

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	aiomysql 0.0.9 documentation

Welcome to aiomysql’s documentation!

aiomysql is a library for accessing a MySQL database
from the asyncio [http://docs.python.org/3.4/library/asyncio.html] (PEP-3156/tulip) framework. It depends and reuses most parts
of PyMySQL . aiomysql tries to be like awesome aiopg [https://github.com/aio-libs/aiopg] library and preserve
same api, look and feel.

Internally aiomysql is copy of PyMySQL, underlying io calls switched
to async, basically yield from and asyncio.coroutine added in
proper places. sqlalchemy support ported from aiopg [https://github.com/aio-libs/aiopg].

Features

	Implements asyncio DBAPI like interface for
MySQL. It includes Connection,
Cursor and Pool objects.

	Implements optional support for charming sqlalchemy
functional sql layer.

Basics

aiomysql based on PyMySQL , and provides same api, you just need
to use yield from conn.f() instead of just call conn.f() for
every method.

Properties are unchanged, so conn.prop is correct as well as
conn.prop = val.

See example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():
 conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='', db='mysql',
 loop=loop)

 cur = yield from conn.cursor()
 yield from cur.execute("SELECT Host,User FROM user")
 print(cur.description)
 r = yield from cur.fetchall()
 print(r)
 yield from cur.close()
 conn.close()

loop.run_until_complete(test_example())

Installation

pip3 install aiomysql

Note

aiomysql requires PyMySQL library.

Also you probably want to use aiomysql.sa.

aiomysql.sa module is optional and requires
sqlalchemy. You can install sqlalchemy by running:

pip3 install sqlalchemy

Source code

The project is hosted on GitHub [https://github.com/aio-libs/aiomysql]

Please feel free to file an issue on bug tracker [https://github.com/aio-libs/aiomysql/issues] if you have found a bug
or have some suggestion for library improvement.

The library uses Travis [https://travis-ci.org/aio-libs/aiomysql] for
Continious Integration and Coveralls [https://coveralls.io/r/aio-libs/aiomysql?branch=master] for
coverage reports.

Dependencies

	Python 3.3 and asyncio [http://docs.python.org/3/library/asyncio.html#module-asyncio] or Python 3.4+

	PyMySQL

	aiomysql.sa requires sqlalchemy.

Authors and License

The aiomysql package is written by Nikolay Novik, PyMySQL and
aio-libs [https://github.com/aio-libs] contributors. It’s MIT licensed (same as PyMySQL).

Feel free to improve this package and send a pull request to GitHub [https://github.com/aio-libs/aiomysql].

Contents:

	aiomysql — API Reference

	Connection

	Cursor

	Pool

	Tutorial
	Installation

	Getting Started

	Inserting Data

	aiomysql.sa — support for SQLAlchemy functional SQL layer
	Intro

	Engine

	Connection

	ResultProxy

	Transaction objects

	Examples of aiomysql usage
	Low-level API

	sqlalchemy usage

	Glossary

	Contributing
	Reporting an Issue

	Instructions for contributors

	Preconditions for running aiomysql test suite

	Install database

	Run aiomysql test suite

	Tests coverage

	Documentation

	The End

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

aiomysql — API Reference

Connection

The library provides a way to connect to MySQL database with simple factory
function aiomysql.connnect(). Use this function if you want just one
connection to the database, consider connection pool for multiple connections.

Example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():
 conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='', db='mysql',
 loop=loop)

 cur = yield from conn.cursor()
 yield from cur.execute("SELECT Host,User FROM user")
 print(cur.description)
 r = yield from cur.fetchall()
 print(r)
 yield from cur.close()
 conn.close()

loop.run_until_complete(test_example())

	
connect(host="localhost", user=None, password="",

	
db=None, port=3306, unix_socket=None,

	
charset='', sql_mode=None,

	
read_default_file=None, conv=decoders, use_unicode=None,

	
client_flag=0, cursorclass=Cursor, init_command=None,

	
connect_timeout=None, read_default_group=None,

	
no_delay=False, autocommit=False, echo=False, loop=None)

	
A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that connects to MySQL.

The function accepts all parameters that pymysql.connect()
does plus optional keyword-only loop and timeout parameters.

	param str host:	host where the database server is located,
default: localhost.

	param str user:	username to log in as.

	param str password:

		password to use.

	param str db:	database to use, None to not use a particular one.

	param int port:	MySQL port to use, default is usually OK.

	param str unix_socket:

		optionally, you can use a unix socket rather
than TCP/IP.

	param str charset:

		charset you want to use, for example ‘utf8’.

	param sql_mode:	default sql-mode [http://dev.mysql.com/doc/refman/5.0/en/sql-mode.html] to use, like ‘NO_BACKSLASH_ESCAPES’

	param read_default_file:

		specifies my.cnf file to read these
parameters from under the [client] section.

	param conv:	decoders dictionary to use instead of the default one.
This is used to provide custom marshalling of types.
See pymysql.converters.

	param use_unicode:

		whether or not to default to unicode strings.

	param client_flag:

		custom flags to send to MySQL. Find
potential values in pymysql.constants.CLIENT.

	param cursorclass:

		custom cursor class to use.

	param str init_command:

		initial SQL statement to run when connection is
established.

	param connect_timeout:

		Timeout before throwing an exception
when connecting.

	param str read_default_group:

		Group to read from in the configuration
file.

	param bool no_delay:

		disable Nagle’s algorithm on the socket

	param autocommit:

		Autocommit mode. None means use server default.
(default: False)

	param loop:	asyncio event loop instance or None for default one.

	returns:	Connection instance.

Representation of a socket with a mysql server. The proper way to get an
instance of this class is to call aiomysql.connnect().

Its insterface is almost the same as pymysql.connection except all methods
are coroutines [http://docs.python.org/3/library/asyncio-task.html#coroutine].

The most important methods are:

	
aiomysql.cursor(cursor=None)

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that creates a new cursor object
using the connection.

By default, Cursor is returned. It is possible to also give a
custom cursor through the cursor parameter, but it needs to
be a subclass of Cursor

	Parameters:	cursor – subclass of Cursor or None for default
cursor.

	Returns:	Cursor instance.

	
aiomysql.close()

	Immediately close the connection.

Close the connection now (rather than whenever del is executed).
The connection will be unusable from this point forward.

	
aiomysql.ensure_closed()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] ends quit command and then closes
socket connection.

	
aiomysql.autocommit(value)

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] to enable/disable autocommit mode for
current MySQL session.
:param bool value: toggle atutocommit mode.

	
aiomysql.get_autocommit()

	Returns autocommit status for current MySQL sesstion.
:returns bool: current autocommit status.

	
aiomysql.begin()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] to egin transaction.

	
aiomysql.commit()

	Commit changes to stable storage coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomysql.rollback()

	Roll back the current transaction coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomysql.select_db(db)

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] to set current db.

	Parameters:	db (str [http://docs.python.org/3/library/stdtypes.html#str]) – database name

	
aiomysql.closed

	The readonly property that returns True if connections is closed.

	
aiomysql.host

	MySQL server IP address or name.

	
aiomysql.port

	MySQL server TCP/IP port.

	
aiomysql.unix_socket

	ySQL Unix socket file location.

	
aiomysql.db

	Current database name.

	
aiomysql.user

	User used while connecting to MySQL

	
aiomysql.echo

	Return echo mode status.

	
aiomysql.encoding

	Encoding employed for this connection.

	
aiomysql.charset

	Returns the character set for current connection.

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

Cursor

	
class Cursor

	
A cursor for connection.

Allows Python code to execute MySQL command in a database
session. Cursors are created by the Connection.cursor()
coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine]: they are bound to the connection for
the entire lifetime and all the commands are executed in the context
of the database session wrapped by the connection.

Cursors that are created from the same connection are not isolated,
i.e., any changes done to the database by a cursor are immediately
visible by the other cursors. Cursors created from different
connections can or can not be isolated, depending on the
connections’ isolation level.

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():
 conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='mysql', loop=loop)

 # create default cursor
 cursor = yield from conn.cursor()

 # execute sql query
 yield from cursor.execute("SELECT Host, User FROM user")

 # fetch all results
 r = yield from cursor.fetchall()

 # detach cursor from connection
 yield from cursor.close()

 # close connection
 conn.close()

loop.run_until_complete(test_example())

Use Connection.cursor() for getting cursor for connection.

	
connection

	This read-only attribute return a reference to the Connection
object on which the cursor was created

	
echo

	Return echo mode status.

	
description

	This read-only attribute is a sequence of 7-item sequences.

Each of these sequences is a collections.namedtuple containing
information describing one result column:

	name: the name of the column returned.

	type_code: the type of the column.

	display_size: the actual length of the column in bytes.

	internal_size: the size in bytes of the column associated to
this column on the server.

	precision: total number of significant digits in columns of
type NUMERIC. None for other types.

	scale: count of decimal digits in the fractional part in
columns of type NUMERIC. None for other types.

	null_ok: always None.

This attribute will be None for operations that do not
return rows or if the cursor has not had an operation invoked
via the Cursor.execute() method yet.

	
rowcount

	Returns the number of rows that has been produced of affected.

This read-only attribute specifies the number of rows that the
last Cursor.execute() produced (for Data Query Language
statements like SELECT) or affected (for Data Manipulation
Language statements like UPDATE or INSERT).

The attribute is -1 in case no Cursor.execute() has been
performed on the cursor or the row count of the last operation if it
can’t be determined by the interface.

	
rownumber

	Row index. This read-only attribute provides the current 0-based index
of the cursor in the result set or None if the index cannot be
determined.

	
arraysize

	How many rows will be returned by Cursor.fetchmany() call.

This read/write attribute specifies the number of rows to
fetch at a time with Cursor.fetchmany(). It defaults to
1 meaning to fetch a single row at a time.

	
lastrowid

	This read-only property returns the value generated for an
AUTO_INCREMENT column by the previous INSERT or UPDATE statement
or None when there is no such value available. For example,
if you perform an INSERT into a table that contains an
AUTO_INCREMENT column, Cursor.lastrowid returns the
AUTO_INCREMENT value for the new row.

	
closed

	The readonly property that returns True if connections was detached
from current cursor

	
close()

	Coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] to close the cursor now (rather than
whenever del is executed). The cursor will be unusable from this
point forward; closing a cursor just exhausts all remaining data.

	
execute(query, args=None)

	Coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine], executes the given operation substituting
any markers with the given parameters.

For example, getting all rows where id is 5:

yield from cursor.execute("SELECT * FROM t1 WHERE id=%s", (5,))

	Parameters:	
	query (str [http://docs.python.org/3/library/stdtypes.html#str]) – sql statement

	args (list [http://docs.python.org/3/library/stdtypes.html#list]) – tuple or list of arguments for sql query

	Returns int:	number of rows that has been produced of affected

	
executemany(query, args)

	The executemany() coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] will execute the
operation iterating over the list of parameters in seq_params.

Example: Inserting 3 new employees and their phone number:

data = [
 ('Jane','555-001'),
 ('Joe', '555-001'),
 ('John', '555-003')
]
stmt = "INSERT INTO employees (name, phone)
 VALUES ('%s','%s')"
yield from cursor.executemany(stmt, data)

INSERT statements are optimized by batching the data, that is
using the MySQL multiple rows syntax.

	Parameters:	
	query (str [http://docs.python.org/3/library/stdtypes.html#str]) – sql statement

	args (list [http://docs.python.org/3/library/stdtypes.html#list]) – tuple or list of arguments for sql query

	
callproc(procname, args)

	Execute stored procedure procname with args, this method is
coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

Compatibility warning: PEP-249 specifies that any modified
parameters must be returned. This is currently impossible
as they are only available by storing them in a server
variable and then retrieved by a query. Since stored
procedures return zero or more result sets, there is no
reliable way to get at OUT or INOUT parameters via callproc.
The server variables are named @_procname_n, where procname
is the parameter above and n is the position of the parameter
(from zero). Once all result sets generated by the procedure
have been fetched, you can issue a SELECT @_procname_0, ...
query using Cursor.execute() to get any OUT or INOUT values.
Basic usage example:

conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='mysql', loop=self.loop)

cur = yield from conn.cursor()
yield from cur.execute("""CREATE PROCEDURE myinc(p1 INT)
 BEGIN
 SELECT p1 + 1;
 END
 """)

yield from cur.callproc('myinc', [1])
(ret,) = yield from cur.fetchone()
assert 2, ret

yield from cur.close()
conn.close()

Compatibility warning: The act of calling a stored procedure
itself creates an empty result set. This appears after any
result sets generated by the procedure. This is non-standard
behavior with respect to the DB-API. Be sure to use
Cursor.nextset() to advance through all result sets; otherwise
you may get disconnected.

	Parameters:	
	procname (str [http://docs.python.org/3/library/stdtypes.html#str]) – name of procedure to execute on server

	args – sequence of parameters to use with procedure

	Returns:	the original args.

	
fetchone()

	Fetch the next row coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
fetchmany(size=None)

	Coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] the next set of rows of a query result,
returning a list of tuples. When no more rows are available, it
returns an empty list.

The number of rows to fetch per call is specified by the parameter.
If it is not given, the cursor’s Cursor.arraysize determines
the number of rows to be fetched. The method should try to fetch as
many rows as indicated by the size parameter. If this is not possible
due to the specified number of rows not being available, fewer rows
may be returned

cursor = yield from connection.cursor()
yield from cursor.execute("SELECT * FROM test;")
r = cursor.fetchmany(2)
print(r)
[(1, 100, "abc'def"), (2, None, 'dada')]
r = yield from cursor.fetchmany(2)
print(r)
[(3, 42, 'bar')]
r = yield from cursor.fetchmany(2)
print(r)
[]

	Parameters:	size (int [http://docs.python.org/3/library/functions.html#int]) – number of rows to return

	Returns list:	of fetched rows

	
fetchall()

	Coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] returns all rows of a query result set:

yield from cursor.execute("SELECT * FROM test;")
r = yield from cursor.fetchall()
print(r)
[(1, 100, "abc'def"), (2, None, 'dada'), (3, 42, 'bar')]

	Returns list:	list of fetched rows

	
scroll(value, mode='relative')

	Scroll the cursor in the result set to a new position according
to mode. This method is coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

If mode is relative (default), value is taken as offset to the
current position in the result set, if set to absolute, value
states an absolute target position. An IndexError should be raised in
case a scroll operation would leave the result set. In this case,
the cursor position is left undefined (ideal would be to
not move the cursor at all).

Note

According to the DBAPI, the exception raised for a cursor out
of bound should have been IndexError [http://docs.python.org/3/library/exceptions.html#IndexError]. The best option is
probably to catch both exceptions in your code:

try:
 yield from cur.scroll(1000 * 1000)
except (ProgrammingError, IndexError), exc:
 deal_with_it(exc)

	Parameters:	
	value (int [http://docs.python.org/3/library/functions.html#int]) – move cursor to next position according to mode.

	mode (str [http://docs.python.org/3/library/stdtypes.html#str]) – scroll mode, possible modes: relative and absolute

	
class DictCursor

	A cursor which returns results as a dictionary. All methods and arguments
same as Cursor, see example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():
 conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='mysql', loop=loop)

 # create dict cursor
 cursor = yield from conn.cursor(aiomysql.DictCursor)

 # execute sql query
 yield from cursor.execute(
 "SELECT * from people where name='bob'")

 # fetch all results
 r = yield from cursor.fetchone()
 print(r)
 # {'age': 20, 'DOB': datetime.datetime(1990, 2, 6, 23, 4, 56),
 # 'name': 'bob'}

loop.run_until_complete(test_example())

	
class SSCursor

	
Unbuffered Cursor, mainly useful for queries that return a lot of
data, or for connections to remote servers over a slow network.

Instead of copying every row of data into a buffer, this will fetch
rows as needed. The upside of this, is the client uses much less memory,
and rows are returned much faster when traveling over a slow network,
or if the result set is very big.

There are limitations, though. The MySQL protocol doesn’t support
returning the total number of rows, so the only way to tell how many rows
there are is to iterate over every row returned. Also, it currently isn’t
possible to scroll backwards, as only the current row is held in memory.
All methods are the same as in Cursor but with different
behaviour.

	
fetchall()

	
Same as :meth:`Cursor.fetchall` :ref:`coroutine <coroutine>`,

	
useless for large queries, as all rows fetched one by one.

	

	
fetchmany(size=None, mode='relative')

	
Same as :meth:`Cursor.fetchall`, but each row fetched one by one.

	

	
scroll(size=None)

	
Same as :meth:`Cursor.scroll`, but move cursor on server side one by

	
one. If you want to move 20 rows forward scroll will make 20 queries

	
to move cursor. Currently only forward scrolling is supported.

	

	
class SSDictCursor

	An unbuffered cursor, which returns results as a dictionary.

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

Pool

The library provides connection pool as well as plain
Connection objects.

The basic usage is:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def go()
 pool = yield from aiomysql.create_pool(host='127.0.0.1', port=3306,
 user='root', password='',
 db='mysql', loop=loop)

 with (yield from pool) as conn:
 cur = yield from conn.cursor()
 yield from cur.execute("SELECT 10")
 # print(cur.description)
 (r,) = yield from cur.fetchone()
 assert r == 10
 pool.close()
 yield from pool.wait_closed()

loop.run_until_complete(go())

	
create_pool(minsize=1, maxsize=10, loop=None, **kwargs)

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that creates a pool of connections to
MySQL database.

	Parameters:	
	minsize (int [http://docs.python.org/3/library/functions.html#int]) – minimum sizes of the pool.

	maxsize (int [http://docs.python.org/3/library/functions.html#int]) – maximum sizes of the pool.

	loop – is an optional event loop instance,
asyncio.get_event_loop() [http://docs.python.org/3/library/asyncio-eventloops.html#asyncio.get_event_loop] is used if loop is not specified.

	echo (bool [http://docs.python.org/3/library/functions.html#bool]) – – executed log SQL queryes (False by default).

	kwargs – The function accepts all parameters that
aiomysql.connect() does plus optional keyword-only parameters
loop, minsize, maxsize.

	Returns:	Pool instance.

	
class Pool

	
A connection pool.

After creation pool has minsize free connections and can grow up
to maxsize ones.

If minsize is 0 the pool doesn’t creates any connection on startup.

If maxsize is 0 than size of pool is unlimited (but it
recycles used connections of course).

The most important way to use it is getting connection in with statement:

with (yield from pool) as conn:
 cur = yield from conn.cursor()

See also Pool.acquire() and Pool.release() for acquring
Connection without with statement.

	
echo

	Return echo mode status. Log all executed queries to logger
named aiomysql if True

	
minsize

	A minimal size of the pool (read-only), 1 by default.

	
maxsize

	A maximal size of the pool (read-only), 10 by default.

	
size

	A current size of the pool (readonly). Includes used and free
connections.

	
freesize

	A count of free connections in the pool (readonly).

	
clear()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that closes all free connections
in the pool. At next connection acquiring at least minsize of
them will be recreated.

	
close()

	Close pool.

Mark all pool connections to be closed on getting back to pool.
Closed pool doesn’t allow to acquire new connections.

If you want to wait for actual closing of acquired connection please
call wait_closed() after close().

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
terminate()

	Terminate pool.

Close pool with instantly closing all acquired connections also.

wait_closed() should be called after terminate() for
waiting for actual finishing.

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
wait_closed()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that waits for releasing and
closing all acquired connections.

Should be called after close() for waiting for actual pool
closing.

	
acquire()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that acquires a connection from
free pool. Creates new connection if needed and size
of pool is less than maxsize.

Returns a Connection instance.

	
release(conn)

	Reverts connection conn to free pool for future recycling.

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

Tutorial

Python database access modules all have similar interfaces, described by the
DBAPI. Most relational databases use the same synchronous interface,
aiomysql tries to provide same api you just need
to use yield from conn.f() instead of just call conn.f() for
every method.

Installation

pip3 install aiomysql

Note

aiomysql requires PyMySQL library.

Getting Started

Lets start from basic example:

import asyncio
import aiomysql

loop = asyncio.get_event_loop()

@asyncio.coroutine
def test_example():
 conn = yield from aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='', db='mysql',
 loop=loop)

 cur = yield from conn.cursor()
 yield from cur.execute("SELECT Host,User FROM user")
 print(cur.description)
 r = yield from cur.fetchall()
 print(r)
 yield from cur.close()
 conn.close()

loop.run_until_complete(test_example())

Connection is established by invoking the connect() coroutine,
arguments list are keyword arguments, almost same as in PyMySQL
corresponding method. Example makes connection to MySQL server on
local host to access mysql database with user name root‘ and empty password.

If connect() coroutine succeeds, it returns a Connection
instance as the basis for further interaction with MySQL.

After the connection object has been obtained, code in example invokes
Connection.cursor() coroutine method to create a cursor object for
processing statements. Example uses cursor to issue a
SELECT Host,User FROM user; statement, which returns a list of host and
user from MySQL system table user:

cur = yield from conn.cursor()
yield from cur.execute("SELECT Host,User FROM user")
print(cur.description)
r = yield from cur.fetchall()

The cursor object’s Cursor.execute() method sends the query the server
and Cursor.fetchall() retrieves rows.

Finally, the script invokes Cursor.close() coroutine and
connection object’s Connection.close() method to disconnect
from the server:

yield from cur.close()
conn.close()

After that, conn becomes invalid and should not be used to access the
server.

Inserting Data

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

aiomysql.sa — support for SQLAlchemy functional SQL layer

Intro

Note

sqlalchemy support ported from aiopg [https://github.com/aio-libs/aiopg], so api should be
very familiar for aiopg [https://github.com/aio-libs/aiopg] user.

While core API provides a core support for
access to MySQL database, manipulations with raw SQL strings
too annoying.

Fortunately we can use excellent SQLAlchemy Core [http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel] as SQL query builder.

Example:

import asyncio
import sqlalchemy as sa

from aiomysql.sa import create_engine

metadata = sa.MetaData()

tbl = sa.Table('tbl', metadata,
 sa.Column('id', sa.Integer, primary_key=True),
 sa.Column('val', sa.String(255)))

@asyncio.coroutine
def go():
 engine = yield from create_engine(user='root',
 db='test_pymysql',
 host='127.0.0.1',
 password='')

 with (yield from engine) as conn:
 yield from conn.execute(tbl.insert().values(val='abc'))

 res = yield from conn.execute(tbl.select())
 for row in res:
 print(row.id, row.val)

asyncio.get_event_loop().run_until_complete(go())

So you can execute SQL query built by
tbl.insert().values(val='abc') or tbl.select() expressions.

sqlalchemy has rich and very powerful set of SQL construction
functions, please read tutorial [http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel] for full list
of available operations.

Also we provide SQL transactions support. Please take a look on
SAConnection.begin() method and family.

Engine

	
aiomysql.sa.create_engine(*, minsize=1, maxsize=10, loop=None, dialect=dialect, **kwargs)

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] for Engine creation.

Returns Engine instance with embedded connection pool.

The pool has minsize opened connections to MySQL server.

At kwargs function accepts all parameters that
aiomysql.connect() does.

	
aiomysql.sa.dialect

	An instance of SQLAlchemy dialect set up for pymysql usage.

An sqlalchemy.engine.interfaces.Dialect [http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect] instance.

See also

sqlalchemy.dialects.mysql.pymysql [http://docs.sqlalchemy.org/en/rel_0_9/dialects/mysql.html#module-sqlalchemy.dialects.mysql.pymysql]
PyMySQL dialect.

	
class aiomysql.sa.Engine

	Connects a aiomysql.Pool and
sqlalchemy.engine.interfaces.Dialect [http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect] together to provide a
source of database connectivity and behavior.

An Engine object is instantiated publicly using the
create_engine() coroutine.

	
dialect

	A sqlalchemy.engine.interfaces.Dialect [http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect] for the engine,
readonly property.

	
name

	A name of the dialect, readonly property.

	
driver

	A driver of the dialect, readonly property.

	
minsize

	A minimal size of the pool (read-only), 1 by default.

	
maxsize

	A maximal size of the pool (read-only), 10 by default.

	
size

	A current size of the pool (readonly). Includes used and free
connections.

	
freesize

	A count of free connections in the pool (readonly).

	
close()

	
Close engine.

Mark all engine connections to be closed on getting back to engine.
Closed engine doesn’t allow to acquire new connections.

If you want to wait for actual closing of acquired connection please
call wait_closed() after close().

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
terminate()

	
Terminate engine.

Close engine’s pool with instantly closing all acquired connections
also.

wait_closed() should be called after terminate() for
waiting for actual finishing.

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
wait_closed()

	A coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine] that waits for releasing and
closing all acquired connections.

Should be called after close() for waiting for actual engine
closing.

	
acquire()

	Get a connection from pool.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

Returns a SAConnection instance.

	
release()

	
Revert back connection conn to pool.

Warning

The method is not a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

Connection

	
class aiomysql.sa.SAConnection

	A wrapper for aiomysql.Connection instance.

The class provides methods for executing SQL queries and working with
SQL transactions.

	
execute(query, *multiparams, **params)

	Executes a SQL query with optional parameters.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	Parameters:	
	query – a SQL query string or any sqlalchemy
expression (see SQLAlchemy Core [http://docs.sqlalchemy.org/en/rel_0_9/core/index.html#core-toplevel])

	*multiparams/**params – represent bound parameter values
to be used in the execution. Typically, the format is either a
dictionary passed to *multiparams:

yield from conn.execute(
 table.insert(),
 {"id":1, "value":"v1"}
)

...or individual key/values interpreted by **params:

yield from conn.execute(
 table.insert(), id=1, value="v1"
)

In the case that a plain SQL string is passed, a tuple or
individual values in *multiparams may be passed:

yield from conn.execute(
 "INSERT INTO table (id, value) VALUES (%d, %s)",
 (1, "v1")
)

yield from conn.execute(
 "INSERT INTO table (id, value) VALUES (%s, %s)",
 1, "v1"
)

	Returns:	ResultProxy instance with results of SQL
query execution.

	
scalar(query, *multiparams, **params)

	Executes a SQL query and returns a scalar value.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

See also

SAConnection.execute() and ResultProxy.scalar().

	
closed

	The readonly property that returns True if connections is closed.

	
begin()

	Begin a transaction and return a transaction handle.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

The returned object is an instance of Transaction.
This object represents the “scope” of the transaction,
which completes when either the Transaction.rollback()
or Transaction.commit() method is called.

Nested calls to begin() on the same SAConnection
will return new Transaction objects that represent
an emulated transaction within the scope of the enclosing
transaction, that is:

trans = yield from conn.begin() # outermost transaction
trans2 = yield from conn.begin() # "inner"
yield from trans2.commit() # does nothing
yield from trans.commit() # actually commits

Calls to Transaction.commit() only have an effect
when invoked via the outermost Transaction object, though the
Transaction.rollback() method of any of the
Transaction objects will roll back the
transaction.

See also

SAConnection.begin_nested() - use a SAVEPOINT

	SAConnection.begin_twophase() - use a two phase (XA)

	transaction

	
begin_nested()

	Begin a nested transaction and return a transaction handle.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

The returned object is an instance of NestedTransaction.

Any transaction in the hierarchy may commit and
rollback, however the outermost transaction still controls
the overall commit or rollback of the transaction of a
whole. It utilizes SAVEPOINT facility of MySQL server.

See also

SAConnection.begin(), SAConnection.begin_twophase().

	
begin_twophase(xid=None)

	Begin a two-phase or XA transaction and return a transaction
handle.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

The returned object is an instance of
TwoPhaseTransaction, which in addition to the methods
provided by Transaction, also provides a
prepare() method.

	Parameters:	xid – the two phase transaction id. If not supplied, a
random id will be generated.

See also

SAConnection.begin(), SAConnection.begin_twophase().

	
recover_twophase()

	Return a list of prepared twophase transaction ids.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
rollback_prepared(xid)

	Rollback prepared twophase transaction xid.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
commit_prepared(xid)

	Commit prepared twophase transaction xid.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
in_transaction

	The readonly property that returns True if a transaction is
in progress.

	
close()

	Close this SAConnection.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

This results in a release of the underlying database
resources, that is, the aiomysql.Connection referenced
internally. The aiomysql.Connection is typically restored
back to the connection-holding aiomysql.Pool referenced
by the Engine that produced this
SAConnection. Any transactional state present on
the aiomysql.Connection is also unconditionally released via
calling Transaction.rollback() method.

After close() is called, the
SAConnection is permanently in a closed state,
and will allow no further operations.

ResultProxy

	
class aiomysql.sa.ResultProxy

	Wraps a DB-API like Cursor object to provide easier
access to row columns.

Individual columns may be accessed by their integer position,
case-sensitive column name, or by sqlalchemy.schema.Column`
object. e.g.:

for row in (yield from conn.execute(...)):
 col1 = row[0] # access via integer position
 col2 = row['col2'] # access via name
 col3 = row[mytable.c.mycol] # access via Column object.

ResultProxy also handles post-processing of result column
data using sqlalchemy.types.TypeEngine [http://docs.sqlalchemy.org/en/rel_0_9/core/type_api.html#sqlalchemy.types.TypeEngine] objects, which are
referenced from the originating SQL statement that produced this
result set.

	
dialect

	The readonly property that returns
sqlalchemy.engine.interfaces.Dialect [http://docs.sqlalchemy.org/en/rel_0_9/core/internals.html#sqlalchemy.engine.interfaces.Dialect] dialect
for the ResultProxy instance.

See also

dialect global data.

	
keys()

	Return the current set of string keys for rows.

	
rowcount

	The readonly property that returns the ‘rowcount’ for this result.

The ‘rowcount’ reports the number of rows matched
by the WHERE criterion of an UPDATE or DELETE statement.

Note

Notes regarding ResultProxy.rowcount:

	This attribute returns the number of rows matched,
which is not necessarily the same as the number of rows
that were actually modified - an UPDATE statement, for example,
may have no net change on a given row if the SET values
given are the same as those present in the row already.
Such a row would be matched but not modified.

	ResultProxy.rowcount is only useful in conjunction
with an UPDATE or DELETE statement. Contrary to what the Python
DBAPI says, it does not return the
number of rows available from the results of a SELECT statement
as DBAPIs cannot support this functionality when rows are
unbuffered.

	Statements that use RETURNING does not return a correct
rowcount.

	
lastrowid

	Returns the ‘lastrowid’ accessor on the DBAPI cursor.

value generated for an AUTO_INCREMENT column by the previous INSERT
or UPDATE statement or None when there is no such value available. For
example, if you perform an INSERT into a table that contains an
AUTO_INCREMENT column, lastrowid returns the AUTO_INCREMENT value
for the new row.

	
returns_rows

	A readonly property that returns True if this
ResultProxy returns rows.

I.e. if it is legal to call the methods
ResultProxy.fetchone(),
ResultProxy.fetchmany(),
ResultProxy.fetchall().

	
closed

	Return True if this ResultProxy is closed (no
pending rows in underlying cursor).

	
close()

	Close this ResultProxy.

Closes the underlying aiomysql.Cursor corresponding to the
execution.

Note that any data cached within this ResultProxy is
still available. For some types of results, this may include
buffered rows.

This method is called automatically when:

	all result rows are exhausted using the fetchXXX() methods.

	cursor.description is None.

	
fetchall()

	Fetch all rows, just like aiomysql.Cursor.fetchall().

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

The connection is closed after the call.

Returns a list of RowProxy.

	
fetchone()

	Fetch one row, just like aiomysql.Cursor.fetchone().

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

If a row is present, the cursor remains open after this is called.

Else the cursor is automatically closed and None is returned.

Returns an RowProxy instance or None.

	
fetchmany(size=None)

	Fetch many rows, just like aiomysql.Cursor.fetchmany().

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

If rows are present, the cursor remains open after this is called.

Else the cursor is automatically closed and an empty list is returned.

Returns a list of RowProxy.

	
first()

	Fetch the first row and then close the result set unconditionally.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

Returns None if no row is present or an RowProxy instance.

	
scalar()

	Fetch the first column of the first row, and close the result set.

Returns None if no row is present or an RowProxy instance.

	
class aiomysql.sa.RowProxy

	A collections.abc.Mapping [http://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping] for representing a row in query result.

Keys are column names, values are result values.

Individual columns may be accessed by their integer position,
case-sensitive column name, or by sqlalchemy.schema.Column`
object.

Has overloaded operators __eq__ and __ne__ for comparing two rows.

The RowProxy is not hashable.

..method:: as_tuple()

Return a tuple with values from RowProxy.values().

Transaction objects

	
class aiomysql.sa.Transaction

	Represent a database transaction in progress.

The Transaction object is procured by
calling the SAConnection.begin() method of
SAConnection:

with (yield from engine) as conn:
 trans = yield from conn.begin()
 try:
 yield from conn.execute("insert into x (a, b) values (1, 2)")
 except Exception:
 yield from trans.rollback()
 else:
 yield from trans.commit()

The object provides rollback() and commit()
methods in order to control transaction boundaries.

See also

SAConnection.begin(), SAConnection.begin_twophase(),
SAConnection.begin_nested().

	
is_active

	A readonly property that returns True if a transaction is active.

	
connection

	A readonly property that returns SAConnection for transaction.

	
close()

	Close this Transaction.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

If this transaction is the base transaction in a begin/commit
nesting, the transaction will Transaction.rollback().
Otherwise, the method returns.

This is used to cancel a Transaction without affecting
the scope of an enclosing transaction.

	
rollback()

	Roll back this Transaction.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
commit()

	Commit this Transaction.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

	
class aiomysql.sa.NestedTransaction

	Represent a ‘nested’, or SAVEPOINT transaction.

A new NestedTransaction object may be procured
using the SAConnection.begin_nested() method.

The interface is the same as that of Transaction.

See also

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT [http://dev.mysql.com/doc/refman/5.7/en/savepoint.html]
on MySQL:

	
class aiomysql.sa.TwoPhaseTransaction

	Represent a two-phase transaction.

A new TwoPhaseTransaction object may be procured
using the SAConnection.begin_twophase() method.

The interface is the same as that of Transaction
with the addition of the TwoPhaseTransaction.prepare() method.

	
xid

	A readonly property that returns twophase transaction id.

	
prepare()

	Prepare this TwoPhaseTransaction.

This method is a coroutine [http://docs.python.org/3/library/asyncio-task.html#coroutine].

After a PREPARE, the transaction can be committed.

See also

MySQL commands for two phase transactions:

http://dev.mysql.com/doc/refman/5.7/en/xa-statements.html

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

Examples of aiomysql usage

Below is a list of examples from aiomysql/examples [https://github.com/aio-libs/aiomysql/tree/master/examples]

Every example is a correct tiny python program that demonstrates specific
feature of library.

Low-level API

Basic example, fetch host and user information from internal table: user.

import asyncio
import aiomysql

async def test_example(loop):
 conn = await aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='', db='mysql',
 loop=loop)

 async with conn.cursor() as cur:
 await cur.execute("SELECT Host,User FROM user")
 print(cur.description)
 r = await cur.fetchall()
 print(r)
 conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example(loop))

Example of stored procedure, which just increments input value.

import asyncio
import aiomysql

async def test_example(loop):
 conn = await aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='test_pymysql', loop=loop)

 async with conn.cursor() as cur:
 await cur.execute('DROP PROCEDURE IF EXISTS myinc;')
 await cur.execute("""CREATE PROCEDURE myinc(p1 INT)
 BEGIN
 SELECT p1 + 1;
 END""")

 await cur.callproc('myinc', [1])
 (ret,) = await cur.fetchone()
 assert 2, ret
 print(ret)

 conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example(loop))

Example of using executemany method:

import asyncio
import aiomysql

async def test_example_executemany(loop):
 conn = await aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='test_pymysql', loop=loop)

 cur = await conn.cursor()
 async with conn.cursor() as cur:
 await cur.execute("DROP TABLE IF EXISTS music_style;")
 await cur.execute("""CREATE TABLE music_style
 (id INT,
 name VARCHAR(255),
 PRIMARY KEY (id));""")
 await conn.commit()

 # insert 3 rows one by one
 await cur.execute("INSERT INTO music_style VALUES(1,'heavy metal')")
 await cur.execute("INSERT INTO music_style VALUES(2,'death metal');")
 await cur.execute("INSERT INTO music_style VALUES(3,'power metal');")
 await conn.commit()

 # insert 3 row by one long query using *executemane* method
 data = [(4, 'gothic metal'), (5, 'doom metal'), (6, 'post metal')]
 await cur.executemany(
 "INSERT INTO music_style (id, name)"
 "values (%s,%s)", data)
 await conn.commit()

 # fetch all insert row from table music_style
 await cur.execute("SELECT * FROM music_style;")
 result = await cur.fetchall()
 print(result)

 conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example_executemany(loop))

Example of using transactions rollback and commit methods:

import asyncio
import aiomysql

async def test_example_transaction(loop):
 conn = await aiomysql.connect(host='127.0.0.1', port=3306,
 user='root', password='',
 db='test_pymysql', autocommit=False,
 loop=loop)

 async with conn.cursor() as cursor:
 stmt_drop = "DROP TABLE IF EXISTS names"
 await cursor.execute(stmt_drop)
 await cursor.execute("""
 CREATE TABLE names (
 id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(30) DEFAULT '' NOT NULL,
 cnt TINYINT UNSIGNED DEFAULT 0,
 PRIMARY KEY (id))""")
 await conn.commit()

 # Insert 3 records
 names = (('Geert',), ('Jan',), ('Michel',))
 stmt_insert = "INSERT INTO names (name) VALUES (%s)"
 await cursor.executemany(stmt_insert, names)

 # Roll back!!!!
 await conn.rollback()

 # There should be no data!
 stmt_select = "SELECT id, name FROM names ORDER BY id"
 await cursor.execute(stmt_select)
 resp = await cursor.fetchall()
 # Check there is no data
 assert not resp

 # Do the insert again.
 await cursor.executemany(stmt_insert, names)

 # Data should be already there
 await cursor.execute(stmt_select)
 resp = await cursor.fetchall()
 print(resp)
 # Do a commit
 await conn.commit()

 await cursor.execute(stmt_select)
 print(resp)

 # Cleaning up, dropping the table again
 await cursor.execute(stmt_drop)
 await cursor.close()
 conn.close()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example_transaction(loop))

Example of using connection pool:

import asyncio
import aiomysql

async def test_example(loop):
 pool = await aiomysql.create_pool(host='127.0.0.1', port=3306,
 user='root', password='',
 db='mysql', loop=loop)
 async with pool.acquire() as conn:
 async with conn.cursor() as cur:
 await cur.execute("SELECT 42;")
 print(cur.description)
 (r,) = await cur.fetchone()
 assert r == 42
 pool.close()
 await pool.wait_closed()

loop = asyncio.get_event_loop()
loop.run_until_complete(test_example(loop))

sqlalchemy usage

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomysql 0.0.9 documentation

Glossary

	DBAPI

	PEP 249 [https://www.python.org/dev/peps/pep-0249] – Python Database API Specification v2.0

	ipdb

	ipdb exports functions to access the IPython debugger, which
features tab completion, syntax highlighting, better tracebacks,
better introspection with the same interface as the pdb module.

	MySQL

	A popular database server.

http://www.mysql.com/

	pep8

	Python style guide checker

pep8 is a tool to check your Python code against some of the
style conventions in PEP 8 [https://www.python.org/dev/peps/pep-0008] – Style Guide for Python Code.

	pyflakes

	passive checker of Python programs

A simple program which checks Python source files for errors.

Pyflakes analyzes programs and detects various errors. It works
by parsing the source file, not importing it, so it is safe to
use on modules with side effects. It’s also much faster.

https://pypi.python.org/pypi/pyflakes

	PyMySQL

	Pure-Python MySQL client library. The goal of PyMySQL is to be a drop-in
replacement for MySQLdb and work on CPython, PyPy, IronPython and Jython.

https://github.com/PyMySQL/PyMySQL

	sqlalchemy

	The Python SQL Toolkit and Object Relational Mapper.

http://www.sqlalchemy.org/

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	aiomysql 0.0.9 documentation

Contributing

Thanks for your interest in contributing to aiomysql, there are multiple
ways and places you can contribute.

Reporting an Issue

If you have found issue with aiomysql please do
not hesitate to file an issue on the GitHub [https://github.com/aio-libs/aiomysql] project. When filing your
issue please make sure you can express the issue with a reproducible test
case.

When reporting an issue we also need as much information about your environment
that you can include. We never know what information will be pertinent when
trying narrow down the issue. Please include at least the following
information:

	Version of aiomysql and python.

	Version of MySQL/MariaDB.

	Platform you’re running on (OS X, Linux, Windows).

Instructions for contributors

In order to make a clone of the GitHub [https://github.com/aio-libs/aiomysql] repo: open the link and press the
“Fork” button on the upper-right menu of the web page.

I hope everybody knows how to work with git and github nowadays :)

Workflow is pretty straightforward:

	Clone the GitHub [https://github.com/aio-libs/aiomysql] repo

	Make a change

	Make sure all tests passed

	Commit changes to own aiomysql clone

	Make pull request from github page for your clone

Preconditions for running aiomysql test suite

We expect you to use a python virtual environment to run our tests.

There are several ways to make a virtual environment.

If you like to use virtualenv please run:

$ cd aiomysql
$ virtualenv --python=`which python3` venv

For standard python venv:

$ cd aiomysql
$ python3 -m venv venv

For virtualenvwrapper:

$ cd aiomysql
$ mkvirtualenv --python=`which python3` aiomysql

There are other tools like pyvenv but you know the rule of thumb
now: create a python3 virtual environment and activate it.

After that please install libraries required for development:

$ pip install -r requirements-dev.txt

We also recommend to install ipdb but it’s on your own:

$ pip install ipdb

Congratulations, you are ready to run the test suite

Install database

Fresh local installation of mysql has user root with empty password, tests
use this values by default. But you always can override host/port, user and
password in aiomysql/tests/base.py file or install corresponding environment
variables. Tests require two databases to be created before running suit:

$ mysql -u root
mysql> CREATE DATABASE test_pymysql DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;
mysql> CREATE DATABASE test_pymysql2 DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;

Run aiomysql test suite

After all the preconditions are met you can run tests typing the next
command:

$ make test

The command at first will run the flake8 tool (sorry, we don’t accept
pull requests with pep8 or pyflakes errors).

On flake8 success the tests will be run.

Please take a look on the produced output.

Any extra texts (print statements and so on) should be removed.

Tests coverage

We are trying hard to have good test coverage; please don’t make it worse.

Use:

$ make cov

to run test suite and collect coverage information. Once the command
has finished check your coverage at the file that appears in the last
line of the output:
open file:///.../aiomysql/coverage/index.html

Please go to the link and make sure that your code change is covered.

Documentation

We encourage documentation improvements.

Please before making a Pull Request about documentation changes run:

$ make doc

Once it finishes it will output the index html page
open file:///.../aiomysql/docs/_build/html/index.html.

Go to the link and make sure your doc changes looks good.

The End

After finishing all steps make a GitHub [https://github.com/aio-libs/aiomysql] Pull Request, thanks.

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	aiomysql 0.0.9 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 aiomysql	
 A library for accessing a MySQL database from the asyncio

 	
 	
 aiomysql.sa	
 support for SQLAlchemy functional SQL layer

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	aiomysql 0.0.9 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	

 	acquire() (aiomysql.sa.Engine method)

 	

 	(Pool method)

 	aiomysql (module)

 	aiomysql.sa (module)

 	

 	arraysize (Cursor attribute)

 	autocommit() (in module aiomysql)

B

 	

 	begin() (aiomysql.sa.SAConnection method)

 	

 	(in module aiomysql)

 	begin_nested() (aiomysql.sa.SAConnection method)

 	

 	begin_twophase() (aiomysql.sa.SAConnection method)

C

 	

 	callproc() (Cursor method)

 	charset (in module aiomysql)

 	clear() (Pool method)

 	close() (aiomysql.sa.Engine method)

 	

 	(Cursor method)

 	(Pool method)

 	(aiomysql.sa.ResultProxy method)

 	(aiomysql.sa.SAConnection method)

 	(aiomysql.sa.Transaction method)

 	(in module aiomysql)

 	closed (aiomysql.sa.ResultProxy attribute)

 	

 	(Cursor attribute)

 	(aiomysql.sa.SAConnection attribute)

 	(in module aiomysql)

 	commit() (aiomysql.sa.Transaction method)

 	

 	(in module aiomysql)

 	

 	commit_prepared() (aiomysql.sa.SAConnection method)

 	connection (aiomysql.sa.Transaction attribute)

 	

 	(Cursor attribute)

 	create_engine() (in module aiomysql.sa)

 	create_pool() (built-in function)

 	Cursor (built-in class)

 	cursor() (in module aiomysql)

D

 	

 	db (in module aiomysql)

 	DBAPI

 	description (Cursor attribute)

 	

 	dialect (aiomysql.sa.Engine attribute)

 	

 	(aiomysql.sa.ResultProxy attribute)

 	(in module aiomysql.sa)

 	DictCursor (built-in class)

 	driver (aiomysql.sa.Engine attribute)

E

 	

 	echo (Cursor attribute)

 	

 	(Pool attribute)

 	(in module aiomysql)

 	encoding (in module aiomysql)

 	Engine (class in aiomysql.sa)

 	

 	ensure_closed() (in module aiomysql)

 	execute() (aiomysql.sa.SAConnection method)

 	

 	(Cursor method)

 	executemany() (Cursor method)

F

 	

 	fetchall() (aiomysql.sa.ResultProxy method)

 	

 	(Cursor method)

 	(SSCursor method)

 	fetchmany() (aiomysql.sa.ResultProxy method)

 	

 	(Cursor method)

 	(SSCursor method)

 	fetchone() (aiomysql.sa.ResultProxy method)

 	

 	(Cursor method)

 	

 	first() (aiomysql.sa.ResultProxy method)

 	freesize (aiomysql.sa.Engine attribute)

 	

 	(Pool attribute)

G

 	

 	get_autocommit() (in module aiomysql)

H

 	

 	host (in module aiomysql)

I

 	

 	in_transaction (aiomysql.sa.SAConnection attribute)

 	ipdb

 	

 	is_active (aiomysql.sa.Transaction attribute)

K

 	

 	keys() (aiomysql.sa.ResultProxy method)

L

 	

 	lastrowid (aiomysql.sa.ResultProxy attribute)

 	

 	(Cursor attribute)

M

 	

 	maxsize (aiomysql.sa.Engine attribute)

 	

 	(Pool attribute)

 	minsize (aiomysql.sa.Engine attribute)

 	

 	(Pool attribute)

 	

 	MySQL

N

 	

 	name (aiomysql.sa.Engine attribute)

 	

 	NestedTransaction (class in aiomysql.sa)

P

 	

 	pep8

 	Pool (built-in class)

 	port (in module aiomysql)

 	prepare() (aiomysql.sa.TwoPhaseTransaction method)

 	

 	pyflakes

 	PyMySQL

 	
 Python Enhancement Proposals

 	

 	PEP 249

 	PEP 8

R

 	

 	recover_twophase() (aiomysql.sa.SAConnection method)

 	release() (aiomysql.sa.Engine method)

 	

 	(Pool method)

 	ResultProxy (class in aiomysql.sa)

 	returns_rows (aiomysql.sa.ResultProxy attribute)

 	rollback() (aiomysql.sa.Transaction method)

 	

 	(in module aiomysql)

 	

 	rollback_prepared() (aiomysql.sa.SAConnection method)

 	rowcount (aiomysql.sa.ResultProxy attribute)

 	

 	(Cursor attribute)

 	rownumber (Cursor attribute)

 	RowProxy (class in aiomysql.sa)

S

 	

 	SAConnection (class in aiomysql.sa)

 	scalar() (aiomysql.sa.ResultProxy method)

 	

 	(aiomysql.sa.SAConnection method)

 	scroll() (Cursor method)

 	

 	(SSCursor method)

 	select_db() (in module aiomysql)

 	

 	size (aiomysql.sa.Engine attribute)

 	

 	(Pool attribute)

 	sqlalchemy

 	SSCursor (built-in class)

 	SSDictCursor (built-in class)

T

 	

 	terminate() (aiomysql.sa.Engine method)

 	

 	(Pool method)

 	Transaction (class in aiomysql.sa)

 	

 	TwoPhaseTransaction (class in aiomysql.sa)

U

 	

 	unix_socket (in module aiomysql)

 	

 	user (in module aiomysql)

W

 	

 	wait_closed() (aiomysql.sa.Engine method)

 	

 	(Pool method)

X

 	

 	xid (aiomysql.sa.TwoPhaseTransaction attribute)

 Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		aiomysql 0.0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015,2016 Nikolay Novik.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

