asciify_paths configuration
option.

	%aunique{identifiers,disambiguators,brackets}: Provides a unique string
to disambiguate similar albums in the database. See Album Disambiguation, below.

	%time{date_time,format}: Return the date and time in any format accepted
by strftime [https://docs.python.org/3/library/time.html#time.strftime]. For example, to get the year some music was added to your
library, use %time{$added,%Y}.

	%first{text}: Returns the first item, separated by ; (a semicolon
followed by a space).
You can use %first{text,count,skip}, where count is the number of
items (default 1) and skip is number to skip (default 0). You can also use
%first{text,count,skip,sep,join} where sep is the separator, like
; or / and join is the text to concatenate the items.

	%ifdef{field}, %ifdef{field,truetext} or
%ifdef{field,truetext,falsetext}: Checks if an flexible attribute
field is defined. If it exists, then return truetext or field
(default). Otherwise, returns falsetext. The field should be entered
without $. Note that this doesn’t work with built-in Available Values, as
they are always defined.

Plugins can extend beets with more template functions (see
Template functions and values provided by plugins).

Album Disambiguation

Occasionally, bands release two albums with the same name (c.f. Crystal Castles,
Weezer, and any situation where a single has the same name as an album or EP).
Beets ships with special support, in the form of the %aunique{} template
function, to avoid placing two identically-named albums in the same directory on
disk.

The aunique function detects situations where two albums have some identical
fields and emits text from additional fields to disambiguate the albums. For
example, if you have both Crystal Castles albums in your library, %aunique{}
will expand to “[2008]” for one album and “[2010]” for the other. The
function detects that you have two albums with the same artist and title but
that they have different release years.

For full flexibility, the %aunique function takes three arguments. The
first two are whitespace-separated lists of album field names: a set of
identifiers and a set of disambiguators. The third argument is a pair of
characters used to surround the disambiguator.

Any group of albums with identical values for all the identifiers will be
considered “duplicates”. Then, the function tries each disambiguator field,
looking for one that distinguishes each of the duplicate albums from each
other. The first such field is used as the result for %aunique. If no field
suffices, an arbitrary number is used to distinguish the two albums.

The default identifiers are albumartist album and the default
disambiguators are albumtype year label catalognum albumdisambig
releasegroupdisambig. So you can get reasonable disambiguation
behavior if you just use %aunique{} with no parameters in your
path forms (as in the default path formats), but you can customize the
disambiguation if, for example, you include the year by default in
path formats.

The default characters used as brackets are []. To change this, provide a
third argument to the %aunique function consisting of two characters: the left
and right brackets. Or, to turn off bracketing entirely, leave argument blank.

One caveat: When you import an album that is named identically to one already in
your library, the first album—the one already in your library— will not
consider itself a duplicate at import time. This means that %aunique{} will
expand to nothing for this album and no disambiguation string will be used at
its import time. Only the second album will receive a disambiguation string. If
you want to add the disambiguation string to both albums, just run beet move
(possibly restricted by a query) to update the paths for the albums.

Syntax Details

The characters $, %, {, }, and , are “special” in the path
template syntax. This means that, for example, if you want a % character to
appear in your paths, you’ll need to be careful that you don’t accidentally
write a function call. To escape any of these characters (except {, and
, outside a function argument), prefix it with a $. For example,
$$ becomes $; $% becomes %, etc. The only exceptions are:

	${, which is ambiguous with the variable reference syntax (like
${title}). To insert a { alone, it’s always sufficient to just type
{.

	commas are used as argument separators in function calls. Inside of a
function’s argument, use $, to get a literal , character. Outside of
any function argument, escaping is not necessary: , by itself will
produce , in the output.

If a value or function is undefined, the syntax is simply left unreplaced. For
example, if you write $foo in a path template, this will yield $foo in
the resulting paths because “foo” is not a valid field name. The same is true of
syntax errors like unclosed {} pairs; if you ever see template syntax
constructs leaking into your paths, check your template for errors.

If an error occurs in the Python code that implements a function, the function
call will be expanded to a string that describes the exception so you can debug
your template. For example, the second parameter to %left must be an
integer; if you write %left{foo,bar}, this will be expanded to something
like <ValueError: invalid literal for int()>.

Available Values

Here’s a list of the different values available to path formats. The current
list can be found definitively by running the command beet fields. Note that
plugins can add new (or replace existing) template values (see
Template functions and values provided by plugins).

Ordinary metadata:

	title

	artist

	artist_sort: The “sort name” of the track artist (e.g., “Beatles, The” or
“White, Jack”).

	artist_credit: The track-specific artist credit [https://wiki.musicbrainz.org/Artist_Credit] name, which may be a
variation of the artist’s “canonical” name.

	album

	albumartist: The artist for the entire album, which may be different from the
artists for the individual tracks.

	albumartist_sort

	albumartist_credit

	genre

	composer

	grouping

	year, month, day: The release date of the specific release.

	original_year, original_month, original_day: The release date of the original
version of the album.

	track

	tracktotal

	disc

	disctotal

	lyrics

	comments

	bpm

	comp: Compilation flag.

	albumtype: The MusicBrainz album type; the MusicBrainz wiki has a list of
type names [https://musicbrainz.org/doc/Release_Group/Type].

	label

	asin

	catalognum

	script

	language

	country

	albumstatus

	media

	albumdisambig

	disctitle

	encoder

Audio information:

	length (in seconds)

	bitrate (in kilobits per second, with units: e.g., “192kbps”)

	format (e.g., “MP3” or “FLAC”)

	channels

	bitdepth (only available for some formats)

	samplerate (in kilohertz, with units: e.g., “48kHz”)

MusicBrainz and fingerprint information:

	mb_trackid

	mb_releasetrackid

	mb_albumid

	mb_artistid

	mb_albumartistid

	mb_releasegroupid

	acoustid_fingerprint

	acoustid_id

Library metadata:

	mtime: The modification time of the audio file.

	added: The date and time that the music was added to your library.

	path: The item’s filename.

Template functions and values provided by plugins

Beets plugins can provide additional fields and functions to templates. See
the Plugins page for a full list of plugins. Some plugin-provided
constructs include:

	$missing by Missing Plugin: The number of missing tracks per
album.

	%bucket{text} by Bucket Plugin: Substitute a string by the
range it belongs to.

	%the{text} by The Plugin: Moves English articles to ends of
strings.

The Inline Plugin lets you define template fields in your beets
configuration file using Python snippets. And for more advanced processing,
you can go all-in and write a dedicated plugin to register your own fields and
functions (see Writing Plugins).

Queries

Many of beets’ commands are built around query strings:
searches that select tracks and albums from your library. This page explains the
query string syntax, which is meant to vaguely resemble the syntax used by Web
search engines.

Keyword

This command:

$ beet list love

will show all tracks matching the query string love. By default any unadorned word like this matches in a track’s title, artist, album name, album artist, genre and comments. See below on how to search other fields.

For example, this is what I might see when I run the command above:

Against Me! - Reinventing Axl Rose - I Still Love You Julie
Air - Love 2 - Do the Joy
Bag Raiders - Turbo Love - Shooting Stars
Bat for Lashes - Two Suns - Good Love
...

Combining Keywords

Multiple keywords are implicitly joined with a Boolean “and.” That is, if a
query has two keywords, it only matches tracks that contain both keywords. For
example, this command:

$ beet ls magnetic tomorrow

matches songs from the album “The House of Tomorrow” by The Magnetic Fields in
my library. It doesn’t match other songs by the Magnetic Fields, nor does it
match “Tomorrowland” by Walter Meego—those songs only have one of the two
keywords I specified.

Keywords can also be joined with a Boolean “or” using a comma. For example,
the command:

$ beet ls magnetic tomorrow , beatles yesterday

will match both “The House of Tomorrow” by the Magnetic Fields, as well as
“Yesterday” by The Beatles. Note that the comma has to be followed by a space
(e.g., foo,bar will be treated as a single keyword, not as an OR-query).

Specific Fields

Sometimes, a broad keyword match isn’t enough. Beets supports a syntax that lets
you query a specific field—only the artist, only the track title, and so on.
Just say field:value, where field is the name of the thing you’re trying
to match (such as artist, album, or title) and value is the
keyword you’re searching for.

For example, while this query:

$ beet list dream

matches a lot of songs in my library, this more-specific query:

$ beet list artist:dream

only matches songs by the artist The-Dream. One query I especially appreciate is
one that matches albums by year:

$ beet list -a year:2012

Recall that -a makes the list command show albums instead of individual
tracks, so this command shows me all the releases I have from this year.

Phrases

You can query for strings with spaces in them by quoting or escaping them using
your shell’s argument syntax. For example, this command:

$ beet list the rebel

shows several tracks in my library, but these (equivalent) commands:

$ beet list "the rebel"
$ beet list the\ rebel

only match the track “The Rebel” by Buck 65. Note that the quotes and
backslashes are not part of beets’ syntax; I’m just using the escaping
functionality of my shell (bash or zsh, for instance) to pass the rebel as a
single argument instead of two.

Regular Expressions

While ordinary keywords perform simple substring matches, beets also supports
regular expression matching for more advanced queries. To run a regex query, use
an additional : between the field name and the expression:

$ beet list "artist::Ann(a|ie)"

That query finds songs by Anna Calvi and Annie but not Annuals. Similarly, this
query prints the path to any file in my library that’s missing a track title:

$ beet list -p title::^$

To search all fields using a regular expression, just prefix the expression
with a single :, like so:

$ beet list ":Ho[pm]eless"

Regular expressions are case-sensitive and build on Python’s built-in
implementation [https://docs.python.org/library/re.html]. See Python’s documentation for specifics on regex syntax.

Most command-line shells will try to interpret common characters in regular
expressions, such as ()[]|. To type those characters, you’ll need to
escape them (e.g., with backslashes or quotation marks, depending on your
shell).

Numeric Range Queries

For numeric fields, such as year, bitrate, and track, you can query using one-
or two-sided intervals. That is, you can find music that falls within a
range of values. To use ranges, write a query that has two dots (..) at
the beginning, middle, or end of a string of numbers. Dots in the beginning
let you specify a maximum (e.g., ..7); dots at the end mean a minimum
(4..); dots in the middle mean a range (4..7).

For example, this command finds all your albums that were released in the
’90s:

$ beet list -a year:1990..1999

and this command finds MP3 files with bitrates of 128k or lower:

$ beet list format:MP3 bitrate:..128000

The length field also lets you use a “M:SS” format. For example, this
query finds tracks that are less than four and a half minutes in length:

$ beet list length:..4:30

Date and Date Range Queries

Date-valued fields, such as added and mtime, have a special query syntax
that lets you specify years, months, and days as well as ranges between dates.

Dates are written separated by hyphens, like year-month-day, but the month
and day are optional. If you leave out the day, for example, you will get
matches for the whole month.

Date intervals, like the numeric intervals described above, are separated by
two dots (..). You can specify a start, an end, or both.

Here is an example that finds all the albums added in 2008:

$ beet ls -a 'added:2008'

Find all items added in the years 2008, 2009 and 2010:

$ beet ls 'added:2008..2010'

Find all items added before the year 2010:

$ beet ls 'added:..2009'

Find all items added on or after 2008-12-01 but before 2009-10-12:

$ beet ls 'added:2008-12..2009-10-11'

Find all items with a file modification time between 2008-12-01 and
2008-12-03:

$ beet ls 'mtime:2008-12-01..2008-12-02'

You can also add an optional time value to date queries, specifying hours,
minutes, and seconds.

Times are separated from dates by a space, an uppercase ‘T’ or a lowercase
‘t’, for example: 2008-12-01T23:59:59. If you specify a time, then the
date must contain a year, month, and day. The minutes and seconds are
optional.

Here is an example that finds all items added on 2008-12-01 at or after 22:00
but before 23:00:

$ beet ls 'added:2008-12-01T22'

To find all items added on or after 2008-12-01 at 22:45:

$ beet ls 'added:2008-12-01T22:45..'

To find all items added on 2008-12-01, at or after 22:45:20 but before
22:45:41:

$ beet ls 'added:2008-12-01T22:45:20..2008-12-01T22:45:40'

Here are example of the three ways to separate dates from times. All of these
queries do the same thing:

$ beet ls 'added:2008-12-01T22:45:20'
$ beet ls 'added:2008-12-01t22:45:20'
$ beet ls 'added:2008-12-01 22:45:20'

You can also use relative dates. For example, -3w means three weeks ago,
and +4d means four days in the future. A relative date has three parts:

	Either + or -, to indicate the past or the future. The sign is
optional; if you leave this off, it defaults to the future.

	A number.

	A letter indicating the unit: d, w, m or y, meaning days,
weeks, months or years. (A “month” is always 30 days and a “year” is always
365 days.)

Here’s an example that finds all the albums added since last week:

$ beet ls -a 'added:-1w..'

And here’s an example that lists items added in a two-week period starting
four weeks ago:

$ beet ls 'added:-6w..-4w'

Query Term Negation

Query terms can also be negated, acting like a Boolean “not,” by prefixing
them with - or ^. This has the effect of returning all the items that
do not match the query term. For example, this command:

$ beet list ^love

matches all the songs in the library that do not have “love” in any of their
fields.

Negation can be combined with the rest of the query mechanisms, so you can
negate specific fields, regular expressions, etc. For example, this command:

$ beet list -a artist:dylan ^year:1980..1989 "^album::the(y)?"

matches all the albums with an artist containing “dylan”, but excluding those
released in the eighties and those that have “the” or “they” on the title.

The syntax supports both ^ and - as synonyms because the latter
indicates flags on the command line. To use a minus sign in a command-line
query, use a double dash -- to separate the options from the query:

$ beet list -a -- artist:dylan -year:1980..1990 "-album::the(y)?"

Path Queries

Sometimes it’s useful to find all the items in your library that are
(recursively) inside a certain directory. Use the path: field to do this:

$ beet list path:/my/music/directory

In fact, beets automatically recognizes any query term containing a path
separator (/ on POSIX systems) as a path query if that path exists, so this
command is equivalent as long as /my/music/directory exist:

$ beet list /my/music/directory

Note that this only matches items that are already in your library, so a path
query won’t necessarily find all the audio files in a directory—just the
ones you’ve already added to your beets library.

Path queries are case sensitive if the queried path is on a case-sensitive
filesystem.

Sort Order

Queries can specify a sort order. Use the name of the field you want to sort
on, followed by a + or - sign to indicate ascending or descending
sort. For example, this command:

$ beet list -a year+

will list all albums in chronological order. You can also specify several sort
orders, which will be used in the same order as they appear in your query:

$ beet list -a genre+ year+

This command will sort all albums by genre and, in each genre, in chronological
order.

The artist and albumartist keys are special: they attempt to use their
corresponding artist_sort and albumartist_sort fields for sorting
transparently (but fall back to the ordinary fields when those are empty).

Lexicographic sorts are case insensitive by default, resulting in the following
sort order: Bar foo Qux. This behavior can be changed with the
sort_case_insensitive configuration option. Case sensitive sort will
result in lower-case values being placed after upper-case values, e.g.,
Bar Qux foo.

Note that when sorting by fields that are not present on all items (such as
flexible fields, or those defined by plugins) in ascending order, the items
that lack that particular field will be listed at the beginning of the list.

You can set the default sorting behavior with the sort_item and
sort_album configuration options.

Plugins

Plugins extend beets’ core functionality. They add new commands, fetch
additional data during import, provide new metadata sources, and much more. If
beets by itself doesn’t do what you want it to, you may just need to enable a
plugin—or, if you want to do something new, writing a plugin is easy if you know a little Python.

Using Plugins

To use one of the plugins included with beets (see the rest of this page for a
list), just use the plugins option in your config.yaml file, like so:

plugins: inline convert web

The value for plugins can be a space-separated list of plugin names or a
YAML list like [foo, bar]. You can see which plugins are currently enabled
by typing beet version.

Each plugin has its own set of options that can be defined in a section bearing its name:

plugins: inline convert web

convert:
 auto: true

Some plugins have special dependencies that you’ll need to install. The
documentation page for each plugin will list them in the setup instructions.
For some, you can use pip’s “extras” feature to install the dependencies,
like this:

pip install beets[fetchart,lyrics,lastgenre]

Autotagger Extensions

	Chromaprint/Acoustid Plugin: Use acoustic fingerprinting to identify audio files with
missing or incorrect metadata.

	Discogs Plugin: Search for releases in the Discogs [https://www.discogs.com/] database.

	FromFilename Plugin: Guess metadata for untagged tracks from their
filenames.

Metadata

	AcousticBrainz Submit Plugin: Analyse audio with the streaming_extractor_music [https://acousticbrainz.org/download] program and submit the metadata to the AcousticBrainz server

	AcousticBrainz Plugin: Fetch various AcousticBrainz metadata

	BPM Plugin: Measure tempo using keystrokes.

	Edit Plugin: Edit metadata from a text editor.

	EmbedArt Plugin: Embed album art images into files’ metadata.

	FetchArt Plugin: Fetch album cover art from various sources.

	FtInTitle Plugin: Move “featured” artists from the artist field to the title
field.

	Key Finder Plugin: Use the KeyFinder [http://www.ibrahimshaath.co.uk/keyfinder/] program to detect the musical
key from the audio.

	ImportAdded Plugin: Use file modification times for guessing the value for
the added field in the database.

	LastGenre Plugin: Fetch genres based on Last.fm tags.

	LastImport Plugin: Collect play counts from Last.fm.

	Lyrics Plugin: Automatically fetch song lyrics.

	MBSync Plugin: Fetch updated metadata from MusicBrainz

	MetaSync Plugin: Fetch metadata from local or remote sources

	MPDStats Plugin: Connect to MPD [https://www.musicpd.org/] and update the beets library with play
statistics (last_played, play_count, skip_count, rating).

	ParentWork Plugin: Fetch work titles and works they are part of.

	ReplayGain Plugin: Calculate volume normalization for players that support it.

	Scrub Plugin: Clean extraneous metadata from music files.

	Zero Plugin: Nullify fields by pattern or unconditionally.

Path Formats

	Bucket Plugin: Group your files into bucket directories that cover different
field values ranges.

	Inline Plugin: Use Python snippets to customize path format strings.

	Rewrite Plugin: Substitute values in path formats.

	The Plugin: Move patterns in path formats (i.e., move “a” and “the” to the
end).

Interoperability

	Bad Files Plugin: Check audio file integrity.

	EmbyUpdate Plugin: Automatically notifies Emby [https://emby.media] whenever the beets library changes.

	ImportFeeds Plugin: Keep track of imported files via .m3u playlist file(s) or symlinks.

	IPFS Plugin: Import libraries from friends and get albums from them via ipfs.

	KodiUpdate Plugin: Automatically notifies Kodi [https://kodi.tv] whenever the beets library
changes.

	MPDUpdate Plugin: Automatically notifies MPD [https://www.musicpd.org/] whenever the beets library
changes.

	Play Plugin: Play beets queries in your music player.

	Playlist Plugin: Use M3U playlists to query the beets library.

	PlexUpdate Plugin: Automatically notifies Plex [https://plex.tv] whenever the beets library
changes.

	Smart Playlist Plugin: Generate smart playlists based on beets queries.

	SonosUpdate Plugin: Automatically notifies Sonos [https://sonos.com] whenever the beets library
changes.

	Thumbnails Plugin: Get thumbnails with the cover art on your album folders.

Miscellaneous

	BPD Plugin: A music player for your beets library that emulates MPD [https://www.musicpd.org/] and is
compatible with MPD clients [https://mpd.wikia.com/wiki/Clients].

	Convert Plugin: Transcode music and embed album art while exporting to
a different directory.

	Duplicates Plugin: List duplicate tracks or albums.

	Export Plugin: Export data from queries to a format.

	FileFilter Plugin: Automatically skip files during the import process based
on regular expressions.

	Fuzzy Search Plugin: Search albums and tracks with fuzzy string matching.

	Gmusic Plugin: Search and upload files to Google Play Music.

	Hook Plugin: Run a command when an event is emitted by beets.

	IHate Plugin: Automatically skip albums and tracks during the import process.

	Info Plugin: Print music files’ tags to the console.

	Load Extension Plugin: Load SQLite extensions.

	MusicBrainz Collection Plugin: Maintain your MusicBrainz collection list.

	MusicBrainz Submit Plugin: Print an album’s tracks in a MusicBrainz-friendly format.

	Missing Plugin: List missing tracks.

	mstream [https://github.com/IrosTheBeggar/mStream]: A music streaming server + webapp that can be used alongside beets.

	Random Plugin: Randomly choose albums and tracks from your library.

	Spotify Plugin: Create Spotify playlists from the Beets library.

	Types Plugin: Declare types for flexible attributes.

	Web Plugin: An experimental Web-based GUI for beets.

Other Plugins

In addition to the plugins that come with beets, there are several plugins
that are maintained by the beets community. To use an external plugin, there
are two options for installation:

	Make sure it’s in the Python path (known as sys.path to developers). This
just means the plugin has to be installed on your system (e.g., with a
setup.py script or a command like pip or easy_install).

	Set the pluginpath config variable to point to the directory containing the
plugin. (See Configuration.)

Once the plugin is installed, enable it by placing its name on the plugins
line in your config file.

Here are a few of the plugins written by the beets community:

	beetFs [https://github.com/jbaiter/beetfs] is a FUSE filesystem for browsing the music in your beets library.
(Might be out of date.)

	A cmus plugin [https://github.com/coolkehon/beets/blob/master/beetsplug/cmus.py] integrates with the cmus [http://cmus.sourceforge.net/] console music player.

	beets-artistcountry [https://github.com/agrausem/beets-artistcountry] fetches the artist’s country of origin from
MusicBrainz.

	dsedivec [https://github.com/dsedivec/beets-plugins] has two plugins: edit and moveall.

	beet-amazon [https://github.com/jmwatte/beet-amazon] adds Amazon.com as a tagger data source.

	copyartifacts [https://github.com/sbarakat/beets-copyartifacts] helps bring non-music files along during import.

	beets-check [https://github.com/geigerzaehler/beets-check] automatically checksums your files to detect corruption.

	beets-alternatives [https://github.com/geigerzaehler/beets-alternatives] manages external files.

	beets-follow [https://github.com/nolsto/beets-follow] lets you check for new albums from artists you like.

	beets-setlister [https://github.com/tomjaspers/beets-setlister] generate playlists from the setlists of a given artist.

	beets-noimport [https://gitlab.com/tiago.dias/beets-noimport] adds and removes directories from the incremental import skip list.

	whatlastgenre [https://github.com/YetAnotherNerd/whatlastgenre/tree/master/plugin/beets] fetches genres from various music sites.

	beets-usertag [https://github.com/igordertigor/beets-usertag] lets you use keywords to tag and organize your music.

	beets-popularity [https://github.com/abba23/beets-popularity] fetches popularity values from Spotify.

	beets-barcode [https://github.com/8h2a/beets-barcode] lets you scan or enter barcodes for physical media to
search for their metadata.

	beets-ydl [https://github.com/vmassuchetto/beets-ydl] downloads audio from youtube-dl sources and import into beets.

	beet-summarize [https://github.com/steven-murray/beet-summarize] can compute lots of counts and statistics about your music
library.

	beets-mosaic [https://github.com/SusannaMaria/beets-mosaic] generates a montage of a mosiac from cover art.

AcousticBrainz Submit Plugin

The absubmit plugin lets you submit acoustic analysis results to the
AcousticBrainz [https://acousticbrainz.org] server.

Installation

The absubmit plugin requires the streaming_extractor_music [https://acousticbrainz.org/download] program to run. Its source can be found on GitHub [https://github.com/MTG/essentia], and while it is possible to compile the extractor from source, AcousticBrainz would prefer if you used their binary (see the AcousticBrainz FAQ [https://acousticbrainz.org/faq]).

The absubmit plugin also requires requests [https://docs.python-requests.org/en/master/], which you can install using pip [https://pip.pypa.io] by typing:

pip install requests

After installing both the extractor binary and requests you can enable the plugin absubmit in your configuration (see Using Plugins).

Submitting Data

Type:

beet absubmit [QUERY]

to run the analysis program and upload its results.

The plugin works on music with a MusicBrainz track ID attached. The plugin
will also skip music that the analysis tool doesn’t support.
streaming_extractor_music [https://acousticbrainz.org/download] currently supports files with the extensions
mp3, ogg, oga, flac, mp4, m4a, m4r, m4b,
m4p, aac, wma, asf, mpc, wv, spx, tta,
3g2, aif, aiff and ape.

Configuration

To configure the plugin, make a absubmit: section in your configuration file. The available options are:

	auto: Analyze every file on import. Otherwise, you need to use the beet absubmit command explicitly.
Default: no

	extractor: The absolute path to the streaming_extractor_music [https://acousticbrainz.org/download] binary.
Default: search for the program in your $PATH

AcousticBrainz Plugin

The acousticbrainz plugin gets acoustic-analysis information from the
AcousticBrainz [https://acousticbrainz.org/] project.

Enable the acousticbrainz plugin in your configuration (see Using Plugins) and run it by typing:

$ beet acousticbrainz [-f] [QUERY]

By default, the command will only look for AcousticBrainz data when the tracks
doesn’t already have it; the -f or --force switch makes it re-download
data even when it already exists. If you specify a query, only matching tracks
will be processed; otherwise, the command processes every track in your
library.

For all tracks with a MusicBrainz recording ID, the plugin currently sets
these fields:

	average_loudness

	bpm

	chords_changes_rate

	chords_key

	chords_number_rate

	chords_scale

	danceable

	gender

	genre_rosamerica

	initial_key (This is a built-in beets field, which can also be provided
by Key Finder Plugin.)

	key_strength

	mood_acoustic

	mood_aggressive

	mood_electronic

	mood_happy

	mood_party

	mood_relaxed

	mood_sad

	rhythm

	tonal

	voice_instrumental

Automatic Tagging

To automatically tag files using AcousticBrainz data during import, just
enable the acousticbrainz plugin (see Using Plugins). When importing
new files, beets will query the AcousticBrainz API using MBID and
set the appropriate metadata.

Configuration

To configure the plugin, make a acousticbrainz: section in your
configuration file. There are three options:

	auto: Enable AcousticBrainz during beet import.
Default: yes.

	force: Download AcousticBrainz data even for tracks that already have
it.
Default: no.

	tags: Which tags from the list above to set on your files.
Default: [] (all)

Bad Files Plugin

The badfiles plugin adds a beet bad command to check for missing and
corrupt files.

Configuring

First, enable the badfiles plugin (see Using Plugins). The default
configuration defines the following default checkers, which you may need to
install yourself:

	mp3val [http://mp3val.sourceforge.net/] for MP3 files

	FLAC [https://xiph.org/flac/] command-line tools for FLAC files

You can also add custom commands for a specific extension, like this:

badfiles:
 commands:
 ogg: myoggchecker --opt1 --opt2
 flac: flac --test --warnings-as-errors --silent

Custom commands will be run once for each file of the specified type, with the
path to the file as the last argument. Commands must return a status code
greater than zero for a file to be considered corrupt.

Using

Type beet bad with a query according to beets’ usual query syntax. For
instance, this will run a check on all songs containing the word “wolf”:

beet bad wolf

This one will run checks on a specific album:

beet bad album_id:1234

Here is an example where the FLAC decoder signals a corrupt file:

beet bad title::^$
/tank/Music/__/00.flac: command exited with status 1
 00.flac: *** Got error code 2:FLAC__STREAM_DECODER_ERROR_STATUS_FRAME_CRC_MISMATCH
 00.flac: ERROR while decoding data
 state = FLAC__STREAM_DECODER_READ_FRAME

Note that the default mp3val checker is a bit verbose and can output a lot
of “stream error” messages, even for files that play perfectly well.
Generally, if more than one stream error happens, or if a stream error happens
in the middle of a file, this is a bad sign.

By default, only errors for the bad files will be shown. In order for the
results for all of the checked files to be seen, including the uncorrupted
ones, use the -v or --verbose option.

Beatport Plugin

The beatport plugin adds support for querying the Beatport [https://beetport.com] catalogue
during the autotagging process. This can potentially be helpful for users
whose collection includes a lot of diverse electronic music releases, for which
both MusicBrainz and (to a lesser degree) Discogs show no matches.

Installation

To use the beatport plugin, first enable it in your configuration (see
Using Plugins). Then, install the requests [https://docs.python-requests.org/en/latest/] and requests_oauthlib [https://github.com/requests/requests-oauthlib]
libraries (which we need for querying and authorizing with the Beatport API)
by typing:

pip install requests requests_oauthlib

You will also need to register for a Beatport [https://beetport.com] account. The first time you
run the import command after enabling the plugin, it will ask you
to authorize with Beatport by visiting the site in a browser. On the site
you will be asked to enter your username and password to authorize beets
to query the Beatport API. You will then be displayed with a single line of
text that you should paste into your terminal. This will store the
authentication data for subsequent runs and you will not be required to
repeat the above steps.

Matches from Beatport should now show up alongside matches
from MusicBrainz and other sources.

If you have a Beatport ID or a URL for a release or track you want to tag, you
can just enter one of the two at the “enter Id” prompt in the importer.

BPD Plugin

BPD is a music player using music from a beets library. It runs as a daemon and
implements the MPD protocol, so it’s compatible with all the great MPD clients
out there. I’m using Theremin [https://theremin.sigterm.eu/], gmpc [https://gmpc.wikia.com/wiki/Gnome_Music_Player_Client], Sonata [http://sonata.berlios.de/], and Ario [http://ario-player.sourceforge.net/] successfully.

Dependencies

Before you can use BPD, you’ll need the media library called GStreamer (along
with its Python bindings) on your system.

	On Mac OS X, you can use Homebrew [https://brew.sh]. Run brew install gstreamer
gst-plugins-base pygobject3.

	On Linux, you need to install GStreamer 1.0 and the GObject bindings for
python. Under Ubuntu, they are called python-gi and gstreamer1.0.

	On Windows, you may want to try GStreamer WinBuilds [https://www.gstreamer-winbuild.ylatuya.es/] (caveat emptor: I
haven’t tried this).

You will also need the various GStreamer plugin packages to make everything
work. See the Chromaprint/Acoustid Plugin documentation for more information on
installing GStreamer plugins.

Usage

To use the bpd plugin, first enable it in your configuration (see
Using Plugins).
Then, you can run BPD by invoking:

$ beet bpd

Fire up your favorite MPD client to start playing music. The MPD site has a
long list of available clients [https://mpd.wikia.com/wiki/Clients]. Here are my favorites:

	Linux: gmpc [https://gmpc.wikia.com/wiki/Gnome_Music_Player_Client], Sonata [http://sonata.berlios.de/]

	Mac: Theremin [https://theremin.sigterm.eu/]

	Windows: I don’t know. Get in touch if you have a recommendation.

	iPhone/iPod touch: Rigelian [https://www.rigelian.net/]

One nice thing about MPD’s (and thus BPD’s) client-server architecture is that
the client can just as easily on a different computer from the server as it can
be run locally. Control your music from your laptop (or phone!) while it plays
on your headless server box. Rad!

Configuration

To configure the plugin, make a bpd: section in your configuration file.
The available options are:

	host:
Default: Bind to all interfaces.

	port:
Default: 6600

	password:
Default: No password.

	volume: Initial volume, as a percentage.
Default: 100

	control_port: Port for the internal control socket.
Default: 6601

Here’s an example:

bpd:
 host: 127.0.0.1
 port: 6600
 password: seekrit
 volume: 100

Implementation Notes

In the real MPD, the user can browse a music directory as it appears on disk.
In beets, we like to abstract away from the directory structure. Therefore, BPD
creates a “virtual” directory structure (artist/album/track) to present to
clients. This is static for now and cannot be reconfigured like the real
on-disk directory structure can. (Note that an obvious solution to this is just
string matching on items’ destination, but this requires examining the entire
library Python-side for every query.)

BPD plays music using GStreamer’s playbin player, which has a simple API
but doesn’t support many advanced playback features.

Differences from the real MPD

BPD currently supports version 0.16 of the MPD protocol [https://www.musicpd.org/doc/protocol/], but several of the
commands and features are “pretend” implementations or have slightly different
behaviour to their MPD equivalents. BPD aims to look enough like MPD that it
can interact with the ecosystem of clients, but doesn’t try to be
a fully-fledged MPD replacement in terms of its playback capabilities.

These are some of the known differences between BPD and MPD:

	BPD doesn’t currently support versioned playlists. Many clients, however, use
plchanges instead of playlistinfo to get the current playlist, so plchanges
contains a dummy implementation that just calls playlistinfo.

	Stored playlists aren’t supported (BPD understands the commands though).

	The stats command always send zero for playtime, which is supposed to
indicate the amount of time the server has spent playing music. BPD doesn’t
currently keep track of this.

	The update command regenerates the directory tree from the beets database
synchronously, whereas MPD does this in the background.

	Advanced playback features like cross-fade, ReplayGain and MixRamp are not
supported due to BPD’s simple audio player backend.

	Advanced query syntax is not currently supported.

	Clients can’t use the tagtypes mask to hide fields.

	BPD’s random mode is not deterministic and doesn’t support priorities.

	Mounts and streams are not supported. BPD can only play files from disk.

	Stickers are not supported (although this is basically a flexattr in beets
nomenclature so this is feasible to add).

	There is only a single password, and is enabled it grants access to all
features rather than having permissions-based granularity.

	Partitions and alternative outputs are not supported; BPD can only play one
song at a time.

	Client channels are not implemented.

BPM Plugin

This bpm plugin lets you to get the tempo (beats per minute) of a song by
tapping out the beat on your keyboard.

Usage

To use the bpm plugin, first enable it in your configuration (see
Using Plugins).

Then, play a song you want to measure in your favorite media player and type:

beet bpm <song>

You’ll be prompted to press Enter three times to the rhythm. This typically
allows to determine the BPM within 5% accuracy.

The plugin works best if you wrap it in a script that gets the playing song.
for instance, with mpc you can do something like:

beet bpm $(mpc |head -1|tr -d "-")

If import.write is yes, the song’s tags are
written to disk.

Configuration

To configure the plugin, make a bpm: section in your configuration file.
The available options are:

	max_strokes: The maximum number of strokes to accept when tapping out the
BPM.
Default: 3.

	overwrite: Overwrite the track’s existing BPM.
Default: yes.

Credit

This plugin is inspired by a similar feature present in the Banshee media
player.

Bucket Plugin

The bucket plugin groups your files into buckets folders representing
ranges. This kind of organization can classify your music by periods of time
(e.g,. 1960s, 1970s, etc.), or divide overwhelmingly large folders into
smaller subfolders by grouping albums or artists alphabetically (e.g. A-F,
G-M, N-Z).

To use the bucket plugin, first enable it in your configuration (see
Using Plugins).
The plugin provides a template function called %bucket for use in path format expressions:

paths:
 default: /%bucket{$year}/%bucket{$artist}/$albumartist-$album-$year

Then, define your ranges in the bucket: section of the config file:

bucket:
 bucket_alpha: ['A-F', 'G-M', 'N-Z']
 bucket_year: ['1980s', '1990s', '2000s']

The bucket_year parameter is used for all substitutions occurring on the
$year field, while bucket_alpha takes care of textual fields.

The definition of a range is somewhat loose, and multiple formats are allowed:

	For alpha ranges: the range is defined by the lowest and highest (ASCII-wise)
alphanumeric characters in the string you provide. For example, ABCD,
A-D, A->D, and [AD] are all equivalent.

	For year ranges: digits characters are extracted and the two extreme years
define the range. For example, 1975-77, 1975,76,77 and 1975-1977 are
equivalent. If no upper bound is given, the range is extended to current year
(unless a later range is defined). For example, 1975 encompasses all years
from 1975 until now.

The %bucket template function guesses whether to use alpha- or year-style
buckets depending on the text it receives. It can guess wrong if, for example,
an artist or album happens to begin with four digits. Provide alpha as the
second argument to the template to avoid this automatic detection: for
example, use %bucket{$artist,alpha}.

Configuration

To configure the plugin, make a bucket: section in your configuration file.
The available options are:

	bucket_alpha: Ranges to use for all substitutions occurring on textual
fields.
Default: none.

	bucket_alpha_regex: A range: regex mapping (one per line) where
range is one of the bucket_alpha ranges and value is a regex that
overrides original range definition.
Default: none.

	bucket_year: Ranges to use for all substitutions occurring on the
$year field.
Default: none.

	extrapolate: Enable this if you want to group your files into multiple
year ranges without enumerating them all. This option will generate year
bucket names by reproducing characteristics of declared buckets.
Default: no

Here’s an example:

bucket:
 bucket_year: ['2000-05']
 extrapolate: true
 bucket_alpha: ['A - D', 'E - L', 'M - R', 'S - Z']
 bucket_alpha_regex:
 'A - D': ^[0-9a-dA-D…äÄ]

This configuration creates five-year ranges for any input year.
The A - D bucket now matches also all artists starting with ä or Ä and 0 to 9
and … (ellipsis). The other alpha buckets work as ranges.

Chromaprint/Acoustid Plugin

Acoustic fingerprinting is a technique for identifying songs from the way they
“sound” rather from their existing metadata. That means that beets’ autotagger
can theoretically use fingerprinting to tag files that don’t have any ID3
information at all (or have completely incorrect data). This plugin uses an
open-source fingerprinting technology called Chromaprint [https://acoustid.org/chromaprint] and its associated
Web service, called Acoustid [https://acoustid.org/].

Turning on fingerprinting can increase the accuracy of the
autotagger—especially on files with very poor metadata—but it comes at a
cost. First, it can be trickier to set up than beets itself (you need to set up
the native fingerprinting library, whereas all of the beets core is written in
pure Python). Also, fingerprinting takes significantly more CPU and memory than
ordinary tagging—which means that imports will go substantially slower.

If you’re willing to pay the performance cost for fingerprinting, read on!

Installing Dependencies

To get fingerprinting working, you’ll need to install three things: the
Chromaprint [https://acoustid.org/chromaprint] library or command-line tool, an audio decoder, and the
pyacoustid [https://github.com/beetbox/pyacoustid] Python library (version 0.6 or later).

First, install pyacoustid itself. You can do this using pip [https://pip.pypa.io], like so:

$ pip install pyacoustid

Then, you will need to install Chromaprint [https://acoustid.org/chromaprint], either as a dynamic library or
in the form of a command-line tool (fpcalc).

Installing the Binary Command-Line Tool

The simplest way to get up and running, especially on Windows, is to
download [https://acoustid.org/chromaprint] the appropriate Chromaprint binary package and place the
fpcalc (or fpcalc.exe) on your shell search path. On Windows, this
means something like C:\\Program Files. On OS X or Linux, put the
executable somewhere like /usr/local/bin.

Installing the Library

On OS X and Linux, you can also use a library installed by your package
manager, which has some advantages (automatic upgrades, etc.). The Chromaprint
site has links to packages for major Linux distributions. If you use
Homebrew [https://brew.sh/] on Mac OS X, you can install the library with brew install
chromaprint.

You will also need a mechanism for decoding audio files supported by the
audioread [https://github.com/beetbox/audioread] library:

	OS X has a number of decoders already built into Core Audio, so there’s no
need to install anything.

	On Linux, you can install GStreamer [https://gstreamer.freedesktop.org/] with PyGObject [https://wiki.gnome.org/Projects/PyGObject], FFmpeg [https://ffmpeg.org/], or
MAD [https://spacepants.org/src/pymad/] with pymad [https://www.underbit.com/products/mad/]. How you install these will depend on your
distribution.
For example, on Ubuntu, run apt-get install gstreamer1.0 python-gi. On
Arch Linux, you want pacman -S gstreamer python2-gobject. If you use
GStreamer, be sure to install its codec plugins also (gst-plugins-good,
etc.).

Note that if you install beets in a virtualenv, you’ll need it to have
--system-site-packages enabled for Python to see the GStreamer bindings.

	On Windows, builds are provided by GStreamer [https://gstreamer.freedesktop.org/]

To decode audio formats (MP3, FLAC, etc.) with GStreamer, you’ll need the
standard set of Gstreamer plugins. For example, on Ubuntu, install the packages
gstreamer1.0-plugins-good, gstreamer1.0-plugins-bad, and
gstreamer1.0-plugins-ugly.

Usage

Once you have all the dependencies sorted out, enable the chroma plugin in
your configuration (see Using Plugins) to benefit from fingerprinting
the next time you run beet import.

You can also use the beet fingerprint command to generate fingerprints for
items already in your library. (Provide a query to fingerprint a subset of your
library.) The generated fingerprints will be stored in the library database.
If you have the import.write config option enabled, they will also be
written to files’ metadata.

Configuration

There is one configuration option in the chroma: section, auto, which
controls whether to fingerprint files during the import process. To disable
fingerprint-based autotagging, set it to no, like so:

chroma:
 auto: no

Submitting Fingerprints

You can help expand the Acoustid [https://acoustid.org/] database by submitting fingerprints for the
music in your collection. To do this, first get an API key [https://acoustid.org/api-key] from the Acoustid
service. Just use an OpenID or MusicBrainz account to log in and you’ll get a
short token string. Then, add the key to your config.yaml as the
value apikey in a section called acoustid like so:

acoustid:
 apikey: AbCd1234

Then, run beet submit. (You can also provide a query to submit a subset of
your library.) The command will use stored fingerprints if they’re available;
otherwise it will fingerprint each file before submitting it.

Convert Plugin

The convert plugin lets you convert parts of your collection to a
directory of your choice, transcoding audio and embedding album art along the
way. It can transcode to and from any format using a configurable command
line.

Installation

To use the convert plugin, first enable it in your configuration (see
Using Plugins). By default, the plugin depends on FFmpeg [https://ffmpeg.org] to
transcode the audio, so you might want to install it.

Usage

To convert a part of your collection, run beet convert QUERY. The
command will transcode all the files matching the query to the
destination directory given by the -d (--dest) option or the
dest configuration. The path layout mirrors that of your library,
but it may be customized through the paths configuration.

The plugin uses a command-line program to transcode the audio. With the
-f (--format) option you can choose the transcoding command
and customize the available commands
through the configuration.

Unless the -y (--yes) flag is set, the command will list all
the items to be converted and ask for your confirmation.

The -a (or --album) option causes the command
to match albums instead of tracks.

By default, the command places converted files into the destination directory
and leaves your library pristine. To instead back up your original files into
the destination directory and keep converted files in your library, use the
-k (or --keep-new) option.

To test your configuration without taking any actions, use the --pretend
flag. The plugin will print out the commands it will run instead of executing
them.

Configuration

To configure the plugin, make a convert: section in your configuration
file. The available options are:

	auto: Import transcoded versions of your files automatically during
imports. With this option enabled, the importer will transcode all (in the
default configuration) non-MP3 files over the maximum bitrate before adding
them to your library.
Default: no.

	tmpdir: The directory where temporary files will be stored during import.
Default: none (system default),

	copy_album_art: Copy album art when copying or transcoding albums matched
using the -a option. Default: no.

	album_art_maxwidth: Downscale album art if it’s too big. The resize
operation reduces image width to at most maxwidth pixels while
preserving the aspect ratio.

	dest: The directory where the files will be converted (or copied) to.
Default: none.

	embed: Embed album art in converted items. Default: yes.

	id3v23: Can be used to override the global id3v23 option. Default:
inherit.

	max_bitrate: All lossy files with a higher bitrate will be
transcoded and those with a lower bitrate will simply be copied. Note that
this does not guarantee that all converted files will have a lower
bitrate—that depends on the encoder and its configuration.
Default: none.

	no_convert: Does not transcode items matching provided query string
(see Queries). (i.e. format:AAC, format:WMA or
path::\.(m4a|wma)$)

	never_convert_lossy_files: Cross-conversions between lossy codecs—such
as mp3, ogg vorbis, etc.—makes little sense as they will decrease quality
even further. If set to yes, lossy files are always copied.
Default: no.

	paths: The directory structure and naming scheme for the converted
files. Uses the same format as the top-level paths section (see
Path Format Configuration).
Default: Reuse your top-level path format settings.

	quiet: Prevent the plugin from announcing every file it processes.
Default: false.

	threads: The number of threads to use for parallel encoding.
By default, the plugin will detect the number of processors available and use
them all.

You can also configure the format to use for transcoding (see the next
section):

	format: The name of the format to transcode to when none is specified on
the command line.
Default: mp3.

	formats: A set of formats and associated command lines for transcoding
each.

Configuring the transcoding command

You can customize the transcoding command through the formats map
and select a command with the --format command-line option or the
format configuration.

convert:
 format: speex
 formats:
 speex:
 command: ffmpeg -i $source -y -acodec speex $dest
 extension: spx
 wav: ffmpeg -i $source -y -acodec pcm_s16le $dest

In this example beet convert will use the speex command by
default. To convert the audio to wav, run beet convert -f wav.
This will also use the format key (wav) as the file extension.

Each entry in the formats map consists of a key (the name of the
format) as well as the command and optionally the file extension.
extension is the filename extension to be used for newly transcoded
files. If only the command is given as a string or the extension is not
provided, the file extension defaults to the format’s name. command is the
command to use to transcode audio. The tokens $source and $dest in the
command are replaced with the paths to the existing and new file.

The plugin in comes with default commands for the most common audio
formats: mp3, alac, flac, aac, opus, ogg, wmv. For
details have a look at the output of beet config -d.

For a one-command-fits-all solution use the convert.command and
convert.extension options. If these are set, the formats are ignored
and the given command is used for all conversions.

convert:
 command: ffmpeg -i $source -y -vn -aq 2 $dest
 extension: mp3

Gapless MP3 encoding

While FFmpeg cannot produce “gapless [https://wiki.hydrogenaud.io/index.php?title=Gapless_playback]” MP3s by itself, you can create them
by using LAME [https://lame.sourceforge.net/] directly. Use a shell script like this to pipe the output of
FFmpeg into the LAME tool:

#!/bin/sh
ffmpeg -i "$1" -f wav - | lame -V 2 --noreplaygain - "$2"

Then configure the convert plugin to use the script:

convert:
 command: /path/to/script.sh $source $dest
 extension: mp3

This strategy configures FFmpeg to produce a WAV file with an accurate length
header for LAME to use. Using --noreplaygain disables gain analysis; you
can use the ReplayGain Plugin to do this analysis. See the LAME
documentation [http://lame.sourceforge.net/using.php] and the HydrogenAudio wiki [https://wiki.hydrogenaud.io/index.php?title=LAME] for other LAME configuration
options and a thorough discussion of MP3 encoding.

Discogs Plugin

The discogs plugin extends the autotagger’s search capabilities to
include matches from the Discogs [https://discogs.com] database.

Installation

To use the discogs plugin, first enable it in your configuration (see
Using Plugins). Then, install the discogs-client [https://github.com/discogs/discogs_client] library by typing:

pip install discogs-client

You will also need to register for a Discogs [https://discogs.com] account, and provide
authentication credentials via a personal access token or an OAuth2
authorization.

Matches from Discogs will now show up during import alongside matches from
MusicBrainz.

If you have a Discogs ID for an album you want to tag, you can also enter it
at the “enter Id” prompt in the importer.

OAuth Authorization

The first time you run the import command after enabling the plugin,
it will ask you to authorize with Discogs by visiting the site in a browser.
Subsequent runs will not require re-authorization.

Authentication via Personal Access Token

As an alternative to OAuth, you can get a token from Discogs and add it to
your configuration.
To get a personal access token (called a “user token” in the discogs-client [https://github.com/discogs/discogs_client]
documentation), login to Discogs [https://discogs.com], and visit the
Developer settings page [https://www.discogs.com/settings/developers]. Press the Generate new
token button, and place the generated token in your configuration, as the
user_token config option in the discogs section.

Troubleshooting

Several issues have been encountered with the Discogs API. If you have one,
please start by searching for a similar issue on the repo [https://github.com/beetbox/beets/issues?utf8=%E2%9C%93&q=is%3Aissue+discogs].

Here are two things you can try:

	Try deleting the token file (~/.config/beets/discogs_token.json by
default) to force re-authorization.

	Make sure that your system clock is accurate. The Discogs servers can reject
your request if your clock is too out of sync.

Duplicates Plugin

This plugin adds a new command, duplicates or dup, which finds
and lists duplicate tracks or albums in your collection.

Usage

To use the duplicates plugin, first enable it in your configuration (see
Using Plugins).

By default, the beet duplicates command lists the names of tracks
in your library that are duplicates. It assumes that Musicbrainz track
and album ids are unique to each track or album. That is, it lists
every track or album with an ID that has been seen before in the
library.
You can customize the output format, count the number of duplicate
tracks or albums, and list all tracks that have duplicates or just the
duplicates themselves via command-line switches

-h, --help show this help message and exit
-f FMT, --format=FMT print with custom format
-a, --album show duplicate albums instead of tracks
-c, --count count duplicate tracks or albums
-C PROG, --checksum=PROG
 report duplicates based on arbitrary command
-d, --delete delete items from library and disk
-F, --full show all versions of duplicate tracks or albums
-s, --strict report duplicates only if all attributes are set
-k, --key report duplicates based on keys (can be used multiple times)
-M, --merge merge duplicate items
-m DEST, --move=DEST move items to dest
-o DEST, --copy=DEST copy items to dest
-p, --path print paths for matched items or albums
-t TAG, --tag=TAG tag matched items with 'k=v' attribute

Configuration

To configure the plugin, make a duplicates: section in your configuration
file. The available options mirror the command-line options:

	album: List duplicate albums instead of tracks.
Default: no.

	checksum: Use an arbitrary command to compute a checksum
of items. This overrides the keys option the first time it is run;
however, because it caches the resulting checksum as flexattrs in the
database, you can use --key=name_of_the_checksumming_program
--key=any_other_keys (or set the keys configuration option) the second
time around.
Default: ffmpeg -i {file} -f crc -.

	copy: A destination base directory into which to copy matched
items.
Default: none (disabled).

	count: Print a count of duplicate tracks or albums in the format
$albumartist - $album - $title: $count (for tracks) or $albumartist -
$album: $count (for albums).
Default: no.

	delete: Removes matched items from the library and from the disk.
Default: no

	format: A specific format with which to print every track
or album. This uses the same template syntax as beets’
path formats. The usage is inspired by, and
therefore similar to, the list command.
Default: format_item

	full: List every track or album that has duplicates, not just the
duplicates themselves.
Default: no

	keys: Define in which track or album fields duplicates are to be
searched. By default, the plugin uses the musicbrainz track and album IDs for
this purpose. Using the keys option (as a YAML list in the configuration
file, or as space-delimited strings in the command-line), you can extend this
behavior to consider other attributes.
Default: [mb_trackid, mb_albumid]

	merge: Merge duplicate items by consolidating tracks and-or
metadata where possible.

	move: A destination base directory into which it will move matched
items.
Default: none (disabled).

	path: Output the path instead of metadata when listing duplicates.
Default: no.

	strict: Do not report duplicate matches if some of the
attributes are not defined (ie. null or empty).
Default: no

	tag: A key=value pair. The plugin will add a new key attribute
with value value as a flexattr to the database for duplicate items.
Default: no.

	tiebreak: Dictionary of lists of attributes keyed by items
or albums to use when choosing duplicates. By default, the
tie-breaking procedure favors the most complete metadata attribute
set. If you would like to consider the lower bitrates as duplicates,
for example, set tiebreak: items: [bitrate].
Default: {}.

Examples

List all duplicate tracks in your collection:

beet duplicates

List all duplicate tracks from 2008:

beet duplicates year:2008

Print out a unicode histogram of duplicate track years using spark [https://github.com/holman/spark]:

beet duplicates -f '$year' | spark
▆▁▆█▄▇▇▄▇▇▁█▇▆▇▂▄█▁██▂█▁▁██▁█▂▇▆▂▇█▇▇█▆▆▇█▇█▇▆██▂▇

Print out a listing of all albums with duplicate tracks, and respective
counts:

beet duplicates -ac

The same as the above but include the original album, and show the path:

beet duplicates -acf '$path'

Get tracks with the same title, artist, and album:

beet duplicates -k title -k albumartist -k album

Compute Adler CRC32 or MD5 checksums, storing them as flexattrs, and report
back duplicates based on those values:

beet dup -C 'ffmpeg -i {file} -f crc -'
beet dup -C 'md5sum {file}'

Copy highly danceable items to party directory:

beet dup --copy /tmp/party

Move likely duplicates to trash directory:

beet dup --move ${HOME}/.Trash

Delete items (careful!), if they’re Nickelback:

beet duplicates --delete -k albumartist -k albumartist:nickelback

Tag duplicate items with some flag:

beet duplicates --tag dup=1

Ignore items with undefined keys:

beet duplicates --strict

Merge and delete duplicate albums with different missing tracks:

beet duplicates --album --merge --delete

Edit Plugin

The edit plugin lets you modify music metadata using your favorite text
editor.

Enable the edit plugin in your configuration (see Using Plugins) and
then type:

beet edit QUERY

Your text editor (i.e., the command in your $EDITOR environment variable)
will open with a list of tracks to edit. Make your changes and exit your text
editor to apply them to your music.

Command-Line Options

The edit command has these command-line options:

	-a or --album: Edit albums instead of individual items.

	-f FIELD or --field FIELD: Specify an additional field to edit
(in addition to the defaults set in the configuration).

	--all: Edit all available fields.

Interactive Usage

The edit plugin can also be invoked during an import session. If enabled, it
adds two new options to the user prompt:

[A]pply, More candidates, Skip, Use as-is, as Tracks, Group albums, Enter search, enter Id, aBort, eDit, edit Candidates?

	eDit: use this option for using the original items’ metadata as the
starting point for your edits.

	edit Candidates: use this option for using a candidate’s metadata as the
starting point for your edits.

Please note that currently the interactive usage of the plugin will only allow
you to change the item-level fields. In case you need to edit the album-level
fields, the recommended approach is to invoke the plugin via the command line
in album mode (beet edit -a QUERY) after the import.

Also, please be aware that the edit Candidates choice can only be used with
the matches found during the initial search (and currently not supporting the
candidates found via the Enter search or enter Id choices). You might
find the --search-id SEARCH_ID import option useful for those
cases where you already have a specific candidate ID that you want to edit.

Configuration

To configure the plugin, make an edit: section in your configuration
file. The available options are:

	itemfields: A space-separated list of item fields to include in the
editor by default.
Default: track title artist album

	albumfields: The same when editing albums (with the -a option).
Default: album albumartist

EmbedArt Plugin

Typically, beets stores album art in a “file on the side”: along with each
album, there is a file (named “cover.jpg” by default) that stores the album art.
You might want to embed the album art directly into each file’s metadata. While
this will take more space than the external-file approach, it is necessary for
displaying album art in some media players (iPods, for example).

Embedding Art Automatically

To automatically embed discovered album art into imported files, just enable
the embedart plugin (see Plugins). You’ll also want to enable the
FetchArt Plugin to obtain the images to be embedded. Art will be
embedded after each album has its cover art set.

This behavior can be disabled with the auto config option (see below).

Image Similarity

When importing a lot of files with the auto option, one may be reluctant to
overwrite existing embedded art for all of them.

You can tell beets to avoid embedding images that are too different from the
existing ones.
This works by computing the perceptual hashes (PHASH [http://www.fmwconcepts.com/misc_tests/perceptual_hash_test_results_510/]) of the two images and
checking that the difference between the two does not exceed a
threshold. You can set the threshold with the compare_threshold option.

A threshold of 0 (the default) disables similarity checking and always embeds
new images. Set the threshold to another number—we recommend between 10 and
100—to adjust the sensitivity of the comparison. The smaller the threshold
number, the more similar the images must be.

This feature requires ImageMagick [https://www.imagemagick.org/].

Configuration

To configure the plugin, make an embedart: section in your configuration
file. The available options are:

	auto: Enable automatic album art embedding.
Default: yes.

	compare_threshold: How similar candidate art must be to
existing art to be written to the file (see Image Similarity).
Default: 0 (disabled).

	ifempty: Avoid embedding album art for files that already have art
embedded.
Default: no.

	maxwidth: A maximum width to downscale images before embedding
them (the original image file is not altered). The resize operation reduces
image width to at most maxwidth pixels. The height is recomputed so that
the aspect ratio is preserved. See also Image Resizing for further
caveats about image resizing.
Default: 0 (disabled).

	remove_art_file: Automatically remove the album art file for the album
after it has been embedded. This option is best used alongside the
FetchArt plugin to download art with the purpose of
directly embedding it into the file’s metadata without an “intermediate”
album art file.
Default: no.

Note: compare_threshold option requires ImageMagick [https://www.imagemagick.org/], and maxwidth
requires either ImageMagick [https://www.imagemagick.org/] or Pillow [https://github.com/python-pillow/Pillow].

Manually Embedding and Extracting Art

The embedart plugin provides a couple of commands for manually managing
embedded album art:

	beet embedart [-f IMAGE] QUERY: embed images into the every track on the
albums matching the query. If the -f (--file) option is given, then
use a specific image file from the filesystem; otherwise, each album embeds
its own currently associated album art. The command prompts for confirmation
before making the change unless you specify the -y (--yes) option.

	beet extractart [-a] [-n FILE] QUERY: extracts the images for all albums
matching the query. The images are placed inside the album folder. You can
specify the destination file name using the -n option, but leave off the
extension: it will be chosen automatically. The destination filename is
specified using the art_filename configuration option. It defaults to
cover if it’s not specified via -o nor the config.
Using -a, the extracted image files are automatically associated with the
corresponding album.

	beet extractart -o FILE QUERY: extracts the image from an item matching
the query and stores it in a file. You have to specify the destination file
using the -o option, but leave off the extension: it will be chosen
automatically.

	beet clearart QUERY: removes all embedded images from all items matching
the query. The command prompts for confirmation before making the change
unless you specify the -y (--yes) option.

EmbyUpdate Plugin

embyupdate is a plugin that lets you automatically update Emby [https://emby.media/]’s library whenever you change your beets library.

To use embyupdate plugin, enable it in your configuration (see Using Plugins). Then, you’ll want to configure the specifics of your Emby server. You can do that using an emby: section in your config.yaml, which looks like this:

emby:
 host: localhost
 port: 8096
 username: user
 apikey: apikey

To use the embyupdate plugin you need to install the requests [https://docs.python-requests.org/en/latest/] library with:

pip install requests

With that all in place, you’ll see beets send the “update” command to your Emby server every time you change your beets library.

Configuration

The available options under the emby: section are:

	host: The Emby server host. You also can include http:// or https://.
Default: localhost

	port: The Emby server port.
Default: 8096

	username: A username of a Emby user that is allowed to refresh the library.

	apikey: An Emby API key for the user.

	password: The password for the user. (This is only necessary if no API
key is provided.)

You can choose to authenticate either with apikey or password, but only
one of those two is required.

Export Plugin

The export plugin lets you get data from the items and export the content
as JSON [https://www.json.org].

Enable the export plugin (see Using Plugins for help). Then, type beet export followed by a query to get the data from
your library. For example, run this:

$ beet export beatles

to print a JSON file containing information about your Beatles tracks.

Command-Line Options

The export command has these command-line options:

	--include-keys or -i: Choose the properties to include in the output
data. The argument is a comma-separated list of simple glob patterns where
* matches any string. For example:

$ beet export -i 'title,mb*' beatles

will include the title property and all properties starting with
mb. You can add the -i option multiple times to the command
line.

	--library or -l: Show data from the library database instead of the
files’ tags.

	--output or -o: Path for an output file. If not informed, will print
the data in the console.

	--append: Appends the data to the file instead of writing.

Configuration

To configure the plugin, make a export: section in your configuration
file. Under the json key, these options are available:

	ensure_ascii: Escape non-ASCII characters with \uXXXX entities.

	indent: The number of spaces for indentation.

	separators: A [item_separator, dict_separator] tuple.

	sort_keys: Sorts the keys in JSON dictionaries.

These options match the options from the Python json module [https://docs.python.org/2/library/json.html#basic-usage].

The default options look like this:

export:
 json:
 formatting:
 ensure_ascii: False
 indent: 4
 separators: [',' , ': ']
 sort_keys: true

FetchArt Plugin

The fetchart plugin retrieves album art images from various sources on the
Web and stores them as image files.

To use the fetchart plugin, first enable it in your configuration (see
Using Plugins). Then, install the requests [https://docs.python-requests.org/en/latest/] library by typing:

pip install requests

The plugin uses requests [https://docs.python-requests.org/en/latest/] to fetch album art from the Web.

Fetching Album Art During Import

When the plugin is enabled, it automatically tries to get album art for every
album you import.

By default, beets stores album art image files alongside the music files for an
album in a file called cover.jpg. To customize the name of this file, use
the art_filename config option. To embed the art into the files’ tags,
use the EmbedArt Plugin. (You’ll want to have both plugins enabled.)

Configuration

To configure the plugin, make a fetchart: section in your configuration
file. The available options are:

	auto: Enable automatic album art fetching during import.
Default: yes.

	cautious: Pick only trusted album art by ignoring filenames that do not
contain one of the keywords in cover_names.
Default: no.

	cover_names: Prioritize images containing words in this list.
Default: cover front art album folder.

	minwidth: Only images with a width bigger or equal to minwidth are
considered as valid album art candidates. Default: 0.

	maxwidth: A maximum image width to downscale fetched images if they are
too big. The resize operation reduces image width to at most maxwidth
pixels. The height is recomputed so that the aspect ratio is preserved.

	enforce_ratio: Only images with a width:height ratio of 1:1 are
considered as valid album art candidates if set to yes.
It is also possible to specify a certain deviation to the exact ratio to
still be considered valid. This can be done either in pixels
(enforce_ratio: 10px) or as a percentage of the longer edge
(enforce_ratio: 0.5%). Default: no.

	sources: List of sources to search for images. An asterisk * expands
to all available sources.
Default: filesystem coverart itunes amazon albumart, i.e., everything but
wikipedia, google and fanarttv. Enable those sources for more
matches at the cost of some speed. They are searched in the given order,
thus in the default config, no remote (Web) art source are queried if
local art is found in the filesystem. To use a local image as fallback,
move it to the end of the list. For even more fine-grained control over
the search order, see the section on Album Art Sources below.

	google_key: Your Google API key (to enable the Google Custom Search
backend).
Default: None.

	google_engine: The custom search engine to use.
Default: The beets custom search engine [https://cse.google.com.au:443/cse/publicurl?cx=001442825323518660753:hrh5ch1gjzm], which searches the entire web.

	fanarttv_key: The personal API key for requesting art from
fanart.tv. See below.

	store_source: If enabled, fetchart stores the artwork’s source in a
flexible tag named art_source. See below for the rationale behind this.
Default: no.

Note: maxwidth and enforce_ratio options require either ImageMagick [https://www.imagemagick.org/]
or Pillow [https://github.com/python-pillow/Pillow].

Note

Previously, there was a remote_priority option to specify when to
look for art on the filesystem. This is
still respected, but a deprecation message will be shown until you
replace this configuration with the new filesystem value in the
sources array.

Here’s an example that makes plugin select only images that contain front or
back keywords in their filenames and prioritizes the iTunes source over
others:

fetchart:
 cautious: true
 cover_names: front back
 sources: itunes *

Manually Fetching Album Art

Use the fetchart command to download album art after albums have already
been imported:

$ beet fetchart [-f] [query]

By default, the command will only look for album art when the album doesn’t
already have it; the -f or --force switch makes it search for art
in Web databases regardless. If you specify a query, only matching albums will
be processed; otherwise, the command processes every album in your library.

Display Only Missing Album Art

Use the fetchart command with the -q switch in order to display only missing
art:

$ beet fetchart [-q] [query]

By default the command will display all results, the -q or --quiet
switch will only display results for album arts that are still missing.

Image Resizing

Beets can resize images using Pillow [https://github.com/python-pillow/Pillow], ImageMagick [https://www.imagemagick.org/], or a server-side resizing
proxy. If either Pillow or ImageMagick is installed, beets will use those;
otherwise, it falls back to the resizing proxy. If the resizing proxy is used,
no resizing is performed for album art found on the filesystem—only downloaded
art is resized. Server-side resizing can also be slower than local resizing, so
consider installing one of the two backends for better performance.

When using ImageMagick, beets looks for the convert executable in your path.
On some versions of Windows, the program can be shadowed by a system-provided
convert.exe. On these systems, you may need to modify your %PATH%
environment variable so that ImageMagick comes first or use Pillow instead.

Album Art Sources

By default, this plugin searches for art in the local filesystem as well as on
the Cover Art Archive, the iTunes Store, Amazon, and AlbumArt.org, in that
order.
You can reorder the sources or remove
some to speed up the process using the sources configuration option.

When looking for local album art, beets checks for image files located in the
same folder as the music files you’re importing. Beets prefers to use an image
file whose name contains “cover”, “front”, “art”, “album” or “folder”, but in
the absence of well-known names, it will use any image file in the same folder
as your music files.

For some of the art sources, the backend service can match artwork by various
criteria. If you want finer control over the search order in such cases, you
can use this alternative syntax for the sources option:

fetchart:
 sources:
 - filesystem
 - coverart: release
 - itunes
 - coverart: releasegroup
 - '*'

where listing a source without matching criteria will default to trying all
available strategies. Entries of the forms coverart: release releasegroup
and coverart: * are also valid.
Currently, only the coverart source supports multiple criteria:
namely, release and releasegroup, which refer to the
respective MusicBrainz IDs.

When you choose to apply changes during an import, beets will search for art as
described above. For “as-is” imports (and non-autotagged imports using the
-A flag), beets only looks for art on the local filesystem.

Google custom search

To use the google image search backend you need to
register for a Google API key [https://console.developers.google.com.]. Set the google_key configuration
option to your key, then add google to the list of sources in your
configuration.

Optionally, you can define a custom search engine [https://www.google.com/cse/all]. Get your search engine’s
token and use it for your google_engine configuration option. The
default engine searches the entire web for cover art.

Note that the Google custom search API is limited to 100 queries per day.
After that, the fetchart plugin will fall back on other declared data sources.

Fanart.tv

Although not strictly necessary right now, you might think about
registering a personal fanart.tv API key [https://fanart.tv/get-an-api-key/]. Set the fanarttv_key
configuration option to your key, then add fanarttv to the list of sources
in your configuration.

More detailed information can be found on their blog [https://fanart.tv/2015/01/personal-api-keys/]. Specifically, the
personal key will give you earlier access to new art.

Storing the Artwork’s Source

Storing the current artwork’s source might be used to narrow down
fetchart commands. For example, if some albums have artwork placed
manually in their directories that should not be replaced by a forced
album art fetch, you could do

beet fetchart -f ^art_source:filesystem

The values written to art_source are the same names used in the sources
configuration value.

FileFilter Plugin

The filefilter plugin allows you to skip files during import using
regular expressions.

To use the filefilter plugin, enable it in your configuration (see
Using Plugins).

Configuration

To configure the plugin, make a filefilter: section in your
configuration file. The available options are:

	path: A regular expression to filter files based on their path and name.
Default: .* (import everything)

	album_path and singleton_path: You may specify different regular
expressions used for imports of albums and singletons. This way, you can
automatically skip singletons when importing albums if the names (and paths)
of the files are distinguishable via a regex. The regexes defined here
take precedence over the global path option.

Here’s an example:

filefilter:
 path: .*\d\d[^/]+$
 # will only import files which names start with two digits
 album_path: .*\d\d[^/]+$
 singleton_path: .*/(?!\d\d)[^/]+$

Freedesktop Plugin

The freedesktop plugin created .directory files in your album folders.
This plugin is now deprecated and replaced by the Thumbnails Plugin
with the dolphin option enabled.

FromFilename Plugin

The fromfilename plugin helps to tag albums that are missing tags
altogether but where the filenames contain useful information like the artist
and title.

When you attempt to import a track that’s missing a title, this plugin will
look at the track’s filename and guess its track number, title, and artist.
These will be used to search in MusicBrainz and match track ordering.

To use the fromfilename plugin, enable it in your configuration
(see Using Plugins).

FtInTitle Plugin

The ftintitle plugin automatically moves “featured” artists from the
artist field to the title field.

According to MusicBrainz style [https://musicbrainz.org/doc/Style], featured artists are part of the artist
field. That means that, if you tag your music using MusicBrainz, you’ll have
tracks in your library like “Tellin’ Me Things” by the artist “Blakroc feat.
RZA”. If you prefer to tag this as “Tellin’ Me Things feat. RZA” by “Blakroc”,
then this plugin is for you.

To use the ftintitle plugin, enable it in your configuration
(see Using Plugins).

Configuration

To configure the plugin, make a ftintitle: section in your configuration
file. The available options are:

	auto: Enable metadata rewriting during import.
Default: yes.

	drop: Remove featured artists entirely instead of adding them to the
title field.
Default: no.

	format: Defines the format for the featuring X part of the new title field.
In this format the {0} is used to define where the featured artists are placed.
Default: feat. {0}

Running Manually

From the command line, type:

$ beet ftintitle [QUERY]

The query is optional; if it’s left off, the transformation will be applied to
your entire collection.

Use the -d flag to remove featured artists (equivalent of the drop
config option).

Fuzzy Search Plugin

The fuzzy plugin provides a prefixed query that searches your library using
fuzzy pattern matching. This can be useful if you want to find a track with
complicated characters in the title.

First, enable the plugin named fuzzy (see Using Plugins).
You’ll then be able to use the ~ prefix to use fuzzy matching:

$ beet ls '~Vareoldur'
Sigur Rós - Valtari - Varðeldur

Configuration

To configure the plugin, make a fuzzy: section in your configuration
file. The available options are:

	threshold: The “sensitivity” of the fuzzy match. A value of 1.0 will
show only perfect matches and a value of 0.0 will match everything.
Default: 0.7.

	prefix: The character used to designate fuzzy queries.
Default: ~, which may need to be escaped in some shells.

Gmusic Plugin

The gmusic plugin lets you upload songs to Google Play Music and query
songs in your library.

Installation

The plugin requires gmusicapi [https://pypi.org/project/gmusicapi/]. You can install it using pip:

pip install gmusicapi

Then, you can enable the gmusic plugin in your configuration (see
Using Plugins).

Usage

Configuration is required before use. Below is an example configuration:

gmusic:
 email: user@example.com
 password: seekrit
 auto: yes
 uploader_id: 00:11:22:33:AA:BB
 device_id: 00112233AABB
 oauth_file: ~/.config/beets/oauth.cred

To upload tracks to Google Play Music, use the gmusic-upload command:

beet gmusic-upload [QUERY]

If you don’t include a query, the plugin will upload your entire collection.

To list your music collection, use the gmusic-songs command:

beet gmusic-songs [-at] [ARGS]

Use the -a option to search by artist and -t to search by track. For
example:

beet gmusic-songs -a John Frusciante
beet gmusic-songs -t Black Hole Sun

For a list of all songs in your library, run beet gmusic-songs without any
arguments.

Configuration

To configure the plugin, make a gmusic: section in your configuration file.
The available options are:

	email: Your Google account email address.
Default: none.

	password: Password to your Google account. Required to query songs in
your collection.
For accounts with 2-step-verification, an
app password [https://support.google.com/accounts/answer/185833?hl=en]
will need to be generated. An app password for an account without
2-step-verification is not required but is recommended.
Default: none.

	auto: Set to yes to automatically upload new imports to Google Play
Music.
Default: no

	uploader_id: Unique id as a MAC address, eg 00:11:22:33:AA:BB.
This option should be set before the maximum number of authorized devices is
reached.
If provided, use the same id for all future runs on this, and other, beets
installations as to not reach the maximum number of authorized devices.
Default: device’s MAC address.

	device_id: Unique device ID for authorized devices. It is usually
the same as your MAC address with the colons removed, eg 00112233AABB.
This option only needs to be set if you receive an InvalidDeviceId
exception. Below the exception will be a list of valid device IDs.
Default: none.

	oauth_file: Filepath for oauth credentials file.
Default: {user_data_dir} [https://pypi.org/project/appdirs/]/gmusicapi/oauth.cred

Refer to the Google Play Music Help [https://support.google.com/googleplaymusic/answer/3139562?hl=en]
page for more details on authorized devices.

Hook Plugin

Internally, beets uses events to tell plugins when something happens. For
example, one event fires when the importer finishes processes a song, and
another triggers just before the beet command exits.
The hook plugin lets you run commands in response to these events.

Configuration

To configure the plugin, make a hook section in your configuration
file. The available options are:

	hooks: A list of events and the commands to run
(see Configuring Each Hook). Default: Empty.

Configuring Each Hook

Each element under hooks should have these keys:

	event: The name of the event that will trigger this hook.
See the plugin events documentation for a list
of possible values.

	command: The command to run when this hook executes.

Command Substitution

Commands can access the parameters of events using Python string
formatting [https://www.python.org/dev/peps/pep-3101/]. Use {name} in your command and the plugin will substitute it
with the named value. The name can also refer to a field, as in
{album.path}.

You can find a list of all available events and their arguments in the
plugin events documentation.

Example Configuration

hook:
 hooks:
 # Output on exit:
 # beets just exited!
 # have a nice day!
 - event: cli_exit
 command: echo "beets just exited!"
 - event: cli_exit
 command: echo "have a nice day!"

 # Output on item import:
 # importing "<file_name_here>"
 # Where <file_name_here> is the item being imported
 - event: item_imported
 command: echo "importing \"{item.path}\""

 # Output on write:
 # writing to "<file_name_here>"
 # Where <file_name_here> is the file being written to
 - event: write
 command: echo "writing to {path}"

IHate Plugin

The ihate plugin allows you to automatically skip things you hate during
import or warn you about them. You specify queries (see
Queries) and the plugin skips (or warns about) albums or items
that match any query.

To use the ihate plugin, enable it in your configuration (see
Using Plugins).

Configuration

To configure the plugin, make an ihate: section in your configuration
file. The available options are:

	skip: Never import items and albums that match a query in this list.
Default: [] (empty list).

	warn: Print a warning message for matches in this list of queries.
Default: [].

Here’s an example:

ihate:
 warn:
 - artist:rnb
 - genre:soul
 # Only warn about tribute albums in rock genre.
 - genre:rock album:tribute
 skip:
 - genre::russian\srock
 - genre:polka
 - artist:manowar
 - album:christmas

The plugin trusts your decision in “as-is” imports.

ImportAdded Plugin

The importadded plugin is useful when an existing collection is imported
and the time when albums and items were added should be preserved.

To use the importadded plugin, enable it in your configuration (see
Using Plugins).

Usage

The mtime of files that are imported into the
library are assumed to represent the time when the items were originally
added.

The item.added field is populated as follows:

	For singleton items with no album, item.added is set to the item’s file
mtime before it was imported.

	For items that are part of an album, album.added and item.added are
set to the oldest mtime of the files in the album before they were imported.
The mtime of album directories is ignored.

This plugin can optionally be configured to also preserve mtimes at
import using the preserve_mtimes option.

When preserve_write_mtimes option is set, this plugin preserves
mtimes after each write to files using the item.added attribute.

File modification times are preserved as follows:

	For all items:

	item.mtime is set to the mtime of the file
from which the item is imported from.

	The mtime of the file item.path is set to item.mtime.

Note that there is no album.mtime field in the database and that the mtime
of album directories on disk aren’t preserved.

Configuration

To configure the plugin, make an importadded: section in your
configuration file. There are two options available:

	preserve_mtimes: After importing files, re-set their mtimes to their
original value.
Default: no.

	preserve_write_mtimes: After writing files, re-set their mtimes to their
original value.
Default: no.

Reimport

This plugin will skip reimported singleton items and reimported albums and all
of their items.

ImportFeeds Plugin

This plugin helps you keep track of newly imported music in your library.

To use the importfeeds plugin, enable it in your configuration
(see Using Plugins).

Configuration

To configure the plugin, make an importfeeds: section in your
configuration file. The available options are:

	absolute_path: Use absolute paths instead of relative paths. Some
applications may need this to work properly.
Default: no.

	dir: The output directory.
Default: Your beets library directory.

	formats: Select the kind of output. Use one or more of:

	m3u: Catalog the imports in a centralized playlist.

	m3u_multi: Create a new playlist for each import (uniquely named by
appending the date and track/album name).

	link: Create a symlink for each imported item. This is the
recommended setting to propagate beets imports to your iTunes library:
just drag and drop the dir folder on the iTunes dock icon.

	echo: Do not write a playlist file at all, but echo a list of new
file paths to the terminal.

Default: None.

	m3u_name: Playlist name used by the m3u format.
Default: imported.m3u.

	relative_to: Make the m3u paths relative to another
folder than where the playlist is being written. If you’re using importfeeds
to generate a playlist for MPD, you should set this to the root of your music
library.
Default: None.

Here’s an example configuration for this plugin:

importfeeds:
 formats: m3u link
 dir: ~/imports/
 relative_to: ~/Music/
 m3u_name: newfiles.m3u

Info Plugin

The info plugin provides a command that dumps the current tag values for
any file format supported by beets. It works like a supercharged version of
mp3info [https://www.ibiblio.org/mp3info/] or id3v2 [http://id3v2.sourceforge.net].

Enable the info plugin in your configuration (see Using Plugins) and
then type:

$ beet info /path/to/music.flac

and the plugin will enumerate all the tags in the specified file. It also
accepts multiple filenames in a single command-line.

You can also enter a query to inspect music from
your library:

$ beet info beatles

If you just want to see specific properties you can use the
--include-keys option to filter them. The argument is a
comma-separated list of simple glob patterns where * matches any
string. For example:

$ beet info -i 'title,mb*' beatles

Will only show the title property and all properties starting with
mb. You can add the -i option multiple times to the command
line.

Additional command-line options include:

	--library or -l: Show data from the library database instead of the
files’ tags.

	--summarize or -s: Merge all the information from multiple files
into a single list of values. If the tags differ across the files, print
[various].

	--format or -f: Specify a specific format with which to print every
item. This uses the same template syntax as beets’ path formats.

	--keys-only or -k: Show the name of the tags without the values.

Inline Plugin

The inline plugin lets you use Python to customize your path formats. Using
it, you can define template fields in your beets configuration file and refer
to them from your template strings in the paths: section (see
Configuration).

To use the inline plugin, enable it in your configuration
(see Using Plugins).
Then, make a item_fields: block in your config file. Under this key, every line defines a
new template field; the key is the name of the field (you’ll use the name to
refer to the field in your templates) and the value is a Python expression or
function body. The Python code has all of a track’s fields in scope, so you can
refer to any normal attributes (such as artist or title) as Python
variables.

Here are a couple of examples of expressions:

item_fields:
 initial: albumartist[0].upper() + u'.'
 disc_and_track: u'%02i.%02i' % (disc, track) if
 disctotal > 1 else u'%02i' % (track)

Note that YAML syntax allows newlines in values if the subsequent lines are
indented.

These examples define $initial and $disc_and_track fields that can be
referenced in path templates like so:

paths:
 default: $initial/$artist/$album%aunique{}/$disc_and_track $title

Block Definitions

If you need to use statements like import, you can write a Python function
body instead of a single expression. In this case, you’ll need to return
a result for the value of the path field, like so:

item_fields:
 filename: |
 import os
 from beets.util import bytestring_path
 return bytestring_path(os.path.basename(path))

You might want to use the YAML syntax for “block literals,” in which a leading
| character indicates a multi-line block of text.

Album Fields

The above examples define fields for item templates, but you can also define
fields for album templates. Use the album_fields configuration section.
In this context, all existing album fields are available as variables along
with items, which is a list of items in the album.

This example defines a $bitrate field for albums as the average of the
tracks’ fields:

album_fields:
 bitrate: |
 total = 0
 for item in items:
 total += item.bitrate
 return total / len(items)

IPFS Plugin

The ipfs plugin makes it easy to share your library and music with friends.
The plugin uses ipfs [https://ipfs.io/] for storing the library and file content.

Installation

This plugin requires go-ipfs [https://github.com/ipfs/go-ipfs] to be running as a daemon and that the
associated ipfs command is on the user’s $PATH.

Once you have the client installed, enable the ipfs plugin in your
configuration (see Using Plugins).

Usage

This plugin can store and retrieve music individually, or it can share entire
library databases.

Adding

To add albums to ipfs, making them shareable, use the -a or --add
flag. If used without arguments it will add all albums in the local library.
When added, all items and albums will get an “ipfs” field in the database
containing the hash of that specific file/folder. Newly imported albums will
be added automatically to ipfs by default (see below).

Retrieving

You can give the ipfs hash for some music to a friend. They can get that album
from ipfs, and import it into beets, using the -g or --get flag. If
the argument passed to the -g flag isn’t an ipfs hash, it will be used as
a query instead, getting all albums matching the query.

Sharing Libraries

Using the -p or --publish flag, a copy of the local library will be
published to ipfs. Only albums/items with ipfs records in the database will
published, and local paths will be stripped from the library. A hash of the
library will be returned to the user.

A friend can then import this remote library by using the -i or
--import flag. To tag an imported library with a specific name by passing
a name as the second argument to -i, after the hash. The content of all
remote libraries will be combined into an additional library as long as the
content doesn’t already exist in the joined library.

When remote libraries has been imported you can search them by using the
-l or --list flag. The hash of albums matching the query will be
returned, and this can then be used with -g to fetch and import the album
to the local library.

Ipfs can be mounted as a FUSE file system. This means that music in a remote
library can be streamed directly, without importing them to the local library
first. If the /ipfs folder is mounted then matching queries will be sent
to the Play Plugin using the -m or --play flag.

Configuration

The ipfs plugin will automatically add imported albums to ipfs and add those
hashes to the database. This can be turned off by setting the auto option
in the ipfs: section of the config to no.

If the setting nocopy is true (defaults false) then the plugin will pass the --nocopy option when adding things to ipfs. If the filestore option of ipfs is enabled this will mean files are neither removed from beets nor copied somewhere else.

Key Finder Plugin

The keyfinder plugin uses the KeyFinder [https://www.ibrahimshaath.co.uk/keyfinder/] program to detect the
musical key of track from its audio data and store it in the
initial_key field of your database. It does so
automatically when importing music or through the beet keyfinder
[QUERY] command.

To use the keyfinder plugin, enable it in your configuration (see
Using Plugins).

Configuration

To configure the plugin, make a keyfinder: section in your
configuration file. The available options are:

	auto: Analyze every file on
import. Otherwise, you need to use the beet keyfinder command
explicitly.
Default: yes

	bin: The name of the KeyFinder [https://www.ibrahimshaath.co.uk/keyfinder/] program on your system or
a path to the binary. If you installed the KeyFinder GUI on a Mac, for
example, you want something like
/Applications/KeyFinder.app/Contents/MacOS/KeyFinder.
Default: KeyFinder (i.e., search for the program in your $PATH)..

	overwrite: Calculate a key even for files that already have an
initial_key value.
Default: no.

KodiUpdate Plugin

The kodiupdate plugin lets you automatically update Kodi [https://kodi.tv/]’s music
library whenever you change your beets library.

To use kodiupdate plugin, enable it in your configuration
(see Using Plugins).
Then, you’ll want to configure the specifics of your Kodi host.
You can do that using a kodi: section in your config.yaml,
which looks like this:

kodi:
 host: localhost
 port: 8080
 user: kodi
 pwd: kodi

To use the kodiupdate plugin you need to install the requests [https://docs.python-requests.org/en/latest/] library with:

pip install requests

You’ll also need to enable JSON-RPC in Kodi in order the use the plugin.
In Kodi’s interface, navigate to System/Settings/Network/Services and choose “Allow control of Kodi via HTTP.”

With that all in place, you’ll see beets send the “update” command to your Kodi
host every time you change your beets library.

Configuration

The available options under the kodi: section are:

	host: The Kodi host name.
Default: localhost

	port: The Kodi host port.
Default: 8080

	user: The Kodi host user.
Default: kodi

	pwd: The Kodi host password.
Default: kodi

LastGenre Plugin

The MusicBrainz database does not contain genre information [https://musicbrainz.org/doc/General_FAQ#Why_does_MusicBrainz_not_support_genre_information.3F]. Therefore, when
importing and autotagging music, beets does not assign a genre. The
lastgenre plugin fetches tags from Last.fm [https://last.fm/] and assigns them as genres
to your albums and items.

Installation

The plugin requires pylast [https://github.com/pylast/pylast], which you can install using pip [https://pip.pypa.io] by typing:

pip install pylast

After you have pylast installed, enable the lastgenre plugin in your
configuration (see Using Plugins).

Usage

The plugin chooses genres based on a whitelist, meaning that only certain
tags can be considered genres. This way, tags like “my favorite music” or “seen
live” won’t be considered genres. The plugin ships with a fairly extensive
internal whitelist [https://raw.githubusercontent.com/beetbox/beets/master/beetsplug/lastgenre/genres.txt], but you can set your own in the config file using the
whitelist configuration value or forgo a whitelist altogether by setting
the option to false.

The genre list file should contain one genre per line. Blank lines are ignored.
For the curious, the default genre list is generated by a script that scrapes
Wikipedia [https://gist.github.com/1241307].

Canonicalization

The plugin can also canonicalize genres, meaning that more obscure genres can
be turned into coarser-grained ones that are present in the whitelist. This
works using a tree of nested genre names [https://raw.githubusercontent.com/beetbox/beets/master/beetsplug/lastgenre/genres-tree.yaml], represented using YAML [https://www.yaml.org/], where the
leaves of the tree represent the most specific genres.

The most common way to use this would be with a custom whitelist containing only
a desired subset of genres. Consider for a example this minimal whitelist:

rock
heavy metal
pop

together with the default genre tree. Then an item that has its genre specified
as viking metal would actually be tagged as heavy metal because neither
viking metal nor its parent black metal are in the whitelist. It always
tries to use the most specific genre that’s available in the whitelist.

The relevant subtree path in the default tree looks like this:

- rock:
 - heavy metal:
 - black metal:
 - viking metal

Considering that, it’s not very useful to use the default whitelist (which
contains about any genre contained in the tree) with canonicalization because
nothing would ever be matched to a more generic node since all the specific
subgenres are in the whitelist to begin with.

Genre Source

When looking up genres for albums or individual tracks, you can choose whether
to use Last.fm tags on the album, the artist, or the track. For example, you
might want all the albums for a certain artist to carry the same genre.
The default is “album”. When set to “track”, the plugin will fetch both
album-level and track-level genres for your music when importing albums.

Multiple Genres

By default, the plugin chooses the most popular tag on Last.fm as a genre. If
you prefer to use a list of popular genre tags, you can increase the number
of the count config option.

Lists of up to count genres will then be used instead of single genres. The
genres are separated by commas by default, but you can change this with the
separator config option.

Last.fm [https://last.fm/] provides a popularity factor, a.k.a. weight, for each tag ranging
from 100 for the most popular tag down to 0 for the least popular.
The plugin uses this weight to discard unpopular tags. The default is to
ignore tags with a weight less then 10. You can change this by setting
the min_weight config option.

Specific vs. Popular Genres

By default, the plugin sorts genres by popularity. However, you can use the
prefer_specific option to override this behavior and instead sort genres
by specificity, as determined by your whitelist and canonicalization tree.

For instance, say you have both folk and americana in your whitelist
and canonicalization tree and americana is a leaf within folk. If
Last.fm returns both of those tags, lastgenre is going to use the most
popular, which is often the most generic (in this case folk). By setting
prefer_specific to true, lastgenre would use americana instead.

Configuration

To configure the plugin, make a lastgenre: section in your
configuration file. The available options are:

	auto: Fetch genres automatically during import.
Default: yes.

	canonical: Use a canonicalization tree. Setting this to yes will use
a built-in tree. You can also set it to a path, like the whitelist
config value, to use your own tree.
Default: no (disabled).

	count: Number of genres to fetch.
Default: 1

	fallback: A string if to use a fallback genre when no genre is found.
You can use the empty string '' to reset the genre.
Default: None.

	force: By default, beets will always fetch new genres, even if the files
already have one. To instead leave genres in place in when they pass the
whitelist, set the force option to no.
Default: yes.

	min_weight: Minimum popularity factor below which genres are discarded.
Default: 10.

	prefer_specific: Sort genres by the most to least specific, rather than
most to least popular. Default: no.

	source: Which entity to look up in Last.fm. Can be
either artist, album or track.
Default: album.

	separator: A separator for multiple genres.
Default: ', '.

	whitelist: The filename of a custom genre list, yes to use
the internal whitelist, or no to consider all genres valid.
Default: yes.

Running Manually

In addition to running automatically on import, the plugin can also be run manually
from the command line. Use the command beet lastgenre [QUERY] to fetch
genres for albums or items matching a certain query.

By default, beet lastgenre matches albums. To match
individual tracks or singletons, use the -A switch:
beet lastgenre -A [QUERY].

To disable automatic genre fetching on import, set the auto config option
to false.

LastImport Plugin

The lastimport plugin downloads play-count data from your Last.fm [https://last.fm]
library into beets’ database. You can later create smart playlists by querying play_count and do other fun stuff
with this field.

Installation

The plugin requires pylast [https://github.com/pylast/pylast], which you can install using pip [https://pip.pypa.io] by typing:

pip install pylast

After you have pylast installed, enable the lastimport plugin in your
configuration (see Using Plugins).

Next, add your Last.fm username to your beets configuration file:

lastfm:
 user: beetsfanatic

Importing Play Counts

Simply run beet lastimport and wait for the plugin to request tracks from
Last.fm and match them to your beets library. (You will be notified of tracks
in your Last.fm profile that do not match any songs in your library.)

Then, your matched tracks will be populated with the play_count field,
which you can use in any query or template. For example:

$ beet ls -f '$title: $play_count' play_count:5..
Eple (Melody A.M.): 60

To see more information (namely, the specific play counts for matched tracks),
use the -v option.

Configuration

Aside from the required lastfm.user field, this plugin has some specific
options under the lastimport: section:

	per_page: The number of tracks to request from the API at once.
Default: 500.

	retry_limit: How many times should we re-send requests to Last.fm on
failure?
Default: 3.

By default, the plugin will use beets’s own Last.fm API key. You can also
override it with your own API key:

lastfm:
 api_key: your_api_key

Load Extension Plugin

Beets uses an SQLite database to store and query library information, which
has support for extensions to extend its functionality. The loadext plugin
lets you enable these SQLite extensions within beets.

One of the primary uses of this within beets is with the “ICU” extension [https://www.sqlite.org/src/dir?ci=7461d2e120f21493&name=ext/icu],
which adds support for case insensitive querying of non-ASCII characters.

Configuration

To configure the plugin, make a loadext section in your configuration
file. The section must consist of a list of paths to extensions to load, which
looks like this:

loadext:
 - libicu

If a relative path is specified, it is resolved relative to the beets
configuration directory.

If no file extension is specified, the default dynamic library extension for
the current platform will be used.

Building the ICU extension

This section is for advanced users only, and is not an in-depth guide on
building the extension.

To compile the ICU extension, you will need a few dependencies:

	gcc

	icu-devtools

	libicu

	libicu-dev

	libsqlite3-dev

Here’s roughly how to download, build and install the extension (although the
specifics may vary from system to system):

$ wget https://sqlite.org/2019/sqlite-src-3280000.zip
$ unzip sqlite-src-3280000.zip
$ cd sqlite-src-3280000/ext/icu
$ gcc -shared -fPIC icu.c `icu-config --ldflags` -o libicu.so
$ cp libicu.so ~/.config/beets

Lyrics Plugin

The lyrics plugin fetches and stores song lyrics from databases on the Web.
Namely, the current version of the plugin uses Lyric Wiki [https://lyrics.wikia.com/],
Musixmatch [https://www.musixmatch.com/], Genius.com [https://genius.com/], and, optionally, the Google custom search API.

Fetch Lyrics During Import

To automatically fetch lyrics for songs you import, enable the lyrics
plugin in your configuration (see Using Plugins).
Then, install the requests [https://docs.python-requests.org/en/latest/] library by typing:

pip install requests

The plugin uses requests [https://docs.python-requests.org/en/latest/] to download lyrics.

When importing new files, beets will now fetch lyrics for files that don’t
already have them. The lyrics will be stored in the beets database. If the
import.write config option is on, then the lyrics will also be written to
the files’ tags.

Configuration

To configure the plugin, make a lyrics: section in your
configuration file. The available options are:

	auto: Fetch lyrics automatically during import.
Default: yes.

	bing_client_secret: Your Bing Translation application password
(to Activate On-the-Fly Translation)

	bing_lang_from: By default all lyrics with a language other than
bing_lang_to are translated. Use a list of lang codes to restrict the set
of source languages to translate.
Default: []

	bing_lang_to: Language to translate lyrics into.
Default: None.

	fallback: By default, the file will be left unchanged when no lyrics are
found. Use the empty string '' to reset the lyrics in such a case.
Default: None.

	force: By default, beets won’t fetch lyrics if the files already have
ones. To instead always fetch lyrics, set the force option to yes.
Default: no.

	google_API_key: Your Google API key (to enable the Google Custom Search
backend).
Default: None.

	google_engine_ID: The custom search engine to use.
Default: The beets custom search engine [https://www.google.com:443/cse/publicurl?cx=009217259823014548361:lndtuqkycfu], which gathers an updated list of
sources known to be scrapeable.

	sources: List of sources to search for lyrics. An asterisk * expands
to all available sources.
Default: google lyricwiki musixmatch genius, i.e., all the
available sources. The google source will be automatically
deactivated if no google_API_key is setup.
Both it and the genius source will only be enabled if BeautifulSoup is
installed.

Here’s an example of config.yaml:

lyrics:
 fallback: ''
 google_API_key: AZERTYUIOPQSDFGHJKLMWXCVBN1234567890_ab
 google_engine_ID: 009217259823014548361:lndtuqkycfu

Fetching Lyrics Manually

The lyrics command provided by this plugin fetches lyrics for items that
match a query (see Queries). For example, beet lyrics magnetic
fields absolutely cuckoo will get the lyrics for the appropriate Magnetic
Fields song, beet lyrics magnetic fields will get lyrics for all my tracks
by that band, and beet lyrics will get lyrics for my entire library. The
lyrics will be added to the beets database and, if import.write is on,
embedded into files’ metadata.

The -p option to the lyrics command makes it print lyrics out to the
console so you can view the fetched (or previously-stored) lyrics.

The -f option forces the command to fetch lyrics, even for tracks that
already have lyrics. Inversely, the -l option restricts operations
to lyrics that are locally available, which show lyrics faster without using
the network at all.

Rendering Lyrics into Other Formats

The -r directory option renders all lyrics as reStructuredText [http://docutils.sourceforge.net/rst.html] (ReST)
documents in directory (by default, the current directory). That
directory, in turn, can be parsed by tools like Sphinx [https://www.sphinx-doc.org/] to generate HTML,
ePUB, or PDF documents.

A minimal conf.py and index.rst files are created the first time the
command is run. They are not overwritten on subsequent runs, so you can safely
modify these files to customize the output.

Sphinx supports various builders [https://www.sphinx-doc.org/en/stable/builders.html], but here are a
few suggestions.

	Build an HTML version:

sphinx-build -b html . _build/html

	Build an ePUB3 formatted file, usable on ebook readers:

sphinx-build -b epub3 . _build/epub

	Build a PDF file, which incidentally also builds a LaTeX file:

sphinx-build -b latex %s _build/latex && make -C _build/latex all-pdf

Activate Google Custom Search

Using the Google backend requires BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/], which you can install
using pip [https://pip.pypa.io] by typing:

pip install beautifulsoup4

You also need to register for a Google API key [https://console.developers.google.com/]. Set the google_API_key
configuration option to your key.
Then add google to the list of sources in your configuration (or use
default list, which includes it as long as you have an API key).
If you use default google_engine_ID, we recommend limiting the sources to
musixmatch google as the other sources are already included in the Google
results.

Optionally, you can define a custom search engine [https://www.google.com/cse/all]. Get your search engine’s
token and use it for your google_engine_ID configuration option. By
default, beets use a list of sources known to be scrapeable.

Note that the Google custom search API is limited to 100 queries per day.
After that, the lyrics plugin will fall back on other declared data sources.

Activate Genius Lyrics

Like the Google backend, the Genius backend requires the BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/]
library. Install it by typing:

pip install beautifulsoup4

The backend is enabled by default.

Activate On-the-Fly Translation

Using the Bing Translation API requires langdetect [https://pypi.python.org/pypi/langdetect], which you can install
using pip [https://pip.pypa.io] by typing:

pip install langdetect

You also need to register for a Microsoft Azure Marketplace free account and
to the Microsoft Translator API [https://www.microsoft.com/en-us/translator/getstarted.aspx]. Follow the four steps process, specifically
at step 3 enter beets as Client ID and copy/paste the generated
Client secret into your bing_client_secret configuration, alongside
bing_lang_to target language code [https://msdn.microsoft.com/en-us/library/hh456380.aspx].

MusicBrainz Collection Plugin

The mbcollection plugin lets you submit your catalog to MusicBrainz to
maintain your music collection [https://musicbrainz.org/doc/Collections] list there.

To begin, just enable the mbcollection plugin in your
configuration (see Using Plugins).
Then, add your MusicBrainz username and password to your
configuration file under a musicbrainz section:

musicbrainz:
 user: you
 pass: seekrit

Then, use the beet mbupdate command to send your albums to MusicBrainz. The
command automatically adds all of your albums to the first collection it finds.
If you don’t have a MusicBrainz collection yet, you may need to add one to your
profile first.

The command has one command-line option:

	To remove albums from the collection which are no longer present in
the beets database, use the -r (--remove) flag.

Configuration

To configure the plugin, make a mbcollection: section in your
configuration file. There is one option available:

	auto: Automatically amend your MusicBrainz collection whenever you
import a new album.
Default: no.

	collection: Which MusicBrainz collection to update.
Default: None.

	remove: Remove albums from collections which are no longer
present in the beets database.
Default: None.

MusicBrainz Submit Plugin

The mbsubmit plugin provides an extra prompt choice during an import
session that prints the tracks of the current album in a format that is
parseable by MusicBrainz’s track parser [https://wiki.musicbrainz.org/History:How_To_Parse_Track_Listings].

Usage

Enable the mbsubmit plugin in your configuration (see Using Plugins)
and select the Print tracks choice which is by default displayed when no
strong recommendations are found for the album:

No matching release found for 3 tracks.
For help, see: https://beets.readthedocs.org/en/latest/faq.html#nomatch
[U]se as-is, as Tracks, Group albums, Skip, Enter search, enter Id, aBort,
Print tracks? p
01. An Obscure Track - An Obscure Artist (3:37)
02. Another Obscure Track - An Obscure Artist (2:05)
03. The Third Track - Another Obscure Artist (3:02)

No matching release found for 3 tracks.
For help, see: https://beets.readthedocs.org/en/latest/faq.html#nomatch
[U]se as-is, as Tracks, Group albums, Skip, Enter search, enter Id, aBort,
Print tracks?

As MusicBrainz currently does not support submitting albums programmatically,
the recommended workflow is to copy the output of the Print tracks choice
and paste it into the parser that can be found by clicking on the
“Track Parser” button on MusicBrainz “Tracklist” tab.

Configuration

To configure the plugin, make a mbsubmit: section in your configuration
file. The following options are available:

	format: The format used for printing the tracks, defined using the
same template syntax as beets’ path formats.
Default: $track. $title - $artist ($length).

	threshold: The minimum strength of the autotagger recommendation that
will cause the Print tracks choice to be displayed on the prompt.
Default: medium (causing the choice to be displayed for all albums that
have a recommendation of medium strength or lower). Valid values: none,
low, medium, strong.

Please note that some values of the threshold configuration option might
require other beets command line switches to be enabled in order to work as
intended. In particular, setting a threshold of strong will only display
the prompt if timid mode is enabled. You can find more information about
how the recommendation system works at Autotagger Matching Options.

MBSync Plugin

This plugin provides the mbsync command, which lets you fetch metadata
from MusicBrainz for albums and tracks that already have MusicBrainz IDs. This
is useful for updating tags as they are fixed in the MusicBrainz database, or
when you change your mind about some config options that change how tags are
written to files. If you have a music library that is already nicely tagged by
a program that also uses MusicBrainz like Picard, this can speed up the
initial import if you just import “as-is” and then use mbsync to get
up-to-date tags that are written to the files according to your beets
configuration.

Usage

Enable the mbsync plugin in your configuration (see Using Plugins)
and then run beet mbsync QUERY to fetch updated metadata for a part of your
collection (or omit the query to run over your whole library).

This plugin treats albums and singletons (non-album tracks) separately. It
first processes all matching singletons and then proceeds on to full albums.
The same query is used to search for both kinds of entities.

The command has a few command-line options:

	To preview the changes that would be made without applying them, use the
-p (--pretend) flag.

	By default, files will be moved (renamed) according to their metadata if
they are inside your beets library directory. To disable this, use the
-M (--nomove) command-line option.

	If you have the import.write configuration option enabled, then this
plugin will write new metadata to files’ tags. To disable this, use the
-W (--nowrite) option.

	To customize the output of unrecognized items, use the -f
(--format) option. The default output is format_item or
format_album for items and albums, respectively.

MetaSync Plugin

This plugin provides the metasync command, which lets you fetch certain
metadata from other sources: for example, your favorite audio player.

Currently, the plugin supports synchronizing with the Amarok [https://amarok.kde.org/] music player,
and with iTunes [https://www.apple.com/itunes/].
It can fetch the rating, score, first-played date, last-played date, play
count, and track uid from Amarok.

Installation

Enable the metasync plugin in your configuration (see
Using Plugins).

To synchronize with Amarok, you’ll need the dbus-python [https://dbus.freedesktop.org/releases/dbus-python/] library. There are
packages for most major Linux distributions.

Configuration

To configure the plugin, make a metasync: section in your configuration
file. The available options are:

	source: A list of comma-separated sources to fetch metadata from.
Set this to “amarok” or “itunes” to enable synchronization with that player.
Default: empty

The follow subsections describe additional configure required for some players.

itunes

The path to your iTunes library xml file has to be configured, e.g.:

metasync:
 source: itunes
 itunes:
 library: ~/Music/iTunes Library.xml

Please note the indentation.

Usage

Run beet metasync QUERY to fetch metadata from the configured list of
sources.

The command has a few command-line options:

	To preview the changes that would be made without applying them, use the
-p (--pretend) flag.

	To specify temporary sources to fetch metadata from, use the -s
(--source) flag with a comma-separated list of a sources.

Missing Plugin

This plugin adds a new command, missing or miss, which finds
and lists, for every album in your collection, which or how many
tracks are missing. Listing missing files requires one network call to
MusicBrainz. Merely counting missing files avoids any network calls.

Usage

Add the missing plugin to your configuration (see Using Plugins).
By default, the beet missing command lists the names of tracks that your
library is missing from each album. It can also list the names of albums that
your library is missing from each artist.
You can customize the output format, count
the number of missing tracks per album, or total up the number of missing
tracks over your whole library, using command-line switches:

-f FORMAT, --format=FORMAT
 print with custom FORMAT
-c, --count count missing tracks per album
-t, --total count total of missing tracks or albums
-a, --album show missing albums for artist instead of tracks

…or by editing corresponding options.

Note that -c is ignored when used with -a.

Configuration

To configure the plugin, make a missing: section in your
configuration file. The available options are:

	count: Print a count of missing tracks per album, with format
defaulting to $albumartist - $album: $missing.
Default: no.

	format: A specific format with which to print every
track. This uses the same template syntax as beets’
path formats. The usage is inspired by, and
therefore similar to, the list command.
Default: format_item.

	total: Print a single count of missing tracks in all albums.
Default: no.

Here’s an example

missing:
 format: $albumartist - $album - $title
 count: no
 total: no

Template Fields

With this plugin enabled, the $missing template field expands to the
number of tracks missing from each album.

Examples

List all missing tracks in your collection:

beet missing

List all missing albums in your collection:

beet missing -a

List all missing tracks from 2008:

beet missing year:2008

Print out a unicode histogram of the missing track years using spark [https://github.com/holman/spark]:

beet missing -f '$year' | spark
▆▁▆█▄▇▇▄▇▇▁█▇▆▇▂▄█▁██▂█▁▁██▁█▂▇▆▂▇█▇▇█▆▆▇█▇█▇▆██▂▇

Print out a listing of all albums with missing tracks, and respective counts:

beet missing -c

Print out a count of the total number of missing tracks:

beet missing -t

Call this plugin from other beet commands:

beet ls -a -f '$albumartist - $album: $missing'

MPDStats Plugin

mpdstats is a plugin for beets that collects statistics about your listening
habits from MPD [https://www.musicpd.org/]. It collects the following information about tracks:

	play_count: The number of times you fully listened to this track.

	skip_count: The number of times you skipped this track.

	last_played: UNIX timestamp when you last played this track.

	rating: A rating based on play_count and skip_count.

To gather these statistics it runs as an MPD client and watches the current state
of MPD. This means that mpdstats needs to be running continuously for it to
work.

Installing Dependencies

This plugin requires the python-mpd2 library in order to talk to the MPD
server.

Install the library from pip [https://pip.pypa.io], like so:

$ pip install python-mpd2

Add the mpdstats plugin to your configuration (see Using Plugins).

Usage

Use the mpdstats command to fire it up:

$ beet mpdstats

Configuration

To configure the plugin, make an mpd: section in your
configuration file. The available options are:

	host: The MPD server hostname.
Default: The $MPD_HOST environment variable if set,
falling back to localhost otherwise.

	port: The MPD server port.
Default: The $MPD_PORT environment variable if set,
falling back to 6600 otherwise.

	password: The MPD server password.
Default: None.

	music_directory: If your MPD library is at a different location from the
beets library (e.g., because one is mounted on a NFS share), specify the path
here.
Default: The beets library directory.

	rating: Enable rating updates.
Default: yes.

	rating_mix: Tune the way rating is calculated (see below).
Default: 0.75.

A Word on Ratings

Ratings are calculated based on the play_count, skip_count and the last
action (play or skip). It consists in one part of a stable_rating and in
another part on a rolling_rating. The stable_rating is calculated like
this:

stable_rating = (play_count + 1.0) / (play_count + skip_count + 2.0)

So if the play_count equals the skip_count, the stable_rating is always
0.5. More play_counts adjust the rating up to 1.0. More skip_counts
adjust it down to 0.0. One of the disadvantages of this rating system, is
that it doesn’t really cover recent developments. e.g. a song that you
loved last year and played over 50 times will keep a high rating even if you
skipped it the last 10 times. That’s were the rolling_rating comes in.

If a song has been fully played, the rolling_rating is calculated like
this:

rolling_rating = old_rating + (1.0 - old_rating) / 2.0

If a song has been skipped, like this:

rolling_rating = old_rating - old_rating / 2.0

So rolling_rating adapts pretty fast to recent developments. But it’s too
fast. Taking the example from above, your old favorite with 50 plays will get
a negative rating (<0.5) the first time you skip it. Also not good.

To take the best of both worlds, we mix the ratings together with the
rating_mix factor. A rating_mix of 0.0 means all
rolling and 1.0 means all stable. We found 0.75 to be a good compromise,
but fell free to play with that.

Warning

This has only been tested with MPD versions >= 0.16. It may not work
on older versions. If that is the case, please report an issue [https://github.com/beetbox/beets/issues].

MPDUpdate Plugin

mpdupdate is a very simple plugin for beets that lets you automatically
update MPD [https://www.musicpd.org/]’s index whenever you change your beets library.

To use mpdupdate plugin, enable it in your configuration
(see Using Plugins).
Then, you’ll probably want to configure the specifics of your MPD server.
You can do that using an mpd: section in your config.yaml,
which looks like this:

mpd:
 host: localhost
 port: 6600
 password: seekrit

With that all in place, you’ll see beets send the “update” command to your MPD
server every time you change your beets library.

If you want to communicate with MPD over a Unix domain socket instead over
TCP, just give the path to the socket in the filesystem for the host
setting. (Any host value starting with a slash or a tilde is interpreted as a domain
socket.)

Configuration

The available options under the mpd: section are:

	host: The MPD server name.
Default: The $MPD_HOST environment variable if set, falling back to localhost otherwise.

	port: The MPD server port.
Default: The $MPD_PORT environment variable if set, falling back to 6600
otherwise.

	password: The MPD server password.
Default: None.

ParentWork Plugin

The parentwork plugin fetches the work title, parent work title and
parent work composer from MusicBrainz.

In the MusicBrainz database, a recording can be associated with a work. A
work can itself be associated with another work, for example one being part
of the other (what we call the direct parent). This plugin looks the work id
from the library and then looks up the direct parent, then the direct parent
of the direct parent and so on until it reaches the top. The work at the top
is what we call the parent work.

This plugin is especially designed for
classical music. For classical music, just fetching the work title as in
MusicBrainz is not satisfying, because MusicBrainz has separate works for, for
example, all the movements of a symphony. This plugin aims to solve this
problem by also fetching the parent work, which would be the whole symphony in
this example.

This plugin adds five tags:

	parentwork: The title of the parent work.

	mb_parentworkid: The musicbrainz id of the parent work.

	parentwork_disambig: The disambiguation of the parent work title.

	parent_composer: The composer of the parent work.

	parent_composer_sort: The sort name of the parent work composer.

	work_date: The composition date of the work, or the first parent work
that has a composition date. Format: yyyy-mm-dd.

To use the parentwork plugin, enable it in your configuration (see
Using Plugins).

Configuration

To configure the plugin, make a parentwork: section in your
configuration file. The available options are:

	force: As a default, parentwork only fetches work info for
recordings that do not already have a parentwork tag. If force
is enabled, it fetches it for all recordings.
Default: no

	auto: If enabled, automatically fetches works at import. It takes quite
some time, because beets is restricted to one musicbrainz query per second.
Default: no

Permissions Plugin

The permissions plugin allows you to set file permissions for imported
music files and its directories.

To use the permissions plugin, enable it in your configuration (see
Using Plugins). Permissions will be adjusted automatically on import.

Configuration

To configure the plugin, make an permissions: section in your configuration
file. The file config value therein uses octal modes to specify the
desired permissions. The default flags for files are octal 644 and 755 for directories.

Here’s an example:

permissions:
 file: 644
 dir: 755

Play Plugin

The play plugin allows you to pass the results of a query to a music
player in the form of an m3u playlist or paths on the command line.

Command Line Usage

To use the play plugin, enable it in your configuration (see
Using Plugins). Then use it by invoking the beet play command with
a query. The command will create a temporary m3u file and open it using an
appropriate application. You can query albums instead of tracks using the
-a option.

By default, the playlist is opened using the open command on OS X,
xdg-open on other Unixes, and start on Windows. To configure the
command, you can use a play: section in your configuration file:

play:
 command: /Applications/VLC.app/Contents/MacOS/VLC

You can also specify additional space-separated options to command (like you
would on the command-line):

play:
 command: /usr/bin/command --option1 --option2 some_other_option

While playing you’ll be able to interact with the player if it is a
command-line oriented, and you’ll get its output in real time.

Interactive Usage

The play plugin can also be invoked during an import. If enabled, the plugin
adds a plaY option to the prompt, so pressing y will execute the configured
command and play the items currently being imported.

Once the configured command exits, you will be returned to the import
decision prompt. If your player is configured to run in the background (in a
client/server setup), the music will play until you choose to stop it, and the
import operation continues immediately.

Configuration

To configure the plugin, make a play: section in your
configuration file. The available options are:

	command: The command used to open the playlist.
Default: open on OS X, xdg-open on other Unixes and start on
Windows. Insert $args to use the --args feature.

	relative_to: If set, emit paths relative to this directory.
Default: None.

	use_folders: When using the -a option, the m3u will contain the
paths to each track on the matched albums. Enable this option to
store paths to folders instead.
Default: no.

	raw: Instead of creating a temporary m3u playlist and then opening it,
simply call the command with the paths returned by the query as arguments.
Default: no.

	warning_threshold: Set the minimum number of files to play which will
trigger a warning to be emitted. If set to no, warning are never issued.
Default: 100.

	bom: Set whether or not a UTF-8 Byte Order Mark should be emitted into
the m3u file. If you’re using foobar2000 or Winamp, this is needed.
Default: no.

Optional Arguments

The --args (or -A) flag to the play command lets you specify
additional arguments for your player command. Options are inserted after the
configured command string and before the playlist filename.

For example, if you have the plugin configured like this:

play:
 command: mplayer -quiet

and you occasionally want to shuffle the songs you play, you can type:

$ beet play --args -shuffle

to get beets to execute this command:

mplayer -quiet -shuffle /path/to/playlist.m3u

instead of the default.

If you need to insert arguments somewhere other than the end of the
command string, use $args to indicate where to insert them. For
example:

play:
 command: mpv $args --playlist

indicates that you need to insert extra arguments before specifying the
playlist.

The --yes (or -y) flag to the play command will skip the warning
message if you choose to play more items than the warning_threshold
value usually allows.

Note on the Leakage of the Generated Playlists

Because the command that will open the generated .m3u files can be
arbitrarily configured by the user, beets won’t try to delete those files. For
this reason, using this plugin will leave one or several playlist(s) in the
directory selected to create temporary files (Most likely /tmp/ on Unix-like
systems. See tempfile.tempdir [https://docs.python.org/2/library/tempfile.html#tempfile.tempdir] in the Python docs.). Leaking those playlists until
they are externally wiped could be an issue for privacy or storage reasons. If
this is the case for you, you might want to use the raw config option
described above.

Playlist Plugin

playlist is a plugin to use playlists in m3u format.

To use it, enable the playlist plugin in your configuration
(see Using Plugins).
Then configure your playlists like this:

playlist:
 auto: no
 relative_to: ~/Music
 playlist_dir: ~/.mpd/playlists

It is possible to query the library based on a playlist by speicifying its
absolute path:

$ beet ls playlist:/path/to/someplaylist.m3u

The plugin also supports referencing playlists by name. The playlist is then
seached in the playlist_dir and the “.m3u” extension is appended to the
name:

$ beet ls playlist:anotherplaylist

The plugin can also update playlists in the playlist directory automatically
every time an item is moved or deleted. This can be controlled by the auto
configuration option.

Configuration

To configure the plugin, make a smartplaylist: section in your
configuration file. In addition to the playlists described above, the
other configuration options are:

	auto: If this is set to yes, then anytime an item in the library is
moved or removed, the plugin will update all playlists in the
playlist_dir directory that contain that item to reflect the change.
Default: no

	playlist_dir: Where to read playlist files from.
Default: The current working directory (i.e., '.').

	relative_to: Interpret paths in the playlist files relative to a base
directory. Instead of setting it to a fixed path, it is also possible to
set it to playlist to use the playlist’s parent directory or to
library to use the library directory.
Default: library

PlexUpdate Plugin

plexupdate is a very simple plugin for beets that lets you automatically
update Plex [https://plex.tv/]’s music library whenever you change your beets library.

To use plexupdate plugin, enable it in your configuration
(see Using Plugins).
Then, you’ll probably want to configure the specifics of your Plex server.
You can do that using an plex: section in your config.yaml,
which looks like this:

plex:
 host: localhost
 port: 32400
 token: token

The token key is optional: you’ll need to use it when in a Plex Home (see Plex’s own documentation about tokens [https://support.plex.tv/hc/en-us/articles/204059436-Finding-your-account-token-X-Plex-Token]).

To use the plexupdate plugin you need to install the requests [https://docs.python-requests.org/en/latest/] library with:

pip install requests

With that all in place, you’ll see beets send the “update” command to your Plex
server every time you change your beets library.

Configuration

The available options under the plex: section are:

	host: The Plex server name.
Default: localhost.

	port: The Plex server port.
Default: 32400.

	token: The Plex Home token.
Default: Empty.

	library_name: The name of the Plex library to update.
Default: Music

Random Plugin

The random plugin provides a command that randomly selects tracks or albums
from your library. This can be helpful if you need some help deciding what to
listen to.

First, enable the plugin named random (see Using Plugins). You’ll
then be able to use the beet random command:

$ beet random
Aesop Rock - None Shall Pass - The Harbor Is Yours

The command has several options that resemble those for the beet list
command (see Command-Line Interface). To choose an album instead of a single
track, use -a; to print paths to items instead of metadata, use -p; and
to use a custom format for printing, use -f FORMAT.

If the -e option is passed, the random choice will be even among
artists (the albumartist field). This makes sure that your anthology
of Bob Dylan won’t make you listen to Bob Dylan 50% of the time.

The -n NUMBER option controls the number of objects that are selected and
printed (default 1). To select 5 tracks from your library, type beet random
-n5.

As an alternative, you can use -t MINUTES to choose a set of music with a
given play time. To select tracks that total one hour, for example, type
beet random -t60.

ReplayGain Plugin

This plugin adds support for ReplayGain [https://wiki.hydrogenaudio.org/index.php?title=ReplayGain], a technique for normalizing audio
playback levels.

Installation

This plugin can use one of three backends to compute the ReplayGain values:
GStreamer, mp3gain (and its cousin, aacgain), Python Audio Tools. mp3gain
can be easier to install but GStreamer and Audio Tools support more audio
formats.

Once installed, this plugin analyzes all files during the import process. This
can be a slow process; to instead analyze after the fact, disable automatic
analysis and use the beet replaygain command (see below).

GStreamer

To use GStreamer [https://gstreamer.freedesktop.org/] for ReplayGain analysis, you will of course need to
install GStreamer and plugins for compatibility with your audio files.
You will need at least GStreamer 1.0 and PyGObject 3.x [https://pygobject.readthedocs.io/en/latest/] (a.k.a. python-gi).

Then, enable the replaygain plugin (see Using Plugins) and specify
the GStreamer backend by adding this to your configuration file:

replaygain:
 backend: gstreamer

mp3gain and aacgain

In order to use this backend, you will need to install the mp3gain [http://mp3gain.sourceforge.net/download.php]
command-line tool or the aacgain [https://aacgain.altosdesign.com] fork thereof. Here are some hints:

	On Mac OS X, you can use Homebrew [https://brew.sh]. Type brew install aacgain.

	On Linux, mp3gain [http://mp3gain.sourceforge.net/download.php] is probably in your repositories. On Debian or Ubuntu,
for example, you can run apt-get install mp3gain.

	On Windows, download and install the original mp3gain [http://mp3gain.sourceforge.net/download.php].

Then, enable the plugin (see Using Plugins) and specify the “command”
backend in your configuration file:

replaygain:
 backend: command

If beets doesn’t automatically find the mp3gain or aacgain executable,
you can configure the path explicitly like so:

replaygain:
 command: /Applications/MacMP3Gain.app/Contents/Resources/aacgain

Python Audio Tools

This backend uses the Python Audio Tools [http://audiotools.sourceforge.net] package to compute ReplayGain for
a range of different file formats. The package is not available via PyPI; it
must be installed manually (only versions preceding 3.x are compatible).

On OS X, most of the dependencies can be installed with Homebrew [https://brew.sh]:

brew install mpg123 mp3gain vorbisgain faad2 libvorbis

Configuration

To configure the plugin, make a replaygain: section in your
configuration file. The available options are:

	auto: Enable ReplayGain analysis during import.
Default: yes.

	backend: The analysis backend; either gstreamer, command, or audiotools.
Default: command.

	overwrite: Re-analyze files that already have ReplayGain tags.
Default: no.

	targetlevel: A number of decibels for the target loudness level.
Default: 89.

	r128: A space separated list of formats that will use R128_ tags with
integer values instead of the common REPLAYGAIN_ tags with floating point
values. Requires the “ffmpeg” backend.
Default: Opus.

	per_disc: Calculate album ReplayGain on disc level instead of album level.
Default: no

These options only work with the “command” backend:

	command: The path to the mp3gain or aacgain executable (if beets
cannot find it by itself).
For example: /Applications/MacMP3Gain.app/Contents/Resources/aacgain.
Default: Search in your $PATH.

	noclip: Reduce the amount of ReplayGain adjustment to whatever amount
would keep clipping from occurring.
Default: yes.

Manual Analysis

By default, the plugin will analyze all items an albums as they are implemented.
However, you can also manually analyze files that are already in your library.
Use the beet replaygain command:

$ beet replaygain [-Waf] [QUERY]

The -a flag analyzes whole albums instead of individual tracks. Provide a
query (see Queries) to indicate which items or albums to
analyze. Files that already have ReplayGain values are skipped unless -f is
supplied. Use -w (write tags) or -W (don’t write tags) to control
whether ReplayGain tags are written into the music files, or stored in the
beets database only (the default is to use the importer’s configuration).

ReplayGain analysis is not fast, so you may want to disable it during import.
Use the auto config option to control this:

replaygain:
 auto: no

Rewrite Plugin

The rewrite plugin lets you easily substitute values in your templates and
path formats. Specifically, it is intended to let you canonicalize names
such as artists: for example, perhaps you want albums from The Jimi Hendrix
Experience to be sorted into the same folder as solo Hendrix albums.

To use field rewriting, first enable the rewrite plugin
(see Using Plugins).
Then, make a rewrite: section in your config file to contain your rewrite
rules. Each rule consists of a field name, a regular expression pattern, and a
replacement value. Rules are written fieldname regex: replacement.
For example, this line implements the Jimi Hendrix example above:

rewrite:
 artist The Jimi Hendrix Experience: Jimi Hendrix

This will make $artist in your templates expand to “Jimi Hendrix” where it
would otherwise be “The Jimi Hendrix Experience”.

The pattern is a case-insensitive regular expression. This means you can use
ordinary regular expression syntax to match multiple artists. For example, you
might use:

rewrite:
 artist .*jimi hendrix.*: Jimi Hendrix

As a convenience, the plugin applies patterns for the artist field to the
albumartist field as well. (Otherwise, you would probably want to duplicate
every rule for artist and albumartist.)

Note that this plugin only applies to templating; it does not modify files’
metadata tags or the values tracked by beets’ library database.

Scrub Plugin

The scrub plugin lets you remove extraneous metadata from files’ tags. If
you’d prefer never to see crufty tags that come from other tools, the plugin can
automatically remove all non-beets-tracked tags whenever a file’s metadata is
written to disk by removing the tag entirely before writing new data. The plugin
also provides a command that lets you manually remove files’ tags.

Automatic Scrubbing

To automatically remove files’ tags before writing new ones, just
enable the scrub plugin (see Using Plugins). When importing new files (with
import.write turned on) or modifying files’ tags with the beet modify
command, beets will first strip all types of tags entirely and then write the
database-tracked metadata to the file.

This behavior can be disabled with the auto config option (see below).

Manual Scrubbing

The scrub command provided by this plugin removes tags from files and then
rewrites their database-tracked metadata. To run it, just type beet scrub
QUERY where QUERY matches the tracks to be scrubbed. Use this command with
caution, however, because any information in the tags that is out of sync with
the database will be lost.

The -W (or --nowrite) option causes the command to just remove tags but
not restore any information. This will leave the files with no metadata
whatsoever.

Configuration

To configure the plugin, make a scrub: section in your
configuration file. There is one option:

	auto: Enable metadata stripping during import.
Default: yes.

Smart Playlist Plugin

smartplaylist is a plugin to generate smart playlists in m3u format based on
beets queries every time your library changes. This plugin is specifically
created to work well with MPD’s [https://www.musicpd.org/] playlist functionality.

To use it, enable the smartplaylist plugin in your configuration
(see Using Plugins).
Then configure your smart playlists like the following example:

smartplaylist:
 relative_to: ~/Music
 playlist_dir: ~/.mpd/playlists
 playlists:
 - name: all.m3u
 query: ''

 - name: beatles.m3u
 query: 'artist:Beatles'

You can generate as many playlists as you want by adding them to the
playlists section, using beets query syntax (see
Queries) for query and the file name to be generated for
name. The query will be split using shell-like syntax, so if you need to
use spaces in the query, be sure to quote them (e.g., artist:"The Beatles").
If you have existing files with the same names, you should back them up—they
will be overwritten when the plugin runs.

For more advanced usage, you can use template syntax (see
Path Formats) in the name field. For example:

- name: 'ReleasedIn$year.m3u'
 query: 'year::201(0|1)'

This will query all the songs in 2010 and 2011 and generate the two playlist
files ReleasedIn2010.m3u and ReleasedIn2011.m3u using those songs.

You can also gather the results of several queries by putting them in a list.
(Items that match both queries are not included twice.) For example:

- name: 'BeatlesUniverse.m3u'
 query: ['artist:beatles', 'genre:"beatles cover"']

Note that since beets query syntax is in effect, you can also use sorting
directives:

- name: 'Chronological Beatles'
 query: 'artist:Beatles year+'
- name: 'Mixed Rock'
 query: ['artist:Beatles year+', 'artist:"Led Zeppelin" bitrate+']

The former case behaves as expected, however please note that in the latter the
sorts will be merged: year+ bitrate+ will apply to both the Beatles and Led
Zeppelin. If that bothers you, please get in touch.

For querying albums instead of items (mainly useful with extensible fields),
use the album_query field. query and album_query can be used at the
same time. The following example gathers single items but also items belonging
to albums that have a for_travel extensible field set to 1:

- name: 'MyTravelPlaylist.m3u'
 album_query: 'for_travel:1'
 query: 'for_travel:1'

By default, each playlist is automatically regenerated at the end of the
session if an item or album it matches changed in the library database. To
force regeneration, you can invoke it manually from the command line:

$ beet splupdate

This will regenerate all smart playlists. You can also specify which ones you
want to regenerate:

$ beet splupdate BeatlesUniverse.m3u MyTravelPlaylist

You can also use this plugin together with the MPDUpdate Plugin, in order to
automatically notify MPD of the playlist change, by adding mpdupdate to
the plugins line in your config file after the smartplaylist
plugin.

Configuration

To configure the plugin, make a smartplaylist: section in your
configuration file. In addition to the playlists described above, the
other configuration options are:

	auto: Regenerate the playlist after every database change.
Default: yes.

	playlist_dir: Where to put the generated playlist files.
Default: The current working directory (i.e., '.').

	relative_to: Generate paths in the playlist files relative to a base
directory. If you intend to use this plugin to generate playlists for MPD,
point this to your MPD music directory.
Default: Use absolute paths.

SonosUpdate Plugin

The sonosupdate plugin lets you automatically update Sonos [https://sonos.com/]’s music
library whenever you change your beets library.

To use sonosupdate plugin, enable it in your configuration
(see Using Plugins).

To use the sonosupdate plugin you need to install the soco [http://python-soco.com] library with:

pip install soco

With that all in place, you’ll see beets send the “update” command to your Sonos
controller every time you change your beets library.

Spotify Plugin

The spotify plugin generates Spotify [https://www.spotify.com/] playlists from tracks in your
library with the beet spotify command using the Spotify Search API [https://developer.spotify.com/documentation/web-api/reference/search/search/].

Also, the plugin can use the Spotify Album [https://developer.spotify.com/documentation/web-api/reference/albums/get-album/] and Track [https://developer.spotify.com/documentation/web-api/reference/tracks/get-track/] APIs to provide
metadata matches for the importer.

Why Use This Plugin?

	You’re a Beets user and Spotify user already.

	You have playlists or albums you’d like to make available in Spotify from Beets without having to search for each artist/album/track.

	You want to check which tracks in your library are available on Spotify.

	You want to autotag music with metadata from the Spotify API.

Basic Usage

First, enable the spotify plugin (see Using Plugins).
Then, use the spotify command with a beets query:

beet spotify [OPTIONS...] QUERY

Here’s an example:

$ beet spotify "In The Lonely Hour"
Processing 14 tracks...
https://open.spotify.com/track/19w0OHr8SiZzRhjpnjctJ4
https://open.spotify.com/track/3PRLM4FzhplXfySa4B7bxS
[...]

Command-line options include:

	-m MODE or --mode=MODE where MODE is either “list” or “open”
controls whether to print out the playlist (for copying and pasting) or
open it in the Spotify app. (See below.)

	--show-failures or -f: List the tracks that did not match a Spotify
ID.

You can enter the URL for an album or song on Spotify at the enter Id
prompt during import:

Enter search, enter Id, aBort, eDit, edit Candidates, plaY? i
Enter release ID: https://open.spotify.com/album/2rFYTHFBLQN3AYlrymBPPA

Configuration

The default options should work as-is, but there are some options you can put
in config.yaml under the spotify: section:

	mode: One of the following:

	list: Print out the playlist as a list of links. This list can then
be pasted in to a new or existing Spotify playlist.

	open: This mode actually sends a link to your default browser with
instructions to open Spotify with the playlist you created. Until this
has been tested on all platforms, it will remain optional.

Default: list.

	region_filter: A two-character country abbreviation, to limit results
to that market.
Default: None.

	show_failures: List each lookup that does not return a Spotify ID (and
therefore cannot be added to a playlist).
Default: no.

	tiebreak: How to choose the track if there is more than one identical
result. For example, there might be multiple releases of the same album.
The options are popularity and first (to just choose the first match
returned).
Default: popularity.

	regex: An array of regex transformations to perform on the
track/album/artist fields before sending them to Spotify. Can be useful for
changing certain abbreviations, like ft. -> feat. See the examples below.
Default: None.

	source_weight: Penalty applied to Spotify matches during import. Set to
0.0 to disable.
Default: 0.5.

Here’s an example:

spotify:
 source_weight: 0.7
 mode: open
 region_filter: US
 show_failures: on
 tiebreak: first

 regex: [
 {
 field: "albumartist", # Field in the item object to regex.
 search: "Something", # String to look for.
 replace: "Replaced" # Replacement value.
 },
 {
 field: "title",
 search: "Something Else",
 replace: "AlsoReplaced"
 }
]

SubsonicUpdate Plugin

subsonicupdate is a very simple plugin for beets that lets you automatically
update Subsonic [https://www.subsonic.org]’s index whenever you change your beets library.

To use subsonicupdate plugin, enable it in your configuration
(see Using Plugins).
Then, you’ll probably want to configure the specifics of your Subsonic server.
You can do that using a subsonic: section in your config.yaml,
which looks like this:

subsonic:
 host: X.X.X.X
 port: 4040
 user: username
 pass: password
 contextpath: /subsonic

With that all in place, beets will send a Rest API to your Subsonic
server every time you import new music.
Due to a current limitation of the API, all libraries visible to that user will be scanned.

This plugin requires Subsonic v6.1 or higher and an active Premium license (or trial).

Configuration

The available options under the subsonic: section are:

	host: The Subsonic server name/IP. Default: localhost

	port: The Subsonic server port. Default: 4040

	user: The Subsonic user. Default: admin

	pass: The Subsonic user password. Default: admin

	contextpath: The Subsonic context path. Default: /

The Plugin

The the plugin allows you to move patterns in path formats. It’s suitable,
for example, for moving articles from string start to the end. This is useful
for quick search on filesystems and generally looks good. Plugin does not
change tags. By default plugin supports English “the, a, an”, but custom
regexp patterns can be added by user. How it works:

The Something -> Something, The
A Band -> Band, A
An Orchestra -> Orchestra, An

To use the the plugin, enable it (see Plugins) and then use
a template function called %the in path format expressions:

paths:
 default: %the{$albumartist}/($year) $album/$track $title

The default configuration moves all English articles to the end of the string,
but you can override these defaults to make more complex changes.

Configuration

To configure the plugin, make a the: section in your
configuration file. The available options are:

	a: Handle “A/An” moves.
Default: yes.

	the: handle “The” moves.
Default: yes.

	patterns: Custom regexp patterns, space-separated. Custom patterns are
case-insensitive regular expressions. Patterns can be matched anywhere in the
string (not just the beginning), so use ^ if you intend to match leading
words.
Default: [].

	strip: Remove the article altogether instead of moving it to the end.
Default: no.

	format: A Python format string for the output. Use {0} to indicate
the part without the article and {1} for the article.
Spaces are already trimmed from ends of both parts.
Default: '{0}, {1}'.

Thumbnails Plugin

The thumbnails plugin creates thumbnails for your album folders with the
album cover. This works on freedesktop.org-compliant file managers such as
Nautilus or Thunar, and is therefore POSIX-only.

To use the thumbnails plugin, enable it (see Plugins) as well
as the FetchArt Plugin. You’ll need 2 additional python packages:
pyxdg [https://pypi.org/project/pyxdg/] and pathlib [https://pypi.org/project/pathlib/].

thumbnails needs to resize the covers, and therefore requires either
ImageMagick [https://www.imagemagick.org/] or Pillow [https://github.com/python-pillow/Pillow].

Configuration

To configure the plugin, make a thumbnails section in your configuration
file. The available options are

	auto: Whether the thumbnail should be automatically set on import.
Default: yes.

	force: Generate the thumbnail even when there’s one that seems fine (more
recent than the cover art).
Default: no.

	dolphin: Generate dolphin-compatible thumbnails. Dolphin (KDE file
explorer) does not respect freedesktop.org’s standard on thumbnails. This
functionality replaces the Freedesktop Plugin
Default: no

Usage

The thumbnails command provided by this plugin creates a thumbnail for
albums that match a query (see Queries).

Types Plugin

The types plugin lets you declare types for attributes you use in your
library. For example, you can declare that a rating field is numeric so
that you can query it with ranges—which isn’t possible when the field is
considered a string (the default).

Enable the types plugin as described in Plugins and then add
a types section to your configuration file. The
configuration section should map field name to one of int, float,
bool, or date.

Here’s an example:

types:
 rating: int

Now you can assign numeric ratings to tracks and albums and use range
queries to filter them.:

beet modify "My favorite track" rating=5
beet ls rating:4..5

beet modify --album "My favorite album" rating=5
beet ls --album rating:4..5

Web Plugin

The web plugin is a very basic alternative interface to beets that
supplements the CLI. It can’t do much right now, and the interface is a little
clunky, but you can use it to query and browse your music and—in browsers that
support HTML5 Audio—you can even play music.

While it’s not meant to replace the CLI, a graphical interface has a number of
advantages in certain situations. For example, when editing a tag, a natural CLI
makes you retype the whole thing—common GUI conventions can be used to just
edit the part of the tag you want to change. A graphical interface could also
drastically increase the number of people who can use beets.

Install

The Web interface depends on Flask [https://flask.pocoo.org/]. To get it, just run pip install
flask. Then enable the web plugin in your configuration (see
Using Plugins).

If you need CORS (it’s disabled by default—see Cross-Origin Resource Sharing (CORS), below), then
you also need flask-cors [https://github.com/CoryDolphin/flask-cors]. Just type pip install flask-cors.

Run the Server

Then just type beet web to start the server and go to
http://localhost:8337/. This is what it looks like:

[image: ../_images/beetsweb.png]
You can also specify the hostname and port number used by the Web server. These
can be specified on the command line or in the [web] section of your
configuration file.

On the command line, use beet web [HOSTNAME] [PORT]. Or the configuration
options below.

Usage

Type queries into the little search box. Double-click a track to play it with
HTML5 Audio [http://www.w3.org/TR/html-markup/audio.html].

Configuration

To configure the plugin, make a web: section in your
configuration file. The available options are:

	host: The server hostname. Set this to 0.0.0.0 to bind to all interfaces.
Default: Bind to 127.0.0.1.

	port: The server port.
Default: 8337.

	cors: The CORS allowed origin (see Cross-Origin Resource Sharing (CORS), below).
Default: CORS is disabled.

	cors_supports_credentials: Support credentials when using CORS (see Cross-Origin Resource Sharing (CORS), below).
Default: CORS_SUPPORTS_CREDENTIALS is disabled.

	reverse_proxy: If true, enable reverse proxy support (see
Reverse Proxy Support, below).
Default: false.

	include_paths: If true, includes paths in item objects.
Default: false.

Implementation

The Web backend is built using a simple REST+JSON API with the excellent
Flask [https://flask.pocoo.org/] library. The frontend is a single-page application written with
Backbone.js [https://backbonejs.org]. This allows future non-Web clients to use the same backend API.

Eventually, to make the Web player really viable, we should use a Flash fallback
for unsupported formats/browsers. There are a number of options for this:

	audio.js [https://kolber.github.io/audiojs/]

	html5media [https://html5media.info/]

	MediaElement.js [https://mediaelementjs.com/]

Cross-Origin Resource Sharing (CORS)

The web plugin’s API can be used as a backend for an in-browser client. By
default, browsers will only allow access from clients running on the same
server as the API. (You will get an arcane error about XMLHttpRequest
otherwise.) A technology called CORS [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing] lets you relax this restriction.

If you want to use an in-browser client hosted elsewhere (or running from a
different server on your machine), first install the flask-cors [https://github.com/CoryDolphin/flask-cors] plugin by
typing pip install flask-cors. Then set the cors configuration option to
the “origin” (protocol, host, and optional port number) where the client is
served. Or set it to '*' to enable access from all origins. Note that there
are security implications if you set the origin to '*', so please research
this before using it.

If the web server is behind a proxy that uses credentials, you might want
to set the cors_supports_credentials configuration option to true to let
in-browser clients log in.

For example:

web:
 host: 0.0.0.0
 cors: 'http://example.com'

Reverse Proxy Support

When the server is running behind a reverse proxy, you can tell the plugin to
respect forwarded headers. Specifically, this can help when you host the
plugin at a base URL other than the root / or when you use the proxy to
handle secure connections. Enable the reverse_proxy configuration option
if you do this.

Technically, this option lets the proxy provide X-Script-Name and
X-Scheme HTTP headers to control the plugin’s the SCRIPT_NAME and its
wsgi.url_scheme parameter.

Here’s a sample Nginx [https://www.nginx.com] configuration that serves the web plugin under the
/beets directory:

location /beets {
 proxy_pass http://127.0.0.1:8080;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Scheme $scheme;
 proxy_set_header X-Script-Name /beets;
}

JSON API

GET /item/

Responds with a list of all tracks in the beets library.

{
 "items": [
 {
 "id": 6,
 "title": "A Song",
 ...
 }, {
 "id": 12,
 "title": "Another Song",
 ...
 }
 ...
]
}

GET /item/6

Looks for an item with id 6 in the beets library and responds with its JSON
representation.

{
 "id": 6,
 "title": "A Song",
 ...
}

If there is no item with that id responds with a 404 status
code.

GET /item/6,12,13

Response with a list of tracks with the ids 6, 12 and 13. The format of
the response is the same as for GET /item/. It is not guaranteed that the
response includes all the items requested. If a track is not found it is silently
dropped from the response.

GET /item/path/...

Look for an item at the given absolute path on the server. If it corresponds to
a track, return the track in the same format as /item/*.

If the server runs UNIX, you’ll need to include an extra leading slash:
http://localhost:8337/item/path//Users/beets/Music/Foo/Bar/Baz.mp3

GET /item/query/querystring

Returns a list of tracks matching the query. The querystring must be a valid query as described in Queries.

{
 "results": [
 { "id" : 6, "title": "A Song" },
 { "id" : 12, "title": "Another Song" }
]
}

GET /item/6/file

Sends the media file for the track. If the item or its corresponding file do
not exist a 404 status code is returned.

Albums

For albums, the following endpoints are provided:

	GET /album/

	GET /album/5

	GET /album/5,7

	GET /album/query/querystring

The interface and response format is similar to the item API, except replacing
the encapsulation key "items" with "albums" when requesting /album/
or /album/5,7. In addition we can request the cover art of an album with
GET /album/5/art.
You can also add the ‘?expand’ flag to get the individual items of an album.

GET /stats

Responds with the number of tracks and albums in the database.

{
 "items": 5,
 "albums": 3
}

Zero Plugin

The zero plugin allows you to null fields in files’ metadata tags. Fields
can be nulled unconditionally or conditioned on a pattern match. For example,
the plugin can strip useless comments like “ripped by MyGreatRipper.”

The plugin can work in one of two modes. The first mode, the default, is a
blacklist, where you choose the tags you want to remove. The second mode is a
whitelist, where you instead specify the tags you want to keep.

To use the zero plugin, enable the plugin in your configuration
(see Using Plugins).

Configuration

Make a zero: section in your configuration file. You can specify the
fields to nullify and the conditions for nullifying them:

	Set auto to yes to null fields automatically on import.
Default: yes.

	Set fields to a whitespace-separated list of fields to change. You can
get the list of all available fields by running beet fields. In
addition, the images field allows you to remove any images
embedded in the media file.

	Set keep_fields to invert the logic of the plugin. Only these fields
will be kept; other fields will be removed. Remember to set only
fields or keep_fields—not both!

	To conditionally filter a field, use field: [regexp, regexp] to specify
regular expressions.

	By default this plugin only affects files’ tags ; the beets database is left
unchanged. To update the tags in the database, set the update_database option.

For example:

zero:
 fields: month day genre comments
 comments: [EAC, LAME, from.+collection, 'ripped by']
 genre: [rnb, 'power metal']
 update_database: true

If a custom pattern is not defined for a given field, the field will be nulled
unconditionally.

Note that the plugin currently does not zero fields when importing “as-is”.

Manually Triggering Zero

You can also type beet zero [QUERY] to manually invoke the plugin on music
in your library.

Preserving Album Art

If you use the keep_fields option, the plugin will remove embedded album
art from files’ tags unless you tell it not to. To keep the album art, include
the special field images in the list. For example:

zero:
 keep_fields: title artist album year track genre images

FAQ

Here are some answers to frequently-asked questions from IRC and elsewhere.
Got a question that isn’t answered here? Try IRC, the discussion board [https://discourse.beets.io], or
filing an issue in the bug tracker.

	How do I…

	…rename my files according to a new path format configuration?

	…find all the albums I imported “as-is”?

	…create “Disc N” directories for multi-disc albums?

	…import a multi-disc album?

	…enter a MusicBrainz ID?

	…upgrade to the latest version of beets?

	…run the latest source version of beets?

	…report a bug in beets?

	…find the configuration file (config.yaml)?

	…avoid using special characters in my filenames?

	…point beets at a new music directory?

	Why does beets…

	…complain that it can’t find a match?

	…appear to be missing some plugins?

	…ignore control-C during an import?

	…not change my ID3 tags?

	…complain that a file is “unreadable”?

	…seem to “hang” after an import finishes?

	…put a bunch of underscores in my filenames?

	…say “command not found”?

How do I…

…rename my files according to a new path format configuration?

Just run the move command. Use a query
to rename a subset of your music or leave the query off to rename
everything.

…find all the albums I imported “as-is”?

Enable the import log
to automatically record whenever you skip an album or accept one
“as-is”.

Alternatively, you can find all the albums in your library that are
missing MBIDs using a command like this:

beet ls -a mb_albumid::^$

Assuming your files didn’t have MBIDs already, then this will roughly
correspond to those albums that didn’t get autotagged.

…create “Disc N” directories for multi-disc albums?

Use the Inline Plugin along
with the %if{} function to accomplish this:

plugins: inline
paths:
 default: $albumartist/$album%aunique{}/%if{$multidisc,Disc $disc/}$track $title
item_fields:
 multidisc: 1 if disctotal > 1 else 0

…import a multi-disc album?

As of 1.0b11, beets tags multi-disc albums as a single unit. To get a
good match, it needs to treat all of the album’s parts together as a
single release.

To help with this, the importer uses a simple heuristic to guess when a
directory represents a multi-disc album that’s been divided into
multiple subdirectories. When it finds a situation like this, it
collapses all of the items in the subdirectories into a single release
for tagging.

The heuristic works by looking at the names of directories. If multiple
subdirectories of a common parent directory follow the pattern “(title)
disc (number) (…)” and the prefix (everything up to the number) is
the same, the directories are collapsed together. One of the key words
“disc” or “CD” must be present to make this work.

If you have trouble tagging a multi-disc album, consider the --flat
flag (which treats a whole tree as a single album) or just putting all
the tracks into a single directory to force them to be tagged together.

…enter a MusicBrainz ID?

An MBID looks like one of these:

	https://musicbrainz.org/release/ded77dcf-7279-457e-955d-625bd3801b87

	d569deba-8c6b-4d08-8c43-d0e5a1b8c7f3

Beets can recognize either the hex-with-dashes UUID-style string or the
full URL that contains it (as of 1.0b11).

You can get these IDs by searching on the MusicBrainz web
site [https://musicbrainz.org/] and going to a release page (when
tagging full albums) or a recording page (when tagging singletons).
Then, copy the URL of the page and paste it into beets.

Note that MusicBrainz has both “releases” and “release groups,” which
link together different versions of the same album. Use release IDs
here.

…upgrade to the latest version of beets?

Run a command like this:

pip install -U beets

The -U flag tells pip [https://pip.pypa.io/] to upgrade
beets to the latest version. If you want a specific version, you can
specify with using == like so:

pip install beets==1.0rc2

…run the latest source version of beets?

Beets sees regular releases (about every six weeks or so), but sometimes
it’s helpful to run on the “bleeding edge”. To run the latest source:

	Uninstall beets. If you installed using pip, you can just run
pip uninstall beets.

	Install from source. There are a few easy ways to do this:

	Use pip to install the latest snapshot tarball: just type
pip install https://github.com/beetbox/beets/tarball/master.

	Grab the source using Git:
git clone https://github.com/beetbox/beets.git. Then
cd beets and type python setup.py install.

	Use pip to install an “editable” version of beets based on an
automatic source checkout. For example, run
pip install -e git+https://github.com/beetbox/beets#egg=beets
to clone beets and install it, allowing you to modify the source
in-place to try out changes.

More details about the beets source are available on the developer documentation
pages.

…report a bug in beets?

We use the issue tracker [https://github.com/beetbox/beets/issues]
on GitHub. Enter a new issue [https://github.com/beetbox/beets/issues/new]
there to report a bug. Please follow these guidelines when reporting an issue:

	Most importantly: if beets is crashing, please include the
traceback [https://imgur.com/jacoj]. Tracebacks can be more
readable if you put them in a pastebin (e.g.,
Gist [https://gist.github.com/] or
Hastebin [https://hastebin.com/]), especially when communicating
over IRC or email.

	Turn on beets’ debug output (using the -v option: for example,
beet -v import ...) and include that with your bug report. Look
through this verbose output for any red flags that might point to the
problem.

	If you can, try installing the latest beets source code to see if the
bug is fixed in an unreleased version. You can also look at the
latest changelog entries
for descriptions of the problem you’re seeing.

	Try to narrow your problem down to something specific. Is a
particular plugin causing the problem? (You can disable plugins to
see whether the problem goes away.) Is a some music file or a single
album leading to the crash? (Try importing individual albums to
determine which one is causing the problem.) Is some entry in your
configuration file causing it? Et cetera.

	If you do narrow the problem down to a particular audio file or
album, include it with your bug report so the developers can run
tests.

If you’ve never reported a bug before, Mozilla has some well-written
general guidelines for good bug
reports [https://www.mozilla.org/bugs/].

…find the configuration file (config.yaml)?

You create this file yourself; beets just reads it. See
Configuration.

…avoid using special characters in my filenames?

Use the %asciify{} function in your path formats. See
Template Functions.

…point beets at a new music directory?

If you want to move your music from one directory to another, the best way is
to let beets do it for you. First, edit your configuration and set the
directory setting to the new place. Then, type beet move to have beets
move all your files.

If you’ve already moved your music outside of beets, you have a few options:

	Move the music back (with an ordinary mv) and then use the above steps.

	Delete your database and re-create it from the new paths using beet import -AWC.

	Resort to manually modifying the SQLite database (not recommended).

Why does beets…

…complain that it can’t find a match?

There are a number of possibilities:

	First, make sure the album is in the MusicBrainz
database [https://musicbrainz.org/]. You
can search on their site to make sure it’s cataloged there. (If not,
anyone can edit MusicBrainz—so consider adding the data yourself.)

	If the album in question is a multi-disc release, see the relevant
FAQ answer above.

	The music files’ metadata might be insufficient. Try using the “enter
search” or “enter ID” options to help the matching process find the
right MusicBrainz entry.

	If you have a lot of files that are missing metadata, consider using
acoustic fingerprinting or
filename-based guesses
for that music.

If none of these situations apply and you’re still having trouble
tagging something, please file a bug report.

…appear to be missing some plugins?

Please make sure you’re using the latest version of beets—you might
be using a version earlier than the one that introduced the plugin. In
many cases, the plugin may be introduced in beets “trunk” (the latest
source version) and might not be released yet. Take a look at the
changelog
to see which version added the plugin. (You can type beet version to
check which version of beets you have installed.)

If you want to live on the bleeding edge and use the latest source
version of beets, you can check out the source (see the relevant
question).

To see the beets documentation for your version (and avoid confusion
with new features in trunk), select your version from the menu in the sidebar.

…ignore control-C during an import?

Typing a ^C (control-C) control sequence will not halt beets’
multithreaded importer while it is waiting at a prompt for user input.
Instead, hit “return” (dismissing the prompt) after typing ^C.
Alternatively, just type a “b” for “aBort” at most prompts. Typing ^C
will work if the importer interface is between prompts.

Also note that beets may take some time to quit after ^C is typed; it
tries to clean up after itself briefly even when canceled.

(For developers: this is because the UI thread is blocking on
input and cannot be interrupted by the main thread, which is
trying to close all pipeline stages in the exception handler by setting
a flag. There is no simple way to remedy this.)

…not change my ID3 tags?

Beets writes ID3v2.4 [http://www.id3.org/id3v2.4.0-structure] tags by
default.
Some software, including Windows (i.e., Windows Explorer and Windows
Media Player) and id3lib/id3v2 [http://id3v2.sourceforge.net/],
don’t support v2.4 tags. When using 2.4-unaware software, it might look
like the tags are unmodified or missing completely.

To enable ID3v2.3 tags, enable the id3v23 config option.

…complain that a file is “unreadable”?

Beets will log a message like “unreadable file: /path/to/music.mp3” when
it encounters files that look like music files (according to their
extension) but seem to be broken. Most of the time, this is because the
file is corrupted. To check whether the file is intact, try opening it
in another media player (e.g.,
VLC [https://www.videolan.org/vlc/index.html]) to see whether it can
read the file. You can also use specialized programs for checking file
integrity—for example, type metaflac --list music.flac to check
FLAC files.

If beets still complains about a file that seems to be valid, file a
bug [https://github.com/beetbox/beets/issues/new] and we’ll look into
it. There’s always a possibility that there’s a bug “upstream” in the
Mutagen [https://github.com/quodlibet/mutagen] library used by beets,
in which case we’ll forward the bug to that project’s tracker.

…seem to “hang” after an import finishes?

Probably not. Beets uses a multithreaded importer that overlaps many
different activities: it can prompt you for decisions while, in the
background, it talks to MusicBrainz and copies files. This means that,
even after you make your last decision, there may be a backlog of files
to be copied into place and tags to be written. (Plugin tasks, like
looking up lyrics and genres, also run at this time.) If beets pauses
after you see all the albums go by, have patience.

…put a bunch of underscores in my filenames?

When naming files, beets replaces certain characters to avoid causing
problems on the filesystem. For example, leading dots can confusingly
hide files on Unix and several non-alphanumeric characters are forbidden
on Windows.

The replace config option
controls which replacements are made. By default, beets makes filenames
safe for all known platforms by replacing several patterns with
underscores. This means that, even on Unix, filenames are made
Windows-safe so that network filesystems (such as SMB) can be used
safely.

Most notably, Windows forbids trailing dots, so a folder called “M.I.A.”
will be rewritten to “M.I.A_” by default. Change the replace config
if you don’t want this behavior and don’t need Windows-safe names.

…say “command not found”?

You need to put the beet program on your system’s search path. If you
installed using pip, the command pip show -f beets can show you where
beet was placed on your system. If you need help extending your $PATH,
try this Super User answer [https://superuser.com/a/284361/4569].

For Developers

This section contains information for developers. Read on if you’re interested
in hacking beets itself or creating plugins for it.

See also the documentation for MediaFile [https://mediafile.readthedocs.io/], the library used by beets to read
and write metadata tags in media files.

	Writing Plugins
	Add Commands to the CLI

	Listen for Events

	Extend the Autotagger

	Read Configuration Options

	Add Path Format Functions and Fields

	Extend MediaFile

	Add Import Pipeline Stages

	Extend the Query Syntax

	Flexible Field Types

	Logging

	Append Prompt Choices

	Library Database API
	The Library Class

	Model Classes
	Model base

	Item

	Album

	Transactions

	Queries

	Music Importer

	Providing a CLI

Writing Plugins

A beets plugin is just a Python module inside the beetsplug namespace
package. (Check out this Stack Overflow question about namespace packages [https://stackoverflow.com/questions/1675734/how-do-i-create-a-namespace-package-in-python/1676069#1676069] if
you haven’t heard of them.) So, to make one, create a directory called
beetsplug and put two files in it: one called __init__.py and one called
myawesomeplugin.py (but don’t actually call it that). Your directory
structure should look like this:

beetsplug/
 __init__.py
 myawesomeplugin.py

Then, you’ll need to put this stuff in __init__.py to make beetsplug a
namespace package:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

That’s all for __init__.py; you can can leave it alone. The meat of your
plugin goes in myawesomeplugin.py. There, you’ll have to import the
beets.plugins module and define a subclass of the BeetsPlugin class
found therein. Here’s a skeleton of a plugin file:

from beets.plugins import BeetsPlugin

class MyPlugin(BeetsPlugin):
 pass

Once you have your BeetsPlugin subclass, there’s a variety of things your
plugin can do. (Read on!)

To use your new plugin, make sure your beetsplug directory is in the Python
path (using PYTHONPATH or by installing in a virtualenv [https://pypi.org/project/virtualenv], for example).
Then, as described above, edit your config.yaml to include
plugins: myawesomeplugin (substituting the name of the Python module
containing your plugin).

Add Commands to the CLI

Plugins can add new subcommands to the beet command-line interface. Define
the plugin class’ commands() method to return a list of Subcommand
objects. (The Subcommand class is defined in the beets.ui module.)
Here’s an example plugin that adds a simple command:

from beets.plugins import BeetsPlugin
from beets.ui import Subcommand

my_super_command = Subcommand('super', help='do something super')
def say_hi(lib, opts, args):
 print "Hello everybody! I'm a plugin!"
my_super_command.func = say_hi

class SuperPlug(BeetsPlugin):
 def commands(self):
 return [my_super_command]

To make a subcommand, invoke the constructor like so: Subcommand(name, parser,
help, aliases). The name parameter is the only required one and should
just be the name of your command. parser can be an OptionParser instance [https://docs.python.org/library/optparse.html],
but it defaults to an empty parser (you can extend it later). help is a
description of your command, and aliases is a list of shorthand versions of
your command name.

You’ll need to add a function to your command by saying mycommand.func =
myfunction. This function should take the following parameters: lib (a
beets Library object) and opts and args (command-line options and
arguments as returned by OptionParser.parse_args [https://docs.python.org/library/optparse.html#parsing-arguments]).

The function should use any of the utility functions defined in beets.ui.
Try running pydoc beets.ui to see what’s available.

You can add command-line options to your new command using the parser member
of the Subcommand class, which is a CommonOptionsParser instance. Just
use it like you would a normal OptionParser in an independent script. Note
that it offers several methods to add common options: --album, --path
and --format. This feature is versatile and extensively documented, try
pydoc beets.ui.CommonOptionsParser for more information.

Listen for Events

Event handlers allow plugins to run code whenever something happens in beets’
operation. For instance, a plugin could write a log message every time an album
is successfully autotagged or update MPD’s index whenever the database is
changed.

You can “listen” for events using BeetsPlugin.register_listener. Here’s
an example:

from beets.plugins import BeetsPlugin

def loaded():
 print 'Plugin loaded!'

class SomePlugin(BeetsPlugin):
 def __init__(self):
 super(SomePlugin, self).__init__()
 self.register_listener('pluginload', loaded)

Note that if you want to access an attribute of your plugin (e.g. config or
log) you’ll have to define a method and not a function. Here is the usual
registration process in this case:

from beets.plugins import BeetsPlugin

class SomePlugin(BeetsPlugin):
 def __init__(self):
 super(SomePlugin, self).__init__()
 self.register_listener('pluginload', self.loaded)

 def loaded(self):
 self._log.info('Plugin loaded!')

The events currently available are:

	pluginload: called after all the plugins have been loaded after the beet
command starts

	import: called after a beet import command finishes (the lib keyword
argument is a Library object; paths is a list of paths (strings) that were
imported)

	album_imported: called with an Album object every time the import
command finishes adding an album to the library. Parameters: lib,
album

	item_copied: called with an Item object whenever its file is copied.
Parameters: item, source path, destination path

	item_imported: called with an Item object every time the importer adds a
singleton to the library (not called for full-album imports). Parameters:
lib, item

	before_item_moved: called with an Item object immediately before its
file is moved. Parameters: item, source path, destination path

	item_moved: called with an Item object whenever its file is moved.
Parameters: item, source path, destination path

	item_linked: called with an Item object whenever a symlink is created
for a file.
Parameters: item, source path, destination path

	item_hardlinked: called with an Item object whenever a hardlink is
created for a file.
Parameters: item, source path, destination path

	item_removed: called with an Item object every time an item (singleton
or album’s part) is removed from the library (even when its file is not
deleted from disk).

	write: called with an Item object, a path, and a tags
dictionary just before a file’s metadata is written to disk (i.e.,
just before the file on disk is opened). Event handlers may change
the tags dictionary to customize the tags that are written to the
media file. Event handlers may also raise a
library.FileOperationError exception to abort the write
operation. Beets will catch that exception, print an error message
and continue.

	after_write: called with an Item object after a file’s metadata is
written to disk (i.e., just after the file on disk is closed).

	import_task_created: called immediately after an import task is
initialized. Plugins can use this to, for example, change imported files of a
task before anything else happens. It’s also possible to replace the task
with another task by returning a list of tasks. This list can contain zero
or more ImportTask`s. Returning an empty list will stop the task.
Parameters: ``task` (an ImportTask) and session (an ImportSession).

	import_task_start: called when before an import task begins processing.
Parameters: task and session.

	import_task_apply: called after metadata changes have been applied in an
import task. This is called on the same thread as the UI, so use this
sparingly and only for tasks that can be done quickly. For most plugins, an
import pipeline stage is a better choice (see Add Import Pipeline Stages).
Parameters: task and session.

	import_task_choice: called after a decision has been made about an import
task. This event can be used to initiate further interaction with the user.
Use task.choice_flag to determine or change the action to be
taken. Parameters: task and session.

	import_task_files: called after an import task finishes manipulating the
filesystem (copying and moving files, writing metadata tags). Parameters:
task and session.

	library_opened: called after beets starts up and initializes the main
Library object. Parameter: lib.

	database_change: a modification has been made to the library database. The
change might not be committed yet. Parameters: lib and model.

	cli_exit: called just before the beet command-line program exits.
Parameter: lib.

	import_begin: called just before a beet import session starts up.
Parameter: session.

	trackinfo_received: called after metadata for a track item has been
fetched from a data source, such as MusicBrainz. You can modify the tags
that the rest of the pipeline sees on a beet import operation or during
later adjustments, such as mbsync. Slow handlers of the event can impact
the operation, since the event is fired for any fetched possible match
before the user (or the autotagger machinery) gets to see the match.
Parameter: info.

	albuminfo_received: like trackinfo_received, the event indicates new
metadata for album items. The parameter is an AlbumInfo object instead
of a TrackInfo.
Parameter: info.

	before_choose_candidate: called before the user is prompted for a decision
during a beet import interactive session. Plugins can use this event for
appending choices to the prompt by returning a
list of PromptChoices. Parameters: task and session.

The included mpdupdate plugin provides an example use case for event listeners.

Extend the Autotagger

Plugins can also enhance the functionality of the autotagger. For a
comprehensive example, try looking at the chroma plugin, which is included
with beets.

A plugin can extend three parts of the autotagger’s process: the track distance
function, the album distance function, and the initial MusicBrainz search. The
distance functions determine how “good” a match is at the track and album
levels; the initial search controls which candidates are presented to the
matching algorithm. Plugins implement these extensions by implementing four
methods on the plugin class:

	track_distance(self, item, info): adds a component to the distance
function (i.e., the similarity metric) for individual tracks. item is the
track to be matched (an Item object) and info is the TrackInfo object
that is proposed as a match. Should return a (dist, dist_max) pair
of floats indicating the distance.

	album_distance(self, items, album_info, mapping): like the above, but
compares a list of items (representing an album) to an album-level MusicBrainz
entry. items is a list of Item objects; album_info is an AlbumInfo
object; and mapping is a dictionary that maps Items to their corresponding
TrackInfo objects.

	candidates(self, items, artist, album, va_likely): given a list of items
comprised by an album to be matched, return a list of AlbumInfo objects
for candidate albums to be compared and matched.

	item_candidates(self, item, artist, album): given a singleton item,
return a list of TrackInfo objects for candidate tracks to be compared and
matched.

	album_for_id(self, album_id): given an ID from user input or an album’s
tags, return a candidate AlbumInfo object (or None).

	track_for_id(self, track_id): given an ID from user input or a file’s
tags, return a candidate TrackInfo object (or None).

When implementing these functions, you may want to use the functions from the
beets.autotag and beets.autotag.mb modules, both of which have
somewhat helpful docstrings.

Read Configuration Options

Plugins can configure themselves using the config.yaml file. You can read
configuration values in two ways. The first is to use self.config within
your plugin class. This gives you a view onto the configuration values in a
section with the same name as your plugin’s module. For example, if your plugin
is in greatplugin.py, then self.config will refer to options under the
greatplugin: section of the config file.

For example, if you have a configuration value called “foo”, then users can put
this in their config.yaml:

greatplugin:
 foo: bar

To access this value, say self.config['foo'].get() at any point in your
plugin’s code. The self.config object is a view as defined by the Confuse [https://confuse.readthedocs.org/]
library.

If you want to access configuration values outside of your plugin’s section,
import the config object from the beets module. That is, just put from
beets import config at the top of your plugin and access values from there.

If your plugin provides configuration values for sensitive data (e.g.,
passwords, API keys, …), you should add these to the config so they can be
redacted automatically when users dump their config. This can be done by
setting each value’s redact flag, like so:

self.config['password'].redact = True

Add Path Format Functions and Fields

Beets supports function calls in its path format syntax (see
Path Formats). Beets includes a few built-in functions, but
plugins can register new functions by adding them to the template_funcs
dictionary.

Here’s an example:

class MyPlugin(BeetsPlugin):
 def __init__(self):
 super(MyPlugin, self).__init__()
 self.template_funcs['initial'] = _tmpl_initial

def _tmpl_initial(text):
 if text:
 return text[0].upper()
 else:
 return u''

This plugin provides a function %initial to path templates where
%initial{$artist} expands to the artist’s initial (its capitalized first
character).

Plugins can also add template fields, which are computed values referenced
as $name in templates. To add a new field, add a function that takes an
Item object to the template_fields dictionary on the plugin object.
Here’s an example that adds a $disc_and_track field:

class MyPlugin(BeetsPlugin):
 def __init__(self):
 super(MyPlugin, self).__init__()
 self.template_fields['disc_and_track'] = _tmpl_disc_and_track

def _tmpl_disc_and_track(item):
 """Expand to the disc number and track number if this is a
 multi-disc release. Otherwise, just expands to the track
 number.
 """
 if item.disctotal > 1:
 return u'%02i.%02i' % (item.disc, item.track)
 else:
 return u'%02i' % (item.track)

With this plugin enabled, templates can reference $disc_and_track as they
can any standard metadata field.

This field works for item templates. Similarly, you can register album
template fields by adding a function accepting an Album argument to the
album_template_fields dict.

Extend MediaFile

MediaFile [https://mediafile.readthedocs.io/] is the file tag abstraction layer that beets uses to make
cross-format metadata manipulation simple. Plugins can add fields to MediaFile
to extend the kinds of metadata that they can easily manage.

The MediaFile class uses MediaField descriptors to provide
access to file tags. If you have created a descriptor you can add it through
your plugins add_media_field() method.

	
BeetsPlugin.add_media_field(name, descriptor)

	Add a field that is synchronized between media files and items.

When a media field is added item.write() will set the name
property of the item’s MediaFile to item[name] and save the
changes. Similarly item.read() will set item[name] to
the value of the name property of the media file.

descriptor must be an instance of mediafile.MediaField.

Here’s an example plugin that provides a meaningless new field “foo”:

class FooPlugin(BeetsPlugin):
 def __init__(self):
 field = mediafile.MediaField(
 mediafile.MP3DescStorageStyle(u'foo'),
 mediafile.StorageStyle(u'foo')
)
 self.add_media_field('foo', field)

FooPlugin()
item = Item.from_path('/path/to/foo/tag.mp3')
assert item['foo'] == 'spam'

item['foo'] == 'ham'
item.write()
The "foo" tag of the file is now "ham"

Add Import Pipeline Stages

Many plugins need to add high-latency operations to the import workflow. For
example, a plugin that fetches lyrics from the Web would, ideally, not block the
progress of the rest of the importer. Beets allows plugins to add stages to the
parallel import pipeline.

Each stage is run in its own thread. Plugin stages run after metadata changes
have been applied to a unit of music (album or track) and before file
manipulation has occurred (copying and moving files, writing tags to disk).
Multiple stages run in parallel but each stage processes only one task at a time
and each task is processed by only one stage at a time.

Plugins provide stages as functions that take two arguments: config and
task, which are ImportSession and ImportTask objects (both defined in
beets.importer). Add such a function to the plugin’s import_stages field
to register it:

from beets.plugins import BeetsPlugin
class ExamplePlugin(BeetsPlugin):
 def __init__(self):
 super(ExamplePlugin, self).__init__()
 self.import_stages = [self.stage]
 def stage(self, session, task):
 print('Importing something!')

It is also possible to request your function to run early in the pipeline by
adding the function to the plugin’s early_import_stages field instead:

self.early_import_stages = [self.stage]

Extend the Query Syntax

You can add new kinds of queries to beets’ query syntax. There are two ways to add custom queries: using a prefix
and using a name. Prefix-based query extension can apply to any field, while
named queries are not associated with any field. For example, beets already
supports regular expression queries, which are indicated by a colon
prefix—plugins can do the same.

For either kind of query extension, define a subclass of the Query type
from the beets.dbcore.query module. Then:

	To define a prefix-based query, define a queries method in your plugin
class. Return from this method a dictionary mapping prefix strings to query
classes.

	To define a named query, defined dictionaries named either item_queries
or album_queries. These should map names to query types. So if you
use { "foo": FooQuery }, then the query foo:bar will construct a
query like FooQuery("bar").

For prefix-based queries, you will want to extend FieldQuery, which
implements string comparisons on fields. To use it, create a subclass
inheriting from that class and override the value_match class method.
(Remember the @classmethod decorator!) The following example plugin
declares a query using the @ prefix to delimit exact string matches. The
plugin will be used if we issue a command like beet ls @something or
beet ls artist:@something:

from beets.plugins import BeetsPlugin
from beets.dbcore import FieldQuery

class ExactMatchQuery(FieldQuery):
 @classmethod
 def value_match(self, pattern, val):
 return pattern == val

class ExactMatchPlugin(BeetsPlugin):
 def queries(self):
 return {
 '@': ExactMatchQuery
 }

Flexible Field Types

If your plugin uses flexible fields to store numbers or other
non-string values, you can specify the types of those fields. A rating
plugin, for example, might want to declare that the rating field
should have an integer type:

from beets.plugins import BeetsPlugin
from beets.dbcore import types

class RatingPlugin(BeetsPlugin):
 item_types = {'rating': types.INTEGER}

 @property
 def album_types(self):
 return {'rating': types.INTEGER}

A plugin may define two attributes: item_types and album_types.
Each of those attributes is a dictionary mapping a flexible field name
to a type instance. You can find the built-in types in the
beets.dbcore.types and beets.library modules or implement your own
type by inheriting from the Type class.

Specifying types has several advantages:

	Code that accesses the field like item['my_field'] gets the right
type (instead of just a string).

	You can use advanced queries (like ranges)
from the command line.

	User input for flexible fields may be validated and converted.

Logging

Each plugin object has a _log attribute, which is a Logger from the
standard Python logging module [https://docs.python.org/2/library/logging.html]. The logger is set up to PEP 3101 [https://www.python.org/dev/peps/pep-3101/],
str.format-style string formatting. So you can write logging calls like this:

self._log.debug(u'Processing {0.title} by {0.artist}', item)

When beets is in verbose mode, plugin messages are prefixed with the plugin
name to make them easier to see.

Which messages will be logged depends on the logging level and the action
performed:

	Inside import stages and event handlers, the default is WARNING messages
and above.

	Everywhere else, the default is INFO or above.

The verbosity can be increased with --verbose (-v) flags: each flags
lowers the level by a notch. That means that, with a single -v flag, event
handlers won’t have their DEBUG messages displayed, but command functions
(for example) will. With -vv on the command line, DEBUG messages will
be displayed everywhere.

This addresses a common pattern where plugins need to use the same code for a
command and an import stage, but the command needs to print more messages than
the import stage. (For example, you’ll want to log “found lyrics for this song”
when you’re run explicitly as a command, but you don’t want to noisily
interrupt the importer interface when running automatically.)

Append Prompt Choices

Plugins can also append choices to the prompt presented to the user during
an import session.

To do so, add a listener for the before_choose_candidate event, and return
a list of PromptChoices that represent the additional choices that your
plugin shall expose to the user:

from beets.plugins import BeetsPlugin
from beets.ui.commands import PromptChoice

class ExamplePlugin(BeetsPlugin):
 def __init__(self):
 super(ExamplePlugin, self).__init__()
 self.register_listener('before_choose_candidate',
 self.before_choose_candidate_event)

 def before_choose_candidate_event(self, session, task):
 return [PromptChoice('p', 'Print foo', self.foo),
 PromptChoice('d', 'Do bar', self.bar)]

 def foo(self, session, task):
 print('User has chosen "Print foo"!')

 def bar(self, session, task):
 print('User has chosen "Do bar"!')

The previous example modifies the standard prompt:

selection (default 1), Skip, Use as-is, as Tracks, Group albums,
Enter search, enter Id, aBort?

by appending two additional options (Print foo and Do bar):

selection (default 1), Skip, Use as-is, as Tracks, Group albums,
Enter search, enter Id, aBort, Print foo, Do bar?

If the user selects a choice, the callback attribute of the corresponding
PromptChoice will be called. It is the responsibility of the plugin to
check for the status of the import session and decide the choices to be
appended: for example, if a particular choice should only be presented if the
album has no candidates, the relevant checks against task.candidates should
be performed inside the plugin’s before_choose_candidate_event accordingly.

Please make sure that the short letter for each of the choices provided by the
plugin is not already in use: the importer will emit a warning and discard
all but one of the choices using the same letter, giving priority to the
core importer prompt choices. As a reference, the following characters are used
by the choices on the core importer prompt, and hence should not be used:
a, s, u, t, g, e, i, b.

Additionally, the callback function can optionally specify the next action to
be performed by returning a importer.action value. It may also return a
autotag.Proposal value to update the set of current proposals to be
considered.

Library Database API

This page describes the internal API of beets’ core database features. It
doesn’t exhaustively document the API, but is aimed at giving an overview of
the architecture to orient anyone who wants to dive into the code.

The Library object is the central repository for data in beets. It
represents a database containing songs, which are Item instances, and
groups of items, which are Album instances.

The Library Class

The Library is typically instantiated as a singleton. A single
invocation of beets usually has only one Library. It’s powered by
dbcore.Database under the hood, which handles the SQLite [https://sqlite.org/]
abstraction, something like a very minimal ORM [https://en.wikipedia.org/wiki/Object-relational_mapping]. The library is also
responsible for handling queries to retrieve stored objects.

	
class beets.library.Library(path, directory[, path_formats[, replacements]])

	A database of music containing songs and albums.

	
__init__(path='library.blb', directory='~/Music', path_formats=(('default', '$artist/$album/$track $title'),), replacements=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

You can add new items or albums to the library:

	
add(obj)

	Add the Item or Album object to the library
database. Return the object’s new id.

	
add_album(items)

	Create a new album consisting of a list of items.

The items are added to the database if they don’t yet have an
ID. Return a new Album object. The list items must not
be empty.

And there are methods for querying the database:

	
items(query=None, sort=None)

	Get Item objects matching the query.

	
albums(query=None, sort=None)

	Get Album objects matching the query.

	
get_item(id)

	Fetch an Item by its ID. Returns None if no match is
found.

	
get_album(item_or_id)

	Given an album ID or an item associated with an album, return
an Album object for the album. If no such album exists,
returns None.

Any modifications must go through a Transaction which you get can
using this method:

	
transaction()

	Get a Transaction object for interacting directly
with the underlying SQLite database.

Model Classes

The two model entities in beets libraries, Item and Album,
share a base class, LibModel, that provides common functionality. That
class itself specialises dbcore.Model which provides an ORM-like
abstraction.

To get or change the metadata of a model (an item or album), either access its
attributes (e.g., print(album.year) or album.year = 2012) or use the
dict-like interface (e.g. item['artist']).

Model base

Models use dirty-flags to track when the object’s metadata goes out of
sync with the database. The dirty dictionary maps field names to booleans
indicating whether the field has been written since the object was last
synchronized (via load or store) with the database.

	
class beets.library.LibModel(db=None, **values)

	Shared concrete functionality for Items and Albums.

	
classmethod all_keys()

	Get a list of available keys for objects of this type.
Includes fixed and computed fields.

	
__init__(db=None, **values)

	Create a new object with an optional Database association and
initial field values.

	
_types = {}

	

	
_fields = {}

	

There are CRUD-like methods for interacting with the database:

	
store(fields=None)

	Save the object’s metadata into the library database.
:param fields: the fields to be stored. If not specified, all fields
will be.

	
load()

	Refresh the object’s metadata from the library database.

	
remove()

	Remove the object’s associated rows from the database.

	
add(lib=None)

	Add the object to the library database. This object must be
associated with a database; you can provide one via the db
parameter or use the currently associated database.

The object’s id and added fields are set along with any
current field values.

The base class dbcore.Model has a dict-like interface, so
normal the normal mapping API is supported:

	
keys(computed=False)

	Get a list of available field names for this object. The
computed parameter controls whether computed (plugin-provided)
fields are included in the key list.

	
update(values)

	Assign all values in the given dict.

	
items()

	Iterate over (key, value) pairs that this object contains.
Computed fields are not included.

	
get(key, default=None)

	Get the value for a given key or default if it does not
exist.

Item

Each Item object represents a song or track. (We use the more generic
term item because, one day, beets might support non-music media.) An item can
either be purely abstract, in which case it’s just a bag of metadata fields,
or it can have an associated file (indicated by item.path).

In terms of the underlying SQLite database, items are backed by a single table
called items with one column per metadata fields. The metadata fields currently
in use are listed in library.py in Item._fields.

To read and write a file’s tags, we use the MediaFile [https://mediafile.readthedocs.io/] library.
To make changes to either the database or the tags on a file, you
update an item’s fields (e.g., item.title = "Let It Be") and then call
item.write().

Items also track their modification times (mtimes) to help detect when they
become out of sync with on-disk metadata, mainly to speed up the
update (which needs to check whether the database is in sync with
the filesystem). This feature turns out to be sort of complicated.

For any Item, there are two mtimes: the on-disk mtime (maintained by
the OS) and the database mtime (maintained by beets). Correspondingly, there is
on-disk metadata (ID3 tags, for example) and DB metadata. The goal with the
mtime is to ensure that the on-disk and DB mtimes match when the on-disk and DB
metadata are in sync; this lets beets do a quick mtime check and avoid
rereading files in some circumstances.

Specifically, beets attempts to maintain the following invariant:

If the on-disk metadata differs from the DB metadata, then the on-disk
mtime must be greater than the DB mtime.

As a result, it is always valid for the DB mtime to be zero (assuming that real
disk mtimes are always positive). However, whenever possible, beets tries to
set db_mtime = disk_mtime at points where it knows the metadata is
synchronized. When it is possible that the metadata is out of sync, beets can
then just set db_mtime = 0 to return to a consistent state.

This leads to the following implementation policy:

	On every write of disk metadata (Item.write()), the DB mtime is updated
to match the post-write disk mtime.

	Same for metadata reads (Item.read()).

	On every modification to DB metadata (item.field = ...), the DB mtime
is reset to zero.

	
class beets.library.Item(db=None, **values)

	
	
__init__(db=None, **values)

	Create a new object with an optional Database association and
initial field values.

	
classmethod from_path(path)

	Creates a new item from the media file at the specified path.

	
get_album()

	Get the Album object that this item belongs to, if any, or
None if the item is a singleton or is not associated with a
library.

	
destination(fragment=False, basedir=None, platform=None, path_formats=None)

	Returns the path in the library directory designated for the
item (i.e., where the file ought to be). fragment makes this
method return just the path fragment underneath the root library
directory; the path is also returned as Unicode instead of
encoded as a bytestring. basedir can override the library’s base
directory for the destination.

	
current_mtime()

	Returns the current mtime of the file, rounded to the nearest
integer.

The methods read() and write() are complementary: one reads a
file’s tags and updates the item’s metadata fields accordingly while the
other takes the item’s fields and writes them to the file’s tags.

	
read(read_path=None)

	Read the metadata from the associated file.

If read_path is specified, read metadata from that file
instead. Updates all the properties in _media_fields
from the media file.

Raises a ReadError if the file could not be read.

	
write(path=None, tags=None, id3v23=None)

	Write the item’s metadata to a media file.

All fields in _media_fields are written to disk according to
the values on this object.

path is the path of the mediafile to write the data to. It
defaults to the item’s path.

tags is a dictionary of additional metadata the should be
written to the file. (These tags need not be in _media_fields.)

id3v23 will override the global id3v23 config option if it is
set to something other than None.

Can raise either a ReadError or a WriteError.

	
try_write(*args, **kwargs)

	Calls write() but catches and logs FileOperationError
exceptions.

Returns False an exception was caught and True otherwise.

	
try_sync(write, move, with_album=True)

	Synchronize the item with the database and, possibly, updates its
tags on disk and its path (by moving the file).

write indicates whether to write new tags into the file. Similarly,
move controls whether the path should be updated. In the
latter case, files are only moved when they are inside their
library’s directory (if any).

Similar to calling write(), move(), and store()
(conditionally).

The Item class supplements the normal model interface so that they
interacting with the filesystem as well:

	
move(operation=<MoveOperation.MOVE: 0>, basedir=None, with_album=True, store=True)

	Move the item to its designated location within the library
directory (provided by destination()). Subdirectories are
created as needed. If the operation succeeds, the item’s path
field is updated to reflect the new location.

Instead of moving the item it can also be copied, linked or hardlinked
depending on operation which should be an instance of
util.MoveOperation.

basedir overrides the library base directory for the destination.

If the item is in an album and with_album is True, the album is
given an opportunity to move its art.

By default, the item is stored to the database if it is in the
database, so any dirty fields prior to the move() call will be written
as a side effect.
If store is False however, the item won’t be stored and you’ll
have to manually store it after invoking this method.

	
remove(delete=False, with_album=True)

	Removes the item. If delete, then the associated file is
removed from disk. If with_album, then the item’s album (if
any) is removed if it the item was the last in the album.

Album

An Album is a collection of Items in the database. Every item in the
database has either zero or one associated albums (accessible via
item.album_id). An item that has no associated album is called a
singleton.
Changing fields on an album (e.g. album.year = 2012) updates the album
itself and also changes the same field in all associated items.

An Album object keeps track of album-level metadata, which is (mostly)
a subset of the track-level metadata. The album-level metadata fields are
listed in Album._fields.
For those fields that are both item-level and album-level (e.g., year or
albumartist), every item in an album should share the same value. Albums
use an SQLite table called albums, in which each column is an album
metadata field.

	
class beets.library.Album(db=None, **values)

	Provides access to information about albums stored in a
library. Reflects the library’s “albums” table, including album
art.

	
__init__(db=None, **values)

	Create a new object with an optional Database association and
initial field values.

	
item_dir()

	Returns the directory containing the album’s first item,
provided that such an item exists.

Albums extend the normal model interface to also forward changes to their
items:

	
item_keys = ['added', 'albumartist', 'albumartist_sort', 'albumartist_credit', 'album', 'genre', 'year', 'month', 'day', 'disctotal', 'comp', 'mb_albumid', 'mb_albumartistid', 'albumtype', 'label', 'mb_releasegroupid', 'asin', 'catalognum', 'script', 'language', 'country', 'albumstatus', 'albumdisambig', 'releasegroupdisambig', 'rg_album_gain', 'rg_album_peak', 'r128_album_gain', 'original_year', 'original_month', 'original_day']

	List of keys that are set on an album’s items.

	
store(fields=None)

	Update the database with the album information. The album’s
tracks are also updated.
:param fields: The fields to be stored. If not specified, all fields
will be.

	
try_sync(write, move)

	Synchronize the album and its items with the database.
Optionally, also write any new tags into the files and update
their paths.

write indicates whether to write tags to the item files, and
move controls whether files (both audio and album art) are
moved.

	
move(operation=<MoveOperation.MOVE: 0>, basedir=None, store=True)

	Move, copy, link or hardlink (depending on operation)
all items to their destination. Any album art moves along with them.

basedir overrides the library base directory for the destination.

operation should be an instance of util.MoveOperation.

By default, the album is stored to the database, persisting any
modifications to its metadata. If store is False however,
the album is not stored automatically, and you’ll have to manually
store it after invoking this method.

	
remove(delete=False, with_items=True)

	Removes this album and all its associated items from the
library. If delete, then the items’ files are also deleted
from disk, along with any album art. The directories
containing the album are also removed (recursively) if empty.
Set with_items to False to avoid removing the album’s items.

Albums also manage album art, image files that are associated with each
album:

	
set_art(path, copy=True)

	Sets the album’s cover art to the image at the given path.
The image is copied (or moved) into place, replacing any
existing art.

Sends an ‘art_set’ event with self as the sole argument.

	
move_art(operation=<MoveOperation.MOVE: 0>)

	Move, copy, link or hardlink (depending on operation) any
existing album art so that it remains in the same directory as
the items.

operation should be an instance of util.MoveOperation.

	
art_destination(image, item_dir=None)

	Returns a path to the destination for the album art image
for the album. image is the path of the image that will be
moved there (used for its extension).

The path construction uses the existing path of the album’s
items, so the album must contain at least one item or
item_dir must be provided.

Transactions

The Library class provides the basic methods necessary to access and
manipulate its contents. To perform more complicated operations atomically, or
to interact directly with the underlying SQLite database, you must use a
transaction (see this blog post [https://beets.io/blog/sqlite-nightmare.html] for motivation). For example:

lib = Library()
with lib.transaction() as tx:
 items = lib.items(query)
 lib.add_album(list(items))

	
class beets.dbcore.db.Transaction(db)

	A context manager for safe, concurrent access to the database.
All SQL commands should be executed through a transaction.

	
mutate(statement, subvals=())

	Execute an SQL statement with substitution values and return
the row ID of the last affected row.

	
query(statement, subvals=())

	Execute an SQL statement with substitution values and return
a list of rows from the database.

	
script(statements)

	Execute a string containing multiple SQL statements.

Queries

To access albums and items in a library, we use Queries.
In beets, the Query abstract base class represents a criterion that
matches items or albums in the database.
Every subclass of Query must implement two methods, which implement
two different ways of identifying matching items/albums.

The clause() method should return an SQLite WHERE clause that matches
appropriate albums/items. This allows for efficient batch queries.
Correspondingly, the match(item) method should take an Item object
and return a boolean, indicating whether or not a specific item matches the
criterion. This alternate implementation allows clients to determine whether
items that have already been fetched from the database match the query.

There are many different types of queries. Just as an example,
FieldQuery determines whether a certain field matches a certain value
(an equality query).
AndQuery (like its abstract superclass, CollectionQuery)
takes a set of other query objects and bundles them together, matching only
albums/items that match all constituent queries.

Beets has a human-writable plain-text query syntax that can be parsed into
Query objects. Calling AndQuery.from_strings parses a list of
query parts into a query object that can then be used with Library
objects.

Music Importer

The importer component is responsible for the user-centric workflow that adds
music to a library. This is one of the first aspects that a user experiences
when using beets: it finds music in the filesystem, groups it into albums,
finds corresponding metadata in MusicBrainz, asks the user for intervention,
applies changes, and moves/copies files. A description of its user interface is
given in Using the Auto-Tagger.

The workflow is implemented in the beets.importer module and is
distinct from the core logic for matching MusicBrainz metadata (in the
beets.autotag module). The workflow is also decoupled from the command-line
interface with the hope that, eventually, other (graphical) interfaces can be
bolted onto the same importer implementation.

The importer is multithreaded and follows the pipeline pattern. Each pipeline
stage is a Python coroutine. The beets.util.pipeline module houses
a generic, reusable implementation of a multithreaded pipeline.

Providing a CLI

The beets.ui module houses interactions with the user via a terminal, the
Command-Line Interface.
The main function is called when the user types beet on the command line.
The CLI functionality is organized into commands, some of which are built-in
and some of which are provided by plugins. The built-in commands are all
implemented in the beets.ui.commands submodule.

Changelog

1.5.0 (in development)

New features:

	We now fetch information about works [https://musicbrainz.org/doc/Work] from MusicBrainz.
MusicBrainz matches provide the fields work (the title), mb_workid
(the MBID), and work_disambig (the disambiguation string).
Thanks to dosoe [https://github.com/dosoe].
#2580 [https://github.com/beetbox/beets/issues/2580] #3272 [https://github.com/beetbox/beets/issues/3272]

	BPD Plugin: BPD now supports most of the features of version 0.16
of the MPD protocol. This is enough to get it talking to more complicated
clients like ncmpcpp, but there are still some incompatibilities, largely due
to MPD commands we don’t support yet. Let us know if you find an MPD client
that doesn’t get along with BPD!
#3214 [https://github.com/beetbox/beets/issues/3214] #800 [https://github.com/beetbox/beets/issues/800]

	ReplayGain Plugin: The plugin now supports a per_disc option
which enables calculation of album ReplayGain on disc level instead of album
level.
Thanks to samuelnilsson [https://github.com/samuelnilsson]
#293 [https://github.com/beetbox/beets/issues/293]

	A new ParentWork Plugin gets information about the original work,
which is useful for classical music.
Thanks to dosoe [https://github.com/dosoe].
#2580 [https://github.com/beetbox/beets/issues/2580] #3279 [https://github.com/beetbox/beets/issues/3279]

	Discogs Plugin: The field now collects the “style” field.
Thanks to thedevilisinthedetails [https://github.com/thedevilisinthedetails].
#2579 [https://github.com/beetbox/beets/issues/2579] #3251 [https://github.com/beetbox/beets/issues/3251]

Fixes:

	Inline Plugin: In function-style field definitions that refer to
flexible attributes, values could stick around from one function invocation
to the next. This meant that, when displaying a list of objects, later
objects could seem to reuse values from earlier objects when they were
missing a value for a given field. These values are now properly undefined.
#2406 [https://github.com/beetbox/beets/issues/2406]

	BPD Plugin: Seeking by fractions of a second now works as intended,
fixing crashes in MPD clients like mpDris2 on seek.
The playlistid command now works properly in its zero-argument form.
#3214 [https://github.com/beetbox/beets/issues/3214]

	ReplayGain Plugin: Fix a Python 3 incompatibility in the Python
Audio Tools backend.
#3305 [https://github.com/beetbox/beets/issues/3305]

	ImportAdded Plugin: Fixed a crash that occurred when the
after_write signal was emitted.
#3301 [https://github.com/beetbox/beets/issues/3301]

	ReplayGain Plugin: Fix the storage format in R128 gain tags.
#3311 [https://github.com/beetbox/beets/issues/3311] #3314 [https://github.com/beetbox/beets/issues/3314]

For plugin developers:

	MediaFile [https://github.com/beetbox/mediafile] has been split into a standalone project. Where you used to do
from beets import mediafile, now just do import mediafile. Beets
re-exports MediaFile at the old location for backwards-compatibility, but a
deprecation warning is raised if you do this since we might drop this wrapper
in a future release.

	We’ve replaced beets’ configuration library confit with a standalone
version called Confuse [https://github.com/beetbox/confuse]. Where you used to do
from beets.util import confit, now just do import confuse. The code
is almost identical apart from the name change. Again, we’ll re-export at the
old location (with a deprecation warning) for backwards compatibility, but
might stop doing this in a future release.

For packagers:

	Beets’ library for manipulating media file metadata has now been split to a
standalone project called MediaFile [https://github.com/beetbox/mediafile], released as mediafile [https://pypi.org/project/mediafile/]. Beets
now depends on this new package. Beets now depends on Mutagen transitively
through MediaFile rather than directly, except in the case of one of beets’
plugins (scrub).

	Beets’ library for configuration has been split into a standalone project
called Confuse [https://github.com/beetbox/confuse], released as confuse [https://pypi.org/project/confuse/]. Beets now depends on this
package. Confuse has existed separately for some time and is used by
unrelated projects, but until now we’ve been bundling a copy within beets.

	We attempted to fix an unreliable test, so a patch to skip [https://sources.debian.org/src/beets/1.4.7-2/debian/patches/skip-broken-test/]
or repair [https://build.opensuse.org/package/view_file/openSUSE:Factory/beets/fix_test_command_line_option_relative_to_working_dir.diff?expand=1]
the test may no longer be necessary.

1.4.9 (May 30, 2019)

This small update is part of our attempt to release new versions more often!
There are a few important fixes, and we’re clearing the deck for a change to
beets’ dependencies in the next version.

The new feature is:

	You can use the NO_COLOR [https://no-color.org] environment variable to disable terminal colors.
#3273 [https://github.com/beetbox/beets/issues/3273]

There are some fixes in this release:

	Fix a regression in the last release that made the image resizer fail to
detect older versions of ImageMagick.
#3269 [https://github.com/beetbox/beets/issues/3269]

	Gmusic Plugin: The oauth_file config option now supports more
flexible path values, including ~ for the home directory.
#3270 [https://github.com/beetbox/beets/issues/3270]

	Gmusic Plugin: Fix a crash when using version 12.0.0 or later of
the gmusicapi module.
#3270 [https://github.com/beetbox/beets/issues/3270]

	Fix an incompatibility with Python 3.8’s AST changes.
#3278 [https://github.com/beetbox/beets/issues/3278]

Here’s a note for packagers:

	pathlib is now an optional test dependency on Python 3.4+, removing the
need for a Debian patch [https://sources.debian.org/src/beets/1.4.7-2/debian/patches/pathlib-is-stdlib/].
#3275 [https://github.com/beetbox/beets/issues/3275]

1.4.8 (May 16, 2019)

This release is far too long in coming, but it’s a good one. There is the
usual torrent of new features and a ridiculously long line of fixes, but there
are also some crucial maintenance changes.
We officially support Python 3.7 and 3.8, and some performance optimizations
can (anecdotally) make listing your library more than three times faster than
in the previous version.

The new core features are:

	A new aunique configuration option allows setting default
options for the Album Disambiguation template function.

	The albumdisambig field no longer includes the MusicBrainz release group
disambiguation comment. A new releasegroupdisambig field has been added.
#3024 [https://github.com/beetbox/beets/issues/3024]

	The modify command now allows resetting fixed attributes. For
example, beet modify -a artist:beatles artpath! resets artpath
attribute from matching albums back to the default value.
#2497 [https://github.com/beetbox/beets/issues/2497]

	A new importer option, ignore_data_tracks, lets you skip audio tracks
contained in data files. #3021 [https://github.com/beetbox/beets/issues/3021]

There are some new plugins:

	The Playlist Plugin can query the beets library using M3U playlists.
Thanks to Holzhaus [https://github.com/Holzhaus] and Xenopathic [https://github.com/Xenopathic].
#123 [https://github.com/beetbox/beets/issues/123] #3145 [https://github.com/beetbox/beets/issues/3145]

	The Load Extension Plugin allows loading of SQLite extensions, primarily
for use with the ICU SQLite extension for internationalization.
#3160 [https://github.com/beetbox/beets/issues/3160] #3226 [https://github.com/beetbox/beets/issues/3226]

	The SubsonicUpdate Plugin can automatically update your Subsonic
library.
Thanks to maffo999 [https://github.com/maffo999].
#3001 [https://github.com/beetbox/beets/issues/3001]

And many improvements to existing plugins:

	LastGenre Plugin: Added option -A to match individual tracks
and singletons.
#3220 [https://github.com/beetbox/beets/issues/3220] #3219 [https://github.com/beetbox/beets/issues/3219]

	Play Plugin: The plugin can now emit a UTF-8 BOM, fixing some
issues with foobar2000 and Winamp.
Thanks to mz2212 [https://github.com/mz2212].
#2944 [https://github.com/beetbox/beets/issues/2944]

	
	Gmusic Plugin:

	
	Add a new option to automatically upload to Google Play Music library on
track import.
Thanks to shuaiscott [https://github.com/shuaiscott].

	Add new options for Google Play Music authentication.
Thanks to thetarkus [https://github.com/thetarkus].
#3002 [https://github.com/beetbox/beets/issues/3002]

	ReplayGain Plugin: albumpeak on large collections is calculated
as the average, not the maximum.
#3008 [https://github.com/beetbox/beets/issues/3008] #3009 [https://github.com/beetbox/beets/issues/3009]

	
	Chromaprint/Acoustid Plugin:

	
	Now optionally has a bias toward looking up more relevant releases
according to the preferred configuration options.
Thanks to archer4499 [https://github.com/archer4499].
#3017 [https://github.com/beetbox/beets/issues/3017]

	Fingerprint values are now properly stored as strings, which prevents
strange repeated output when running beet write.
Thanks to Holzhaus [https://github.com/Holzhaus].
#3097 [https://github.com/beetbox/beets/issues/3097] #2942 [https://github.com/beetbox/beets/issues/2942]

	Convert Plugin: The plugin now has an id3v23 option that allows
you to override the global id3v23 option.
Thanks to Holzhaus [https://github.com/Holzhaus].
#3104 [https://github.com/beetbox/beets/issues/3104]

	
	Spotify Plugin:

	
	The plugin now uses OAuth for authentication to the Spotify API.
Thanks to rhlahuja [https://github.com/rhlahuja].
#2694 [https://github.com/beetbox/beets/issues/2694] #3123 [https://github.com/beetbox/beets/issues/3123]

	The plugin now works as an import metadata
provider: you can match tracks and albums using the Spotify database.
Thanks to rhlahuja [https://github.com/rhlahuja].
#3123 [https://github.com/beetbox/beets/issues/3123]

	IPFS Plugin: The plugin now supports a nocopy option which
passes that flag to ipfs.
Thanks to wildthyme [https://github.com/wildthyme].

	Discogs Plugin: The plugin now has rate limiting for the Discogs API.
#3081 [https://github.com/beetbox/beets/issues/3081]

	MPDStats Plugin, MPDUpdate Plugin: These plugins now use
the MPD_PORT environment variable if no port is specified in the
configuration file.
#3223 [https://github.com/beetbox/beets/issues/3223]

	
	BPD Plugin:

	
	MPD protocol commands consume and single are now supported along
with updated semantics for repeat and previous and new fields for
status. The bpd server now understands and ignores some additional
commands.
#3200 [https://github.com/beetbox/beets/issues/3200] #800 [https://github.com/beetbox/beets/issues/800]

	MPD protocol command idle is now supported, allowing the MPD version
to be bumped to 0.14.
#3205 [https://github.com/beetbox/beets/issues/3205] #800 [https://github.com/beetbox/beets/issues/800]

	MPD protocol command decoders is now supported.
#3222 [https://github.com/beetbox/beets/issues/3222]

	The plugin now uses the main beets logging system.
The special-purpose --debug flag has been removed.
Thanks to arcresu [https://github.com/arcresu].
#3196 [https://github.com/beetbox/beets/issues/3196]

	MBSync Plugin: The plugin no longer queries MusicBrainz when either
the mb_albumid or mb_trackid field is invalid.
See also the discussion on Google Groups [https://groups.google.com/forum/#!searchin/beets-users/mbsync|sort:date/beets-users/iwCF6bNdh9A/i1xl4Gx8BQAJ]
Thanks to arogl [https://github.com/arogl].

	Export Plugin: The plugin now also exports path field if the user
explicitly specifies it with -i parameter. This only works when exporting
library fields.
#3084 [https://github.com/beetbox/beets/issues/3084]

	AcousticBrainz Plugin: The plugin now declares types for all its
fields, which enables easier querying and avoids a problem where very small
numbers would be stored as strings.
Thanks to rain0r [https://github.com/rain0r].
#2790 [https://github.com/beetbox/beets/issues/2790] #3238 [https://github.com/beetbox/beets/issues/3238]

Some improvements have been focused on improving beets’ performance:

	
	Querying the library is now faster:

	
	We only convert fields that need to be displayed.
Thanks to pprkut [https://github.com/pprkut].
#3089 [https://github.com/beetbox/beets/issues/3089]

	We now compile templates once and reuse them instead of recompiling them
to print out each matching object.
Thanks to SimonPersson [https://github.com/SimonPersson].
#3258 [https://github.com/beetbox/beets/issues/3258]

	Querying the library for items is now faster, for all queries that do not
need to access album level properties. This was implemented by lazily
fetching the album only when needed.
Thanks to SimonPersson [https://github.com/SimonPersson].
#3260 [https://github.com/beetbox/beets/issues/3260]

	AcousticBrainz Submit Plugin, Bad Files Plugin: Analysis now works in
parallel (on Python 3 only).
Thanks to bemeurer [https://github.com/bemeurer].
#2442 [https://github.com/beetbox/beets/issues/2442] #3003 [https://github.com/beetbox/beets/issues/3003]

	MPDStats Plugin: Use the currentsong MPD command instead of
playlist to get the current song, improving performance when the playlist
is long.
Thanks to ray66 [https://github.com/ray66].
#3207 [https://github.com/beetbox/beets/issues/3207] #2752 [https://github.com/beetbox/beets/issues/2752]

Several improvements are related to usability:

	The disambiguation string for identifying albums in the importer now shows
the catalog number.
Thanks to 8h2a [https://github.com/8h2a].
#2951 [https://github.com/beetbox/beets/issues/2951]

	Added whitespace padding to missing tracks dialog to improve readability.
Thanks to jams2 [https://github.com/jams2].
#2962 [https://github.com/beetbox/beets/issues/2962]

	The move command now lists the number of items already in-place.
Thanks to RollingStar [https://github.com/RollingStar].
#3117 [https://github.com/beetbox/beets/issues/3117]

	Modify selection can now be applied early without selecting every item.
#3083 [https://github.com/beetbox/beets/issues/3083]

	Beets now emits more useful messages during startup if SQLite returns an error. The
SQLite error message is now attached to the beets message.
#3005 [https://github.com/beetbox/beets/issues/3005]

	Fixed a confusing typo when the Convert Plugin plugin copies the art
covers.
#3063 [https://github.com/beetbox/beets/issues/3063]

Many fixes have been focused on issues where beets would previously crash:

	Avoid a crash when archive extraction fails during import.
#3041 [https://github.com/beetbox/beets/issues/3041]

	Missing album art file during an update no longer causes a fatal exception
(instead, an error is logged and the missing file path is removed from the
library).
#3030 [https://github.com/beetbox/beets/issues/3030]

	When updating the database, beets no longer tries to move album art twice.
#3189 [https://github.com/beetbox/beets/issues/3189]

	Fix an unhandled exception when pruning empty directories.
#1996 [https://github.com/beetbox/beets/issues/1996] #3209 [https://github.com/beetbox/beets/issues/3209]

	FetchArt Plugin: Added network connection error handling to backends
so that beets won’t crash if a request fails.
Thanks to Holzhaus [https://github.com/Holzhaus].
#1579 [https://github.com/beetbox/beets/issues/1579]

	Bad Files Plugin: Avoid a crash when the underlying tool emits
undecodable output.
#3165 [https://github.com/beetbox/beets/issues/3165]

	Beatport Plugin: Avoid a crash when the server produces an error.
#3184 [https://github.com/beetbox/beets/issues/3184]

	BPD Plugin: Fix crashes in the bpd server during exception handling.
#3200 [https://github.com/beetbox/beets/issues/3200]

	BPD Plugin: Fix a crash triggered when certain clients tried to list
the albums belonging to a particular artist.
#3007 [https://github.com/beetbox/beets/issues/3007] #3215 [https://github.com/beetbox/beets/issues/3215]

	ReplayGain Plugin: Avoid a crash when the bs1770gain tool emits
malformed XML.
#2983 [https://github.com/beetbox/beets/issues/2983] #3247 [https://github.com/beetbox/beets/issues/3247]

There are many fixes related to compatibility with our dependencies including
addressing changes interfaces:

	On Python 2, pin the jellyfish [https://pypi.org/project/jellyfish/] requirement to version 0.6.0 for
compatibility.

	Fix compatibility with Python 3.7 and its change to a name in the
re [https://docs.python.org/3/library/re.html] module.
#2978 [https://github.com/beetbox/beets/issues/2978]

	Fix several uses of deprecated standard-library features on Python 3.7.
Thanks to arcresu [https://github.com/arcresu].
#3197 [https://github.com/beetbox/beets/issues/3197]

	Fix compatibility with pre-release versions of Python 3.8.
#3201 [https://github.com/beetbox/beets/issues/3201] #3202 [https://github.com/beetbox/beets/issues/3202]

	Web Plugin: Fix an error when using more recent versions of Flask
with CORS enabled.
Thanks to rveachkc [https://github.com/rveachkc].
#2979 [https://github.com/beetbox/beets/issues/2979]: #2980 [https://github.com/beetbox/beets/issues/2980]

	Avoid some deprecation warnings with certain versions of the MusicBrainz
library.
Thanks to zhelezov [https://github.com/zhelezov].
#2826 [https://github.com/beetbox/beets/issues/2826] #3092 [https://github.com/beetbox/beets/issues/3092]

	Restore iTunes Store album art source, and remove the dependency on
python-itunes [https://pypi.org/project/python-itunes/], which had gone unmaintained and was not
Python-3-compatible.
Thanks to ocelma [https://github.com/ocelma] for creating python-itunes [https://pypi.org/project/python-itunes/] in the first place.
Thanks to nathdwek [https://github.com/nathdwek].
#2371 [https://github.com/beetbox/beets/issues/2371] #2551 [https://github.com/beetbox/beets/issues/2551] #2718 [https://github.com/beetbox/beets/issues/2718]

	LastGenre Plugin, Edit Plugin: Avoid a deprecation warnings
from the PyYAML [https://pypi.org/project/PyYAML/] library by switching to the safe loader.
Thanks to translit [https://github.com/translit] and sbraz [https://github.com/sbraz].
#3192 [https://github.com/beetbox/beets/issues/3192] #3225 [https://github.com/beetbox/beets/issues/3225]

	Fix a problem when resizing images with PIL [https://pypi.org/project/PIL/]/pillow [https://pypi.org/project/pillow/] on Python 3.
Thanks to architek [https://github.com/architek].
#2504 [https://github.com/beetbox/beets/issues/2504] #3029 [https://github.com/beetbox/beets/issues/3029]

And there are many other fixes:

	R128 normalization tags are now properly deleted from files when the values
are missing.
Thanks to autrimpo [https://github.com/autrimpo].
#2757 [https://github.com/beetbox/beets/issues/2757]

	Display the artist credit when matching albums if the artist_credit
configuration option is set.
#2953 [https://github.com/beetbox/beets/issues/2953]

	With the from_scratch configuration option set, only writable fields
are cleared. Beets now no longer ignores the format your music is saved in.
#2972 [https://github.com/beetbox/beets/issues/2972]

	The %aunique template function now works correctly with the
-f/--format option.
#3043 [https://github.com/beetbox/beets/issues/3043]

	Fixed the ordering of items when manually selecting changes while updating
tags
Thanks to TaizoSimpson [https://github.com/TaizoSimpson].
#3501 [https://github.com/beetbox/beets/issues/3501]

	The %title template function now works correctly with apostrophes.
Thanks to GuilhermeHideki [https://github.com/GuilhermeHideki].
#3033 [https://github.com/beetbox/beets/issues/3033]

	LastGenre Plugin: It’s now possible to set the prefer_specific
option without also setting canonical.
#2973 [https://github.com/beetbox/beets/issues/2973]

	FetchArt Plugin: The plugin now respects the ignore and
ignore_hidden settings.
#1632 [https://github.com/beetbox/beets/issues/1632]

	Hook Plugin: Fix byte string interpolation in hook commands.
#2967 [https://github.com/beetbox/beets/issues/2967] #3167 [https://github.com/beetbox/beets/issues/3167]

	The Plugin: Log a message when something has changed, not when it
hasn’t.
Thanks to arcresu [https://github.com/arcresu].
#3195 [https://github.com/beetbox/beets/issues/3195]

	LastGenre Plugin: The force config option now actually works.
#2704 [https://github.com/beetbox/beets/issues/2704] #3054 [https://github.com/beetbox/beets/issues/3054]

	Resizing image files with ImageMagick now avoids problems on systems where
there is a convert command that is not ImageMagick’s by using the
magick executable when it is available.
Thanks to ababyduck [https://github.com/ababyduck].
#2093 [https://github.com/beetbox/beets/issues/2093] #3236 [https://github.com/beetbox/beets/issues/3236]

There is one new thing for plugin developers to know about:

	In addition to prefix-based field queries, plugins can now define named
queries that are not associated with any specific field.
For example, the new Playlist Plugin supports queries like
playlist:name although there is no field named playlist.
See Extend the Query Syntax for details.

And some messages for packagers:

	Note the changes to the dependencies on jellyfish [https://pypi.org/project/jellyfish/] and munkres [https://pypi.org/project/munkres/].

	The optional python-itunes [https://pypi.org/project/python-itunes/] dependency has been removed.

	Python versions 3.7 and 3.8 are now supported.

1.4.7 (May 29, 2018)

This new release includes lots of new features in the importer and the
metadata source backends that it uses.
We’ve changed how the beets importer handles non-audio tracks listed in
metadata sources like MusicBrainz:

	The importer now ignores non-audio tracks (namely, data and video tracks)
listed in MusicBrainz. Also, a new option, ignore_video_tracks, lets
you return to the old behavior and include these video tracks.
#1210 [https://github.com/beetbox/beets/issues/1210]

	A new importer option, ignored_media, can let you skip certain media
formats.
#2688 [https://github.com/beetbox/beets/issues/2688]

There are other subtle improvements to metadata handling in the importer:

	In the MusicBrainz backend, beets now imports the
musicbrainz_releasetrackid field. This is a first step toward
#406 [https://github.com/beetbox/beets/issues/406].
Thanks to Rawrmonkeys [https://github.com/Rawrmonkeys].

	A new importer configuration option, artist_credit, will tell beets
to prefer the artist credit over the artist when autotagging.
#1249 [https://github.com/beetbox/beets/issues/1249]

And there are even more new features:

	ReplayGain Plugin: The beet replaygain command now has
--force, --write and --nowrite options. #2778 [https://github.com/beetbox/beets/issues/2778]

	A new importer configuration option, incremental_skip_later, lets you
avoid recording skipped directories to the list of “processed” directories
in incremental mode. This way, you can revisit them later with
another import.
Thanks to sekjun9878 [https://github.com/sekjun9878].
#2773 [https://github.com/beetbox/beets/issues/2773]

	FetchArt Plugin: The configuration options now support
finer-grained control via the sources option. You can now specify the
search order for different matching strategies within different backends.

	Web Plugin: A new cors_supports_credentials configuration
option lets in-browser clients communicate with the server even when it is
protected by an authorization mechanism (a proxy with HTTP authentication
enabled, for example).

	A new SonosUpdate Plugin plugin automatically notifies Sonos
controllers to update the music library when the beets library changes.
Thanks to cgtobi [https://github.com/cgtobi].

	Discogs Plugin: The plugin now stores master release IDs into
mb_releasegroupid. It also “simulates” track IDs using the release ID
and the track list position.
Thanks to dbogdanov [https://github.com/dbogdanov].
#2336 [https://github.com/beetbox/beets/issues/2336]

	Discogs Plugin: Fetch the original year from master releases.
#1122 [https://github.com/beetbox/beets/issues/1122]

There are lots and lots of fixes:

	ReplayGain Plugin: Fix a corner-case with the bs1770gain backend
where ReplayGain values were assigned to the wrong files. The plugin now
requires version 0.4.6 or later of the bs1770gain tool.
#2777 [https://github.com/beetbox/beets/issues/2777]

	Lyrics Plugin: The plugin no longer crashes in the Genius source
when BeautifulSoup is not found. Instead, it just logs a message and
disables the source.
#2911 [https://github.com/beetbox/beets/issues/2911]

	Lyrics Plugin: Handle network and API errors when communicating
with Genius. #2771 [https://github.com/beetbox/beets/issues/2771]

	Lyrics Plugin: The lyrics command previously wrote ReST files
by default, even when you didn’t ask for them. This default has been fixed.

	Lyrics Plugin: When writing ReST files, the lyrics command
now groups lyrics by the albumartist field, rather than artist.
#2924 [https://github.com/beetbox/beets/issues/2924]

	Plugins can now see updated import task state, such as when rejecting the
initial candidates and finding new ones via a manual search. Notably, this
means that the importer prompt options that the Edit Plugin
provides show up more reliably after doing a secondary import search.
#2441 [https://github.com/beetbox/beets/issues/2441] #2731 [https://github.com/beetbox/beets/issues/2731]

	ImportAdded Plugin: Fix a crash on non-autotagged imports.
Thanks to m42i [https://github.com/m42i].
#2601 [https://github.com/beetbox/beets/issues/2601] #1918 [https://github.com/beetbox/beets/issues/1918]

	PlexUpdate Plugin: The Plex token is now redacted in configuration
output.
Thanks to Kovrinic [https://github.com/Kovrinic].
#2804 [https://github.com/beetbox/beets/issues/2804]

	Avoid a crash when importing a non-ASCII filename when using an ASCII locale
on Unix under Python 3.
#2793 [https://github.com/beetbox/beets/issues/2793] #2803 [https://github.com/beetbox/beets/issues/2803]

	Fix a problem caused by time zone misalignment that could make date queries
fail to match certain dates that are near the edges of a range. For example,
querying for dates within a certain month would fail to match dates within
hours of the end of that month.
#2652 [https://github.com/beetbox/beets/issues/2652]

	Convert Plugin: The plugin now runs before other plugin-provided
import stages, which addresses an issue with generating ReplayGain data
incompatible between the source and target file formats.
Thanks to autrimpo [https://github.com/autrimpo].
#2814 [https://github.com/beetbox/beets/issues/2814]

	FtInTitle Plugin: The drop config option had no effect; it now
does what it says it should do.
#2817 [https://github.com/beetbox/beets/issues/2817]

	Importing a release with multiple release events now selects the
event based on the order of your preferred countries rather than
the order of release events in MusicBrainz. #2816 [https://github.com/beetbox/beets/issues/2816]

	Web Plugin: The time display in the web interface would incorrectly jump
at the 30-second mark of every minute. Now, it correctly changes over at zero
seconds. #2822 [https://github.com/beetbox/beets/issues/2822]

	Web Plugin: Fetching album art now works (instead of throwing an
exception) under Python 3.
Additionally, the server will now return a 404 response when the album ID
is unknown (instead of throwing an exception and producing a 500 response).
#2823 [https://github.com/beetbox/beets/issues/2823]

	Web Plugin: Fix an exception on Python 3 for filenames with
non-Latin1 characters. (These characters are now converted to their ASCII
equivalents.)
#2815 [https://github.com/beetbox/beets/issues/2815]

	Partially fix bash completion for subcommand names that contain hyphens.
Thanks to jhermann [https://github.com/jhermann].
#2836 [https://github.com/beetbox/beets/issues/2836] #2837 [https://github.com/beetbox/beets/issues/2837]

	ReplayGain Plugin: Really fix album gain calculation using the
GStreamer backend. #2846 [https://github.com/beetbox/beets/issues/2846]

	Avoid an error when doing a “no-op” move on non-existent files (i.e., moving
a file onto itself). #2863 [https://github.com/beetbox/beets/issues/2863]

	Discogs Plugin: Fix the medium and medium_index values, which
were occasionally incorrect for releases with two-sided mediums such as
vinyl. Also fix the medium_total value, which now contains total number
of tracks on the medium to which a track belongs, not the total number of
different mediums present on the release.
Thanks to dbogdanov [https://github.com/dbogdanov].
#2887 [https://github.com/beetbox/beets/issues/2887]

	The importer now supports audio files contained in data tracks when they are
listed in MusicBrainz: the corresponding audio tracks are now merged into the
main track list. Thanks to jdetrey [https://github.com/jdetrey]. #1638 [https://github.com/beetbox/beets/issues/1638]

	Key Finder Plugin: Avoid a crash when trying to process unmatched
tracks. #2537 [https://github.com/beetbox/beets/issues/2537]

	MBSync Plugin: Support MusicBrainz recording ID changes, relying
on release track IDs instead. Thanks to jdetrey [https://github.com/jdetrey]. #1234 [https://github.com/beetbox/beets/issues/1234]

	MBSync Plugin: We can now successfully update albums even when the
first track has a missing MusicBrainz recording ID. #2920 [https://github.com/beetbox/beets/issues/2920]

There are a couple of changes for developers:

	Plugins can now run their import stages early, before other plugins. Use
the early_import_stages list instead of plain import_stages to
request this behavior.
#2814 [https://github.com/beetbox/beets/issues/2814]

	We again properly send albuminfo_received and trackinfo_received in
all cases, most notably when using the mbsync plugin. This was a
regression since version 1.4.1.
#2921 [https://github.com/beetbox/beets/issues/2921]

1.4.6 (December 21, 2017)

The highlight of this release is “album merging,” an oft-requested option in
the importer to add new tracks to an existing album you already have in your
library. This way, you no longer need to resort to removing the partial album
from your library, combining the files manually, and importing again.

Here are the larger new features in this release:

	When the importer finds duplicate albums, you can now merge all the
tracks—old and new—together and try importing them as a single, combined
album.
Thanks to udiboy1209 [https://github.com/udiboy1209].
#112 [https://github.com/beetbox/beets/issues/112] #2725 [https://github.com/beetbox/beets/issues/2725]

	Lyrics Plugin: The plugin can now produce reStructuredText files
for beautiful, readable books of lyrics. Thanks to anarcat [https://github.com/anarcat].
#2628 [https://github.com/beetbox/beets/issues/2628]

	A new from_scratch configuration option makes the importer remove old
metadata before applying new metadata. This new feature complements the
zero and scrub plugins but is
slightly different: beets clears out all the old tags it knows about and
only keeps the new data it gets from the remote metadata source.
Thanks to tummychow [https://github.com/tummychow].
#934 [https://github.com/beetbox/beets/issues/934] #2755 [https://github.com/beetbox/beets/issues/2755]

There are also somewhat littler, but still great, new features:

	Convert Plugin: A new no_convert option lets you skip
transcoding items matching a query. Instead, the files are just copied
as-is. Thanks to Stunner [https://github.com/Stunner].
#2732 [https://github.com/beetbox/beets/issues/2732] #2751 [https://github.com/beetbox/beets/issues/2751]

	FetchArt Plugin: A new quiet switch that only prints out messages
when album art is missing.
Thanks to euri10 [https://github.com/euri10].
#2683 [https://github.com/beetbox/beets/issues/2683]

	MusicBrainz Collection Plugin: You can configure a custom MusicBrainz
collection via the new collection configuration option.
#2685 [https://github.com/beetbox/beets/issues/2685]

	MusicBrainz Collection Plugin: The collection update command can now remove
albums from collections that are longer in the beets library.

	FetchArt Plugin: The clearart command now asks for confirmation
before touching your files.
Thanks to konman2 [https://github.com/konman2].
#2708 [https://github.com/beetbox/beets/issues/2708] #2427 [https://github.com/beetbox/beets/issues/2427]

	MPDStats Plugin: The plugin now correctly updates song statistics
when MPD switches from a song to a stream and when it plays the same song
multiple times consecutively.
#2707 [https://github.com/beetbox/beets/issues/2707]

	AcousticBrainz Plugin: The plugin can now be configured to write only
a specific list of tags.
Thanks to woparry [https://github.com/woparry].

There are lots and lots of bug fixes:

	Hook Plugin: Fixed a problem where accessing non-string properties
of item or album (e.g., item.track) would cause a crash.
Thanks to broddo [https://github.com/broddo].
#2740 [https://github.com/beetbox/beets/issues/2740]

	Play Plugin: When relative_to is set, the plugin correctly
emits relative paths even when querying for albums rather than tracks.
Thanks to j000 [https://github.com/j000].
#2702 [https://github.com/beetbox/beets/issues/2702]

	We suppress a spurious Python warning about a BrokenPipeError being
ignored. This was an issue when using beets in simple shell scripts.
Thanks to Azphreal [https://github.com/Azphreal].
#2622 [https://github.com/beetbox/beets/issues/2622] #2631 [https://github.com/beetbox/beets/issues/2631]

	ReplayGain Plugin: Fix a regression in the previous release related
to the new R128 tags. #2615 [https://github.com/beetbox/beets/issues/2615] #2623 [https://github.com/beetbox/beets/issues/2623]

	Lyrics Plugin: The MusixMatch backend now detects and warns
when the server has blocked the client.
Thanks to anarcat [https://github.com/anarcat]. #2634 [https://github.com/beetbox/beets/issues/2634] #2632 [https://github.com/beetbox/beets/issues/2632]

	ImportFeeds Plugin: Fix an error on Python 3 in certain
configurations. Thanks to djl [https://github.com/djl]. #2467 [https://github.com/beetbox/beets/issues/2467] #2658 [https://github.com/beetbox/beets/issues/2658]

	Edit Plugin: Fix a bug when editing items during a re-import with
the -L flag. Previously, diffs against against unrelated items could be
shown or beets could crash. #2659 [https://github.com/beetbox/beets/issues/2659]

	KodiUpdate Plugin: Fix the server URL and add better error
reporting.
#2662 [https://github.com/beetbox/beets/issues/2662]

	Fixed a problem where “no-op” modifications would reset files’ mtimes,
resulting in unnecessary writes. This most prominently affected the
Edit Plugin when saving the text file without making changes to some
music. #2667 [https://github.com/beetbox/beets/issues/2667]

	Chromaprint/Acoustid Plugin: Fix a crash when running the submit command on
Python 3 on Windows with non-ASCII filenames. #2671 [https://github.com/beetbox/beets/issues/2671]

	AcousticBrainz Submit Plugin: Fix an occasional crash on Python 3 when the AB
analysis tool produced non-ASCII metadata. #2673 [https://github.com/beetbox/beets/issues/2673]

	Duplicates Plugin: Use the default tiebreak for items or albums
when the configuration only specifies a tiebreak for the other kind of
entity.
Thanks to cgevans [https://github.com/cgevans].
#2758 [https://github.com/beetbox/beets/issues/2758]

	Duplicates Plugin: Fix the --key command line option, which was
ignored.

	ReplayGain Plugin: Fix album ReplayGain calculation with the
GStreamer backend. #2636 [https://github.com/beetbox/beets/issues/2636]

	Scrub Plugin: Handle errors when manipulating files using newer
versions of Mutagen. #2716 [https://github.com/beetbox/beets/issues/2716]

	FetchArt Plugin: The plugin no longer gets skipped during import
when the “Edit Candidates” option is used from the Edit Plugin.
#2734 [https://github.com/beetbox/beets/issues/2734]

	Fix a crash when numeric metadata fields contain just a minus or plus sign
with no following numbers. Thanks to eigengrau [https://github.com/eigengrau]. #2741 [https://github.com/beetbox/beets/issues/2741]

	FromFilename Plugin: Recognize file names that contain only a
track number, such as 01.mp3. Also, the plugin now allows underscores as a
separator between fields.
Thanks to Vrihub [https://github.com/Vrihub].
#2738 [https://github.com/beetbox/beets/issues/2738] #2759 [https://github.com/beetbox/beets/issues/2759]

	Fixed an issue where images would be resized according to their longest
edge, instead of their width, when using the maxwidth config option in
the FetchArt Plugin and EmbedArt Plugin. Thanks to
sekjun9878 [https://github.com/sekjun9878]. #2729 [https://github.com/beetbox/beets/issues/2729]

There are some changes for developers:

	“Fixed fields” in Album and Item objects are now more strict about translating
missing values into type-specific null-like values. This should help in
cases where a string field is unexpectedly None sometimes instead of just
showing up as an empty string. #2605 [https://github.com/beetbox/beets/issues/2605]

	Refactored the move functions the beets.library module and the
manipulate_files function in beets.importer to use a single parameter
describing the file operation instead of multiple Boolean flags.
There is a new numerated type describing how to move, copy, or link files.
#2682 [https://github.com/beetbox/beets/issues/2682]

1.4.5 (June 20, 2017)

Version 1.4.5 adds some oft-requested features. When you’re importing files,
you can now manually set fields on the new music. Date queries have gotten
much more powerful: you can write precise queries down to the second, and we
now have relative queries like -1w, which means one week ago.

Here are the new features:

	You can now set fields to certain values during import, using
either a --set field=value command-line flag or a new set_fields
configuration option under the importer section.
Thanks to bartkl [https://github.com/bartkl]. #1881 [https://github.com/beetbox/beets/issues/1881] #2581 [https://github.com/beetbox/beets/issues/2581]

	Date queries can now include times, so you can filter
your music down to the second. Thanks to discopatrick [https://github.com/discopatrick]. #2506 [https://github.com/beetbox/beets/issues/2506]
#2528 [https://github.com/beetbox/beets/issues/2528]

	Date queries can also be relative. You can say
added:-1w.. to match music added in the last week, for example. Thanks
to euri10 [https://github.com/euri10]. #2598 [https://github.com/beetbox/beets/issues/2598]

	A new Gmusic Plugin lets you interact with your Google Play Music
library. Thanks to tigranl [https://github.com/tigranl]. #2553 [https://github.com/beetbox/beets/issues/2553] #2586 [https://github.com/beetbox/beets/issues/2586]

	ReplayGain Plugin: We now keep R128 data in separate tags from
classic ReplayGain data for formats that need it (namely, Ogg Opus). A new
r128 configuration option enables this behavior for specific formats.
Thanks to autrimpo [https://github.com/autrimpo]. #2557 [https://github.com/beetbox/beets/issues/2557] #2560 [https://github.com/beetbox/beets/issues/2560]

	The move command gained a new --export flag, which copies
files to an external location without changing their paths in the library
database. Thanks to SpirosChadoulos [https://github.com/SpirosChadoulos]. #435 [https://github.com/beetbox/beets/issues/435] #2510 [https://github.com/beetbox/beets/issues/2510]

There are also some bug fixes:

	LastGenre Plugin: Fix a crash when using the prefer_specific and
canonical options together. Thanks to yacoob [https://github.com/yacoob]. #2459 [https://github.com/beetbox/beets/issues/2459]
#2583 [https://github.com/beetbox/beets/issues/2583]

	Web Plugin: Fix a crash on Windows under Python 2 when serving
non-ASCII filenames. Thanks to robot3498712 [https://github.com/robot3498712]. #2592 [https://github.com/beetbox/beets/issues/2592] #2593 [https://github.com/beetbox/beets/issues/2593]

	MetaSync Plugin: Fix a crash in the Amarok backend when filenames
contain quotes. Thanks to aranc23 [https://github.com/aranc23]. #2595 [https://github.com/beetbox/beets/issues/2595] #2596 [https://github.com/beetbox/beets/issues/2596]

	More informative error messages are displayed when the file format is not
recognized. #2599 [https://github.com/beetbox/beets/issues/2599]

1.4.4 (June 10, 2017)

This release built up a longer-than-normal list of nifty new features. We now
support DSF audio files and the importer can hard-link your files, for
example.

Here’s a full list of new features:

	Added support for DSF files, once a future version of Mutagen is released
that supports them. Thanks to docbobo [https://github.com/docbobo]. #459 [https://github.com/beetbox/beets/issues/459] #2379 [https://github.com/beetbox/beets/issues/2379]

	A new hardlink config option instructs the importer to create hard
links on filesystems that support them. Thanks to jacobwgillespie [https://github.com/jacobwgillespie].
#2445 [https://github.com/beetbox/beets/issues/2445]

	A new KodiUpdate Plugin lets you keep your Kodi library in sync
with beets. Thanks to Pauligrinder [https://github.com/Pauligrinder]. #2411 [https://github.com/beetbox/beets/issues/2411]

	A new bell configuration option under the import section enables
a terminal bell when input is required. Thanks to SpirosChadoulos [https://github.com/SpirosChadoulos].
#2366 [https://github.com/beetbox/beets/issues/2366] #2495 [https://github.com/beetbox/beets/issues/2495]

	A new field, composer_sort, is now supported and fetched from
MusicBrainz.
Thanks to dosoe [https://github.com/dosoe].
#2519 [https://github.com/beetbox/beets/issues/2519] #2529 [https://github.com/beetbox/beets/issues/2529]

	The MusicBrainz backend and Discogs Plugin now both provide a new
attribute called track_alt that stores more nuanced, possibly
non-numeric track index data. For example, some vinyl or tape media will
report the side of the record using a letter instead of a number in that
field. #1831 [https://github.com/beetbox/beets/issues/1831] #2363 [https://github.com/beetbox/beets/issues/2363]

	Web Plugin: Added a new endpoint, /item/path/foo, which will
return the item info for the file at the given path, or 404.

	Web Plugin: Added a new config option, include_paths,
which will cause paths to be included in item API responses if set to true.

	The %aunique template function for Album Disambiguation now takes a third
argument that specifies which brackets to use around the disambiguator
value. The argument can be any two characters that represent the left and
right brackets. It defaults to [] and can also be blank to turn off
bracketing. #2397 [https://github.com/beetbox/beets/issues/2397] #2399 [https://github.com/beetbox/beets/issues/2399]

	Added a --move or -m option to the importer so that the files can be
moved to the library instead of being copied or added “in place.”
#2252 [https://github.com/beetbox/beets/issues/2252] #2429 [https://github.com/beetbox/beets/issues/2429]

	Bad Files Plugin: Added a --verbose or -v option. Results are
now displayed only for corrupted files by default and for all the files when
the verbose option is set. #1654 [https://github.com/beetbox/beets/issues/1654] #2434 [https://github.com/beetbox/beets/issues/2434]

	EmbedArt Plugin: The explicit embedart command now asks for
confirmation before embedding art into music files. Thanks to
Stunner [https://github.com/Stunner]. #1999 [https://github.com/beetbox/beets/issues/1999]

	You can now run beets by typing python -m beets. #2453 [https://github.com/beetbox/beets/issues/2453]

	Smart Playlist Plugin: Different playlist specifications that
generate identically-named playlist files no longer conflict; instead, the
resulting lists of tracks are concatenated. #2468 [https://github.com/beetbox/beets/issues/2468]

	Missing Plugin: A new mode lets you see missing albums from artists
you have in your library. Thanks to qlyoung [https://github.com/qlyoung]. #2481 [https://github.com/beetbox/beets/issues/2481]

	Web Plugin : Add new reverse_proxy config option to allow serving
the web plugins under a reverse proxy.

	Importing a release with multiple release events now selects the
event based on your preferred countries. #2501 [https://github.com/beetbox/beets/issues/2501]

	Play Plugin: A new -y or --yes parameter lets you skip
the warning message if you enqueue more items than the warning threshold
usually allows.

	Fix a bug where commands which forked subprocesses would sometimes prevent
further inputs. This bug mainly affected Convert Plugin.
Thanks to jansol [https://github.com/jansol].
#2488 [https://github.com/beetbox/beets/issues/2488]
#2524 [https://github.com/beetbox/beets/issues/2524]

There are also quite a few fixes:

	In the replace configuration option, we now replace a leading hyphen
(-) with an underscore. #549 [https://github.com/beetbox/beets/issues/549] #2509 [https://github.com/beetbox/beets/issues/2509]

	AcousticBrainz Submit Plugin: We no longer filter audio files for specific
formats—we will attempt the submission process for all formats. #2471 [https://github.com/beetbox/beets/issues/2471]

	MPDUpdate Plugin: Fix Python 3 compatibility. #2381 [https://github.com/beetbox/beets/issues/2381]

	ReplayGain Plugin: Fix Python 3 compatibility in the bs1770gain
backend. #2382 [https://github.com/beetbox/beets/issues/2382]

	BPD Plugin: Report playback times as integers. #2394 [https://github.com/beetbox/beets/issues/2394]

	MPDStats Plugin: Fix Python 3 compatibility. The plugin also now
requires version 0.4.2 or later of the python-mpd2 library. #2405 [https://github.com/beetbox/beets/issues/2405]

	MPDStats Plugin: Improve handling of MPD status queries.

	Bad Files Plugin: Fix Python 3 compatibility.

	Fix some cases where album-level ReplayGain/SoundCheck metadata would be
written to files incorrectly. #2426 [https://github.com/beetbox/beets/issues/2426]

	Bad Files Plugin: The command no longer bails out if the validator
command is not found or exits with an error. #2430 [https://github.com/beetbox/beets/issues/2430] #2433 [https://github.com/beetbox/beets/issues/2433]

	Lyrics Plugin: The Google search backend no longer crashes when the
server responds with an error. #2437 [https://github.com/beetbox/beets/issues/2437]

	Discogs Plugin: You can now authenticate with Discogs using a
personal access token. #2447 [https://github.com/beetbox/beets/issues/2447]

	Fix Python 3 compatibility when extracting rar archives in the importer.
Thanks to Lompik [https://github.com/Lompik]. #2443 [https://github.com/beetbox/beets/issues/2443] #2448 [https://github.com/beetbox/beets/issues/2448]

	Duplicates Plugin: Fix Python 3 compatibility when using the
copy and move options. #2444 [https://github.com/beetbox/beets/issues/2444]

	MusicBrainz Submit Plugin: The tracks are now sorted properly. Thanks to
awesomer [https://github.com/awesomer]. #2457 [https://github.com/beetbox/beets/issues/2457]

	Thumbnails Plugin: Fix a string-related crash on Python 3.
#2466 [https://github.com/beetbox/beets/issues/2466]

	Beatport Plugin: More than just 10 songs are now fetched per album.
#2469 [https://github.com/beetbox/beets/issues/2469]

	On Python 3, the terminal_encoding setting is respected again for
output and printing will no longer crash on systems configured with a
limited encoding.

	Convert Plugin: The default configuration uses FFmpeg’s built-in
AAC codec instead of faac. Thanks to jansol [https://github.com/jansol]. #2484 [https://github.com/beetbox/beets/issues/2484]

	Fix the importer’s detection of multi-disc albums when other subdirectories
are present. #2493 [https://github.com/beetbox/beets/issues/2493]

	Invalid date queries now print an error message instead of being silently
ignored. Thanks to discopatrick [https://github.com/discopatrick]. #2513 [https://github.com/beetbox/beets/issues/2513] #2517 [https://github.com/beetbox/beets/issues/2517]

	When the SQLite database stops being accessible, we now print a friendly
error message. Thanks to Mary011196 [https://github.com/Mary011196]. #1676 [https://github.com/beetbox/beets/issues/1676] #2508 [https://github.com/beetbox/beets/issues/2508]

	Web Plugin: Avoid a crash when sending binary data, such as
Chromaprint fingerprints, in music attributes. #2542 [https://github.com/beetbox/beets/issues/2542] #2532 [https://github.com/beetbox/beets/issues/2532]

	Fix a hang when parsing templates that end in newlines. #2562 [https://github.com/beetbox/beets/issues/2562]

	Fix a crash when reading non-ASCII characters in configuration files on
Windows under Python 3. #2456 [https://github.com/beetbox/beets/issues/2456] #2565 [https://github.com/beetbox/beets/issues/2565] #2566 [https://github.com/beetbox/beets/issues/2566]

We removed backends from two metadata plugins because of bitrot:

	Lyrics Plugin: The Lyrics.com backend has been removed. (It stopped
working because of changes to the site’s URL structure.)
#2548 [https://github.com/beetbox/beets/issues/2548] #2549 [https://github.com/beetbox/beets/issues/2549]

	FetchArt Plugin: The documentation no longer recommends iTunes
Store artwork lookup because the unmaintained python-itunes [https://github.com/ocelma/python-itunes] is broken.
Want to adopt it? #2371 [https://github.com/beetbox/beets/issues/2371] #1610 [https://github.com/beetbox/beets/issues/1610]

1.4.3 (January 9, 2017)

Happy new year! This new version includes a cornucopia of new features from
contributors, including new tags related to classical music and a new
AcousticBrainz Submit Plugin for performing acoustic analysis on your music. The
Random Plugin has a new mode that lets you generate time-limited
music—for example, you might generate a random playlist that lasts the
perfect length for your walk to work. We also access as many Web services as
possible over secure connections now—HTTPS everywhere!

The most visible new features are:

	We now support the composer, lyricist, and arranger tags. The MusicBrainz
data source will fetch data for these fields when the next version of
python-musicbrainzngs [https://github.com/alastair/python-musicbrainzngs] is released. Thanks to ibmibmibm [https://github.com/ibmibmibm].
#506 [https://github.com/beetbox/beets/issues/506] #507 [https://github.com/beetbox/beets/issues/507] #1547 [https://github.com/beetbox/beets/issues/1547] #2333 [https://github.com/beetbox/beets/issues/2333]

	A new AcousticBrainz Submit Plugin lets you run acoustic analysis software and
upload the results for others to use. Thanks to inytar [https://github.com/inytar]. #2253 [https://github.com/beetbox/beets/issues/2253]
#2342 [https://github.com/beetbox/beets/issues/2342]

	Play Plugin: The plugin now provides an importer prompt choice to
play the music you’re about to import. Thanks to diomekes [https://github.com/diomekes].
#2008 [https://github.com/beetbox/beets/issues/2008] #2360 [https://github.com/beetbox/beets/issues/2360]

	We now use SSL to access Web services whenever possible. That includes
MusicBrainz itself, several album art sources, some lyrics sources, and
other servers. Thanks to tigranl [https://github.com/tigranl]. #2307 [https://github.com/beetbox/beets/issues/2307]

	Random Plugin: A new --time option lets you generate a random
playlist that takes a given amount of time. Thanks to diomekes [https://github.com/diomekes].
#2305 [https://github.com/beetbox/beets/issues/2305] #2322 [https://github.com/beetbox/beets/issues/2322]

Some smaller new features:

	Zero Plugin: A new zero command manually triggers the zero
plugin. Thanks to SJoshBrown [https://github.com/SJoshBrown]. #2274 [https://github.com/beetbox/beets/issues/2274] #2329 [https://github.com/beetbox/beets/issues/2329]

	AcousticBrainz Plugin: The plugin will avoid re-downloading data
for files that already have it by default. You can override this behavior
using a new force option. Thanks to SusannaMaria [https://github.com/SusannaMaria]. #2347 [https://github.com/beetbox/beets/issues/2347]
#2349 [https://github.com/beetbox/beets/issues/2349]

	BPM Plugin: The import.write configuration option now
decides whether or not to write tracks after updating their BPM. #1992 [https://github.com/beetbox/beets/issues/1992]

And the fixes:

	BPD Plugin: Fix a crash on non-ASCII MPD commands. #2332 [https://github.com/beetbox/beets/issues/2332]

	Scrub Plugin: Avoid a crash when files cannot be read or written.
#2351 [https://github.com/beetbox/beets/issues/2351]

	Scrub Plugin: The image type values on scrubbed files are preserved
instead of being reset to “other.” #2339 [https://github.com/beetbox/beets/issues/2339]

	Web Plugin: Fix a crash on Python 3 when serving files from the
filesystem. #2353 [https://github.com/beetbox/beets/issues/2353]

	Discogs Plugin: Improve the handling of releases that contain
subtracks. #2318 [https://github.com/beetbox/beets/issues/2318]

	Discogs Plugin: Fix a crash when a release does not contain format
information, and increase robustness when other fields are missing.
#2302 [https://github.com/beetbox/beets/issues/2302]

	Lyrics Plugin: The plugin now reports a beets-specific User-Agent
header when requesting lyrics. #2357 [https://github.com/beetbox/beets/issues/2357]

	EmbyUpdate Plugin: The plugin now checks whether an API key or a
password is provided in the configuration.

	Play Plugin: The misspelled configuration option
warning_treshold is no longer supported.

For plugin developers: when providing new importer prompt choices (see
Append Prompt Choices), you can now provide new candidates for the user
to consider. For example, you might provide an alternative strategy for
picking between the available alternatives or for looking up a release on
MusicBrainz.

1.4.2 (December 16, 2016)

This is just a little bug fix release. With 1.4.2, we’re also confident enough
to recommend that anyone who’s interested give Python 3 a try: bugs may still
lurk, but we’ve deemed things safe enough for broad adoption. If you can,
please install beets with pip3 instead of pip2 this time and let us
know how it goes!

Here are the fixes:

	Bad Files Plugin: Fix a crash on non-ASCII filenames. #2299 [https://github.com/beetbox/beets/issues/2299]

	The %asciify{} path formatting function and the asciify_paths
setting properly substitute path separators generated by converting some
Unicode characters, such as ½ and ¢, into ASCII.

	Convert Plugin: Fix a logging-related crash when filenames contain
curly braces. Thanks to kierdavis [https://github.com/kierdavis]. #2323 [https://github.com/beetbox/beets/issues/2323]

	We’ve rolled back some changes to the included zsh completion script that
were causing problems for some users. #2266 [https://github.com/beetbox/beets/issues/2266]

Also, we’ve removed some special handling for logging in the
Discogs Plugin that we believe was unnecessary. If spurious log
messages appear in this version, please let us know by filing a bug.

1.4.1 (November 25, 2016)

Version 1.4 has alpha-level Python 3 support. Thanks to the heroic efforts
of jrobeson [https://github.com/jrobeson], beets should run both under Python 2.7, as before, and
now under Python 3.4 and above. The support is still new: it undoubtedly
contains bugs, so it may replace all your music with Limp Bizkit—but if
you’re brave and you have backups, please try installing on Python 3. Let us
know how it goes.

If you package beets for distribution, here’s what you’ll want to know:

	This version of beets now depends on the six [https://pythonhosted.org/six/] library.

	We also bumped our minimum required version of Mutagen [https://bitbucket.org/lazka/mutagen] to 1.33 (from
1.27).

	Please don’t package beets as a Python 3 application yet, even though most
things work under Python 3.4 and later.

This version also makes a few changes to the command-line interface and
configuration that you may need to know about:

	Duplicates Plugin: The duplicates command no longer accepts
multiple field arguments in the form -k title albumartist album. Each
argument must be prefixed with -k, as in -k title -k albumartist -k
album.

	The old top-level colors configuration option has been removed (the
setting is now under ui).

	The deprecated list_format_album and list_format_item
configuration options have been removed (see format_album and
format_item).

The are a few new features:

	MPDUpdate Plugin, MPDStats Plugin: When the host option
is not set, these plugins will now look for the $MPD_HOST environment
variable before falling back to localhost. Thanks to tarruda [https://github.com/tarruda].
#2175 [https://github.com/beetbox/beets/issues/2175]

	Web Plugin: Added an expand option to show the items of an
album. #2050 [https://github.com/beetbox/beets/issues/2050]

	EmbyUpdate Plugin: The plugin can now use an API key instead of a
password to authenticate with Emby. #2045 [https://github.com/beetbox/beets/issues/2045] #2117 [https://github.com/beetbox/beets/issues/2117]

	AcousticBrainz Plugin: The plugin now adds a bpm field.

	beet --version now includes the Python version used to run beets.

	Path Formats can now include unescaped commas (,) when
they are not part of a function call. #2166 [https://github.com/beetbox/beets/issues/2166] #2213 [https://github.com/beetbox/beets/issues/2213]

	The update command takes a new -F flag to specify the fields
to update. Thanks to dangmai [https://github.com/dangmai]. #2229 [https://github.com/beetbox/beets/issues/2229] #2231 [https://github.com/beetbox/beets/issues/2231]

And there are a few bug fixes too:

	Convert Plugin: The plugin no longer asks for confirmation if the
query did not return anything to convert. #2260 [https://github.com/beetbox/beets/issues/2260] #2262 [https://github.com/beetbox/beets/issues/2262]

	EmbedArt Plugin: The plugin now uses jpg as an extension rather
than jpeg, to ensure consistency with the FetchArt Plugin.
Thanks to tweitzel [https://github.com/tweitzel]. #2254 [https://github.com/beetbox/beets/issues/2254] #2255 [https://github.com/beetbox/beets/issues/2255]

	EmbedArt Plugin: The plugin now works for all jpeg files, including
those that are only recognizable by their magic bytes.
#1545 [https://github.com/beetbox/beets/issues/1545] #2255 [https://github.com/beetbox/beets/issues/2255]

	Web Plugin: The JSON output is no longer pretty-printed (for a
space savings). #2050 [https://github.com/beetbox/beets/issues/2050]

	Permissions Plugin: Fix a regression in the previous release where
the plugin would always fail to set permissions (and log a warning).
#2089 [https://github.com/beetbox/beets/issues/2089]

	Beatport Plugin: Use track numbers from Beatport (instead of
determining them from the order of tracks) and set the medium_index
value.

	With per_disc_numbering enabled, some metadata sources (notably, the
Beatport Plugin) would not set the track number at all. This is
fixed. #2085 [https://github.com/beetbox/beets/issues/2085]

	Play Plugin: Fix $args getting passed verbatim to the play
command if it was set in the configuration but -A or --args was
omitted.

	With ignore_hidden enabled, non-UTF-8 filenames would cause a crash.
This is fixed. #2168 [https://github.com/beetbox/beets/issues/2168]

	EmbyUpdate Plugin: Fixes authentication header problem that caused
a problem that it was not possible to get tokens from the Emby API.

	Lyrics Plugin: Some titles use a colon to separate the main title
from a subtitle. To find more matches, the plugin now also searches for
lyrics using the part part preceding the colon character. #2206 [https://github.com/beetbox/beets/issues/2206]

	Fix a crash when a query uses a date field and some items are missing that
field. #1938 [https://github.com/beetbox/beets/issues/1938]

	Discogs Plugin: Subtracks are now detected and combined into a
single track, two-sided mediums are treated as single discs, and tracks
have media, medium_total and medium set correctly. #2222 [https://github.com/beetbox/beets/issues/2222]
#2228 [https://github.com/beetbox/beets/issues/2228].

	Missing Plugin: missing is now treated as an integer, allowing
the use of (for example) ranges in queries.

	Smart Playlist Plugin: Playlist names will be sanitized to
ensure valid filenames. #2258 [https://github.com/beetbox/beets/issues/2258]

	The ID3 APIC tag now uses the Latin-1 encoding when possible instead of a
Unicode encoding. This should increase compatibility with other software,
especially with iTunes and when using ID3v2.3. Thanks to lazka [https://github.com/lazka].
#899 [https://github.com/beetbox/beets/issues/899] #2264 [https://github.com/beetbox/beets/issues/2264] #2270 [https://github.com/beetbox/beets/issues/2270]

The last release, 1.3.19, also erroneously reported its version as “1.3.18”
when you typed beet version. This has been corrected.

1.3.19 (June 25, 2016)

This is primarily a bug fix release: it cleans up a couple of regressions that
appeared in the last version. But it also features the triumphant return of the
Beatport Plugin and a modernized BPD Plugin.

It’s also the first version where beets passes all its tests on Windows! May
this herald a new age of cross-platform reliability for beets.

New features:

	Beatport Plugin: This metadata source plugin has arisen from the
dead! It now works with Beatport’s new OAuth-based API. Thanks to
jbaiter [https://github.com/jbaiter]. #1989 [https://github.com/beetbox/beets/issues/1989] #2067 [https://github.com/beetbox/beets/issues/2067]

	BPD Plugin: The plugin now uses the modern GStreamer 1.0 instead of
the old 0.10. Thanks to philippbeckmann [https://github.com/philippbeckmann]. #2057 [https://github.com/beetbox/beets/issues/2057] #2062 [https://github.com/beetbox/beets/issues/2062]

	A new --force option for the remove command allows removal of
items without prompting beforehand. #2042 [https://github.com/beetbox/beets/issues/2042]

	A new duplicate_action importer config option controls how duplicate
albums or tracks treated in import task. #185 [https://github.com/beetbox/beets/issues/185]

Some fixes for Windows:

	Queries are now detected as paths when they contain backslashes (in
addition to forward slashes). This only applies on Windows.

	EmbedArt Plugin: Image similarity comparison with ImageMagick
should now work on Windows.

	FetchArt Plugin: The plugin should work more reliably with
non-ASCII paths.

And other fixes:

	ReplayGain Plugin: The bs1770gain backend now correctly
calculates sample peak instead of true peak. This comes with a major
speed increase. #2031 [https://github.com/beetbox/beets/issues/2031]

	Lyrics Plugin: Avoid a crash and a spurious warning introduced in
the last version about a Google API key, which appeared even when you hadn’t
enabled the Google lyrics source.

	Fix a hard-coded path to bash-completion to work better with Homebrew
installations. Thanks to bismark [https://github.com/bismark]. #2038 [https://github.com/beetbox/beets/issues/2038]

	Fix a crash introduced in the previous version when the standard input was
connected to a Unix pipe. #2041 [https://github.com/beetbox/beets/issues/2041]

	Fix a crash when specifying non-ASCII format strings on the command line
with the -f option for many commands. #2063 [https://github.com/beetbox/beets/issues/2063]

	FetchArt Plugin: Determine the file extension for downloaded images
based on the image’s magic bytes. The plugin prints a warning if result is
not consistent with the server-supplied Content-Type header. In previous
versions, the plugin would use a .jpg extension for all images.
#2053 [https://github.com/beetbox/beets/issues/2053]

1.3.18 (May 31, 2016)

This update adds a new Hook Plugin that lets you integrate beets with
command-line tools and an Export Plugin that can dump data from the
beets database as JSON. You can also automatically translate lyrics using a
machine translation service.

The echonest plugin has been removed in this version because the API it
used is shutting down [https://developer.spotify.com/news-stories/2016/03/29/api-improvements-update/]. You might want to try the
AcousticBrainz Plugin instead.

Some of the larger new features:

	The new Hook Plugin lets you execute commands in response to beets
events.

	The new Export Plugin can export data from beets’ database as
JSON. Thanks to GuilhermeHideki [https://github.com/GuilhermeHideki].

	Lyrics Plugin: The plugin can now translate the fetched lyrics to
your native language using the Bing translation API. Thanks to
Kraymer [https://github.com/Kraymer].

	FetchArt Plugin: Album art can now be fetched from fanart.tv [https://fanart.tv/].

Smaller new things:

	There are two new functions available in templates: %first and %ifdef.
See Template Functions.

	Convert Plugin: A new album_art_maxwidth setting lets you resize
album art while copying it.

	Convert Plugin: The extension setting is now optional for
conversion formats. By default, the extension is the same as the name of the
configured format.

	ImportAdded Plugin: A new preserve_write_mtimes option
lets you preserve mtime of files even when beets updates their metadata.

	FetchArt Plugin: The enforce_ratio option now lets you tolerate
images that are almost square but differ slightly from an exact 1:1
aspect ratio.

	FetchArt Plugin: The plugin can now optionally save the artwork’s
source in an attribute in the database.

	The terminal_encoding configuration option can now also override the
input encoding. (Previously, it only affected the encoding of the standard
output stream.)

	A new ignore_hidden configuration option lets you ignore files that
your OS marks as invisible.

	Web Plugin: A new values endpoint lets you get the distinct values
of a field. Thanks to sumpfralle [https://github.com/sumpfralle]. #2010 [https://github.com/beetbox/beets/issues/2010]

Fixes:

	Fix a problem with the stats command in exact mode when filenames
on Windows use non-ASCII characters. #1891 [https://github.com/beetbox/beets/issues/1891]

	Fix a crash when iTunes Sound Check tags contained invalid data. #1895 [https://github.com/beetbox/beets/issues/1895]

	MusicBrainz Collection Plugin: The plugin now redacts your MusicBrainz
password in the beet config output. #1907 [https://github.com/beetbox/beets/issues/1907]

	Scrub Plugin: Fix an occasional problem where scrubbing on import
could undo the id3v23 setting. #1903 [https://github.com/beetbox/beets/issues/1903]

	Lyrics Plugin: Add compatibility with some changes to the
LyricsWiki page markup. #1912 [https://github.com/beetbox/beets/issues/1912] #1909 [https://github.com/beetbox/beets/issues/1909]

	Lyrics Plugin: Fix retrieval from Musixmatch by improving the way
we guess the URL for lyrics on that service. #1880 [https://github.com/beetbox/beets/issues/1880]

	Edit Plugin: Fail gracefully when the configured text editor
command can’t be invoked. #1927 [https://github.com/beetbox/beets/issues/1927]

	FetchArt Plugin: Fix a crash in the Wikipedia backend on non-ASCII
artist and album names. #1960 [https://github.com/beetbox/beets/issues/1960]

	Convert Plugin: Change the default ogg encoding quality from 2 to
3 (to fit the default from the oggenc(1) manpage). #1982 [https://github.com/beetbox/beets/issues/1982]

	Convert Plugin: The never_convert_lossy_files option now
considers AIFF a lossless format. #2005 [https://github.com/beetbox/beets/issues/2005]

	Web Plugin: A proper 404 error, instead of an internal exception,
is returned when missing album art is requested. Thanks to
sumpfralle [https://github.com/sumpfralle]. #2011 [https://github.com/beetbox/beets/issues/2011]

	Tolerate more malformed floating-point numbers in metadata tags. #2014 [https://github.com/beetbox/beets/issues/2014]

	The ignore configuration option now includes the lost+found
directory by default.

	AcousticBrainz Plugin: AcousticBrainz lookups are now done over
HTTPS. Thanks to Freso [https://github.com/Freso]. #2007 [https://github.com/beetbox/beets/issues/2007]

1.3.17 (February 7, 2016)

This release introduces one new plugin to fetch audio information from the
AcousticBrainz [https://acousticbrainz.org/] project and another plugin to make it easier to submit your
handcrafted metadata back to MusicBrainz.
The importer also gained two oft-requested features: a way to skip the initial
search process by specifying an ID ahead of time, and a way to manually
provide metadata in the middle of the import process (via the
Edit Plugin).

Also, as of this release, the beets project has some new Internet homes! Our
new domain name is beets.io [https://beets.io/], and we have a shiny new GitHub organization:
beetbox [https://github.com/beetbox].

Here are the big new features:

	A new AcousticBrainz Plugin fetches acoustic-analysis information
from the AcousticBrainz [https://acousticbrainz.org/] project. Thanks to opatel99 [https://github.com/opatel99], and thanks
to Google Code-In [https://codein.withgoogle.com/]! #1784 [https://github.com/beetbox/beets/issues/1784]

	A new MusicBrainz Submit Plugin lets you print music’s current metadata in a
format that the MusicBrainz data parser can understand. You can trigger it
during an interactive import session. #1779 [https://github.com/beetbox/beets/issues/1779]

	A new --search-id importer option lets you manually specify
IDs (i.e., MBIDs or Discogs IDs) for imported music. Doing this skips the
initial candidate search, which can be important for huge albums where this
initial lookup is slow.
Also, the enter Id prompt choice now accepts several IDs, separated by
spaces. #1808 [https://github.com/beetbox/beets/issues/1808]

	Edit Plugin: You can now edit metadata on the fly during the
import process. The plugin provides two new interactive options: one to edit
your music’s metadata, and one to edit the matched metadata retrieved
from MusicBrainz (or another data source). This feature is still in its
early stages, so please send feedback if you find anything missing.
#1846 [https://github.com/beetbox/beets/issues/1846] #396 [https://github.com/beetbox/beets/issues/396]

There are even more new features:

	FetchArt Plugin: The Google Images backend has been restored. It
now requires an API key from Google. Thanks to lcharlick [https://github.com/lcharlick].
#1778 [https://github.com/beetbox/beets/issues/1778]

	Info Plugin: A new option will print only fields’ names and not
their values. Thanks to GuilhermeHideki [https://github.com/GuilhermeHideki]. #1812 [https://github.com/beetbox/beets/issues/1812]

	The fields command now displays flexible attributes.
Thanks to GuilhermeHideki [https://github.com/GuilhermeHideki]. #1818 [https://github.com/beetbox/beets/issues/1818]

	The modify command lets you interactively select which albums or
items you want to change. #1843 [https://github.com/beetbox/beets/issues/1843]

	The move command gained a new --timid flag to print and
confirm which files you want to move. #1843 [https://github.com/beetbox/beets/issues/1843]

	The move command no longer prints filenames for files that
don’t actually need to be moved. #1583 [https://github.com/beetbox/beets/issues/1583]

Fixes:

	Play Plugin: Fix a regression in the last version where there was
no default command. #1793 [https://github.com/beetbox/beets/issues/1793]

	LastImport Plugin: The plugin now works again after being broken by
some unannounced changes to the Last.fm API. #1574 [https://github.com/beetbox/beets/issues/1574]

	Play Plugin: Fixed a typo in a configuration option. The option is
now warning_threshold instead of warning_treshold, but we kept the
old name around for compatibility. Thanks to JesseWeinstein [https://github.com/JesseWeinstein].
#1802 [https://github.com/beetbox/beets/issues/1802] #1803 [https://github.com/beetbox/beets/issues/1803]

	Edit Plugin: Editing metadata now moves files, when appropriate
(like the modify command). #1804 [https://github.com/beetbox/beets/issues/1804]

	The stats command no longer crashes when files are missing or
inaccessible. #1806 [https://github.com/beetbox/beets/issues/1806]

	FetchArt Plugin: Possibly fix a Unicode-related crash when using
some versions of pyOpenSSL. #1805 [https://github.com/beetbox/beets/issues/1805]

	ReplayGain Plugin: Fix an intermittent crash with the GStreamer
backend. #1855 [https://github.com/beetbox/beets/issues/1855]

	LastImport Plugin: The plugin now works with the beets API key by
default. You can still provide a different key the configuration.

	ReplayGain Plugin: Fix a crash using the Python Audio Tools
backend. #1873 [https://github.com/beetbox/beets/issues/1873]

1.3.16 (December 28, 2015)

The big news in this release is a new interactive editor plugin. It’s really nifty: you can now change your music’s metadata
by making changes in a visual text editor, which can sometimes be far more
efficient than the built-in modify command. No more carefully
retyping the same artist name with slight capitalization changes.

This version also adds an oft-requested “not” operator to beets’ queries, so
you can exclude music from any operation. It also brings friendlier formatting
(and querying!) of song durations.

The big new stuff:

	A new Edit Plugin lets you manually edit your music’s metadata
using your favorite text editor. #164 [https://github.com/beetbox/beets/issues/164] #1706 [https://github.com/beetbox/beets/issues/1706]

	Queries can now use “not” logic. Type a ^ before part of a query to
exclude matching music from the results. For example, beet list -a
beatles ^album:1 will find all your albums by the Beatles except for their
singles compilation, “1.” See Query Term Negation. #819 [https://github.com/beetbox/beets/issues/819] #1728 [https://github.com/beetbox/beets/issues/1728]

	A new EmbyUpdate Plugin can trigger a library refresh on an Emby [https://emby.media]
server when your beets database changes.

	Track length is now displayed as “M:SS” rather than a raw number of seconds.
Queries on track length also accept this format: for example, beet list
length:5:30.. will find all your tracks that have a duration over 5
minutes and 30 seconds. You can turn off this new behavior using the
format_raw_length configuration option. #1749 [https://github.com/beetbox/beets/issues/1749]

Smaller changes:

	Three commands, modify, update, and mbsync, would previously
move files by default after changing their metadata. Now, these commands
will only move files if you have the copy or
move options enabled in your importer configuration.
This way, if you configure the importer not to touch your filenames, other
commands will respect that decision by default too. Each command also
sprouted a --move command-line option to override this default (in
addition to the --nomove flag they already had). #1697 [https://github.com/beetbox/beets/issues/1697]

	A new configuration option, va_name, controls the album artist name for
various-artists albums. The setting defaults to “Various Artists,” the
MusicBrainz standard. In order to match MusicBrainz, the
Discogs Plugin also adopts the same setting.

	Info Plugin: The info command now accepts a -f/--format
option for customizing how items are displayed, just like the built-in
list command. #1737 [https://github.com/beetbox/beets/issues/1737]

Some changes for developers:

	Two new plugin hooks, albuminfo_received and
trackinfo_received, let plugins intercept metadata as soon as it is
received, before it is applied to music in the database. #872 [https://github.com/beetbox/beets/issues/872]

	Plugins can now add options to the interactive importer prompts. See
Append Prompt Choices. #1758 [https://github.com/beetbox/beets/issues/1758]

Fixes:

	PlexUpdate Plugin: Fix a crash when Plex libraries use non-ASCII
collection names. #1649 [https://github.com/beetbox/beets/issues/1649]

	Discogs Plugin: Maybe fix a crash when using some versions of the
requests library. #1656 [https://github.com/beetbox/beets/issues/1656]

	Fix a race in the importer when importing two albums with the same artist
and name in quick succession. The importer would fail to detect them as
duplicates, claiming that there were “empty albums” in the database even
when there were not. #1652 [https://github.com/beetbox/beets/issues/1652]

	LastGenre Plugin: Clean up the reggae-related genres somewhat.
Thanks to Freso [https://github.com/Freso]. #1661 [https://github.com/beetbox/beets/issues/1661]

	The importer now correctly moves album art files when re-importing.
#314 [https://github.com/beetbox/beets/issues/314]

	FetchArt Plugin: In auto mode, the plugin now skips albums that
already have art attached to them so as not to interfere with re-imports.
#314 [https://github.com/beetbox/beets/issues/314]

	FetchArt Plugin: The plugin now only resizes album art if necessary,
rather than always by default. #1264 [https://github.com/beetbox/beets/issues/1264]

	FetchArt Plugin: Fix a bug where a database reference to a
non-existent album art file would prevent the command from fetching new art.
#1126 [https://github.com/beetbox/beets/issues/1126]

	Thumbnails Plugin: Fix a crash with Unicode paths. #1686 [https://github.com/beetbox/beets/issues/1686]

	EmbedArt Plugin: The remove_art_file option now works on import
(as well as with the explicit command). #1662 [https://github.com/beetbox/beets/issues/1662] #1675 [https://github.com/beetbox/beets/issues/1675]

	MetaSync Plugin: Fix a crash when syncing with recent versions of
iTunes. #1700 [https://github.com/beetbox/beets/issues/1700]

	Duplicates Plugin: Fix a crash when merging items. #1699 [https://github.com/beetbox/beets/issues/1699]

	Smart Playlist Plugin: More gracefully handle malformed queries and
missing configuration.

	Fix a crash with some files with unreadable iTunes SoundCheck metadata.
#1666 [https://github.com/beetbox/beets/issues/1666]

	Thumbnails Plugin: Fix a nasty segmentation fault crash that arose
with some library versions. #1433 [https://github.com/beetbox/beets/issues/1433]

	Convert Plugin: Fix a crash with Unicode paths in --pretend
mode. #1735 [https://github.com/beetbox/beets/issues/1735]

	Fix a crash when sorting by nonexistent fields on queries. #1734 [https://github.com/beetbox/beets/issues/1734]

	Probably fix some mysterious errors when dealing with images using
ImageMagick on Windows. #1721 [https://github.com/beetbox/beets/issues/1721]

	Fix a crash when writing some Unicode comment strings to MP3s that used
older encodings. The encoding is now always updated to UTF-8. #879 [https://github.com/beetbox/beets/issues/879]

	FetchArt Plugin: The Google Images backend has been removed. It
used an API that has been shut down. #1760 [https://github.com/beetbox/beets/issues/1760]

	Lyrics Plugin: Fix a crash in the Google backend when searching for
bands with regular-expression characters in their names, like Sunn O))).
#1673 [https://github.com/beetbox/beets/issues/1673]

	Scrub Plugin: In auto mode, the plugin now actually only
scrubs files on import, as the documentation always claimed it did—not
every time files were written, as it previously did. #1657 [https://github.com/beetbox/beets/issues/1657]

	Scrub Plugin: Also in auto mode, album art is now correctly
restored. #1657 [https://github.com/beetbox/beets/issues/1657]

	Possibly allow flexible attributes to be used with the %aunique template
function. #1775 [https://github.com/beetbox/beets/issues/1775]

	Lyrics Plugin: The Genius backend is now more robust to
communication errors. The backend has also been disabled by default, since
the API it depends on is currently down. #1770 [https://github.com/beetbox/beets/issues/1770]

1.3.15 (October 17, 2015)

This release adds a new plugin for checking file quality and a new source for
lyrics. The larger features are:

	A new Bad Files Plugin helps you scan for corruption in your music
collection. Thanks to fxthomas [https://github.com/fxthomas]. #1568 [https://github.com/beetbox/beets/issues/1568]

	Lyrics Plugin: You can now fetch lyrics from Genius.com.
Thanks to sadatay [https://github.com/sadatay]. #1626 [https://github.com/beetbox/beets/issues/1626] #1639 [https://github.com/beetbox/beets/issues/1639]

	Zero Plugin: The plugin can now use a “whitelist” policy as an
alternative to the (default) “blacklist” mode. Thanks to adkow [https://github.com/adkow].
#1621 [https://github.com/beetbox/beets/issues/1621] #1641 [https://github.com/beetbox/beets/issues/1641]

And there are smaller new features too:

	Add new color aliases for standard terminal color names (e.g., cyan and
magenta). Thanks to mathstuf [https://github.com/mathstuf]. #1548 [https://github.com/beetbox/beets/issues/1548]

	Play Plugin: A new --args option lets you specify options for
the player command. #1532 [https://github.com/beetbox/beets/issues/1532]

	Play Plugin: A new raw configuration option lets the command
work with players (such as VLC) that expect music filenames as arguments,
rather than in a playlist. Thanks to nathdwek [https://github.com/nathdwek]. #1578 [https://github.com/beetbox/beets/issues/1578]

	Play Plugin: You can now configure the number of tracks that
trigger a “lots of music” warning. #1577 [https://github.com/beetbox/beets/issues/1577]

	EmbedArt Plugin: A new remove_art_file option lets you clean up
if you prefer only embedded album art. Thanks to jackwilsdon [https://github.com/jackwilsdon].
#1591 [https://github.com/beetbox/beets/issues/1591] #733 [https://github.com/beetbox/beets/issues/733]

	PlexUpdate Plugin: A new library_name option allows you to select
which Plex library to update. #1572 [https://github.com/beetbox/beets/issues/1572] #1595 [https://github.com/beetbox/beets/issues/1595]

	A new include option lets you import external configuration files.

This release has plenty of fixes:

	LastGenre Plugin: Fix a bug that prevented tag popularity from
being considered. Thanks to svoos [https://github.com/svoos]. #1559 [https://github.com/beetbox/beets/issues/1559]

	Fixed a bug where plugins wouldn’t be notified of the deletion of an item’s
art, for example with the clearart command from the
EmbedArt Plugin. Thanks to nathdwek [https://github.com/nathdwek]. #1565 [https://github.com/beetbox/beets/issues/1565]

	FetchArt Plugin: The Google Images source is disabled by default
(as it was before beets 1.3.9), as is the Wikipedia source (which was
causing lots of unnecessary delays due to DBpedia downtime). To re-enable
these sources, add wikipedia google to your sources configuration
option.

	The list command’s help output now has a small query and format
string example. Thanks to pkess [https://github.com/pkess]. #1582 [https://github.com/beetbox/beets/issues/1582]

	FetchArt Plugin: The plugin now fetches PNGs but not GIFs. (It
still fetches JPEGs.) This avoids an error when trying to embed images,
since not all formats support GIFs. #1588 [https://github.com/beetbox/beets/issues/1588]

	Date fields are now written in the correct order (year-month-day), which
eliminates an intermittent bug where the latter two fields would not get
written to files. Thanks to jdetrey [https://github.com/jdetrey]. #1303 [https://github.com/beetbox/beets/issues/1303] #1589 [https://github.com/beetbox/beets/issues/1589]

	ReplayGain Plugin: Avoid a crash when the PyAudioTools backend
encounters an error. #1592 [https://github.com/beetbox/beets/issues/1592]

	The case sensitivity of path queries is more useful now: rather than just
guessing based on the platform, we now check the case sensitivity of your
filesystem. #1586 [https://github.com/beetbox/beets/issues/1586]

	Case-insensitive path queries might have returned nothing because of a
wrong SQL query.

	Fix a crash when a query contains a “+” or “-” alone in a component.
#1605 [https://github.com/beetbox/beets/issues/1605]

	Fixed unit of file size to powers of two (MiB, GiB, etc.) instead of powers
of ten (MB, GB, etc.). #1623 [https://github.com/beetbox/beets/issues/1623]

1.3.14 (August 2, 2015)

This is mainly a bugfix release, but we also have a nifty new plugin for
ipfs [https://ipfs.io] and a bunch of new configuration options.

The new features:

	A new IPFS Plugin lets you share music via a new, global,
decentralized filesystem. #1397 [https://github.com/beetbox/beets/issues/1397]

	Duplicates Plugin: You can now merge duplicate
track metadata (when detecting duplicate items), or duplicate album
tracks (when detecting duplicate albums).

	Duplicates Plugin: Duplicate resolution now uses an ordering to
prioritize duplicates. By default, it prefers music with more complete
metadata, but you can configure it to use any list of attributes.

	MetaSync Plugin: Added a new backend to fetch metadata from iTunes.
This plugin is still in an experimental phase. #1450 [https://github.com/beetbox/beets/issues/1450]

	The move command has a new --pretend option, making the command show
how the items will be moved without actually changing anything.

	The importer now supports matching of “pregap” or HTOA (hidden track-one
audio) tracks when they are listed in MusicBrainz. (This feature depends on a
new version of the python-musicbrainzngs [https://github.com/alastair/python-musicbrainzngs] library that is not yet released, but
will start working when it is available.) Thanks to ruippeixotog [https://github.com/ruippeixotog].
#1104 [https://github.com/beetbox/beets/issues/1104] #1493 [https://github.com/beetbox/beets/issues/1493]

	PlexUpdate Plugin: A new token configuration option lets you
specify a key for Plex Home setups. Thanks to edcarroll [https://github.com/edcarroll]. #1494 [https://github.com/beetbox/beets/issues/1494]

Fixes:

	FetchArt Plugin: Complain when the enforce_ratio
or min_width options are enabled but no local imaging backend is available
to carry them out. #1460 [https://github.com/beetbox/beets/issues/1460]

	ImportFeeds Plugin: Avoid generating incorrect m3u filename when
both of the m3u and m3u_multi options are enabled. #1490 [https://github.com/beetbox/beets/issues/1490]

	Duplicates Plugin: Avoid a crash when misconfigured. #1457 [https://github.com/beetbox/beets/issues/1457]

	MPDStats Plugin: Avoid a crash when the music played is not in the
beets library. Thanks to CodyReichert [https://github.com/CodyReichert]. #1443 [https://github.com/beetbox/beets/issues/1443]

	Fix a crash with ArtResizer on Windows systems (affecting
EmbedArt Plugin, FetchArt Plugin,
and Thumbnails Plugin). #1448 [https://github.com/beetbox/beets/issues/1448]

	Permissions Plugin: Fix an error with non-ASCII paths. #1449 [https://github.com/beetbox/beets/issues/1449]

	Fix sorting by paths when the sort_case_insensitive option is
enabled. #1451 [https://github.com/beetbox/beets/issues/1451]

	EmbedArt Plugin: Avoid an error when trying to embed invalid images
into MPEG-4 files.

	FetchArt Plugin: The Wikipedia source can now better deal artists
that use non-standard capitalization (e.g., alt-J, dEUS).

	Web Plugin: Fix searching for non-ASCII queries. Thanks to
oldtopman [https://github.com/oldtopman]. #1470 [https://github.com/beetbox/beets/issues/1470]

	MPDUpdate Plugin: We now recommend the newer python-mpd2
library instead of its unmaintained parent. Thanks to Somasis [https://github.com/Somasis].
#1472 [https://github.com/beetbox/beets/issues/1472]

	The importer interface and log file now output a useful list of files
(instead of the word “None”) when in album-grouping mode. #1475 [https://github.com/beetbox/beets/issues/1475]
#825 [https://github.com/beetbox/beets/issues/825]

	Fix some logging errors when filenames and other user-provided strings
contain curly braces. #1481 [https://github.com/beetbox/beets/issues/1481]

	Regular expression queries over paths now work more reliably with non-ASCII
characters in filenames. #1482 [https://github.com/beetbox/beets/issues/1482]

	Fix a bug where the autotagger’s ignored setting was sometimes, well,
ignored. #1487 [https://github.com/beetbox/beets/issues/1487]

	Fix a bug with Unicode strings when generating image thumbnails. #1485 [https://github.com/beetbox/beets/issues/1485]

	Key Finder Plugin: Fix handling of Unicode paths. #1502 [https://github.com/beetbox/beets/issues/1502]

	FetchArt Plugin: When album art is already present, the message is
now printed in the text_highlight_minor color (light gray). Thanks to
Somasis [https://github.com/Somasis]. #1512 [https://github.com/beetbox/beets/issues/1512]

	Some messages in the console UI now use plural nouns correctly. Thanks to
JesseWeinstein [https://github.com/JesseWeinstein]. #1521 [https://github.com/beetbox/beets/issues/1521]

	Sorting numerical fields (such as track) now works again. #1511 [https://github.com/beetbox/beets/issues/1511]

	ReplayGain Plugin: Missing GStreamer plugins now cause a helpful
error message instead of a crash. #1518 [https://github.com/beetbox/beets/issues/1518]

	Fix an edge case when producing sanitized filenames where the maximum path
length conflicted with the replace rules. Thanks to Ben Ockmore.
#496 [https://github.com/beetbox/beets/issues/496] #1361 [https://github.com/beetbox/beets/issues/1361]

	Fix an incompatibility with OS X 10.11 (where /usr/sbin seems not to be
on the user’s path by default).

	Fix an incompatibility with certain JPEG files. Here’s a relevant Python
bug [https://bugs.python.org/issue16512]. Thanks to nathdwek [https://github.com/nathdwek]. #1545 [https://github.com/beetbox/beets/issues/1545]

	Fix the group_albums importer mode so that it works correctly when
files are not already in order by album. #1550 [https://github.com/beetbox/beets/issues/1550]

	The fields command no longer separates built-in fields from
plugin-provided ones. This distinction was becoming increasingly unreliable.

	Duplicates Plugin: Fix a Unicode warning when paths contained
non-ASCII characters. #1551 [https://github.com/beetbox/beets/issues/1551]

	FetchArt Plugin: Work around a urllib3 bug that could cause a
crash. #1555 [https://github.com/beetbox/beets/issues/1555] #1556 [https://github.com/beetbox/beets/issues/1556]

	When you edit the configuration file with beet config -e and the file
does not exist, beets creates an empty file before editing it. This fixes an
error on OS X, where the open command does not work with non-existent
files. #1480 [https://github.com/beetbox/beets/issues/1480]

	Convert Plugin: Fix a problem with filename encoding on Windows
under Python 3. #2515 [https://github.com/beetbox/beets/issues/2515] #2516 [https://github.com/beetbox/beets/issues/2516]

1.3.13 (April 24, 2015)

This is a tiny bug-fix release. It copes with a dependency upgrade that broke
beets. There are just two fixes:

	Fix compatibility with Jellyfish [https://github.com/sunlightlabs/jellyfish] version 0.5.0.

	EmbedArt Plugin: In auto mode (the import hook), the plugin now
respects the write config option under import. If this is disabled,
album art is no longer embedded on import in order to leave files
untouched—in effect, auto is implicitly disabled. #1427 [https://github.com/beetbox/beets/issues/1427]

1.3.12 (April 18, 2015)

This little update makes queries more powerful, sorts music more
intelligently, and removes a performance bottleneck. There’s an experimental
new plugin for synchronizing metadata with music players.

Packagers should also note a new dependency in this version: the Jellyfish [https://github.com/sunlightlabs/jellyfish]
Python library makes our text comparisons (a big part of the auto-tagging
process) go much faster.

New features:

	Queries can now use “or” logic: if you use a comma to separate parts of a
query, items and albums will match either side of the comma. For example,
beet ls foo , bar will get all the items matching foo or matching
bar. See Combining Keywords. #1423 [https://github.com/beetbox/beets/issues/1423]

	The autotagger’s matching algorithm is faster. We now use the
Jellyfish [https://github.com/sunlightlabs/jellyfish] library to compute string similarity, which is better optimized
than our hand-rolled edit distance implementation. #1389 [https://github.com/beetbox/beets/issues/1389]

	Sorting is now case insensitive by default. This means that artists will
be sorted lexicographically regardless of case. For example, the artist
alt-J will now properly sort before YACHT. (Previously, it would have ended
up at the end of the list, after all the capital-letter artists.)
You can turn this new behavior off using the sort_case_insensitive
configuration option. See Sort Order. #1429 [https://github.com/beetbox/beets/issues/1429]

	An experimental new MetaSync Plugin lets you get metadata from your
favorite music players, starting with Amarok. #1386 [https://github.com/beetbox/beets/issues/1386]

	FetchArt Plugin: There are new settings to control what constitutes
“acceptable” images. The minwidth option constrains the minimum image
width in pixels and the enforce_ratio option requires that images be
square. #1394 [https://github.com/beetbox/beets/issues/1394]

Little fixes and improvements:

	FetchArt Plugin: Remove a hard size limit when fetching from the
Cover Art Archive.

	The output of the fields command is now sorted. Thanks to
multikatt [https://github.com/multikatt]. #1402 [https://github.com/beetbox/beets/issues/1402]

	ReplayGain Plugin: Fix a number of issues with the new
bs1770gain backend on Windows. Also, fix missing debug output in import
mode. #1398 [https://github.com/beetbox/beets/issues/1398]

	Beets should now be better at guessing the appropriate output encoding on
Windows. (Specifically, the console output encoding is guessed separately
from the encoding for command-line arguments.) A bug was also fixed where
beets would ignore the locale settings and use UTF-8 by default. #1419 [https://github.com/beetbox/beets/issues/1419]

	Discogs Plugin: Better error handling when we can’t communicate
with Discogs on setup. #1417 [https://github.com/beetbox/beets/issues/1417]

	ImportAdded Plugin: Fix a crash when importing singletons in-place.
#1416 [https://github.com/beetbox/beets/issues/1416]

	Fuzzy Search Plugin: Fix a regression causing a crash in the last release.
#1422 [https://github.com/beetbox/beets/issues/1422]

	Fix a crash when the importer cannot open its log file. Thanks to
barsanuphe [https://github.com/barsanuphe]. #1426 [https://github.com/beetbox/beets/issues/1426]

	Fix an error when trying to write tags for items with flexible fields called
date and original_date (which are not built-in beets fields).
#1404 [https://github.com/beetbox/beets/issues/1404]

1.3.11 (April 5, 2015)

In this release, we refactored the logging system to be more flexible and more
useful. There are more granular levels of verbosity, the output from plugins
should be more consistent, and several kinds of logging bugs should be
impossible in the future.

There are also two new plugins: one for filtering the files you import and an
evolved plugin for using album art as directory thumbnails in file managers.
There’s a new source for album art, and the importer now records the source of
match data. This is a particularly huge release—there’s lots more below.

There’s one big change with this release: Python 2.6 is no longer
supported. You’ll need Python 2.7. Please trust us when we say this let us
remove a surprising number of ugly hacks throughout the code.

Major new features and bigger changes:

	There are now multiple levels of output verbosity. On the command line,
you can make beets somewhat verbose with -v or very verbose with
-vv. For the importer especially, this makes the first verbose mode much
more manageable, while still preserving an option for overwhelmingly verbose
debug output. #1244 [https://github.com/beetbox/beets/issues/1244]

	A new FileFilter Plugin lets you write regular expressions to
automatically avoid importing certain files. Thanks to mried [https://github.com/mried].
#1186 [https://github.com/beetbox/beets/issues/1186]

	A new Thumbnails Plugin generates cover-art thumbnails for
album folders for Freedesktop.org-compliant file managers. (This replaces
the Freedesktop Plugin, which only worked with the Dolphin file
manager.)

	ReplayGain Plugin: There is a new backend that uses the
bs1770gain [http://bs1770gain.sourceforge.net] analysis tool. Thanks to jmwatte [https://github.com/jmwatte]. #1343 [https://github.com/beetbox/beets/issues/1343]

	A new filesize field on items indicates the number of bytes in the file.
#1291 [https://github.com/beetbox/beets/issues/1291]

	A new searchlimit configuration option allows you to specify how many
search results you wish to see when looking up releases at MusicBrainz
during import. #1245 [https://github.com/beetbox/beets/issues/1245]

	The importer now records the data source for a match in a new
flexible attribute data_source on items and albums. #1311 [https://github.com/beetbox/beets/issues/1311]

	The colors used in the terminal interface are now configurable via the new
config option colors, nested under the option ui. (Also, the color
config option has been moved from top-level to under ui. Beets will
respect the old color setting, but will warn the user with a deprecation
message.) #1238 [https://github.com/beetbox/beets/issues/1238]

	FetchArt Plugin: There’s a new Wikipedia image source that uses
DBpedia to find albums. Thanks to Tom Jaspers. #1194 [https://github.com/beetbox/beets/issues/1194]

	In the config command, the output is now redacted by default.
Sensitive information like passwords and API keys is not included. The new
--clear option disables redaction. #1376 [https://github.com/beetbox/beets/issues/1376]

You should probably also know about these core changes to the way beets works:

	As mentioned above, Python 2.6 is no longer supported.

	The tracktotal attribute is now a track-level field instead of an
album-level one. This field stores the total number of tracks on the
album, or if the per_disc_numbering config option is set, the total
number of tracks on a particular medium (i.e., disc). The field was causing
problems with that per_disc_numbering mode: different discs on the
same album needed different track totals. The field can now work correctly
in either mode.

	To replace tracktotal as an album-level field, there is a new
albumtotal computed attribute that provides the total number of tracks
on the album. (The per_disc_numbering option has no influence on this
field.)

	The list_format_album and list_format_item configuration keys
now affect (almost) every place where objects are printed and logged.
(Previously, they only controlled the list command and a few
other scattered pieces.) #1269 [https://github.com/beetbox/beets/issues/1269]

	Relatedly, the beet program now accept top-level options
--format-item and --format-album before any subcommand to control
how items and albums are displayed. #1271 [https://github.com/beetbox/beets/issues/1271]

	list_format_album and list_format_album have respectively been
renamed format_album and format_item. The old names still work
but each triggers a warning message. #1271 [https://github.com/beetbox/beets/issues/1271]

	Path queries are automatically triggered only if the
path targeted by the query exists. Previously, just having a slash somewhere
in the query was enough, so beet ls AC/DC wouldn’t work to refer to the
artist.

There are also lots of medium-sized features in this update:

	Duplicates Plugin: The command has a new --strict option
that will only report duplicates if all attributes are explicitly set.
#1000 [https://github.com/beetbox/beets/issues/1000]

	Smart Playlist Plugin: Playlist updating should now be faster: the
plugin detects, for each playlist, whether it needs to be regenerated,
instead of obliviously regenerating all of them. The splupdate command
can now also take additional parameters that indicate the names of the
playlists to regenerate.

	Play Plugin: The command shows the output of the underlying player
command and lets you interact with it. #1321 [https://github.com/beetbox/beets/issues/1321]

	The summary shown to compare duplicate albums during import now displays
the old and new filesizes. #1291 [https://github.com/beetbox/beets/issues/1291]

	LastGenre Plugin: Add comedy, humor, and stand-up as well as
a longer list of classical music genre tags to the built-in whitelist and
canonicalization tree. #1206 [https://github.com/beetbox/beets/issues/1206] #1239 [https://github.com/beetbox/beets/issues/1239] #1240 [https://github.com/beetbox/beets/issues/1240]

	Web Plugin: Add support for cross-origin resource sharing for
more flexible in-browser clients. Thanks to Andre Miller. #1236 [https://github.com/beetbox/beets/issues/1236]
#1237 [https://github.com/beetbox/beets/issues/1237]

	MBSync Plugin: A new -f/--format option controls the output
format when listing unrecognized items. The output is also now more helpful
by default. #1246 [https://github.com/beetbox/beets/issues/1246]

	FetchArt Plugin: A new option, -n, extracts the cover art of
all matched albums into their respective directories. Another new flag,
-a, associates the extracted files with the albums in the database.
#1261 [https://github.com/beetbox/beets/issues/1261]

	Info Plugin: A new option, -i, can display only a specified
subset of properties. #1287 [https://github.com/beetbox/beets/issues/1287]

	The number of missing/unmatched tracks is shown during import. #1088 [https://github.com/beetbox/beets/issues/1088]

	Permissions Plugin: The plugin now also adjusts the permissions of
the directories. (Previously, it only affected files.) #1308 [https://github.com/beetbox/beets/issues/1308] #1324 [https://github.com/beetbox/beets/issues/1324]

	FtInTitle Plugin: You can now configure the format that the plugin
uses to add the artist to the title. Thanks to amishb [https://github.com/amishb]. #1377 [https://github.com/beetbox/beets/issues/1377]

And many little fixes and improvements:

	ReplayGain Plugin: Stop applying replaygain directly to source files
when using the mp3gain backend. #1316 [https://github.com/beetbox/beets/issues/1316]

	Path queries are case-sensitive on non-Windows OSes. #1165 [https://github.com/beetbox/beets/issues/1165]

	Lyrics Plugin: Silence a warning about insecure requests in the new
MusixMatch backend. #1204 [https://github.com/beetbox/beets/issues/1204]

	Fix a crash when beet is invoked without arguments. #1205 [https://github.com/beetbox/beets/issues/1205]
#1207 [https://github.com/beetbox/beets/issues/1207]

	FetchArt Plugin: Do not attempt to import directories as album art.
#1177 [https://github.com/beetbox/beets/issues/1177] #1211 [https://github.com/beetbox/beets/issues/1211]

	MPDStats Plugin: Avoid double-counting some play events. #773 [https://github.com/beetbox/beets/issues/773]
#1212 [https://github.com/beetbox/beets/issues/1212]

	Fix a crash when the importer deals with Unicode metadata in --pretend
mode. #1214 [https://github.com/beetbox/beets/issues/1214]

	Smart Playlist Plugin: Fix album_query so that individual files
are added to the playlist instead of directories. #1225 [https://github.com/beetbox/beets/issues/1225]

	Remove the beatport plugin. Beatport [https://www.beatport.com/] has shut off public access to
their API and denied our request for an account. We have not heard from the
company since 2013, so we are assuming access will not be restored.

	Incremental imports now (once again) show a “skipped N directories” message.

	EmbedArt Plugin: Handle errors in ImageMagick’s output. #1241 [https://github.com/beetbox/beets/issues/1241]

	Key Finder Plugin: Parse the underlying tool’s output more robustly.
#1248 [https://github.com/beetbox/beets/issues/1248]

	EmbedArt Plugin: We now show a comprehensible error message when
beet embedart -f FILE is given a non-existent path. #1252 [https://github.com/beetbox/beets/issues/1252]

	Fix a crash when a file has an unrecognized image type tag. Thanks to
Matthias Kiefer. #1260 [https://github.com/beetbox/beets/issues/1260]

	ImportFeeds Plugin and Smart Playlist Plugin: Automatically
create parent directories for playlist files (instead of crashing when the
parent directory does not exist). #1266 [https://github.com/beetbox/beets/issues/1266]

	The write command no longer tries to “write” non-writable fields,
such as the bitrate. #1268 [https://github.com/beetbox/beets/issues/1268]

	The error message when MusicBrainz is not reachable on the network is now
much clearer. Thanks to Tom Jaspers. #1190 [https://github.com/beetbox/beets/issues/1190] #1272 [https://github.com/beetbox/beets/issues/1272]

	Improve error messages when parsing query strings with shlex. #1290 [https://github.com/beetbox/beets/issues/1290]

	EmbedArt Plugin: Fix a crash that occurred when used together
with the check plugin. #1241 [https://github.com/beetbox/beets/issues/1241]

	Scrub Plugin: Log an error instead of stopping when the beet
scrub command cannot write a file. Also, avoid problems on Windows with
Unicode filenames. #1297 [https://github.com/beetbox/beets/issues/1297]

	Discogs Plugin: Handle and log more kinds of communication
errors. #1299 [https://github.com/beetbox/beets/issues/1299] #1305 [https://github.com/beetbox/beets/issues/1305]

	LastGenre Plugin: Bugs in the pylast library can no longer crash
beets.

	Convert Plugin: You can now configure the temporary directory for
conversions. Thanks to autochthe [https://github.com/autochthe]. #1382 [https://github.com/beetbox/beets/issues/1382] #1383 [https://github.com/beetbox/beets/issues/1383]

	Rewrite Plugin: Fix a regression that prevented the plugin’s
rewriting from applying to album-level fields like $albumartist.
#1393 [https://github.com/beetbox/beets/issues/1393]

	Play Plugin: The plugin now sorts items according to the
configuration in album mode.

	FetchArt Plugin: The name for extracted art files is taken from the
art_filename configuration option. #1258 [https://github.com/beetbox/beets/issues/1258]

	When there’s a parse error in a query (for example, when you type a
malformed date in a date query), beets now stops with an
error instead of silently ignoring the query component.

For developers:

	The database_change event now sends the item or album that is subject to
a change.

	The OptionParser is now a CommonOptionsParser that offers facilities
for adding usual options (--album, --path and --format). See
Add Commands to the CLI. #1271 [https://github.com/beetbox/beets/issues/1271]

	The logging system in beets has been overhauled. Plugins now each have their
own logger, which helps by automatically adjusting the verbosity level in
import mode and by prefixing the plugin’s name. Logging levels are
dynamically set when a plugin is called, depending on how it is called
(import stage, event or direct command). Finally, logging calls can (and
should!) use modern {}-style string formatting lazily. See
Logging in the plugin API docs.

	A new import_task_created event lets you manipulate import tasks
immediately after they are initialized. It’s also possible to replace the
originally created tasks by returning new ones using this event.

1.3.10 (January 5, 2015)

This version adds a healthy helping of new features and fixes a critical
MPEG-4–related bug. There are more lyrics sources, there new plugins for
managing permissions and integrating with Plex [https://plex.tv/], and the importer has a new
--pretend flag that shows which music would be imported.

One backwards-compatibility note: the Lyrics Plugin now requires the
requests [https://www.python-requests.org/] library. If you use this plugin, you will need to install the
library by typing pip install requests or the equivalent for your OS.

Also, as an advance warning, this will be one of the last releases to support
Python 2.6. If you have a system that cannot run Python 2.7, please consider
upgrading soon.

The new features are:

	A new Permissions Plugin makes it easy to fix permissions on music
files as they are imported. Thanks to xsteadfastx [https://github.com/xsteadfastx]. #1098 [https://github.com/beetbox/beets/issues/1098]

	A new PlexUpdate Plugin lets you notify a Plex [https://plex.tv/] server when the
database changes. Thanks again to xsteadfastx. #1120 [https://github.com/beetbox/beets/issues/1120]

	The import command now has a --pretend flag that lists the
files that will be imported. Thanks to mried [https://github.com/mried]. #1162 [https://github.com/beetbox/beets/issues/1162]

	Lyrics Plugin: Add Musixmatch [https://www.musixmatch.com/] source and introduce a new
sources config option that lets you choose exactly where to look for
lyrics and in which order.

	Lyrics Plugin: Add Brazilian and Spanish sources to Google custom
search engine.

	Add a warning when importing a directory that contains no music. #1116 [https://github.com/beetbox/beets/issues/1116]
#1127 [https://github.com/beetbox/beets/issues/1127]

	Zero Plugin: Can now remove embedded images. #1129 [https://github.com/beetbox/beets/issues/1129] #1100 [https://github.com/beetbox/beets/issues/1100]

	The config command can now be used to edit the configuration even
when it has syntax errors. #1123 [https://github.com/beetbox/beets/issues/1123] #1128 [https://github.com/beetbox/beets/issues/1128]

	Lyrics Plugin: Added a new force config option. #1150 [https://github.com/beetbox/beets/issues/1150]

As usual, there are loads of little fixes and improvements:

	Fix a new crash with the latest version of Mutagen (1.26).

	Lyrics Plugin: Avoid fetching truncated lyrics from the Google
backed by merging text blocks separated by empty <div> tags before
scraping.

	We now print a better error message when the database file is corrupted.

	Discogs Plugin: Only prompt for authentication when running the
import command. #1123 [https://github.com/beetbox/beets/issues/1123]

	When deleting fields with the modify command, do not crash when
the field cannot be removed (i.e., when it does not exist, when it is a
built-in field, or when it is a computed field). #1124 [https://github.com/beetbox/beets/issues/1124]

	The deprecated echonest_tempo plugin has been removed. Please use the
echonest plugin instead.

	echonest plugin: Fingerprint-based lookup has been removed in
accordance with API changes [https://developer.echonest.com/forums/thread/3650]. #1121 [https://github.com/beetbox/beets/issues/1121]

	echonest plugin: Avoid a crash when the song has no duration
information. #896 [https://github.com/beetbox/beets/issues/896]

	Lyrics Plugin: Avoid a crash when retrieving non-ASCII lyrics from
the Google backend. #1135 [https://github.com/beetbox/beets/issues/1135] #1136 [https://github.com/beetbox/beets/issues/1136]

	Smart Playlist Plugin: Sort specifiers are now respected in queries.
Thanks to djl [https://github.com/djl]. #1138 [https://github.com/beetbox/beets/issues/1138] #1137 [https://github.com/beetbox/beets/issues/1137]

	FtInTitle Plugin and Lyrics Plugin: Featuring artists can
now be detected when they use the Spanish word con. #1060 [https://github.com/beetbox/beets/issues/1060]
#1143 [https://github.com/beetbox/beets/issues/1143]

	MusicBrainz Collection Plugin: Fix an “HTTP 400” error caused by a change in
the MusicBrainz API. #1152 [https://github.com/beetbox/beets/issues/1152]

	The % and _ characters in path queries do not invoke their
special SQL meaning anymore. #1146 [https://github.com/beetbox/beets/issues/1146]

	Convert Plugin: Command-line argument construction now works
on Windows. Thanks to mluds [https://github.com/mluds]. #1026 [https://github.com/beetbox/beets/issues/1026] #1157 [https://github.com/beetbox/beets/issues/1157] #1158 [https://github.com/beetbox/beets/issues/1158]

	EmbedArt Plugin: Fix an erroneous missing-art error on Windows.
Thanks to mluds [https://github.com/mluds]. #1163 [https://github.com/beetbox/beets/issues/1163]

	ImportAdded Plugin: Now works with in-place and symlinked imports.
#1170 [https://github.com/beetbox/beets/issues/1170]

	FtInTitle Plugin: The plugin is now quiet when it runs as part of
the import process. Thanks to Freso [https://github.com/Freso]. #1176 [https://github.com/beetbox/beets/issues/1176] #1172 [https://github.com/beetbox/beets/issues/1172]

	FtInTitle Plugin: Fix weird behavior when the same artist appears
twice in the artist string. Thanks to Marc Addeo. #1179 [https://github.com/beetbox/beets/issues/1179] #1181 [https://github.com/beetbox/beets/issues/1181]

	LastGenre Plugin: Match songs more robustly when they contain
dashes. Thanks to djl [https://github.com/djl]. #1156 [https://github.com/beetbox/beets/issues/1156]

	The config command can now use $EDITOR variables with
arguments.

1.3.9 (November 17, 2014)

This release adds two new standard plugins to beets: one for synchronizing
Last.fm listening data and one for integrating with Linux desktops. And at
long last, imports can now create symbolic links to music files instead of
copying or moving them. We also gained the ability to search for album art on
the iTunes Store and a new way to compute ReplayGain levels.

The major new features are:

	A new LastImport Plugin lets you download your play count data from
Last.fm into a flexible attribute. Thanks to Rafael Bodill.

	A new Freedesktop Plugin creates metadata files for
Freedesktop.org–compliant file managers. Thanks to kerobaros [https://github.com/kerobaros].
#1056 [https://github.com/beetbox/beets/issues/1056], #707 [https://github.com/beetbox/beets/issues/707]

	A new link option in the import section creates symbolic links
during import instead of moving or copying. Thanks to Rovanion Luckey.
#710 [https://github.com/beetbox/beets/issues/710], #114 [https://github.com/beetbox/beets/issues/114]

	FetchArt Plugin: You can now search for art on the iTunes Store.
There’s also a new sources config option that lets you choose exactly
where to look for images and in which order.

	ReplayGain Plugin: A new Python Audio Tools backend was added.
Thanks to Francesco Rubino. #1070 [https://github.com/beetbox/beets/issues/1070]

	EmbedArt Plugin: You can now automatically check that new art looks
similar to existing art—ensuring that you only get a better “version” of
the art you already have. See Image Similarity.

	FtInTitle Plugin: The plugin now runs automatically on import. To
disable this, unset the auto config flag.

There are also core improvements and other substantial additions:

	The media attribute is now a track-level field instead of an
album-level one. This field stores the delivery mechanism for the music, so
in its album-level incarnation, it could not represent heterogeneous
releases—for example, an album consisting of a CD and a DVD. Now, tracks
accurately indicate the media they appear on. Thanks to Heinz Wiesinger.

	Re-imports of your existing music (see Reimporting) now preserve its
added date and flexible attributes. Thanks to Stig Inge Lea Bjørnsen.

	Slow queries, such as those over flexible attributes, should now be much
faster when used with certain commands—notably, the Play Plugin.

	BPD Plugin: Add a new configuration option for setting the default
volume. Thanks to IndiGit.

	EmbedArt Plugin: A new ifempty config option lets you only
embed album art when no album art is present. Thanks to kerobaros.

	Discogs Plugin: Authenticate with the Discogs server. The plugin
now requires a Discogs account due to new API restrictions. Thanks to
multikatt [https://github.com/multikatt]. #1027 [https://github.com/beetbox/beets/issues/1027], #1040 [https://github.com/beetbox/beets/issues/1040]

And countless little improvements and fixes:

	Standard cover art in APEv2 metadata is now supported. Thanks to Matthias
Kiefer. #1042 [https://github.com/beetbox/beets/issues/1042]

	Convert Plugin: Avoid a crash when embedding cover art
fails.

	MPDStats Plugin: Fix an error on start (introduced in the previous
version). Thanks to Zach Denton.

	Convert Plugin: The --yes command-line flag no longer expects
an argument.

	Play Plugin: Remove the temporary .m3u file after sending it to
the player.

	The importer no longer tries to highlight partial differences in numeric
quantities (track numbers and durations), which was often confusing.

	Date-based queries that are malformed (not parse-able) no longer crash
beets and instead fail silently.

	Duplicates Plugin: Emit an error when the checksum config
option is set incorrectly.

	The migration from pre-1.1, non-YAML configuration files has been removed.
If you need to upgrade an old config file, use an older version of beets
temporarily.

	Discogs Plugin: Recover from HTTP errors when communicating with
the Discogs servers. Thanks to Dustin Rodriguez.

	EmbedArt Plugin: Do not log “embedding album art into…” messages
during the import process.

	Fix a crash in the autotagger when files had only whitespace in their
metadata.

	Play Plugin: Fix a potential crash when the command outputs special
characters. #1041 [https://github.com/beetbox/beets/issues/1041]

	Web Plugin: Queries typed into the search field are now treated as
separate query components. #1045 [https://github.com/beetbox/beets/issues/1045]

	Date tags that use slashes instead of dashes as separators are now
interpreted correctly. And WMA (ASF) files now map the comments field to
the “Description” tag (in addition to “WM/Comments”). Thanks to Matthias
Kiefer. #1043 [https://github.com/beetbox/beets/issues/1043]

	EmbedArt Plugin: Avoid resizing the image multiple times when
embedding into an album. Thanks to kerobaros [https://github.com/kerobaros]. #1028 [https://github.com/beetbox/beets/issues/1028],
#1036 [https://github.com/beetbox/beets/issues/1036]

	Discogs Plugin: Avoid a situation where a trailing comma could be
appended to some artist names. #1049 [https://github.com/beetbox/beets/issues/1049]

	The output of the stats command is slightly different: the
approximate size is now marked as such, and the total number of seconds only
appears in exact mode.

	Convert Plugin: A new copy_album_art option puts images
alongside converted files. Thanks to Ángel Alonso. #1050 [https://github.com/beetbox/beets/issues/1050], #1055 [https://github.com/beetbox/beets/issues/1055]

	There is no longer a “conflict” between two plugins that declare the same
field with the same type. Thanks to Peter Schnebel. #1059 [https://github.com/beetbox/beets/issues/1059] #1061 [https://github.com/beetbox/beets/issues/1061]

	Chromaprint/Acoustid Plugin: Limit the number of releases and recordings fetched
as the result of an Acoustid match to avoid extremely long processing times
for very popular music. #1068 [https://github.com/beetbox/beets/issues/1068]

	Fix an issue where modifying an album’s field without actually changing it
would not update the corresponding tracks to bring differing tracks back in
line with the album. #856 [https://github.com/beetbox/beets/issues/856]

	echonest plugin: When communicating with the Echo Nest servers
fails repeatedly, log an error instead of exiting. #1096 [https://github.com/beetbox/beets/issues/1096]

	Lyrics Plugin: Avoid an error when the Google source returns a
result without a title. Thanks to Alberto Leal. #1097 [https://github.com/beetbox/beets/issues/1097]

	Importing an archive will no longer leave temporary files behind in
/tmp. Thanks to multikatt [https://github.com/multikatt]. #1067 [https://github.com/beetbox/beets/issues/1067], #1091 [https://github.com/beetbox/beets/issues/1091]

1.3.8 (September 17, 2014)

This release has two big new chunks of functionality. Queries now support
sorting and user-defined fields can now have types.

If you want to see all your songs in reverse chronological order, just type
beet list year-. It couldn’t be easier. For details, see
Sort Order.

Flexible field types mean that some functionality that has previously only
worked for built-in fields, like range queries, can now work with plugin- and
user-defined fields too. For starters, the echonest plugin and
MPDStats Plugin now mark the types of the fields they provide—so
you can now say, for example, beet ls liveness:0.5..1.5 for the Echo Nest
“liveness” attribute. The Types Plugin makes it easy to specify field
types in your config file.

One upgrade note: if you use the Discogs Plugin, you will need to
upgrade the Discogs client library to use this version. Just type
pip install -U discogs-client.

Other new features:

	Info Plugin: Target files can now be specified through library
queries (in addition to filenames). The --library option prints library
fields instead of tags. Multiple files can be summarized together with the
new --summarize option.

	MusicBrainz Collection Plugin: A new option lets you automatically update
your collection on import. Thanks to Olin Gay.

	Convert Plugin: A new never_convert_lossy_files option can
prevent lossy transcoding. Thanks to Simon Kohlmeyer.

	Convert Plugin: A new --yes command-line flag skips the
confirmation.

Still more fixes and little improvements:

	Invalid state files don’t crash the importer.

	Lyrics Plugin: Only strip featured artists and
parenthesized title suffixes if no lyrics for the original artist and
title were found.

	Fix a crash when reading some files with missing tags.

	Discogs Plugin: Compatibility with the new 2.0 version of the
discogs_client [https://github.com/discogs/discogs_client] Python library. If you were using the old version, you wil
need to upgrade to the latest version of the library to use the
correspondingly new version of the plugin (e.g., with
pip install -U discogs-client). Thanks to Andriy Kohut.

	Fix a crash when writing files that can’t be read. Thanks to Jocelyn De La
Rosa.

	The stats command now counts album artists. The album count also
more accurately reflects the number of albums in the database.

	Convert Plugin: Avoid crashes when tags cannot be written to newly
converted files.

	Formatting templates with item data no longer confusingly shows album-level
data when the two are inconsistent.

	Resuming imports and beginning incremental imports should now be much faster
when there is a lot of previously-imported music to skip.

	Lyrics Plugin: Remove <script> tags from scraped lyrics. Thanks
to Bombardment.

	Play Plugin: Add a relative_to config option. Thanks to
BrainDamage.

	Fix a crash when a MusicBrainz release has zero tracks.

	The --version flag now works as an alias for the version command.

	LastGenre Plugin: Remove some unhelpful genres from the default
whitelist. Thanks to gwern.

	ImportFeeds Plugin: A new echo output mode prints files’ paths
to standard error. Thanks to robotanarchy.

	ReplayGain Plugin: Restore some error handling when mp3gain
output cannot be parsed. The verbose log now contains the bad tool output in
this case.

	Convert Plugin: Fix filename extensions when converting
automatically.

	The write plugin event allows plugins to change the tags that are
written to a media file.

	Zero Plugin: Do not delete database values; only media file
tags are affected.

1.3.7 (August 22, 2014)

This release of beets fixes all the bugs, and you can be confident that you
will never again find any bugs in beets, ever.
It also adds support for plain old AIFF files and adds three more plugins,
including a nifty one that lets you measure a song’s tempo by tapping out the
beat on your keyboard.
The importer deals more elegantly with duplicates and you can broaden your
cover art search to the entire web with Google Image Search.

The big new features are:

	Support for AIFF files. Tags are stored as ID3 frames in one of the file’s
IFF chunks. Thanks to Evan Purkhiser for contributing support to Mutagen [https://bitbucket.org/lazka/mutagen].

	The new ImportAdded Plugin reads files’ modification times to set
their “added” date. Thanks to Stig Inge Lea Bjørnsen.

	The new BPM Plugin lets you manually measure the tempo of a playing
song. Thanks to aroquen.

	The new Spotify Plugin generates playlists for your Spotify [https://www.spotify.com/]
account. Thanks to Olin Gay.

	A new required configuration option for the importer skips matches
that are missing certain data. Thanks to oprietop.

	When the importer detects duplicates, it now shows you some details about
the potentially-replaced music so you can make an informed decision. Thanks
to Howard Jones.

	FetchArt Plugin: You can now optionally search for cover art on
Google Image Search. Thanks to Lemutar.

	A new asciify_paths configuration option replaces all non-ASCII
characters in paths.

And the multitude of little improvements and fixes:

	Compatibility with the latest version of Mutagen [https://bitbucket.org/lazka/mutagen], 1.23.

	Web Plugin: Lyrics now display readably with correct line breaks.
Also, the detail view scrolls to reveal all of the lyrics. Thanks to Meet
Udeshi.

	Play Plugin: The command config option can now contain
arguments (rather than just an executable). Thanks to Alessandro Ghedini.

	Fix an error when using the modify command to remove a flexible
attribute. Thanks to Pierre Rust.

	Info Plugin: The command now shows audio properties (e.g., bitrate)
in addition to metadata. Thanks Alessandro Ghedini.

	Avoid a crash on Windows when writing to files with special characters in
their names.

	Play Plugin: Playing albums now generates filenames by default (as
opposed to directories) for better compatibility. The use_folders option
restores the old behavior. Thanks to Lucas Duailibe.

	Fix an error when importing an empty directory with the --flat option.

	MPDStats Plugin: The last song in a playlist is now correctly
counted as played. Thanks to Johann Klähn.

	Zero Plugin: Prevent accidental nulling of dangerous fields (IDs
and paths). Thanks to brunal.

	The remove command now shows the paths of files that will be
deleted. Thanks again to brunal.

	Don’t display changes for fields that are not in the restricted field set.
This fixes write showing changes for fields that are not written
to the file.

	The write command avoids displaying the item name if there are
no changes for it.

	When using both the Convert Plugin and the Scrub Plugin,
avoid scrubbing the source file of conversions. (Fix a regression introduced
in the previous release.)

	ReplayGain Plugin: Logging is now quieter during import. Thanks to
Yevgeny Bezman.

	FetchArt Plugin: When loading art from the filesystem, we now
prioritize covers with more keywords in them. This means that
cover-front.jpg will now be taken before cover-back.jpg because it
contains two keywords rather than one. Thanks to Fabrice Laporte.

	LastGenre Plugin: Remove duplicates from canonicalized genre lists.
Thanks again to Fabrice Laporte.

	The importer now records its progress when skipping albums. This means that
incremental imports will no longer try to import albums again after you’ve
chosen to skip them, and erroneous invitations to resume “interrupted”
imports should be reduced. Thanks to jcassette.

	Bucket Plugin: You can now customize the definition of alphanumeric
“ranges” using regular expressions. And the heuristic for detecting years
has been improved. Thanks to sotho.

	Already-imported singleton tracks are skipped when resuming an
import.

	Chromaprint/Acoustid Plugin: A new auto configuration option disables
fingerprinting on import. Thanks to ddettrittus.

	Convert Plugin: A new --format option to can select the
transcoding preset from the command-line.

	Convert Plugin: Transcoding presets can now omit their filename
extensions (extensions default to the name of the preset).

	Convert Plugin: A new --pretend option lets you preview the
commands the plugin will execute without actually taking any action. Thanks
to Dietrich Daroch.

	Fix a crash when a float-valued tag field only contained a + or -
character.

	Fixed a regression in the core that caused the Scrub Plugin not to
work in auto mode. Thanks to Harry Khanna.

	The write command now has a --force flag. Thanks again to
Harry Khanna.

	MBSync Plugin: Track alignment now works with albums that have
multiple copies of the same recording. Thanks to Rui Gonçalves.

1.3.6 (May 10, 2014)

This is primarily a bugfix release, but it also brings two new plugins: one
for playing music in desktop players and another for organizing your
directories into “buckets.” It also brings huge performance optimizations to
queries—your beet ls commands will now go much faster.

New features:

	The new Play Plugin lets you start your desktop music player with
the songs that match a query. Thanks to David Hamp-Gonsalves.

	The new Bucket Plugin provides a %bucket{} function for path
formatting to generate folder names representing ranges of years or initial
letter. Thanks to Fabrice Laporte.

	Item and album queries are much faster.

	FtInTitle Plugin: A new option lets you remove featured artists
entirely instead of moving them to the title. Thanks to SUTJael.

And those all-important bug fixes:

	MBSync Plugin: Fix a regression in 1.3.5 that broke the plugin
entirely.

	Shell completion now searches more common paths for its
bash_completion dependency.

	Fix encoding-related logging errors in Convert Plugin and
ReplayGain Plugin.

	ReplayGain Plugin: Suppress a deprecation warning emitted by later
versions of PyGI.

	Fix a crash when reading files whose iTunes SoundCheck tags contain
non-ASCII characters.

	The %if{} template function now appropriately interprets the condition
as false when it contains the string “false”. Thanks to Ayberk Yilmaz.

	Convert Plugin: Fix conversion for files that include a video
stream by ignoring it. Thanks to brunal.

	FetchArt Plugin: Log an error instead of crashing when tag
manipulation fails.

	Convert Plugin: Log an error instead of crashing when
embedding album art fails.

	Convert Plugin: Embed cover art into converted files.
Previously they were embedded into the source files.

	New plugin event: before_item_moved. Thanks to Robert Speicher.

1.3.5 (April 15, 2014)

This is a short-term release that adds some great new stuff to beets. There’s
support for tracking and calculating musical keys, the ReplayGain plugin was
expanded to work with more music formats via GStreamer, we can now import
directly from compressed archives, and the lyrics plugin is more robust.

One note for upgraders and packagers: this version of beets has a new
dependency in enum34 [https://pypi.python.org/pypi/enum34], which is a backport of the new enum [https://docs.python.org/3.4/library/enum.html] standard
library module.

The major new features are:

	Beets can now import zip, tar, and rar archives. Just type beet
import music.zip to have beets transparently extract the files to import.

	ReplayGain Plugin: Added support for calculating ReplayGain values
with GStreamer as well the mp3gain program. This enables ReplayGain
calculation for any audio format. Thanks to Yevgeny Bezman.

	Lyrics Plugin: Lyrics should now be found for more songs. Searching
is now sensitive to featured artists and parenthesized title suffixes.
When a song has multiple titles, lyrics from all the named songs are now
concatenated. Thanks to Fabrice Laporte and Paul Phillips.

In particular, a full complement of features for supporting musical keys are
new in this release:

	A new initial_key field is available in the database and files’ tags. You
can set the field manually using a command like beet modify
initial_key=Am.

	The echonest plugin sets the initial_key field if the data is
available.

	A new Key Finder Plugin runs a command-line tool to get the key from
audio data and store it in the initial_key field.

There are also many bug fixes and little enhancements:

	echonest plugin: Truncate files larger than 50MB before uploading for
analysis.

	FetchArt Plugin: Fix a crash when the server does not specify a
content type. Thanks to Lee Reinhardt.

	Convert Plugin: The --keep-new flag now works correctly
and the library includes the converted item.

	The importer now logs a message instead of crashing when errors occur while
opening the files to be imported.

	EmbedArt Plugin: Better error messages in exceptional conditions.

	Silenced some confusing error messages when searching for a non-MusicBrainz
ID. Using an invalid ID (of any kind—Discogs IDs can be used there too) at
the “Enter ID:” importer prompt now just silently returns no results. More
info is in the verbose logs.

	MBSync Plugin: Fix application of album-level metadata. Due to a
regression a few releases ago, only track-level metadata was being updated.

	On Windows, paths on network shares (UNC paths) no longer cause “invalid
filename” errors.

	ReplayGain Plugin: Fix crashes when attempting to log errors.

	The modify command can now accept query arguments that contain =
signs. An argument is considered a query part when a : appears before any
=s. Thanks to mook.

1.3.4 (April 5, 2014)

This release brings a hodgepodge of medium-sized conveniences to beets. A new
config command manages your configuration, we now have bash
completion, and the modify command can delete
attributes. There are also some significant performance optimizations to the
autotagger’s matching logic.

One note for upgraders: if you use the FetchArt Plugin, it has a new
dependency, the requests [https://www.python-requests.org/] module.

New stuff:

	Added a config command to manage your configuration. It can show
you what you currently have in your config file, point you at where the file
should be, or launch your text editor to let you modify the file. Thanks to
geigerzaehler.

	Beets now ships with a shell command completion script! See
Shell Completion. Thanks to geigerzaehler.

	The modify command now allows removing flexible attributes. For
example, beet modify artist:beatles oldies! deletes the oldies
attribute from matching items. Thanks to brilnius.

	Internally, beets has laid the groundwork for supporting multi-valued
fields. Thanks to geigerzaehler.

	The importer interface now shows the URL for MusicBrainz matches. Thanks to
johtso.

	Smart Playlist Plugin: Playlists can now be generated from multiple
queries (combined with “or” logic). Album-level queries are also now
possible and automatic playlist regeneration can now be disabled. Thanks to
brilnius.

	echonest plugin: Echo Nest similarity now weights the tempo in
better proportion to other metrics. Also, options were added to specify
custom thresholds and output formats. Thanks to Adam M.

	Added the after_write plugin event.

	LastGenre Plugin: Separator in genre lists can now be
configured. Thanks to brilnius.

	We now only use “primary” aliases for artist names from MusicBrainz. This
eliminates some strange naming that could occur when the languages config
option was set. Thanks to Filipe Fortes.

	The performance of the autotagger’s matching mechanism is vastly improved.
This should be noticeable when matching against very large releases such as
box sets.

	The import command can now accept individual files as arguments
even in non-singleton mode. Files are imported as one-track albums.

Fixes:

	Error messages involving paths no longer escape non-ASCII characters (for
legibility).

	Fixed a regression that made it impossible to use the modify
command to add new flexible fields. Thanks to brilnius.

	echonest plugin: Avoid crashing when the audio analysis fails.
Thanks to Pedro Silva.

	Duplicates Plugin: Fix checksumming command execution for files
with quotation marks in their names. Thanks again to Pedro Silva.

	Fix a crash when importing with both of the group_albums and
incremental options enabled. Thanks to geigerzaehler.

	Give a sensible error message when BEETSDIR points to a file. Thanks
again to geigerzaehler.

	Fix a crash when reading WMA files whose boolean-valued fields contain
strings. Thanks to johtso.

	FetchArt Plugin: The plugin now sends “beets” as the User-Agent
when making scraping requests. This helps resolve some blocked requests. The
plugin now also depends on the requests [https://www.python-requests.org/] Python library.

	The write command now only shows the changes to fields that will
actually be written to a file.

	Duplicates Plugin: Spurious reports are now avoided for tracks with
missing values (e.g., no MBIDs). Thanks to Pedro Silva.

	The default replace sanitation options now remove leading whitespace
by default. Thanks to brilnius.

	ImportFeeds Plugin: Fix crash when importing albums
containing / with the m3u_multi format.

	Avoid crashing on Mutagen bugs while writing files’ tags.

	Convert Plugin: Display a useful error message when the FFmpeg
executable can’t be found.

1.3.3 (February 26, 2014)

Version 1.3.3 brings a bunch changes to how item and album fields work
internally. Along with laying the groundwork for some great things in the
future, this brings a number of improvements to how you interact with beets.
Here’s what’s new with fields in particular:

	Plugin-provided fields can now be used in queries. For example, if you use
the Inline Plugin to define a field called era, you can now
filter your library based on that field by typing something like
beet list era:goldenage.

	Album-level flexible attributes and plugin-provided attributes can now be
used in path formats (and other item-level templates).

	Date-based queries are now possible. Try getting every
track you added in February 2014 with beet ls added:2014-02 or in the
whole decade with added:2010... Thanks to Stig Inge Lea Bjørnsen.

	The modify command is now better at parsing and formatting
fields. You can assign to boolean fields like comp, for example, using
either the words “true” or “false” or the numerals 1 and 0. Any
boolean-esque value is normalized to a real boolean. The update
and write commands also got smarter at formatting and colorizing
changes.

For developers, the short version of the story is that Item and Album objects
provide uniform access across fixed, flexible, and computed attributes. You
can write item.foo to access the foo field without worrying about
where the data comes from.

Unrelated new stuff:

	The importer has a new interactive option (G for “Group albums”),
command-line flag (--group-albums), and config option
(group_albums) that lets you split apart albums that are mixed
together in a single directory. Thanks to geigerzaehler.

	A new --config command-line option lets you specify an additional
configuration file. This option combines config settings with your default
config file. (As part of this change, the BEETSDIR environment variable
no longer combines—it replaces your default config file.) Thanks again
to geigerzaehler.

	IHate Plugin: The plugin’s configuration interface was overhauled.
Its configuration is now much simpler—it uses beets queries instead of an
ad-hoc per-field configuration. This is backwards-incompatible—if you
use this plugin, you will need to update your configuration. Thanks to
BrainDamage.

Other little fixes:

	echonest plugin: Tempo (BPM) is now always stored as an integer.
Thanks to Heinz Wiesinger.

	Fix Python 2.6 compatibility in some logging statements in
Chromaprint/Acoustid Plugin and LastGenre Plugin.

	Prevent some crashes when things go really wrong when writing file metadata
at the end of the import process.

	New plugin events: item_removed (thanks to Romuald Conty) and
item_copied (thanks to Stig Inge Lea Bjørnsen).

	The pluginpath config option can now point to the directory containing
plugin code. (Previously, it awkwardly needed to point at a directory
containing a beetsplug directory, which would then contain your code.
This is preserved as an option for backwards compatibility.) This change
should also work around a long-standing issue when using pluginpath when
beets is installed using pip. Many thanks to geigerzaehler.

	Web Plugin: The /item/ and /album/ API endpoints now
produce full details about albums and items, not just lists of IDs. Thanks
to geigerzaehler.

	Fix a potential crash when using image resizing with the
FetchArt Plugin or EmbedArt Plugin without ImageMagick
installed.

	Also, when invoking convert for image resizing fails, we now log an
error instead of crashing.

	FetchArt Plugin: The beet fetchart command can now associate
local images with albums (unless --force is provided). Thanks to
brilnius.

	FetchArt Plugin: Command output is now colorized. Thanks again to
brilnius.

	The modify command avoids writing files and committing to the
database when nothing has changed. Thanks once more to brilnius.

	The importer now uses the album artist field when guessing existing
metadata for albums (rather than just the track artist field). Thanks to
geigerzaehler.

	FromFilename Plugin: Fix a crash when a filename contained only a
track number (e.g., 02.mp3).

	Convert Plugin: Transcoding should now work on Windows.

	Duplicates Plugin: The move and copy destination arguments
are now treated as directories. Thanks to Pedro Silva.

	The modify command now skips confirmation and prints a message if
no changes are necessary. Thanks to brilnius.

	FetchArt Plugin: When using the remote_priority config option,
local image files are no longer completely ignored.

	echonest plugin: Fix an issue causing the plugin to appear twice in
the output of the beet version command.

	LastGenre Plugin: Fix an occasional crash when no tag weight was
returned by Last.fm.

	MPDStats Plugin: Restore the last_played field. Thanks to
Johann Klähn.

	The modify command’s output now clearly shows when a file has
been deleted.

	Album art in files with Vorbis Comments is now marked with the “front cover”
type. Thanks to Jason Lefley.

1.3.2 (December 22, 2013)

This update brings new plugins for fetching acoustic metrics and listening
statistics, many more options for the duplicate detection plugin, and flexible
options for fetching multiple genres.

The “core” of beets gained a new built-in command: beet write updates the metadata tags for files, bringing them back
into sync with your database. Thanks to Heinz Wiesinger.

We added some plugins and overhauled some existing ones:

	The new echonest plugin plugin can fetch a wide range of acoustic
attributes [http://developer.echonest.com/acoustic-attributes.html] from The Echo Nest [http://the.echonest.com/], including the “speechiness” and
“liveness” of each track. The new plugin supersedes an older version
(echonest_tempo) that only fetched the BPM field. Thanks to Pedro Silva
and Peter Schnebel.

	The Duplicates Plugin got a number of new features, thanks to Pedro
Silva:

	The keys option lets you specify the fields used detect duplicates.

	You can now use checksumming (via an external command) to find
duplicates instead of metadata via the checksum option.

	The plugin can perform actions on the duplicates it find. The new
copy, move, delete, delete_file, and tag options
perform those actions.

	The new MPDStats Plugin collects statistics about your
listening habits from MPD [https://www.musicpd.org/]. Thanks to Peter Schnebel and Johann Klähn.

	LastGenre Plugin: The new multiple option has been replaced
with the count option, which lets you limit the number of genres added
to your music. (No more thousand-character genre fields!) Also, the
min_weight field filters out nonsense tags to make your genres more
relevant. Thanks to Peter Schnebel and rashley60.

	Lyrics Plugin: A new --force option optionally re-downloads
lyrics even when files already have them. Thanks to Bitdemon.

As usual, there are also innumerable little fixes and improvements:

	When writing ID3 tags for ReplayGain normalization, tags are written with
both upper-case and lower-case TXXX frame descriptions. Previous versions of
beets used only the upper-case style, which seems to be more standard, but
some players (namely, Quod Libet and foobar2000) seem to only use lower-case
names.

	Missing Plugin: Avoid a possible error when an album’s
tracktotal field is missing.

	FtInTitle Plugin: Fix an error when the sort artist is missing.

	echonest_tempo: The plugin should now match songs more
reliably (i.e., fewer “no tempo found” messages). Thanks to Peter Schnebel.

	Convert Plugin: Fix an “Item has no library” error when using the
auto config option.

	Convert Plugin: Fix an issue where files of the wrong format would
have their transcoding skipped (and files with the right format would be
needlessly transcoded). Thanks to Jakob Schnitzer.

	Fix an issue that caused the id3v23 option to work only occasionally.

	Also fix using id3v23 in conjunction with the scrub and
embedart plugins. Thanks to Chris Cogburn.

	IHate Plugin: Fix an error when importing singletons. Thanks to
Mathijs de Bruin.

	The clutter option can now be a whitespace-separated list in addition
to a YAML list.

	Values for the replace option can now be empty (i.e., null is
equivalent to the empty string).

	LastGenre Plugin: Fix a conflict between canonicalization and
multiple genres.

	When a match has a year but not a month or day, the autotagger now “zeros
out” the month and day fields after applying the year.

	For plugin developers: added an optparse callback utility function for
performing actions based on arguments. Thanks to Pedro Silva.

	Scrub Plugin: Fix scrubbing of MPEG-4 files. Thanks to Yevgeny
Bezman.

1.3.1 (October 12, 2013)

This release boasts a host of new little features, many of them contributed by
beets’ amazing and prolific community. It adds support for Opus [https://www.opus-codec.org/] files,
transcoding to any format, and two new plugins: one that guesses metadata for
“blank” files based on their filenames and one that moves featured artists
into the title field.

Here’s the new stuff:

	Add Opus [https://www.opus-codec.org/] audio support. Thanks to Rowan Lewis.

	Convert Plugin: You can now transcode files to any audio format,
rather than just MP3. Thanks again to Rowan Lewis.

	The new FromFilename Plugin guesses tags from the filenames during
import when metadata tags themselves are missing. Thanks to Jan-Erik Dahlin.

	The FtInTitle Plugin, by @Verrus [https://github.com/Verrus], is now distributed with beets.
It helps you rewrite tags to move “featured” artists from the artist field
to the title field.

	The MusicBrainz data source now uses track artists over recording
artists. This leads to better metadata when tagging classical music. Thanks
to Henrique Ferreiro.

	LastGenre Plugin: You can now get multiple genres per album or
track using the multiple config option. Thanks to rashley60 on GitHub.

	A new id3v23 config option makes beets write MP3 files’ tags using
the older ID3v2.3 metadata standard. Use this if you want your tags to be
visible to Windows and some older players.

And some fixes:

	FetchArt Plugin: Better error message when the image file has an
unrecognized type.

	MusicBrainz Collection Plugin: Detect, log, and skip invalid MusicBrainz IDs
(instead of failing with an API error).

	Info Plugin: Fail gracefully when used erroneously with a
directory.

	echonest_tempo: Fix an issue where the plugin could use the
tempo from the wrong song when the API did not contain the requested song.

	Fix a crash when a file’s metadata included a very large number (one wider
than 64 bits). These huge numbers are now replaced with zeroes in the
database.

	When a track on a MusicBrainz release has a different length from the
underlying recording’s length, the track length is now used instead.

	With per_disc_numbering enabled, the tracktotal field is now set
correctly (i.e., to the number of tracks on the disc).

	Scrub Plugin: The scrub command now restores album art in
addition to other (database-backed) tags.

	MPDUpdate Plugin: Domain sockets can now begin with a tilde (which
is correctly expanded to $HOME) as well as a slash. Thanks to Johann
Klähn.

	LastGenre Plugin: Fix a regression that could cause new genres
found during import not to be persisted.

	Fixed a crash when imported album art was also marked as “clutter” where the
art would be deleted before it could be moved into place. This led to a
“image.jpg not found during copy” error. Now clutter is removed (and
directories pruned) much later in the process, after the
import_task_files hook.

	Missing Plugin: Fix an error when printing missing track names.
Thanks to Pedro Silva.

	Fix an occasional KeyError in the update command introduced in
1.3.0.

	Scrub Plugin: Avoid preserving certain non-standard ID3 tags such
as NCON.

1.3.0 (September 11, 2013)

Albums and items now have flexible attributes. This means that, when you
want to store information about your music in the beets database, you’re no
longer constrained to the set of fields it supports out of the box (title,
artist, track, etc.). Instead, you can use any field name you can think of and
treat it just like the built-in fields.

For example, you can use the modify command to set a new field on a
track:

$ beet modify mood=sexy artist:miguel

and then query your music based on that field:

$ beet ls mood:sunny

or use templates to see the value of the field:

$ beet ls -f '$title: $mood'

While this feature is nifty when used directly with the usual command-line
suspects, it’s especially useful for plugin authors and for future beets
features. Stay tuned for great things built on this flexible attribute
infrastructure.

One side effect of this change: queries that include unknown fields will now
match nothing instead of everything. So if you type beet ls
fieldThatDoesNotExist:foo, beets will now return no results, whereas
previous versions would spit out a warning and then list your entire library.

There’s more detail than you could ever need on the beets blog [https://beets.io/blog/flexattr.html].

1.2.2 (August 27, 2013)

This is a bugfix release. We’re in the midst of preparing for a large change
in beets 1.3, so 1.2.2 resolves some issues that came up over the last few
weeks. Stay tuned!

The improvements in this release are:

	A new plugin event, item_moved, is sent when files are moved on disk.
Thanks to dsedivec.

	Lyrics Plugin: More improvements to the Google backend by Fabrice
Laporte.

	BPD Plugin: Fix for a crash when searching, thanks to Simon Chopin.

	Regular expression queries (and other query types) over paths now work.
(Previously, special query types were ignored for the path field.)

	FetchArt Plugin: Look for images in the Cover Art Archive for
the release group in addition to the specific release. Thanks to Filipe
Fortes.

	Fix a race in the importer that could cause files to be deleted before they
were imported. This happened when importing one album, importing a duplicate
album, and then asking for the first album to be replaced with the second.
The situation could only arise when importing music from the library
directory and when the two albums are imported close in time.

1.2.1 (June 22, 2013)

This release introduces a major internal change in the way that similarity
scores are handled. It means that the importer interface can now show you
exactly why a match is assigned its score and that the autotagger gained a few
new options that let you customize how matches are prioritized and
recommended.

The refactoring work is due to the continued efforts of Tai Lee. The
changes you’ll notice while using the autotagger are:

	The top 3 distance penalties are now displayed on the release listing,
and all album and track penalties are now displayed on the track changes
list. This should make it clear exactly which metadata is contributing to a
low similarity score.

	When displaying differences, the colorization has been made more consistent
and helpful: red for an actual difference, yellow to indicate that a
distance penalty is being applied, and light gray for no penalty (e.g., case
changes) or disambiguation data.

There are also three new (or overhauled) configuration options that let you
customize the way that matches are selected:

	The ignored setting lets you instruct the importer not to show you
matches that have a certain penalty applied.

	The preferred collection of settings specifies a sorted list of
preferred countries and media types, or prioritizes releases closest to the
original year for an album.

	The max_rec settings can now be used for any distance penalty
component. The recommendation will be downgraded if a non-zero penalty is
being applied to the specified field.

And some little enhancements and bug fixes:

	Multi-disc directory names can now contain “disk” (in addition to “disc”).
Thanks to John Hawthorn.

	Web Plugin: Item and album counts are now exposed through the API
for use with the Tomahawk resolver. Thanks to Uwe L. Korn.

	Python 2.6 compatibility for beatport,
Missing Plugin, and Duplicates Plugin. Thanks to Wesley
Bitter and Pedro Silva.

	Don’t move the config file during a null migration. Thanks to Theofilos
Intzoglou.

	Fix an occasional crash in the beatport when a length
field was missing from the API response. Thanks to Timothy Appnel.

	Scrub Plugin: Handle and log I/O errors.

	Lyrics Plugin: The Google backend should now turn up more results.
Thanks to Fabrice Laporte.

	Random Plugin: Fix compatibility with Python 2.6. Thanks to
Matthias Drochner.

1.2.0 (June 5, 2013)

There’s a lot of new stuff in this release: new data sources for the
autotagger, new plugins to look for problems in your library, tracking the
date that you acquired new music, an awesome new syntax for doing queries over
numeric fields, support for ALAC files, and major enhancements to the
importer’s UI and distance calculations. A special thanks goes out to all the
contributors who helped make this release awesome.

For the first time, beets can now tag your music using additional data
sources to augment the matches from MusicBrainz. When you enable either of
these plugins, the importer will start showing you new kinds of matches:

	New Discogs Plugin: Get matches from the Discogs [https://discogs.com/] database.
Thanks to Artem Ponomarenko and Tai Lee.

	New beatport plugin: Get matches from the Beatport [https://www.beatport.com/] database.
Thanks to Johannes Baiter.

We also have two other new plugins that can scan your library to check for
common problems, both by Pedro Silva:

	New Duplicates Plugin: Find tracks or albums in your
library that are duplicated.

	New Missing Plugin: Find albums in your library that are missing
tracks.

There are also three more big features added to beets core:

	Your library now keeps track of when music was added to it. The new
added field is a timestamp reflecting when each item and album was
imported and the new %time{} template function lets you format this
timestamp for humans. Thanks to Lucas Duailibe.

	When using queries to match on quantitative fields, you can now use
numeric ranges. For example, you can get a list of albums from the ’90s
by typing beet ls year:1990..1999 or find high-bitrate music with
bitrate:128000... See Numeric Range Queries. Thanks to Michael Schuerig.

	ALAC files are now marked as ALAC instead of being conflated with AAC
audio. Thanks to Simon Luijk.

In addition, the importer saw various UI enhancements, thanks to Tai Lee:

	More consistent format and colorization of album and track metadata.

	Display data source URL for matches from the new data source plugins. This
should make it easier to migrate data from Discogs or Beatport into
MusicBrainz.

	Display album disambiguation and disc titles in the track listing, when
available.

	Track changes are highlighted in yellow when they indicate a change in
format to or from the style of per_disc_numbering. (As before, no
penalty is applied because the track number is still “correct”, just in a
different format.)

	Sort missing and unmatched tracks by index and title and group them
together for better readability.

	Indicate MusicBrainz ID mismatches.

The calculation of the similarity score for autotagger matches was also
improved, again thanks to Tai Lee. These changes, in general, help deal with
the new metadata sources and help disambiguate between similar releases in the
same MusicBrainz release group:

	Strongly prefer releases with a matching MusicBrainz album ID. This helps
beets re-identify the same release when re-importing existing files.

	Prefer releases that are closest to the tagged year. Tolerate files
tagged with release or original year.

	The new preferred_media config option lets you prefer a certain media
type when the media field is unset on an album.

	Apply minor penalties across a range of fields to differentiate between
nearly identical releases: disctotal, label, catalognum,
country and albumdisambig.

As usual, there were also lots of other great littler enhancements:

	Random Plugin: A new -e option gives an equal chance to each
artist in your collection to avoid biasing random samples to prolific
artists. Thanks to Georges Dubus.

	The modify now correctly converts types when modifying non-string
fields. You can now safely modify the “comp” flag and the “year” field, for
example. Thanks to Lucas Duailibe.

	Convert Plugin: You can now configure the path formats for
converted files separately from your main library. Thanks again to Lucas
Duailibe.

	The importer output now shows the number of audio files in each album.
Thanks to jayme on GitHub.

	Plugins can now provide fields for both Album and Item templates, thanks
to Pedro Silva. Accordingly, the Inline Plugin can also now define
album fields. For consistency, the pathfields configuration section has
been renamed item_fields (although the old name will still work for
compatibility).

	Plugins can also provide metadata matches for ID searches. For example, the
new Discogs plugin lets you search for an album by its Discogs ID from the
same prompt that previously just accepted MusicBrainz IDs. Thanks to
Johannes Baiter.

	The fields command shows template fields provided by plugins.
Thanks again to Pedro Silva.

	MPDUpdate Plugin: You can now communicate with MPD over a Unix
domain socket. Thanks to John Hawthorn.

And a batch of fixes:

	Album art filenames now respect the replace configuration.

	Friendly error messages are now printed when trying to read or write files
that go missing.

	The modify command can now change albums’ album art paths (i.e.,
beet modify artpath=... works). Thanks to Lucas Duailibe.

	Zero Plugin: Fix a crash when nulling out a field that contains
None.

	Templates can now refer to non-tag item fields (e.g., $id and
$album_id).

	Lyrics Plugin: Lyrics searches should now turn up more results due
to some fixes in dealing with special characters.

1.1.0 (April 29, 2013)

This final release of 1.1 brings a little polish to the betas that introduced
the new configuration system. The album art and lyrics plugins also got a
little love.

If you’re upgrading from 1.0.0 or earlier, this release (like the 1.1 betas)
will automatically migrate your configuration to the new system.

	EmbedArt Plugin: The embedart command now embeds each album’s
associated art by default. The --file option invokes the old behavior,
in which a specific image file is used.

	Lyrics Plugin: A new (optional) Google Custom Search backend was
added for finding lyrics on a wide array of sites. Thanks to Fabrice
Laporte.

	When automatically detecting the filesystem’s maximum filename length, never
guess more than 200 characters. This prevents errors on systems where the
maximum length was misreported. You can, of course, override this default
with the max_filename_length option.

	FetchArt Plugin: Two new configuration options were added:
cover_names, the list of keywords used to identify preferred images, and
cautious, which lets you avoid falling back to images that don’t contain
those keywords. Thanks to Fabrice Laporte.

	Avoid some error cases in the update command and the embedart and
mbsync plugins. Invalid or missing files now cause error logs instead of
crashing beets. Thanks to Lucas Duailibe.

	Lyrics Plugin: Searches now strip “featuring” artists when
searching for lyrics, which should increase the hit rate for these tracks.
Thanks to Fabrice Laporte.

	When listing the items in an album, the items are now always in track-number
order. This should lead to more predictable listings from the
ImportFeeds Plugin.

	Smart Playlist Plugin: Queries are now split using shell-like syntax
instead of just whitespace, so you can now construct terms that contain
spaces.

	LastGenre Plugin: The force config option now defaults to true
and controls the behavior of the import hook. (Previously, new genres were
always forced during import.)

	Web Plugin: Fix an error when specifying the hostname on the
command line.

	Web Plugin: The underlying API was expanded slightly to support
Tomahawk [https://tomahawk-player.org/] collections. And file transfers now have a “Content-Length”
header. Thanks to Uwe L. Korn.

	LastGenre Plugin: Fix an error when using genre canonicalization.

1.1b3 (March 16, 2013)

This third beta of beets 1.1 brings a hodgepodge of little new features (and
internal overhauls that will make improvements easier in the future). There
are new options for getting metadata in a particular language and seeing more
detail during the import process. There’s also a new plugin for synchronizing
your metadata with MusicBrainz. Under the hood, plugins can now extend the
query syntax.

New configuration options:

	languages controls the preferred languages when selecting an alias
from MusicBrainz. This feature requires python-musicbrainzngs [https://github.com/alastair/python-musicbrainzngs] 0.3 or
later. Thanks to Sam Doshi.

	detail enables a mode where all tracks are listed in the importer UI,
as opposed to only changed tracks.

	The --flat option to the beet import command treats an entire
directory tree of music files as a single album. This can help in situations
where a multi-disc album is split across multiple directories.

	ImportFeeds Plugin: An option was added to use absolute, rather
than relative, paths. Thanks to Lucas Duailibe.

Other stuff:

	A new MBSync Plugin provides a command that looks up each item and
track in MusicBrainz and updates your library to reflect it. This can help
you easily correct errors that have been fixed in the MB database. Thanks to
Jakob Schnitzer.

	Fuzzy Search Plugin: The fuzzy command was removed and replaced with a
new query type. To perform fuzzy searches, use the ~ prefix with
list or other commands. Thanks to Philippe Mongeau.

	As part of the above, plugins can now extend the query syntax and new kinds
of matching capabilities to beets. See Extend the Query Syntax. Thanks again to
Philippe Mongeau.

	Convert Plugin: A new --keep-new option lets you store
transcoded files in your library while backing up the originals (instead of
vice-versa). Thanks to Lucas Duailibe.

	Convert Plugin: Also, a new auto config option will transcode
audio files automatically during import. Thanks again to Lucas Duailibe.

	Chromaprint/Acoustid Plugin: A new fingerprint command lets you generate and
store fingerprints for items that don’t yet have them. One more round of
applause for Lucas Duailibe.

	echonest_tempo: API errors now issue a warning instead of
exiting with an exception. We also avoid an error when track metadata
contains newlines.

	When the importer encounters an error (insufficient permissions, for
example) when walking a directory tree, it now logs an error instead of
crashing.

	In path formats, null database values now expand to the empty string instead
of the string “None”.

	Add “System Volume Information” (an internal directory found on some
Windows filesystems) to the default ignore list.

	Fix a crash when ReplayGain values were set to null.

	Fix a crash when iTunes Sound Check tags contained invalid data.

	Fix an error when the configuration file (config.yaml) is completely
empty.

	Fix an error introduced in 1.1b1 when importing using timid mode. Thanks to
Sam Doshi.

	Convert Plugin: Fix a bug when creating files with Unicode
pathnames.

	Fix a spurious warning from the Unidecode module when matching albums that
are missing all metadata.

	Fix Unicode errors when a directory or file doesn’t exist when invoking the
import command. Thanks to Lucas Duailibe.

	MusicBrainz Collection Plugin: Show friendly, human-readable errors when
MusicBrainz exceptions occur.

	echonest_tempo: Catch socket errors that are not handled by
the Echo Nest library.

	Chromaprint/Acoustid Plugin: Catch Acoustid Web service errors when submitting
fingerprints.

1.1b2 (February 16, 2013)

The second beta of beets 1.1 uses the fancy new configuration infrastructure to
add many, many new config options. The import process is more flexible;
filenames can be customized in more detail; and more. This release also
supports Windows Media (ASF) files and iTunes Sound Check volume normalization.

This version introduces one change to the default behavior that you should
be aware of. Previously, when importing new albums matched in MusicBrainz, the
date fields (year, month, and day) would be set to the release date
of the original version of the album, as opposed to the specific date of the
release selected. Now, these fields reflect the specific release and
original_year, etc., reflect the earlier release date. If you want the old
behavior, just set original_date to true in your config file.

New configuration options:

	default_action lets you determine the default (just-hit-return) option
is when considering a candidate.

	none_rec_action lets you skip the prompt, and automatically choose an
action, when there is no good candidate. Thanks to Tai Lee.

	max_rec lets you define a maximum recommendation for albums with
missing/extra tracks or differing track lengths/numbers. Thanks again to Tai
Lee.

	original_date determines whether, when importing new albums, the
year, month, and day fields should reflect the specific (e.g.,
reissue) release date or the original release date. Note that the original
release date is always available as original_year, etc.

	clutter controls which files should be ignored when cleaning up empty
directories. Thanks to Steinþór Pálsson.

	LastGenre Plugin: A new configuration option lets you choose to
retrieve artist-level tags as genres instead of album- or track-level tags.
Thanks to Peter Fern and Peter Schnebel.

	max_filename_length controls truncation of long filenames. Also, beets
now tries to determine the filesystem’s maximum length automatically if you
leave this option unset.

	FetchArt Plugin: The remote_priority option searches remote
(Web) art sources even when local art is present.

	You can now customize the character substituted for path separators (e.g., /)
in filenames via path_sep_replace. The default is an underscore. Use this
setting with caution.

Other new stuff:

	Support for Windows Media/ASF audio files. Thanks to Dave Hayes.

	New Smart Playlist Plugin: generate and maintain m3u playlist files
based on beets queries. Thanks to Dang Mai Hai.

	ReplayGain tags on MPEG-4/AAC files are now supported. And, even more
astonishingly, ReplayGain values in MP3 and AAC files are now compatible with
iTunes Sound Check [https://support.apple.com/kb/HT2425]. Thanks to Dave Hayes.

	Track titles in the importer UI’s difference display are now either aligned
vertically or broken across two lines for readability. Thanks to Tai Lee.

	Albums and items have new fields reflecting the original release date
(original_year, original_month, and original_day). Previously,
when tagging from MusicBrainz, only the original date was stored; now, the
old fields refer to the specific release date (e.g., when the album was
reissued).

	Some changes to the way candidates are recommended for selection, thanks to
Tai Lee:

	According to the new max_rec configuration option, partial album
matches are downgraded to a “low” recommendation by default.

	When a match isn’t great but is either better than all the others or the
only match, it is given a “low” (rather than “medium”) recommendation.

	There is no prompt default (i.e., input is required) when matches are
bad: “low” or “none” recommendations or when choosing a candidate
other than the first.

	The importer’s heuristic for coalescing the directories in a multi-disc album
has been improved. It can now detect when two directories alongside each
other share a similar prefix but a different number (e.g., “Album Disc 1” and
“Album Disc 2”) even when they are not alone in a common parent directory.
Thanks once again to Tai Lee.

	Album listings in the importer UI now show the release medium (CD, Vinyl,
3xCD, etc.) as well as the disambiguation string. Thanks to Peter Schnebel.

	LastGenre Plugin: The plugin can now get different genres for
individual tracks on an album. Thanks to Peter Schnebel.

	When getting data from MusicBrainz, the album disambiguation string
(albumdisambig) now reflects both the release and the release group.

	MPDUpdate Plugin: Sends an update message whenever anything in the
database changes—not just when importing. Thanks to Dang Mai Hai.

	When the importer UI shows a difference in track numbers or durations, they
are now colorized based on the suffixes that differ. For example, when
showing the difference between 2:01 and 2:09, only the last digit will be
highlighted.

	The importer UI no longer shows a change when the track length difference is
less than 10 seconds. (This threshold was previously 2 seconds.)

	Two new plugin events were added: database_change and cli_exit. Thanks
again to Dang Mai Hai.

	Plugins are now loaded in the order they appear in the config file. Thanks to
Dang Mai Hai.

	BPD Plugin: Browse by album artist and album artist sort name.
Thanks to Steinþór Pálsson.

	echonest_tempo: Don’t attempt a lookup when the artist or
track title is missing.

	Fix an error when migrating the .beetsstate file on Windows.

	A nicer error message is now given when the configuration file contains tabs.
(YAML doesn’t like tabs.)

	Fix the -l (log path) command-line option for the import command.

1.1b1 (January 29, 2013)

This release entirely revamps beets’ configuration system. The configuration
file is now a YAML [https://en.wikipedia.org/wiki/YAML] document and is located, along with other support files,
in a common directory (e.g., ~/.config/beets on Unix-like systems).

	Renamed plugins: The rdm plugin has been renamed to random and
fuzzy_search has been renamed to fuzzy.

	Renamed config options: Many plugins have a flag dictating whether their
action runs at import time. This option had many names (autofetch,
autoembed, etc.) but is now consistently called auto.

	Reorganized import config options: The various import_* options are now
organized under an import: heading and their prefixes have been removed.

	New default file locations: The default filename of the library database is
now library.db in the same directory as the config file, as opposed to
~/.beetsmusic.blb previously. Similarly, the runtime state file is now
called state.pickle in the same directory instead of ~/.beetsstate.

It also adds some new features:

	Inline Plugin: Inline definitions can now contain statements or
blocks in addition to just expressions. Thanks to Florent Thoumie.

	Add a configuration option, terminal_encoding, controlling the text
encoding used to print messages to standard output.

	The MusicBrainz hostname (and rate limiting) are now configurable. See
MusicBrainz Options.

	You can now configure the similarity thresholds used to determine when the
autotagger automatically accepts a metadata match. See Autotagger Matching Options.

	ImportFeeds Plugin: Added a new configuration option that controls
the base for relative paths used in m3u files. Thanks to Philippe Mongeau.

1.0.0 (January 29, 2013)

After fifteen betas and two release candidates, beets has finally hit
one-point-oh. Congratulations to everybody involved. This version of beets will
remain stable and receive only bug fixes from here on out. New development is
ongoing in the betas of version 1.1.

	Scrub Plugin: Fix an incompatibility with Python 2.6.

	Lyrics Plugin: Fix an issue that failed to find lyrics when metadata
contained “real” apostrophes.

	ReplayGain Plugin: On Windows, emit a warning instead of
crashing when analyzing non-ASCII filenames.

	Silence a spurious warning from version 0.04.12 of the Unidecode module.

1.0rc2 (December 31, 2012)

This second release candidate follows quickly after rc1 and fixes a few small
bugs found since that release. There were a couple of regressions and some bugs
in a newly added plugin.

	echonest_tempo: If the Echo Nest API limit is exceeded or a
communication error occurs, the plugin now waits and tries again instead of
crashing. Thanks to Zach Denton.

	FetchArt Plugin: Fix a regression that caused crashes when art was
not available from some sources.

	Fix a regression on Windows that caused all relative paths to be “not found”.

1.0rc1 (December 17, 2012)

The first release candidate for beets 1.0 includes a deluge of new features
contributed by beets users. The vast majority of the credit for this release
goes to the growing and vibrant beets community. A million thanks to everybody
who contributed to this release.

There are new plugins for transcoding music, fuzzy searches, tempo collection,
and fiddling with metadata. The ReplayGain plugin has been rebuilt from
scratch. Album art images can now be resized automatically. Many other smaller
refinements make things “just work” as smoothly as possible.

With this release candidate, beets 1.0 is feature-complete. We’ll be fixing
bugs on the road to 1.0 but no new features will be added. Concurrently, work
begins today on features for version 1.1.

	New plugin: Convert Plugin transcodes music and embeds album art
while copying to a separate directory. Thanks to Jakob Schnitzer and Andrew G.
Dunn.

	New plugin: Fuzzy Search Plugin lets you find albums and tracks
using fuzzy string matching so you don’t have to type (or even remember)
their exact names. Thanks to Philippe Mongeau.

	New plugin: echonest_tempo fetches tempo (BPM) information
from The Echo Nest [http://the.echonest.com/]. Thanks to David Brenner.

	New plugin: The Plugin adds a template function that helps format
text for nicely-sorted directory listings. Thanks to Blemjhoo Tezoulbr.

	New plugin: Zero Plugin filters out undesirable fields before
they are written to your tags. Thanks again to Blemjhoo Tezoulbr.

	New plugin: IHate Plugin automatically skips (or warns you about)
importing albums that match certain criteria. Thanks once again to Blemjhoo
Tezoulbr.

	ReplayGain Plugin: This plugin has been completely overhauled to use
the mp3gain [http://mp3gain.sourceforge.net/download.php] or aacgain [https://aacgain.altosdesign.com] command-line tools instead of the failure-prone
Gstreamer ReplayGain implementation. Thanks to Fabrice Laporte.

	FetchArt Plugin and EmbedArt Plugin: Both plugins can now
resize album art to avoid excessively large images. Use the maxwidth
config option with either plugin. Thanks to Fabrice Laporte.

	Scrub Plugin: Scrubbing now removes all types of tags from a file
rather than just one. For example, if your FLAC file has both ordinary FLAC
tags and ID3 tags, the ID3 tags are now also removed.

	stats command: New --exact switch to make the file size
calculation more accurate (thanks to Jakob Schnitzer).

	list command: Templates given with -f can now show items’ and
albums’ paths (using $path).

	The output of the update, remove, and modify
commands now respects the format_album and
format_item config options. Thanks to Mike Kazantsev.

	The art_filename option can now be a template rather than a simple
string. Thanks to Jarrod Beardwood.

	Fix album queries for artpath and other non-item fields.

	Null values in the database can now be matched with the empty-string regular
expression, ^$.

	Queries now correctly match non-string values in path format predicates.

	When autotagging a various-artists album, the album artist field is now
used instead of the majority track artist.

	LastGenre Plugin: Use the albums’ existing genre tags if they pass
the whitelist (thanks to Fabrice Laporte).

	LastGenre Plugin: Add a lastgenre command for fetching genres
post facto (thanks to Jakob Schnitzer).

	FetchArt Plugin: Local image filenames are now used in alphabetical
order.

	FetchArt Plugin: Fix a bug where cover art filenames could lack
a .jpg extension.

	Lyrics Plugin: Fix an exception with non-ASCII lyrics.

	Web Plugin: The API now reports file sizes (for use with the
Tomahawk resolver [https://beets.io/blog/tomahawk-resolver.html]).

	Web Plugin: Files now download with a reasonable filename rather
than just being called “file” (thanks to Zach Denton).

	ImportFeeds Plugin: Fix error in symlink mode with non-ASCII
filenames.

	MusicBrainz Collection Plugin: Fix an error when submitting a large number of
releases (we now submit only 200 releases at a time instead of 350). Thanks
to Jonathan Towne.

	EmbedArt Plugin: Made the method for embedding art into FLAC files
standard [https://wiki.xiph.org/VorbisComment#METADATA_BLOCK_PICTURE]-compliant.
Thanks to Daniele Sluijters.

	Add the track mapping dictionary to the album_distance plugin function.

	When an exception is raised while reading a file, the path of the file in
question is now logged (thanks to Mike Kazantsev).

	Truncate long filenames based on their bytes rather than their Unicode
characters, fixing situations where encoded names could be too long.

	Filename truncation now incorporates the length of the extension.

	Fix an assertion failure when the MusicBrainz main database and search server
disagree.

	Fix a bug that caused the LastGenre Plugin and other plugins not to
modify files’ tags even when they successfully change the database.

	Fix a VFS bug leading to a crash in the BPD Plugin when files had
non-ASCII extensions.

	Fix for changing date fields (like “year”) with the modify
command.

	Fix a crash when input is read from a pipe without a specified encoding.

	Fix some problem with identifying files on Windows with Unicode directory
names in their path.

	Fix a crash when Unicode queries were used with import -L re-imports.

	Fix an error when fingerprinting files with Unicode filenames on Windows.

	Warn instead of crashing when importing a specific file in singleton mode.

	Add human-readable error messages when writing files’ tags fails or when a
directory can’t be created.

	Changed plugin loading so that modules can be imported without
unintentionally loading the plugins they contain.

1.0b15 (July 26, 2012)

The fifteenth (!) beta of beets is compendium of small fixes and features, most
of which represent long-standing requests. The improvements include matching
albums with extra tracks, per-disc track numbering in multi-disc albums, an
overhaul of the album art downloader, and robustness enhancements that should
keep beets running even when things go wrong. All these smaller changes should
help us focus on some larger changes coming before 1.0.

Please note that this release contains one backwards-incompatible change: album
art fetching, which was previously baked into the import workflow, is now
encapsulated in a plugin (the FetchArt Plugin). If you want to continue
fetching cover art for your music, enable this plugin after upgrading to beets
1.0b15.

	The autotagger can now find matches for albums when you have extra tracks
on your filesystem that aren’t present in the MusicBrainz catalog. Previously,
if you tried to match album with 15 audio files but the MusicBrainz entry had
only 14 tracks, beets would ignore this match. Now, beets will show you
matches even when they are “too short” and indicate which tracks from your
disk are unmatched.

	Tracks on multi-disc albums can now be numbered per-disc instead of
per-album via the per_disc_numbering config option.

	The default output format for the beet list command is now configurable
via the format_item and format_album config options.
Thanks to Fabrice Laporte.

	Album cover art fetching is now encapsulated in the
FetchArt Plugin. Be sure to enable this plugin if you’re using this
functionality. As a result of this new organization, the new plugin has gained
a few new features:

	“As-is” and non-autotagged imports can now have album art imported from
the local filesystem (although Web repositories are still not searched in
these cases).

	A new command, beet fetchart, allows you to download album art
post-import. If you only want to fetch art manually, not automatically
during import, set the new plugin’s autofetch option to no.

	New album art sources have been added.

	Errors when communicating with MusicBrainz now log an error message instead of
halting the importer.

	Similarly, filesystem manipulation errors now print helpful error messages
instead of a messy traceback. They still interrupt beets, but they should now
be easier for users to understand. Tracebacks are still available in verbose
mode.

	New metadata fields for artist credits [https://wiki.musicbrainz.org/Artist_Credit]: artist_credit and
albumartist_credit can now contain release- and recording-specific
variations of the artist’s name. See Available Values.

	Revamped the way beets handles concurrent database access to avoid
nondeterministic SQLite-related crashes when using the multithreaded importer.
On systems where SQLite was compiled without usleep(3) support,
multithreaded database access could cause an internal error (with the message
“database is locked”). This release synchronizes access to the database to
avoid internal SQLite contention, which should avoid this error.

	Plugins can now add parallel stages to the import pipeline. See
Writing Plugins.

	Beets now prints out an error when you use an unrecognized field name in a
query: for example, when running beet ls -a artist:foo (because artist
is an item-level field).

	New plugin events:

	import_task_choice is called after an import task has an action
assigned.

	import_task_files is called after a task’s file manipulation has
finished (copying or moving files, writing metadata tags).

	library_opened is called when beets starts up and opens the library
database.

	LastGenre Plugin: Fixed a problem where path formats containing
$genre would use the old genre instead of the newly discovered one.

	Fix a crash when moving files to a Samba share.

	MPDUpdate Plugin: Fix TypeError crash (thanks to Philippe Mongeau).

	When re-importing files with import_copy enabled, only files inside the
library directory are moved. Files outside the library directory are still
copied. This solves a problem (introduced in 1.0b14) where beets could crash
after adding files to the library but before finishing copying them; during
the next import, the (external) files would be moved instead of copied.

	Artist sort names are now populated correctly for multi-artist tracks and
releases. (Previously, they only reflected the first artist.)

	When previewing changes during import, differences in track duration are now
shown as “2:50 vs. 3:10” rather than separated with -> like track numbers.
This should clarify that beets isn’t doing anything to modify lengths.

	Fix a problem with query-based path format matching where a field-qualified
pattern, like albumtype_soundtrack, would match everything.

	Chromaprint/Acoustid Plugin: Fix matching with ambiguous Acoustids. Some Acoustids
are identified with multiple recordings; beets now considers any associated
recording a valid match. This should reduce some cases of errant track
reordering when using chroma.

	Fix the ID3 tag name for the catalog number field.

	Chromaprint/Acoustid Plugin: Fix occasional crash at end of fingerprint submission
and give more context to “failed fingerprint generation” errors.

	Interactive prompts are sent to stdout instead of stderr.

	EmbedArt Plugin: Fix crash when audio files are unreadable.

	BPD Plugin: Fix crash when sockets disconnect (thanks to Matteo
Mecucci).

	Fix an assertion failure while importing with moving enabled when the file was
already at its destination.

	Fix Unicode values in the replace config option (thanks to Jakob Borg).

	Use a nicer error message when input is requested but stdin is closed.

	Fix errors on Windows for certain Unicode characters that can’t be represented
in the MBCS encoding. This required a change to the way that paths are
represented in the database on Windows; if you find that beets’ paths are out
of sync with your filesystem with this release, delete and recreate your
database with beet import -AWC /path/to/music.

	Fix import with relative path arguments on Windows.

1.0b14 (May 12, 2012)

The centerpiece of this beets release is the graceful handling of
similarly-named albums. It’s now possible to import two albums with the same
artist and title and to keep them from conflicting in the filesystem. Many other
awesome new features were contributed by the beets community, including regular
expression queries, artist sort names, moving files on import. There are three
new plugins: random song/album selection; MusicBrainz “collection” integration;
and a plugin for interoperability with other music library systems.

A million thanks to the (growing) beets community for making this a huge
release.

	The importer now gives you choices when duplicates are detected.
Previously, when beets found an existing album or item in your library
matching the metadata on a newly-imported one, it would just skip the new
music to avoid introducing duplicates into your library. Now, you have three
choices: skip the new music (the previous behavior), keep both, or remove the
old music. See the Duplicates section in the autotagging guide
for details.

	Beets can now avoid storing identically-named albums in the same directory.
The new %aunique{} template function, which is included in the default
path formats, ensures that Crystal Castles’ albums will be placed into
different directories. See Album Disambiguation for details.

	Beets queries can now use regular expressions. Use an additional : in
your query to enable regex matching. See Regular Expressions for the full details.
Thanks to Matteo Mecucci.

	Artist sort names are now fetched from MusicBrainz. There are two new data
fields, artist_sort and albumartist_sort, that contain sortable artist
names like “Beatles, The”. These fields are also used to sort albums and items
when using the list command. Thanks to Paul Provost.

	Many other new metadata fields were added, including ASIN, label catalog
number, disc title, encoder, and MusicBrainz release group ID. For a full list
of fields, see Available Values.

	Chromaprint/Acoustid Plugin: A new command, beet submit, will submit
fingerprints to the Acoustid database. Submitting your library helps
increase the coverage and accuracy of Acoustid fingerprinting. The Chromaprint
fingerprint and Acoustid ID are also now stored for all fingerprinted tracks.
This version of beets requires at least version 0.6 of pyacoustid [https://github.com/beetbox/pyacoustid] for
fingerprinting to work.

	The importer can now move files. Previously, beets could only copy files
and delete the originals, which is inefficient if the source and destination
are on the same filesystem. Use the import_move configuration option and
see Configuration for more details. Thanks to Domen Kožar.

	New Random Plugin: Randomly select albums and tracks from your library.
Thanks to Philippe Mongeau.

	The MusicBrainz Collection Plugin by Jeffrey Aylesworth was added to the core
beets distribution.

	New ImportFeeds Plugin: Catalog imported files in m3u playlist
files or as symlinks for easy importing to other systems. Thanks to Fabrice
Laporte.

	The -f (output format) option to the beet list command can now contain
template functions as well as field references. Thanks to Steve Dougherty.

	A new command beet fields displays the available metadata fields (thanks
to Matteo Mecucci).

	The import command now has a --noincremental or -I flag to disable
incremental imports (thanks to Matteo Mecucci).

	When the autotagger fails to find a match, it now displays the number of
tracks on the album (to help you guess what might be going wrong) and a link
to the FAQ.

	The default filename character substitutions were changed to be more
conservative. The Windows “reserved characters” are substituted by default
even on Unix platforms (this causes less surprise when using Samba shares to
store music). To customize your character substitutions, see the replace
config option.

	LastGenre Plugin: Added a “fallback” option when no suitable genre
can be found (thanks to Fabrice Laporte).

	Rewrite Plugin: Unicode rewriting rules are now allowed (thanks to
Nicolas Dietrich).

	Filename collisions are now avoided when moving album art.

	BPD Plugin: Print messages to show when directory tree is being
constructed.

	BPD Plugin: Use Gstreamer’s playbin2 element instead of the
deprecated playbin.

	BPD Plugin: Random and repeat modes are now supported (thanks to
Matteo Mecucci).

	BPD Plugin: Listings are now sorted (thanks once again to Matteo
Mecucci).

	Filenames are normalized with Unicode Normal Form D (NFD) on Mac OS X and NFC
on all other platforms.

	Significant internal restructuring to avoid SQLite locking errors. As part of
these changes, the not-very-useful “save” plugin event has been removed.

1.0b13 (March 16, 2012)

Beets 1.0b13 consists of a plethora of small but important fixes and
refinements. A lyrics plugin is now included with beets; new audio properties
are catalogged; the list command has been made more powerful; the autotagger
is more tolerant of different tagging styles; and importing with original file
deletion now cleans up after itself more thoroughly. Many, many bugs—including
several crashers—were fixed. This release lays the foundation for more features
to come in the next couple of releases.

	The Lyrics Plugin, originally by Peter Brunner [https://github.com/Lugoues], is revamped and
included with beets, making it easy to fetch song lyrics.

	Items now expose their audio sample rate, number of channels, and
bits per sample (bitdepth). See Path Formats for a list of
all available audio properties. Thanks to Andrew Dunn.

	The beet list command now accepts a “format” argument that lets you show
specific information about each album or track. For example, run beet ls
-af '$album: $tracktotal' beatles to see how long each Beatles album is.
Thanks to Philippe Mongeau.

	The autotagger now tolerates tracks on multi-disc albums that are numbered
per-disc. For example, if track 24 on a release is the first track on the
second disc, then it is not penalized for having its track number set to 1
instead of 24.

	The autotagger sets the disc number and disc total fields on autotagged
albums.

	The autotagger now also tolerates tracks whose track artists tags are set
to “Various Artists”.

	Terminal colors are now supported on Windows via Colorama [https://pypi.python.org/pypi/colorama] (thanks to Karl).

	When previewing metadata differences, the importer now shows discrepancies in
track length.

	Importing with import_delete enabled now cleans up empty directories that
contained deleting imported music files.

	Similarly, import_delete now causes original album art imported from the
disk to be deleted.

	Plugin-supplied template values, such as those created by rewrite, are now
properly sanitized (for example, AC/DC properly becomes AC_DC).

	Filename extensions are now always lower-cased when copying and moving files.

	The inline plugin now prints a more comprehensible error when exceptions
occur in Python snippets.

	The replace configuration option can now remove characters entirely (in
addition to replacing them) if the special string <strip> is specified as
the replacement.

	New plugin API: plugins can now add fields to the MediaFile tag abstraction
layer. See Writing Plugins.

	A reasonable error message is now shown when the import log file cannot be
opened.

	The import log file is now flushed and closed properly so that it can be used
to monitor import progress, even when the import crashes.

	Duplicate track matches are no longer shown when autotagging singletons.

	The chroma plugin now logs errors when fingerprinting fails.

	The lastgenre plugin suppresses more errors when dealing with the Last.fm
API.

	Fix a bug in the rewrite plugin that broke the use of multiple rules for
a single field.

	Fix a crash with non-ASCII characters in bytestring metadata fields (e.g.,
MusicBrainz IDs).

	Fix another crash with non-ASCII characters in the configuration paths.

	Fix a divide-by-zero crash on zero-length audio files.

	Fix a crash in the chroma plugin when the Acoustid database had no
recording associated with a fingerprint.

	Fix a crash when an autotagging with an artist or album containing “AND” or
“OR” (upper case).

	Fix an error in the rewrite and inline plugins when the corresponding
config sections did not exist.

	Fix bitrate estimation for AAC files whose headers are missing the relevant
data.

	Fix the list command in BPD (thanks to Simon Chopin).

1.0b12 (January 16, 2012)

This release focuses on making beets’ path formatting vastly more powerful. It
adds a function syntax for transforming text. Via a new plugin, arbitrary Python
code can also be used to define new path format fields. Each path format
template can now be activated conditionally based on a query. Character set
substitutions are also now configurable.

In addition, beets avoids problematic filename conflicts by appending numbers to
filenames that would otherwise conflict. Three new plugins (inline,
scrub, and rewrite) are included in this release.

	Functions in path formats provide a simple way to write complex file
naming rules: for example, %upper{%left{$artist,1}} will insert the
capitalized first letter of the track’s artist. For more details, see
Path Formats. If you’re interested in adding your own template
functions via a plugin, see Writing Plugins.

	Plugins can also now define new path fields in addition to functions.

	The new Inline Plugin lets you use Python expressions to customize
path formats by defining new fields in the config file.

	The configuration can condition path formats based on queries. That is,
you can write a path format that is only used if an item matches a given
query. (This supersedes the earlier functionality that only allowed
conditioning on album type; if you used this feature in a previous version,
you will need to replace, for example, soundtrack: with
albumtype_soundtrack:.) See Path Format Configuration.

	Filename substitutions are now configurable via the replace config
value. You can choose which characters you think should be allowed in your
directory and music file names. See Configuration.

	Beets now ensures that files have unique filenames by appending a number
to any filename that would otherwise conflict with an existing file.

	The new Scrub Plugin can remove extraneous metadata either manually
or automatically.

	The new Rewrite Plugin can canonicalize names for path formats.

	The autotagging heuristics have been tweaked in situations where the
MusicBrainz database did not contain track lengths. Previously, beets
penalized matches where this was the case, leading to situations where
seemingly good matches would have poor similarity. This penalty has been
removed.

	Fix an incompatibility in BPD with libmpc (the library that powers mpc and
ncmpc).

	Fix a crash when importing a partial match whose first track was missing.

	The lastgenre plugin now correctly writes discovered genres to imported
files (when tag-writing is enabled).

	Add a message when skipping directories during an incremental import.

	The default ignore settings now ignore all files beginning with a dot.

	Date values in path formats ($year, $month, and $day) are now
appropriately zero-padded.

	Removed the --path-format global flag for beet.

	Removed the lastid plugin, which was deprecated in the previous version.

1.0b11 (December 12, 2011)

This version of beets focuses on transitioning the autotagger to the new version
of the MusicBrainz database (called NGS). This transition brings with it a
number of long-overdue improvements: most notably, predictable behavior when
tagging multi-disc albums and integration with the new Acoustid [https://acoustid.org/] acoustic
fingerprinting technology.

The importer can also now tag incomplete albums when you’re missing a few
tracks from a given release. Two other new plugins are also included with this
release: one for assigning genres and another for ReplayGain analysis.

	Beets now communicates with MusicBrainz via the new Next Generation Schema [https://musicbrainz.org/doc/XML_Web_Service/Version_2]
(NGS) service via python-musicbrainzngs [https://github.com/alastair/python-musicbrainzngs]. The bindings are included with
this version of beets, but a future version will make them an external
dependency.

	The importer now detects multi-disc albums and tags them together. Using a
heuristic based on the names of directories, certain structures are classified
as multi-disc albums: for example, if a directory contains subdirectories
labeled “disc 1” and “disc 2”, these subdirectories will be coalesced into a
single album for tagging.

	The new Chromaprint/Acoustid Plugin uses the Acoustid [https://acoustid.org/] open-source acoustic
fingerprinting service. This replaces the old lastid plugin, which used
Last.fm fingerprinting and is now deprecated. Fingerprinting with this library
should be faster and more reliable.

	The importer can now perform partial matches. This means that, if you’re
missing a few tracks from an album, beets can still tag the remaining tracks
as a single album. (Thanks to Simon Chopin [https://github.com/laarmen].)

	The new LastGenre Plugin automatically assigns genres to imported
albums and items based on Last.fm tags and an internal whitelist. (Thanks to
KraYmer [https://github.com/KraYmer].)

	The ReplayGain Plugin, written by Peter Brunner [https://github.com/Lugoues], has been merged
into the core beets distribution. Use it to analyze audio and adjust
playback levels in ReplayGain-aware music players.

	Albums are now tagged with their original release date rather than the date
of any reissue, remaster, “special edition”, or the like.

	The config file and library databases are now given better names and locations
on Windows. Namely, both files now reside in %APPDATA%; the config file is
named beetsconfig.ini and the database is called beetslibrary.blb
(neither has a leading dot as on Unix). For backwards compatibility, beets
will check the old locations first.

	When entering an ID manually during tagging, beets now searches for anything
that looks like an MBID in the entered string. This means that full
MusicBrainz URLs now work as IDs at the prompt. (Thanks to derwin.)

	The importer now ignores certain “clutter” files like .AppleDouble
directories and ._* files. The list of ignored patterns is configurable
via the ignore setting; see Configuration.

	The database now keeps track of files’ modification times so that, during
an update, unmodified files can be skipped. (Thanks to Jos van der Til.)

	The album art fetcher now uses albumart.org [https://www.albumart.org/] as a fallback when the Amazon
art downloader fails.

	A new timeout config value avoids database locking errors on slow systems.

	Fix a crash after using the “as Tracks” option during import.

	Fix a Unicode error when tagging items with missing titles.

	Fix a crash when the state file (~/.beetsstate) became emptied or
corrupted.

1.0b10 (September 22, 2011)

This version of beets focuses on making it easier to manage your metadata
after you’ve imported it. A bumper crop of new commands has been added: a
manual tag editor (modify), a tool to pick up out-of-band deletions and
modifications (update), and functionality for moving and copying files
around (move). Furthermore, the concept of “re-importing” is new: you can
choose to re-run beets’ advanced autotagger on any files you already have in
your library if you change your mind after you finish the initial import.

As a couple of added bonuses, imports can now automatically skip
previously-imported directories (with the -i flag) and there’s an
experimental Web interface to beets in a new standard
plugin.

	A new beet modify command enables manual, command-line-based
modification of music metadata. Pass it a query along with field=value
pairs that specify the changes you want to make.

	A new beet update command updates the database to reflect changes in the
on-disk metadata. You can now use an external program to edit tags on files,
remove files and directories, etc., and then run beet update to make sure
your beets library is in sync. This will also rename files to reflect their
new metadata.

	A new beet move command can copy or move files into your library
directory or to another specified directory.

	When importing files that are already in the library database, the items are
no longer duplicated—instead, the library is updated to reflect the new
metadata. This way, the import command can be transparently used as a
re-import.

	Relatedly, the -L flag to the “import” command makes it take a query as
its argument instead of a list of directories. The matched albums (or items,
depending on the -s flag) are then re-imported.

	A new flag -i to the import command runs incremental imports, keeping
track of and skipping previously-imported directories. This has the effect of
making repeated import commands pick up only newly-added directories. The
import_incremental config option makes this the default.

	When pruning directories, “clutter” files such as .DS_Store and
Thumbs.db are ignored (and removed with otherwise-empty directories).

	The Web Plugin encapsulates a simple Web-based GUI for beets. The
current iteration can browse the library and play music in browsers that
support HTML5 Audio [http://www.w3.org/TR/html-markup/audio.html].

	When moving items that are part of an album, the album art implicitly moves
too.

	Files are no longer silently overwritten when moving and copying files.

	Handle exceptions thrown when running Mutagen.

	Fix a missing __future__ import in embed art on Python 2.5.

	Fix ID3 and MPEG-4 tag names for the album-artist field.

	Fix Unicode encoding of album artist, album type, and label.

	Fix crash when “copying” an art file that’s already in place.

1.0b9 (July 9, 2011)

This release focuses on a large number of small fixes and improvements that turn
beets into a well-oiled, music-devouring machine. See the full release notes,
below, for a plethora of new features.

	Queries can now contain whitespace. Spaces passed as shell arguments are
now preserved, so you can use your shell’s escaping syntax (quotes or
backslashes, for instance) to include spaces in queries. For example,
typing``beet ls “the knife”`` or beet ls the\ knife. Read more in
Queries.

	Queries can match items from the library by directory. A path: prefix
is optional; any query containing a path separator (/ on POSIX systems) is
assumed to be a path query. Running beet ls path/to/music will show all
the music in your library under the specified directory. The
Queries reference again has more details.

	Local album art is now automatically discovered and copied from the
imported directories when available.

	When choosing the “as-is” import album (or doing a non-autotagged import),
every album either has an “album artist” set or is marked as a compilation
(Various Artists). The choice is made based on the homogeneity of the
tracks’ artists. This prevents compilations that are imported as-is from being
scattered across many directories after they are imported.

	The release label for albums and tracks is now fetched from !MusicBrainz,
written to files, and stored in the database.

	The “list” command now accepts a -p switch that causes it to show
paths instead of titles. This makes the output of beet ls -p suitable
for piping into another command such as xargs [https://en.wikipedia.org/wiki/xargs].

	Release year and label are now shown in the candidate selection list to help
disambiguate different releases of the same album.

	Prompts in the importer interface are now colorized for easy reading. The
default option is always highlighted.

	The importer now provides the option to specify a MusicBrainz ID manually if
the built-in searching isn’t working for a particular album or track.

	$bitrate in path formats is now formatted as a human-readable kbps value
instead of as a raw integer.

	The import logger has been improved for “always-on” use. First, it is now
possible to specify a log file in .beetsconfig. Also, logs are now appended
rather than overwritten and contain timestamps.

	Album art fetching and plugin events are each now run in separate pipeline
stages during imports. This should bring additional performance when using
album art plugins like embedart or beets-lyrics.

	Accents and other Unicode decorators on characters are now treated more fairly
by the autotagger. For example, if you’re missing the acute accent on the “e”
in “café”, that change won’t be penalized. This introduces a new dependency
on the unidecode [https://pypi.python.org/pypi/Unidecode/0.04.1] Python module.

	When tagging a track with no title set, the track’s filename is now shown
(instead of nothing at all).

	The bitrate of lossless files is now calculated from their file size (rather
than being fixed at 0 or reflecting the uncompressed audio bitrate).

	Fixed a problem where duplicate albums or items imported at the same time
would fail to be detected.

	BPD now uses a persistent “virtual filesystem” in order to fake a directory
structure. This means that your path format settings are respected in BPD’s
browsing hierarchy. This may come at a performance cost, however. The virtual
filesystem used by BPD is available for reuse by plugins (e.g., the FUSE
plugin).

	Singleton imports (beet import -s) can now take individual files as
arguments as well as directories.

	Fix Unicode queries given on the command line.

	Fix crasher in quiet singleton imports (import -qs).

	Fix crash when autotagging files with no metadata.

	Fix a rare deadlock when finishing the import pipeline.

	Fix an issue that was causing mpdupdate to run twice for every album.

	Fix a bug that caused release dates/years not to be fetched.

	Fix a crasher when setting MBIDs on MP3s file metadata.

	Fix a “broken pipe” error when piping beets’ standard output.

	A better error message is given when the database file is unopenable.

	Suppress errors due to timeouts and bad responses from MusicBrainz.

	Fix a crash on album queries with item-only field names.

1.0b8 (April 28, 2011)

This release of beets brings two significant new features. First, beets now has
first-class support for “singleton” tracks. Previously, it was only really meant
to manage whole albums, but many of us have lots of non-album tracks to keep
track of alongside our collections of albums. So now beets makes it easy to tag,
catalog, and manipulate your individual tracks. Second, beets can now
(optionally) embed album art directly into file metadata rather than only
storing it in a “file on the side.” Check out the EmbedArt Plugin for
that functionality.

	Better support for singleton (non-album) tracks. Whereas beets previously
only really supported full albums, now it can also keep track of individual,
off-album songs. The “singleton” path format can be used to customize where
these tracks are stored. To import singleton tracks, provide the -s switch to
the import command or, while doing a normal full-album import, choose the “as
Tracks” (T) option to add singletons to your library. To list only singleton
or only album tracks, use the new singleton: query term: the query
singleton:true matches only singleton tracks; singleton:false matches
only album tracks. The lastid plugin has been extended to support
matching individual items as well.

	The importer/autotagger system has been heavily refactored in this release.
If anything breaks as a result, please get in touch or just file a bug.

	Support for album art embedded in files. A new EmbedArt Plugin
implements this functionality. Enable the plugin to automatically embed
downloaded album art into your music files’ metadata. The plugin also provides
the “embedart” and “extractart” commands for moving image files in and out of
metadata. See the wiki for more details. (Thanks, daenney!)

	The “distance” number, which quantifies how different an album’s current and
proposed metadata are, is now displayed as “similarity” instead. This should
be less noisy and confusing; you’ll now see 99.5% instead of 0.00489323.

	A new “timid mode” in the importer asks the user every time, even when it
makes a match with very high confidence. The -t flag on the command line
and the import_timid config option control this mode. (Thanks to mdecker
on GitHub!)

	The multithreaded importer should now abort (either by selecting aBort or by
typing ^C) much more quickly. Previously, it would try to get a lot of work
done before quitting; now it gives up as soon as it can.

	Added a new plugin event, album_imported, which is called every time an
album is added to the library. (Thanks, Lugoues!)

	A new plugin method, register_listener, is an imperative alternative to
the @listen decorator (Thanks again, Lugoues!)

	In path formats, $albumartist now falls back to $artist (as well as
the other way around).

	The importer now prints “(unknown album)” when no tags are present.

	When autotagging, “and” is considered equal to “&”.

	Fix some crashes when deleting files that don’t exist.

	Fix adding individual tracks in BPD.

	Fix crash when ~/.beetsconfig does not exist.

1.0b7 (April 5, 2011)

Beta 7’s focus is on better support for “various artists” releases. These albums
can be treated differently via the new [paths] config section and the
autotagger is better at handling them. It also includes a number of
oft-requested improvements to the beet command-line tool, including several
new configuration options and the ability to clean up empty directory subtrees.

	“Various artists” releases are handled much more gracefully. The
autotagger now sets the comp flag on albums whenever the album is
identified as a “various artists” release by !MusicBrainz. Also, there is now
a distinction between the “album artist” and the “track artist”, the latter of
which is never “Various Artists” or other such bogus stand-in. (Thanks to
Jonathan for the bulk of the implementation work on this feature!)

	The directory hierarchy can now be customized based on release type. In
particular, the path_format setting in .beetsconfig has been replaced with
a new [paths] section, which allows you to specify different path formats
for normal and “compilation” (various artists) releases as well as for each
album type (see below). The default path formats have been changed to use
$albumartist instead of $artist.

	A new ``albumtype`` field reflects the release type as specified by
MusicBrainz [https://wiki.musicbrainz.org/ReleaseType].

	When deleting files, beets now appropriately “prunes” the directory
tree—empty directories are automatically cleaned up. (Thanks to
wlof on GitHub for this!)

	The tagger’s output now always shows the album directory that is currently
being tagged. This should help in situations where files’ current tags are
missing or useless.

	The logging option (-l) to the import command now logs duplicate
albums.

	A new import_resume configuration option can be used to disable the
importer’s resuming feature or force it to resume without asking. This option
may be either yes, no, or ask, with the obvious meanings. The
-p and -P command-line flags override this setting and correspond to
the “yes” and “no” settings.

	Resuming is automatically disabled when the importer is in quiet (-q)
mode. Progress is still saved, however, and the -p flag (above) can be
used to force resuming.

	The BEETSCONFIG environment variable can now be used to specify the
location of the config file that is at ~/.beetsconfig by default.

	A new import_quiet_fallback config option specifies what should
happen in quiet mode when there is no strong recommendation. The options are
skip (the default) and “asis”.

	When importing with the “delete” option and importing files that are already
at their destination, files could be deleted (leaving zero copies afterward).
This is fixed.

	The version command now lists all the loaded plugins.

	A new plugin, called info, just prints out audio file metadata.

	Fix a bug where some files would be erroneously interpreted as MPEG-4 audio.

	Fix permission bits applied to album art files.

	Fix malformed !MusicBrainz queries caused by null characters.

	Fix a bug with old versions of the Monkey’s Audio format.

	Fix a crash on broken symbolic links.

	Retry in more cases when !MusicBrainz servers are slow/overloaded.

	The old “albumify” plugin for upgrading databases was removed.

1.0b6 (January 20, 2011)

This version consists primarily of bug fixes and other small improvements. It’s
in preparation for a more feature-ful release in beta 7. The most important
issue involves correct ordering of autotagged albums.

	Quiet import: a new “-q” command line switch for the import command
suppresses all prompts for input; it pessimistically skips all albums that the
importer is not completely confident about.

	Added support for the WavPack and Musepack formats. Unfortunately, due
to a limitation in the Mutagen library (used by beets for metadata
manipulation), Musepack SV8 is not yet supported. Here’s the upstream bug [https://github.com/quodlibet/mutagen/issues/7]
in question.

	BPD now uses a pure-Python socket library and no longer requires
eventlet/greenlet (the latter of which is a C extension). For the curious, the
socket library in question is called Bluelet [https://github.com/sampsyo/bluelet].

	Non-autotagged imports are now resumable (just like autotagged imports).

	Fix a terrible and long-standing bug where track orderings were never applied.
This manifested when the tagger appeared to be applying a reasonable ordering
to the tracks but, later, the database reflects a completely wrong association
of track names to files. The order applied was always just alphabetical by
filename, which is frequently but not always what you want.

	We now use Windows’ “long filename” support. This API is fairly tricky,
though, so some instability may still be present—please file a bug if you
run into pathname weirdness on Windows. Also, filenames on Windows now never
end in spaces.

	Fix crash in lastid when the artist name is not available.

	Fixed a spurious crash when LANG or a related environment variable is set
to an invalid value (such as 'UTF-8' on some installations of Mac OS X).

	Fixed an error when trying to copy a file that is already at its destination.

	When copying read-only files, the importer now tries to make the copy
writable. (Previously, this would just crash the import.)

	Fixed an UnboundLocalError when no matches are found during autotag.

	Fixed a Unicode encoding error when entering special characters into the
“manual search” prompt.

	Added `` beet version`` command that just shows the current release version.

1.0b5 (September 28, 2010)

This version of beets focuses on increasing the accuracy of the autotagger. The
main addition is an included plugin that uses acoustic fingerprinting to match
based on the audio content (rather than existing metadata). Additional
heuristics were also added to the metadata-based tagger as well that should make
it more reliable. This release also greatly expands the capabilities of beets’
plugin API. A host of other little features and fixes
are also rolled into this release.

	The lastid plugin adds Last.fm acoustic fingerprinting
support to the autotagger. Similar to the PUIDs used by !MusicBrainz Picard,
this system allows beets to recognize files that don’t have any metadata at
all. You’ll need to install some dependencies for this plugin to work.

	To support the above, there’s also a new system for extending the autotagger
via plugins. Plugins can currently add components to the track and album
distance functions as well as augment the MusicBrainz search. The new API is
documented at Plugins.

	String comparisons in the autotagger have been augmented to act more
intuitively. Previously, if your album had the title “Something (EP)” and it
was officially called “Something”, then beets would think this was a fairly
significant change. It now checks for and appropriately reweights certain
parts of each string. As another example, the title “The Great Album” is
considered equal to “Great Album, The”.

	New event system for plugins (thanks, Jeff!). Plugins can now get
callbacks from beets when certain events occur in the core. Again, the API is
documented in Plugins.

	The BPD plugin is now disabled by default. This greatly simplifies
installation of the beets core, which is now 100% pure Python. To use BPD,
though, you’ll need to set plugins: bpd in your .beetsconfig.

	The import command can now remove original files when it copies items into
your library. (This might be useful if you’re low on disk space.) Set the
import_delete option in your .beetsconfig to yes.

	Importing without autotagging (beet import -A) now prints out album names
as it imports them to indicate progress.

	The new MPDUpdate Plugin will automatically update your MPD server’s
index whenever your beets library changes.

	Efficiency tweak should reduce the number of !MusicBrainz queries per
autotagged album.

	A new -v command line switch enables debugging output.

	Fixed bug that completely broke non-autotagged imports (import -A).

	Fixed bug that logged the wrong paths when using import -l.

	Fixed autotagging for the creatively-named band !!! [https://musicbrainz.org/artist/f26c72d3-e52c-467b-b651-679c73d8e1a7.html].

	Fixed normalization of relative paths.

	Fixed escaping of / characters in paths on Windows.

1.0b4 (August 9, 2010)

This thrilling new release of beets focuses on making the tagger more usable in
a variety of ways. First and foremost, it should now be much faster: the tagger
now uses a multithreaded algorithm by default (although, because the new tagger
is experimental, a single-threaded version is still available via a config
option). Second, the tagger output now uses a little bit of ANSI terminal
coloring to make changes stand out. This way, it should be faster to decide what
to do with a proposed match: the more red you see, the worse the match is.
Finally, the tagger can be safely interrupted (paused) and restarted later at
the same point. Just enter b for aBort at any prompt to stop the tagging
process and save its progress. (The progress-saving also works in the
unthinkable event that beets crashes while tagging.)

Among the under-the-hood changes in 1.0b4 is a major change to the way beets
handles paths (filenames). This should make the whole system more tolerant to
special characters in filenames, but it may break things (especially databases
created with older versions of beets). As always, let me know if you run into
weird problems with this release.

Finally, this release’s setup.py should install a beet.exe startup stub
for Windows users. This should make running beets much easier: just type
beet if you have your PATH environment variable set up correctly. The
Getting Started guide has some tips on installing beets on Windows.

Here’s the detailed list of changes:

	Parallel tagger. The autotagger has been reimplemented to use multiple
threads. This means that it can concurrently read files from disk, talk to the
user, communicate with MusicBrainz, and write data back to disk. Not only does
this make the tagger much faster because independent work may be performed in
parallel, but it makes the tagging process much more pleasant for large
imports. The user can let albums queue up in the background while making a
decision rather than waiting for beets between each question it asks. The
parallel tagger is on by default but a sequential (single- threaded) version
is still available by setting the threaded config value to no (because
the parallel version is still quite experimental).

	Colorized tagger output. The autotagger interface now makes it a little
easier to see what’s going on at a glance by highlighting changes with
terminal colors. This feature is on by default, but you can turn it off by
setting color to no in your .beetsconfig (if, for example, your
terminal doesn’t understand colors and garbles the output).

	Pause and resume imports. The import command now keeps track of its
progress, so if you’re interrupted (beets crashes, you abort the process, an
alien devours your motherboard, etc.), beets will try to resume from the point
where you left off. The next time you run import on the same directory, it
will ask if you want to resume. It accomplishes this by “fast-forwarding”
through the albums in the directory until it encounters the last one it saw.
(This means it might fail if that album can’t be found.) Also, you can now
abort the tagging process by entering b (for aBort) at any of the prompts.

	Overhauled methods for handling fileystem paths to allow filenames that have
badly encoded special characters. These changes are pretty fragile, so please
report any bugs involving UnicodeError or SQLite ProgrammingError
messages in this version.

	The destination paths (the library directory structure) now respect
album-level metadata. This means that if you have an album in which two tracks
have different album-level attributes (like year, for instance), they will
still wind up in the same directory together. (There’s currently not a very
smart method for picking the “correct” album-level metadata, but we’ll fix
that later.)

	Fixed a bug where the CLI would fail completely if the LANG environment
variable was not set.

	Fixed removal of albums (beet remove -a): previously, the album record
would stay around although the items were deleted.

	The setup script now makes a beet.exe startup stub on Windows; Windows
users can now just type beet at the prompt to run beets.

	Fixed an occasional bug where Mutagen would complain that a tag was already
present.

	Fixed a bug with reading invalid integers from ID3 tags.

	The tagger should now be a little more reluctant to reorder tracks that
already have indices.

1.0b3 (July 22, 2010)

This release features two major additions to the autotagger’s functionality:
album art fetching and MusicBrainz ID tags. It also contains some important
under-the-hood improvements: a new plugin architecture is introduced
and the database schema is extended with explicit support for albums.

This release has one major backwards-incompatibility. Because of the new way
beets handles albums in the library, databases created with an old version of
beets might have trouble with operations that deal with albums (like the -a
switch to beet list and beet remove, as well as the file browser for
BPD). To “upgrade” an old database, you can use the included albumify plugin
(see the fourth bullet point below).

	Album art. The tagger now, by default, downloads album art from Amazon
that is referenced in the MusicBrainz database. It places the album art
alongside the audio files in a file called (for example) cover.jpg. The
import_art config option controls this behavior, as do the -r and
-R options to the import command. You can set the name (minus extension)
of the album art file with the art_filename config option. (See
Configuration for more information about how to configure the album
art downloader.)

	Support for MusicBrainz ID tags. The autotagger now keeps track of the
MusicBrainz track, album, and artist IDs it matched for each file. It also
looks for album IDs in new files it’s importing and uses those to look up data
in MusicBrainz. Furthermore, track IDs are used as a component of the tagger’s
distance metric now. (This obviously lays the groundwork for a utility that
can update tags if the MB database changes, but that’s for the future [https://github.com/google-code-export/beets/issues/69].)
Tangentially, this change required the database code to support a lightweight
form of migrations so that new columns could be added to old databases–this
is a delicate feature, so it would be very wise to make a backup of your
database before upgrading to this version.

	Plugin architecture. Add-on modules can now add new commands to the beets
command-line interface. The bpd and dadd commands were removed from
the beets core and turned into plugins; BPD is loaded by default. To load the
non-default plugins, use the config options plugins (a space-separated
list of plugin names) and pluginpath (a colon-separated list of
directories to search beyond sys.path). Plugins are just Python modules
under the beetsplug namespace package containing subclasses of
beets.plugins.BeetsPlugin. See the beetsplug directory [https://github.com/beetbox/beets/tree/master/beetsplug] for examples or
Plugins for instructions.

	As a consequence of adding album art, the database was significantly
refactored to keep track of some information at an album (rather than item)
granularity. Databases created with earlier versions of beets should work
fine, but they won’t have any “albums” in them–they’ll just be a bag of
items. This means that commands like beet ls -a and beet rm -a won’t
match anything. To “upgrade” your database, you can use the included
albumify plugin. Running beets albumify with the plugin activated (set
plugins=albumify in your config file) will group all your items into
albums, making beets behave more or less as it did before.

	Fixed some bugs with encoding paths on Windows. Also, : is now replaced
with - in path names (instead of _) for readability.

	MediaFile``s now have a ``format attribute, so you can use $format in
your library path format strings like $artist - $album ($format) to get
directories with names like Paul Simon - Graceland (FLAC).

Beets also now has its first third-party plugin: beetfs [https://github.com/jbaiter/beetfs], by Martin Eve! It
exposes your music in a FUSE filesystem using a custom directory structure. Even
cooler: it lets you keep your files intact on-disk while correcting their tags
when accessed through FUSE. Check it out!

1.0b2 (July 7, 2010)

This release focuses on high-priority fixes and conspicuously missing features.
Highlights include support for two new audio formats (Monkey’s Audio and Ogg
Vorbis) and an option to log untaggable albums during import.

	Support for Ogg Vorbis and Monkey’s Audio files and their tags. (This
support should be considered preliminary: I haven’t tested it heavily because
I don’t use either of these formats regularly.)

	An option to the beet import command for logging albums that are
untaggable (i.e., are skipped or taken “as-is”). Use beet import -l
LOGFILE PATHS. The log format is very simple: it’s just a status (either
“skip” or “asis”) followed by the path to the album in question. The idea is
that you can tag a large collection and automatically keep track of the albums
that weren’t found in MusicBrainz so you can come back and look at them later.

	Fixed a UnicodeEncodeError on terminals that don’t (or don’t claim to)
support UTF-8.

	Importing without autotagging (beet import -A) is now faster and doesn’t
print out a bunch of whitespace. It also lets you specify single files on the
command line (rather than just directories).

	Fixed importer crash when attempting to read a corrupt file.

	Reorganized code for CLI in preparation for adding pluggable subcommands. Also
removed dependency on the aging cmdln module in favor of a hand-rolled
solution [https://gist.github.com/462717].

1.0b1 (June 17, 2010)

Initial release.

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | K
 | L
 | M
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (beets.library.Album method)

 	(beets.library.Item method)

 	(beets.library.LibModel method)

 	(beets.library.Library method)

 	
 	_fields (beets.library.LibModel attribute)

 	_types (beets.library.LibModel attribute)

A

 	
 	add() (beets.library.LibModel method)

 	(beets.library.Library method)

 	add_album() (beets.library.Library method)

 	add_media_field() (beets.plugins.BeetsPlugin method)

 	
 	Album (class in beets.library)

 	albums() (beets.library.Library method)

 	all_keys() (beets.library.LibModel class method)

 	art_destination() (beets.library.Album method)

C

 	
 	current_mtime() (beets.library.Item method)

D

 	
 	destination() (beets.library.Item method)

F

 	
 	from_path() (beets.library.Item class method)

G

 	
 	get() (beets.library.LibModel method)

 	get_album() (beets.library.Item method)

 	(beets.library.Library method)

 	
 	get_item() (beets.library.Library method)

I

 	
 	Item (class in beets.library)

 	item_dir() (beets.library.Album method)

 	
 	item_keys (beets.library.Album attribute)

 	items() (beets.library.LibModel method)

 	(beets.library.Library method)

K

 	
 	keys() (beets.library.LibModel method)

L

 	
 	LibModel (class in beets.library)

 	
 	Library (class in beets.library)

 	load() (beets.library.LibModel method)

M

 	
 	move() (beets.library.Album method)

 	(beets.library.Item method)

 	
 	move_art() (beets.library.Album method)

 	mutate() (beets.dbcore.db.Transaction method)

Q

 	
 	query() (beets.dbcore.db.Transaction method)

R

 	
 	read() (beets.library.Item method)

 	remove() (beets.library.Album method)

 	(beets.library.Item method)

 	(beets.library.LibModel method)

S

 	
 	script() (beets.dbcore.db.Transaction method)

 	set_art() (beets.library.Album method)

 	
 	store() (beets.library.Album method)

 	(beets.library.LibModel method)

T

 	
 	Transaction (class in beets.dbcore.db)

 	transaction() (beets.library.Library method)

 	
 	try_sync() (beets.library.Album method)

 	(beets.library.Item method)

 	try_write() (beets.library.Item method)

U

 	
 	update() (beets.library.LibModel method)

W

 	
 	write() (beets.library.Item method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 beets: the music geek’s media organizer

 		
 Guides

 		
 Getting Started

 		
 Installing

 		
 Configuring

 		
 Importing Your Library

 		
 Adding More Music

 		
 Seeing Your Music

 		
 Keep Playing

 		
 Using the Auto-Tagger

 		
 An Apology and a Brief Interlude

 		
 Overview

 		
 Options

 		
 Similarity

 		
 Choices

 		
 Candidates

 		
 Duplicates

 		
 Fingerprinting

 		
 Album Art, Lyrics, Genres and Such

 		
 Missing Albums?

 		
 I Hope That Makes Sense

 		
 Advanced Awesomeness

 		
 Fetch album art, genres, and lyrics

 		
 Customize your file and folder names

 		
 Stream your music to another computer

 		
 Transcode music files for media players

 		
 Store any data you like

 		
 Choose a path style manually for some music

 		
 Automatically add new music to your library

 		
 Useful reports

 		
 Reference

 		
 Command-Line Interface

 		
 Commands

 		
 Global Flags

 		
 Shell Completion

 		
 Configuration

 		
 Global Options

 		
 UI Options

 		
 Importer Options

 		
 MusicBrainz Options

 		
 Autotagger Matching Options

 		
 Path Format Configuration

 		
 Configuration Location

 		
 Example

 		
 Path Formats

 		
 A Note About Artists

 		
 Template Functions

 		
 Album Disambiguation

 		
 Syntax Details

 		
 Available Values

 		
 Template functions and values provided by plugins

 		
 Queries

 		
 Keyword

 		
 Combining Keywords

 		
 Specific Fields

 		
 Phrases

 		
 Regular Expressions

 		
 Numeric Range Queries

 		
 Date and Date Range Queries

 		
 Query Term Negation

 		
 Path Queries

 		
 Sort Order

 		
 Plugins

 		
 Using Plugins

 		
 Autotagger Extensions

 		
 Metadata

 		
 Path Formats

 		
 Interoperability

 		
 Miscellaneous

 		
 Other Plugins

 		
 FAQ

 		
 How do I…

 		
 …rename my files according to a new path format configuration?

 		
 …find all the albums I imported “as-is”?

 		
 …create “Disc N” directories for multi-disc albums?

 		
 …import a multi-disc album?

 		
 …enter a MusicBrainz ID?

 		
 …upgrade to the latest version of beets?

 		
 …run the latest source version of beets?

 		
 …report a bug in beets?

 		
 …find the configuration file (config.yaml)?

 		
 …avoid using special characters in my filenames?

 		
 …point beets at a new music directory?

 		
 Why does beets…

 		
 …complain that it can’t find a match?

 		
 …appear to be missing some plugins?

 		
 …ignore control-C during an import?

 		
 …not change my ID3 tags?

 		
 …complain that a file is “unreadable”?

 		
 …seem to “hang” after an import finishes?

 		
 …put a bunch of underscores in my filenames?

 		
 …say “command not found”?

 		
 For Developers

 		
 Writing Plugins

 		
 Add Commands to the CLI

 		
 Listen for Events

 		
 Extend the Autotagger

 		
 Read Configuration Options

 		
 Add Path Format Functions and Fields

 		
 Extend MediaFile

 		
 Add Import Pipeline Stages

 		
 Extend the Query Syntax

 		
 Flexible Field Types

 		
 Logging

 		
 Append Prompt Choices

 		
 Library Database API

 		
 The Library Class

 		
 Model Classes

 		
 Queries

 		
 Music Importer

 		
 Providing a CLI

 		
 Changelog

 		
 1.5.0 (in development)

 		
 1.4.9 (May 30, 2019)

 		
 1.4.8 (May 16, 2019)

 		
 1.4.7 (May 29, 2018)

 		
 1.4.6 (December 21, 2017)

 		
 1.4.5 (June 20, 2017)

 		
 1.4.4 (June 10, 2017)

 		
 1.4.3 (January 9, 2017)

 		
 1.4.2 (December 16, 2016)

 		
 1.4.1 (November 25, 2016)

 		
 1.3.19 (June 25, 2016)

 		
 1.3.18 (May 31, 2016)

 		
 1.3.17 (February 7, 2016)

 		
 1.3.16 (December 28, 2015)

 		
 1.3.15 (October 17, 2015)

 		
 1.3.14 (August 2, 2015)

 		
 1.3.13 (April 24, 2015)

 		
 1.3.12 (April 18, 2015)

 		
 1.3.11 (April 5, 2015)

 		
 1.3.10 (January 5, 2015)

 		
 1.3.9 (November 17, 2014)

 		
 1.3.8 (September 17, 2014)

 		
 1.3.7 (August 22, 2014)

 		
 1.3.6 (May 10, 2014)

 		
 1.3.5 (April 15, 2014)

 		
 1.3.4 (April 5, 2014)

 		
 1.3.3 (February 26, 2014)

 		
 1.3.2 (December 22, 2013)

 		
 1.3.1 (October 12, 2013)

 		
 1.3.0 (September 11, 2013)

 		
 1.2.2 (August 27, 2013)

 		
 1.2.1 (June 22, 2013)

 		
 1.2.0 (June 5, 2013)

 		
 1.1.0 (April 29, 2013)

 		
 1.1b3 (March 16, 2013)

 		
 1.1b2 (February 16, 2013)

 		
 1.1b1 (January 29, 2013)

 		
 1.0.0 (January 29, 2013)

 		
 1.0rc2 (December 31, 2012)

 		
 1.0rc1 (December 17, 2012)

 		
 1.0b15 (July 26, 2012)

 		
 1.0b14 (May 12, 2012)

 		
 1.0b13 (March 16, 2012)

 		
 1.0b12 (January 16, 2012)

 		
 1.0b11 (December 12, 2011)

 		
 1.0b10 (September 22, 2011)

 		
 1.0b9 (July 9, 2011)

 		
 1.0b8 (April 28, 2011)

 		
 1.0b7 (April 5, 2011)

 		
 1.0b6 (January 20, 2011)

 		
 1.0b5 (September 28, 2010)

 		
 1.0b4 (August 9, 2010)

 		
 1.0b3 (July 22, 2010)

 		
 1.0b2 (July 7, 2010)

 		
 1.0b1 (June 17, 2010)

_images/beetsweb.png
®e0e6e beets

(<>][] (O iocalhost 8337

beets

all day
That's Right
Jump on Stage
OnandOn »
Get It Get It
Down for the Count
Make Me Wanna
Steady Shock
Triple Double

& (o) ;

Girl Talk

All Day (2010)

This Is the Remix
>

Track 5/12
Length 602
Format MP3
Bitrate 320 kbps
MusicBrainz entry view
File download
Comments Catalog #
1A123
Released

