

argcomplete - Bash tab completion for argparse

Tab complete all the things!

Argcomplete provides easy, extensible command line tab completion of arguments for your Python script.

It makes two assumptions:

	You’re using bash as your shell (limited support for zsh and tcsh is available)

	You’re using argparse [http://docs.python.org/2.7/library/argparse.html] to manage your command line arguments/options

Argcomplete is particularly useful if your program has lots of options or subparsers, and if your program can
dynamically suggest completions for your argument/option values (for example, if the user is browsing resources over
the network).

Installation

pip install argcomplete
activate-global-python-argcomplete

See Activating global completion below for details about the second step (or if it reports an error).

Refresh your bash environment (start a new shell or source /etc/profile).

Synopsis

Python code (e.g. my-awesome-script):

#!/usr/bin/env python
PYTHON_ARGCOMPLETE_OK
import argcomplete, argparse
parser = argparse.ArgumentParser()
...
argcomplete.autocomplete(parser)
args = parser.parse_args()
...

Shellcode (only necessary if global completion is not activated - see Global completion below), to be put in e.g. .bashrc:

eval "$(register-python-argcomplete my-awesome-script)"

argcomplete.autocomplete(parser)

This method is the entry point to the module. It must be called after ArgumentParser construction is complete, but
before the ArgumentParser.parse_args() method is called. The method looks for an environment variable that the
completion hook shellcode sets, and if it’s there, collects completions, prints them to the output stream (fd 8 by
default), and exits. Otherwise, it returns to the caller immediately.

Side effects

Argcomplete gets completions by running your program. It intercepts the execution flow at the moment
argcomplete.autocomplete() is called. After sending completions, it exits using exit_method (os._exit
by default). This means if your program has any side effects that happen before argcomplete is called, those
side effects will happen every time the user presses <TAB> (although anything your program prints to stdout or
stderr will be suppressed). For this reason it’s best to construct the argument parser and call
argcomplete.autocomplete() as early as possible in your execution flow.

Performance

If the program takes a long time to get to the point where argcomplete.autocomplete() is called, the tab completion
process will feel sluggish, and the user may lose confidence in it. So it’s also important to minimize the startup time
of the program up to that point (for example, by deferring initialization or importing of large modules until after
parsing options).

Specifying completers

You can specify custom completion functions for your options and arguments. Two styles are supported: callable and
readline-style. Callable completers are simpler. They are called with the following keyword arguments:

	prefix: The prefix text of the last word before the cursor on the command line.
For dynamic completers, this can be used to reduce the work required to generate possible completions.

	action: The argparse.Action instance that this completer was called for.

	parser: The argparse.ArgumentParser instance that the action was taken by.

	parsed_args: The result of argument parsing so far (the argparse.Namespace args object normally returned by
ArgumentParser.parse_args()).

Completers should return their completions as a list of strings. An example completer for names of environment
variables might look like this:

def EnvironCompleter(**kwargs):
 return os.environ

To specify a completer for an argument or option, set the completer attribute of its associated action. An easy
way to do this at definition time is:

from argcomplete.completers import EnvironCompleter

parser = argparse.ArgumentParser()
parser.add_argument("--env-var1").completer = EnvironCompleter
parser.add_argument("--env-var2").completer = EnvironCompleter
argcomplete.autocomplete(parser)

If you specify the choices keyword for an argparse option or argument (and don’t specify a completer), it will be
used for completions.

A completer that is initialized with a set of all possible choices of values for its action might look like this:

class ChoicesCompleter(object):
 def __init__(self, choices):
 self.choices = choices

 def __call__(self, **kwargs):
 return self.choices

The following two ways to specify a static set of choices are equivalent for completion purposes:

from argcomplete.completers import ChoicesCompleter

parser.add_argument("--protocol", choices=('http', 'https', 'ssh', 'rsync', 'wss'))
parser.add_argument("--proto").completer=ChoicesCompleter(('http', 'https', 'ssh', 'rsync', 'wss'))

Note that if you use the choices=<completions> option, argparse will show
all these choices in the --help output by default. To prevent this, set
metavar (like parser.add_argument("--protocol", metavar="PROTOCOL",
choices=('http', 'https', 'ssh', 'rsync', 'wss'))).

The following script [https://raw.github.com/kislyuk/argcomplete/master/docs/examples/describe_github_user.py] uses
parsed_args and Requests [http://python-requests.org/] to query GitHub for publicly known members of an
organization and complete their names, then prints the member description:

#!/usr/bin/env python
PYTHON_ARGCOMPLETE_OK
import argcomplete, argparse, requests, pprint

def github_org_members(prefix, parsed_args, **kwargs):
 resource = "https://api.github.com/orgs/{org}/members".format(org=parsed_args.organization)
 return (member['login'] for member in requests.get(resource).json() if member['login'].startswith(prefix))

parser = argparse.ArgumentParser()
parser.add_argument("--organization", help="GitHub organization")
parser.add_argument("--member", help="GitHub member").completer = github_org_members

argcomplete.autocomplete(parser)
args = parser.parse_args()

pprint.pprint(requests.get("https://api.github.com/users/{m}".format(m=args.member)).json())

Try it [https://raw.github.com/kislyuk/argcomplete/master/docs/examples/describe_github_user.py] like this:

./describe_github_user.py --organization heroku --member <TAB>

If you have a useful completer to add to the completer library [https://github.com/kislyuk/argcomplete/blob/master/argcomplete/completers.py], send a pull request!

Readline-style completers

The readline [http://docs.python.org/2/library/readline.html] module defines a completer protocol in rlcompleter_. Readline-style completers are also supported by
argcomplete, so you can use the same completer object both in an interactive readline-powered shell and on the bash
command line. For example, you can use the readline-style completer provided by IPython [http://ipython.org/] to get introspective
completions like you would get in the IPython shell:

import IPython
parser.add_argument("--python-name").completer = IPython.core.completer.Completer()

You can also use argcomplete.CompletionFinder.rl_complete [https://argcomplete.readthedocs.org/en/latest/#argcomplete.CompletionFinder.rl_complete]
to plug your entire argparse parser as a readline completer.

Printing warnings in completers

Normal stdout/stderr output is suspended when argcomplete runs. Sometimes, though, when the user presses <TAB>, it’s
appropriate to print information about why completions generation failed. To do this, use warn:

from argcomplete import warn

def AwesomeWebServiceCompleter(prefix, **kwargs):
 if login_failed:
 warn("Please log in to Awesome Web Service to use autocompletion")
 return completions

Using a custom completion validator

By default, argcomplete validates your completions by checking if they start with the prefix given to the completer. You
can override this validation check by supplying the validator keyword to argcomplete.autocomplete():

def my_validator(current_input, keyword_to_check_against):
 # Pass through ALL options even if they don't all start with 'current_input'
 return True

argcomplete.autocomplete(parser, validator=my_validator)

Global completion

In global completion mode, you don’t have to register each argcomplete-capable executable separately. Instead, bash
will look for the string PYTHON_ARGCOMPLETE_OK in the first 1024 bytes of any executable that it’s running
completion for, and if it’s found, follow the rest of the argcomplete protocol as described above.

Additionally, completion is activated for scripts run as python <script> and python -m <module>.
This also works for alternate Python versions (e.g. python3 and pypy), as long as that version of Python has
argcomplete installed.

Bash version compatibility

Global completion requires bash support for complete -D, which was introduced in bash 4.2. On OS X or older Linux
systems, you will need to update bash to use this feature. Check the version of the running copy of bash with
echo $BASH_VERSION. On OS X, install bash via Homebrew [http://brew.sh/] (brew install bash), add
/usr/local/bin/bash to /etc/shells, and run chsh to change your shell.

Global completion is not currently compatible with zsh.

Note

If you use setuptools/distribute scripts or entry_points directives to package your module,
argcomplete will follow the wrapper scripts to their destination and look for PYTHON_ARGCOMPLETE_OK in the
destination code.

If you choose not to use global completion, or ship a bash completion module that depends on argcomplete, you must
register your script explicitly using eval "$(register-python-argcomplete my-awesome-script)". Standard bash
completion registration roules apply: namely, the script name is passed directly to complete, meaning it is only tab
completed when invoked exactly as it was registered. In the above example, my-awesome-script must be on the path,
and the user must be attempting to complete it by that name. The above line alone would not allow you to complete
./my-awesome-script, or /path/to/my-awesome-script.

Activating global completion

The script activate-global-python-argcomplete will try to install the file
bash_completion.d/python-argcomplete.sh (see on GitHub [https://github.com/kislyuk/argcomplete/blob/master/argcomplete/bash_completion.d/python-argcomplete.sh]) into an appropriate location on your system
(/etc/bash_completion.d/ or ~/.bash_completion.d/). If it
fails, but you know the correct location of your bash completion scripts directory, you can specify it with --dest:

activate-global-python-argcomplete --dest=/path/to/bash_completion.d

Otherwise, you can redirect its shellcode output into a file:

activate-global-python-argcomplete --dest=- > file

The file’s contents should then be sourced in e.g. ~/.bashrc.

Tcsh Support

To activate completions for tcsh use:

eval `register-python-argcomplete --shell tcsh my-awesome-script`

The python-argcomplete-tcsh script provides completions for tcsh.
The following is an example of the tcsh completion syntax for
my-awesome-script emitted by register-python-argcomplete:

complete my-awesome-script 'p@*@`python-argcomplete-tcsh my-awesome-script`@'

Python Support

Argcomplete requires Python 2.7 or 3.3+.

Common Problems

If global completion is not completing your script, bash may have registered a
default completion function:

$ complete | grep my-awesome-script
complete -F _minimal my-awesome-script

You can fix this by restarting your shell, or by running
complete -r my-awesome-script.

Debugging

Set the _ARC_DEBUG variable in your shell to enable verbose debug output every time argcomplete runs. This will
disrupt the command line composition state of your terminal, but make it possible to see the internal state of the
completer if it encounters problems.

Acknowledgments

Inspired and informed by the optcomplete [http://pypi.python.org/pypi/optcomplete] module by Martin Blais.

Links

	Project home page (GitHub) [https://github.com/kislyuk/argcomplete]

	Documentation (Read the Docs) [https://argcomplete.readthedocs.io/en/latest/]

	Package distribution (PyPI) [https://pypi.python.org/pypi/argcomplete]

	Change log [https://github.com/kislyuk/argcomplete/blob/master/Changes.rst]

Bugs

Please report bugs, issues, feature requests, etc. on GitHub [https://github.com/kislyuk/argcomplete/issues].

License

Licensed under the terms of the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0].

[image: _images/argcomplete.png]
 [https://travis-ci.org/kislyuk/argcomplete][image: _images/coverage.svg]
 [https://codecov.io/github/kislyuk/argcomplete?branch=master][image: _images/argcomplete.svg]
 [https://pypi.python.org/pypi/argcomplete][image: _images/argcomplete1.svg]
 [https://pypi.python.org/pypi/argcomplete][image: https://readthedocs.org/projects/argcomplete/badge/?version=latest]
 [https://argcomplete.readthedocs.org/]

API documentation

	
argcomplete.autocomplete()

	Use this to access argcomplete. See argcomplete.CompletionFinder.__call__().

	
exception argcomplete.ArgcompleteException

	

	
class argcomplete.CompletionFinder(argument_parser=None, always_complete_options=True, exclude=None, validator=None, print_suppressed=False, default_completer=<argcomplete.completers.FilesCompleter object>, append_space=None)

	Inherit from this class if you wish to override any of the stages below. Otherwise, use
argcomplete.autocomplete() directly (it’s a convenience instance of this class). It has the same signature as
CompletionFinder.__call__().

	
__call__(argument_parser, always_complete_options=True, exit_method=<built-in function _exit>, output_stream=None, exclude=None, validator=None, print_suppressed=False, append_space=None, default_completer=<argcomplete.completers.FilesCompleter object>)

	
	Parameters

	
	argument_parser (argparse.ArgumentParser) – The argument parser to autocomplete on

	always_complete_options (boolean or string) – Controls the autocompletion of option strings if an option string opening character (normally -) has not
been entered. If True (default), both short (-x) and long (--x) option strings will be
suggested. If False, no option strings will be suggested. If long, long options and short options
with no long variant will be suggested. If short, short options and long options with no short variant
will be suggested.

	exit_method (callable) – Method used to stop the program after printing completions. Defaults to os._exit(). If you want to
perform a normal exit that calls exit handlers, use sys.exit().

	exclude (iterable) – List of strings representing options to be omitted from autocompletion

	validator (callable) – Function to filter all completions through before returning (called with two string arguments, completion
and prefix; return value is evaluated as a boolean)

	print_suppressed (boolean) – Whether or not to autocomplete options that have the help=argparse.SUPPRESS keyword argument set.

	append_space (boolean) – Whether to append a space to unique matches. The default is True.

Note

If you are not subclassing CompletionFinder to override its behaviors,
use argcomplete.autocomplete() directly. It has the same signature as this method.

Produces tab completions for argument_parser. See module docs for more info.

Argcomplete only executes actions if their class is known not to have side effects. Custom action classes can be
added to argcomplete.safe_actions, if their values are wanted in the parsed_args completer argument, or
their execution is otherwise desirable.

	
__init__(argument_parser=None, always_complete_options=True, exclude=None, validator=None, print_suppressed=False, default_completer=<argcomplete.completers.FilesCompleter object>, append_space=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
collect_completions(active_parsers, parsed_args, cword_prefix, debug)

	Visits the active parsers and their actions, executes their completers or introspects them to collect their
option strings. Returns the resulting completions as a list of strings.

This method is exposed for overriding in subclasses; there is no need to use it directly.

	
filter_completions(completions)

	Ensures collected completions are Unicode text, de-duplicates them, and excludes those specified by exclude.
Returns the filtered completions as an iterable.

This method is exposed for overriding in subclasses; there is no need to use it directly.

	
get_display_completions()

	This function returns a mapping of option names to their help strings for displaying to the user

Usage:

def display_completions(substitution, matches, longest_match_length):
 _display_completions = argcomplete.autocomplete.get_display_completions()
 print("")
 if _display_completions:
 help_len = [len(x) for x in _display_completions.values() if x]

 if help_len:
 maxlen = max([len(x) for x in _display_completions])
 print("\n".join("{0:{2}} -- {1}".format(k, v, maxlen)
 for k, v in sorted(_display_completions.items())))
 else:
 print(" ".join(k for k in sorted(_display_completions)))
 else:
 print(" ".join(x for x in sorted(matches)))

 import readline
 print("cli /> {0}".format(readline.get_line_buffer()), end="")
 readline.redisplay()

...
readline.set_completion_display_matches_hook(display_completions)

	
quote_completions(completions, cword_prequote, last_wordbreak_pos)

	If the word under the cursor started with a quote (as indicated by a nonempty cword_prequote), escapes
occurrences of that quote character in the completions, and adds the quote to the beginning of each completion.
Otherwise, escapes all characters that bash splits words on (COMP_WORDBREAKS), and removes portions of
completions before the first colon if (COMP_WORDBREAKS) contains a colon.

If there is only one completion, and it doesn’t end with a continuation character (/, :, or =),
adds a space after the completion.

This method is exposed for overriding in subclasses; there is no need to use it directly.

	
rl_complete(text, state)

	Alternate entry point for using the argcomplete completer in a readline-based REPL. See also
rlcompleter [https://docs.python.org/2/library/rlcompleter.html#completer-objects].
Usage:

import argcomplete, argparse, readline
parser = argparse.ArgumentParser()
...
completer = argcomplete.CompletionFinder(parser)
readline.set_completer_delims("")
readline.set_completer(completer.rl_complete)
readline.parse_and_bind("tab: complete")
result = input("prompt> ")

(Use raw_input instead of input on Python 2, or use eight [https://github.com/kislyuk/eight]).

	
argcomplete.warn(*args)

	Prints args to standard error when running completions. This will interrupt the user’s command line interaction;
use it to indicate an error condition that is preventing your completer from working.

Table of Contents

	Index

	Module Index

	Search Page

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 argcomplete	

Index

 _
 | A
 | C
 | F
 | G
 | Q
 | R
 | W

_

 	
 	__call__() (argcomplete.CompletionFinder method)

 	
 	__init__() (argcomplete.CompletionFinder method)

A

 	
 	argcomplete (module)

 	
 	ArgcompleteException

 	autocomplete() (in module argcomplete)

C

 	
 	collect_completions() (argcomplete.CompletionFinder method)

 	
 	CompletionFinder (class in argcomplete)

F

 	
 	filter_completions() (argcomplete.CompletionFinder method)

G

 	
 	get_display_completions() (argcomplete.CompletionFinder method)

Q

 	
 	quote_completions() (argcomplete.CompletionFinder method)

R

 	
 	rl_complete() (argcomplete.CompletionFinder method)

W

 	
 	warn() (in module argcomplete)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 argcomplete - Bash tab completion for argparse

_images/argcomplete.png
“build passing

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

